More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\n
Our breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n
“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\n
Additionally, each book published by IntechOpen contains original content and research findings.
\\n\\n
We are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\n
Simba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\n
IntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\n
Since the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\n
Our breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n
“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\n
Additionally, each book published by IntechOpen contains original content and research findings.
\n\n
We are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n
\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"3597",leadTitle:null,fullTitle:"Environmental Technologies",title:"Environmental Technologies",subtitle:null,reviewType:"peer-reviewed",abstract:"This book on Environmental Technology takes a look at issues such as air, soil and noise \r\npollution problems, environmental quality assessment, monitoring, modelling and risk as- \r\nsessment, environmental health impact assessment, environmental management and envi- \r\nronmental technology development. It represents institutional arrangements, financial \r\nmechanisms and some sustainable technologies. The user can always count on finding both \r\nintroductory material and more specific material based on national interests and problems. \r\nThe user will also find ample references at the end of each chapter, if additional information \r\nis required. For additional questions or comments the user is encouraged to contact the \r\nauthor.",isbn:null,printIsbn:"978-3-902613-10-3",pdfIsbn:"978-953-51-5822-6",doi:"10.5772/55",price:119,priceEur:129,priceUsd:155,slug:"environmental_technologies",numberOfPages:278,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:null,bookSignature:"E. Burcu Ozkaraova Gungor",publishedDate:"January 1st 2008",coverURL:"https://cdn.intechopen.com/books/images_new/3597.jpg",numberOfDownloads:70377,numberOfWosCitations:15,numberOfCrossrefCitations:8,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:29,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:52,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:null,dateEndSecondStepPublish:null,dateEndThirdStepPublish:null,dateEndFourthStepPublish:null,dateEndFifthStepPublish:null,currentStepOfPublishingProcess:1,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"74046",title:"Dr.",name:"Burcu E.",middleName:null,surname:"Ozkaraova Gungor",slug:"burcu-e.-ozkaraova-gungor",fullName:"Burcu E. Ozkaraova Gungor",profilePictureURL:"https://mts.intechopen.com/storage/users/74046/images/1899_n.jpg",biography:"Dr Özkaraova Güngör works as an Assistant Professor at the Ondokuz Mayıs University since 2002. She graduated from the Environmental Engineering Department of Dokuz Eylül University, Izmir, in 1993. She was employed as a research assistant at the Boğaziçi University between 1996 and 2002. She holds a PhD in Environmental Technology on Soil Contaminant Interaction and Pollution Remediation and a MSc on Advanced Oxidation Processes. Over the past fifteen years, her primary research focus has been in the area of soil contaminant interaction, soil and ground water pollution, pollution control and remediation, and solid waste management. She worked as a project leader and researcher in projects like “Evaluation of the Soil Pollution Potential in the Middle Black Sea Region,” “A Comparative Investigation of Heavy Metal Removal from Aegean, Mediterranean and Black Sea Region Soils,” “Soil Pesticide Interactions and Investigation of Alternative Removal Methods.” Regularly, she publishes academic papers, serves as peer-reviewer for various international academic journals, and for scientific activities. She is a member of the Chamber of Environmental Engineers.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"784",title:"Environmental Technology",slug:"engineering-environmental-engineering-environmental-technology"}],chapters:[{id:"692",title:"Biosensors for Life Sciences",doi:"10.5772/5294",slug:"biosensors_for_life_sciences",totalDownloads:4297,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Mihaela Badea, Liliana Rogozea, Mihaela Idomir and Nicoleta Taus",downloadPdfUrl:"/chapter/pdf-download/692",previewPdfUrl:"/chapter/pdf-preview/692",authors:[null],corrections:null},{id:"693",title:"Ecological, Economic and Marketing Aspects of the Application of Biofertilisers in the Production of Organic Food",doi:"10.5772/5295",slug:"ecological__economic_and_marketing_aspects_of_the_application_of_biofertilisers_in_the_production_of",totalDownloads:3290,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Drago Cvijanovic, Gorica Cvijanovic and Jonel Subic",downloadPdfUrl:"/chapter/pdf-download/693",previewPdfUrl:"/chapter/pdf-preview/693",authors:[null],corrections:null},{id:"694",title:"Environmental Problems Induced by Pollutants in Air, Soil and Water Resources",doi:"10.5772/5296",slug:"environmental_problems_induced_by_pollutants_in_air__soil_and_water_resources",totalDownloads:8568,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Murat Deveci and and Fusun Ekmekyapar",downloadPdfUrl:"/chapter/pdf-download/694",previewPdfUrl:"/chapter/pdf-preview/694",authors:[null],corrections:null},{id:"695",title:"Emission Sources and Their Contributions to Ambient Air Concentrations of Pollutants",doi:"10.5772/5297",slug:"emission_sources_and_their_contributions_to_ambient_air_concentrations_of_pollutants",totalDownloads:3400,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Dragana Djordevic",downloadPdfUrl:"/chapter/pdf-download/695",previewPdfUrl:"/chapter/pdf-preview/695",authors:[null],corrections:null},{id:"696",title:"Qualitative Environmental Health Impact Assessment in Veles, Republic of Macedonia",doi:"10.5772/5298",slug:"qualitative_environmental_health_impact_assessment_in_veles__republic_of_macedonia",totalDownloads:3760,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Vladimir Kendrovski and Dragan Gjorgjev",downloadPdfUrl:"/chapter/pdf-download/696",previewPdfUrl:"/chapter/pdf-preview/696",authors:[null],corrections:null},{id:"697",title:"The Role of Adaptive Environmental Management in Sustainable Development Case Study Assessing the Economical Benefits of Sustainable Construction in Greece",doi:"10.5772/5299",slug:"the_role_of_adaptive_environmental_management_in_sustainable_development_case_study_assessing_the_ec",totalDownloads:3989,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Odysseus G. Manoliadis",downloadPdfUrl:"/chapter/pdf-download/697",previewPdfUrl:"/chapter/pdf-preview/697",authors:[null],corrections:null},{id:"698",title:"Indoor Air Pollution in the Romanian Homes",doi:"10.5772/5300",slug:"indoor_air_pollution_in_the_romanian_homes",totalDownloads:2914,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Anca Maria Moldoveanu",downloadPdfUrl:"/chapter/pdf-download/698",previewPdfUrl:"/chapter/pdf-preview/698",authors:[null],corrections:null},{id:"699",title:"Soil Pollution and Remediation Problems in Turkey",doi:"10.5772/5301",slug:"soil_pollution_and_remediation_problems_in_turkey",totalDownloads:8400,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:null,signatures:"E. Burcu Ozkaraova Gungor",downloadPdfUrl:"/chapter/pdf-download/699",previewPdfUrl:"/chapter/pdf-preview/699",authors:[null],corrections:null},{id:"700",title:"Distribution of Trace and Major Elements in Lignite and Products of Its Combustion-Leaching Experiments and Cluster Analysis",doi:"10.5772/5302",slug:"distribution_of_trace_and_major_elements_in_lignite_and_products_of_its_combustion-leaching_experime",totalDownloads:3228,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Aleksandar Popovic and Dragana Djordjevic",downloadPdfUrl:"/chapter/pdf-download/700",previewPdfUrl:"/chapter/pdf-preview/700",authors:[null],corrections:null},{id:"701",title:"Air Radioactivity Monitoring in Serbia",doi:"10.5772/5303",slug:"air_radioactivity_monitoring_in_serbia",totalDownloads:3743,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Dragana Popovic, Dragana Todorovic, Vesna Spasic Jokic and Gordana Djuric",downloadPdfUrl:"/chapter/pdf-download/701",previewPdfUrl:"/chapter/pdf-preview/701",authors:[null],corrections:null},{id:"702",title:"Improving the Grapevine Technology by Optimising the Utilisation of the Environmenthal Resources in the Murfatlar Vineyard",doi:"10.5772/5304",slug:"improving_the_grapevine_technology_by_optimising_the_utilisation_of_the_environmenthal_resources_in_",totalDownloads:3054,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Aurora Ranca",downloadPdfUrl:"/chapter/pdf-download/702",previewPdfUrl:"/chapter/pdf-preview/702",authors:[null],corrections:null},{id:"703",title:"Integrated Sustainable Fisheries Management for Pearl Mullet of Lake Van, Turkey",doi:"10.5772/5305",slug:"integrated_sustainable_fisheries_management_for_pearl_mullet_of_lake_van__turkey",totalDownloads:3259,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Mustafa Sari",downloadPdfUrl:"/chapter/pdf-download/703",previewPdfUrl:"/chapter/pdf-preview/703",authors:[null],corrections:null},{id:"704",title:"The Application of Membrane Separation Processes as Environmental Friendly Methods in the Beet Sugar Production",doi:"10.5772/5306",slug:"the_application_of_membrane_separation_processes_as_environmental_friendly_methods_in_the_beet_sugar",totalDownloads:8306,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Zita Seres, Julianna Gyura, Mirjana Djuric, Gyula Vatai and Matild Eszterle",downloadPdfUrl:"/chapter/pdf-download/704",previewPdfUrl:"/chapter/pdf-preview/704",authors:[null],corrections:null},{id:"705",title:"Assessment of Air Quality in an Urban Area of Belgrade, Serbia",doi:"10.5772/5307",slug:"assessment_of_air_quality_in_an_urban_area_of_belgrade__serbia",totalDownloads:5169,totalCrossrefCites:2,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"Mirjana Tasic, Slavica Rajsic, Milica Tomasevic, Zoran Mijic, Mira Anicic, Velibor Novakovic, Dragan M. Markovic, Dragan A. Markovic, Lazar Lazic, Mirjana Radenkovic and Jasminka Joksic",downloadPdfUrl:"/chapter/pdf-download/705",previewPdfUrl:"/chapter/pdf-preview/705",authors:[null],corrections:null},{id:"706",title:"Environmental, Medical, Technogenic and Computer Technology: Modeling, Risk Assessment and Cost/Benefit Analysis of the Accidents",doi:"10.5772/5308",slug:"environmental__medical__technogenic_and_computer_technology__modeling__risk_assessment_and_cost_bene",totalDownloads:2540,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Yanenko V.M., Rykhtovsky V.O. and Yanenko N.V.",downloadPdfUrl:"/chapter/pdf-download/706",previewPdfUrl:"/chapter/pdf-preview/706",authors:[null],corrections:null},{id:"707",title:"Habitation and Noise",doi:"10.5772/5309",slug:"habitation_and_noise",totalDownloads:2465,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Vesna Zlatanovic-Tomasevic",downloadPdfUrl:"/chapter/pdf-download/707",previewPdfUrl:"/chapter/pdf-preview/707",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1398",title:"Principles, Application and Assessment in Soil Science",subtitle:null,isOpenForSubmission:!1,hash:"70c304305ba2727cc51774a1bc517e18",slug:"principles-application-and-assessment-in-soil-science",bookSignature:"E. Burcu Özkaraova Güngör",coverURL:"https://cdn.intechopen.com/books/images_new/1398.jpg",editedByType:"Edited by",editors:[{id:"74046",title:"Dr.",name:"Burcu E.",surname:"Ozkaraova Gungor",slug:"burcu-e.-ozkaraova-gungor",fullName:"Burcu E. Ozkaraova Gungor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6804",title:"Carbon Capture, Utilization and Sequestration",subtitle:null,isOpenForSubmission:!1,hash:"bc6cd79987121b45dfa7f4cc6ba0ca1b",slug:"carbon-capture-utilization-and-sequestration",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/6804.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8261",title:"Green Technologies to Improve the Environment on Earth",subtitle:null,isOpenForSubmission:!1,hash:"3883bfaee890d55196f4635db2f20397",slug:"green-technologies-to-improve-the-environment-on-earth",bookSignature:"Marquidia Pacheco",coverURL:"https://cdn.intechopen.com/books/images_new/8261.jpg",editedByType:"Edited by",editors:[{id:"176742",title:"Dr.",name:"Marquidia",surname:"Pacheco",slug:"marquidia-pacheco",fullName:"Marquidia Pacheco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10455",title:"Green Computing Technologies and Computing Industry in 2021",subtitle:null,isOpenForSubmission:!1,hash:"dd39f34aef8389cc77903b8faae8c7c0",slug:"green-computing-technologies-and-computing-industry-in-2021",bookSignature:"Albert Sabban",coverURL:"https://cdn.intechopen.com/books/images_new/10455.jpg",editedByType:"Edited by",editors:[{id:"16889",title:"Dr.",name:"Albert",surname:"Sabban",slug:"albert-sabban",fullName:"Albert Sabban"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9271",title:"Innovation in Global Green Technologies 2020",subtitle:null,isOpenForSubmission:!1,hash:"2b283802db94fab806ba5ffc1d48bb5b",slug:"innovation-in-global-green-technologies-2020",bookSignature:"Albert Sabban",coverURL:"https://cdn.intechopen.com/books/images_new/9271.jpg",editedByType:"Edited by",editors:[{id:"16889",title:"Dr.",name:"Albert",surname:"Sabban",slug:"albert-sabban",fullName:"Albert Sabban"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"78823",slug:"erratum-covid-19-transmission-in-children-implications-for",title:"Erratum: COVID-19 Transmission in Children: Implications for Schools",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/78823.pdf",downloadPdfUrl:"/chapter/pdf-download/78823",previewPdfUrl:"/chapter/pdf-preview/78823",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/78823",risUrl:"/chapter/ris/78823",chapter:{id:"77986",slug:"covid-19-transmission-in-children-implications-for-schools",signatures:"Evelyn Mendoza-Torres, Franklin Torres, Wendy Rosales-Rada, Liliana Encinales, Lil Avendaño, María Fernanda Pérez, Ivana Terán, David Vergara, Estefanie Osorio-Llanes, Paige Fierbaugh, Wendy Villamizar, Aileen Y. Chang and Jairo Castellar-Lopez",dateSubmitted:"June 15th 2021",dateReviewed:"July 12th 2021",datePrePublished:"September 13th 2021",datePublished:"March 16th 2022",book:{id:"10707",title:"Primary Health Care",subtitle:null,fullTitle:"Primary Health Care",slug:"primary-health-care",publishedDate:"March 16th 2022",bookSignature:"Ayşe Emel Önal",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25840",title:"Prof.",name:"Ayse Emel",middleName:null,surname:"Onal",slug:"ayse-emel-onal",fullName:"Ayse Emel Onal"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"342716",title:"Assistant Prof.",name:"Aileen",middleName:null,surname:"Y. Chang",fullName:"Aileen Y. Chang",slug:"aileen-y.-chang",email:"chang@email.gwu.edu",position:null,institution:null},{id:"342718",title:"Dr.",name:"Evelyn",middleName:null,surname:"Mendoza-Torres",fullName:"Evelyn Mendoza-Torres",slug:"evelyn-mendoza-torres",email:"evelyn.mendozat@unilibre.edu.co",position:null,institution:null},{id:"427633",title:"Dr.",name:"Franklin",middleName:null,surname:"Torres",fullName:"Franklin Torres",slug:"franklin-torres",email:"dummy+427633@intechopen.com",position:null,institution:null},{id:"427634",title:"Dr.",name:"Wendy",middleName:null,surname:"Rosales-Rada",fullName:"Wendy Rosales-Rada",slug:"wendy-rosales-rada",email:"dummy+427634@intechopen.com",position:null,institution:null},{id:"427635",title:"Dr.",name:"Liliana",middleName:null,surname:"Encinales",fullName:"Liliana Encinales",slug:"liliana-encinales",email:"dummy+427635@intechopen.com",position:null,institution:null},{id:"427636",title:"Dr.",name:"Lil",middleName:null,surname:"Avendaño",fullName:"Lil Avendaño",slug:"lil-avendano",email:"dummy+427636@intechopen.com",position:null,institution:null},{id:"427637",title:"Dr.",name:"María Fernanda",middleName:null,surname:"Pérez",fullName:"María Fernanda Pérez",slug:"maria-fernanda-perez",email:"dummy+427637@intechopen.com",position:null,institution:null},{id:"427638",title:"Dr.",name:"Ivana",middleName:null,surname:"Terán",fullName:"Ivana Terán",slug:"ivana-teran",email:"dummy+427638@intechopen.com",position:null,institution:null},{id:"427639",title:"Dr.",name:"David",middleName:null,surname:"Vergara",fullName:"David Vergara",slug:"david-vergara",email:"dummy+427639@intechopen.com",position:null,institution:null},{id:"427640",title:"Dr.",name:"Estefanie",middleName:null,surname:"Osorio-Llanes",fullName:"Estefanie Osorio-Llanes",slug:"estefanie-osorio-llanes",email:"dummy+427640@intechopen.com",position:null,institution:null},{id:"427641",title:"Dr.",name:"Paige",middleName:null,surname:"Fierbaugh",fullName:"Paige Fierbaugh",slug:"paige-fierbaugh",email:"dummy+427641@intechopen.com",position:null,institution:null},{id:"427642",title:"Dr.",name:"Wendy",middleName:null,surname:"Villamizar",fullName:"Wendy Villamizar",slug:"wendy-villamizar",email:"dummy+427642@intechopen.com",position:null,institution:null},{id:"457495",title:"Dr.",name:"Jairo",middleName:null,surname:"Castellar-Lopez",fullName:"Jairo Castellar-Lopez",slug:"jairo-castellar-lopez",email:"dummy+427643@intechopen.com",position:null,institution:null}]}},chapter:{id:"77986",slug:"covid-19-transmission-in-children-implications-for-schools",signatures:"Evelyn Mendoza-Torres, Franklin Torres, Wendy Rosales-Rada, Liliana Encinales, Lil Avendaño, María Fernanda Pérez, Ivana Terán, David Vergara, Estefanie Osorio-Llanes, Paige Fierbaugh, Wendy Villamizar, Aileen Y. Chang and Jairo Castellar-Lopez",dateSubmitted:"June 15th 2021",dateReviewed:"July 12th 2021",datePrePublished:"September 13th 2021",datePublished:"March 16th 2022",book:{id:"10707",title:"Primary Health Care",subtitle:null,fullTitle:"Primary Health Care",slug:"primary-health-care",publishedDate:"March 16th 2022",bookSignature:"Ayşe Emel Önal",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25840",title:"Prof.",name:"Ayse Emel",middleName:null,surname:"Onal",slug:"ayse-emel-onal",fullName:"Ayse Emel Onal"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"342716",title:"Assistant Prof.",name:"Aileen",middleName:null,surname:"Y. Chang",fullName:"Aileen Y. Chang",slug:"aileen-y.-chang",email:"chang@email.gwu.edu",position:null,institution:null},{id:"342718",title:"Dr.",name:"Evelyn",middleName:null,surname:"Mendoza-Torres",fullName:"Evelyn Mendoza-Torres",slug:"evelyn-mendoza-torres",email:"evelyn.mendozat@unilibre.edu.co",position:null,institution:null},{id:"427633",title:"Dr.",name:"Franklin",middleName:null,surname:"Torres",fullName:"Franklin Torres",slug:"franklin-torres",email:"dummy+427633@intechopen.com",position:null,institution:null},{id:"427634",title:"Dr.",name:"Wendy",middleName:null,surname:"Rosales-Rada",fullName:"Wendy Rosales-Rada",slug:"wendy-rosales-rada",email:"dummy+427634@intechopen.com",position:null,institution:null},{id:"427635",title:"Dr.",name:"Liliana",middleName:null,surname:"Encinales",fullName:"Liliana Encinales",slug:"liliana-encinales",email:"dummy+427635@intechopen.com",position:null,institution:null},{id:"427636",title:"Dr.",name:"Lil",middleName:null,surname:"Avendaño",fullName:"Lil Avendaño",slug:"lil-avendano",email:"dummy+427636@intechopen.com",position:null,institution:null},{id:"427637",title:"Dr.",name:"María Fernanda",middleName:null,surname:"Pérez",fullName:"María Fernanda Pérez",slug:"maria-fernanda-perez",email:"dummy+427637@intechopen.com",position:null,institution:null},{id:"427638",title:"Dr.",name:"Ivana",middleName:null,surname:"Terán",fullName:"Ivana Terán",slug:"ivana-teran",email:"dummy+427638@intechopen.com",position:null,institution:null},{id:"427639",title:"Dr.",name:"David",middleName:null,surname:"Vergara",fullName:"David Vergara",slug:"david-vergara",email:"dummy+427639@intechopen.com",position:null,institution:null},{id:"427640",title:"Dr.",name:"Estefanie",middleName:null,surname:"Osorio-Llanes",fullName:"Estefanie Osorio-Llanes",slug:"estefanie-osorio-llanes",email:"dummy+427640@intechopen.com",position:null,institution:null},{id:"427641",title:"Dr.",name:"Paige",middleName:null,surname:"Fierbaugh",fullName:"Paige Fierbaugh",slug:"paige-fierbaugh",email:"dummy+427641@intechopen.com",position:null,institution:null},{id:"427642",title:"Dr.",name:"Wendy",middleName:null,surname:"Villamizar",fullName:"Wendy Villamizar",slug:"wendy-villamizar",email:"dummy+427642@intechopen.com",position:null,institution:null},{id:"457495",title:"Dr.",name:"Jairo",middleName:null,surname:"Castellar-Lopez",fullName:"Jairo Castellar-Lopez",slug:"jairo-castellar-lopez",email:"dummy+427643@intechopen.com",position:null,institution:null}]},book:{id:"10707",title:"Primary Health Care",subtitle:null,fullTitle:"Primary Health Care",slug:"primary-health-care",publishedDate:"March 16th 2022",bookSignature:"Ayşe Emel Önal",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25840",title:"Prof.",name:"Ayse Emel",middleName:null,surname:"Onal",slug:"ayse-emel-onal",fullName:"Ayse Emel Onal"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11840",leadTitle:null,title:"Arid Environment - Perspectives, Challenges and Management",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tAridity is the imbalance between the long-term average water supply and the long-term average water demand. Unlike drought, which is defined as a period of abnormally dry air long enough to cause a serious hydrological imbalance, aridity is permanent, not temporary. A region is arid when it is characterized by a severe lack of usable water inhibiting the growth and development of plant and animal life. Environments exposed to arid climates tend to be devoid of vegetation and are called arid or desert. In the more extreme areas, called extreme arid deserts, the average annual precipitation is below 25 mm, under which conditions microorganisms must cope with not only by water scarcity but also by deadly UV radiation, high and low temperatures, high evaporation rates, prolonged drying times, oligotrophic conditions, and high salinity levels. Arid environments cover more than one-third of the world's land area and represent the most common habitat on Earth after the oceans. Aridity poses a threat to the environment, as well as the economy, security, development, food security, and social life around the world. The causes of increased aridity are complex and are thought to be both natural and man-made. Factors such as climate change, population growth, soil erosion, inappropriate irrigation, wrong farming, soil, water, and groundwater contamination, urbanization, deforestation, improper water management, desertification of arid and semi-arid zones appear as causes of drought.
