\r\n\tThere are a variety of approaches to reversing biodiversity loss, ranging from economic, to ecological and ethical. The utilitarian approach to conservation, bolstered by the concept of ecosystem services, can be utilized to improve the conservation case by supplementing the burgeoning biodiversity rhetoric. To address this issue, a pluralistic approach to biodiversity is required for conservation and sustainability.
",isbn:"978-1-80356-339-8",printIsbn:"978-1-80356-338-1",pdfIsbn:"978-1-80356-340-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"ab014f8ed1669757335225786833e9a9",bookSignature:"Dr. Gopal Shukla, Dr. Jahangeer Bhat and Dr. Sumit Chakravarty",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",keywords:"Ecosystem Services, Intrinsic Value, Global Trends in Biodiversity Loss, Convention on Biological Diversity, Utilitarian Value, Biodiversity Conservation, Perception, In Situ and Ex Situ Conservation, Nature Conservation, Sustainable Development Goals, Drivers of Degradation, Prioritizing Biodiversity",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 17th 2022",dateEndSecondStepPublish:"April 22nd 2022",dateEndThirdStepPublish:"June 21st 2022",dateEndFourthStepPublish:"September 9th 2022",dateEndFifthStepPublish:"November 8th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Gopal Shukla, prior to becoming an assistant professor, has worked under NAIP (National Agricultural Innovation Project), NICRA ( National Innovations on Climate Resilient Agriculture), and SERB (Science and Engineering Research Board) projects. The focus of his research and development work is forest conservation. He has authored 75 research papers, 10 book chapters and has edited 5 books.",coeditorOneBiosketch:"Dr. Jahangeer is a Guest Associate Editor in Frontiers in the Environmental Science journal and is the first researcher to report the first time growing of Acacia dealbata Link. (Silver Wattle), an invasive species in the high altitudes of the Himalayas. He has 11 years of research and 8 years of teaching experience with a publication record of more than 60, including research articles, review papers, conference papers, and books of national and international repute.",coeditorTwoBiosketch:"Dr. Chakravarty, Ph. D., has a wide experience in forestry training, research, and development. He is currently working as a Professor in Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India. He has conducted research on several aspects of forestry, agroforestry, medicinal plants, and climate change. He has trained many students in these fields. The focus of his research and development work is on forest ecology and conservation.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"101105",title:"Dr.",name:"Gopal",middleName:null,surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla",profilePictureURL:"https://mts.intechopen.com/storage/users/101105/images/system/101105.jpg",biography:"Dr. Gopal Shukla, Ph.D., is currently an assistant professor of Forestry in Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India. He holds an MSc and Ph.D. in Forestry from Uttar Banga Krishi Viswavidyalaya. Before joining the university, he worked under NAIP (National Agricultural Innovation Project), NICRA ( National Innovations on Climate Resilient Agriculture), and SERB (Science and Engineering Research Board) projects. The focus of his research and development work is forest ecology and conservation.",institutionString:"North Bengal Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"North Bengal Agricultural University",institutionURL:null,country:{name:"India"}}}],coeditorOne:{id:"329967",title:"Dr.",name:"Jahangeer",middleName:null,surname:"Bhat",slug:"jahangeer-bhat",fullName:"Jahangeer Bhat",profilePictureURL:"https://mts.intechopen.com/storage/users/329967/images/system/329967.png",biography:"Jahangeer A. Bhat, Ph.D., is a former head of the Department of Forestry, College of Agriculture, Fisheries and Forestry, Fiji National University, Republic of Fiji Islands. Dr. Jahangeer has worked as a counsellor, mentor, and coordinator for forestry academic programmes. He has been instrumental in developing HE and TVET streams of forestry and allied programmes and worked closely in accreditation with the Fiji Higher Education Commission and forestry stakeholders. Before joining Fiji National University, he worked for HNB Garhwal University, Srinagar, India, and has 11 years of research and 8 years of teaching experience with a publication record of more than 60, including research articles, review papers, conference papers, and books of national and international repute. Dr. Jahangeer reviews research articles for several scientific journals and has handled research projects in his capacity as Principal Investigator and Co-Principal Investigator. His major interests lie in emerging issues in forestry including conservation of biodiversity, traditional knowledge of plants, and sustainable management of forest resources. His focus of research is vegetation ecology, ethnobotany, and evaluation of ecosystem services, forest plant biodiversity, climate change, and socio-cultural issues in forestry. Dr. Jahangeer is currently working at the College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi, India.",institutionString:"Central Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Central Agricultural University",institutionURL:null,country:{name:"India"}}},coeditorTwo:{id:"94999",title:"Dr.",name:"Sumit",middleName:null,surname:"Chakravarty",slug:"sumit-chakravarty",fullName:"Sumit Chakravarty",profilePictureURL:"https://mts.intechopen.com/storage/users/94999/images/system/94999.jpg",biography:"Dr. Sumit Chakravarty, Ph.D., has wide experience in forestry training, research, and development. He is currently a professor at Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India. He holds an MSc in Forestry and a Ph.D. in Agronomy from Punjab Agricultural University, Ludhiana. He has conducted research on several aspects of forestry, agroforestry, medicinal plants, and climate change. He has trained many students in these fields. The focus of his research and development work is on forest ecology and conservation.",institutionString:"North Bengal Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"North Bengal Agricultural University",institutionURL:null,country:{name:"India"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5539",title:"Forest Ecology and Conservation",subtitle:null,isOpenForSubmission:!1,hash:"6bd160f6d1da73fc253dfe6c4df7c095",slug:"forest-ecology-and-conservation",bookSignature:"Sumit Chakravarty and Gopal Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/5539.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6264",title:"Forest Biomass and Carbon",subtitle:null,isOpenForSubmission:!1,hash:"964f96c9209ff2a3eaf3c5c6a54d81c3",slug:"forest-biomass-and-carbon",bookSignature:"Gopal Shukla and Sumit Chakravarty",coverURL:"https://cdn.intechopen.com/books/images_new/6264.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9841",title:"Agroforestry",subtitle:"Small Landholder’s Tool for Climate Change Resiliency and Mitigation",isOpenForSubmission:!1,hash:"ec5444e2a12dcd63ab9e7246d93a63ab",slug:"agroforestry-small-landholder-s-tool-for-climate-change-resiliency-and-mitigation",bookSignature:"Gopal Shukla, Sumit Chakravarty, Pankaj Panwar and Jahangeer A. Bhat",coverURL:"https://cdn.intechopen.com/books/images_new/9841.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"6753",title:"The Representation of Objects in the Brain, and Its Link with Semantic Memory and Language: a Conceptual Theory with the Support of a Neurocomputational Model",doi:"10.5772/7121",slug:"the-representation-of-objects-in-the-brain-and-its-link-with-semantic-memory-and-language-a-conceptu",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
A fundamental problem in cognitive neuroscience is how the brain realizes semantic memory. It is generally accepted that semantic memory consists of stored information about the main features of an object, some processing mechanisms which allow a person to retrieve these features from partial cues, and to link them with lexical aspects and words. The final result is a kind of knowledge which is context independent, can be shared with other people and can produce language and thought (Tulving 1972).
\n\t\t\t
Many conceptual theories of semantic memory have been proposed in past decades, based on two fundamental pieces of information: the behavior of patients with neurological lesions in specific brain areas, who exhibit deficits in word recognition, and results of more recent neuroimaging studies, putting in evidence which different brain areas participate to semantic tasks. The interested reader can find several excellent review papers on the subject (Martin & Chao 2001, Hart et al. 2007). Just the main fundamental issues, essential for the comprehension of the present chapter, are summarized below.
\n\t\t\t
First, most theories agree in assuming that semantic memory is not a localized process, but one which involves a highly distributed representation of features and which engages several different cortical areas, located in the sensory and motor regions of the cortex. This concept may help explaining the existence of patients with category-specific semantic deficits (for instance, patients with impairment in word recognition for living things but no impairment for recognition of non-living objects, or patients with impairment for nouns vs. verbs (Warrington & Shallice 1984, Caramazza & Shelton 1998)). Damasio (Damasio 1989), suggested that semantic representation is fragmented in many motor and sensory features, which must then be integrated in a “convergence zone”. Accordingly, Warrington et al. (Warrington & McCarthy 1987), assumed the presence of multiple channels which separately process sensory and motor aspects of objects; these two main systems would be especially important to identify living and non-living objects, respectively. Several subsequent extensions, improvements or variations of this theory were formulated by various groups (Caramazza et al. 1990, Lauro-Grotto et al. 1997, Humphreys & Forde 2001, Snowden et al. 2004, Gainotti 2006). Nevertheless, all these theories substantially agree in assuming that the semantic system is realized by means of an integrated multimodal network, in which different areas store different modality-specific features. Some theories can also account for the emergence of categories from features: for instance, Tyler et al. (Tyler et al. 2000), in a conceptual model named “Conceptual Structure Account”, suggested that objects are represented as patterns of activation across features, and that categories emerge from those objects that share common features and are highly correlated. Hart, Kraut et al. (Kraut et al. 2002, Hart et al. 2002) imagined that object representation is encoded not only in sensorimotor but also in higher-order cognitive areas (lexical, emotional, etc…) and all these representations are integrated via synchronized neural firing modulated by the thalamus. Barsalou et al. (Barsalou et al. 2003) assumed that groups of neurons are coactivated to represent collection of features, and that these groups of features encode progressively more generic information from sensory perception to higher cognitive associations. Moreover, they assumed a topography principle, according to which the spatial proximity of neurons reflects the similarity of the encoded features.
\n\t\t\t
The previous conceptual theories, and others not listed here for briefness, although of the greatest value for cognitive neuroscientists, are just qualitative. In particular, the mechanisms responsible for integrating a distributed information into a coherent semantic representation, their physiological reliability in terms of neural structures, the learning rules for synaptic plasticity, are all aspects which deserve a more quantitative analysis. Modern neural network models, and computer simulation techniques now allow conceptual theories to be translated into a quantitative integrated system of neural units, and the consequent emergent behavior to be analyzed in detail, incorporating training aspects which mimic real synaptic plasticity rules.
\n\t\t\t
A few previous models, based on neural networks with “hidden units” have attempted to reproduce how sensory information (for instance the visual one) can recall the linguistic information, and vice versa (Rogers et al. 2004) or to simulate category-specific semantic impairment (Small et al. 1995, McRae et al. 1997; Devlin et al. 1998, Lambon Ralph et al. 2007). All these models exploit a supervised algorithm (such as the back propagation) for training the network to solve the requested task: pathological deficits are then simulated assuming some damage in network synapses. A more sophisticate model, able to simultaneously retrieve multiple objects stored in memory, was presented by Morelli et al. recently (Morelli et al. 2006). In the model, features are coded by neurons which work in chaotic regimen, and the retrieval process is achieved via synchronization of neurons coding for the same object.
\n\t\t\t
In recent years, we developed an original model (Ursino et al. 2006, Ursino et al. 2009, Cuppini et al. 2009) which aspires to explore several important issues of semantic memory, laying emphasis on the possible topological organization of the neural units involved, on their reciprocal connections and on synapse learning mechanisms. Some problems that the model aspires to investigate are: how can a coherent and complete object representation be retrieved starting from partial or corrupted information? How can this representation be linked to lexical aspects (words or lemmas) of language? How can different concepts be simultaneously recalled in memory, together with the corresponding words? How can categories be represented? How can category-specific deficits be at least approximately explained? What are the mechanisms exploited in bilingualism?
\n\t\t\t
The model assumes that objects are represented via different multimodal features, encoded through a distributed representation among different cortical areas: each area is devoted to a specific feature. Features are topologically organized (as in the conceptual model by Barsalou et al. (Barsalou et al. 2003)) and linked together by implementing two high-level Gestalt rules: similarity and previous knowledge. Multiple object retrieval is realized by means of synchronized activity of neural oscillators in the gamma-band (an idea often exploited in models for segmentation of visual or auditory scenes (von der Malsburg & Schneider 1986, Singer & Gray 1995; Wang & Terman 1997), and which reminds the conceptual Semantic Object Model by Kraut et al. (Kraut et al. 2002)). Finally, words are represented in a separate cortical area, and linked with the correct object representation via a Hebbian mechanism (Rolls & Treves 1998).
\n\t\t\t
In the following, the model is first presented in a qualitative way, and some exemplary results, concerning object retrieval, connection between objects and words, and categories, are presented. All equations are reported in the Appendix. It is worth noting that the present model is significantly improved compared with previous versions (Ursino et al. 2009, Cuppini et al. 2009): the new aspects concern the possibility to represent objects with a different number of features (whereas a fixed number of features for all objects was used in previous works) and a more physiological mechanism to recognize words from objects. All new aspects are emphasized in the text.
\n\t\t
\n\t\t
\n\t\t\t
2. Method and results
\n\t\t\t
The model incorporates two networks of neurons, as illustrated in the schematic diagram of Fig. 1. These are briefly described below in a qualitative way, while all equations and parameters can be found in the Appendix.
\n\t\t\t
1) The feature network and its training - The first network, named “feature network”, is devoted to a description of objects represented as a collection of sensory-motor features. These features are assumed to spread along different cortical areas (both in the sensory and motor cortex) and are topologically organized according to a similarity principle. This means that two similar features activate proximal neural groups in the feature network.
\n\t\t\t
The network is composed of N neural oscillators, subdivided into F distinct cortical areas (see Fig.1). Each area in the model is composed of N\n\t\t\t\t1\n\t\t\t\txN\n\t\t\t\t2 oscillators. An oscillator may be silent, if it does not receive enough excitation, or may oscillate in the gamma-frequency band, if excited by a sufficient input. The presence of oscillators in this network is motivated by the necessity to have different objects simultaneously in memory, each represented by its collection of features (that is the classic binding and segmentation problem). As proposed by several authors in recent years, both experimentally (Singer & Gray 1995, Engel & Singer 2001), and theoretically (von der Malsburg & Schneider 1986, Wang & Terman 1997), binding and segmentation of multiple objects can be achieved in the brain via synchronization of neural oscillators in the gamma range.
\n\t\t\t
Previous works demonstrated that, in order to solve the segmentation problem, a network of oscillating units requires the presence of a “global separator” (von der Malsburg & Schneider 1986, Wang & Terman 1997, Ursino et al. 2003). For this reason, the feature network incorporates a inhibitory unit which receives the sum of the whole excitation coming from the feature network, and sends back a strong inhibitory signal if this input exceeds a given threshold. In this way, as soon as a single object representation pops out in the network, all other objects representations are momentarily inhibited, avoiding superimposition of two simultaneous objects.
\n\t\t\t
Figure 1.
Schematic diagram describing the general structure of the network. The model presents 9 distinct Feature Areas (upper shadow squares) of 20x20 elements, which are described by means of Wilson-Cowan oscillators, and a Lexical Area of 40x40 elements (lower shadow square), which are represented by a first order dynamics and a sigmoidal relationship. In the Feature network, each oscillator is connected with other oscillators in the same area via lateral excitatory and inhibitory intra-area synapses, and with other oscillators in different areas via excitatory inter-area synapses. Moreover, elements of the feature and lexical networks are linked via recurrent synapses (WF, WL).
\n\t\t\t
During the simulation, a feature is represented by a single input localized at a specific coordinate of the network, able to trigger the oscillatory activity of the corresponding unit. We assume that these inputs are the result of upstream processing stages, that extracted the main sensory-motor properties of the objects. The way these features are extracted and represented in the sensory and motor areas is well beyond the aim of the present model.
\n\t\t\t
The topological organization of each cortical area is realized assuming that each oscillator is connected with the other oscillators in the same area via lateral excitatory and inhibitory synapses (intra-area synapses). These are arranged according to a mexican hat disposition, i.e., proximal neurons excite reciprocally and inhibit more distal ones. This disposition produces an “activation bubble” in response to a single localized feature input: not only the neural oscillator representing that individual feature is activated, but also the proximal ones linked via sufficient lateral excitation. This has important consequences for object recognition: neural oscillators in proximal positions share a common fate during the learning procedure. In fact, since learning occurs via a Hebbian procedure (see below), neuron oscillators that are simultaneously active are subject to a common synapse reinforcement, hence participate to the representation of the same object. In this way, an object can be recognized even in the presence of a moderate alteration in some of its features.
\n\t\t\t
Throughout the following simulations, we assumed that the lateral intra-area synapses cannot be modified by experience, i.e., the similarity principle they implement is assigned “a priori”. This is probably not true in the reality, since topological maps can be learned via classical Hebbian mechanisms (Rolls & Treves 1998, Haykin 1999). However, this choice is convenient to maintain a clear separation between different processes in our model (i.e. the implementation of the similarity principle on one hand and implementation of a previous knowledge principle on the other).
\n\t\t\t
Besides the intra-area synapses, we also assumed the existence of excitatory long-range synapses between different feature areas (inter-area synapses). These are initially set at zero and are learned by experience during a training phase, in which individual objects (described by all their features) are presented to the network one by one. The learning rule is a time-dependent Hebbian rule, based on the correlation between the activity in the post-synaptic unit, and the activity in the pre-synaptic unit mediated over a previous 10 ms time-window (see (Markram et al. 1997, Abbott & Nelson 2000)).
\n\t\t\t
To simplify the algorithm, in previous works we assumed that each object is described by a fixed number of features (four features in (Ursino et al. 2009, Cuppini et al. 2009)). Conversely, in the present version this constraint is removed, and we assume that the number of features describing a single object can vary from one object to the next. In the following exempla, the feature network will be subdivided into nine different cortical areas. Hence, an object can have up to nine different features. This limit has been introduced just to reduce the computational weight.
\n\t\t\t
An example of the synaptic changes obtained from the learning procedure is shown in Fig. 2, which depicts the synapses targeting onto a neuron. Here an object is described by means of five different features, located in five different cortical areas. After training, neurons belonging to the five activation bubbles are linked by means of excitatory connections, and synchronize their oscillatory activity. In particular, a neuron coding for a single feature of the object after training receives excitatory synapses from four different bubbles of neurons, representing the other four features of the same object and their minimal variations.
