\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8148",leadTitle:null,fullTitle:"Investment Strategies in Emerging New Trends in Finance",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,reviewType:"peer-reviewed",abstract:"Investment and portfolio strategies are some of the most exciting topics in finance. This book presents the most up-to-date topics and techniques in finance to facilitate the investment process for researchers and investors in selecting appropriate investment strategies with the emergence of new issues and concepts in financial areas. This book contains nine chapters divided into three sections: The first section, “Investment and Portfolio Strategies,” discusses different investment strategies in portfolio selection. The second section, “Behavioral Finance and Investment Decisions,” examines the application of behavioral finance in investment decisions. The last section, “Emerging New Trends in Finance,” includes some new and interesting finance topics that can depict our vision for the future arena of finance.",isbn:"978-1-83962-966-2",printIsbn:"978-1-83962-965-5",pdfIsbn:"978-1-83962-967-9",doi:"10.5772/intechopen.78097",price:119,priceEur:129,priceUsd:155,slug:"investment-strategies-in-emerging-new-trends-in-finance",numberOfPages:182,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",bookSignature:"Reza Gharoie Ahangar and Asma Salman",publishedDate:"April 14th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",numberOfDownloads:3936,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:0,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 1st 2020",dateEndSecondStepPublish:"July 22nd 2020",dateEndThirdStepPublish:"September 20th 2020",dateEndFourthStepPublish:"December 9th 2020",dateEndFifthStepPublish:"February 7th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar",profilePictureURL:"https://mts.intechopen.com/storage/users/91081/images/system/91081.jpg",biography:"Reza Gharoie Ahangar is a Ph.D. student in Decision Science with a minor in Economics and a teaching fellow and research assistant in G. Brint Ryan College of Business, University of North Texas, USA. He is a member of the American Finance Association (AFA), Decision Sciences Institute (DSI), Production and Operations Management Society (POMS), Institute for Operations Research and the Management Sciences (INFORMS), and Association of Scientists, Developers, and Faculties (ASDF). Mr. Ahangar is a teaching assistant at UNT for six years and has authored eight books and book chapters as well as several journal and conference publications in finance and business analytics, with more than forty technical publications. His research works are cited by the top 0.1% of most-read authors in academia. He serves as an editorial board member for several scientific journals. His current research interests include investment, forecasting, optimization, FinTech, and the application of artificial intelligence in financial areas.",institutionString:"University of North Texas",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of North Texas",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"64",title:"Business Economics",slug:"business-economics"}],chapters:[{id:"73563",title:"Implementation of a Value-Oriented Strategy of the Organization through a Portfolio of Projects",doi:"10.5772/intechopen.94034",slug:"implementation-of-a-value-oriented-strategy-of-the-organization-through-a-portfolio-of-projects",totalDownloads:565,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The article deals with the methodological aspects of implementing the organization’s strategy through project portfolio management. The existing concepts, models, and methods of organizational development portfolios management are analyzed. The types of organizational cultures are considered in accordance with the evolutionary theory of values. The article shows that the success of the implementation of the organization’s development strategy is impossible without taking into account its dominant values. The organization development model links the spiral nature of systems development and the organization’s strategy in the form of a project portfolio. The model of the projects’ portfolio formation based on the definition of organizational values at the stages of the life cycle of the system is shown. The application of the competitive analysis method for the projects’ portfolio formation using the principles of value-oriented and reflexive management for making management decisions is presented.",signatures:"Valentyna Michaylovna Molokanova",downloadPdfUrl:"/chapter/pdf-download/73563",previewPdfUrl:"/chapter/pdf-preview/73563",authors:[{id:"326184",title:"Prof.",name:"Valentyna Michaylovna",surname:"Molokanova",slug:"valentyna-michaylovna-molokanova",fullName:"Valentyna Michaylovna Molokanova"}],corrections:null},{id:"75659",title:"Estimating Short-Term Returns with Volatilities for High Frequency Stock Trades in Emerging Economies