\r\n
\r\n\tThis book is open to a wide range of scientific research, from water management to groundwater management, from land rehabilitation to soil reclamation, which will help prevent and minimize man-made aridity. In addition, many studies related to aridities such as environmental education, environmental awareness, sustainable development, and management policies and plans are also welcome. \r\n\t
",isbn:"978-1-80356-552-1",printIsbn:"978-1-80356-551-4",pdfIsbn:"978-1-80356-553-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"4c2e03f295fbc697350f0bf3bf89a14f",bookSignature:"Associate Prof. Murat Eyvaz, Dr. Ahmed Albahnasawi, M.Sc. Ercan Gürbulak and MSc. Mesut Tekbaş",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11840.jpg",keywords:"Aridity and Drought, Precipitation and Evapotranspiration, Land Use, Human Activity, Desertification, Desert, Soil Structure, Water Treatment, Water Scarcity, Irrigated Agriculture, Remote Sensing, Climate Change",numberOfDownloads:50,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 10th 2022",dateEndSecondStepPublish:"May 11th 2022",dateEndThirdStepPublish:"July 10th 2022",dateEndFourthStepPublish:"September 28th 2022",dateEndFifthStepPublish:"November 27th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Murat Eyvaz has co-authored many journal articles and conference papers and has taken part in many national projects. He serves as an editor in 51 journals and a reviewer in 125 journals indexed in SCI, SCI-E, and other indexes. He has four patents on wastewater treatment systems. Dr. Eyvaz's research interests include applications in water and wastewater treatment facilities, electrochemical treatment processes, and filtration systems at the lab.",coeditorOneBiosketch:"Dr. Albahnasawi is a pioneering researcher in environmental sciences and engineering, he has co-authored numerous journal articles and conference papers on water and wastewater treatment, and waste remediation. Recently, his research interests are the application and designing of Microbial Fuel Cell integrated with Fenton oxidation for industrial wastewater treatment/solid waste management and monitoring of organic micropollutants by both chromatographic and spectrophotometric analyses.",coeditorTwoBiosketch:"Dr. Gurbulak is a pioneering researcher in environmental sciences and engineering. He has co-authored numerous journal articles and conference papers on water and wastewater treatment, and advanced waste remediation technologies. His research interests are the application and designing of hydrothermal processes for industrial wastewater treatment/solid waste management and monitoring of organic micropollutants by both chromatographic and spectrophotometric analyses.",coeditorThreeBiosketch:"Dr. Tekbaş is a pioneering researcher in environmental sciences and engineering, he has co-authored numerous journal articles and conference papers on water and wastewater treatment, and advanced waste remediation technologies. His research interests are the application and designing of supercritical water oxidation processes for wastewater treatment/solid waste management and electrochemical analyses.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"170083",title:"Associate Prof.",name:"Murat",middleName:null,surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz",profilePictureURL:"https://mts.intechopen.com/storage/users/170083/images/system/170083.png",biography:"Dr. Murat Eyvaz is an associate professor in the Environmental Engineering Department, Gebze Technical University, Turkey. His research interests include applications in water and wastewater treatment facilities, electrochemical treatment processes, filtration systems at the lab and pilot-scale, membrane processes (forward osmosis, reverse osmosis, membrane bioreactors), membrane manufacturing methods (polymeric membranes, nanofiber membranes, electrospinning), spectrophotometric analyses (UV, atomic absorption spectrophotometry), chromatographic analyses (gas chromatography, high-pressure liquid chromatography). He has co-authored many journal articles and conference papers and has taken part in many national projects. He serves as an editor and reviewer for many indexed journals. Dr. Eyvaz has four patents on wastewater treatment systems.",institutionString:"Gebze Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"Gebze Technical University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"323629",title:"Dr.",name:"Ahmed",middleName:null,surname:"Albahnasawi",slug:"ahmed-albahnasawi",fullName:"Ahmed Albahnasawi",profilePictureURL:"https://mts.intechopen.com/storage/users/323629/images/system/323629.png",biography:"Dr. Ahmed Albahnasawi is a post-doctorate fellow in the Environmental Engineering Department, Gebze Technical University, Turkey. His graduate work focused on the investigation of the treatability of the sequential anoxic-aerobic batch reactors followed by ceramic membrane for textile wastewater treatment. Based on his Ph.D. research, Dr. Albahnasawi published three journal articles and participated in three international conferences. His research interests include the application and design of a microbial fuel cell integrated with Fenton oxidation for industrial wastewater treatment/solid waste management and monitoring of organic micropollutants by both chromatographic and spectrophotometric analyses.",institutionString:"Gebze Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Gebze Technical University",institutionURL:null,country:{name:"Turkey"}}},coeditorTwo:{id:"176699",title:"Dr.",name:"Ercan",middleName:null,surname:"Gürbulak",slug:"ercan-gurbulak",fullName:"Ercan Gürbulak",profilePictureURL:"https://mts.intechopen.com/storage/users/176699/images/system/176699.png",biography:"Dr. Ercan Gürbulak is a research associate in the Environmental Engineering Department, Gebze Technical University, Turkey. He received his bachelor’s degree in Environmental Engineering from Marmara University, Turkey, in 2005. He completed his MSc and Ph.D. at Gebze Technical University in 2008 and 2019, respectively. His research interests include the application and design of hydrothermal processes for industrial wastewater treatment/solid waste management and monitoring of organic micropollutants by both chromatographic and spectrophotometric analyses.",institutionString:"Gebze Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Gebze Technical University",institutionURL:null,country:{name:"Turkey"}}},coeditorThree:{id:"189677",title:"Dr.",name:"Mesut",middleName:null,surname:"Tekbaş",slug:"mesut-tekbas",fullName:"Mesut Tekbaş",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIbNQAW/Profile_Picture_1644828776099",biography:null,institutionString:"Gebze Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Gebze Technical University",institutionURL:null,country:{name:"Turkey"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:[{id:"80655",title:"Prediction of the Transported Soil Volume by the Presence of Water in the Vicinity of Ma’adim Vallis (Mars)",slug:"prediction-of-the-transported-soil-volume-by-the-presence-of-water-in-the-vicinity-of-ma-adim-vallis",totalDownloads:50,totalCrossrefCites:0,authors:[{id:"222957",title:"Dr.",name:"Emilio",surname:"Ramírez Juidías",slug:"emilio-ramirez-juidias",fullName:"Emilio Ramírez Juidías"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6732",title:"Desalination and Water Treatment",subtitle:null,isOpenForSubmission:!1,hash:"eee2f03e0328f289e68fde28738c333f",slug:"desalination-and-water-treatment",bookSignature:"Murat Eyvaz and Ebubekir Yüksel",coverURL:"https://cdn.intechopen.com/books/images_new/6732.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8804",title:"Water and Wastewater Treatment",subtitle:null,isOpenForSubmission:!1,hash:"ccb46d6518786712b3184b2498fb0cab",slug:"water-and-wastewater-treatment",bookSignature:"Murat Eyvaz",coverURL:"https://cdn.intechopen.com/books/images_new/8804.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6665",title:"Advances In Hydrogen Generation Technologies",subtitle:null,isOpenForSubmission:!1,hash:"99ccb9f2118953ff45f33ec391868157",slug:"advances-in-hydrogen-generation-technologies",bookSignature:"Murat Eyvaz",coverURL:"https://cdn.intechopen.com/books/images_new/6665.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8178",title:"Water Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"18595695f271583e06b7c2d33b670e56",slug:"water-chemistry",bookSignature:"Murat Eyvaz and Ebubekir Yüksel",coverURL:"https://cdn.intechopen.com/books/images_new/8178.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7693",title:"Green Chemistry Applications",subtitle:null,isOpenForSubmission:!1,hash:"9db61c9d52045d034f1ee6b769acccd5",slug:"green-chemistry-applications",bookSignature:"Murat Eyvaz and Ebubekir Yüksel",coverURL:"https://cdn.intechopen.com/books/images_new/7693.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7237",title:"Energy-Efficient Approaches in Industrial Applications",subtitle:null,isOpenForSubmission:!1,hash:"a7b403a3af7828987f078b91334839bb",slug:"energy-efficient-approaches-in-industrial-applications",bookSignature:"Murat Eyvaz, Abdülkerim Gok and Ebubekir Yüksel",coverURL:"https://cdn.intechopen.com/books/images_new/7237.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67680",title:"Regulation of HDACi−Triggered Autophagy by the Tumor Suppressor Protein p53",doi:"10.5772/intechopen.86911",slug:"regulation-of-hdaci-triggered-autophagy-by-the-tumor-suppressor-protein-p53",body:'\n
\n
1. Introduction
\n
Evading cell death has been defined as a cornerstone of cancer development [1, 2]. Exploring the pathogenetic mechanisms that determine different cell death modes therefore facilitated the avenue for increased specifically directed interference with these molecular pathways. Morphologically, apoptosis, autophagy, and necrosis could be distinguished as major categories of programmed cell death very early that either act mutually exclusive or in combination involving cross talk for the elimination of tumor cells. While apoptosis and necrosis lead to inevitable cellular demise, autophagy can have either a cytotoxic or a cytoprotective function [3]. Basal autophagy in normal eukaryotic cells provide a possibility to save energy and reuse damaged or aged macromolecules or organelles by redirecting them toward lysosomal degradation via so-called autophagosomes and can be triggered by nutrient-starving conditions [4, 5]. Thus, in early phases of tumorigenesis, autophagy obviously presumes a cytoprotective or pro-survival role by suppressing necrosis and inflammation with concomitant disruption of necrotic and apoptotic cell death induction [6, 7]. In later stages of irreversible tumor development however, autophagy may promote cell death by largely non-elucidated mechanisms that expedite the “self-degradation” program [8]. Disruption of autophagy in the latter case, which was recently enforced as novel strategy in chemotherapeutic cancer treatment, will advance the survival of tumor cells. This insight stresses the significance to confirm the context-reliant function of autophagy before initiating cancer therapy involving autophagic intervention [9, 10].
\n
\n
\n
2. The molecular mechanism of autophagy
\n
During macro-autophagy the formation of autophagosomes, representing double enveloped vesicles that enable the engulfment of targeted long-lived molecules and other cellular complexes from the remaining cytosol, are accomplished [11]. The following fusion with lysosomes containing proteolytic enzymes, i.e., the formation of autophagolysosomes, allows final degradation and reprocessing of their content [12]. The formation of the autophagosome is initiated by the phagopore assembly site (PAS) where autophagy-related (ATG) proteins are then recruited [13]. Particularly, the substantial work of the Nobel Prize laureate Ohsumi of ATG proteins in yeast has expedited our knowledge about the formation of the autophagosomes [14]. So far, 20 ATG proteins have been uncovered in mammalians that are activated during formation, enlargement, and closure of the autophagosome in a specific order. The process of autophagy has been categorized into several steps involving the ATG1/ULK kinase complex (initiation), the ATG12 conjugation system (nucleation), the ATG8/LC3 conjugation/deconjugation system (elongation), the phosphatidyl-inositol 3-kinase complex (maturation), and the ATG9/ATG9L1 cycling system (degradation). Either tumor suppressor proteins or oncogenes resulting in activation or suppression, respectively, have been determined to control the process of autophagy [15]. Consistently, key regulators that participate in the initial phase of autophagosome formation are the nutrient-sensing serine/threonine kinase mammalian target of rapamycin (mTOR), the unc-51 like autophagy activating kinases (ULK1/ULK2), the Beclin-1 (BECN1) lipid kinase complex, and the ubiquitin-like conjugation system (Figure 1) [16, 17, 18, 19]. As an overall major player, the mTOR multiprotein complex (mTORC) functions, comparable to p53, as a sensor for multiple kinds of stress signals which are of genotoxic and oxidative nature, particularly represented by reactive oxygen species (ROS), and nutrient levels such as energy, amino acids, glucose, or growth factors [19, 20]. The integration of these signals by mTOR beside autophagy also serves for the regulation of various other cellular functions such as translation, cell cycle, microtubule organization, or lipid biogenesis [21]. The mTOR complex subsequently inhibits the ATG13-ULK-FIP200 complex, consisting of ATG13, ULK1 (ATG1), and the focal adhesion kinase interacting protein of 200 kD (FIP200), which is necessary to initiate phagopore formation [22, 23, 24]; frequently, nutrient starvation-induced autophagy involves the formation of this complex. Further reports however, also noticed mTOR-mediated downregulation of the p53 family member p73 entailing the transcriptional activation of ATG5, ATG7, and UVRAG genes [25, 26]. Together with the ATG13-ULK-FIP200 complex, mTOR binds to the haplo-insufficient tumor suppressor protein Beclin-1 (ATG6) that organizes the phagopore formation and subsequently elongation and maturation of the autophagosome in a concerted action with various interacting proteins [27, 28]. For this purpose, Beclin-1 forms the Vps34 core complex consisting of Vps15 and class III phosphatidylinositol 3-kinase (PIKC3) that enables the generation of phosphatidylinositol 3-phosphate (PI3P) [28, 29]. Due to death associated protein kinase (DAPK)-mediated phosphorylation, Beclin-1 is not only controlling autophagy but found as a general regulator of lysosomes and endosome formation during membrane trafficking [30]. Further maturation of autophagosomes involves the interaction of the PI3P-binding proteins WIPI 1/2 with ATG12-ATG5-ATG16L and LC3-phosphatidylethanolamine (LC3-PE) complexes, both representing ubiquitin-like conjugation systems [4, 18, 31]. LC3 (microtubule-associated protein 1A/1B-light chain 3) and p62/Sequestosome-1 are two markers that are regularly employed for documenting autophagic flux as they are involved in the maturation of autophagosomes [32]. While LC3-I is processed to LC3-II, the scaffold protein p62 interacts with LC3 via its LC3-binding motif and seems to have a role in selectively guiding ubiquitinated proteins toward the autophagosome via its ubiquitin-binding domain [33]; thus, p62 levels decease during the induction of autophagy and have been found moreover to regulate protein deacetylation and is associated with tumorigenesis [34, 35, 36]. Autophagosome-lysosome fusion that requires the transmembrane protein LAMP2 and small Rab GTPases, finally permits hydrolase and cathepsin-mediated processing of the autophagosome content [37, 38].
\n
Figure 1.
Nuclear p53-mediated transcription-dependent autophagy, apoptosis and cell cycle arrest in response to stress conditions. By upregulation of tuberous sclerosis complex 2 (TSC2) or phosphatase and tensin homolog (PTEN; not shown), or AMP-activated protein kinase (AMPK) or its activators sestrins (not shown) p53 prevailingly attenuates mammalian target of rapamycin (mTOR) and the unc-51 like autophagy activating kinase 1 (ULK1) complex (consisting of autophagy-related gene 13 (ATG13) and the focal adhesion kinase interacting protein of 200 kD (FIP200)) as the autophagic canonical pathway. ULK-1 then interacts with Beclin-1 (BECN1) to initiate autophagosome formation. A shortcut for activation of autophagy involves damage-regulated autophagy modulator (DRAM), death associated protein kinase (DAPK), or autophagy-related gene 5 (ATG5) upregulation by the p53-family members, p63 and p73, or disruption of BCL2-family-or alternate reading frame protein product of the CDKN2A locus (p14ARF)-mediated release of BECN1 inhibition. In addition to autophagy, DRAM and p63/p73 are able to activate apoptosis. Arrowlines, upregulation or activation by indicated proteins; double arrow, major pathway activity. p53-mediated upregulation of the cyclin-dependent kinase inhibitor 1 (p21) enforces cell-cycle arrest. This figure is used under the terms and conditions of the creative commons attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) derived from Mrakovcic and Fröhlich [57].
\n
\n
2.1 Positive regulation of p53-mediated autophagy
\n
The tumor suppressor protein and transcription factor p53, which represents a “guardian” of the cell, has a fundamental role in the regulation of cell integrity and homeostasis and consequently in tumor defense. It coordinates cellular responses such as cell cycle arrest, apoptosis, senescence, metabolism, differentiation, angiogenesis, and even modulates autophagy. Among a multitude of other post-translational modifications, acetylation assists the master regulator to sense and integrate a variety of endogenous and exogenous cellular stress signals such as DNA damage, epigenetic alterations due to DNA methylation, genotoxicity, hypoxia, oxidative stress, or oncogene activation [39, 40]. In response, p53, as a central transcription factor translocates to the nucleus by detaching from the E3 ubiquitin ligase, mouse double minute 2 homolog (MDM2), and modulates the expression of multiple downstream target genes that regulate processes such as cell cycle progression and cell death [41, 42]. In appropriate conditions, p53 induces apoptosis by transactivating, i.e., transcriptional activation of pro-apoptotic genes or in the cytoplasm by direct interaction with anti-apoptotic proteins located in the mitochondrial membrane [43].
\n
Several signaling pathways involving the transactivational activity of p53—in normal as well as cancer cells regulate autophagy in the classical canonical mTOR pathway as specified in the previous chapter (Figure 1) [44]. As pro-autophagic factors emanating from p53, these pathways involve on the one hand the tumor suppressor proteins tuberous sclerosis complex 2 (TSC2) and phosphatase and tensin homolog (PTEN), and on the other hand the nutrient energy sensor AMP-activated protein kinase (AMPK) or its activators sestrins 1 and 2 [45, 46, 47]. A further path that bypasses mTOR and can directly modulate p53 stress-activated signal transduction, is damage-regulated autophagy modulator (DRAM) that can activate the autophagic as well as apoptotic program [48]. As a protein located in the lysosome, it can intervene at different steps of autophagosome formation [49]. Furthermore, by either upregulating pro-apoptotic protein expression (BAX, BAD, BNIP3, or PUMA) or downregulating anti-apoptotic protein expression (BCL-2, BCL-xL and MCL-1) of the B-cell Lymphoma-2 (BCL-2) family, p53 can enforce dual activation of autophagy and apoptosis [50, 51]. In the inactivated state these proteins directly interact with the BH3 domain of BECLIN-1 and block the direct activation of BECLIN-1-dependent autophagy [52, 53]. Direct interaction of the nuclear full-length form of p53-modulated tumor suppressor protein p14ARF (an alternate reading frame protein of the CDKN2A locus) with the BCL-xL protein is a further similar mechanism promoting the induction of autophagy although the predominant role of p14ARF seems to stabilize p53 to protect the cell against hyperproliferative growth and associated activation of oncogenes [54, 55]. Additionally, p53-elicited upregulation of DAPK has been reported to result in autophagic activation either by DAPK-mediated phosphorylation of Beclin-1 that blocks its degradation by BCL-2/BCL-xL, or by impeding the anti-autophagic LC3-interacting MAP1B protein [30, 56].
\n
\n
\n
2.2 Negative regulation of p53-mediated autophagy
\n
Beyond the nuclear-based transactivating pro-autophagic effects mediated by p53, additional inhibitory anti-autophagic responses related to cytoplasm-localized p53 protein have been uncovered by Tasdemir et al. in the past 10 years (Figure 2) [58]. While the transactivation-dependent nuclear autophagic response of p53 is stimulated by stress induction, the cytoplasmic blockage of autophagic induction is a steady-state function that is present under physiological conditions and seems to engage direct protein interaction. This cytoplasm-mediated inhibition of autophagy was also characterized to activate the canonical p53-AMPK-mTOR signaling cascade. In contrast to transcription-dependent pathway, however, the positive autophagic regulator AMP-dependent kinase is inhibited by p53 which in turn activates mTOR [59]. Accordingly, either pharmacological interference, depletion of basal p53 levels, or p53 variants that possess a genetically modified nuclear export domain rendered cells more resistant toward metabolic stress through elevated autophagy. The underlying obscure mechanism that is found not only in mammalians but also in nematodes could involve direct binding of p53 to FIP200 (ATG17) as experimentally evidenced [60]. Negative regulation of autophagy by cytoplasmic p53 has been also linked to its target gene TIGAR (TP53-induced glycolysis and apoptosis regulator) that suppresses glycolysis and ROS generation when the cell is exerted to stress [61]. Nevertheless, although TIGAR mediates ROS-mediated induction of autophagy, it is not a likely candidate for the above described mechanism but rather represents an alternative path since it does not inhibit mTOR obviously. A similar but also unclear anti-autophagic mechanism could be verified in embryonal carcinoma cells, where p53-Beclin-1 interaction facilitated Beclin-1 ubiquitination and subsequent degradation, which could be de-activated by depletion of p53 [62]. Another report identified Beclin-1 as a regulator of de-ubiquitination of p53 which was mediated by USP10 and USP13 ubiquitin-specific peptidases [63]. This mechanism might therefore also relate to the previously mentioned Beclin-1-induced autophagy which enables bidirectional dual activation of apoptosis and autophagy [64].
\n
Figure 2.