\n\t\t\t
In summary, intra-area lateral connections implement a similarity principle, while inter-area trained connections implement a “previous knowledge” principle.
\n\t\t\t
An important aspect of our model is that, after training, multiple objects can be simultaneously recovered in memory and oscillate in time division with their frequency in the gamma-band. Moreover, an object can be recovered even if some features are lacking, or even if some features are reasonably altered compared with those of the prototypical object used during the learning phase. Fig. 3 shows an example in which three previously trained objects, characterized by three, five and seven features respectively, are simultaneously
\n\t\t\t
Figure 2.
An example of the inter-area synapses linking neurons in the feature areas, obtained after training a single object with five features, located at positions [50 15], [50 30], [30 30], [50 45], and [30 45]. The figure represents the synapses entering the neuron at position [30,30]. It is worth noting that this neuron, representing an individual feature of the object, receives synapses from four different bubbles, each centered at the remaining features of the object.
\n\t\t\t
presented to the network. Moreover, as described in the figure legend, the objects are recovered despite the presence of incomplete information (some features are lacking) and corrupted data (some features are slightly changed).
\n\t\t\t
2) The lexical network and its training – In order to associate objects with words, the model includes a second layer of neurons, denoted “lexical network”. Each computational unit in this network codes for a word (or a lemma) and is associated with an individual object representation. Even for what concerns this network (as the previous one), the input must be considered as the result of an upstream processing stream, which recognizes the individual words from phonemes or from written texts. Description of this processing stream is well beyond the aim of this model: some exempla can be found in recent works by others (Hopfield & Brody 2001). Moreover, units in this network can also be stimulated through long-range synapses coming from the feature network; hence the network represents an amodal convergence zone, as often hypothesized in the anterior temporal lobe (Damasio 1989, Snowden et al. 2004, Ward 2006).
\n\t\t\t
Figure 3.
Snapshots showing the activities in the feature areas at some instants of the simulation, after the presentation of three different objects: object1, three features at positions [6 17], [6 26], [37 16]; object2, five features at positions [50 15], [50 30], [30 30], [50 45], [30 45]; object 3, seven features at positions [15 5], [15 35], [55 5], [25 5], [45 55], [5 55] [25 55]. The objects were learned during a previous training phase. During the simulation, one property of the object1 was shifted compared with the normal one, while one property of both object2 and object3 was lacking. Despite this corrupted/lacking information, the network can reconstruct and segment the three objects.
\n\t\t\t
For the sake of simplicity, computational units in this network are described via a simple first-order dynamics and a non-linear sigmoid relationship. Hence, if stimulated with a constant input, these units do not oscillate but, after a transient response, reach a given steady-state activation value (but, of course, they oscillate if stimulated with an oscillating input coming from the feature network).
\n\t\t\t
In order to associate words with their object representation, we performed a second training phase, in which the model receives a single input to the lexical network (i.e., a single word is detected) together with the features of a previously learned object. Synapses linking the objects with words, in both directions (i.e., from the lexical network to the feature network and viceversa) are learned with Hebbian mechanisms.
\n\t\t\t
While synapses from words to features (\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\tin Fig. 1) are simply excitatory and are trained on the basis of the pre and post synaptic correlation, when computing the synapses from features to words (\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\tin Fig. 1) we tried to address two major requirements, that are essential for correct object recognition. First, a word must be evoked from the corresponding object representation only if all its features are simultaneously on. This corresponds to a correct solution of the binding problem. Second, the word must not be evoked if spurious features (not originally belonging to the prototypical object) are active. This second situation may occur when two or more objects, simultaneously present, are not correctly segmented, and some of their features pop up together. Hence, the second requirement corresponds to a correct solution of the segmentation problem.
\n\t\t\t
In order to address these two requirements, in previous works we implemented a complex “decision network” (see (Ursino et al. 2009)). Conversely, in the present model we adopted a more straightforward and physiologically realistic solution. First, we assumed that, before training, all units in the feature network send strong inhibitory synapses to all units in the lexical network. Hence, activation of any feature potentially inhibits all lexical units. These synapses are then progressively withdrawn during the training phase, on the basis of the correlation between activity in the feature unit and in the lexical unit. The consequence of this choice is that, after training, a word receives inhibition from all features that do not belong to its object representation, but no longer receives inhibition from its own feature units.
\n\t\t\t
Moreover, we assume that all feature units can send excitatory synapses to lexical units: these are initially set at zero and are reinforced via a Hebbian mechanism. Moreover, we assumed that excitatory synapses from features to words are subject to an upper saturation level, i.e., the sum of all excitatory synapses reaching a lexical unit must not overcome a maximum level. This is a physiological rule, since the amount of neurotransmitter available at a neuron is limited. This rule warrants that, after prolonged training, the sum of synapses entering a lexical unit is constant, independently of the number of its associated features.
\n\t\t\t
Using quite a sharp sigmoidal characteristic for lexical units, the previous two rules ensure that a word in the lexical network is excited if and only if all its features are simultaneously active: if even a single feature is not evoked, the word does not receive enough excitation (failure of the binding problem); if even a spurious feature pops up, the lexical unit receives excessive inhibition (failure of the segmentation problem): in both conditions it does not jump from the silent to the excited state.
\n\t\t\t
Two exempla of model behavior are shown in Figs. 4 and 5. In the first figure, one word and two objects are simultaneously given to the network. The word evokes the corresponding object representation in the feature network, while the objects evoke the corresponding words in the lexical network. It is worth noting that all objects in the feature network oscillate in time division, and thus are all individually recognized. In the second figure, two incomplete objects are given to the feature network. The first is characterized by five features, but only four of them are given as input. However, these four features are sufficient to recover the whole object representation and the corresponding word is activated in the lexical area. Conversely, the second object is characterized by seven features, while only three features are given as input. These are insufficient to recover the overall object representation, and the corresponding word is not activated (i.e., the subject did not recognize the object starting from such an incomplete information). It is worth noting that the number of incomplete information necessary to recover the whole object depends on the strength of inter-area synapses in the feature network, hence on the duration of the previous training period. In our simulations, we always assumed that, after training, at least 50% or more of the object features are required to attain the overall object reconstruction.
\n\t\t\t
Figure 4.
Snapshots showing the activities in the feature areas (left panels) and in the lexical area (right panels) at some instants of the simulation, after the presentation of two different objects and of one word. Objects and words were previously learned during the training phases. Objects are the same as in Fig. 3. The associated words were located at position [5,5] (object1), [15,15] (object2) and [15,35] (object3). During the simulation, object1 and object3 were given as input to the feature areas, while the word2 was given as input to the lexical area. It is worth noting that the three object representations oscillate in time division in the feature areas, while the three words are evoked in the lexical area. Word2 (constantly given as input) is partially inhibited during the appearance of the other two words.
\n\t\t\t
Figure 5.
Snapshots showing the activities in the feature areas (left panels) and in the lexical area (right panels) at some instants of the simulation, after the presentation of four features of object2, and just of three features of object3. As a consequence, object2 is correctly reconstructed in the feature areas, and the corresponding word is evoked in the lexical area. Conversely, object3 is not reconstructed (its three features given as input do not synchronize nor evoke the remaining four features), and the corresponding word fails to appear in the lexical area.
\n\t\t\t
The structure of the model can also be used to study the formation of categories starting from a distributed representation of features. A widely shared idea, in fact, is that a category can be realized by objects which share some common features (for instance, “dog” and “cat” belong to the category “pet” and have many common characteristics). This idea is supported by experiments on the so-called “semantic priming”, i.e., object recognition can be modulated by the previous recognition of another object which is “semantic congruent” (Rossell et al. 2003, Matsumoto et al. 2005). The explanation may be that the two objects activate some common neural structures, resulting in a classic priming phenomenon.
\n\t\t\t
Category formation can be reproduced in our model by simply assuming objects that have some common features, and assuming that these common features are associated with a specific word, having a more general meaning (i.e., denoting a category).
\n\t\t\t
Let us consider an example in which two objects (for convenience, “cat” and “dog”), with seven features each, are trained and associated with two different words. Moreover, we assumed that these two objects have four common features (representing the common characteristics of “pets”). It is worth noticing that, after the training phase 1, the inter-area synapses in the feature network are the sum of synapses learned during each object presentation. As a consequence, the four common features are linked together by means of stronger synapses compared with the remaining specific features distinguishing cats from dogs, which are more weakly linked together and to the other four features. Hence, we have an irregular pattern of synapses (Fig. 6).
\n\t\t\t
Figure 6.
An example of the inter-area synapses linking neurons in the feature areas, obtained after training two objects with a significant number of common features. In particular, the first object (“cat”) has seven features located at positions [15 5], [15 35], [55 5], [25 5], [45 55], [5 55], [25 55]; the second object (“dog”) has seven features at positions [15 5], [30 30], [55 5], [25 5], [45 55], [50 30], [35 55] (the first, third, fourth and fifth features are in common and may represent “pets”). The figure shows the synapses entering the neuron at position [15,5]. It is worth noting that this neuron, representing a common feature, receives synapses from nine different bubbles, each centered at the remaining features of the two objects. Three synaptic bubbles (coming from the other three common features [55 5], [25 5], [45 55]) are much stronger; other six synaptic bubbles (coming from the remaining six specific features) are weaker. The stronger synapses contribute to the category representation.
\n\t\t\t
We assumed that, after the first training phase, the four common features alone are unable to recover the three remaining features (otherwise, any pet would retrieve the words “dog” and “cat”). During the second training phase, the features representing objects “dog”(7 features), “cat” (7 features) and “pet” (4 common features) were separately given to the network together with the corresponding words, to generate three distinct lexical links.
\n\t\t\t
Simulation results are presented in Fig. 7. In this figure, all seven features describing a cat were initially given to the network (during the first half of the simulation). In this condition, the corresponding word is activated in the lexical area (a similar result, of course, would be obtained giving seven features of “dog” to the network). It is worth noticing that the word “pet” is not active in the lexical area, due to inhibition coming from an excessive number of features. Conversely, when the number of features given to the network is reduced to four (second part of the simulation), all belonging to the category “pet”, the network does not recall the features specific of cats and dogs, and the word “pet” is now emerging in the lexical area, without the emerging of the words “dog” and “cat”.
\n\t\t
\n\t\t
Figure 7.
Time pattern of neuron activities in the feature areas (upper panels) and in the lexical area (bottom panels) during a simulation, in which the seven features of the object “cat” (see legend of fig. 6) were given as input to the feature areas during the first 100 ms; at 100 ms, the three specific features were set at zero, and only the four common features remained as input. The upper panel shows the oscillatory activity of the four neurons in the feature areas representing the common attributes of “pets”. They oscillate in synchronism throughout the simulation. The second panel represents the synchronized activities of the three neurons representing the specific attributes of cats. The third panel represents the neuron in the lexical areas coding for “pet”. The fourth panel represents the activity in the lexical area of the neuron coding for “cat”. It is worth noting that the word “cat” is inhibited, and the word “pet” excited, as soon as the specific features are withdrawn.
\n\t\t
\n\t\t\t
3. Discussion
\n\t\t\t
The present work intends to summarize several different ideas on semantic memory, appeared in the neurocognitive and psycholinguistic literature over past years, into a coherent and comprehensive neural network model. The main points that characterize model functioning are briefly discussed below, together with their neurophysiological support:
\n\t\t\t
i) The model assumes that binding and segmentation of multiple objects occur via synchronization of neural activity in the gamma-band. This idea, originally proposed with reference to vision problems (Singer & Gray 1995, Engel & Singer 2001), is now widely supported also for what concerns high-level cognitive problems. For instance, a role of gamma-activity has been demonstrated in recognition of music (Bhattacharya et al. 2001), faces (Rodriguez et al. 1999), as well as during visual search tasks (Tallon-Baudry et al. 1997) and delayed-matching-to-sample-tasks (Tallon-Baudry et al. 1998). ii) Each object is described by means of a different number of features, which spread over different cortical areas. This is quite a common idea in conceptual models of semantic memory (Caramazza et al. 1990, Gainotti 2006, Hart et al. 2007). iii) Features are topographically organized. Results supporting this idea can be found in recent works by Barsalou et al. (Simmons & Barsalou 2003, Barsalou et al. 2003). iv) Knowledge of previous objects is stored in the model by means of inter-area synapses, which realize excitatory links learned via a Hebbian mechanism. Hence, it is sufficient that several features of an object occurred together for a sufficient long period in the past, for the creation of a permanent link. v) Words are represented in a different cortical area, separate from features. Although it is difficult to find a specific cortical location for this area, the existence of cortical regions especially devoted to lexical aspects of language has been hypothesized in cognitive neuroscience for decades (Ward 2006). vi) Links between lexical aspects (words) and semantic aspects (i.e., object representation) are learned via Hebbian mechanisms too. This requires the simultaneous presentation of an object with its representative word. vii) Objects can evoke words only if all their features have been correctly restored in memory and segmented from features of other objects. In other terms, the present model implies that a complete semantic recognition is a prerequisite for evocation of words. viii) The presentation of a word (from phonemes or from written texts) is able to evoke the representation of the object. Some recent data in the neurophysiologic literature support this idea: presentation of an action word can evoke activity in the motor and premotor cortex (Pulvermller et al. 2005a, Pulvermller et al. 2005b) and presentation of a smell can activate olfactory areas (González et al. 2006). ix) Categories can be represented by features which belong to different objects simultaneously, assuming that these shared features can be associated with a new word, and that activities of these features, when presented alone, remain bounded without spreading to reconstruct the original individual objects. x) The relationships from objects to words require the presence of both excitatory and inhibitory mechanisms, to evoke objects separately from their category, or to avoid that the presence of an excessive number of features (as in the failure of the segmentation task) evokes erroneous words.
\n\t\t\t
Using the previous basic ideas, the model is able to simulate semantic memory and its link with lexical aspects in a variety of conditions which, although drastically simplified compared with the reality, can provide some cues to drive future ideas and to test the reliability of existing theories.
\n\t\t\t
The present simulations (recognition of different simultaneous words and objects, even in the case of absent or corrupted features) represent just a few aspects of the potential model applications. Future challenges may be concerned with the following major issues, which have not been explicitly treated here due to space limitations:
\n\t\t\t
\n\t\t\t\tSemantic relationships among words - An important problem that can be simulated with the model consists in the semantic priming, i.e., the possibility that a previous word or a previous object (a cue) may affect (facilitate or depress) recognition of a subsequent word or subsequent object (a target) which is “semantically congruent” (Rossell et al. 2003, Matsumoto et al. 2005). This sort of priming mechanism, which may have important implication in language, may be simulated assuming that the two semantically congruent objects share some of their activated features, and that the representation of the first object is still partly active when the second object is presented to the network.
\n\t\t\t
\n\t\t\t\tBilingualism - A further aspect which may be simulated with the model is the lexical organization in bilingualism. This may be simulated assuming that two words in the lexical area (i.e., a first word already learned in a native language, say L1, and a second word in a new language, say L2) are associated with the same object representation in the feature area. During the learning procedure of the second language, the L2 word may exploit the already existing links between the L1 word and the object representation, to create its own excitatory synapses. As commonly suggested in the psycholinguistic literature (Abutalebi 2008), the new language may depend on L1 to mediate access to its object representation, i.e., L2 words are generally acquired with reference to existing L1 concepts. In the final bilingual subject, however, who exhibits high proficiency for L2, managing bilingualism requires the addition of further competitive mechanisms, and sophisticate control strategies (Green 1998), which allow the selection of the chosen word (or language) by inhibiting the other one. The interested reader can consult (Green 1998, Abutalebi 2008) for conceptual theories on the subject.
\n\t\t\t
\n\t\t\t\tLexical deficits – The model can be used to simulate patients with category-specific lexical deficits, i.e., patients unable to recognize certain categories of objects (Warrington & McCarthy 1983, Warrington & Shallice 1984, Warrington & McCarthy 1987, Humphreys & Forde 2001). To this end, one may suppose that only synapses in certain feature areas are weakened (for instance, as a consequence of a local lesion) thus resulting in a deficit for those words and those objects only, which make an intensive use of these areas.
\n\t\t\t
These last aspects are just exempla of how the model may have a large applicative domain in future research. Its validation, amelioration and extension, however, and its use for the analysis and the theoretical formalization of different semantic/lexical problems, will necessarily require a strong multidisciplinary approach. This should entrain researchers in different domains: such as neurophysiologists, cognitive neuroscientists, experts of psycholinguistics, mathematicians and neuro-engineers.
\n\t\t
\n\t
\n\t\t\t\n\t\t\t\t
\n\t\t\t\t\t
4. Appendix
\n\t\t\t\t\t
\n\t\t\t\t\t\t
4.1. The bidimensional network of features
\n\t\t\t\t\t\t
In the following, each oscillator will be denoted with the subscripts ij or hk. In the present study we adopted an exemplary network with 9 areas (F = 9) and 400 neural groups per area (N\n\t\t\t\t\t\t\t1 = N\n\t\t\t\t\t\t\t2 = 20).
\n\t\t\t\t\t\t
Each single oscillator consists of a feedback connection between an excitatory unit, x\n\t\t\t\t\t\t\tij, and an inhibitory unit, y\n\t\t\t\t\t\t\tij while the output of the network is the activity of all excitatory units. This is described with the following system of differential equations
The other parameters in Eqs. (1) and (2) have the following meaning: α and β are positive parameters, defining the coupling from the excitatory to the inhibitory unit, and from the inhibitory to the excitatory unit of the same neural group, respectively. In particular, α significantly influences the amplitude of oscillations. Parameter γ is the reciprocal of a time constant and affects the oscillation frequency. The self-excitation of x\n\t\t\t\t\t\t\tij is set to 1, to establish a scale for the synaptic weights. Similarly, the time constant of x\n\t\t\t\t\t\t\tij is set to 1, and represents a scale for time t. x and y are offset terms for the sigmoidal functions in the excitatory and inhibitory units. Iij represents the external stimulus for the oscillator in position ij, coming from the sensory-motor processing chain which extracts features. Eij and Jij represent coupling terms (respectively excitatory and inhibitory) from all other oscillators in the features network (see Eqs. 5-8), while \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t is the stimulus (excitatory) coming from the lexical area (Eq. 9). z(t) represents the activity of a global inhibitor whose role is to ensure separation among the objects simultaneously present. This is described with the following algebraic equation:
According to Eq. 4, the global inhibitor computes the overall excitatory activity in the network, and sends back an inhibitory signal (z = 1) when this activity overcomes a given threshold (say θz). This inhibitory signal prevents other objects from popping out as long as a previous object is still active.