Using Gaussian Processes (GPs)",doi:"10.5772/intechopen.96486",slug:"estimating-short-term-returns-with-volatilities-for-high-frequency-stock-trades-in-emerging-economie",totalDownloads:280,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Fundamental theorem behind financial markets is that stock prices are intrinsically complex and stochastic in nature. One of the complexities is the volatilities associated with stock prices. Price volatility is often detrimental to the return economics and thus investors should factor it in when making investment decisions, choices, and temporal or permanent moves. It is therefore crucial to make necessary and regular stock price volatility forecasts for the safety and economics of investors’ returns. These forecasts should be accurate and not misleading. Different traditional models and methods such as ARCH, GARCH have been intuitively implemented to make such forecasts, however they fail to effectively capture the short-term volatility forecasts. In this paper we investigate and implement a combination of numeric and probabilistic models towards short-term volatility and return forecasting for high frequency trades. The essence is that: one-day-ahead volatility forecasts were made with Gaussian Processes (GPs) applied to the outputs of a numerical market prediction (NMP) model. Firstly, the stock price data from NMP was corrected by a GP. Since it not easy to set price limits in a market due to its free nature, and randomness of the prices, a censored GP was used to model the relationship between the corrected stock prices and returns. To validate the proposed approach, forecasting errors were evaluated using the implied and estimated data.",signatures:"Leonard Mushunje, Maxwell Mashasha and Edina Chandiwana",downloadPdfUrl:"/chapter/pdf-download/75659",previewPdfUrl:"/chapter/pdf-preview/75659",authors:[{id:"342259",title:"B.Sc.",name:"Leonard",surname:"Mushunje",slug:"leonard-mushunje",fullName:"Leonard Mushunje"},{id:"347042",title:"Mr.",name:"Maxwell",surname:"Mashasha",slug:"maxwell-mashasha",fullName:"Maxwell Mashasha"},{id:"352140",title:"Dr.",name:"Edina",surname:"Chandiwana",slug:"edina-chandiwana",fullName:"Edina Chandiwana"}],corrections:null},{id:"74254",title:"Firm-specific News and Anomalies",doi:"10.5772/intechopen.94286",slug:"firm-specific-news-and-anomalies",totalDownloads:353,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This study investigates the relation between idiosyncratic volatility and future returns around the firm-specific news announcements in the Korean stock market from July 1995 to June 2018. The excess returns of decile portfolios that are formed by sorting the stocks based on news and non-news idiosyncratic volatility measures. The Fama and French three-factor model is also examined to see whether systematic risk affects news and non-news idiosyncratic volatility profits. The pricing of our news and non-news idiosyncratic volatility are confirmed in the cross-sectional regression using the Fama and MacBeth method. Market beta, size, book to market, momentum, liquidity, and maximum return are controlled to determine robustness. Our empirical evidence suggests that the pricing of the non-news idiosyncratic volatility is more strongly negative compared to the news idiosyncratic volatility, which is contrary to the limited arbitrage explanation for the negative price of the idiosyncratic volatility. We find that the non-news idiosyncratic volatility has a robust negative relation to returns in non-January months. Macro-finance factors drive the conditioned on the missing risk factor hypothesis, the pricing of idiosyncratic volatility. This study contributes to a better understanding of the role of the conditional idiosyncratic volatility in asset pricing. As the Korean stocks provide a fresh sample, our non-U.S. investigation delivers a useful out-of-sample test on the pervasiveness of the non-news volatility effect across the emerging markets.",signatures:"Hoang Van Hai, Phan Kim Tuan and Le The Phiet",downloadPdfUrl:"/chapter/pdf-download/74254",previewPdfUrl:"/chapter/pdf-preview/74254",authors:[{id:"327086",title:"Dr.",name:"Hai",surname:"Hoang Van",slug:"hai-hoang-van",fullName:"Hai Hoang Van"},{id:"332077",title:"MSc.",name:"Phan Kim",surname:"Tuan",slug:"phan-kim-tuan",fullName:"Phan Kim Tuan"},{id:"333775",title:"Dr.",name:"The Phiet",surname:"Le",slug:"the-phiet-le",fullName:"The Phiet Le"}],corrections:null},{id:"74079",title:"Financial Literacy as a Tool for Stimulating the Investment Behaviour of Rural Women: An Empirical Assessment",doi:"10.5772/intechopen.94532",slug:"financial-literacy-as-a-tool-for-stimulating-the-investment-behaviour-of-rural-women-an-empirical-as",totalDownloads:366,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Clapping with two hands create the sounds. Similarly, investment and saving behaviour are considered as the most vital elements for economic growth of an individual. This paper