Cytoplasmic p53-mediated transcription-independent autophagy (under physiological conditions) and apoptosis. By direct inhibition, wildtype p53-protein inactivates AMPK-mTOR-ULK1 transduced autophagy leading to BECN1 degradation. Similarly, BECN1 degradation can also be directly mediated by the ubiquitin-specific peptidases USP10 and USP13. Further inhibitory functions for autophagy can be mediated by TP53-induced glycolysis and apoptosis regulator (TIGAR) following the down-regulation of glycolysis and the suppression of reactive oxygen species (ROS) formation. Also, p63/p73 has been reported to presumably exert transcription-independent disruption of autophagy (dashed line); fork symbols, inhibition; arrowlines, activation by indicated proteins; downward arrow, downregulation. For abbreviations, see Figure 1. This figure is used under the terms and conditions of the creative commons attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) derived from Mrakovcic and Fröhlich [57].
\n
\n
\n
2.3 Regulation of autophagy in p53-inactivated cells
\n
p53 is one of the most frequently inactivated tumor suppressor genes in human tumors [65]. Particularly, single point mutations that provoke a loss of p53 function were documented that in several cases apply a dominant-negative effect to the remaining non-mutant allele thereby enhancing their oncogenic effect [41, 66, 67]. Often, such p53 variants result in increased genomic instability, attenuated chemotherapeutic success and a poor prognosis for patients [68]. One of the underlying reasons therefore could be that many tumor-derived p53 variants also inactivate cytoprotective or cytotoxic autophagy [69, 70, 71]. Nevertheless, although nucleus-based transcription-dependent autophagy might be shut down in these cases, cytoplasm-induced activation of the autophagic program might still be available, due to p53-deficiency or functional inactivation. Interestingly, the studies of Morselli et al. demonstrated that several tumor-derived mutants of p53 that reside in the cytoplasm are still able to block autophagic induction, presumably by direct protein interaction [70]. Such experiments underline the significance why it is meaningful to discriminate p53 mutant variants with regard to their potential effects. This finding also highlights the role of context-dependent autophagy during tumorigenesis as disabled autophagy by mutant p53 was found to prolong tumor cell survival while it inactivated its tumor suppressor function. Thus, increased proliferation of pancreas and breast cancer cells could be uncovered in a report that confirmed inhibition of autophagy by mutant gain-of-function p53 proteins. This counteractivity was evidenced by stimulation of AMPK-mTOR genes with concomitant downregulation of Beclin-1, DRAM, ATG12, and sestrin genes [72].
\n
Various investigations found also a counter-acting surveillance mechanism between autophagy and since as mutant p53 blocks autophagic induction in one way but autophagy can stimulate the sequestering of mutant p53 in order to suppress tumorigenesis in the other way. Mechanistically, this mutual crosstalk is translated by the regulatory actions of the two suppressor genes Beclin-1 and p53 on autophagy as specified in the previous chapter [63]. While p53 exerts control on Beclin-1 via the canonical autophagic pathway, Beclin-1 also directly regulates p53 via controlling its deubiquitination activity which explains the mirrored effect on the phenotype of p53- and Beclin-1 ablated mice [73]. Additionally, with respect to Beclin-1 mediated autophagy, further reports documented the possibility of autophagic activation via the tumor suppressor protein p14ARF in p53-silenced or -inhibited cells [74]. Studies using doxorubicin-treated p53-wildtype or -deficient (p53−/−) mouse embryonic fibroblasts furthermore verified that the p53 family members p63 and p73 can substitute the loss of p53 (Figure 2) [75]; this mechanism involved nucleus translocation of p63/p73 and the increased expression of an extensive network of ATG proteins, such as ATG4a, ATG4c, ULK1, ULK2, UVRAG, and ATG5. This finding might explain resistance in doxorubicin-mediated chemotherapeutic treatment of cancer tissues.
\n
\n
\n
\n
3. Histone deacetylases and histone deacetylase inhibitors
\n
Histone acetylation by the families of histone acetylases (HATs) histone deacetylases (HDACs) are crucial epigenetic elements in the regulation of gene transcription of histone as well as non-histone proteins. HATs catalyze acetylation to lysine residues of proteins, which stimulates a relaxed transcriptionally accessible chromatin configuration, while HDACs facilitate their removal associated with a closed transcriptionally inaccessible chromatin structure [76, 77]. Acetylation of histones and non-histones not only interferes with gene expression but crucially governs cell signaling and cellular processes such as proliferation, differentiation, and programmed cell death [78]. Identified non-histone substrates to date are tumor suppressor proteins (e.g., p53, RUNX3), signaling mediators (e.g., STAT3, β-catenin, Smad7), steroid receptors (e.g., androgen, estrogen, SHP), transcriptional factors, and co-regulators (e.g., c-Myc, HMG, YY1, EKLF, E2F1, GATA factors, HIF-1α, MyoD, NF-κB, and FoxB3), as well as structural (e.g., cell motility proteins), chaperone proteins, and nuclear import proteins (e.g., α-tubulin, importin-α, Ku70, HSP90) [79].
\n
Depending on function or structure, four classes (class I–IV) have been allocated that comprise 18 members of the HDAC family [80]. The “classical HDACs” contain classes I and II and are functionally dependent on zinc as co-factor, while class III HDACs include the sirtuin proteins (Sirt1-7; homology to yeast Sir2) and require NAD+ [81]. Nevertheless, HDACs also differ in subcellular localization, and expression pattern [78]. While class I HDACs are expressed ubiquitously as they are located in the cell nucleus providing them with superior enzymatic activity, class II HDACs possess restricted tissue-specific expression pattern. Thus, they have been sub-divided into class IIa HDACs (HDAC4, 5, 7 and 9) which shuttle between nucleus and cytoplasm as well as class IIb HDACs (HDAC 6 and 10) that are located mostly in the cytoplasm [82]. SIRTs exhibit specific subcellular presence in the nucleus (Sirt1, 6 and 7), in the cytoplasm (Sirt2), or in mitochondria (Sirt3, 4 and 5) which is not interchangeable. HDAC11, the single less-well explored member of class IV HDACs, has narrowed tissue expression [83].
\n
HDAC inhibitors (HDACi) have been explored as a new category of anticancer drugs that reverses epigenetic changes established by the deregulated activities of HDACs in hematological as well as solid cancers [84]. HDACi treatment induces transcriptional de-repression of genes that are eminent regulators of tumor cell activities such as cell cycle arrest, differentiation, and programmed cell death and even the expression and stability of oncoproteins [85]. HDACi categories encompass hydroxamic acids (hydroxamates), cyclic tetrapeptides, benzamides, electrophilic ketones, and aliphatic acids that include natural but also synthetic derivatives that exhibit different structures [84]. Favored representatives of the hydroxamates are SAHA (suberoylanilide hydroxamic acid, vorinostat, and Zolinza) which is a preferred derivative of naturally occurring trichostatin A (TSA) as well as the CBHA (m-carboxycinnamic acid bishydroxamate)-derived tubacin, LAQ-824 (dacinostat), LBH-589 (panobinostat), or PXD-101 (belinostat) [86, 87, 88, 89]. The class I-selective FK-228 (romidepsin, FR901228, istodax) belongs to the group of cyclic tetrapeptides [90]. MS-275 (entinostat) and MGCD0103 (mocetinostat) exhibiting enhanced HDAC class I selectivity are members of benzamide-based HDACi [91, 92]. The minor effective class I- and IIa-specific HDACi, VPA (valproic acid), PBA (phenylbutyrate), NaB (sodium butyrate), or AN-9 (pivaloyloxymethyl butyrate) belong to the category of aliphatic acids [93, 94]. This classification mainly depends on the chemical structure of their zinc-binding group but in addition HDACi can also be subdivided into zinc-dependent, pan- or broad-spectrum inhibitors that inhibit all class I, II and IV HDACs in contrast to primarily class I-specific HDACi [95]. Representatives of pan-inhibitors are TSA, SAHA, LBH589, and PXD-101 while valproic acid and butyrate inhibit exclusively class I HDACs. MS-275 and depsipeptide inhibits only a few members of class I HDACs, respectively. To date, the HDAC6-specific inhibitor tubacin is the only representative of an isoform-specific HDACi [86]. With the exception of nicotinamide, no clinical useful SIRT inhibitors have been uncovered yet [96].
\n
Clinical trials of single or combined treatments of several HDACi with diverse results have been or are in the progress of being tested in hematological and solid cancers (www.clinicaltrials.gov) [97, 98]. Up to now, exclusively the evaluation of pan-inhibitors have succeeded in the admittance of four licensed HDACi, namely, SAHA, panobinostat (LBH589), belinostat (PXD-101), and romidepsin (FK228) for the treatment of cutaneous T cell lymphoma, multiple myeloma, or peripheral T cell lymphoma, respectively [99, 100, 101, 102, 103]. Although preclinical studies using single treatment regimen of many HDACi were encouraging, almost all entities of solid tumors (e.g., ovarian, breast, renal, prostate, and head and neck cancer) lacked positive effects in phase II clinical trials [104, 105]. In addition, patients suffered from trivial (e.g., dehydration, anorexia, diarrhea) to toxic (e.g., cardiotoxicity, thrombocytopenia myelosuppression) non-selective side effects [85, 94, 106]. The reasons for these drawbacks are presently non-elucidated and were assumed to be due to a combination of failing blood vessel supply, endogenous molecular heterogeneity owing to epigenetic modifications, and the development of treatment resistance. In response, selective HDAC-specific inhibitors are being developed, that target only one or two isozymes [107]. The design of novel or improved specific inhibitors will allow the full exploration of individual functions of distinct HDAC activity and may furthermore provide improved therapeutic efficacy together with less toxicity.
\n
\n
\n
4. Mechanisms of histone deacetylase inhibitor-induced cell death
\n
Owing to the various posttranslational histone and non-histone protein acetylation targets, HDACi exert a multitude of anti-tumor effects that concern interference with growth, differentiation, migration, senescence, and death [108]. Although there may be tumor cell-type and HDACi-specific effects which are unclear presently, common mechanisms are shaping for different HDACi [85, 108]. Induction of apoptosis is by far the prevailing avenue of HDACi triggered cell death in transformed cells which is prepared by re-induction of cell cycle arrest and induction cell differentiation, e.g., by the downregulation of positive cell growth regulators [109, 110, 111, 112]. G1 or G2 phase induced cell cycle arrest in the G1 or G2 phase can occur in a p53-dependent or -independent manner by stimulating the upregulation of (p21waf-1/cip1) expression which is a cyclin-dependent kinase (CDKN) inhibitor of cyclins D1/D2 [113, 114, 115]. As an underlying mechanism it is assumed that the inability to exit the cell cycle from unfinished mitosis might sensitize the activation of apoptosis due to compiled DNA damage such as double-strand breaks [116, 117]. HDACi-stimulated activation of the intrinsic (mitochondrial) pathway of apoptosis involves either down-regulation of anti-apoptotic genes (e.g., BCL-2, BCL-XL, XIAP, MCL-1, and survivin) or overexpression of pro-apoptotic genes (e.g., BAX, BAK) belonging to the B-cell Lymphoma-2 (BCL-2) family [113, 114, 118, 119]. In the extrinsic (death-receptor) pathway, HDACi predominantly re-establish the expression of death receptors such as DR4 and DR5, or their corresponding ligands (e.g., TRAIL, FAS, FAS-L, and TNF-alpha) [120, 121, 122]. Furthermore, also the induction of reactive oxygen species (ROS) by HDACi is a second important anticancer-mechanism that is also responsible for cell death induction and associated with DNA damage; presumably, ROS is scavenged in normal, but not in malignant cells due to the compiled expression of thioredoxin (TXN) which represents an endogenous cellular antioxidant [123]. HDACs have moreover been detected to control histone deacetylation at damaged DNA sites undergoing repair that involves DNA damage-related response proteins [95, 124, 125, 126, 127, 128, 129, 130, 131, 132]. Thus, only in tumor cells upregulated expression of a marker for DNA double strand breaks, H2AX, was detected, when these were treated with SAHA [117]. In this context also the induction of autophagy as a means to maintain genomic was noticed, for instance, following MSH2-regulated DNA mismatch repair deregulation upon HDAC6 inhibition. Cell signaling pathways that were shut down in cancer cells can be furthermore re-established by immediately modifying acetylation of non-histone proteins such as transcription factors (e.g., NF-κB, p53, and STATs) [79]. As a prominent example, half-life and stability of p53 was influenced by MDM2 E3-ligase in HDACi-treated H1299 carcinoma cells [42]. In this way also chaperone protein function and the regulation of stress response pathways in the endoplasmic reticulum can be achieved, which affects the removal of misfolded proteins but also interference with stability and expression of oncoproteins [111, 133]. Additional mechanisms of HDACi-regulated lethality in tumor cells were evidenced in the interference with migration- and invasion capability due to re-established expression of metastasis-related genes and in the disruption of angiogenesis by altering pro- and anti-angiogenic gene expression [134, 135, 136]. In recent years, autophagy as a form of programmed cell death was added to the list of further determinants of HDACi-mediated effects that impedes cellular growth in a range of tumor cells [137, 138, 139, 140].
\n
\n
\n
5. Mechanisms of HDACi-induced autophagic cell death
\n
An impressive diversity of mechanisms have been uncovered in cancer cells that promote HDACi-elicited autophagy which include mostly attenuation of mTOR signaling that can occur in combination combined with increased expression of LC3, Beclin-1, or ATG and can be provoked by endoplasmic reticulum stress (reviewed in [57] andTable 1 [141]). mTOR is a well-known regulator of the canonical pathway of autophagy involving the regulation of the ULK1 complex and Beclin-1. The pivotal role of mTOR attenuated by SAHA-treatment which reestablishes ULK1 function could be initially verified by our own studies and those of Gammoh et al. using endometrial sarcoma cells, and were subsequently reiterated in many studies [71, 142]. It should be noticed that HDACi-induced autophagy is frequently accompanied by the additional induction of apoptosis.
Mechanisms of HDACi-induced autophagic cell death.
Leads to inhibition of autophagy; AVO (acidic vesicular organelles); (−), unknown or not determined. This modified Table is used under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) from Mrakovcic et al. [141].
\n
Further predominant mechanisms of autophagic induction involve ROS accumulation, p21 upregulation, NF-κB hyperacetylation, and sirtuin-mediated acetylation of p53 [143, 144, 145, 146]. In addition to mTOR downregulation, substantial intracellular ROS production interfering with mitochondrial function and energy metabolism has been demonstrated to facilitate SAHA-induced autophagy in tumor cells. ROS-induced autophagy can go along with additional increased expression of cathepsin D, a lysosomal protease, or decreased expression of TRX, representing its substrate and/or activation of the mitogen activated protein kinases ERK1/2 and JNK [143, 147]. Generally, enzymes related to energy metabolism, anti-oxidative stress and cellular redox control have been entangled by a proteomic study involving SAHA-administered Jurkat T-leukemia cells [147]. Cell cycle arrest, differentiation, and autophagy due to upregulated p21 expression were caused by treatment of PC-3 M and HL-60 cells with HDACi SAHA and H40 [148]. The same mechanism could be elicited by adding the novel HDACi, MRJF4, to prostate cancer cells autophagy [144]. As a further cause of SAHA/MS-275-induced autophagy in PC3 prostate cancer cells, re-activation of NF-κB associated target genes due to hyperacetylation of NF-κB RELA/p65, or downsizing of pERK/NF-κB signaling together with upregulated p21 expression, were described; however, the exact mechanism remains obscure [146].
\n
Individual studies also noted nuclear translocation of the apoptosis inducing factor (AIF), apoptosome inactivation, FoxO1-stimulated expression, upregulation of DAPK or Nrf2, and p53-deficiency as regulatory mechanisms in HDACi-induced autophagy [71, 146, 149, 150, 151, 152, 153]. Thus, apoptosis, necrosis or autophagy were triggered in malignant rhabdoid tumor cells in response to FK228 (depsipeptide) treatment and upon silencing of the apoptosis inducing factor (AIF) that translocates into the nucleus for caspase-induced death, autophagy was suppressed as supported by transmission electron microscopy and LC3 measurements [149]. Following the blockage of the mitochondrial pathway of apoptosis by deleting caspase-9 or Apaf-1 or in Eμ-lymphomas the autophagic pathway was activated by the HDACi LAQ824 and LBH589 as evidenced morphologically and biochemically [152]. SAHA and TSA-induced autophagic cell survival via the transcription factor FoxO1 in HepG2 and HCT116 cells was furthermore mediated by sestrin 3 (SESN3)-induced mTOR inhibition and increased ATG protein expression [150]. Protein interaction or phosphorylation of the MAPK-interacting calcium- or calmodulin-regulated DAPK at serine 308 in HCT116 colon cancer cells, rather than its enzymatic function, moreover stimulated LBH589-induced autophagy [151]. Recently, even microRNA-mediated regulation of mTOR involving the transcription factor Nrf2 (nuclear factor erythroid 2 like-2) was implicated in HDACi-induced autophagy [153]. HDACi-induced Nrf2 mRNA and protein expression thereby promoted augmented transcription of miR-129-3p which facilitated mTOR attenuation. Nonetheless, even HDACi-mediated suppression of autophagy could be documented in two studies. Negative regulation of HDACi-mediated autophagy but upregulation of autophagic flux could be induced in myeloid-leukemic cells treated with valproic acid, SAHA, TSA, panobinostat, or JQ2 by acetylation and decreased expression of ATG7, a protein important for fusion of peroxisomal and vacuolar membranes [154]. Additionally, increased ATG expression following treatment with sirtuin inhibitor tenovin-6 provoked autophagic suppression in chronic lymphocytic leukemia (CLL) cells which was evident by upregulated genes of the autophagic-lysosomal pathway and LC3-II/p62 [154, 155].
\n
\n
\n
6. HDACi-induced autophagy mediated by p53
\n
p53 as the first described representative subjected non-histone protein acetylation can in response to stress positively as well as negatively regulate cell cycle arrest, senescence as well as apoptosis and autophagy [39, 40]. Acetylated residues attached by distinct HAT-mediated acetylation can be detected for p53 at distinct sites that could not only affect DNA binding and thereby its transactivational ability but also coactivator recruitment and/or its stability via proteasomal degradation [166, 167, 168]. For example, HDAC1-specific inhibition allows p53 to stay in an accessible state associated with transcriptional activity [169]. Furthermore, by mutating a combination of C-terminal sites that undergo acetylation p53-dependent transcription of p21 can be eliminated [170]. Nevertheless, the exact modalities of these mechanisms still need clarification. As previously specified, HDACi-mediated apoptosis that is commonly escorted by p21-mediated cell cycle arrest and ROS generation, has been documented as the most frequently encountered form of HDACi-triggered cell death [112, 119]. However, since transcription of pro-apoptotic genes, such as Bax, Noxa, and Puma, by p53 may be limited by posttranslational acetylation, the role of p53 in this relation is discussed. These assumptions are supported for example by the finding that p53-independent p21 induction and apoptosis upon HDACi administration and the anticancer effect of HDACi is not influenced by the mutational status of p53 in the tumor [109, 113]. Other reports in contrast verified p53 acetylation and stabilization in several tumor models in response to HDACi administration that presented cell cycle arrest and apoptosis [111, 171]. Conclusively, p53-dependent but also -independent signaling pathways may add to HDACi-mediated apoptotic processes and HDACi may induce p53, but do not unconditionally require p53 for providing anticancer effects. In recent time, the range of HDACi-exerted mechanisms resulting in cellular demise of cancer cells have been expanded by the induction of autophagic cell death which can alternatively or additionally to apoptosis activate autophagy (reviewed in [57, 141, 172] and Table 1). Also, involvement of posttranslational modification of the non-histone p53 has been linked to the control of HDACi-stimulated autophagy as evident from its key regulatory role in normal cells. This might of crucial advantage if tumor cells have developed resistance toward apoptotic cell death induction. Thus, experimental evidence from our studies of endometrial sarcoma (ESS) cells support a major regulatory function for p53 in directing cell death either toward HDACi-elicited apoptosis or autophagy [165].
\n
In our model, the detection of HDAC2 overexpression in malignant endometrial stroma sarcoma cell lines led to the establishment of therapeutic SAHA treatment and the evaluation of its mechanism of action [173]. Significantly advanced cell death in MES-SA and ESS-1 cells was accompanied by previous p21-induced cell cycle arrest at the G1/S transition and reduced expression of HDAC2 and 7 [156, 173]. Either predominant caspase-dependent apoptotic (48%) or caspase-independent autophagic cell death (80%) was attested in SAHA-treated MES-SA and ESS cells after 24 h, respectively [156]. In line with the induction of the canonical pathway of autophagy, attenuated mTOR protein expression could be evidenced in ESS-1 cells in contrast to MES-SA cells [165]. Further screening of key regulatory molecules for apoptosis and for autophagy, upstream of mTOR, were performed to explain the differences in the modes of SAHA-induced cell death. This search uncovered entire absence of detectable p53 protein and lowered levels of PUMA protein in ESS-1 cells. Investigation of p53 gene and mRNA led to the detection of a novel nonsense mutation (p53R213X) in the transactivating domain of p53 of ESS-1 cells that obviously provoked a degradation of the entire p53 transcript and could not be documented in MES-SA cells. Consistent with this finding, restoration of ESS-1 cells with a wild-type p53 variant restored induction of caspase-dependent apoptosis as supported by PUMA and caspase-9 upregulation as well as activation of the effector caspases-3 and -7 and final PARP-1 cleavage. Increased mTOR levels demonstrated the re-induction of basal autophagic flux in addition to apoptosis induction as verified by LC3 staining. Generalization of this finding could be obtained by several other p53-deficient tumor cell lines (such as PANC-1, Jurkat, HL-60, and U937) that are known to induce autophagy in response to SAHA and were supplied with wild-type p53.