\n\t\t\t\t\t\t
The coupling terms between elements in cortical areas, Eij and Jij in Eqs. (1) and (2), are computed as follows
where ij denotes the position of the postsynaptic (target) neuron, and hk the position of the presynaptic neuron, and the sums extend to all presynaptic neurons in the feature area. The symbols \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t represent inter-area synapses, subjects to Hebbian learning (see next paragraph), which favour synchronization. The symbols \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tE\n\t\t\t\t\t\t\t\t\t\t\t\t\tX\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tI\n\t\t\t\t\t\t\t\t\t\t\t\t\tN\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t represent lateral excitatory and inhibitory synapses among neurons in the same area. It is worth noting that all terms \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tE\n\t\t\t\t\t\t\t\t\t\t\t\t\tX\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tI\n\t\t\t\t\t\t\t\t\t\t\t\t\tN\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t with neurons ij and hk belonging to different areas are set to zero. Conversely, all terms\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t, linking neurons ij and hk in the same area, are set to zero.
\n\t\t\t\t\t\t
The Mexican hat disposition for the intra-area connections has been realized by means of two Gaussian functions, with excitation stronger but narrower than inhibition. Hence,
\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tE\n\t\t\t\t\t\t\t\t\t\t\t\tX\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t{\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tE\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tX\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t+\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tσ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t if \n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t and \n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t are in the same area\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t otherwise\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tE7
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tI\n\t\t\t\t\t\t\t\t\t\t\t\tN\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t{\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tI\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tN\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t+\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tσ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t if \n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t and \n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t are in the same area\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t otherwise\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tE8
\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t
where \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tE\n\t\t\t\t\t\t\t\t\t\t\t\t\tX\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tI\n\t\t\t\t\t\t\t\t\t\t\t\t\tN\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tare constant parameters, which establish the strength of lateral (excitatory and inhibitory) synapses, and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tσ\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tand \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tσ\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tdetermine the extension of these synapses.
\n\t\t\t\t\t\t
Finally, the term \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t coming from the lexical area is calculated as follows
where \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t represents the activity of the neuron hk in the lexical area and the symbols \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t are the synapses from the lexical to the feature network (which are subject to Hebbian learning, see below).
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
4.2. The bidimensional lexical area
\n\t\t\t\t\t\t
In the following each element of the lexical area will be denoted with the subscripts ij or hk (i, h = 1, 2, …, M1; j, k = 1,2,…, M2) and with the superscript L. In the present study we adopted M1 = M2 = 40. Each single element exhibits a sigmoidal relationship (with lower threshold and upper saturation) and a first order dynamics (with a given time constant). This is described via the following differential equation:
\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tτ\n\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\tis the time constant, which determines the speed of the answer to the stimulus, and \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tH\n\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tu\n\t\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t is a sigmoidal function. The latter is described by the following equation:\n\t\t\t\t\t\t\t
where \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tϑ\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t defines the input value at which neuron activity is half the maximum (central point) and pL sets the slope at the central point. Eq. 11 conventionally sets the maximal neuron activity at 1 (i.e., all neuron activities are normalized to the maximum).
\n\t\t\t\t\t\t
According to the previous description, the overall input, \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tu\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t, to a lexical neuron in the ij-position can be computed as follows
\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tI\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\tis the input produced by an external linguistic stimulation. \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\trepresents the intensity of the input due to synaptic connections from the feature network; this synaptic input is computed as follows:\n\t\t\t\t\t\t\t
where \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t represents the activity of the neuron hk in the Feature Areas (see Eq. 1) and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t the strength of synapses. These synapses may have both an excitatory and an inhibitory component (say \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tand\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t, respectively) which are trained in different ways (see session, “synapse training: phase 2”, below). Hence, we can write
Phase 1: Training of inter-area synapses within the feature network
\n\t\t\t\t\t\t
In a first phase, the network is trained to recognize objects without the presence of words.
\n\t\t\t\t\t\t
Recent experimental data suggest that synaptic potentiation occurs if the pre-synaptic inputs precede post-synaptic activity by 10 ms or less (Markram et al. 1997, Abbott & Nelson 2000). Hence, in our learning phase we assumed that the Hebbian rule depends on the present value of post-synaptic activity, xij(t), and on the moving average of the pre-synaptic activity (say mhk(t)) computed during the previous 10 ms. We define a moving average signal, reflecting the average activity during the previous 10 ms, as follows
where TS is the sampling time (in milliseconds), and NS is the number of samples contained within 10 ms (i.e., Ns = 10/TS). The synapses linking two neurons (say ij and hk) are then modified as follows during the learning phase
In order to assign a value for the learning factor, βij,hk, in our model we assumed that inter-area synapses cannot overcome a maximum saturation value. This is realized assuming that the learning factor is progressively reduced to zero when the synapse approaches its maximum saturation. Furthermore, neurons belonging to the same area cannot be linked by a long-range synapse. We have
\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tβ\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t{\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tβ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tmax\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t if \n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t and \n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t belong to different areas \n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t0 otherwise \n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tE17
\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t
where Wmax is the maximum value allowed for any synapse, and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tβ\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tmax\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t is the maximum learning factor (i.e., the learning factor when the synapse is zero).
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\tPhase 2: Training of long-range synapses among the Lexical and the Feature Networks\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
These synapses are trained during a second phase, in which an object is presented to the network together with its corresponding word.
\n\t\t\t\t\t\t
Synapses from the lexical network to the feature network (i.e., parameters \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tin Eq. 9) are learned using an Hebbian rule similar to that used in Eqs. 16 and 17. We can write
where \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tβ\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t represents the learning factor and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tis the averaged signal:
Conversely, synapses from the feature network to the lexical network (i.e., parameters \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tj\n\t\t\t\t\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tin Eq. 13) include both excitatory and inhibitory contributions:
The excitatory portion is trained (starting from initially null values) using equations similar to 16 and 17, but assuming that the sum of synapses entering a word must not overcome a saturation value (say\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ts\n\t\t\t\t\t\t\t\t\t\t\t\t\tu\n\t\t\t\t\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t\t\t\t\tM\n\t\t\t\t\t\t\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t). Hence
where the average activity mhk\n\t\t\t\t\t\t\t(t) is defined as in Eq. 15, and the sum in the right-hand member of Eq. 23 is extended to all synapses from the feature network entering the neuron ij in the lexical network.
\n\t\t\t\t\t\t
The inhibitory synapses start from a high value (say\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tW\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tM\n\t\t\t\t\t\t\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t) and are progressively withdrawn using an Hebbian mechanism:
where the function “positive part” ([]+) is used in the right hand member of Eq. 24 to avoid that these synapses become negative (i.e., that inhibition is converted to excitation).
\n\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t\n\t\t
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/6753.pdf",chapterXML:"https://mts.intechopen.com/source/xml/6753.xml",downloadPdfUrl:"/chapter/pdf-download/6753",previewPdfUrl:"/chapter/pdf-preview/6753",totalDownloads:2301,totalViews:154,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:17,impactScoreQuartile:1,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"January 1st 2010",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/6753",risUrl:"/chapter/ris/6753",book:{id:"5329",slug:"cognitive-maps"},signatures:"Cristiano Cuppini, Elisa Magosso and Mauro Ursino",authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Method and results",level:"1"},{id:"sec_3",title:"3. Discussion",level:"1"},{id:"sec_5",title:"4.1. The bidimensional network of features",level:"1"},{id:"sec_4",title:"4. Appendix",level:"1"},{id:"sec_4_2",title:"4.1. The bidimensional network of features",level:"2"},{id:"sec_5_2",title:"4.2. The bidimensional lexical area",level:"2"},{id:"sec_6_2",title:"4.3. Synapses training",level:"2"}],chapterReferences:[{id:"B1",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAbbott\n\t\t\t\t\t\t\tL. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNelson\n\t\t\t\t\t\t\tS. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000\n\t\t\t\t\tSynaptic plasticity: taming the beast.\n\t\t\t\t\tNat. Neurosci., 3\n\t\t\t\t\t1178\n\t\t\t\t\t1183 .\n\t\t\t'},{id:"B2",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAbutalebi\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tNeural aspects of second language representation and language control. Acta Psychologica, 128(3), 466 \n\t\t\t\t\t478 .\n\t\t\t'},{id:"B3",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarsalou\n\t\t\t\t\t\t\tL. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSimmons\n\t\t\t\t\t\t\tW. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarbey\n\t\t\t\t\t\t\tA. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWilson\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003\n\t\t\t\t\tGrounding conceptual knowledge in modality-specific systems. Trends Cogn Sci, 7(2), 84 \n\t\t\t\t\t91 .\n\t\t\t'},{id:"B4",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBhattacharya\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPetsche\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPereda\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tLong-range synchrony in the gamma band: role in music perception.\n\t\t\t\t\tJ. Neurosci., 21\n\t\t\t\t\t6329\n\t\t\t\t\t6337 .\n\t\t\t'},{id:"B5",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCaramazza\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHillis\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRapp\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1990 The multiple semantics hypothesis: Multiple confusions? Cognitive Neuropsychology, 7\n\t\t\t\t\t161\n\t\t\t\t\t189 .\n\t\t\t'},{id:"B6",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCaramazza\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShelton\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tDomain-specific knowledge systems in the brain the animate-inanimate distinction.\n\t\t\t\t\tJ. Cogn. Neurosci., 10\n\t\t\t\t\t1\n\t\t\t\t\t34 .\n\t\t\t'},{id:"B7",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCuppini\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMagosso\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUrsino\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tA neural network model of semantic memory linking feature-based object representation and words. BioSystems, 96(3), 195 \n\t\t\t\t\t205 .\n\t\t\t'},{id:"B8",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDamasio\n\t\t\t\t\t\t\tA. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1989\n\t\t\t\t\tTime-locked multiregional retroactivation: a systems level proposal for the neural substrates of recall and recognition.\n\t\t\t\t\t Cognition,, 33\n\t\t\t\t\t25\n\t\t\t\t\t62 .\n\t\t\t'},{id:"B9",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDevlin\n\t\t\t\t\t\t\tJ. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGonnerman\n\t\t\t\t\t\t\tL. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAndersen\n\t\t\t\t\t\t\tE. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSeidenberg\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tCategory-specific semantic deficits in focal and widespread brain damage: a computational account.\n\t\t\t\t\tJ Cogn Neurosci, 10(1), 77 \n\t\t\t\t\t94 .\n\t\t\t'},{id:"B10",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEngel\n\t\t\t\t\t\t\tA. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSinger\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tTemporal binding and the neural correlates of sensory awareness. Trends Cogn Sci, 5(1), 16 \n\t\t\t\t\t25 .\n\t\t\t'},{id:"B11",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGainotti\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tAnatomical functional and cognitive determinants of semantic memory disorders. Neuroscience and Behavioral Reviews, 30\n\t\t\t\t\t577\n\t\t\t\t\t594 .\n\t\t\t'},{id:"B12",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGonzález\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarros-Loscertales\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPulvermller\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMeseguer\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSanjun\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBelloch\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAvila\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tReading cinnamon activates olfactory brain regions. Neuroimage, 32(2), 906 \n\t\t\t\t\t912 .\n\t\t\t'},{id:"B13",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGreen\n\t\t\t\t\t\t\tD. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tMental control of the bilingual lexico-semantic system. Bilingualism: language and cognition, 1(2), 67 -81.\n\t\t\t'},{id:"B14",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHart\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAnand\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZoccoli\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMaguire\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGamino\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTillman\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKing\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKraut\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tNeural substrates of semantic memory. J Int Neuropsychol Soc, 13(5), 865 \n\t\t\t\t\t880 .\n\t\t\t'},{id:"B15",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHart\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoo\n\t\t\t\t\t\t\tL. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSegal\n\t\t\t\t\t\t\tJ. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAdkins\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKraut\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 "Neural substrates of semantics." Handbook of language disorders, Psychology Press, Philadelphia.\n\t\t\t'},{id:"B16",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHaykin\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 "Neural Neworks: a comprehensive foundation." Prentice Hall.\n\t\t\t'},{id:"B17",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHopfield\n\t\t\t\t\t\t\tJ. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBrody\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tWhat is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc Natl Acad Sci U S A, 98(3), 1282-1287.\n\t\t\t'},{id:"B18",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHumphreys\n\t\t\t\t\t\t\tG. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tForde\n\t\t\t\t\t\t\tE. M. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Hierarchies, similarity, and interactivity in object recognition: "Category-specific" neurophysiological deficits. Behavioral and Brain Sciences, 24\n\t\t\t\t\t453\n\t\t\t\t\t509 .\n\t\t\t'},{id:"B19",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKraut\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKremen\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSegal\n\t\t\t\t\t\t\tJ. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCalhoun\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoo\n\t\t\t\t\t\t\tL. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArt\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002\n\t\t\t\t\tObject activation from features in the semantic system. J Cogn Neurosci, 14(1), 24 \n\t\t\t\t\t36 .\n\t\t\t'},{id:"B20",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLambon\n\t\t\t\t\t\t\tRalph. M. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLowe\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRogers\n\t\t\t\t\t\t\tT. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Neural basis of category-specific demantic deficits for living things: evidence from semantic dementia, HSVE and a neural network model. Brain, 130\n\t\t\t\t\t1127\n\t\t\t\t\t1137 .\n\t\t\t'},{id:"B21",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLauro-Grotto\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReich\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVisadoro\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997 "The computational role of conscious processing in a model of semantic memory." Cognition, Computation and Consciousness, M. Ito, S. Miyashita, and E. Rolls, eds., Oxford University Press, Oxford, 249\n\t\t\t\t\t263 .\n\t\t\t'},{id:"B22",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMarkram\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLübke\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFrotscher\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSakmann\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997 Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSSs. Science, 275\n\t\t\t\t\t213\n\t\t\t\t\t215 .\n\t\t\t'},{id:"B23",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMartin\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChao\n\t\t\t\t\t\t\tL. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tSemantic memory and the brain: structure and processes.\n\t\t\t\t\tCurr. Opin. Neurobiol., 11(2), 194 \n\t\t\t\t\t201 .\n\t\t\t'},{id:"B24",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMatsumoto\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tIidaka\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHaneda\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkada\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSadato\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tLinking semantic priming effect in functional MRI and event-related potentials.\n\t\t\t\t\tNeuroimage, 24(3), 624 \n\t\t\t\t\t34 .\n\t\t\t'},{id:"B25",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMc Rae\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tde Sa\n\t\t\t\t\t\t\tV. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSeidenberg\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\tOn the nature and scope of featural representations of word meaning.J Exp Psychol Gen99 \n\t\t\t\t\t130 .\n\t\t\t'},{id:"B26",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMorelli\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLauro\n\t\t\t\t\t\t\tG. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArecchi\n\t\t\t\t\t\t\tF. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tNeural coding for the retrieval of multiple memory patterns. BioSystems, 86(1-3), 100 \n\t\t\t\t\t109 .\n\t\t\t'},{id:"B27",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPulvermller\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHauk\n\t\t\t\t\t\t\tO.