is to evaluate the influence of financial awareness on saving and investment behaviour of rural females in India. Investment pattern serves as a link between savings and wants of the common people. Economic growth of any nation can be critically measured through capital accumulation and investment trends in financial markets. In the present study, the investment behaviour on effect of financial awareness of 335 rural women in Jalandhar district has been evaluated. The relationship of financial literacy and saving & investment behaviour is also evaluated in the context of five basic domains of financial behaviour, such as demographic variables, financial control, financial planning, financial product selection and financial literacy. Results of the study revealed that rural women are conscious about the availability of various investment avenues in the market, but their investment pattern is still followed by some factors like familiarity, safety and assured returns, etc. This study suggests policymakers to focus on financial awareness rather to focus only on financial literacy.",signatures:"Bhaskaran Rajan, Navjot Kaur, Harpreet K. Athwal, Afzalur Rahman and Velmurugan P.S.",downloadPdfUrl:"/chapter/pdf-download/74079",previewPdfUrl:"/chapter/pdf-preview/74079",authors:[{id:"326214",title:"Dr.",name:"Bhaskaran",surname:"Rajan",slug:"bhaskaran-rajan",fullName:"Bhaskaran Rajan"},{id:"336219",title:"Ms.",name:"Navjot",surname:"Kaur",slug:"navjot-kaur",fullName:"Navjot Kaur"},{id:"336220",title:"Ms.",name:"Harpreet K",surname:"Athwal",slug:"harpreet-k-athwal",fullName:"Harpreet K Athwal"},{id:"336221",title:"Dr.",name:"Afzalur",surname:"Rahman",slug:"afzalur-rahman",fullName:"Afzalur Rahman"},{id:"336223",title:"Dr.",name:"Velmurugan",surname:"P.S",slug:"velmurugan-p.s",fullName:"Velmurugan P.S"}],corrections:null},{id:"73794",title:"Accounting Information Quality and Investment Decisions",doi:"10.5772/intechopen.93980",slug:"accounting-information-quality-and-investment-decisions",totalDownloads:455,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Accounting information quality has been said to play an important role in reducing information asymmetry. Thus, firms with high accounting information quality may enhance more investors’ decisions. This paper aims to empirically examine the association between accounting information quality and investment decisions among firms in Tunisia. The sample of this study consists of 50 firms listed on the Tunis Stock Exchange covering 2012 to 2016. The findings imply that accounting information quality is significantly negatively related to investment inefficiency. The inclusion of control variables and the use of alternative models to measure accounting information quality provide consistent findings. This paper has several important contributions. First, this paper provides new empirical evidence in an emerging market. Although emerging markets make up the vast majority of economic activity around the world, they have received limited attention in academic research. Second, this paper can also help researchers to better understand and realize the governance role of accounting information, and push them to investigate the other role of accounting information deeply and broadly.",signatures:"Nouha Khoufi",downloadPdfUrl:"/chapter/pdf-download/73794",previewPdfUrl:"/chapter/pdf-preview/73794",authors:[{id:"318026",title:"Dr.",name:"Nouha",surname:"Khoufi",slug:"nouha-khoufi",fullName:"Nouha Khoufi"}],corrections:null},{id:"74200",title:"Digital Transformation of World Finance",doi:"10.5772/intechopen.93987",slug:"digital-transformation-of-world-finance",totalDownloads:832,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"The boundary between the physical and a virtual world is not clearly visible nowadays, the 4.0 industry utilizes artificial intelligence, distributed ledger technology, quantum computing, advanced visualization and other advanced technologies. The surge of capital flows in financial technology is visible wherever we look. Classical businesses face a challenge to connect and create partners with the companies that are technology savvy because this may impact their future success. The strategy for digital business must be thought over very thoroughly since it represents the success threshold in contemporary digital environment. The classic banking system faces the threat or opportunity of an open banking system and banks are forced to be prepared to offer next generation services benefiting from third party channels. The short history on the banking industry including digital banking along, with fintech as a financial institution showing its power to compete sophistically, will shift the studied digital transformation phenomenon into a dilemma whether we indeed face a cashless society challenge, whether the governments should start to accelerate their decisions on Central Bank Digitalized Currency – CBDC or how far several countries already are to