\n
We concluded that the molecular switch between SAHA-induced apoptosis and autophagy was thus mediated by the occurrence of functional p53 protein. Our experimental evidence thus underlines an overall major regulatory role for p53 not only in HDACi-mediated apoptosis but also in HDACi-stimulated autophagy (Figure 3) (reviewed in [57, 141]). As a consequence, p53-deficiency could moreover explain apoptosis resistance as well predominant induction of HDACi-provoked autophagy in cancer cells. The presumptive negative regulation of autophagy by functional cytoplasmic p53 protein in SAHA-treated ESS-1 cells is moreover very consistent with the above discussed role of p53 as a dual regulator of autophagy by Tasdemir et al. [59]. Their findings convincingly describe nuclear p53 protein as an activator of transcription-dependent autophagy, in contrast to the inhibitory autophagic control by cytoplasmic p53 protein. In addition, by our report we link SAHA-induced acetylation of p53 to the mTOR signaling pathway which has been less evaluated to date, nonetheless, future experiments are needed to directly address this question.
\n
Figure 3.
Illustration depicting presumed mechanisms mediating SAHA-induced autophagy reflecting autophagic regulation by cytoplasmic mutant and wild-type p53. (A) Acetylated cytoplasmic p53 protein predominantly activates apoptotic cell death by direct binding to the BCL-2 family of pro-apoptotic proteins. Concomitantly, cytoplasmic p53 protein inhibits autophagic cell death by inducing Beclin-1 degradation via USP10/USP13 and/or inhibiting the AMPK-mTOR-ULK1 signaling pathway. It is unclear whether the canonical pathway is mediated by direct p53-FIP200 interaction or whether this represents an extra pathway. TIGAR inhibits autophagy by down-regulation of glycolysis and a suppression of ROS formation. The members of the p53 family, p63/p73, are also potential inhibitors of autophagy (dashed line). (B) Mutant p53 protein variants lose the ability of autophagic inhibition and apoptosis stimulation and activate autophagy. Fork symbols, inhibition; arrowlines, activation or interaction; double arrow, major pathway activity. This figure is used under the terms and conditions of the creative commons attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) derived from Mrakovcic and Fröhlich [57].
\n
In line with our experiments, the class III Sirt1 and 2-specific HDACi sirtinol, that affects acetylation of p53, has also been documented to determine HDACi-induced cell fate in several reports. For instance, p53 was entangled in balancing sirtinol-mediated apoptosis and autophagy in MCF-7 breast cancer cells [145]. Sirtinol treatment on the one hand preferentially induced predominant autophagy as shown by LC3-II upregulation, while addition of the autophagic inhibitor 3-methyladenine augmented cell cycle arrest and cytochrome C-triggered apoptotic cell death caused by increased BAX and diminished BCL-2 protein expression. In a similar experiment, inhibition by sirtinol and the novel SIRT1, -2, and -3 protein inhibitor, MHY2256, a similar phenotype that included cell cycle arrest and both types of programmed cell death could be provoked [164]. As a mechanistic explanation, SIRT1 and 2-induced acetylation of p53 at lysine 382 were found to inhibit ubiquitination of p53 via MDM2 which stabilized and increased its functional activity. MDM2-mediated degradation of p53 was also documented in MHY2256-treated Ishikawa cells that are derived from endometrial cancer which elicited activation of apoptosis together with autophagy as supported by elevated levels of p21, BAX and BCL-2, cytochrome C release, and cleaved PARP-1 [174].
\n
\n
\n
7. Conclusions and perspectives
\n
In recent times, epigenetic studies gained increasing significance in reports investigating the development of cancer. For this purpose, aberrant epigenetic patterns such as DNA methylation including the misguided expression of HDACs activity has been defined to some extent in many tumors which explains their selection as targets for anticancer therapy. Posttranslational modifications of histones and non-histones in the form of acetylation and deacetylation particularly enable pharmacological interference by different kind of inhibitors such as HDACi. The ability to sensitize apoptosis-resistant tumor cells by the disruption of autophagy was considered a promising route for cancer therapy as this process heightens the pro-apoptotic effects of HDACi. In addition to restrain the extents of tumor necrosis and inflammation however, autophagy might be required for the cancer cell to deal with metabolic stress and cytotoxicity during chemotherapy. Furthermore, by expediting the autophagic pathway in advanced stages of the cancer cell, autophagy may promote cell death by mostly non-elucidated mechanisms. Consistently, it is of pivotal importance to define the factors and mechanisms that influence the balance between HDACi-elicited apoptosis, autophagy or even necrosis in the cancer cell. In this regard, considerable research efforts are in progress to investigate the molecular pathways regulating HDACi-mediated cell death in tumor cells. The expansion of the knowledge about p53 as a mediator of apoptotic and autophagic cell death may as thus help to achieve progress not only in unraveling pathogenetic insights but also in the development of novel therapeutic strategies of such disease conditions as cancer.
\n
\n\n',keywords:"p53, HDACi, autophagy, apoptosis, tumor",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/67680.pdf",chapterXML:"https://mts.intechopen.com/source/xml/67680.xml",downloadPdfUrl:"/chapter/pdf-download/67680",previewPdfUrl:"/chapter/pdf-preview/67680",totalDownloads:1463,totalViews:0,totalCrossrefCites:0,totalDimensionsCites:1,totalAltmetricsMentions:0,impactScore:1,impactScorePercentile:73,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"January 17th 2019",dateReviewed:"May 17th 2019",datePrePublished:"June 14th 2019",datePublished:"September 11th 2019",dateFinished:"June 14th 2019",readingETA:"0",abstract:"Cancer is a complex genetic and epigenetic-based disease that has developed a multitude of mechanisms in evading cell death. Deregulation of apoptosis and autophagy are commonly encountered during the development of human tumors. Histone deacetylase inhibitors (HDACi) have been employed to reverse epigenetically deregulated gene expression caused by aberrant post-translational protein modifications. These interfere with histone acetyltransferase- and deacetylase-mediated acetylation of histone and non-histone proteins, and thereby exert a wide array of HDACi-stimulated cytotoxic effects. Key determinants of HDACi lethality that interfere with cellular growth in a multitude of tumor cells are apoptosis and autophagy. Currently, the factors that determine the mode of HDACi-elicited cell death are mostly unclear however. Experimental evidence of the last decade convincingly reports that the frequently mutated tumor suppressor protein p53 can act either as an activator or as an inhibitor of autophagy depending on its subcellular localization, and linked to its mode of action. Consistently, we recently described p53 as a regulatory switch that governs if histone deacetylase inhibitor-administered uterine sarcoma cells undergo autophagy or apoptosis. By highlighting this novel finding, we summarize in this chapter the role of p53-mediated signaling during the activation of the autophagic pathway in tumor cells in response to HDACi.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/67680",risUrl:"/chapter/ris/67680",book:{id:"8171",slug:"genes-and-cancer"},signatures:"Maria Mrakovcic and Leopold F. Fröhlich",authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. The molecular mechanism of autophagy",level:"1"},{id:"sec_2_2",title:"2.1 Positive regulation of p53-mediated autophagy",level:"2"},{id:"sec_3_2",title:"2.2 Negative regulation of p53-mediated autophagy",level:"2"},{id:"sec_4_2",title:"2.3 Regulation of autophagy in p53-inactivated cells",level:"2"},{id:"sec_6",title:"3. Histone deacetylases and histone deacetylase inhibitors",level:"1"},{id:"sec_7",title:"4. Mechanisms of histone deacetylase inhibitor-induced cell death",level:"1"},{id:"sec_8",title:"5. Mechanisms of HDACi-induced autophagic cell death",level:"1"},{id:"sec_9",title:"6. HDACi-induced autophagy mediated by p53",level:"1"},{id:"sec_10",title:"7. Conclusions and perspectives",level:"1"}],chapterReferences:[{id:"B1",body:'Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-50\n'},{id:"B2",body:'Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144:646-674\n'},{id:"B3",body:'Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self consumption: The interplay between autophagy and apoptosis. Nature Reviews. Molecular Cell Biology. 2014;15:81-94\n'},{id:"B4",body:'Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, et al. A protein conjugation system essential for autophagy. Nature. 1998;39:395-398\n'},{id:"B5",body:'Yang Z, Klionsky DJ. Mammalian autophagy: Core molecular machinery and signaling regulation. Current Opinion in Cell Biology. 2010;22:124-131\n'},{id:"B6",body:'Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. The New England Journal of Medicine. 2013;368:651-662\n'},{id:"B7",body:'Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nature Reviews. Cancer. 2007;7:961-967\n'},{id:"B8",body:'He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics. 2009;43:67-93\n'},{id:"B9",body:'Lopez G, Torres K, Liu J, Hernandez B, Young E, Belousov R, et al. Autophagic survival in resistance to histone deacetylase inhibitors: Novel strategies to treat malignant peripheral nerve sheath tumors. Cancer Research. 2011;71:185-196\n'},{id:"B10",body:'Rosenfeldt MT, Ryan KM. The role of autophagy in tumour development and cancer therapy. Expert Reviews in Molecular Medicine. 2009;11:e36\n'},{id:"B11",body:'Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, et al. Mammalian autophagy: How does it work? Annual Review of Biochemistry. 2016;85:685-713\n'},{id:"B12",body:'Reggiori F, Ungermann C. Autophagosome maturation and fusion. Journal of Molecular Biology. 2017;429:486-496\n'},{id:"B13",body:'Rubinsztein DC, Shpilka T, Elazar Z. Mechanisms of autophagosome biogenesis. Current Biology. 2012;22:R29-R34\n'},{id:"B14",body:'Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology. 2011;27:107-132\n'},{id:"B15",body:'Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death and Differentiation. 2009;16:87-93\n'},{id:"B16",body:'Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Letters. 2010;584:1287-1295\n'},{id:"B17",body:'Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by Beclin 1. Nature. 1999;402:672-676\n'},{id:"B18",body:'Mizushima N, Sugita H, Yoshimori T, Ohsumi Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. The Journal of Biological Chemistry. 1998;273:33889-33892\n'},{id:"B19",body:'Noda T. Regulation of autophagy through TORC1 and mTORC1. Biomolecules. 2017;7:52\n'},{id:"B20",body:'Kim D, Sarbassov D, Ali S, King J, Latek R, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163-175\n'},{id:"B21",body:'Laplante M, Sabatini D. mTOR signaling. Cold Spring Harbor Perspectives in Biology. 2012;4:a011593\n'},{id:"B22",body:'Jung CH, Jun CB, Ro S, Kim Y, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular Biology of the Cell. 2009;20:1992-2003\n'},{id:"B23",body:'Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. Journal of Biological Chemistry. 2009;284:12297-12305\n'},{id:"B24",body:'Kim J, Kundu M, Viollet B, Kun-Liang G. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology. 2011;13:132-141\n'},{id:"B25",body:'Rosenbluth JM, Mays DJ, Pino MF, Tang LJ, Pietenpol JA. A gene signature-based approach identifies mTOR as a regulator of p73. Molecular and Cellular Biology. 2008;28:5951-5964\n'},{id:"B26",body:'Rosenbluth JM, Pietenpol JA. mTOR regulates autophagy-associated genes downstream of p73. Autophagy. 2009;2:1-7\n'},{id:"B27",body:'Maiuri M, Criollo A, Kroemer G. Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. The EMBO Journal. 2010;29:515-516\n'},{id:"B28",body:'Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by Beclin 1. Nature. 1999;402:1-5\n'},{id:"B29",body:'He C, Levine B. The Beclin 1 interactome. Current Opinion in Cell Biology. 2010;22:140-149\n'},{id:"B30",body:'Zalckvar E, Berissi H, Eisenstein MAK. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy. 2009;5:720-722\n'},{id:"B31",body:'Polson HE, de Lartigue J, Ridgen DJ, Reedijk M, Urbe S, Clague MJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010;6:506-522\n'},{id:"B32",body:'Bjørkøy G, Lamark T, Pankiv S, Øvervatn A, Brech ATJ. Monitoring autophagic degradation of p62/SQSTM1. Methods in Enzymology. 2009;452:181-197\n'},{id:"B33",body:'Seibenhener ML, Geetha T, Wooten MW. Sequestosome 1/p62—More than just a scaffold. FEBS Letters. 2007;581:175-179\n'},{id:"B34",body:'Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009;137:1062-1075\n'},{id:"B35",body:'Lahiri P, Schmidt V, Smole C, Kufferath I, Denk H, Strnad P, et al. P62/sequestosome-1 is indispensable for maturation and stabilization of Mallory-Denk bodies. PLoS One. 2016;11:e0161083\n'},{id:"B36",body:'Yang H, Ni HM, Guo F, Ding Y, Shi YH, Lahiri P, et al. Sequestosome 1/p62 protein is associated with autophagic removal of excess hepatic endoplasmic reticulum in mice. The Journal of Biological Chemistry. 2016;29:M116.739821\n'},{id:"B37",body:'Xie Z, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nature Cell Biology. 2007;9:1102-1109\n'},{id:"B38",body:'Simonsen A, Tooze S. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. The Journal of Cell Biology. 2009;186:773-782\n'},{id:"B39",body:'Vousden KH, Lane DP. p53 in health and disease. Nature Reviews. Molecular Cell Biology. 2007;8:275-283\n'},{id:"B40",body:'Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595-606\n'},{id:"B41",body:'Vousden KH, Lu X. Live or let die: The cell’s response to p53. Nature Reviews. Cancer. 2002;2:594-604\n'},{id:"B42",body:'Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008;133:612-626\n'},{id:"B43",body:'Chipuk JE, Green DR. Dissecting p53-dependent apoptosis. Cell Death and Differentiation. 2006;13:994-1002\n'},{id:"B44",body:'Galluzzi L, Morselli E, Kepp O, Maiuri MC, Kroemer G. Defective autophagy control by the p53 rheostat in cancer. Cell Cycle. 2010;9:250-255\n'},{id:"B45",body:'Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. The Journal of Biological Chemistry. 2001;276:35243-35246\n'},{id:"B46",body:'Feng Z. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harbor Perspectives in Biology. 2010;2:a001057\n'},{id:"B47",body:'Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134:451-460\n'},{id:"B48",body:'Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121-134\n'},{id:"B49",body:'Crighton D, Wilkinson S, Ryan K. DRAM links autophagy to p53 and programmed cell death. Autophagy. 2007;3:72-74\n'},{id:"B50",body:'Maiuri M, Le Toumelin G, Criollo A, Rain J, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. The EMBO Journal. 2007;26:2527-2539\n'},{id:"B51",body:'Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, et al. DAP-kinase mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Reports. 2009;10:285-292\n'},{id:"B52",body:'Wang EY, Gang H, Aviv Y, Dhingra R, Margulets V, Kirshenbaum LA. p53 mediates autophagy and cell death by a mechanism contingent on Bnip3. Hypertension. 2013;62:70-77\n'},{id:"B53",body:'Pattingre S, Tassa A, Qu X, Garuti R, Liang X, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927-939\n'},{id:"B54",body:'Pimkina J, Humbey O, Zilfou J, Jarnik M, Murphy M. ARF induces autophagy by virtue of interaction with Bcl-xl. The Journal of Biological Chemistry. 2009;284:2803-2810\n'},{id:"B55",body:'Budina-Kolomets A, Hontz RD, Pimkina J, Murphy ME. A conserved domain in exon 2 coding for the human and murine ARF tumor suppressor protein is required for autophagy induction. Autophagy. 2013;9:1553-1565\n'},{id:"B56",body:'Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, et al. DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. The Journal of Biological Chemistry. 2008;283:9999-10014\n'},{id:"B57",body:'Mrakovcic M, Fröhlich LF. p53-mediated molecular control of autophagy in tumor cells. Biomolecules. 2018;8:E14\n'},{id:"B58",body:'Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D’Amelio M, Djavaheri-Mergny M, et al. A dual role of p53 in the control of autophagy. Autophagy. 2008;4:810-814\n'},{id:"B59",body:'Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nature Cell Biology. 2008;10:676-687\n'},{id:"B60",body:'Morselli E, Shen S, Ruckenstuhl C, Bauer M, Mariño G, Galluzzi L, et al. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle. 2011;10:2763-2769\n'},{id:"B61",body:'Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ROS levels by TIGAR controls autophagy. The EMBO Journal. 2009;28:3015-3026\n'},{id:"B62",body:'Tripathi R, Ash D, Shaha C. Beclin-1—p53 interaction is crucial for cell fate determination in embryonal carcinoma cells. Journal of Cellular and Molecular Medicine. 2014;18:2275-2286\n'},{id:"B63",body:'Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. 2011;147:223-234\n'},{id:"B64",body:'Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology. 2006;8:1124-1132\n'},{id:"B65",body:'Muller PAJ, Vousden KH. P53 mutations in cancer. Nature Cell Biology. 2013;15:2-8\n'},{id:"B66",body:'Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, et al. Gain of function mutations in p53. Nature Genetics. 1993;4:42-46\n'},{id:"B67",body:'Santoro R, Strano S, Blandino G. Transcriptional regulation by mutant p53 and oncogenesis. Sub-Cellular Biochemistry. 2014;85:91-103\n'},{id:"B68",body:'Liu J, Ma Q , Zhang M, Wang X, Zhang D, Li W, et al. Alterations of TP53 are associated with a poor outcome for patients with hepatocellular carcinoma: Evidence from a systematic review and metaanalysis. European Journal of Cancer. 2012;48:2328-2338\n'},{id:"B69",body:'Cordani M, Butera G, Pacchiana R, Donadelli M. Molecular interplay between mutant p53 proteins and autophagy in cancer cells. Biochimica et Biophysica Acta, Reviews on Cancer. 2017;1867:19-28\n'},{id:"B70",body:'Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, et al. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle. 2008;7:3056-3061\n'},{id:"B71",body:'Fröhlich LF, Mrakovcic M, Smole C, Zatloukal K. Molecular mechanism leading to SAHA-induced autophagy in tumor cells: Evidence for a p53-dependent pathway. Cancer Cell International. 2016;16:68\n'},{id:"B72",body:'Cordani M, Oppici E, Dando I, Butturini E, Dalla Pozza E, Nadal-Serrano M, et al. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition. Molecular Oncology. 2016;10:1008-1029\n'},{id:"B73",body:'Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of Clinical Investigation. 2003;112:1809-1820\n'},{id:"B74",body:'Abida WM, Gu W. p53-dependent and p53-independent activation of autophagy by ARF. Cancer Research. 2008;68:352-357\n'},{id:"B75",body:'Kenzelmann Broz D, Mello SS, Bieging KT, Jiang D, Dusek RL, Brady CA, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes and Development. 2013;27:1016-1031\n'},{id:"B76",body:'Marmorstein R, Roth SY. Histone acetyltransferases: Function, structure, and catalysis. Current Opinion in Genetics and Development. 2001;11:155-161\n'},{id:"B77",body:'Gray SG, Ekstro TJ. The human histone deacetylase family. Experimental Cell Research. 2001;262:75-83\n'},{id:"B78",body:'de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): Characterization of the classical HDAC family. The Biochemical Journal. 2003;370:737-749\n'},{id:"B79",body:'Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. The International Journal of Biochemistry and Cell Biology. 2009;41:185-198\n'},{id:"B80",body:'Yang XJ, Edward S. The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nature Reviews. Molecular Cell Biology. 2009;9:206-218\n'},{id:"B81",body:'Haigis MC, Guarente LP. Mammalian sirtuins—Emerging roles in physiology, aging, and calorie restriction. Genes and Development. 2006;20:2913-2921\n'},{id:"B82",body:'Yang X, Gregoire S. Class II histone deacetylases: From sequence to function, regulation, and clinical implication. Molecular and Cellular Biology. 2005;25:2873-2884\n'},{id:"B83",body:'Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. The Journal of Biological Chemistry. 2002;277:25748-25755\n'},{id:"B84",body:'Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: Overview and perspectives. Molecular Cancer Research. 2007;5:981-989\n'},{id:"B85",body:'Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences. 2017;18:1414\n'},{id:"B86",body:'Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:4389-4394\n'},{id:"B87",body:'Richon V, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:3003-3007\n'},{id:"B88",body:'Coffey DC, Kutko MC, Glick RD, Butler LM, Heller G, Rifkind RA, et al. The Histone deacetylase inhibitor, CBHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Research. 2001;61:3591-3594\n'},{id:"B89",body:'Plumb JA, Finn PW, Williams RJ, Bandara MJ, Romero MR, Watkins CJ, et al. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Molecular Cancer Therapeutics. 2003;2:721-728\n'},{id:"B90",body:'Furumai R, Matsuyama A, Kobashi N, Lee K, Nishiyama M, Nakajima H, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Research. 2002;62:4916-4921\n'},{id:"B91",body:'Maggio SC, Rosato RR, Kramer LB, Dai Y, Rahmani M, Paik DS, et al. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Research. 2004;64:2590-2600\n'},{id:"B92",body:'Boumber Y, Younes A, Garcia-Manero G. Mocetinostat (MGCD0103): A review of an isotype-specific histone deacetylase inhibitor. Expert Opinion on Investigational Drugs. 