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNikulin\n\t\t\t\t\t\t\tV. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tIlmoniemi\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005a\n\t\t\t\t\tFunctional links between motor and language systems. Eur J Neurosci, 21(3), 793 \n\t\t\t\t\t797 .\n\t\t\t'},{id:"B28",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPulvermller\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShtyrov\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tIlmoniemi\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005b\n\t\t\t\t\tBrain signatures of meaning access in action word recognition. J Cogn Neurosci, 17(6), 884 \n\t\t\t\t\t892 .\n\t\t\t'},{id:"B29",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodriguez\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGeorge\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLachaux\n\t\t\t\t\t\t\tJ. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMartinerie\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRenault\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVarela\n\t\t\t\t\t\t\tF. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Perception’s shadow: long-distance synchronization of human brain activity. Nature, 397\n\t\t\t\t\t430\n\t\t\t\t\t433 .\n\t\t\t'},{id:"B30",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRogers\n\t\t\t\t\t\t\tT. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLambon\n\t\t\t\t\t\t\tRalph. M. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGarrard\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBozeat\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMc Clelland\n\t\t\t\t\t\t\tJ. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHodges\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPatterson\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tStructure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychol Rev, 111(1), 205 \n\t\t\t\t\t235 .\n\t\t\t'},{id:"B31",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRolls\n\t\t\t\t\t\t\tE. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTreves\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 "Neural Networks and Brain Function." Oxford University Press, Oxford.\n\t\t\t'},{id:"B32",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRossell\n\t\t\t\t\t\t\tS. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPrice\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNobre\n\t\t\t\t\t\t\tA. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003\n\t\t\t\t\tThe anatomy and time course of semantic priming investigated by fMRI and ERPs.\n\t\t\t\t\tNeuropsychologia, 41(5), 550 \n\t\t\t\t\t64 .\n\t\t\t'},{id:"B33",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSimmons\n\t\t\t\t\t\t\tW. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarsalou\n\t\t\t\t\t\t\tL. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003\n\t\t\t\t\tThe similarity-in-topography principle: reconciling theories of conceptual deficits. Cogn. Neuropsychol., 20\n\t\t\t\t\t451\n\t\t\t\t\t486 .\n\t\t\t'},{id:"B34",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSinger\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGray\n\t\t\t\t\t\t\tC. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1995\n\t\t\t\t\tVisual Feature integration and the temporal correlation hypothesis.\n\t\t\t\t\tAnn. Rev. Neurosci., 18\n\t\t\t\t\t555\n\t\t\t\t\t586 .\n\t\t\t'},{id:"B35",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSmall\n\t\t\t\t\t\t\tS. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHArt\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNguyen\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGordon\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1995\n\t\t\t\t\tDistributed representations of semantic knowledge in the brain. Brain,., 118 ( Pt 2), 441 \n\t\t\t\t\t453 .\n\t\t\t'},{id:"B36",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSnowden\n\t\t\t\t\t\t\tJ. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tThompson\n\t\t\t\t\t\t\tJ. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNeary\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tKnowledge of famous faces and names in semantic dementia. Brain, 127\n\t\t\t\t\t860\n\t\t\t\t\t872 .\n\t\t\t'},{id:"B37",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTallon-Baudry\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBertrand\n\t\t\t\t\t\t\tO.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDelpuech\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPernier\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997\n\t\t\t\t\tOscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans.\n\t\t\t\t\tJ. Neurosci., 17\n\t\t\t\t\t722\n\t\t\t\t\t734 .\n\t\t\t'},{id:"B38",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTallon-Baudry\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBertrand\n\t\t\t\t\t\t\tO.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPeronnet\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPernier\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 Induced gamma-band activity during the dealy of a visual short-term memory task in humans. J. Neurosci., 18\n\t\t\t\t\t4244\n\t\t\t\t\t4254 .\n\t\t\t'},{id:"B39",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTulving\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1972 "Episodic and semantic memory." Organisation of memory, E. Tulving, and W. Donaldson, eds., Academic Press, New York.\n\t\t\t'},{id:"B40",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTyler\n\t\t\t\t\t\t\tL. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoss\n\t\t\t\t\t\t\tH. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDurrant-Peatfield\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLevy\n\t\t\t\t\t\t\tJ. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000\n\t\t\t\t\tConceptual structure and the structure of concepts: a distributed account of category-specific deficits. Brain Lang, 75(2), 195 \n\t\t\t\t\t231 .\n\t\t\t'},{id:"B41",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUrsino\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLa Cara\n\t\t\t\t\t\t\tG. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSarti\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003\n\t\t\t\t\tBinding and segmentation of multiple objects through neural oscillators inhibited by contour information.\n\t\t\t\t\tBiol. Cybern., 89\n\t\t\t\t\t56\n\t\t\t\t\t70 .\n\t\t\t'},{id:"B42",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUrsino\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMagosso\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCuppini\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tRecognition of abstracts objects via neural oscillators: interaction among topological organization, associative memory and gamma-band synchronization. IEEE Tr. Neural Networks, 20(2), 316 \n\t\t\t\t\t335 .\n\t\t\t'},{id:"B43",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUrsino\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMagosso\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLa Cara\n\t\t\t\t\t\t\tG. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCuppini\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tObject segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules. BioSystems, 85\n\t\t\t\t\t201\n\t\t\t\t\t218 .\n\t\t\t'},{id:"B44",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvon der\n\t\t\t\t\t\t\tMalsburg. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchneider\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1986\n\t\t\t\t\tA neural cocktail-party processor.\n\t\t\t\t\tBiol. Cybern., 54\n\t\t\t\t\t29\n\t\t\t\t\t40 .\n\t\t\t'},{id:"B45",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTerman\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997\n\t\t\t\t\tImage Segmentation based on oscillatory correlation.\n\t\t\t\t\tNeural Computation, 9\n\t\t\t\t\t805\n\t\t\t\t\t836 .\n\t\t\t'},{id:"B46",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWard\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 "The student’s guide to cognitive neuroscience." Psychology Press, Hove and New York.\n\t\t\t'},{id:"B47",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWarrington\n\t\t\t\t\t\t\tE. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMc Carthy\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1983\n\t\t\t\t\tCategory specific access dysphasia. Brain, 106\n\t\t\t\t\t859\n\t\t\t\t\t878 .\n\t\t\t'},{id:"B48",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWarrington\n\t\t\t\t\t\t\tE. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMc Carthy\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1987\n\t\t\t\t\tCategories of knowledge: further fractionations and an attempted integration.\n\t\t\t\t\tBrain, 110\n\t\t\t\t\t1273\n\t\t\t\t\t1296 .\n\t\t\t'},{id:"B49",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWarrington\n\t\t\t\t\t\t\tE. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShallice\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1984 Category specific semantic impairements. Brain, 107\n\t\t\t\t\t829\n\t\t\t\t\t854 .\n\t\t\t'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Cristiano Cuppini",address:null,affiliation:'
'}],corrections:null},book:{id:"5329",type:"book",title:"Cognitive Maps",subtitle:null,fullTitle:"Cognitive Maps",slug:"cognitive-maps",publishedDate:"January 1st 2010",bookSignature:"Karl Perusich",coverURL:"https://cdn.intechopen.com/books/images_new/5329.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-044-5",pdfIsbn:"978-953-51-5850-9",reviewType:"peer-reviewed",numberOfWosCitations:20,isAvailableForWebshopOrdering:!0,editors:[{id:"6071",title:"Dr.",name:"Karl",middleName:null,surname:"Perusich",slug:"karl-perusich",fullName:"Karl Perusich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"616"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"6747",type:"chapter",title:"Topic Maps as Indexing Tools in the Educational Sphere: Theoretical Foundations, Review of Empirical Research and Future Challenges",slug:"topic-maps-as-indexing-tools-in-the-educational-sphere-theoretical-foundations-review-of-empirical-r",totalDownloads:2187,totalCrossrefCites:2,signatures:"Vivek Venkatesh, Kamran Shaikh and Amna Zuberi",reviewType:"peer-reviewed",authors:[null]},{id:"6748",type:"chapter",title:"A Cognitive Approach for Performance Measurement in Flexible Manufacturing Systems using Cognitive Maps",slug:"a-cognitive-approach-for-performance-measurement-in-flexible-manufacturing-systems-using-cognitive-m",totalDownloads:2816,totalCrossrefCites:0,signatures:"Ergün Eraslan and Metin Dağdeviren",reviewType:"peer-reviewed",authors:[null]},{id:"6749",type:"chapter",title:"System Diagnosis Using Fuzzy Cognitive Maps",slug:"system-diagnosis-using-fuzzy-cognitive-maps",totalDownloads:2538,totalCrossrefCites:5,signatures:"Karl Perusich",reviewType:"peer-reviewed",authors:[null]},{id:"6750",type:"chapter",title:"Subject-formal Methods Based on Cognitive Maps and the Problem of Risk Due to the Human Factor",slug:"subject-formal-methods-based-on-cognitive-maps-and-the-problem-of-risk-due-to-the-human-factor",totalDownloads:2689,totalCrossrefCites:2,signatures:"Abramova N., Avdeeva Z., Kovriga S. and Makarenko D.",reviewType:"peer-reviewed",authors:[null]},{id:"6751",type:"chapter",title:"From Physical Brain to Social Brain",slug:"from-physical-brain-to-social-brain",totalDownloads:2059,totalCrossrefCites:1,signatures:"Yoshinori Yamakawa and Eiichi Naito",reviewType:"peer-reviewed",authors:[null]},{id:"6752",type:"chapter",title:"The Role of Public Visual Art in Urban Space Recognition",slug:"the-role-of-public-visual-art-in-urban-space-recognition",totalDownloads:8604,totalCrossrefCites:5,signatures:"Anna Januchta-Szostak",reviewType:"peer-reviewed",authors:[null]},{id:"6753",type:"chapter",title:"The Representation of Objects in the Brain, and Its Link with Semantic Memory and Language: a Conceptual Theory with the Support of a Neurocomputational Model",slug:"the-representation-of-objects-in-the-brain-and-its-link-with-semantic-memory-and-language-a-conceptu",totalDownloads:2301,totalCrossrefCites:0,signatures:"Cristiano Cuppini, Elisa Magosso and Mauro Ursino",reviewType:"peer-reviewed",authors:[null]},{id:"6754",type:"chapter",title:"Genetics of Cognition-What can Developmental Disorders Teach Us?",slug:"genetics-of-cognition-what-can-developmental-disorders-teach-us-",totalDownloads:2195,totalCrossrefCites:0,signatures:"Berit Kerner",reviewType:"peer-reviewed",authors:[null]}]},relatedBooks:[{type:"book",id:"5330",title:"Petri Net",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"4ebb7d10fa68cbcab11de39a524f2581",slug:"petri_net_theory_and_applications",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/5330.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"708",title:"Petri Net Transformations",slug:"petri_net_transformations",signatures:"Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg, Claudia Ermel, Ulrike Prange, Enrico Biermann and Tony Modica",authors:[null]},{id:"709",title:"Modelling and Analysis of Real-Time Systems with RTCP-Nets",slug:"modelling_and_analysis_of_real-time_systems_with_rtcp-nets",signatures:"Marcin Szpyrka",authors:[null]},{id:"710",title:"Petri Net Based Modelling of Communication in Systems on Chip",slug:"petri_net_based_modelling_of_communication_in_systems_on_chip",signatures:"Holger Blume, Thorsten von Sydow, Jochen Schleifer and Tobias G. Noll",authors:[null]},{id:"711",title:"An Inter-Working Petri Net Model between SIMPLE and IMPS for XDM Service",slug:"an_inter-working_petri_net_model_between_simple_and_imps_for_xdm_service",signatures:"Jianxin Liao, Yuting Zhang and Xiaomin Zhu",authors:[null]},{id:"712",title:"Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains",slug:"modelling_systems_by_hybrid_petri_nets__an_application_to_supply_chains",signatures:"Mariagrazia Dotoli, Maria Pia Fanti, Alessandro Giua and Carla Seatzu",authors:[null]},{id:"713",title:"Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets",slug:"modeling_and_analysis_of_hybrid_dynamic_systems_using_hybrid_petri_nets",signatures:"Latefa Ghomri and Hassane Alla",authors:[null]},{id:"714",title:"Use of Petri Nets for Modeling an Agent-Based Interactive System: Basic Principles and Case Study",slug:"use_of_petri_nets_for_modeling_an_agent-based_interactive_system__basic_principles_and_case_study",signatures:"Houcine Ezzedine and Christophe Kolski",authors:[null]},{id:"715",title:"On the Use of Queueing Petri Nets for Modeling and Performance Analysis of Distributed Systems",slug:"on_the_use_of_queueing_petri_nets_for_modeling_and_performance_analysis_of_distributed_systems",signatures:"Samuel Kounev and Alejandro Buchmann",authors:[null]},{id:"716",title:"Model Checking of Time Petri Nets",slug:"model_checking_of_time_petri_nets",signatures:"Hanifa Boucheneb and Rachid Hadjidj",authors:[null]},{id:"717",title:"A Linear Logic Based Approach to Timed Petri Nets",slug:"a_linear_logic_based_approach_to_timed_petri_nets",signatures:"Norihiro Kamide",authors:[null]},{id:"718",title:"From Time Petri Nets to Timed Automata",slug:"from_time_petri_nets_to_timed_automata",signatures:"Franck Cassez and Olivier H. Roux",authors:[null]},{id:"719",title:"Timed Hierarchical Object-Oriented Petri Net",slug:"timed_hierarchical_object-oriented_petri_net",signatures:"Hua Xu",authors:[null]},{id:"720",title:"Scheduling Analysis of FMS Using the Unfolding Time Petri Nets",slug:"scheduling_analysis_of_fms_using_the_unfolding_time_petri_nets",signatures:"Jong kun Lee and Ouajdi Korbaa",authors:[null]},{id:"721",title:"Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach",slug:"error_recovery_in_production_systems__a_petri_net_based_intelligent_system_approach",signatures:"Nicholas G. Odrey",authors:[null]},{id:"722",title:"Estimation of Mean Response Time of MultiAgent Systems Using Petri Nets",slug:"estimation_of_mean_response_time_of_multi-agent_systems_using_petri_nets",signatures:"Tomasz Babczyński and Jan Magott",authors:[null]},{id:"723",title:"Diagnosis of Discrete Event Systems with Petri Nets",slug:"diagnosis_of_discrete_event_systems_with_petri_nets",signatures:"Dimitri Lefebvre",authors:[null]},{id:"724",title:"Augmented Marked Graphs and the Analysis of Shared Resource Systems",slug:"augmented_marked_graphs_and_the_analysis_of_shared_resource_systems",signatures:"King Sing Cheung",authors:[null]},{id:"725",title:"Incremental Integer Linear Programming Models for Petri Nets Reachability Problems",slug:"incremental_integer_linear_programming_models_for_petri_nets_reachability_problems",signatures:"Thomas Bourdeaud'huy, Said Hanafi and Pascal Yim",authors:[null]},{id:"726",title:"Using Transition Invariants for Reachability Analysis of Petri Nets",slug:"using_transition_invariants_for_reachability_analysis_of_petri_nets",signatures:"Alexander Kostin",authors:[null]},{id:"727",title:"Reliability Prediction and Sensitivity Analysis of Web Services Composition",slug:"reliability_prediction_and_sensitivity_analysis_of_web_services_composition",signatures:"Duhang Zhong, Zhichang Qi and Xishan Xu",authors:[null]},{id:"728",title:"Petri Nets for Component-Based Software Systems Development",slug:"petri_nets_for_component-based_software_systems_development",signatures:"Leandro Dias da Silva, Kyller Gorgonio, and Angelo Perkusich",authors:[null]},{id:"729",title:"Formalizing and Validating UML Architecture Description of Service-Oriented Applications",slug:"formalizing_and_validating_uml_architecture_description_of_service-oriented_applications",signatures:"Zhijiang Dong, Yujian Fu, Xudong He and Yue Fu",authors:[null]},{id:"730",title:"Music Description and Processing: An Approach Based on Petri Nets and XML",slug:"music_description_and_processing__an_approach_based_on_petri_nets_and_xml",signatures:"Adriano Barate",authors:[null]}]}],publishedBooks:[{type:"book",id:"3780",title:"Petri Nets",subtitle:"Applications",isOpenForSubmission:!1,hash:"b1f80da4d06e2b7b4076e74797319265",slug:"petri-nets-applications",bookSignature:"Pawel Pawlewski",coverURL:"https://cdn.intechopen.com/books/images_new/3780.jpg",editedByType:"Edited by",editors:[{id:"4487",title:"Dr.",name:"Pawel",surname:"Pawlewski",slug:"pawel-pawlewski",fullName:"Pawel Pawlewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4460",title:"Advances in Petri Net",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"eb16f30c8c97de6bf750fde5e04363ae",slug:"advances-in-petri-net-theory-and-applications",bookSignature:"Tauseef Aized",coverURL:"https://cdn.intechopen.com/books/images_new/4460.jpg",editedByType:"Edited by",editors:[{id:"10867",title:"Prof.",name:"Tauseef",surname:"Aized",slug:"tauseef-aized",fullName:"Tauseef Aized"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5330",title:"Petri Net",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"4ebb7d10fa68cbcab11de39a524f2581",slug:"petri_net_theory_and_applications",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/5330.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2185",title:"Petri Nets",subtitle:"Manufacturing and Computer Science",isOpenForSubmission:!1,hash:"cd35e0811ba40522bbb37a6ad2390bc4",slug:"petri-nets-manufacturing-and-computer-science",bookSignature:"Pawel Pawlewski",coverURL:"https://cdn.intechopen.com/books/images_new/2185.jpg",editedByType:"Edited by",editors:[{id:"4487",title:"Dr.",name:"Pawel",surname:"Pawlewski",slug:"pawel-pawlewski",fullName:"Pawel Pawlewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"76547",title:"Radiofrequency Energy Harvesting for Wireless Sensor Node: Design Guidelines and Current Circuits Performance",doi:"10.5772/intechopen.97627",slug:"radiofrequency-energy-harvesting-for-wireless-sensor-node-design-guidelines-and-current-circuits-per",body:'
1. Introduction
Because of their low cost, flexibility, mobility, and ease of integration, Wireless Sensors (WS) are increasingly used in most computing systems. For example, WSs are used for ubiquitous structural monitoring [1]. Besides, one of WS’s current major applications is the Internet of Things, in which WSs send their data to a base station that makes it available on the internet. WS provides endless opportunities and poses formidable challenges, such as the fact that energy is limited due to its battery’s small size. In the quest for solutions to extend the lifespan of WSs, a new research field has evolved in recent years, known as Energy Harvesting (EH) [2]. Thanks to EH techniques, it is now possible to envisage WSs having a lifespan limited only by the hardware that constitutes them. These WSs are now well known in the literature as EH-WS [3]. The rise of the EH-WSs is due to the joint efforts in the fields of microelectronics and micro-mechanics, which today make it possible to dispose of ultra-low consumption WSs. An EH process involves identifying a primary energy source in the WS vicinity and converting it into electrical energy directly usable by the WS. This study deals with RF energy, which is ubiquitous due to the extension of telecommunications systems [4].
The proposed techniques about EH rely fully on the nature of the used primary energy sources. The main sources are the sun, vibration, thermoelectric gradient, wind, internal light, radio-frequency energy, etc. Vibration and sun sources are most considered in the literature because they generate more significant amounts of energy compared to the WS energy requirements. Recently, with the growth of radio communication systems deployment, it has become possible to consider harvesting significant quantities of RF energy in different environments. Besides, RF sources do not rely on weather conditions, as is the case with the sun source or engine operation, as would be the case with the vibration source.
This chapter presents the design considerations of energy-independent wireless sensor nodes under the base of a radiofrequency energy harvesting process. The main objective is to analyze the end-to-end conversion chain of radiofrequency waves into DC energy to define the design issues related to this growing field of research. For each stage, it will be reviewing the principles through design equations and optimization solutions. This main goal will guide the writing of the chapter, with the following specific objectives:
Provide a taxonomy for WSs powered by radiofrequency energy.
Provide a classification of RF energy-harvesting techniques.
Provide state of the art on the design of the RF-EH system.
Recall the performance of the rectenna recently designed.
Firstly, the advantage of the RF energy source compared to the other commonly used primary energy sources is proposed in Section 2. The role of wireless sensors in the IoT and the capability of some currently marketed RF energy harvesters will be presented in Section 3. Section 4 dealt with the design issues of the RF energy harvesting systems. Each stage of the conversion chain will be analyzed, and the advantages and drawbacks of the proposed solutions will be established. Finally, Section 5 concludes this chapter.
2. Comparison of RF source with other primary energy sources
The primary energy sources considered for EH are vibration, sun, RF Energy, airflow, internal light, heat, and wind. Most computing systems require small and light WSs to influence the measurement environment as little as possible. Therefore, the power density metric is widely used by many researchers as a criterion for comparing the performance of micro-generators [5]. Table 1 show some recent results obtained in the design of the various micro-generators [6]. These results indicate that the current RF micro-generators have power density comparable to sources such as airflow, heat, and indoor light.
Primary sources
Power densities
Vibration
10.8mW/cm3
Heat
0.78mW/cm2
Wind
0.55mW/cm3
Light (outdoor)
100mW/cm2
Light (indoor)
100μW/cm2
RF energy
1mW/cm2
Airflow
1mW/cm2
Table 1.
Comparison of the some power density of Main energy harvesting methods.
Sources like vibrations and sunlight offer power densities 10 to 100 times higher than the RF source. However, in most studies on vibrations, to achieve these performances, it is necessary to increase the level of vibration, which is not desirable for many industrial applications, especially sensor applications. In [7], for instance, a piezoelectric micro-generator is designed to generate only 23.3nW for 0.25g acceleration at a frequency of68Hz. It is also foreseeable that the popularity of piezoelectric micro-generators will be declining in future years, as several research projects today are exploring solutions to reduce significantly or attenuate the vibration of engines [8].
Regarding solar energy, the achieved performance is inherently impacted during the night. Also, for WSs being deployed in indoor environments like buildings or factories, solar energy may not be available. Wind micro-generators share this constraint. These also often involve a substantial aperture [9], which is not suited to accommodate IoT applications’ size design limitations. RF Energy, which, for some frequencies, can cross materials such as water, plastic, paper, and concrete, seems to be the only alternative in several situations. This research area is now expanding because this harvestable energy (RF energy) is almost always available, offering solutions to facilitate the supply of WS located in hard-to-reach environments.
Another asset of the RF source lies in the used transducer, as it can also be exploited to exchange data between sensors wirelessly. The primary transducers used are shown in Figure 1. The WS for transmitting and receiving information usually uses an antenna. The transducer for the RF source is, therefore, the same as that used by the WS to communicate. Thus, it is important for greater circuit miniaturization to consider using the RF source [10]. It is also the current trend of WS based on RF source referred to as Simultaneous Wireless Information and Power Transfer (SWIPT) technologies [11].
Figure 1.
Some used transducers for the transformation of ambient energy.
3. Autonomous wireless sensors in IoT and Mobile computing
Setting up the IoT is now possible thanks to the convenience of placing or deploying many different sensors in an environment. Figure 2 shows the end-to-end IoT basic architecture elements [12]. The WS is the element that lays the foundation for IoT. Unlike other elements in Figure 2 that can be placed in easily accessible locations, WSs must be able to be placed in locations such as battlefields, the deep ocean, or inhospitable terrains. Since WSs are battery-powered, it is often difficult and impossible to change or recharge their battery. Also, the WS’s role in the figure below is to measure, process, and transmit data to a base station. More and more IoT applications require fast computational times, increasing the WS’s energy budget. This further justifies the need for a ubiquitous charging solution such as the RF source for WS in mobile devices.
Figure 2.
End-to end IoT architecture.
Regarding RF micro-generators, a product like the PCC110 [13] manufactured by Powercast, is a solution used to enable wireless power transmission. Its sensitivity is −17 dBm with a maximum conversion efficiency of 75%. Powercast also markets the P2110 [14], which harvests RF energy in the 915 MHz band while integrating efficient energy management solutions. This circuit can operate at incident powers below −11.5 dBm. It is also proposed in [15] the E-peas AEM40940, which offers RF energy harvesting solutions in three frequency bands 868 MHz, 915 MHz, and 2.45 GHz. This circuit offers usable DC output powers for incident RF powers between −19.5 dBm and 10 dBm. Due to the flexibility of the charging solution, these different circuits are a few examples that can be integrated into computing systems, particularly in mobile IoT applications.
4. Design issues of rectenna circuit
When observing at the end-to-end conversion efficiency of a rectenna, it is necessary to consider the energy propagation models, the receiving antenna, the characteristics of the rectifying diodes (RF/DC Converter), the matching filter design, and finally, the Storage Element as shown in Figure 3.
Figure 3.
Outline of design issues of rectenna.
Energy propagation models can be used to estimate the harvestable energy levels depending on the propagation environment [16]. The receiving antenna must be designed to be optimal in the frequency band of the harvestable RF signals. The used rectifying diode must have the least loss in the targeted frequency band. The matching filter must be optimized to minimize reflection losses. A DC/DC converter is added to achieve Maximum Power Point Tracking (MPPT). Finally, when the rectenna is designed, its modeling is necessary to offer an efficient management solution for the energy harvested. Note that once the components to achieve optimal performance are selected concerning the concepts overviewed, circuit manufacturing must be addressed; this chapter does not address this issue.
4.1 Classification of the different techniques
When considering the use of RF energy as a power source for WSs, it is important to distinguish the Ambient RF Energy Harvesting (A-RF-EH) from Wireless Power Transfer (WPT) [17, 18] (Figure 4). The A-RF-EH aims to recycle energy available in the environment that comes from wireless communication devices’ surrounding activity, as shown in Figure 4(a). Due to potential health concerns, the environment’s naturally available RF power levels are too low. However, several designers have been able to propose solutions for harvesting usable quantities of power. These solutions rely mainly on circuits’ design capable of harvesting RF energy through several frequency bands simultaneously [19].
Figure 4.
The technique of RF-EH. (a) A-RF-EH and (b) WPT.
Another way to exploit RF energy is to use the WPT, as illustrated in Figure 4(b). The WPT can be done either using magnetic fields to carry the electrical energy with coils or by antennas. In the case of coils, the original proposal was made by Nicolas Tesla [20] and is based on the magnetic resonance of two coils to distribute large amounts of energy to locations far from the power source. Although this concept is used by many applications such as Radio Frequency IDentification (RFID) tags [21] and biomedical devices [22], it should be mentioned that its range is limited. It would, therefore, be challenging to implement for WSs placed in hard-to-reach locations. In addition to the constrained range, the power levels are too high, bringing health issues and effects [11] when someone is close to the transmitter.
The most popular way to power the WS by RF energy is by using antennas. As opposed to the near-field application, the use of antennas is known as the far-field application. Historically, this way of transferring energy via radio waves dates to the first works of Heinrich Hertz [23]. The block diagram of the conversion of RF into DC energy via antennas is depicted in Figure 5 [17]. A transmitting antenna sends a signal at a given power and frequency. A receiving antenna operating on the same frequency then picks up the emitted signal. An RF/DC converter is used to transform the RF signal into a DC signal. To ensure maximum power transfer between the antenna and the RF/DC converter, it is essential to use a matching circuit. The rectifier’s output DC voltage is generally very low and cannot be used directly for a given application. Moreover, the value of the output DC voltage changes depending on the input RF power level. A DC-to-DC converter is thus necessary to adapt the rectifier voltage to the storage element’s voltage requirement. The combination made up of these blocks is called rectenna for Rectifying Antenna. The rectenna circuits’ design issues then concern the channel’s modeling between the transmitting and the receiving antenna, the receiving antenna’s designs, the matching circuit, the rectifying circuit, the DC-to-DC converter, and finally, the choice of the storage element [24].
Figure 5.
Generalized RF energy harvesting systems for WS.
4.2 RF propagation models
The energy amount and rate received by an antenna over time are two critical parameters to be considered before the circuit design [25]. Several propagation models exist to predict the average strength of the signal received at a given distance from the transmitting antenna [16]. These models are divided into two broad kinds: large-scale and small-scale fading models.
The large-scale models are used to assess the received signal’s strength over large distances between the transmitting antenna and the receiving antenna; they are then suitable for designing a WS based on the WPT. The basic model is the free space model; it is an ideal model used when the transmitting antenna and the receiving antenna have an unobstructed path. The received power is evaluated by the Friis equation as follows:
Pr=PtGtGrλ24πd2E1
where Pt is the transmitting power, Pr is the power received at distance d, λ is the wavelength of the transmitted signal, Gt and Gr represent the gains of the emitting and receiving antennas, respectively.
Practically, to evaluate the received power by an antenna, three basic mechanisms must be considered: reflection, diffraction, and scattering [16]. When considering ground reflection only, the Eq. (2) known as the two-ray model evaluates the received power as:
Pr=PtGtGrht2hr2d4E2
where Pr,Pt,Gt,Gr and d are defined as above, ht and hr represent the heights of the transmit and receive antennas, respectively.
Considering all the factors influencing signal propagation (reflection, diffraction, and scattering) can be done through models derived from the combination of empirical and analytical methods [16], these models are widely used. The most popular is the path loss model, which defines the received power in a complex environment as follows:
Prdn=Prd0d0dnE3
d0 is a is a reference distance (d0=1m [16]) and n is the path loss exponent. The value of n always relates to the propagation environment features. Prd0 is the received power at the d0 distance.
The current trend of WS powered by rectenna is the SWIPT, referred to as Simultaneous Wireless Information and Power Transfer [11]. The small-scale fading models are used to quantify the received power by a node, from a node close to it. The fading models allow evaluating the rapid fluctuations of the emitted signal’s amplitude over a short period or for a short distance. Fading models consider the multiple versions of the emitted signal that reach the receiving antenna. If N is the total number of possible equidistant multi-path components, then the instantaneous power received when a continuous signal is emitted is given by [16]:
pt=∑i=0N−1aiexpjθitτ2E4
where ai and θi are respectively, the amplitude and phase of the ith received signal, and τ is the maximum delay.
The above summarizes some commonly used RF energy propagation models. Depending on the WPT or the A-RF-EH, deterministic models or stochastic models can be used, respectively. These models must be considered before circuit design because they make it possible to estimate the amount of harvestable energy.
4.3 The receiving antenna
Its role is to adequately capture the emitted signal with the right and high gain. However, the increase of the antenna gain goes with an increase in its dimensions through the equation:
GR=4πAeλ2E5
Ae is the effective surface of the antenna, which is linked to its physical dimensions [16]. High-gain antennas are also obtained by favoring directional antennas over omnidirectional antennas. This has shown to be more effective in SWIPT [26].
To maximize the energy harvested by the antenna, particularly in the case of A-RF-EH, the studies report multi-band, broadband, and reconfigurable [27] antennas to overcome a lack of knowledge of the transmitting antennas’ location and frequency.
Another important feature of the receiving antenna is its polarization, which must be circular to offer the possibility of keeping a constant DC output voltage even if the transmitting antenna or the rectenna [28] are rotating. The most widely used antennas are the dipole antennas, and the patch antennas. Since most applications have congestion as a design criterion, the patch antenna allows for easy integration; it is lightweight, low-cost, and widely considered in rectenna design. Also, these antennas are adapted to future 5G communication specifications [29]. The well-known structure of a patch antenna is shown in Figure 6.
Figure 6.
3D view of the rectangular patch antenna.
The resonance frequency of the antenna, which must be the same as that of the transmitted signal, is related to length L of the patch by [30]:
L=12frμ0ε0εe−2∆LE6
μ0 and ε0 represent the permeability and the dielectric permittivity of the vacuum respectively, ΔL is the length extension of the patch defined as:
∆L=0.412hεe+0.3Wh+0.264εe−0.258Wh+0.8E7
where εe is the effective permittivity of the substrate, which is related to the relative permittivity as follow [31]:
εe=εr+12+εr−121+12hW−12E8
The thickness h of the substrate shall satisfy the following condition:
h≤14frμ0ε0εr−1E9
The width W of the patch influences the impedance of the antenna as well as its bandwidth. It is also related to the resonance frequency fr of the antenna as follows:
W=12fr2μ0ε0εr+1E10
In most design strategies, the formulas (6) to (10) are used for the first sizing of the antenna, and then the optimization is done using an electromagnetic simulator. Table 2 shows the gain capabilities for some patch antennas recently designed for rectenna applications.
To be able to supply the WSs with DC power, the RF power harvested by the antenna needs to be rectified. The RF/DC converter assumes this function. The rectification function can be implemented either by transistors or with Schottky diodes. Transistors are least-used because although they are more efficient at very low levels of RF input power [35], the achieved maximum conversion efficiency remains too low compared to that obtained with Schottky diodes [24]. For this reason, the subsequent writing deals only with design issues based on Schottky diodes. The fast switching and low threshold voltage diodes are the most considered by considering the high frequencies and the low voltage level of the incident or input RF signals. The small-signal Schottky diode model shown in Figure 7 is very often used [36].
Figure 7.
Small signal model of a Schottky diode.
In this model, RS is the bulk series resistance, RL is the load resistance, Rj is the junction resistance, VDC is the voltage across the load resistance, and Cj is the junction capacitance, which depends on the RF input power as follows [36]:
Cj=Cj0VjVj+VDCE11
with Cj0, the zero-bias junction capacitance of the Schottky diode.
The leading manufacturers of the commonly used diodes are Avago, Skyworks, and Macon. Table 3 gives the characteristics of some of the Schottky diodes most considered in the design of RF/DC converters.
In the previous subsection devoted to the receiving antenna, it was mentioned that patch antennas, being compact, lightweight, and low-cost, are the most suitable for the real applications of WSs for which congestion is one of the design constraints. However, compared to other antennas, patch antennas are narrowband and offer lower gains. Thus, the rectifying diode’s conversion efficiency has become a critical design criterion for rectenna circuits [37].
4.4.1 Conversion efficiency of the rectifying diode
When considering the transformation of the RF signal into a DC signal, the energy harvested by the antenna undergoes the four-stage losses shown in Figure 8. These losses are a significant factor in the choice of the rectifying diode.
Figure 8.
Efficiency link of RF/DC power conversion.
The matching efficiency ηM represents the losses due to the insertion of a matching filter between the antenna and the rectifier circuit, and it is defined in [17] by:
ηM=1−S1102E12
where S110 is the unmatched reflection coefficient defined in [38] as:
S110=ZD−Z0ZD+Z0E13
Z0 is the output impedance of the antenna, which is generally designed to be equal to 50Ω, and ZD is the diode input impedance seen from the antenna. Depending on the internal electrical elements of the diode (Cf. Figure 7), ZD is expressed as follows [36]:
with ω=2πf, which is the pulsation of the rectenna, and θon is the diode forward-bias turn-angle. θon changes according to the incident power as follows:
tanθon−θon=πRSRL1+VjVDCE15
Considering Eqs. (13)–(15), an approximate expression of the unmatched reflection coefficient was established in [35] as follows:
From this expression, the conclusion is drawn that at high frequencies, when Cj2.Rj2.ω2≥1, it is sufficient that RS is close enough to 50Ω to ensure a minimum reflection coefficient, and thus also to minimize the matching losses.
ηP in Figure 8 is the efficiency associated with parasitic losses; parasitic being undesired mechanical and electrical characteristics that limit the performance of the circuit. The parasitic component efficiency defined in [39] as:
ηP=11+ωCj2RS.Rj2E17
ηRF/DC in Figure 8 is the RF/DC conversion efficiency; it is related to the elements of the diode through the following Equations [33, 36].
ηDC/Load in Figure 8 represents the efficiency of DC power transfer; it is defined in [40] as follows:
ηDC/Load=RLRL+RTE20
where RT=RS+RjILoad [41] is the Thevenin resistance seen by the load, and RL is the load resistance. To maximize ηDC/Load, it is necessary to use a Maximum Power Point Tracking (MPPT) circuit.
Using Eqs. (12), (17), (18) and (20), a comparison of the RF/DC conversion efficiencies of the four Avago diodes, whose characteristics are reported in Table 3, was proposed in [33]; the obtained results are concise in Table 4. These results show that, for usable power levels [42], the HSMS 2850 diode is more suitable for circuit design.
Diodes
HSMS 2810 Avago
HSMS 2820 Avago
HSMS 2850 Avago
HSMS 2860 Avago
SMS 1546 Skyworks
SMS 7621 Skyworks
SMS 7630 Skyworks
MA4E 1317 Macon
MA4E 2054 Macon
RSΩ
10
6
25
5
4
12
20
4
11
VjV
0.65
0.65
0.35
0.65
0.51
0.51
0.34
0.7
0.4
Cj0pF
1.1
0.7
0.18
0.18
0.38
0.1
0.14
0.2
0.13
Table 3.
Small-signal characteristics for commonly used Schottky diodes.
VDCV
Input RF power (mW)
Optimal load resistance (kΩ)
Maximum reached conversion efficiency (%)
Best rectifying diode
1
3.52
0.8
35.5
HSMS 2850
1.8
7.12
1.22
37.3
HSMS 2850
2.5
14.63
1.13
37.8
HSMS 2860
3.5
26.21
38.3
1.22
HSMS 2860
Table 4.
Best Avago rectifier diode according to the incident power level.
4.4.2 Rectifier topology selection
Once the diode is selected, it is necessary to consider the topology of the rectifier circuit. Some rectifier topologies recently used in the rectenna design are shown in Figure 9. The most considered are the topologies Single Series Diode (SSD), Single Parallel Diode (SPD), Full Bridge (FB), and Voltage Doubler (VD) [43]. The SSD and SPD topologies are single-wave rectifiers, while the FB and VD topologies are full-wave rectifiers.
Figure 9.
Most used rectifier topologies (a) SSD, (b) SPD, (c) FB, (d) VD, and (e) multistage VD.
The characteristics of these basic topologies are proposed in Table 5. A comparison of the three topologies SSD, SPD, and FB, was proposed in [43] using a Rectenna Figure of Merit (RFoM) defined as follow:
Topologies
Description
Advantages
Drawback
Applications
SSD
Easy to implement because it uses a single diode.