2011;20:823-829\n'},{id:"B93",body:'Minucci S, Zhu P, Kramer O, Schimpf A, Giavara S, Sleeman JP, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO Journal. 2001;20:6969-6978\n'},{id:"B94",body:'Rasheed WK, Johnstone RW, Prince HM. Histone deacetylase inhibitors in cancer therapy. Expert Opinion on Investigational Drugs. 2017;16:659-678\n'},{id:"B95",body:'Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harbor Perspectives in Medicine. 2016;6:a026831\n'},{id:"B96",body:'Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide : Altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Molecular Cell. 2005;17:855-868\n'},{id:"B97",body:'Wagner JM, Hackanson B, Lübbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clinical Epigenetics. 2010;1:117-136\n'},{id:"B98",body:'Tan J, Cang S, Ma Y, Petrillo RL, Liu D. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. Journal of Hematology and Oncology. 2010;3:1-13\n'},{id:"B99",body:'Duvic M, Vu J. Update on the treatment of cutaneous T-cell lymphoma (CTCL): Focus on vorinostat. Biologics. 2007;1:377\n'},{id:"B100",body:'Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31-39\n'},{id:"B101",body:'Bertino EM, Otterson GA. Romidepsin: A novel histone deacetylase inhibitor for cancer. Expert Opinion on Investigational Drugs. 2011;20:1151-1158\n'},{id:"B102",body:'Rashidi A, Cashen AF. Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. Future Oncology. 2015;11:1659-1664\n'},{id:"B103",body:'Greig SL. Panobinostat: A review in relapsed or refractory multiple myeloma. Targeted Oncology. 2016;11:107-114\n'},{id:"B104",body:'Slingerland M, Guchelaar HJ, Gelderblom H. Histone deacetylase inhibitors: An overview of the clinical studies in solid tumors. Anti-Cancer Drugs. 2014;25:140-149\n'},{id:"B105",body:'Rasheed W, Bishton M, Johnstone RW, Prince HM. Histone deacetylase inhibitors in lymphoma and solid malignancies. Expert Review of Anticancer Therapy. 2008;8:413-432\n'},{id:"B106",body:'O’Connor OA, Heaney ML, Schwartz L, Richardson S, Willim R, MacGregor-Cortelli B, et al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. Journal of Clinical Oncology. 2017;24:166-173\n'},{id:"B107",body:'Balasubramanian S, Verner E, Buggy JJ. Isoform-specific histone deacetylase inhibitors: The next step ? Cancer Letters. 2009;280:211-221\n'},{id:"B108",body:'Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene. 2007;26:5541-5552\n'},{id:"B109",body:'Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21 WAF1 expression and gene-associated histone acetylation. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:1-6\n'},{id:"B110",body:'Sandor V, Senderowicz A, Mertins S, Sackett D, Sausville E, Blagoskonny MV, et al. P21-dependent G1 arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. British Journal of Cancer. 2000;83:817-825\n'},{id:"B111",body:'Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:11700-11705\n'},{id:"B112",body:'Frew AJ, Johnstone RW, Bolden JE. Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Letters. 2009;280:125-133\n'},{id:"B113",body:'Vrana J, Decker R, Johnson C, Wang Z, Jarvis W, Richon V, et al. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene. 1999;18:7016-7025\n'},{id:"B114",body:'Nawrocki ST, Carew JS, Douglas L, Cleveland JL, Humphreys R, Houghton JA. Histone deacetylase inhibitors enhance lexatumumab-induced apoptosis via a p21 Cip1-dependent decrease in survivin levels. Cancer Research. 2007;67:6987-6995\n'},{id:"B115",body:'Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805-816\n'},{id:"B116",body:'Qiu L, Burgess A, Fairlie D, Leonard H, Parsons P, Gabrielli B. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Molecular Biology of the Cell. 2000;11:2069-2083\n'},{id:"B117",body:'Lee J, Choy ML, Ngo L, Foster SS, Marks PA. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:14639-14644\n'},{id:"B118",body:'Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of bid and production of reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:10833-10838\n'},{id:"B119",body:'Rosato R, Almenara J, Dai Y, Grant S. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Molecular Cancer Therapeutics. 2003;2:1273-1284\n'},{id:"B120",body:'Carlisi D, Lauricella M, D’Anneo A, Emanuele S, Angileri L, Di Fazio P, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitises human hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL-DISC activation. European Journal of Cancer. 2009;45:2425-2438\n'},{id:"B121",body:'Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T. Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene. 2004;23:6261-6271\n'},{id:"B122",body:'Fulda S, Küfer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene. 2001;20:5865-5877\n'},{id:"B123",body:'Ungerstedt JS, Sowa Y, Xu W, Shao Y, Dokmanovic M, Perez G, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:673-678\n'},{id:"B124",body:'Li Z, Zhu WG. Targeting histone deacetylases for cancer therapy: From molecular mechanisms to clinical implications. International Journal of Biological Sciences. 2014;10:757-770\n'},{id:"B125",body:'Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Structural and Molecular Biology. 2010;17:1144-1151\n'},{id:"B126",body:'Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010;18:436-447\n'},{id:"B127",body:'Thurn KT, Thomas S, Raha P, Qureshi I, Munster PN. Histone deacetylase regulation of ATM-mediated DNA damage signaling. Molecular Cancer Therapeutics. 2013;12:2078-2087\n'},{id:"B128",body:'Kao GD, McKenna WG, Guenther MG, Muschel RJ, Lazar MA, Yen TJ. Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. The Journal of Cell Biology. 2003;160:1017-1027\n'},{id:"B129",body:'Kotian S, Liyanarachchi S, Zelent A, Parvin JD. Histone deacetylase 9 and 10 are required for homologous recombination. The Journal of Biological Chemistry. 2011;286:7722-7726\n'},{id:"B130",body:'Gorospe M, de Cabo R. AsSIRTing the DNA damage response. Trends in Cell Biology. 2008;18:77-83\n'},{id:"B131",body:'Kaidi A, Weinert BT, Choudhary C, Jackson SP. Human SIRT6 promotes DNA end resection through CtlP deacetylation. Science. 2010;329:1348-1353\n'},{id:"B132",body:'Motoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124:315-329\n'},{id:"B133",body:'Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21 CIP1/WAF1. Cancer Research. 2003;63:3637-3645\n'},{id:"B134",body:'Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 2002;21:427-436\n'},{id:"B135",body:'Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell. 2002;111:709-720\n'},{id:"B136",body:'Pulukuri S, Gorantla B, Rao J. Inhibition of histone deacetylase activity promotes invasion of human cancer cells through activation of urokinase plasminogen activator. The Journal of Biological Chemistry. 2007;282:35594-35603\n'},{id:"B137",body:'Fournel M, Bonfils C, Hou Y, Yan P, Trachy-Bourget MC, Kalita A, et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Molecular Cancer Therapeutics. 2008;7:759-768\n'},{id:"B138",body:'Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, et al. Trichostatin a is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clinical Cancer Research. 2001;7:971-976\n'},{id:"B139",body:'Sato N, Ohta T, Kitagawa H, Kayahara M, Ninomiya I, Fushida S, et al. FR901228, a novel histone deacetylase inhibitor, induces cell cycle arrest and subsequent apoptosis in refractory human pancreatic cancer cells. International Journal of Oncology. 2004;24:679-685\n'},{id:"B140",body:'Kwon HJ, Owa T, Hassig CA, Shimada J, Schreiber SL. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:3356-3361\n'},{id:"B141",body:'Mrakovcic M, Kleinheinz J, Fröhlich LF. Histone deacetylase inhibitor-induced autophagy in tumor cells: Implications for p53. International Journal of Molecular Sciences. 2017;18:1883\n'},{id:"B142",body:'Gammoh N, Lam D, Puente C, Ganley I, Marks PA, Jiang X. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:6561-6565\n'},{id:"B143",body:'Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood. 2007;110:313-323\n'},{id:"B144",body:'Di Giacomo V, Di Valerio V, Rapino M, Bosco D, Cacciatore I, Ciulla M, et al. MRJF4, a novel histone deacetylase inhibitor, induces p21 mediated autophagy in PC3 prostate cancer cells. Cellular and Molecular Biology. 2015;61:17-23\n'},{id:"B145",body:'Wang J, Kim TH, Ahn MY, Lee J, Jung JH, Choi WS, et al. Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells. International Journal of Oncology. 2012;41:1101-1109\n'},{id:"B146",body:'Shulak L, Beljanski V, Chiang C, Dutta SM, Van Grevenynghe J, Belgnaoui SM, et al. Histone deacetylase inhibitors potentiate vesicular stomatitis virus oncolysis in prostate cancer cells by modulating NF-kappa B-dependent autophagy. Journal of Virology. 2014;88:2927-2940\n'},{id:"B147",body:'Li J, Liu R, Lei Y, Wang K, Lau QC, Xie N, et al. Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy. 2010;6:711-724\n'},{id:"B148",body:'Long J, Zhao J, Yan Z, Liu Z, Wang N. Antitumor effects of a novel sulfur-containing hydroxamate histone deacetylase inhibitor H40. International Journal of Cancer. 2009;124:1235-1244\n'},{id:"B149",body:'Watanabe M, Adachi S, Matsubara H, Imai T, Yui Y, Mizushima Y. Induction of autophagy in malignant rhabdoid tumor cells by the histone deacetylase inhibitor FK228 through AIF translocation. International Journal of Cancer Research. 2009;67:55-67\n'},{id:"B150",body:'Zhang J, Ng S, Wang J, Zhou J, Tan S, Yang N, et al. Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways. Autophagy. 2015;11:629-642\n'},{id:"B151",body:'Gandesiri M, Chakilam S, Ivanovska J, Benderska N, Ocker M, Di Fazio P, et al. DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis. 2012;17:1300-1315\n'},{id:"B152",body:'Ellis L, Bots M, Lindemann RK, Bolden JE, Newbold A, Cluse LA, et al. The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy. Blood. 2009;114:380-393\n'},{id:"B153",body:'Sun W, Yi Y, Xia G, Zhao Y, Yu Y, Li L, et al. Nrf2-miR-129-3p-mTOR axis controls an miRNA regulatory network involved in HDACi-induced autophagy. Molecular Therapy. 2019;27:1039-1050\n'},{id:"B154",body:'Stankov MV, El Khatib M, Kumar Thakur B, Heitmann K, Panayotova-Dimitrova D, Schoening J, et al. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy. Leukemia. 2014;28:577-588\n'},{id:"B155",body:'Maccallum SF, Groves MJ, James J, Murray K, Appleyard V, Prescott AR, et al. Dysregulation of autophagy in chronic lymphocytic leukemia with the small-molecule sirtuin inhibitor tenovin-6. Scientific Reports. 2013;3:1275\n'},{id:"B156",body:'Fröhlich LF, Mrakovcic M, Smole C, Lahiri P, Zatloukal K. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells. PLoS One. 2014;9:e91558\n'},{id:"B157",body:'Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:18030-18035\n'},{id:"B158",body:'Liu YL, Yang PM, Shun CT, Wu MS, Weng JR, Chen CC. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy. 2010;6:1057-1065\n'},{id:"B159",body:'Chiao M, Cheng W, Yang Y, Shen C, Chiao M, Cheng W, et al. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy. 2013;9:1509-1526\n'},{id:"B160",body:'El-Khoury V, Pierson S, Szwarcbart E, Brons NHC, Roland O, Cherrier-De Wilde S, et al. Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia. 2014;28:1636-1646\n'},{id:"B161",body:'Ahn MY, Ahn JW, Kim HS, Lee J, Yoon JH. Apicidin inhibits cell growth by downregulating IGF-1R in salivary mucoepidermoid carcinoma cells. Oncology Reports. 2015;33:1899-1907\n'},{id:"B162",body:'Hui KF, Yeung PL, Chiang AKS. Induction of MAPK- and ROS-dependent autophagy and apoptosis in gastric carcinoma by combination of romidepsin and bortezomib. Oncotarget. 2015;7:1-14\n'},{id:"B163",body:'Zhan Y, Gong K, Chen C, Wang H, Li W. P38 MAP kinase functions as a switch in MS-275-induced reactive oxygen species-dependent autophagy and apoptosis in human colon cancer cells. Free Radical Biology and Medicine. 2012;53:532-543\n'},{id:"B164",body:'Park EY, Woo Y, Kim SJ, Kim DH, Lee EK, De U, et al. Anticancer effects of a new SIRT inhibitor, MHY2256, against human breast cancer MCF-7 cells via regulation of MDM2-p53 binding. International Journal of Biological Sciences. 2016;12:1555-1567\n'},{id:"B165",body:'Fröhlich LF, Mrakovcic M, Smole C, Zatloukal K. Molecular mechanism leading to SAHA-induced autophagy in tumor cells: Evidence for a p53-dependent pathway. Cancer Cell International. 2016;16:1-15\n'},{id:"B166",body:'Sykes SM, Mellert HS, Holbert MA, Li K, Lane WS, Mcmahon SB. Acetylation of the p53 DNA binding domain regulates apoptosis induction. Molecular Cell. 2006;24:841-851\n'},{id:"B167",body:'Tang Y, Luo J, Zhang W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Molecular Cell. 2006;24:827-839\n'},{id:"B168",body:'Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Molecular Cell. 2001;8:1243-1254\n'},{id:"B169",body:'Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2003;101:2259-2264\n'},{id:"B170",body:'Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y, et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21 Waf1/Cip1. Molecular and Cellular Biology. 2006;26:2782-2790\n'},{id:"B171",body:'Seo SK, Jin HO, Woo SH, Kim YS, An S, Lee JH, et al. Histone deacetylase inhibitors sensitize human non-small cell lung cancer cells to ionizing radiation through acetyl p53-mediated c-myc down-regulation. Journal of Thoracic Oncology. 2011;6:1313-1319\n'},{id:"B172",body:'Mrakovcic M, Bohner L, Hanisch M, Fröhlich LF. Epigenetic targeting of autophagy via HDAC inhibition in tumor cells: Role of p53. International Journal of Molecular Sciences. 2018;19:3952\n'},{id:"B173",body:'Hrzenjak A, Moinfar F, Kremser ML, Strohmeier B, Petru E, Zatloukal K, et al. Histone deacetylase inhibitor vorinostat suppresses the growth of uterine sarcomas in vitro and in vivo. Molecular Cancer. 2010;9:49\n'},{id:"B174",body:'De U, Son JY, Sachan R, Park YJ, Kang D, Yoon K, et al. A new synthetic histone deacetylase inhibitor, MHY2256, induces apoptosis and autophagy cell death in endometrial cancer cells via p53 acetylation. International Journal of Molecular Sciences. 2018;19:2743\n'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Maria Mrakovcic",address:null,affiliation:'
Department of Cranio-Maxillofacial Surgery, University of Münster, Germany
Department of Medical Microbiology, University of Münster, Germany
'},{corresp:"yes",contributorFullName:"Leopold F. Fröhlich",address:"leopold.froehlich@ukmuenster.de",affiliation:'
Department of Cranio-Maxillofacial Surgery, University of Münster, Germany
'}],corrections:null},book:{id:"8171",type:"book",title:"Genes and Cancer",subtitle:null,fullTitle:"Genes and Cancer",slug:"genes-and-cancer",publishedDate:"September 11th 2019",bookSignature:"Guy-Joseph Lemamy",coverURL:"https://cdn.intechopen.com/books/images_new/8171.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-427-6",printIsbn:"978-1-78984-426-9",pdfIsbn:"978-1-83881-974-3",reviewType:"peer-reviewed",numberOfWosCitations:2,isAvailableForWebshopOrdering:!0,editors:[{id:"182568",title:"Dr.",name:"Guy-Joseph",middleName:null,surname:"Lemamy",slug:"guy-joseph-lemamy",fullName:"Guy-Joseph Lemamy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"186"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"67560",type:"chapter",title:"N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Novel Tumor Suppressor in Multiple Human Cancers",slug:"n-myc-downstream-regulated-gene-2-ndrg2-as-a-novel-tumor-suppressor-in-multiple-human-cancers",totalDownloads:820,totalCrossrefCites:0,signatures:"Jian Zhang, Xia Li, Liangliang Shen, Yan Li and Libo Yao",reviewType:"peer-reviewed",authors:[null]},{id:"67146",type:"chapter",title:"METCAM/MUC18: A Novel Tumor Suppressor for Some Cancers",slug:"metcam-muc18-a-novel-tumor-suppressor-for-some-cancers",totalDownloads:854,totalCrossrefCites:0,signatures:"Guang-Jer Wu",reviewType:"peer-reviewed",authors:[{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",fullName:"Guang-Jer Wu",slug:"guang-jer-wu"}]},{id:"65960",type:"chapter",title:"Tumour Suppressor Genes with Oncogenic Roles in Lung Cancer",slug:"tumour-suppressor-genes-with-oncogenic-roles-in-lung-cancer",totalDownloads:1201,totalCrossrefCites:0,signatures:"Mateus Camargo Barros-Filho, Florian Guisier, Leigha D. Rock, Daiana D. Becker-Santos, Adam P. Sage, Erin A. Marshall and Wan L. Lam",reviewType:"peer-reviewed",authors:[null]},{id:"68470",type:"chapter",title:"Duplicitous Dispositions of Micro-RNAs (miRs) in Breast Cancer",slug:"duplicitous-dispositions-of-micro-rnas-mirs-in-breast-cancer",totalDownloads:750,totalCrossrefCites:0,signatures:"Amal Qattan",reviewType:"peer-reviewed",authors:[null]},{id:"67680",type:"chapter",title:"Regulation of HDACi−Triggered Autophagy by the Tumor Suppressor Protein p53",slug:"regulation-of-hdaci-triggered-autophagy-by-the-tumor-suppressor-protein-p53",totalDownloads:1463,totalCrossrefCites:0,signatures:"Maria Mrakovcic and Leopold F. Fröhlich",reviewType:"peer-reviewed",authors:[null]}]},relatedBooks:[{type:"book",id:"6813",title:"Cancer Prognosis",subtitle:null,isOpenForSubmission:!1,hash:"003e408f4cf707dd4bbf3332fe49eeb0",slug:"cancer-prognosis",bookSignature:"Guy-Joseph Lemamy",coverURL:"https://cdn.intechopen.com/books/images_new/6813.jpg",editedByType:"Edited by",editors:[{id:"182568",title:"Dr.",name:"Guy-Joseph",surname:"Lemamy",slug:"guy-joseph-lemamy",fullName:"Guy-Joseph Lemamy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"64394",title:"Introductory Chapter: Genes Expression in the Control of Cell Cycle and Their Potential Value in Cancer Prognosis",slug:"introductory-chapter-genes-expression-in-the-control-of-cell-cycle-and-their-potential-value-in-canc",signatures:"Guy Joseph Lemamy",authors:[{id:"182568",title:"Dr.",name:"Guy-Joseph",middleName:null,surname:"Lemamy",fullName:"Guy-Joseph Lemamy",slug:"guy-joseph-lemamy"}]},{id:"61662",title:"The Human Epidermal Growth Factor Receptor 2 (HER2) as a Prognostic and Predictive Biomarker: Molecular Insights into HER2 Activation and Diagnostic Implications",slug:"the-human-epidermal-growth-factor-receptor-2-her2-as-a-prognostic-and-predictive-biomarker-molecular",signatures:"Daniela Furrer, Claudie Paquet, Simon Jacob and Caroline Diorio",authors:[null]},{id:"60973",title:"Is Melanoma a Hormone-Dependent Cancer or a Hormone-Responsive Cancer?",slug:"is-melanoma-a-hormone-dependent-cancer-or-a-hormone-responsive-cancer-",signatures:"Pandurangan Ramaraj",authors:[{id:"182424",title:"Dr.",name:"Pandurangan",middleName:null,surname:"Ramaraj",fullName:"Pandurangan Ramaraj",slug:"pandurangan-ramaraj"}]},{id:"61893",title:"CBX4 Expression and AFB1-Related Liver Cancer Prognosis",slug:"cbx4-expression-and-afb1-related-liver-cancer-prognosis",signatures:"Qun-Ying Su, Jun Lu, Xiao-Ying Huang, Jin-Guang Yao, Xue-Min\nWu, Bing-Chen Huang, Chao Wang, Qiang Xia and Xi-Dai Long",authors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",fullName:"Xi-Dai Long",slug:"xi-dai-long"}]}]}],publishedBooks:[{type:"book",id:"8171",title:"Genes and Cancer",subtitle:null,isOpenForSubmission:!1,hash:"209b5cea5cbc980442ef0c22782b3792",slug:"genes-and-cancer",bookSignature:"Guy-Joseph Lemamy",coverURL:"https://cdn.intechopen.com/books/images_new/8171.jpg",editedByType:"Edited by",editors:[{id:"182568",title:"Dr.",name:"Guy-Joseph",surname:"Lemamy",slug:"guy-joseph-lemamy",fullName:"Guy-Joseph Lemamy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10333",title:"Down Syndrome and Other Chromosome Abnormalities",subtitle:null,isOpenForSubmission:!1,hash:"eab6b739a0eb0f82920b8b23cc39fac5",slug:"down-syndrome-and-other-chromosome-abnormalities",bookSignature:"Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/10333.jpg",editedByType:"Edited by",editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",editors:[{id:"258231",title:"Dr.",name:"Michael",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"74855",title:"Theoretical and Practical Design Approach of Wireless Power Systems",doi:"10.5772/intechopen.95749",slug:"theoretical-and-practical-design-approach-of-wireless-power-systems",body:'
1. Introduction
There are currently many methods, links and approaches for wireless power transmission. Each of the available solutions is characterized by its advantages and disadvantages, which result in their application [1, 2, 3].
Inductive coupling is currently the most widely used method of wireless energy transfer. This method works on the principle of an air transformer with a tight magnetic coupling of the primary and secondary windings. The energy exchange between two or more coils takes place by means of an inductive current Φ, i.e. by means of an induced voltage. The main disadvantage of inductive coupling is the transmission distance, which ranges from millimeters to several centimeters [4].
Resonance compensation is a specific case of inductive coupling. Resonant compensation is used in cases where it is necessary to achieve impedance dependence on frequency. Resonant compensation is provided by adding a capacitive member to the primary as well as the secondary coil. After applying a magnetic field with a suitably selected frequency, the phenomenon of mutual interference of the impedance of the coil and the capacitor occurs, which ideally ensures zero phase shift against the current flowing through the primary coil. For resonant compensation, there are four configurations of the primary and secondary side of the wireless charging system [5, 6].
The system using resonant coupling fully compensates for the scattering fields of the coupling coils, thus significantly extending the working distance while maintaining high energy transfer efficiency. Thanks to its advantages, resonant coupling is used mainly in the field of electromobility, where it allows charging with high power and in the case of a variable load, it can be easily frequency-adjusted for optimal efficiency [7, 8].