Suitable for very low power applications.
Low output DC voltage
A-RF-EH
SPD
Similar to SSD topology with the same performance. Instead, rectifies the negative alternation.
Suitable for very low power applications.
Low output DC voltage
A-RF-EH
FB
Uses the Graëtz bridge as in low-frequency power electronics.
Good conversion efficiency at high power.
Insensitive to small tensions.
WPT
VD
Simple Structure for rectifying the two alternations.
Higher output DC voltage.
Conversion efficiency lower than that of SSD and SPD topologies.
A-RF-EH WPT
Multi-stage VD
Complex structure using several diodes to amplify the signal
Higher output DC voltage.
Low conversion efficiency due to losses in the diodes.
A-RF-EH WPT
Table 5.
Comparison of main rectifier topologies.
RFoMPin=VOC×ηoptimal loadE21
where VOC is the open-circuit voltage of the rectifier and ηoptimal load is the conversion efficiency reached on the optimal load of the rectifier circuit. The results obtained in [43] are that the SSD topology is best suited for the low level of input power (−5dBm to 0dBm), while the SPD topology is the most efficient for medium input power level (0 to +15dBm); finally, the FB topology fits better for rectennas operating at so-called high incident power levels (>15dBm). However, in the literature, the most widely used topology is VD because of its voltage multiplier character [33].
It is also possible to amplify the rectified output voltage several times using several stages of voltage doubling (Figure 9e) [44]. When n voltage doublers are set in series and connected to the load RL, the output voltage across the load is expressed in [30, 45] as:
VDC=VOCnRLnR0+RLE22
where RL is the load resistance of the rectifier and VOC it open-circuit voltage.
Although multi-stage VD can achieve significant voltage levels, the fact remains that they contribute to increasing the overall size of the rectenna. Also, the increase in components in the circuits contributes to an increase in losses. This is illustrated in Figure 10, in which up to 10 stages of voltage doublers were analyzed by simulation with Advanced Design System (ADS) software.
Figure 10(a) represents the evolution of the open-circuit voltage VOC, and it is observed that the increase in the number of stages contributes to increasing the voltage level. Saturation is observed after 4 stages.
Figure 10(b) shows the conversion efficiency, and it appears that 3 stages of voltage doublers provide the best performance. Beyond that, the efficiency obtained decreases; for example, for 10 stages, maximum efficiency of less than 20% is reached at 10 dBm of incident power.
In Figure 10(c), the circuit’s overall performance is analyzed according to the RFoM defined by Eq. (21). The result shows that the best compromise is reached with 4 stages.
In addition to ensuring maximum power transfer between the antenna and the rectifier circuit, it also blocks the diode’s harmonics. There are two main types of matching filters for rectennas: the transformer coupling and the LC network. LC networks are more popular and better suited for designing rectennas because of their ease of integration. The LC networks are made of reactive elements (coil and capacitor) which are non-dissipative [24]. The primary LC network is the low pass filter whose cutoff frequency is defined in [38] as:
f0=12πLCE23
The parameter for qualitatively characterizing the adaptation is the reflection coefficient of the set consisting of the RF/DC converter and the input filter. A value of −10dB is acceptable, according to [38], to ensure the maximum transfer of the harvested energy.
Very few analytical studies on the design of matching filters for rectenna circuits have been introduced in recent years. This is due to the power of the ADS software [33], which incorporates many tools to design and optimize the matching filter elements. In summing up the works [33, 46], the steps for creating a matching filter from the ADS software are shown in Figure 11.
Figure 11.
Design step of an optimized matching filter in ADS software.
It is shown (Cf. Figure 11) that from the reflection coefficient of the rectifier circuit, the ADS matching utility tool is used to generate the matching filter in a lumped component. These localized elements are the initial parameters that will then be optimized to achieve specific objectives. Three objectives are generally targeted simultaneously: the minimization of the reflection coefficient in the frequency band of interest, the maximization of the conversion efficiency, and the maximization of the DC output voltage for the expected input RF power level. The ADS software integrates several optimization techniques, the principal ones being: Hybrid, Newton, Quasi-Newton, Gradient, and Random technique. The gradient method search is the most widely used and allows for adjusting a set of variables according to an error function and its gradient. The error function usually used is the least-squares error function. Once the matching filter elements are optimized, the next step in the filter design is the transformation of the lumped component into a microstrip line. Then, the electromagnetic momentum simulator, always integrated into the ADS software, is used to predict the circuit’s performance at high frequencies. This tool is used to create a physical layout to simulate the characteristics of the substrate.
Following the design steps, which are shown in Figure 11, it was proposed in [33], a Rectenna-based Schottky diode HSMS 2850, with a band-pass filter for an optimal RF harvesting at 2.45GHz. The results of the DC output voltage, the reflection coefficient and the conversion efficiency obtained by the gradient method search are shown in Figure 12. The local minimum is reached after 63 iterations, and at this point, the circuit demonstrates a conversion efficiency of nearly 71% for an incident power of−2.1dBm0.61mW.
Figure 12.
Optimized rectifier performance at 2.45 GHz [33]. (a) DC output voltage, (b) Conversion Efficiency, (c) reflection coefficient.
4.6 DC/DC converter
Most rectennas deployed in a real environment have low and variable DC output voltage due to slight fluctuations in RF input power. The voltage levels achieved cannot, therefore, directly feed the storage element. The DC / DC converter’s function is then to adapt the output voltage of the rectifier to the charging voltage of the storage element. Several DC/DC converters are commercially available. For the case of rectennas design, the most suitable circuits are those with a low start-up voltage, a minimum operating power, and a high conversion efficiency over a wide range. The most appropriate circuits are then the TS3310 of TouchStone and bq25504 of Texas Instrument. A comparison of these two DC/DC converters has been proposed in [47], and it has emerged that the bq25504 converter offers better performance. However, it is less suitable for high dynamic variations of rectenna input power.
4.7 Storage element
Because the harvested RF energy is extremely low, it is difficult to use it to power the WS directly, hence the need for a storage element to accumulate this energy for later use. There are three main components currently used to store harvested energy: the battery, the capacitor, and the supercapacitor. Regardless of the type of the used component, the main features are capacity, voltage, energy density, power density, self-discharge, discharge depth, state of charge, and temperature effects. A comparison of the characteristics of these three components has been proposed in [48]. This study emerges that the supercapacitors can provide high power over a short time; however, the stored energy is ten times lower than that stored in a battery. This justifies the current trend of hybrid storage devices that combine both batteries and supercapacitors [49]. However, in the case of a rectenna, this solution would contribute to increasing the circuit sizes. Thus, for most rectennas involved in WSs, the energy density parameter is the most considered parameter, and it is the battery that offers the best energy density [48]. Depending on the output voltage levels of the DC/DC converter and the desired energy E for the operability of the WS, the capacitance Cb of the battery is defined as:
Cb=2EVh2−Vℓ2E24
where Vh and Vℓ represent the raising threshold voltage and the falling threshold voltage of the DC/DC converter, respectively.
The general design method of WS powered by rectenna is to enslave the WS operation to the available amount of energy. Therefore, one of the major design issues is the battery recharging time, known in the literature as the duty cycle strategy. The battery recharging time knowledge helps define the duty cycle of sensors powered by the harvested energy. Depending on the battery features used, the recharging time is defined in [50] by:
Tr=CbDdVbηPrE25
where Cb is the battery capacity, Dd is the discharge depth, Vb is the constant operating voltage (must be chosen equal to the output rectifier DC voltage), Pr is the power harvested by the receiving antenna and η is the overall conversion efficiency of the rectenna defined as:
η=ηM.ηP.ηRF/DC.ηDC/LoadE26
For the WS’s perpetual operation, the recharging time must be equal to the time delay spent, by sensor nodes, in the sleep mode, and the energy used during the active mode must avoid draining the battery.
All the above shows that the performance of rectenna circuits depends on several parameters that have been defined in this chapter. The most considered performance criterion is the conversion efficiency of the Rectenna. A comparison of efficiency for circuits designed between 2006 and 2014 was reported in [24]. In Table 6, the performances of recent designs are presented. Particular attention is paid to the rectifying diode used, as well as the rectifier topology.
is an efficiency achieved without the use of a matching filter.
is the overall conversion efficiency considering the RF signal path losses.
5. Conclusion
This chapter reports recent advances in the design of radiofrequency energy harvester circuits. To do this, we started by justifying the use of the RF source as a primary energy source for feeding the sensor nodes dedicated to the IoT networks. The need for completely energy-autonomous WSs in mobile computing systems has also been highlighted. We then gave an overview of the efforts carried out in the design of rectenna circuits. Current limitations due mainly to health concerns and circuit size were also mentioned. More specifically, a classification of harvesting techniques was defined, the different models of energy propagation were reviewed. The performance of the receiving patch antennas recently designed for IoT applications has been noted. The performance comparison of recently used rectifying diodes and the areas of use of the main rectifier topologies were also proposed.
Conflict of interest
“The authors declare no conflict of interest.”
\n',keywords:"Rectenna, Design issues, Efficiency, Patch Antenna, Schottky diodes, WS",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/76547.pdf",chapterXML:"https://mts.intechopen.com/source/xml/76547.xml",downloadPdfUrl:"/chapter/pdf-download/76547",previewPdfUrl:"/chapter/pdf-preview/76547",totalDownloads:247,totalViews:0,totalCrossrefCites:0,dateSubmitted:"November 1st 2020",dateReviewed:"April 7th 2021",datePrePublished:"May 3rd 2021",datePublished:"January 7th 2022",dateFinished:"May 3rd 2021",readingETA:"0",abstract:"Given their omnipresence, electromagnetic energy offers the most attractive and recent energy supply solutions for low consumption power devices. The most targeted application is the wireless Sensor (WS) node, which is indispensable in all computing systems. This work proposes the design guideline for harvesting radiofrequency (RF) energy using the Rectifying Antenna circuit known as rectenna. The rectenna design issues are then developed to introduce new solutions for optimizing the performance of the circuits. Note that the end-to-end efficiency analysis must incorporate both receiving antenna characteristics, rectifying diode parameters, and matching filter components. However, in most studies, only one or at most two of these aspects are treated. We then want to overcome this lack by offering a global view highlighting all the design issues for optimal RF/DC conversion efficiency. The specific case of rectennas based on patch antennas and Schottky diodes, easily integrated into the circuit boards, is considered. The results of this chapter show that although the harvestable energy levels of ambient RF waves are low, some recent designs offer solutions to take advantage of these ambient waves.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/76547",risUrl:"/chapter/ris/76547",signatures:"Alex Mouapi, Nadir Hakem and Nahi Kandil",book:{id:"9977",type:"book",title:"IoT Applications Computing",subtitle:null,fullTitle:"IoT Applications Computing",slug:"iot-applications-computing",publishedDate:"January 7th 2022",bookSignature:"Ishwar Singh, Zhen Gao and Carmine Massarelli",coverURL:"https://cdn.intechopen.com/books/images_new/9977.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-690-0",printIsbn:"978-1-83968-689-4",pdfIsbn:"978-1-83968-691-7",isAvailableForWebshopOrdering:!0,editors:[{id:"333793",title:"Dr.",name:"Ishwar",middleName:null,surname:"Singh",slug:"ishwar-singh",fullName:"Ishwar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"337950",title:"Ph.D. Student",name:"Alex",middleName:null,surname:"Mouapi",fullName:"Alex Mouapi",slug:"alex-mouapi",email:"alex.mouapi@uqat.ca",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"338013",title:"Prof.",name:"Nadir",middleName:null,surname:"Hakem",fullName:"Nadir Hakem",slug:"nadir-hakem",email:"nadir.hakem@uqat.ca",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of Quebec",institutionURL:null,country:{name:"Canada"}}},{id:"338014",title:"Prof.",name:"Nahi",middleName:null,surname:"Kandil",fullName:"Nahi Kandil",slug:"nahi-kandil",email:"nahi.kandil@uqat.ca",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of Quebec",institutionURL:null,country:{name:"Canada"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Comparison of RF source with other primary energy sources",level:"1"},{id:"sec_3",title:"3. Autonomous wireless sensors in IoT and Mobile computing",level:"1"},{id:"sec_4",title:"4. Design issues of rectenna circuit",level:"1"},{id:"sec_4_2",title:"4.1 Classification of the different techniques",level:"2"},{id:"sec_5_2",title:"4.2 RF propagation models",level:"2"},{id:"sec_6_2",title:"4.3 The receiving antenna",level:"2"},{id:"sec_7_2",title:"4.4 RF/DC converter",level:"2"},{id:"sec_7_3",title:"Table 3.",level:"3"},{id:"sec_8_3",title:"Table 5.",level:"3"},{id:"sec_10_2",title:"4.5 Impedance matching",level:"2"},{id:"sec_11_2",title:"4.6 DC/DC converter",level:"2"},{id:"sec_12_2",title:"4.7 Storage element",level:"2"},{id:"sec_14",title:"5. Conclusion",level:"1"},{id:"sec_18",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'N. Kurata, M. Suzuki, S. Saruwatari, and H. Morikawa, "Actual application of ubiquitous structural monitoring system using wireless sensor networks," in Proceedings of the 14th World Conference on Earthquake Engineering (14WCEE), 2008, pp. 1–9'},{id:"B2",body:'B. Maamer, A. Boughamoura, A. M. F. El-Bab, L. A. Francis, and F. Tounsi, "A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes," Energy Conversion and Management, vol. 199, p. 111973, 2019'},{id:"B3",body:'Q. Ren and G. Yao, "An energy-efficient cluster head selection scheme for energy-harvesting wireless sensor networks," Sensors, vol. 20, no. 1, p. 187, 2020'},{id:"B4",body:'M. P. Aparicio, A. Bakkali, J. Pelegri-Sebastia, T. Sogorb, and V. Bou, "Radio frequency energy harvesting-sources and techniques," Renew. Energy Util. Syst. Integr, 2016'},{id:"B5",body:'S. P. Beeby, M. J. Tudor, and N. White, "Energy harvesting vibration sources for microsystems applications," Measurement science and technology, vol. 17, no. 12, p. R175, 2006'},{id:"B6",body:'V. C. Gungor and G. P. Hancke, "Industrial wireless sensor networks: Challenges, design principles, and technical approaches," IEEE Transactions on industrial electronics, vol. 56, no. 10, pp. 4258–4265, 2009'},{id:"B7",body:'H.-C. Song et al., "Ultra-low resonant piezoelectric MEMS energy harvester with high power density," Journal of Microelectromechanical Systems, vol. 26, no. 6, pp. 1226–1234, 2017'},{id:"B8",body:'Q. Wang, K. Rajashekara, Y. Jia, and J. Sun, "A real-time vibration suppression strategy in electric vehicles," IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 7722–7729, 2017'},{id:"B9",body:'S.-J. Park et al., "A multi-directional wind based triboelectric generator with investigation of frequency effects," Extreme Mechanics Letters, vol. 19, pp. 46–53, 2018'},{id:"B10",body:'M. Marcelić, B. Ivšić, M. Jurčević, and M. Dadić, "Estimation of energy harvesting capabilities for RF and other environmental sources," in 2018 First International Colloquium on Smart Grid Metrology (SmaGriMet), 2018, pp. 1–6: IEEE'},{id:"B11",body:'T. D. P. Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and J. Li, "Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges," IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 264–302, 2017'},{id:"B12",body:'Z. Sheng, C. Mahapatra, C. Zhu, and V. C. Leung, "Recent advances in industrial wireless sensor networks toward efficient management in IoT," IEEE access, vol. 3, pp. 622–637, 2015'},{id:"B13",body:'S. Kim et al., "Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms," Proceedings of the IEEE, vol. 102, no. 11, pp. 1649–1666, 2014'},{id:"B14",body:'Powercast. (2010, 07 april). P2110–915 MHz RF Powerharvester. Available: https://datasheet.octopart.com/P2110-Powercast-datasheet-12525406.pdf'},{id:"B15",body:'e-peas. (2018, 07 april). AEM40940. Available: https://www.mouser.fr/pdfDocs/e-peas_AEM40940_DS.pdf'},{id:"B16",body:'T. S. Rappaport, Wireless communications: principles and practice. prentice hall PTR New Jersey, 1996'},{id:"B17",body:'H. J. Visser and R. J. M. Vullers, "RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements," Proceedings of the IEEE, vol. 101, no. 6, pp. 1410–1423, 2013'},{id:"B18",body:'M. Ku, W. Li, Y. Chen, and K. J. R. Liu, "Advances in Energy Harvesting Communications: Past, Present, and Future Challenges," IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1384–1412, 2016'},{id:"B19",body:'C. Song, P. Lu, and S. Shen, "Highly Efficient Omnidirectional Integrated Multi-Band Wireless Energy Harvesters for Compact Sensor Nodes of Internet-of-Things," IEEE Transactions on Industrial Electronics, 2020'},{id:"B20",body:'N. Tesla, "Apparatus for transmitting electrical energy," ed: Google Patents, 1914'},{id:"B21",body:'R. W. Porto, V. J. Brusamarello, I. Müller, F. L. C. Riaño, and F. R. De Sousa, "Wireless power transfer for contactless instrumentation and measurement," IEEE Instrumentation & Measurement Magazine, vol. 20, no. 4, pp. 49–54, 2017'},{id:"B22",body:'P. Li and R. Bashirullah, "A wireless power interface for rechargeable battery operated medical implants," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 10, pp. 912–916, 2007'},{id:"B23",body:'W. C. Brown, "The history of power transmission by radio waves," IEEE Transactions on microwave theory and techniques, vol. 32, no. 9, pp. 1230–1242, 1984'},{id:"B24",body:'X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless Networks With RF Energy Harvesting: A Contemporary Survey," IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 757–789, 2015'},{id:"B25",body:'A. Mouapi, N. Hakem, and N. Kandil, "Design of 900 MHz RadioFrequency Energy Harvesting Circuit for the Internet of Things Applications," in 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 2020, pp. 1–6: IEEE'},{id:"B26",body:'I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. W. K. Ng, and R. Schober, "Simultaneous wireless information and power transfer in modern communication systems," IEEE Communications Magazine, vol. 52, no. 11, pp. 104–110, 2014'},{id:"B27",body:'Z. Popović et al., "Scalable RF Energy Harvesting," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 1046–1056, 2014'},{id:"B28",body:'R. Dhara, M. Midya, M. Mitra, and S. K. Jana, "CPW-fed tetra band circular polarized antenna for wireless communication applications," in 2017 IEEE Applied Electromagnetics Conference (AEMC), 2017, pp. 1–2'},{id:"B29",body:'M. Abirami, "A review of patch antenna design for 5G," in 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), 2017, pp. 1–3'},{id:"B30",body:'N. Md Din, C. K. Chakrabarty, A. Bin Ismail, K. K. A. Devi, and W.-Y. Chen, "Design of RF energy harvesting system for energizing low power devices," Progress In Electromagnetics Research, vol. 132, pp. 49–69, 2012'},{id:"B31",body:'W. L. Stutzman and G. A. Thiele, Antenna theory and design. John Wiley & Sons, 2012'},{id:"B32",body:'M. Piñuela, P. D. Mitcheson, and S. Lucyszyn, "Ambient RF Energy Harvesting in Urban and Semi-Urban Environments," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2715–2726, 2013'},{id:"B33",body:'A. Mouapi and N. Hakem, "A new approach to design autonomous wireless sensor node based on RF energy harvesting system," Sensors, vol. 18, no. 1, p. 133, 2018'},{id:"B34",body:'C. Luxey, R. Staraj, G. Kossiavas, and A. Papiernik, "Antennes imprimées-Techniques et domaines d’applications," 2007'},{id:"B35",body:'S. Hemour et al., "Towards Low-Power High-Efficiency RF and Microwave Energy Harvesting," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 965–976, 2014'},{id:"B36",body:'J. O. McSpadden, F. Lu, and C. Kai, "Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2053–2060, 1998'},{id:"B37",body:'D. Colaiuda, I. Ulisse, and G. Ferri, "Rectifiers’ Design and Optimization for a Dual-Channel RF Energy Harvester," Journal of Low Power Electronics and Applications, vol. 10, no. 2, p. 11, 2020'},{id:"B38",body:'D. M. Pozar, Microwave engineering. John wiley & sons, 2009'},{id:"B39",body:'C. H. P. Lorenz, S. Hemour, and K. Wu, "Physical Mechanism and Theoretical Foundation of Ambient RF Power Harvesting Using Zero-Bias Diodes," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2146–2158, 2016'},{id:"B40",body:'S. Hemour et al., "Towards low-power high-efficiency RF and microwave energy harvesting," IEEE transactions on microwave theory and techniques, vol. 62, no. 4, pp. 965–976, 2014'},{id:"B41",body:'S. Hemour et al., "Spintronics-based devices for Microwave Power Harvesting," in 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, pp. 1–3'},{id:"B42",body:'P. Vecchia, R. Matthes, G. Ziegelberger, J. Lin, R. Saunders, and A. Swerdlow, "Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz-300 GHz)," International Commission on Non-Ionizing Radiation Protection, 2009'},{id:"B43",body:'V. Marian, B. Allard, C. Vollaire, and J. Verdier, "Strategy for Microwave Energy Harvesting From Ambient Field or a Feeding Source," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4481–4491, 2012'},{id:"B44",body:'P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, "Design Optimization and Implementation for RF Energy Harvesting Circuits," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 1, pp. 24–33, 2012'},{id:"B45",body:'K. K. A. Devi, N. M. Din, and C. K. Chakrabarty, "Optimization of the voltage doubler stages in an RF-DC convertor module for energy harvesting," Circuits and Systems, vol. 3, no. 03, p. 216, 2012'},{id:"B46",body:'D. M. Pozar, "Microwave engineering 3e," Tramsmission Lines and Waveguides, pp. 143–149, 2005'},{id:"B47",body:'S. adami, P. Proynov, B. Stark, G. Hilton, and I. Craddock, "Experimental study of RF energy transfer system in indoor environment," in Journal of Physics: Conference Series, 2014, vol. 557, no. 1, p. 012005: IOP Publishing'},{id:"B48",body:'N. Rizoug, "Modélisation électrique et énergétique des supercondensateurs et méthodes de caractérisation: Application au cyclage d\'un module de supercondensateurs basse tension en grande puissance," 2006'},{id:"B49",body:'J. Liu, X. Chen, S. Cao, and H. Yang, "Overview on hybrid solar photovoltaic-electrical energy storage technologies for power supply to buildings," Energy conversion and management, vol. 187, pp. 103–121, 2019'},{id:"B50",body:'D. Altinel and G. K. Kurt, "Energy harvesting from multiple RF sources in wireless fading channels," IEEE Transactions on Vehicular Technology, vol. 65, no. 11, pp. 8854–8864, 2016'},{id:"B51",body:'L. Yang, Y. J. Zhou, C. Zhang, X. M. Yang, X. Yang, and C. Tan, "Compact Multiband Wireless Energy Harvesting Based Battery-Free Body Area Networks Sensor for Mobile Healthcare," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 2, no. 2, pp. 109–115, 2018'},{id:"B52",body:'J. Guo, H. Zhang, and X. Zhu, "Theoretical Analysis of RF-DC Conversion Efficiency for Class-F Rectifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 977–985, 2014'},{id:"B53",body:'S. Ghosh, "Design and testing of RF energy harvesting module in GSM 900 band using circularly polarized antenna," in 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), 2015, pp. 386–389'},{id:"B54",body:'A. Mouapi, N. Hakem, and N. Kandil, "High efficiency rectifier for RF energy harvesting in the GSM band," in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, pp. 1617–1618'},{id:"B55",body:'D. Masotti, A. Costanzo, M. D. Prete, and V. Rizzoli, "Genetic-based design of a tetra-band high-efficiency radio-frequency energy harvesting system," IET Microwaves, Antennas & Propagation, vol. 7, no. 15, pp. 1254–1263, 2013'},{id:"B56",body:'C. Song et al., "A Novel Six-Band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting," IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 3160–3171, 2016'},{id:"B57",body:'J. Zbitou, M. Latrach, and S. Toutain, "Hybrid rectenna and monolithic integrated zero-bias microwave rectifier," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 147–152, 2006'},{id:"B58",body:'D. Wang and R. Negra, "Design of a dual-band rectifier for wireless power transmission," in 2013 IEEE Wireless Power Transfer (WPT), 2013, pp. 127–130'},{id:"B59",body:'J. A. Theeuwes, H. J. Visser, M. C. van Beurden, and G. J. Doodeman, "Efficient, compact, wireless battery design," in 2007 European Conference on Wireless Technologies, 2007, pp. 233–236: IEEE'},{id:"B60",body:'M. Roberg, T. Reveyrand, I. Ramos, E. A. Falkenstein, and Z. Popovic, "High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4043–4052, 2012'},{id:"B61",body:'S. Young-Ho and C. Kai, "A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission," IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 7, pp. 1784–1789, 2002'},{id:"B62",body:'S. A. Rotenberg, P. D. H. Re, S. K. Podilchak, G. Goussetis, and J. Lee, "An efficient rectifier for an RDA wireless power transmission system operating at 2.4 GHz," in 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 2017, pp. 1–3: IEEE'},{id:"B63",body:'U. Olgun, C.-C. Chen, and J. L. Volakis, "Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs," in 2010 URSI International Symposium on Electromagnetic Theory, 2010, pp. 329–331: IEEE'},{id:"B64",body:'R. Yu-Jiun and C. Kai, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 4, pp. 1495–1502, 2006'},{id:"B65",body:'H. Saghlatoon, T. Björninen, L. Sydänheimo, M. M. Tentzeris, and L. Ukkonen, "Inkjet-Printed Wideband Planar Monopole Antenna on Cardboard for RF Energy-Harvesting Applications," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 325–328, 2015'},{id:"B66",body:'K. Nishida et al., "5.8 GHz high sensitivity rectenna array," in 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, 2011, pp. 19–22'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Alex Mouapi",address:"alex.mouapi@uqat.ca",affiliation:'
Underground Communications Research Laboratory, University of Quebec in Abitibi-Temiscamingue (UQAT), Val d’Or, Quebec, Canada
Underground Communications Research Laboratory, University of Quebec in Abitibi-Temiscamingue (UQAT), Val d’Or, Quebec, Canada
'}],corrections:null},book:{id:"9977",type:"book",title:"IoT Applications Computing",subtitle:null,fullTitle:"IoT Applications Computing",slug:"iot-applications-computing",publishedDate:"January 7th 2022",bookSignature:"Ishwar Singh, Zhen Gao and Carmine Massarelli",coverURL:"https://cdn.intechopen.com/books/images_new/9977.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-690-0",printIsbn:"978-1-83968-689-4",pdfIsbn:"978-1-83968-691-7",isAvailableForWebshopOrdering:!0,editors:[{id:"333793",title:"Dr.",name:"Ishwar",middleName:null,surname:"Singh",slug:"ishwar-singh",fullName:"Ishwar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"63952",title:"Dr.",name:"Francisco",middleName:null,surname:"Blanco-Favela",email:"fblanco1@terra.com.mx",fullName:"Francisco Blanco-Favela",slug:"francisco-blanco-favela",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"31354",title:"The Innate Immune Response Mediated by TLRs in Atherosclerosis",slug:"the-innate-immune-response-mediated-by-tlrs-in-atherosclerosis",abstract:null,signatures:"Luis Chávez-Sánchez, Karina Chávez-Rueda, María Victoria Legorreta-Haquet, Eduardo Montoya-Díaz and Francisco Blanco-Favela",authors:[{id:"63952",title:"Dr.",name:"Francisco",surname:"Blanco-Favela",fullName:"Francisco Blanco-Favela",slug:"francisco-blanco-favela",email:"fblanco1@terra.com.mx"},{id:"68561",title:"Prof.",name:"Luis",surname:"Chávez-Sánchez",fullName:"Luis Chávez-Sánchez",slug:"luis-chavez-sanchez",email:"luis_chz@hotmail.com"},{id:"68976",title:"Dr.",name:"Karina",surname:"Chavez-Rueda",fullName:"Karina Chavez-Rueda",slug:"karina-chavez-rueda",email:"akarina_chavez@yahoo.com.mx"},{id:"68977",title:"MSc",name:"María Victoria",surname:"Legorreta-Haquet",fullName:"María Victoria Legorreta-Haquet",slug:"maria-victoria-legorreta-haquet",email:"vileha14@yahoo.com.mx"},{id:"68979",title:"MSc.",name:"Eduardo",surname:"Montoya-Díaz",fullName:"Eduardo Montoya-Díaz",slug:"eduardo-montoya-diaz",email:"genlalo@yahoo.com.mx"}],book:{id:"710",title:"Inflammation, Chronic Diseases and Cancer",slug:"inflammation-chronic-diseases-and-cancer-cell-and-molecular-biology-immunology-and-clinical-bases",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"62908",title:"Dr.",name:"Julia",surname:"Schumann",slug:"julia-schumann",fullName:"Julia Schumann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"63784",title:"Dr.",name:"Tamar",surname:"Aprahamian",slug:"tamar-aprahamian",fullName:"Tamar Aprahamian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Boston University",institutionURL:null,country:{name:"United States of America"}}},{id:"63956",title:"Dr.",name:"Mahin",surname:"Khatami",slug:"mahin-khatami",fullName:"Mahin Khatami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63956/images/2341_n.jpg",biography:"Dr. Mahin Khatami was born in Tehran-Iran. She immigrated to USA in 1969 after training in Chemistry (BS) and Science Education (MS). She received her MA in Biochemistry from SUNY at Buffalo (1977) and PhD in Molecular Biology from the University of Pennsylvania (UPA, 1980). Her postdoctoral trainings were in physiology at the University of Virginia, protein chemistry (proteomics) at the Fox Chase Cancer Institute and UPA. She was a Faculty of Medicine at the Department of Ophthalmology, Scheie Eye Institute, UPA, until 1992. In collaboration with a team of scientists, under the direction of John H. Rockey, MD, PhD, at UPA, she quickly earned her supervisory responsibilities on two major projects; cell and molecular biology of diabetic retinopathy/maculopathy and experimental models of acute and chronic ocular inflammatory diseases. In her junior academic career, Dr. Khatami is considered the most productive scientist in USA as she published 39 scientific articles and over 60 abstracts in conference proceedings in the first decade of her research. In 1998, at the National Cancer Institute (NCI), the National Institutes of Health (NIH), she was a Program Director and health scientist administrator, involved in developing molecular concepts for utilization of patient biospecimen for large clinical trials such as Prostate-Lung-Colorectal Ovarian (PLCO) Cancer Screening Trials. Extension of her earlier ‘accidental’ discoveries on models of inflammatory diseases became closely relevant to her duties for developing proposals for molecular diagnosis, prevention and therapy of cancer for PLCO and designs of cohort clinical trials. The results of her pioneering studies in 1980’s on experimental models of inflammatory diseases are suggestive of the first evidence for a direct link between inflammation and tumorigenesis and angiogenesis. She also published the first report on inflammation-induced developmental phases of immune dysfunction that would lead to tumor development. In 2005, she also published an NCI-Invention, in Federal Register for standardizing cancer biomarkers criteria (data elements) as a foundation of developing a cancer biomarkers database; M-CSF, an inflammatory mediator was identified as prototype to test/tailor data elements. Her challenging efforts to promote the role of inflammation in cancer research, which initially met with tremendous resistance by decision makers, have recently paid off as the number of federally funded projects, technologies and drug development and related networks that focus on the role of inflammation and cancer has significantly increased in the last decade within and outside NCI/NIH. \nDr. Khatami has lectured internationally; served as president and VP for Graduate Women In Science (GWIS) Omicron Chapter; scientific judge; founder and president of Medical Education Technologies (HUS); consultant to pharmaceutical companies; member of professional societies and editorial activities; symposia organizer. She is Associate Editor for Cell Biochemistry and Biophysics, lecturer, author and editor. Before retiring at professor level from NCI/NIH in 2009, her position was Program Director (IMAT) and Assistant Director for Technology Program Development, Office of Technology and Industrial Relations, Office of the Director, NCI/NIH.",institutionString:null,institution:{name:"National Institutes of Health",institutionURL:null,country:{name:"United States of America"}}},{id:"64298",title:"Dr.",name:"A. Valance",surname:"Washington",slug:"a.-valance-washington",fullName:"A. Valance Washington",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico at Mayagüez",institutionURL:null,country:{name:"United States of America"}}},{id:"68561",title:"Prof.",name:"Luis",surname:"Chávez-Sánchez",slug:"luis-chavez-sanchez",fullName:"Luis Chávez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Mexican Social Security Institute",institutionURL:null,country:{name:"Mexico"}}},{id:"68976",title:"Dr.",name:"Karina",surname:"Chavez-Rueda",slug:"karina-chavez-rueda",fullName:"Karina Chavez-Rueda",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Mexican Social Security Institute",institutionURL:null,country:{name:"Mexico"}}},{id:"68977",title:"MSc",name:"María Victoria",surname:"Legorreta-Haquet",slug:"maria-victoria-legorreta-haquet",fullName:"María Victoria Legorreta-Haquet",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Mexican Social Security Institute",institutionURL:null,country:{name:"Mexico"}}},{id:"68979",title:"MSc.",name:"Eduardo",surname:"Montoya-Díaz",slug:"eduardo-montoya-diaz",fullName:"Eduardo Montoya-Díaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Mexican Social Security Institute",institutionURL:null,country:{name:"Mexico"}}},{id:"70195",title:"Dr.",name:"Omar",surname:"Esponda",slug:"omar-esponda",fullName:"Omar Esponda",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/70195/images/16809_n.jpg",biography:"Internal medicine, board certified physician, who\\'s main interest focuses, on developing a career that combines research and academic medicine, in the area of vascular diseases. Dr. Esponda, is past Chief Resident at the Internal Medicine program at the University Hospital Dr. Ramón Ruiz Arnau and continues in training as a fellow in Vascular Medicine.",institutionString:null,institution:null},{id:"70198",title:"MSc.",name:"Yaliz",surname:"Loperena",slug:"yaliz-loperena",fullName:"Yaliz Loperena",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"advertising-policy",title:"Advertising Policy",intro:"
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"