Energy transmission through capacitive coupling is currently used relatively little due to limitations on the transmission distance, which is limited by the level of tenths of a millimeter. This method is mainly used for charging consumer electronics such as tablets, laptops and more. They also have great potential in the field of medicine for charging various implants. Capacitive coupling is a phenomenon occurring between all conductive objects, i.e. between systems between which there is a mutual difference of potentials and between them there is an environment with a positive dielectric constant (permittivity) [9, 10, 11].
This work aims to point out the main design issues related to wireless power transmission and demonstrate their operational characteristics. An important aspect in this area is undoubtedly interaction of living organisms with a strong electromagnetic field, and therefore it is necessary to pay attention also legislation and hygiene standards [12, 13, 14, 15]. Another goal is to provide a clear mathematical description of the system using intuitive methods for circuit analysis. Mathematical models must consider, in addition to the coupling itself, the inverters (inverter and rectifier) on the primary and secondary side of the system. An equally important goal of the work is experimental verification of all achieved theoretical conclusions. For this purpose, it was necessary to develop a prototype of a WPT charging system capable to supply sufficient power needed to charge conventional electric car. The text is supplemented by accompanying graphics that illustrates efficiency characteristics and also analysis of the spatial distribution of the electromagnetic field at different states of the system.
2. Basic resonant coupling techniques
There are four basic configurations of the primary and secondary side of the WPT system to realize resonant compensation of the leakage inductance [16, 17, 18]. This chapter focuses on investigating the properties of possible compensation methods, which include serial-serial, serial-parallel, parallel-serial, parallel–parallel. The analysis of individual configurations is further provided, while and examples of characteristics derivations are based on the circuit parameters listed in Table 1.
2.1 Series-series compensation
Serial-series compensation uses two external capacitors C1 and C2 connected in series with the primary and secondary windings. The circuit model of the system is shown in Figure 1.
Parameter
Value
R1
0.45 Ω
R2
0.45 Ω
L1
145.6 μH
L2
145.6 μH
C1
3.1 nF
C2
3.1 nF
k
0÷0.1
RZ
Series compensation: 5÷200 Ω
Parallel comp.: 5 Ω÷2.5 kΩ
Ub
100 V
Table 1.
Circuit parameters for the evaluation of compensation techniques.
Figure 1.
Simplified equivalent circuit for series–series compensation, left – Circuit with initial variables, right – Circuit suited for loop current analysis.
The system is powered by an inverter with a rectangular voltage profile with amplitude um1, and therefore the circuit must be described by a system of integrodifferential equations forming a full-fledged dynamic model.
All models will be derived for the fundamental harmonic and therefore we can use Eq. (1) to describe the model, while the inverter voltage can be considered in the form of (2).
U´1=22πum1E2
The solution we get loop currents, from which it is possible to further determine all operating variables of the system (3).
For a better idea, we draw the efficiency and power on the load depending on the frequency and the coupling factor, respectively the load. This creates two pairs of maps in which two functions are plotted separately:
P2=ffswk,P2=ffswRZ,andη=ffswk,η=ffswRZE4
The first map will consider a constant load, which will be set as optimal for the working distance corresponding to k = 0.1 [19]. The optimal load for the map was determined based on the relationship:
Dependency of output power (left) and system efficiency (right) on frequency and power transfer distance for S-S compensation.
2.2 Series-parallel compensation
Serial-parallel compensation uses two resonant capacitors connected in series with a coupling coil on the primary side and in parallel on the secondary side (Figure 3). In the left part you can see the diagram for the dynamic model and in the right part its simplification for the supply of the harmonic course of the voltage.
Figure 3.
Simplified equivalent circuit for series–parallel compensation, left – Circuit with initial variables, right – circuit suited for loop current analysis.
Unlike the previous circuit, it is now necessary to compile three equations of three unknowns. The integrodifferential form is given in the (6).
The resulting waveforms are graphically summarized in Figure 4.
Figure 4.
Dependency of output power (left) and system efficiency (right) on frequency and power transfer distance for S-P compensation.
2.3 Parallel-series compensation
Parallel–series compensation is practically only like the previous variant, which uses two resonant capacitors connected in parallel with the coupling coil on the primary side and in series on the secondary side. The circuit model is apparent from Figure 5.
Figure 5.
Simplified equivalent circuit for parallel - series compensation, left – Circuit with initial variables, right – Circuit suited for loop current analysis.
As in the previous case, it is enough to compile three equations of three unknowns for the description (9).
From the above equations we again obtain the courses of all-important operating variables, shown in Figure 5. As in the previous case, the system achieves maximum efficiency at the optimized load (Rz = 22 Ω), while the transmitted power is significantly lower compared to the achievable value (Figure 6).
Figure 6.
Dependency of output power (left) and system efficiency (right) on frequency and power transfer distance for P-S compensation.
2.4 Parallel-parallel compensation
Parallel–parallel compensation uses two resonant capacitors connected in parallel to both coupling coils. The circuit model can be seen in Figure 7.
Figure 7.
Simplified equivalent circuit for parallel - parallel compensation, left – Circuit with initial variables, right – Circuit suited for loop current analysis.
Unlike previous models, in this case it is necessary to compile four equations with four unknowns, the integrodifferential form is represented by the Eqs. (11).
Graphical interpretations of the characteristics are shown in Figure 8.
Figure 8.
Dependency of output power (left) and system efficiency (right) on frequency and power transfer distance for P–P compensation.
2.5 Overall comparison
Based on the above results, we can compile a table that compares the key properties of individual compensation methods (Table 2). In the evaluation, we consider a system operating to the optimal load at a distance corresponding to the coupling factor k < 0.1. The supply voltage is the same for all compensation topologies and is not regulated.
Criteria
Compensating topology
S-S
S-P
P-S
P–P
Source output type
current
voltage
voltage
Current
Power transfer ability
higher
higher
lower
lower
Max power and efficiency overlap
No
No
Partial
Partial
Optimum load value
lower
higher
lower
higher
Frequency sensitivity
higher
higher
lower
lower
Table 2.
Comparisons of key attributes of individual compensation techniques.
Serial-to-series compensation acts as a current source over the monitored operating distance range, allowing higher power to be delivered to the load compared to other topologies. The disadvantage is the minimum overlap of work areas with maximum system performance and efficiency.
Serial-parallel compensation in this case does not bring any significant operational benefits, the only difference lies in the higher values of the optimal load. Unlike the previous solution, the circuit acts as a voltage source.
Parallel–series compensation offers partial overlap of work areas with maximum performance and efficiency. However, the theoretically achievable transmitted power values are significantly lower compared to the two previous configurations. The circuit has a voltage output and is much less sensitive to frequency detuning.
Parallel–parallel compensation offers current output with better coverage of areas of maximum power and efficiency along with better frequency stability. However, the transmitted powers are very low, as with parallel–series compensation.
3. Identification of key system parameters and analytical approach for design of coupling elements
In the previous chapter, the principal characteristics regarding basic modifications of the main circuits for wireless power systems were derived and described. All models, in some form, use concentrated parameters of spare electrical circuits. These parameters can be determined basically in two ways, i.e. by calculation and by measurement, while the measurement can be used only if the analyzed system already physically exists. On the other side the calculations offer the possibility of optimization within design procedure.
Within next text, the systematic analytical procedure for calculation of key parameters of coupling elements for wireless power transfer is described, whereby the application area for any compensation technique can be considered here.
3.1 Mutual inductance of planar coils
In practice, circular or spiral coils are most often used for high-frequency purposes. The reason is the high gradients of the electric field, which arise on all structural edges of the coil in the case of parallel resonance. These gradients significantly worsen the quality factor and thus the operating characteristics of the resulting system [20, 21].
The mutual inductance of different clusters of air coils of spiral shape can be based on the application of the analytical rule for the magnetic vector potential in cylindrical coordinates (13).
The resulting relationship is based on the direct application of Biot-Savart’s law. In technical practice, these integrals are abundant, and therefore considerable attention has been paid to their enumeration in the past. The literature defines three basic types of these (elliptic) integrals, which can be combined with each other and easily converted to any special case.
Where K(kI) a E(kI) are elliptical integrals of first and second type and have following forms:
KkI=∫0π2dφ1−kI2sin2φaEkI=∫0π21−kI2sin2φdφ.E15
Module of these integrals is determined using (16).
kI=4rr1r+r12+z−z′2E16
The derived relations correspond to a simplified geometry, where only a coaxial arrangement is considered [22]. In order to be able to calculate the mutual inductance of the coils of general geometry and arrangement, we must introduce the possibility of deflection, see Figure 9 left.
Figure 9.
Displacement of coil’s turns and presentation of the situation for determination of mutual inductance for circular coils.
For this special case, the procedure for modifying the previous equations was indicated in [22, 23]. For the mutual inductance of the two turns from Figure 9 (left) we can write according to Figure 9 (right) next Eq. (17).
Both coils have one or more turns, and since the equations derived above apply only to the arrangement of simple loops, it is not possible to apply them directly. The calculation is divided into N1 N2 sub-steps, where the mutual inductance of all turn’s combinations of the first and second coil is determined. Substituting (17) into (20) we get the total mutual inductance.
M=∑i=1N1∑j=1N2MijE20
As mentioned above, spiral-shaped coils are rather used for high-frequency applications, while rectangular or square-shaped coils are suitable for applications operating at lower frequencies. On the one hand, there are no electric field gradients, the coupling is rather inductive, and on the other hand we try to make maximum use of the built-up areas to maximize the coupling factor between the coils. As in the previous case, Biot-Savart’s law can be applied here as well.
However, since it is not a circular coil, the advantages of the cylindrical coordinate system cannot be used, and the calculation is considerably complicated. To avoid confusing relationships, we will only consider the coaxial arrangement of two coils. These can have different geometries and different numbers of turns.
Figure 10 shows the real and simplified geometry of the coil, on which the derivation of the calculations will be performed. As can be seen in the figure on the left (Figure 10), the actual turns have different lengths at the same position, making the whole arrangement asymmetrical. The analytical solution of the field would then be very complicated and quite confusing.
Figure 10.
Real (left) and simplified (right) geometry of the coil with rectangular shape.
Thanks to the equivalent replacement of individual turns with concentric rectangles/squares, we are able to solve the magnetic field around the coil relatively easily and analytically. Figure 11 indicates the relative position of two coils of different dimensions and number of turns spaced by a length z.
Figure 11.
Simplified situation for determination of mutual inductance between rectangular coils.
Let us now focus on the i-th turn of the lower coil and the j-th turn of the upper coil. The magnetic field passing through the upper coil (excited by the lower coil) can be calculated from (21), where Biz is the induction of the magnetic field in the z-axis.
ϕij=∫SjB→idS→j=∫SjBizdSj=∫SjBcosθdSjE21
Furthermore, we can use Biot-Savart’s law to determine the increment of the BCD magnetic field from the current-carrying segment of the i-th turn as:
The magnetic flux from the other segments (AB, BC and DA) can be easily determined using the same relations. For example, to calculate the segment BC, it is enough to swap ai with bi and cj with dj in (26). Due to the symmetry, the Eq. (28) will apply.
ΨAB−z=ΨCD−zaΨDA−z=ΨBC−zE28
And because in the case of a unity current considering mutual inductance between the i-th and j-th turns next equation is valid (29)
MijΨij−z=ΨAB−z+ΨBC−z+ΨCD−z+ΨDA−z,E29
the total mutual inductance of both coils is based on (30).
M=∑i=1N1∑j=1N2MijE30
3.2 Self-inductance of planar coils
To calculate the intrinsic inductance of a planar coil, it is possible to find simple approximation relations, which are suitable for consequent mathematical derivations. However, their big disadvantage is only an approximate calculation with an often-indeterminate error. In addition, the relationships apply only to coils with an equilateral plan
La=μ02N2DAVGK1lnK2p+K3p+K4p2E31
Here, for p, the turn’s filling factor on the coil surface and DAVG is represented as the mean winding diameter.
p=D2−D1D2+D1,DAVG=D2+D12E32
In Table 3, the coefficients depending on the approximated coil geometry are calculated (Figure 12). The coefficients K1 - K4 must always be selected according to the current geometry.
Coil shape
K1
K2
K3
K4
Circular
1
2.46
0
0.2
Squared
1.27
2.07
0.18
0.13
Hexagonal
1.09
2.23
0
0.17
Octagonal
1.07
2.29
0
0.19
Table 3.
Estimated coefficients for identification of the shape of planar coil.
Figure 12.
Allowed degenerations of the coil’s geometry for calculation of inductance using Eq. (31).
3.3 Coupling coefficient
The magnetic coupling between two coils is formed by a magnetic field, which is generated by a transmitting coil. For many reasons, this array can never be coupled to the receiving coil in its full size, and the larger the array, the better the coupling is achieved. This phenomenon is described by the so-called coupling factor k, which takes values from 0 to 1. The coupling factor depends on the geometry of the coils and their mutual position. Many authors mistakenly qualify the degree of coupling of two coils based on the shape of the electromagnetic field in their surroundings. This approach leads to misinterpretations mainly because the field itself is variable in time and looks different at different times. The situation is clearly shown in Figure 13.
Figure 13.
Time-varying electromagnetic field around the system of coupling coils.
For example, in S-S compensation, the currents flowing through the primary and secondary windings are time-shifted by 90 electrical degrees. While at the instant j = 0° and j = 50° the coils appear to be coupled, while at the instant j = 135° they are without mutual coupling according to the shape of the field (Figure 13). The only reliable way to determine the coupling factor is to apply relation (33).
k=ML1L2E33
We will explain some relationships on a simple example, in which we determine the coupling factor of two coaxially placed coils of circular shape with planar design. We will perform the calculation on three similar geometries (Figure 12 left), where the first pair of coils will have an inner diameter D1 = 100 mm and an outer diameter D2 = 200 mm, whereby the other two pairs of coils will have the same dimensions multiplied by two and three. The number of turns is the same N = 5 for all cases. The coupling factor will be plotted for a distance z = 5 ÷ 300 mm.
As shown in Figure 14 (left), changing the distance of the coils, the coupling factor k decreases rapidly, while the rate of this decrease is highly dependent on the respective geometry of the coils. It is therefore better to choose larger coil dimensions to improve the coupling at higher distances. In Figure 14 (right) we see the effect of the misalignment of the coils in the x-axis at their constant distance in the z-axis. The coupling factor is somewhat less sensitive to this method of deflection.
Figure 14.
Dependency of coupling factor on the geometrical properties of the coil and mutual distance (left) and mutual radial displacement (right).
3.4 Parasitic capacitance of the coil
For the capacitance between two turns with mean radius ri and the distance between individual turns e we can write the relation (34).
Cip=32πε0rilnervE34
If we have a coil with N turns, the total parasitic capacitance must be determined as
CCp=∑i=1N−132πε0rilnerv−1−1.E35
Further to the pattern of Figure 12 to the left we denote the outer diameter D2 = 2r2, we get the modification (35) in the form (36).
CCp=∑i=1N−123lnervπε0r2−rv+e/2i−1E36
The geometric arrangement, according to which (36) can be easily applied, can be seen in Figure 15.
Figure 15.
Situation of the coil’s turn placement for the calculation of parasitic capacitance.
Unlike high-frequency systems, at lower operating frequencies, ropes with insulated conductors are used almost exclusively. The reason is the lower influence of parasitic capacitances and especially the better current utilization of the coil.
3.5 Series parasitic resistance of the coil
The series resistance of the coil is one of the most critical parameters of the system with the greatest influence on its operational efficiency and it is therefore very important to know this value as accurately as possible. We can start with the general relation for resistance according to (37).
R=ρlSE37
So far, we will not consider temperature or frequency dependences. While the effective area of the conductor S depends only on the current load, the length l already depends on the geometric shape of the coil. As mentioned earlier, spiral planar coils of solid conductor are more suitable for high frequency applications.
3.5.1 Series parasitic resistance of spiral planar coil
In this approximation, we will only talk about coils wound with a copper conductor of circular cross-section. These with their shape most closely resemble parts of the Archimedean spiral, where regarding Figure 9 on the right we can denote the inner radius as r1A and the outer radius as r1B. The distance between the individual turns e and the number of turns N will be constant. As mentioned earlier, the key length here is played primarily by the length of the conductor of the wound coil. We can write an equation for the Archimedean spiral in polar coordinates
r=r1A+ζ·φ,2πζ=e.E38
The length of the spiral thus described can be determined by integration (39)
lc=∫02πNr1A+e2πφ2+drdφ2dφ,E39
However, the disadvantage remains the fact that the integral (39) cannot be solved analytically. It is therefore necessary to integrate numerically for the calculation. It is also possible to use an approximation relation for an approximate calculation
lc=12e2π2πN2+2πNr1A2+e2π2+r1A,E40
or simplification by means of an average radius, see (41). The calculation is then very fast and convenient.
lc=2πNr1A+r1B2E41
In addition, high-frequency applications require winding of a solid conductor to reduce the parasitic capacitance of the coil. Therefore, if we consider the effect of the skin effect, we can adjust (37) to the shape (44) for a conductor with radius rv. Here for lc we use one of the equations (39)–(41).
3.5.2 Series parasitic resistance of rectangular planar coil
The coil has rectangular turns to achieve maximum inductance (Figure 16). If we denote the external dimensions of the coil by the letters a and b and consider the spacing between the individual turns e constant, we can write Eq. (43) for the resulting resistance.
Figure 16.
Rectangular coil identification for the calculation of parasitic resistance.
Rco−DCϑ=ρϑSCu2∑i=1Na+b−1+i−14eE43
Furthermore, if we choose an insulated RF cable with wires whose diameter is much smaller than the penetration depth d, we can certainly rule out the effect of the skin effect. We are then talking about a conductor with an effective cross section SCu, whose frequency dependence is caused only by the phenomenon of proximity. With a few modifications, it can be further simplified (44) by removing the summation into the shape
Rco−DCϑ=ρϑSCu2Na+b+e1−2NE44
In all the cases described, the turns are evenly distributed in one layer with a constant e. The current flowing through the coil thus has the same direction in all turns and generates a magnetic field with lower intensity on the external turns and higher intensity on the internal turns. This magnetic field induces eddy currents into all coil turns and thus increases its overall resistance. This process is commonly referred to as the proximity phenomenon and can be conveniently calculated from the relationship for eddy current losses in individual parallel conductors. For one fiber of diameter ds of an insulated cable of length l, exposed to an external magnetic field B of a harmonic waveform of angular frequency w, we can write
Rprox=πlds464ρω2B2E45
If we use a cable made of nf insulated conductors for winding of the coil, it is possible to adjust eg(44) to the shape (46) by counting (42).
To illustrate, we will analyze the following geometry. We consider a square coil with an outer edge of length a = 500 mm and N = 20 turns. We choose the spacings between the turn’s axes e = 8 mm. The maximum operating frequency is f = 300 kHz, while for a nominal current I = 5 A we choose a current value J = 7 MA/m2. The calculation is valid for a temperature of 20° C. Figure 17 shows the dependence of the DC resistance from (44), the AC resistance from (46) and the total resistance. The minimum value of the number of RF wires is determined from (47) and corresponds to the rated current load (ns-min = 61).
Figure 17.
Nomogram for the calculation of the optimal number of litz wire.
ns−min≐4Iπds2JE47
By further increase of the number of wires, we therefore only increase the current possibilities of the coil.
As the number of wires increases, the DC resistance RDC decreases sharply, but the AC resistance Rprox also increases. The optimum can be found by solving Eq. (48).
After substituting, we get the value ns = 328 wires, which corresponds to the value in Figure 17.
3.5.3 Series parasitic resistance of rectangular planar coil
The most general definition of the quality factor is based on the ratio of accumulated and lost energy in the investigated passive component. For AC supply we can write (50), where the influence of the electric field prevails in the case of a capacitor and the influence of the magnetic field in the case of a coil.
Q=ωWmg−WelPj=1RLC.E50
If we consider an ideal coil (R-L circuit) without parasitic capacitance, we get a quality factor such as
Q=ωWmgPj=ω12LIm212RIm2=ωLR,E51
For more complicated circuits, such as components with parasitic effects, we can also use the relation to calculate the quality factor
The first part of the result of Eq. (52) corresponds to the quality factor of the individual coil, the second part then respects the effect of parasitic capacitance between the turns. A closer look reveals that there is a frequency at which both parts are equal and (52) gives zero result. This frequency is often referred to as the coil’s own resonant frequency
fr−self=12πLCp.E53
The situation is indicated in Figure 18 on the right, where the dependency of the quality factor and the character of the resulting reactance on the frequency is plotted for selected values of the parasitic capacity of the inductance and the series resistance of the coil (Cp = 5 pF, L = 0.1 mH, R = 1 Ω). As can be seen from the figure, when reaching the natural resonant frequency of the fr-self circuit »225 MHz, the quality factor is equal to zero and at the same time the inductive character of the reactance changes to capacitive character. For this reason, we always try to operate the coil at a frequency much lower than the self-resonant frequency.
Figure 18.
Parasitic components of the coil and the quality factor characteristic.
4. Practical design approach for industrial wireless power transfer charging system
4.1 Power electronic system configuration
Electrical engineers responsible for the design of the wireless transfer chargers must consider standard grid network connection during design process. Because many issues are nowadays address on the quality of the supply grid, the main goal during design of any power electronic system is to achieve the best performance related to the power factor parameter at any power consumption of the system. In addition to this fact, it is also required to have fully symmetrical 3-phase current with as low total harmonic distortion as possible [25, 26, 27, 28].
THDi=∑μ=2iacμ2iac1100E54
Regarding above mentioned facts, each power electronic system, which must undergo strict normative given on the qualitative indicators of the grid variables, must be equipped with input active or passive power factor corrector (PFC) and total harmonic distortion correction (THDC). These blocks are consequently followed by diode rectifier, dc/dc converter (step-up or step-down) and the voltage source inverter. Such power electronic system configuration is robust and verified by many similar applications (mostly power supplies and battery chargers). The main negative drawback of such concept lies in higher price and build-in dimensions along with the increase in power rating. This topology should therefore be recommended for low or medium power WPT chargers (Figure 19 – blue blocks).
Figure 19.
Power electronics configuration on the primary side of the wireless power charger indicating differences related to the level of the power transfer.
Second group of WPT chargers considering the value of power delivery is medium to high power concepts. Here it is recommended to use the configuration composed of input filter (inductive – designed as distribution transformer for example), followed by the active PFC/THDC rectifier supplying the voltage source inverter (VSI). For both cases (low or high power) the VSI is sourcing primary/transmitting coil with relevant compensation. This configuration of power electronic system (Figure 19 – orange blocks) is providing low ripple input current with sinusoidal character, low THDi, excellent power factor and controllable output voltage. Therefore, it is not required to implement another dc/dc converter stage within the system [29, 30, 31].
The recommended topologies are summarized in Figure 19 according to system dedicated power level.
The concept of power electronic system for the secondary side also differs based on the type of the load, and level of the power delivery. Basically, it consists of secondary side coil equipped by relevant compensation, passive or active rectifier and dc/dc converter stage providing required functionality of the charger.
Finally, the system connection to the grid considering all the power levels established as WPT categories by SAE TIR J2954 is seen in conceptual layout shown in Figure 20, valid especially for central Europe [32, 33, 34, 35].
Figure 20.
WPT system categories – Connection to the grid.
A more detailed example above described solution, which could meet all necessary technical requirements on high power applications and simultaneously having excellent operational properties, is seen in Figure 21.
Figure 21.
Recommended system configuration for high power application.
Here the distribution transformer is presented as the grid source, followed by active rectifier, which is responsible for regulation of PF and THDi. Then full bridge inverter is used as VSI and supplies primary side coupling section.
The secondary side of the system shown in Figure 21 is drawn in more detail in Figure 22. The secondary side coupling system is followed by full-bridge diode rectifier with filtering capacitor CS. Then the dc/dc step-down converter (SD) providing required charging algorithm (mostly CC&CV) is supplying the on-board battery pack.
Figure 22.
Recommended system configuration of secondary side for high power application.
Previously described concepts are representing the mostly used configurations of power electronic systems required for the design of the wireless power chargers suited for industrial and/or automotive applications.
4.2 Coupling elements design
The most important parameter in the design of coupling coils is undoubtedly the product of quality factors Q and coupling k. Its operating size is strongly dependent on various parameters (e.g. circuit topology, load size, coil distance, etc.) and therefore cannot be optimized directly. One option is to maximize the quality factor. To achieve maximum inductance, we make the coil as planar with square turns (Figure 23). In addition, due to the limitation of parasitic capacitance (we now neglect), we keep constant spacings between individual turns of size δv = 4 mm. Geometric dimensions allow to wind about 26 turns. In addition, if we know the operating frequency, we can determine the voltage drop and the current through the coil from the required power. It is necessary to design an effective winding cross section for this.
Figure 23.
Proposed coupling coil (left) and its magnetic field (right).
Regarding the available conductor cross-sections, a copper wire (2200 mutually insulated conductors) with a total cross-section of Sv = 19.63 mm2 was selected. The winding produced in this way eliminates the effect of the skin effect and the resulting resistance of the coil is therefore only affected by the phenomenon of proximity.
The coil has 22 turns, the calculation parameters being as follows. The self-inductance has a value L = 147 μH and the active resistance is R = 0.19 Ω.
4.3 Experimental set-up
In this case, we will focus on the WPT 1 category with an output of 3.7 kW. The experimental workplace consists of a programmable power supply, electronic load, precision power analyzer, oscilloscope, input inverter, output rectifier, additional resistors and the compensated LC circuit WPT itself. The measuring workplace is connected according to the functional diagram, see Figure 24. The determining factor in the selection of power components was the ability to work with a switching frequency from 200 kHz upwards. For this reason, a solution based entirely on SiC elements was chosen. The inverter is built on 1200 V JFET modules FF45R12J1W1_B11 (Infineon) with a type current of 45 A. Due to the low values of switching times of these modules, which are actually in the order of tens of nanoseconds, it is possible to minimize the effect of inverter dead times. The rectifier is based on a 1200 V diode SiC module APTDC20H1201G (Microsemi) with a type current of 20 A.
Figure 24.
Block diagram of the laboratory experimental set-up.
4.3.1 Measurement of the operational characteristics of series: series compensated system
On the primary side, a total of three quantities are measured with an oscilloscope. Probe “a” (THDP 0200) measures the output voltage of the inverter, probe “b” (current probe TCP 404 XL and amplifier TCPA 400) measures the primary current and probe “c” (P6015A) senses the voltage on the compensation capacitor. The secondary side is not measured by the oscilloscope at all in this configuration. Also, no resistors are connected here, and the system works directly into the ZS 7080. The applied oscilloscopic measurements on the primary side are rather indicative and do not serve to calculate the efficiency [35, 36, 37].
Figure 25 shows an oscillograph at a load power of 2678 W. The purple waveform represents the inverter output voltage, the light blue waveform the primary current waveform, and the blue waveform represents the voltage on the primary compensation capacitor (scale 1: 1000). The real elements (influenced by parasitics) of the WPT system are the main reason why the phase shift of voltage and current is non-zero (according to theoretical assumptions it should be close to zero).
Figure 25.
Time waveforms of the primary side of tested WPT system during full load operation.
A comparison of power (Figure 26) and efficiency (Figure 27) shows that the analytical models accurately describe the behavior of the system in a wide range of frequencies and loads.
Figure 26.
Output power characteristic in dependency on load and operation frequency for measurement (left) and simulation (right).
Figure 27.
Efficiency characteristic in dependency on load and operation frequency for measurement (left) and simulation (right).
4.4 Electromagnetic shielding application
Although the current system achieves very high efficiency even over long working distances, it is unsatisfactory due to hygienic limits and standards for EV charging. The main weaknesses are mainly the high switching frequency and the large intensities of the EM field. The magnetic field in the vicinity of both (optimally coupled) coils at a transmitted power of approx. 4000 W is plotted in Figure 28. The distribution of the field changes over time, and therefore each time point must be evaluated separately.
Figure 28.
Magnetic induction around system of unshielded coils.
The picture shows a large scattering of the field into the surroundings, which must be avoided. Exact induction values at a specific distance from the center of the coils can be obtained by introducing a spherical surface to which the EM field results are mapped. The radius of this area must be defined regarding the dimensions of the vehicle and the location of the coupling coils on its chassis. The key is especially the space in which exposed persons can normally occur. For practical reasons, therefore, it does not make sense to monitor the magnetic induction near both coils. For the sake of clarity, we state here (see Figure 28) the magnitude of induction on the sphere surface with a radius of 450 mm at the time (j = 0°), when the current passes through only one coil.
Shielding can be realized by a matrix arrangement of ferrite cores lying on the back sides of both coils. The resulting magnetic field is directed into the main coupling space, while the interior of the vehicle remains protected. The material of the cores must correspond to the operating frequency and especially to the saturation at full load. Material N87 with relative permeability >1450 and operating frequency up to 500 kHz was selected for prototype. The size of the cores is 20x30x3 mm. Due to the high price and weight of the ferrite shield, it is reasonable to lighten its resulting pattern (not to occupy the full area of the coils). The finite element method will be used for this enabling to determine the intrinsic and mutual inductances of coupling coils, ferrite saturation and losses for any arrangement of ferrite cores.
Shielding consists of two functional elements (steps). The first is a ferrite array (plate) that holds the maximum amount of coupled flux and directs it for better bonding to the second coil. The second degree of shielding is an aluminum plate offset over a ferrite field. In the case of supersaturation of the ferrite core, this creates eddy currents that keep the field in the active space of both coils. The situation is indicated in Figure 29 (left), the ferrite barrier (core) is drawn in gray. The aluminum shield is then shown by a solid plate near the ferrite core.
Figure 29.
Proposed electromagnetic shielding (left) and EM field distribution (right).
From Figure 30 we can see the beneficial effect of shielding even better. Ferrite shielding almost completely shields the field above and below the coils. In this area, the hygienic limits are fully met and without the need for additional shielding.
Figure 30.
Magnetic induction around shielded system.
The magnetic field of the coupling coils (Figure 30 on the right) is now much better concentrated in the coupling space, which increases the probability of meeting the hygienic limits many times over.
4.4.1 Experimental analysis of the impact of shielding system
In order to verify the theoretical assumptions, an experimental prototype of a previously designed shielding was created. The photograph of the experimental workplace is evident from Figure 31.
Figure 31.
Laboratory set-up for evaluation of the EM shielding impact.
The aim was to significantly reduce the switching frequency of the supply voltage and to suppress the emission of the EM field to meet the hygienic limits according to “ICNIRP 2010” [38, 39]. The operating parameters of the newly implemented prototype are quantified in Table 4. The values are valid for a working distance of 20 cm.
Optimization to
U1 [V]
P1 [W]
P2 [W]
η [%]
fr [kHz]
f [kHz]
Rz [Ω]
Power
312
5116
4865
95.1
121.1
121
35
Efficiency
312
4056
3886
95.8
121.1
125
29
R1/R2 [Ω]
L1/L2 [μH]
C1/C2 [nF]
0.21/0.21
172/167
10.444
Table 4.
Operational parameters of the system after application of the shielding.
Full-scale maps measured at reduced power (maximum efficiency) can be seen in Figure 32. The resonance is around 121 kHz, with the high efficiency range more than 10 kHz wide.
Figure 32.
Output power characteristic (left) and efficiency characteristic (right) for shielded system and 20 cm power transfer distance.
The results confirm the ability of the systems to deliver 4 kW to the load at an efficiency of>95%, which, apart from the higher supply frequency, places it in the “WPT 1” category according to the “SAE TIR J2954” wireless charging station standard.
To verify the shielding efficiency, a scattering magnetic field was also measured (measurement uncertainty <2%) around the coupling coils using a calibrated Narda ELT 400 probe. The values were recorded in the cutting plane with a regular step of 10 cm in length (Figure 33). The values of the magnetic induction relevant for hygienic limits are boarded by red dashed line (Figure 33 left). It is seen, that specified limits are achieved approximately 20 cm from the top surface of the coils. Compared to unshielded system (Figure 33 right), it is reduction of approximately 60 cm considering the spherical distance.
Figure 33.
Evaluation of the values of magnetic field around shielded (system) and non-shielded system (right) during experimental measurement at full power of proposed system.
Based on the received and verified results it was achieved, that with the use of presented methodology, it is possible to design wireless charger, whose characteristics will meet standards and normative defined by regulatory companies.
5. Conclusions
The paper has given a brief recapitulation of most important standards and regulations relating to the high-power wireless charging systems. It has proposed the magnetic couplers to be designed exactly according to optimal operation to the specific load.
For medium or high-power wireless chargers, we have recommended to compose the system of input inductance, the active rectifier and the voltage source inverter, which can provide low THDi, excellent power factor and controllable output voltage. Thus, no additional dc/dc converters are needed.
The experimental prototype has proven the validity of presented physical principles and confirmed the proposed conceptual design strategies. It has also shown and discussed the comparison between ac-ac and dc-dc system efficiency relating to losses-to-power transfer ratio.
Additionally, the measurement of leakage magnetic field has shown the real flux density distribution observed around the circular-shaped coupling coils. This could be used for further optimization.
Acknowledgments
This research was supported by project funding APVV – 17 – 0345 - Research of the optimization procedures for improvement of transfer, safety and reliability characteristics of WET systems. This research was also funded by the Ministry of Education, Youth and Sports of the Czech Republic under the project OP VVV Electrical Engineering Technologies with High-Level of Embedded Intelligence CZ.02.1.01/0.0/0.0/18_069/0009855 and by funding program of the University of West Bohemia number SGS-2018-009.
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"wireless power transfer, coil design, analytical approach, electromagnetic field, efficiency, optimization, shielding",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/74855.pdf",chapterXML:"https://mts.intechopen.com/source/xml/74855.xml",downloadPdfUrl:"/chapter/pdf-download/74855",previewPdfUrl:"/chapter/pdf-preview/74855",totalDownloads:434,totalViews:0,totalCrossrefCites:0,dateSubmitted:"October 15th 2020",dateReviewed:"December 23rd 2020",datePrePublished:"January 27th 2021",datePublished:"August 18th 2021",dateFinished:"January 18th 2021",readingETA:"0",abstract:"The paper introduces the main issues concerned with the conceptual design process of wireless power systems. It analyses the electromagnetic design of the inductive magnetic coupler and proposes the key formulas to optimize its electrical parameters for a particular load. For this purpose, a very detailed analysis is given focusing on the mathematical concept procedure for determination of the key factors influencing proper coupling coils design. It also suggests basic topologies for conceptual design of power electronics and discusses its proper connection to the grid. The proposed design strategy is verified by experimental laboratory measurement including analyses of leakage magnetic field.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/74855",risUrl:"/chapter/ris/74855",signatures:"Vladimir Kindl, Michal Frivaldsky, Jakub Skorvaga and Martin Zavrel",book:{id:"10514",type:"book",title:"Wireless Power Transfer",subtitle:"Recent Development, Applications and New Perspectives",fullTitle:"Wireless Power Transfer – Recent Development, Applications and New Perspectives",slug:"wireless-power-transfer-recent-development-applications-and-new-perspectives",publishedDate:"August 18th 2021",bookSignature:"Mohamed Zellagui",coverURL:"https://cdn.intechopen.com/books/images_new/10514.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-802-7",printIsbn:"978-1-83968-801-0",pdfIsbn:"978-1-83968-803-4",isAvailableForWebshopOrdering:!0,editors:[{id:"151680",title:"Associate Prof.",name:"Mohamed",middleName:null,surname:"Zellagui",slug:"mohamed-zellagui",fullName:"Mohamed Zellagui"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"180825",title:"Dr.",name:"Michal",middleName:null,surname:"Frivaldsky",fullName:"Michal Frivaldsky",slug:"michal-frivaldsky",email:"michal.frivaldsky@fel.uniza.sk",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Slovak Academy of Sciences",institutionURL:null,country:{name:"Slovakia"}}},{id:"345144",title:"Dr.",name:"Vladimir",middleName:null,surname:"Kindl",fullName:"Vladimir Kindl",slug:"vladimir-kindl",email:"vkindl@fel.zcu.cz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of West Bohemia",institutionURL:null,country:{name:"Czech Republic"}}},{id:"345145",title:"Dr.",name:"Jakub",middleName:null,surname:"Skorvaga",fullName:"Jakub Skorvaga",slug:"jakub-skorvaga",email:"jakub.skorvaga@feit.uniza.sk",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of Žilina",institutionURL:null,country:{name:"Slovakia"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Basic resonant coupling techniques",level:"1"},{id:"sec_2_2",title:"2.1 Series-series compensation",level:"2"},{id:"sec_3_2",title:"2.2 Series-parallel compensation",level:"2"},{id:"sec_4_2",title:"2.3 Parallel-series compensation",level:"2"},{id:"sec_5_2",title:"2.4 Parallel-parallel compensation",level:"2"},{id:"sec_6_2",title:"2.5 Overall comparison",level:"2"},{id:"sec_8",title:"3. Identification of key system parameters and analytical approach for design of coupling elements",level:"1"},{id:"sec_8_2",title:"3.1 Mutual inductance of planar coils",level:"2"},{id:"sec_9_2",title:"3.2 Self-inductance of planar coils",level:"2"},{id:"sec_10_2",title:"3.3 Coupling coefficient",level:"2"},{id:"sec_11_2",title:"3.4 Parasitic capacitance of the coil",level:"2"},{id:"sec_12_2",title:"3.5 Series parasitic resistance of the coil",level:"2"},{id:"sec_12_3",title:"3.5.1 Series parasitic resistance of spiral planar coil",level:"3"},{id:"sec_13_3",title:"3.5.2 Series parasitic resistance of rectangular planar coil",level:"3"},{id:"sec_14_3",title:"3.5.3 Series parasitic resistance of rectangular planar coil",level:"3"},{id:"sec_17",title:"4. Practical design approach for industrial wireless power transfer charging system",level:"1"},{id:"sec_17_2",title:"4.1 Power electronic system configuration",level:"2"},{id:"sec_18_2",title:"4.2 Coupling elements design",level:"2"},{id:"sec_19_2",title:"4.3 Experimental set-up",level:"2"},{id:"sec_19_3",title:"4.3.1 Measurement of the operational characteristics of series: series compensated system",level:"3"},{id:"sec_21_2",title:"4.4 Electromagnetic shielding application",level:"2"},{id:"sec_21_3",title:"Table 4.",level:"3"},{id:"sec_24",title:"5. Conclusions",level:"1"},{id:"sec_25",title:"Acknowledgments",level:"1"},{id:"sec_28",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'Zarikas, Vasilios, and Nick Papanikolaou. Advanced and Intelligent Control in Power Electronics and Drives. Auris Reference, 2018'},{id:"B2",body:'Li, Y.; Mai, R.; Lu, L.; Lin, T.; Liu, Y.; He, Z. Analysis and Transmitter Currents Decomposition Based Control for Multiple Overlapped Transmitters Based WPT Systems Considering Cross Couplings. IEEE Trans. Power Electron. 2018, 33, 1829–1842'},{id:"B3",body:'F. Lu, H. Zhang, H. Hofmann and C. C. Mi, "An Inductive and Capacitive Combined Wireless Power Transfer System WithLC-Compensated Topology," in IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8471–8482, Dec. 2016. doi: 10.1109/TPEL.2016.2519903'},{id:"B4",body:'M. Heidarian, S. J. Burgess, R. Prabhu and N. Fough, "Maximising Inductive Power Transmission using a Novel Analytical Coil Design Approach," 2019 IEEE Wireless Power Transfer Conference (WPTC), London, United Kingdom, 2019, pp. 158–161, doi: 10.1109/WPTC45513.2019.9055553'},{id:"B5",body:'W. Zhang and C. C. Mi, "Compensation Topologies of High-Power Wireless Power Transfer Systems," in IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4768–4778, June 2016. doi: 10.1109/TVT.2015.2454292'},{id:"B6",body:'I. Sîrbu and L. Mandache, "Comparative analysis of different topologies for wireless power transfer systems," 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, 2017, pp. 1–6. doi: 10.1109/EEEIC.2017.7977863'},{id:"B7",body:'Babaki, Amir et al. "Performance Optimization of Dynamic Wireless EV Charger Under Varying Driving Conditions Without Resonant Information." IEEE Transactions on Vehicular Technology 68 (2019): 10429–10438, DOI: 10.1109/TVT.2019.2944153'},{id:"B8",body:'Y. Jiang, L. Wang, Y. Wang, J. Liu, X. Li and G. Ning, "Analysis, Design, and Implementation of Accurate ZVS Angle Control for EV Battery Charging in Wireless High-Power Transfer," in IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 4075–4085, May 2019. doi: 10.1109/TIE.2018.2795523'},{id:"B9",body:'Y. Bezawada, R. Fu and Y. Zhang, "Impacts of Coupling Plates on Single-Switch Capacitive-Coupled WPT Systems," 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), London, United Kingdom, 2019, pp. 330–334, doi: 10.1109/WoW45936.2019.9030651'},{id:"B10",body:'Kang Hyun Yi, "High frequency capacitive coupling wireless power transfer using glass dielectric layers," 2016IEEE Wireless Power Transfer Conference (WPTC), Aveiro, 2016, pp. 1–3, doi: 10.1109/WPT.2016.7498857'},{id:"B11",body:'Chieh-Kai Chang, G. G. Da Silva, A. Kumar, S. Pervaiz and K. K. Afridi, "30 W capacitive wireless power transfer system with 5.8 pF coupling capacitance," 2015IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, 2015, pp. 1–4, doi: 10.1109/WPT.2015.7140184'},{id:"B12",body:'IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz Amendment 1: Specifies Ceiling Limits for Induced and Contact Current, Clarifies Distinctions between Localized Exposure and Spatial Peak Power Density," in IEEE Std C95.1a-2010 (Amendment to IEEE Std C95.1–2005), vol., no., pp.1–9, 16 March 2010 doi: 10.1109/IEEESTD.2010.5433227'},{id:"B13",body:'J. Kim et al., "Coil Design and Shielding Methods for a Magnetic Resonant Wireless Power Transfer System," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1332–1342, June 2013. doi: 10.1109/JPROC.2013.2247551'},{id:"B14",body:'Q. Zhu, Y. Zhang, Y. Guo, C. Liao, L. Wang and L. Wang, "Null-Coupled Electromagnetic Field Canceling Coil for Wireless Power Transfer System," in IEEE Transactions on Transportation Electrification, vol. 3, no. 2, pp. 464–473, June 2017. doi: 10.1109/TTE.2016.2633798'},{id:"B15",body:'J. Kim, H. Kim, C. Song, I. Kim, Y. Kim and J. Kim, "Electromagnetic interference and radiation from wireless power transfer systems," 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), Raleigh, NC, 2014, pp. 171–176. doi: 10.1109/ISEMC.2014.6898964'},{id:"B16",body:'Kindl, V., Frivaldsky, M., Spanik, P., Piri, M. and Jaros, V. (2017), "Transfer properties of various compensation techniques for wireless power transfer system including parasitic effects", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 36 No. 4, pp. 1198–1219. https://doi.org/10.1108/COMPEL-04-2016-0143'},{id:"B17",body:'Y. Wang, Y. Yao, X. Liu, D. Xu and L. Cai, "An LC/S Compensation Topology and Coil