1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n
2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\\n\\n
3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n
4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n
5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n
6. Advertisements and editorial content are clearly distinguishable.
\\n\\n
7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n
8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\\n\\n
9. Types of advertisments:
\\n\\n
- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\\n\\n
- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\\n\\n
11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n
2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\n\n
3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n
4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n
5. IntechOpen has blocked advertisement of harmful products or services.
\n\n
6. Advertisements and editorial content are clearly distinguishable.
\n\n
7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n
8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\n\n
9. Types of advertisments:
\n\n
- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\n\n
- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\n\n
11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\n\n
Policy last updated: 2021-04-28
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"ECM",topicId:"8,9,10,11,14,15,17,20,22,24"},books:[{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11836",title:"Estuary Research",subtitle:null,isOpenForSubmission:!0,hash:"ef822fc9eee5600aeb7e45492e04a6e7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11836.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11837",title:"The Mediterranean",subtitle:null,isOpenForSubmission:!0,hash:"bbb25987a982d61da4f47fb13614ba3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11846",title:"Seabed",subtitle:null,isOpenForSubmission:!0,hash:"1b1698a2d8d36b5ec3571c20486eb2c9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11846.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11834",title:"Steppe Geography",subtitle:null,isOpenForSubmission:!0,hash:"363517fa6f079daf94c51ea1b91fed2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11834.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11938",title:"Ballistics",subtitle:null,isOpenForSubmission:!0,hash:"9c64ef67aac55216f08c65a2a179835c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11938.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11911",title:"Scientometrics",subtitle:null,isOpenForSubmission:!0,hash:"ed74b66a0dc7d009900af198efc6b2e1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11911.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11913",title:"Scheduling Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"da42ea7b678d715e23ffcae50ae47078",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11941",title:"Advances in Turbomachinery",subtitle:null,isOpenForSubmission:!0,hash:"fe2c693976d70c5d0cc5f8003e6e73c5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11941.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11915",title:"Ontology in Computer Science",subtitle:null,isOpenForSubmission:!0,hash:"b52397215f6b5e05a22368f629695704",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11915.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11942",title:"Updates on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f4ac095defb765e0e9bfebc06dac719e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11942.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:100},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:104},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4380},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1305",title:"Robotics Navigation",slug:"robotic-mapping-robotics-navigation",parent:{id:"258",title:"Robotic Mapping",slug:"robotic-mapping"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:17,numberOfWosCitations:41,numberOfCrossrefCitations:36,numberOfDimensionsCitations:56,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1305",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5263",title:"Robot Control",subtitle:null,isOpenForSubmission:!1,hash:"b6ee44b867a4e27c8e3bae6016c4f698",slug:"robot-control",bookSignature:"Efren Gorrostieta Hurtado",coverURL:"https://cdn.intechopen.com/books/images_new/5263.jpg",editedByType:"Edited by",editors:[{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3711",title:"Robot Localization and Map Building",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"robot-localization-and-map-building",bookSignature:"Hanafiah Yussof",coverURL:"https://cdn.intechopen.com/books/images_new/3711.jpg",editedByType:"Edited by",editors:[{id:"32065",title:"Dr.",name:"Hanafiah",middleName:null,surname:"Yussof",slug:"hanafiah-yussof",fullName:"Hanafiah Yussof"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"10584",doi:"10.5772/9274",title:"Visual Odometry and Mapping for Underwater Autonomous Vehicles",slug:"visual-odometry-and-mapping-for-underwater-autonomous-vehicles",totalDownloads:3029,totalCrossrefCites:2,totalDimensionsCites:9,abstract:null,book:{id:"3711",slug:"robot-localization-and-map-building",title:"Robot Localization and Map Building",fullTitle:"Robot Localization and Map Building"},signatures:"Silvia Botelho, Gabriel Oliveira, Paulo Drews, Monica Figueiredo and Celina Haffele",authors:null},{id:"10581",doi:"10.5772/9271",title:"Objects Localization and Differentiation Using Ultrasonic Sensors",slug:"objects-localization-and-differentiation-using-ultrasonic-sensors",totalDownloads:4449,totalCrossrefCites:5,totalDimensionsCites:8,abstract:null,book:{id:"3711",slug:"robot-localization-and-map-building",title:"Robot Localization and Map Building",fullTitle:"Robot Localization and Map Building"},signatures:"Bogdan Kreczmer",authors:null},{id:"10566",doi:"10.5772/9256",title:"Model based Kalman Filter Mobile Robot Self-Localization",slug:"model-based-kalman-filter-mobile-robot-self-localization",totalDownloads:4690,totalCrossrefCites:7,totalDimensionsCites:7,abstract:null,book:{id:"3711",slug:"robot-localization-and-map-building",title:"Robot Localization and Map Building",fullTitle:"Robot Localization and Map Building"},signatures:"Edouard Ivanjko, Andreja Kitanov and Ivan Petrovic",authors:null},{id:"10573",doi:"10.5772/9263",title:"Heading Measurements for Indoor Mobile Robots with Minimized Drift Using a MEMS Gyroscopes",slug:"heading-measurements-for-indoor-mobile-robots-with-minimized-drift-using-a-mems-gyroscopes",totalDownloads:3733,totalCrossrefCites:4,totalDimensionsCites:6,abstract:null,book:{id:"3711",slug:"robot-localization-and-map-building",title:"Robot Localization and Map Building",fullTitle:"Robot Localization and Map Building"},signatures:"Sung Kyung Hong and Young-sun Ryuh",authors:null},{id:"10580",doi:"10.5772/9270",title:"Real-Time Wireless Location and Tracking System with Motion Pattern Detection",slug:"real-time-wireless-location-and-tracking-system-with-motion-pattern-detection",totalDownloads:3752,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3711",slug:"robot-localization-and-map-building",title:"Robot Localization and Map Building",fullTitle:"Robot Localization and Map Building"},signatures:"Pedro Abreu, Vasco Vinhas, Pedro Mendes, Luis Paulo Reis and Julio Garganta",authors:null}],mostDownloadedChaptersLast30Days:[{id:"51635",title:"Analysis of a Sorter Cascade Applied to Control a Wheelchair",slug:"analysis-of-a-sorter-cascade-applied-to-control-a-wheelchair",totalDownloads:1636,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"The precise eye state detection is a fundamental stage for various activities that require human-machine interaction (HMI). This chapter presents an analysis of the implementation of a system for navigating a wheelchair with automation (CRA), based on facial expressions, especially eyes closed using a Haar cascade classifier (HCC). Aimed at people with locomotor disability of the upper and lower limbs, the state detection was based on two steps: the capture of the image, which concentrates on the detection actions and image optimization; actions of the chair, which interprets the data capture and sends the action to the chair. The results showed that the model has excellent accuracy in identification with robust performance in recognizing eyes closed, bypassing well occlusion issues and lighting with about 98% accuracy. The application of the model in the simulations opens the implementation and marriage opportunity with the chair sensor universe aiming a safe and efficient navigation to the user.",book:{id:"5263",slug:"robot-control",title:"Robot Control",fullTitle:"Robot Control"},signatures:"Marcos Figueredo, Alexandre Nascimento, Roberto L.S. Monteiro\nand Marcelo A. Moret",authors:[{id:"182667",title:"Dr.",name:"Marcos",middleName:"Batista",surname:"Figueredo",slug:"marcos-figueredo",fullName:"Marcos Figueredo"}]},{id:"52036",title:"Watch Your Step! Terrain Traversability for Robot Control",slug:"watch-your-step-terrain-traversability-for-robot-control",totalDownloads:1933,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Watch your step! Or perhaps, watch your wheels. Whatever the robot is, if it puts its feet, tracks, or wheels in the wrong place, it might get hurt; and as robots are quickly going from structured and completely known environments towards uncertain and unknown terrain, the surface assessment becomes an essential requirement. As a result, future mobile robots cannot neglect the evaluation of terrain’s structure, according to their driving capabilities. With the objective of filling this gap, the focus of this study was laid on terrain analysis methods, which can be used for robot control with particular reference to autonomous vehicles and mobile robots. Giving an overview of theory related to this topic, the investigation not only covers hardware, such as visual sensors or laser scanners, but also space descriptions, such as digital elevation models and point descriptors, introducing new aspects and characterization of terrain assessment. During the discussion, a wide number of examples and methodologies are exposed according to different tools and sensors, including the description of a recent method of terrain assessment using normal vectors analysis. Indeed, normal vectors has demonstrated great potentialities in the field of terrain irregularity assessment in both on‐road and off‐road environments.",book:{id:"5263",slug:"robot-control",title:"Robot Control",fullTitle:"Robot Control"},signatures:"Mauro Bellone",authors:[{id:"158265",title:"Dr.",name:"Mauro",middleName:null,surname:"Bellone",slug:"mauro-bellone",fullName:"Mauro Bellone"}]},{id:"51960",title:"Induced Force Hovering of Spherical Robot by Under-Actuated Control of Dual Rotor",slug:"induced-force-hovering-of-spherical-robot-by-under-actuated-control-of-dual-rotor",totalDownloads:1779,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"This chapter discusses the design and modelling of a spherical flying robot. The main objective is to control its hovering and omnidirectional mobility by controlling the air mass differential pressure between two asynchronous coaxial rotors that are aligned collinearly. The spherical robot design has embedded a gyroscopic mechanism of three rings that allow the rotors’ under-actuated mobility with 3DOF. The main objective of this study is to maintain the thrust force with nearly vertical direction. The change in pressure between rotors allows to vary the rotors’ tilt and pitch. The system uses special design propellers to improve the laminar air mass flux. A nonlinear fitting model automatically calibrates the rotors’ angular speed as a function of digital values. This model is the functional form that represents the reference input to control the rotors’ speed, validated by three types controllers: P, PI, and PID. The robot’s thrust and induced forces and flight mechanics are proposed and analysed. The simulation results show the feasibility of the approach.",book:{id:"5263",slug:"robot-control",title:"Robot Control",fullTitle:"Robot Control"},signatures:"G. Santos-Medina, K.Y. Heras-Gaytán, E.A. Martínez-García, R.\nTorres-Córdoba and V. Carrillo-Saucedo",authors:[{id:"84958",title:"Dr.",name:"Edgar A.",middleName:"Alonso",surname:"Martínez García",slug:"edgar-a.-martinez-garcia",fullName:"Edgar A. Martínez García"},{id:"185784",title:"B.Sc.",name:"Gerson",middleName:null,surname:"Santos-Medina",slug:"gerson-santos-medina",fullName:"Gerson Santos-Medina"},{id:"185785",title:"BSc.",name:"Karla",middleName:null,surname:"Heras-Gaytan",slug:"karla-heras-gaytan",fullName:"Karla Heras-Gaytan"},{id:"185786",title:"Dr.",name:"Rafael",middleName:null,surname:"Torres-Córdoba",slug:"rafael-torres-cordoba",fullName:"Rafael Torres-Córdoba"},{id:"185787",title:"Dr.",name:"Victor",middleName:null,surname:"Carrillo-Saucedo",slug:"victor-carrillo-saucedo",fullName:"Victor Carrillo-Saucedo"}]},{id:"51927",title:"Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation",slug:"adaptive-steering-and-trajectory-control-of-wheeled-mobile-robots-for-autonomous-navigation",totalDownloads:1977,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter presents a new reactive navigation algorithm for a wheeled mobile robot (WMR) with a differential drive mechanism moving in unknown environments [1]. The mobile robot is controlled to travel to a predefined goal position safely and efficiently without any prior map of the environment. The navigation is achieved by modulating the steering angle and turning radius. To avoid obstacles while seeking the goal position, the dimensions and shape of the robot are incorporated to determine the set of all possible collision-free steering angles. The algorithm then selects the optimum steering angle candidate to contour the obstacle. Simulation and experimental results on a WMR prototype are used to validate the proposed algorithms.",book:{id:"5263",slug:"robot-control",title:"Robot Control",fullTitle:"Robot Control"},signatures:"Mariam Al-Sagban and Rached Dhaouadi",authors:[{id:"183057",title:"M.Sc.",name:"Mariam",middleName:null,surname:"Al-Sagban",slug:"mariam-al-sagban",fullName:"Mariam Al-Sagban"}]},{id:"10584",title:"Visual Odometry and Mapping for Underwater Autonomous Vehicles",slug:"visual-odometry-and-mapping-for-underwater-autonomous-vehicles",totalDownloads:3030,totalCrossrefCites:2,totalDimensionsCites:9,abstract:null,book:{id:"3711",slug:"robot-localization-and-map-building",title:"Robot Localization and Map Building",fullTitle:"Robot Localization and Map Building"},signatures:"Silvia Botelho, Gabriel Oliveira, Paulo Drews, Monica Figueiredo and Celina Haffele",authors:null}],onlineFirstChaptersFilter:{topicId:"1305",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"
\r\n\tTransforming our World: the 2030 Agenda for Sustainable Development endorsed by United Nations and 193 Member States, came into effect on Jan 1, 2016, to guide decision making and actions to the year 2030 and beyond. Central to this Agenda are 17 Goals, 169 associated targets and over 230 indicators that are reviewed annually. The vision envisaged in the implementation of the SDGs is centered on the five Ps: People, Planet, Prosperity, Peace and Partnership. This call for renewed focused efforts ensure we have a safe and healthy planet for current and future generations.
\r\n
\r\n\t
\r\n
\r\n\tThis Series focuses on covering research and applied research involving the five Ps through the following topics:
\r\n
\r\n\t
\r\n
\r\n\t1. Sustainable Economy and Fair Society that relates to SDG 1 on No Poverty, SDG 2 on Zero Hunger, SDG 8 on Decent Work and Economic Growth, SDG 10 on Reduced Inequalities, SDG 12 on Responsible Consumption and Production, and SDG 17 Partnership for the Goals
\r\n
\r\n\t
\r\n
\r\n\t2. Health and Wellbeing focusing on SDG 3 on Good Health and Wellbeing and SDG 6 on Clean Water and Sanitation
\r\n
\r\n\t
\r\n
\r\n\t3. Inclusivity and Social Equality involving SDG 4 on Quality Education, SDG 5 on Gender Equality, and SDG 16 on Peace, Justice and Strong Institutions
\r\n
\r\n\t
\r\n
\r\n\t4. Climate Change and Environmental Sustainability comprising SDG 13 on Climate Action, SDG 14 on Life Below Water, and SDG 15 on Life on Land
\r\n
\r\n\t
\r\n
\r\n\t5. Urban Planning and Environmental Management embracing SDG 7 on Affordable Clean Energy, SDG 9 on Industry, Innovation and Infrastructure, and SDG 11 on Sustainable Cities and Communities.
\r\n
\r\n\t
\r\n
\r\n\tThe series also seeks to support the use of cross cutting SDGs, as many of the goals listed above, targets and indicators are all interconnected to impact our lives and the decisions we make on a daily basis, making them impossible to tie to a single topic.
",coverUrl:"https://cdn.intechopen.com/series/covers/24.jpg",latestPublicationDate:"May 23rd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"262440",title:"Prof.",name:"Usha",middleName:null,surname:"Iyer-Raniga",slug:"usha-iyer-raniga",fullName:"Usha Iyer-Raniga",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRYSXQA4/Profile_Picture_2022-02-28T13:55:36.jpeg",biography:"Usha Iyer-Raniga is a professor in the School of Property and Construction Management at RMIT University. Usha co-leads the One Planet Network’s Sustainable Buildings and Construction Programme (SBC), a United Nations 10 Year Framework of Programmes on Sustainable Consumption and Production (UN 10FYP SCP) aligned with Sustainable Development Goal 12. The work also directly impacts SDG 11 on Sustainable Cities and Communities. She completed her undergraduate degree as an architect before obtaining her Masters degree from Canada and her Doctorate in Australia. Usha has been a keynote speaker as well as an invited speaker at national and international conferences, seminars and workshops. Her teaching experience includes teaching in Asian countries. She has advised Austrade, APEC, national, state and local governments. She serves as a reviewer and a member of the scientific committee for national and international refereed journals and refereed conferences. She is on the editorial board for refereed journals and has worked on Special Issues. Usha has served and continues to serve on the Boards of several not-for-profit organisations and she has also served as panel judge for a number of awards including the Premiers Sustainability Award in Victoria and the International Green Gown Awards. Usha has published over 100 publications, including research and consulting reports. Her publications cover a wide range of scientific and technical research publications that include edited books, book chapters, refereed journals, refereed conference papers and reports for local, state and federal government clients. She has also produced podcasts for various organisations and participated in media interviews. She has received state, national and international funding worth over USD $25 million. Usha has been awarded the Quarterly Franklin Membership by London Journals Press (UK). Her biography has been included in the Marquis Who's Who in the World® 2018, 2016 (33rd Edition), along with approximately 55,000 of the most accomplished men and women from around the world, including luminaries as U.N. Secretary-General Ban Ki-moon. In 2017, Usha was awarded the Marquis Who’s Who Lifetime Achiever Award.",institutionString:null,institution:{name:"RMIT University",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:'Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the "new normal". Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.',institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:11,paginationItems:[{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81297",title:"Legumes Cropping and Nitrogen Fixation under Mediterranean Climate",doi:"10.5772/intechopen.104473",signatures:"Fernando Teixeira",slug:"legumes-cropping-and-nitrogen-fixation-under-mediterranean-climate",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81493",title:"Rust Disease Classification Using Deep Learning Based Algorithm: The Case of Wheat",doi:"10.5772/intechopen.104426",signatures:"Shivani Sood, Harjeet Singh and Suruchi Jindal",slug:"rust-disease-classification-using-deep-learning-based-algorithm-the-case-of-wheat",totalDownloads:41,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Parasitic Infectious Diseases",value:5,count:1,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:2,group:"subseries"}],publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"17",type:"subseries",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80484",title:"The Use of Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) to Study Ivermectin-Mediated Molecular Pathway Changes in Human Ovarian Cancer Cells",doi:"10.5772/intechopen.102092",signatures:"Na Li and Xianquan Zhan",slug:"the-use-of-stable-isotope-labeling-with-amino-acids-in-cell-culture-silac-to-study-ivermectin-mediat",totalDownloads:83,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:85,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79031",title:"Isolation and Expansion of Mesenchymal Stem/Stromal Cells, Functional Assays and Long-Term Culture Associated Alterations of Cellular Properties",doi:"10.5772/intechopen.100286",signatures:"Chenghai Li",slug:"isolation-and-expansion-of-mesenchymal-stem-stromal-cells-functional-assays-and-long-term-culture-as",totalDownloads:80,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78960",title:"Two-Dimensional and Three-Dimensional Cell Culture and Their Applications",doi:"10.5772/intechopen.100382",signatures:"Sangeeta Ballav, Ankita Jaywant Deshmukh, Shafina Siddiqui, Jyotirmoi Aich and Soumya Basu",slug:"two-dimensional-and-three-dimensional-cell-culture-and-their-applications",totalDownloads:251,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78812",title:"Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture",doi:"10.5772/intechopen.99146",signatures:"Harikrishnareddy Rachamalla, Anubhab Mukherjee and Manash K. Paul",slug:"nanotechnology-application-and-intellectual-property-right-prospects-of-mammalian-cell-culture",totalDownloads:122,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78274",title:"A Brief Concept of Cell Culture: Challenges, Prospects and Applications",doi:"10.5772/intechopen.99387",signatures:"Md. Salauddin",slug:"a-brief-concept-of-cell-culture-challenges-prospects-and-applications",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:186,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:199,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:190,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/6753",hash:"",query:{},params:{id:"6753"},fullPath:"/chapters/6753",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()