Design Technique for Wireless Power Transfer," in IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2007–2025, March 2018, doi: 10.1109/TPEL.2017.2698002'},{id:"B18",body:'H. Zeng, S. Yang and F. Z. Peng, "Design Consideration and Comparison of Wireless Power Transfer via Harmonic Current for PHEV and EV Wireless Charging," in IEEE Transactions on Power Electronics, vol. 32, no. 8, pp. 5943–5952, Aug. 2017. doi: 10.1109/TPEL.2016.2616111'},{id:"B19",body:'P. Spanik, M. Frivaldsky, M. Piri and V. Kindl, "Wireless power transfer system with reduced voltage stress on compensation capacitors," IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, 2016, pp. 1190–1195. doi: 10.1109/IECON.2016.7793103'},{id:"B20",body:'L. Ning, Y. Xiao and Z. Ning, "Design of transcutaneous coupling wireless charger," 2011 6th International Conference on Computer Science & Education (ICCSE), Singapore, 2011, pp. 41–46, DOI: 10.1109/ICCSE.2011.6028581'},{id:"B21",body:'Z. Zhu, C. Zhang and D. Li, "A Novel Parameter Design and Optimization Method for Wireless Power Transfer System," 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 2018, pp. 1–5, doi: 10.1109/ACEPT.2018.8610852'},{id:"B22",body:'Babic, S. I., Sirois, F., Akyel, C.; "Validity Check of Mutual Inductance Formulas for Circular Filaments With Lateral and Angular Misalignments," Progress In Electromagnetics Research M, Vol. 8, 15–26, 2009'},{id:"B23",body:'Babic, S. I., Akyel, C.; "Calculating Mutual Inductance Between Circular Coils With Inclined Axes in Air," IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 7, JULY 2008'},{id:"B24",body:'S. Kim, H. Park, J. Kim, J. Kim and S. Ahn, "Design and Analysis of a Resonant Reactive Shield for a Wireless Power Electric Vehicle," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 1057–1066, April 2014. doi: 10.1109/TMTT.2014.2305404'},{id:"B25",body:'T. Shijo et al., "85 kHz band 44 kW wireless power transfer system for rapid contactless charging of electric bus," 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, 2016, pp. 38–39'},{id:"B26",body:'Bausiere, Robert, et al. Power Electronic Converters DC-DC Conversion. Springer Berlin, 2013'},{id:"B27",body:'Y. Yang, W. Zhong, S. Kiratipongvoot, S. Tan and S. Y. R. Hui, "Dynamic Improvement of Series–Series Compensated Wireless Power Transfer Systems Using Discrete Sliding Mode Control," in IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 6351–6360, July 2018, doi: 10.1109/TPEL.2017.2747139'},{id:"B28",body:'F. Genco, M. Longo, P. Livreri and A. Trivino, "Wireless Power Transfer System Stability Analysis for E-bikes Application," 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Torino, Italy, 2019, pp. 1–5, doi: 10.23919/EETA.2019.8804499'},{id:"B29",body:'S. Jayalath and A. Khan, "Analysis of the Relationship between the Parameters of IPT Transformer and Power Electronic System," 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, 2018, pp. 1–4, doi: 10.1109/WPT.2018.8639141'},{id:"B30",body:'W. Peng and Z. Chen, "Enhanced Planar Wireless Power Transfer Systems with Ferrite Material," 2018IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, 2018, pp. 1–4, doi: 10.1109/WPT.2018.8639455'},{id:"B31",body:'J. Pries, V. P. N. Galigekere, O. C. Onar and G. Su, "A 50-kW Three-Phase Wireless Power Transfer System Using Bipolar Windings and Series Resonant Networks for Rotating Magnetic Fields," in IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 4500–4517, May 2020, doi: 10.1109/TPEL.2019.2942065'},{id:"B32",body:'V. Kindl, M. Frivaldsky, M. Zavrel, and M. Pavelek, "Generalized Design Approach on Industrial Wireless Chargers", Energies, vol. 13, no. 11, 2697, 2020'},{id:"B33",body:'Kalialakis, C., & Georgiadis, A. (2014). The regulatory framework for wireless power transfer systems. Wireless Power Transfer, 1(2), 108–118. doi:10.1017/wpt.2014.13'},{id:"B34",body:'B. M. Mosammam, N. Rasekh, M. Mirsalim and A. Khorsandi, "Electromagnetic Analysis for DD Pad Magnetic structure of a Wireless Power Transfer (WPT) for Electrical Vehicles," 2018 Smart Grid Conference (SGC), Sanandaj, Iran, 2018, pp. 1–6, doi: 10.1109/SGC.2018.8777750'},{id:"B35",body:'J. Chakarothai, K. Wake, T. Arima, S. Watanabe and T. Uno, "Exposure Evaluation of an Actual Wireless Power Transfer System for an Electric Vehicle With Near-Field Measurement," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1543–1552, March 2018. doi: 10.1109/TMTT.2017.2748949'},{id:"B36",body:'ICNIRP2010. International Commission on Non-Ionizing Radiation Protection. 2010. Available online: http://www.icnirp.org/cms/upload/publications/ICNIRPLFgdl.pdf (accessed on 7 August 2018)'},{id:"B37",body:'H. Kim et al., "Coil Design and Measurements of Automotive Magnetic Resonant Wireless Charging System for High-Efficiency and Low Magnetic Field Leakage," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 383–400, Feb. 2016. doi: 10.1109/TMTT.2015.2513394'},{id:"B38",body:'SAE TIR J2954. SAE International. 2016. Available online: http://standards.sae.org/wip/j2954/ (accessed on 19 January 2017)'},{id:"B39",body:'T. Iwamoto et al., "Measurement of electromagnetic field in the vicinity of wireless power transfer system for evaluation of human-body exposure," 2014 International Symposium on Electromagnetic Compatibility, Tokyo, Tokyo, 2014, pp. 529–532'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Vladimir Kindl",address:null,affiliation:'
Faculty of Electrical Engineering, University of West Bohemia, Czech Republic
Faculty of Electrical Engineering, University of West Bohemia, Czech Republic
'}],corrections:null},book:{id:"10514",type:"book",title:"Wireless Power Transfer",subtitle:"Recent Development, Applications and New Perspectives",fullTitle:"Wireless Power Transfer – Recent Development, Applications and New Perspectives",slug:"wireless-power-transfer-recent-development-applications-and-new-perspectives",publishedDate:"August 18th 2021",bookSignature:"Mohamed Zellagui",coverURL:"https://cdn.intechopen.com/books/images_new/10514.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-802-7",printIsbn:"978-1-83968-801-0",pdfIsbn:"978-1-83968-803-4",isAvailableForWebshopOrdering:!0,editors:[{id:"151680",title:"Associate Prof.",name:"Mohamed",middleName:null,surname:"Zellagui",slug:"mohamed-zellagui",fullName:"Mohamed Zellagui"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"22425",title:"Dr.",name:"Hugues",middleName:null,surname:"Benoit-Cattin",email:"hugues.benoit-cattin@insa-lyon.fr",fullName:"Hugues Benoit-Cattin",slug:"hugues-benoit-cattin",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"14006",title:"Enabling Grids for GATE Monte-Carlo Radiation Therapy Simulations with the GATE-Lab",slug:"enabling-grids-for-gate-monte-carlo-radiation-therapy-simulations-with-the-gate-lab",abstract:null,signatures:"Sorina Camarasu-Pop, Tristan Glatard, Hugues Benoit-Cattin and David Sarrut",authors:[{id:"22422",title:"Dr.",name:"Sorina",surname:"Camarasu-Pop",fullName:"Sorina Camarasu-Pop",slug:"sorina-camarasu-pop",email:"sorina.pop@creatis.insa-lyon.fr"},{id:"22424",title:"Dr.",name:"Tristan",surname:"Glatard",fullName:"Tristan Glatard",slug:"tristan-glatard",email:"glatard@creatis.insa-lyon.fr"},{id:"22425",title:"Dr.",name:"Hugues",surname:"Benoit-Cattin",fullName:"Hugues Benoit-Cattin",slug:"hugues-benoit-cattin",email:"hugues.benoit-cattin@insa-lyon.fr"},{id:"22426",title:"Dr.",name:"David",surname:"Sarrut",fullName:"David Sarrut",slug:"david-sarrut",email:"David.Sarrut@creatis.insa-lyon.fr"}],book:{id:"1485",title:"Applications of Monte Carlo Method in Science and Engineering",slug:"applications-of-monte-carlo-method-in-science-and-engineering",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"18099",title:"Dr.",name:"Kunihiro",surname:"Suzuki",slug:"kunihiro-suzuki",fullName:"Kunihiro Suzuki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"18108",title:"Dr.",name:"Yu-Xuan",surname:"Ren",slug:"yu-xuan-ren",fullName:"Yu-Xuan Ren",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Science and Technology of China",institutionURL:null,country:{name:"China"}}},{id:"18109",title:"Dr.",name:"Jian-Guang",surname:"Wu",slug:"jian-guang-wu",fullName:"Jian-Guang Wu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"18110",title:"Dr.",name:"Yin-Mei",surname:"Li",slug:"yin-mei-li",fullName:"Yin-Mei Li",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Science and Technology of China",institutionURL:null,country:{name:"China"}}},{id:"20154",title:"Prof.",name:"Antonio",surname:"Martinez",slug:"antonio-martinez",fullName:"Antonio Martinez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20239",title:"Dr.",name:"Frank",surname:"Sukowski",slug:"frank-sukowski",fullName:"Frank Sukowski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"21967",title:"Dr.",name:"Norman",surname:"Uhlmann",slug:"norman-uhlmann",fullName:"Norman Uhlmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"22422",title:"Dr.",name:"Sorina",surname:"Camarasu-Pop",slug:"sorina-camarasu-pop",fullName:"Sorina Camarasu-Pop",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"22424",title:"Dr.",name:"Tristan",surname:"Glatard",slug:"tristan-glatard",fullName:"Tristan Glatard",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"22426",title:"Dr.",name:"David",surname:"Sarrut",slug:"david-sarrut",fullName:"David Sarrut",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"WIS-cost",title:"What Does It Cost?",intro:"
Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.
",metaTitle:"What Does It Cost?",metaDescription:"Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\\n\\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\\n\\n
\\n\\t
European Commission
\\n\\t
Bill and Melinda Gates Foundation
\\n\\t
Wellcome Trust
\\n\\t
National Institute of Health (NIH)
\\n\\t
National Science Foundation (NSF)
\\n\\t
National Institute of Standards and Technology (NIST)
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\n\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\n\n
\n\t
European Commission
\n\t
Bill and Melinda Gates Foundation
\n\t
Wellcome Trust
\n\t
National Institute of Health (NIH)
\n\t
National Science Foundation (NSF)
\n\t
National Institute of Standards and Technology (NIST)
\n\t
Research Councils United Kingdom (RCUK)
\n\t
Foundation for Science and Technology (FCT)
\n\t
Chinese Academy of Sciences
\n\t
Natural Science Foundation of China (NSFC)
\n\t
German Research Foundation (DFG)
\n\t
Max Planck Institute
\n\t
Austrian Science Fund (FWF)
\n\t
Australian Research Council (ARC)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:666},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"276",title:"Social Philosophy",slug:"social-philosophy",parent:{id:"23",title:"Social Sciences",slug:"social-sciences"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:70,numberOfWosCitations:61,numberOfCrossrefCitations:23,numberOfDimensionsCitations:73,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"276",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editedByType:"Edited by",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5924",title:"Epistemology and Transformation of Knowledge in Global Age",subtitle:null,isOpenForSubmission:!1,hash:"382d6a083d347e3753d199fa79c15fde",slug:"epistemology-and-transformation-of-knowledge-in-global-age",bookSignature:"Zlatan Delić",coverURL:"https://cdn.intechopen.com/books/images_new/5924.jpg",editedByType:"Edited by",editors:[{id:"31746",title:"Dr.",name:"Zlatan",middleName:null,surname:"Delic",slug:"zlatan-delic",fullName:"Zlatan Delic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3440",title:"Parenting in South American and African Contexts",subtitle:null,isOpenForSubmission:!1,hash:"b5f349487df1a7fb9f6ea4fd0be63d54",slug:"parenting-in-south-american-and-african-contexts",bookSignature:"Maria Lucia Seidl-de-Moura",coverURL:"https://cdn.intechopen.com/books/images_new/3440.jpg",editedByType:"Edited by",editors:[{id:"108479",title:"Dr.",name:"Maria Lucia",middleName:null,surname:"Seidl-De-Moura",slug:"maria-lucia-seidl-de-moura",fullName:"Maria Lucia Seidl-De-Moura"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1017",title:"Metaphysics",subtitle:null,isOpenForSubmission:!1,hash:"b19f3c83b6a16d4f9261c7036172796f",slug:"metaphysics",bookSignature:"Mark Pestana",coverURL:"https://cdn.intechopen.com/books/images_new/1017.jpg",editedByType:"Edited by",editors:[{id:"122472",title:"Dr.",name:"Mark",middleName:null,surname:"Pestana",slug:"mark-pestana",fullName:"Mark Pestana"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"45760",doi:"10.5772/56967",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:9583,totalCrossrefCites:10,totalDimensionsCites:25,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"72249",doi:"10.5772/intechopen.92579",title:"Digital Parenting: Raising and Protecting Children in Media World",slug:"digital-parenting-raising-and-protecting-children-in-media-world",totalDownloads:1577,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"Digital media have quickly changed ways in which parents and children communicate, enjoy themselves, acquire information, and solve problems daily (both in ordinary and exceptional circumstances such as COVID-19 home confinement). Very young children are regular users of smartphones and tablet, so their early digital engagement poses new challenges to parent-child relationships and parental role. First, the chapter introduces the “digital parenting” construct, moving through the literature from “traditional” parenting styles to more recent studies on “parental mediation,” that is, the different behaviors parents adopt to regulate children’s engagement with the Internet and digital media. Second, the chapter reviews empirical researches on different parental mediation practices (active or restrictive behaviors) and how they are adjusted according to the child’s characteristics (age, digital competences, etc.) or parent’s media competence and beliefs. Finally, from a bidirectional perspective of parent-child relationships, the chapter discusses the role of youths’ social involvement, communication, self-disclosure, and digital skills on parent’s beliefs and practices. Implications for parent education and prevention of risks for early and excessive exposure to digital technologies are discussed.",book:{id:"9043",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",title:"Parenting",fullTitle:"Parenting - Studies by an Ecocultural and Transactional Perspective"},signatures:"Loredana Benedetto and Massimo Ingrassia",authors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"},{id:"193901",title:"Prof.",name:"Massimo",middleName:null,surname:"Ingrassia",slug:"massimo-ingrassia",fullName:"Massimo Ingrassia"}]},{id:"45773",doi:"10.5772/57003",title:"Cultural Variations in Parenting Styles in the Majority World Evidences from Nigeria and Cameroon",slug:"cultural-variations-in-parenting-styles-in-the-majority-world-evidences-from-nigeria-and-cameroon",totalDownloads:5078,totalCrossrefCites:0,totalDimensionsCites:9,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Esther F. Akinsola",authors:[{id:"160225",title:"Dr.",name:"Esther",middleName:"Foluke",surname:"Akinsola",slug:"esther-akinsola",fullName:"Esther Akinsola"}]},{id:"45934",doi:"10.5772/57083",title:"Brazilian Mothers’ Cultural Models: Socialization for Autonomy and Relatedness",slug:"brazilian-mothers-cultural-models-socialization-for-autonomy-and-relatedness",totalDownloads:1687,totalCrossrefCites:2,totalDimensionsCites:8,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Maria Lucia Seidl-de-Moura, Rafael Vera Cruz de Carvalho and\nMauro Luís Vieira",authors:[{id:"108479",title:"Dr.",name:"Maria Lucia",middleName:null,surname:"Seidl-De-Moura",slug:"maria-lucia-seidl-de-moura",fullName:"Maria Lucia Seidl-De-Moura"}]},{id:"45939",doi:"10.5772/57242",title:"Child-Rearing Practices of Brazilian Mothers and Fathers: Predictors and Impact on Child Development",slug:"child-rearing-practices-of-brazilian-mothers-and-fathers-predictors-and-impact-on-child-development",totalDownloads:2977,totalCrossrefCites:1,totalDimensionsCites:4,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Cesar Augusto Piccinini, Patricia Alvarenga and Angela Helena\nMarin",authors:[{id:"161058",title:"Dr.",name:"Cesar",middleName:null,surname:"Piccinini",slug:"cesar-piccinini",fullName:"Cesar Piccinini"}]}],mostDownloadedChaptersLast30Days:[{id:"72249",title:"Digital Parenting: Raising and Protecting Children in Media World",slug:"digital-parenting-raising-and-protecting-children-in-media-world",totalDownloads:1577,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"Digital media have quickly changed ways in which parents and children communicate, enjoy themselves, acquire information, and solve problems daily (both in ordinary and exceptional circumstances such as COVID-19 home confinement). Very young children are regular users of smartphones and tablet, so their early digital engagement poses new challenges to parent-child relationships and parental role. First, the chapter introduces the “digital parenting” construct, moving through the literature from “traditional” parenting styles to more recent studies on “parental mediation,” that is, the different behaviors parents adopt to regulate children’s engagement with the Internet and digital media. Second, the chapter reviews empirical researches on different parental mediation practices (active or restrictive behaviors) and how they are adjusted according to the child’s characteristics (age, digital competences, etc.) or parent’s media competence and beliefs. Finally, from a bidirectional perspective of parent-child relationships, the chapter discusses the role of youths’ social involvement, communication, self-disclosure, and digital skills on parent’s beliefs and practices. Implications for parent education and prevention of risks for early and excessive exposure to digital technologies are discussed.",book:{id:"9043",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",title:"Parenting",fullTitle:"Parenting - Studies by an Ecocultural and Transactional Perspective"},signatures:"Loredana Benedetto and Massimo Ingrassia",authors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"},{id:"193901",title:"Prof.",name:"Massimo",middleName:null,surname:"Ingrassia",slug:"massimo-ingrassia",fullName:"Massimo Ingrassia"}]},{id:"72823",title:"Helicopter Parenting and Adolescent Development: From the Perspective of Mental Health",slug:"helicopter-parenting-and-adolescent-development-from-the-perspective-of-mental-health",totalDownloads:951,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Helicopter parenting is a unique form of parenting style that is generally described as highly intensive and highly involved with the children. A particular parenting style influences all phases of development and life style of adolescent. Helicopter parents overly protect their children from the difficulties by setting some set of instructions without consideration of the uniqueness of their children. Recent literature has got huge attention on this parenting style and debating the pros and cons on the development of child. Higher life satisfaction and better psychological wellbeing have been found in the children of highly intrusive parents. When there are positive effects of helicopter parenting, there are negative outcome and impacts that have also been studied. The difficulties in emotional regulation, academic productivity, and social skills among children raised by helicopter parenting have been reported in the literature. Low self-efficacy, lack of trust on peers, and alienation from peers have also been associated with helicopter parenting. The chapter highlights the associated aspects of childhood and adolescence, raised by helicopter parenting. As parents have their own concern about raising their children in certain manner, it is important to understand the underlying mechanism of parenting style. Therefore, this chapter also describes the theoretical framework. The associated mental health issues and supportive psychological intervention to be also discussed.",book:{id:"9043",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",title:"Parenting",fullTitle:"Parenting - Studies by an Ecocultural and Transactional Perspective"},signatures:"Deepika Srivastav and M.N. Lal Mathur",authors:[{id:"320545",title:"Ph.D.",name:"Deepika",middleName:null,surname:"Srivastav",slug:"deepika-srivastav",fullName:"Deepika Srivastav"},{id:"322605",title:"Dr.",name:"M.N.Lal",middleName:null,surname:"Mathur",slug:"m.n.lal-mathur",fullName:"M.N.Lal Mathur"}]},{id:"45760",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:9583,totalCrossrefCites:10,totalDimensionsCites:25,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"72914",title:"Parent-Adolescent Relationship and the Impact of Substance Dependency within the Trajectory of Adolescent Substance Use Disorder",slug:"parent-adolescent-relationship-and-the-impact-of-substance-dependency-within-the-trajectory-of-adole",totalDownloads:645,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Adolescents strive for freedom and autonomy; thus, communication with their parents needs to be enhanced. Building solid healthy relationships at this stage of their lives is of utmost importance to help them cope with the changes and challenges they are experiencing. The purpose of this chapter is to explore the parent-adolescent relationship in the substance dependency field. The focus is on the relationship between parents and their adolescents who have a substance use disorder. Parenting adolescents poses its own set of challenges, making it difficult to build and maintain healthy parent-adolescent relationships. We argue that although adolescent substance use disorder has been extensively researched, the relationship between parents and adolescents with substance use disorder has surprisingly not received the same attention. It is this gap that this chapter seeks to address. With this in mind, the ecological systems theory was employed here to shed light on the importance and significance of developing healthy parent-adolescent relationships. The findings show that the parent-adolescent relationship primarily informs the daily living of both the parents and the adolescents. The parent-adolescent relationship is therefore very important as it represents whole-family functioning.",book:{id:"9043",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",title:"Parenting",fullTitle:"Parenting - Studies by an Ecocultural and Transactional Perspective"},signatures:"Faith Mathibela and Rebecca Mmamoagi Skhosana",authors:[{id:"317920",title:"Mrs.",name:"Faith",middleName:null,surname:"Mathibela",slug:"faith-mathibela",fullName:"Faith Mathibela"}]},{id:"56390",title:"Introductory Chapter: Sociology of Knowledge and Epistemological Paradox of Globalization",slug:"introductory-chapter-sociology-of-knowledge-and-epistemological-paradox-of-globalization",totalDownloads:1823,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"5924",slug:"epistemology-and-transformation-of-knowledge-in-global-age",title:"Epistemology and Transformation of Knowledge in Global Age",fullTitle:"Epistemology and Transformation of Knowledge in Global Age"},signatures:"Zlatan Delić",authors:[{id:"31746",title:"Dr.",name:"Zlatan",middleName:null,surname:"Delic",slug:"zlatan-delic",fullName:"Zlatan Delic"}]}],onlineFirstChaptersFilter:{topicId:"276",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:398,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/67680",hash:"",query:{},params:{id:"67680"},fullPath:"/chapters/67680",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()