become a cashless society. At last, potential security, trust and fraud issues will close this chapter.",signatures:"Darina Saxunova and Corlise Liesl Le Roux",downloadPdfUrl:"/chapter/pdf-download/74200",previewPdfUrl:"/chapter/pdf-preview/74200",authors:[{id:"318760",title:"Dr.",name:"Darina",surname:"Saxunova",slug:"darina-saxunova",fullName:"Darina Saxunova"},{id:"322223",title:"Dr.",name:"Corlise",surname:"Le Roux",slug:"corlise-le-roux",fullName:"Corlise Le Roux"}],corrections:null},{id:"74563",title:"The Trouble with Minding Markets: Emotional Finance in Context",doi:"10.5772/intechopen.95094",slug:"the-trouble-with-minding-markets-emotional-finance-in-context",totalDownloads:442,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"The term ‘Emotional Finance’ normally denotes a methodological approach advocated by Richard Taffler and David Tuckett, which they intended as a challenge both to Behavioral Finance and to mainstream finance and economics. In the wake of the Great Financial Crisis, Emotional Finance received a warm reception from regulators, the financial press, and the CFA Institute. Nearly a decade on, their ideas have largely failed to achieve traction in the academic literature, and continue to struggle to find empirical validation. Their approach is essentially an application of Kleinian psychoanalysis to financial markets, albeit without the terminological rigor that psychoanalytic practitioners might expect. Because their approach is inherently interdisciplinary, it has rarely been subject to scrutiny, as few psychoanalytic commentators feel qualified to comment on financial markets, and fewer finance academics feel comfortable commenting on the psychoanalytic theory. This chapter characterizes the main theoretical claims of Emotional Finance, and subjects each of them to scrutiny, finding them largely untenable. Although financial bubbles are commonplace and emotional responses to markets unremarkable, the subsidiary arguments advanced by advocates of Emotional Finance to support their primary claims are found wanting. The interpretative strategy of Emotional Finance is fundamentally flawed. Although it is fruitful to analyze the role of emotions in financial markets, more precise, rigorous and realistic approaches to these problems are needed.",signatures:"D’Maris Coffman",downloadPdfUrl:"/chapter/pdf-download/74563",previewPdfUrl:"/chapter/pdf-preview/74563",authors:[{id:"325580",title:"Prof.",name:"D'Maris",surname:"Coffman",slug:"d'maris-coffman",fullName:"D'Maris Coffman"}],corrections:null},{id:"75019",title:"From Money-Centered to People- and Planet-Centered Ledger Economics: Leveraging the Hidden Wealth of Underutilized Productive Capacity",doi:"10.5772/intechopen.95562",slug:"from-money-centered-to-people-and-planet-centered-ledger-economics-leveraging-the-hidden-wealth-of-u",totalDownloads:377,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"This chapter introduces a for-profit way to repair persistent problems in free enterprise economics and commerce. Today, continuous advances in technology and human capabilities fail to produce a commensurate, across-the-board rise in the standard of living and quality of life for households and communities. Instead, win-lose competition over money and proliferation of competitive duplication put downward pressure on profits, wages and the purchasing power of families. Despite an ever-growing economic pie, everyone does not enjoy a secure income. This is a money issue, not a productivity issue. Eventually, so-called equilibrium is achieved when businesses downsize, merge and/or fail. But businesses fail while there are still unmet needs for their products and services revealing a missed business opportunity. An innovative alternative is to monetize and market currently underutilized productive capacity using a new form of business scrip termed Ledger Dollars (L$) L$ increase purchasing power within a cooperative network of business and community stakeholders. L$ are analogous to loyalty rewards—backed by unsold products and services—but reward more than consumer spending and enhance cooperation and eco-sustainability. Ledger Dollars constitute a new financial asset class designed to improve traditional fiat-centered economics and advance the now popular Triple-Bottom-Line of People, Planet and Profits.",signatures:"Thomas Fisher and Joel Hodroff",downloadPdfUrl:"/chapter/pdf-download/75019",previewPdfUrl:"/chapter/pdf-preview/75019",authors:[{id:"335200",title:"Prof.",name:"Tom",surname:"Fisher",slug:"tom-fisher",fullName:"Tom Fisher"},{id:"335624",title:"Mr.",name:"Joel",surname:"Hodroff",slug:"joel-hodroff",fullName:"Joel Hodroff"}],corrections:null},{id:"73041",title:"Tunisian Fintech: An Ecosystem under Construction - Can COVID 19 be the Fuel to Ignite the Construction of Tunisian Fintech?",doi:"10.5772/intechopen.93427",slug:"tunisian-fintech-an-ecosystem-under-construction-can-covid-19-be-the-fuel-to-ignite-the-construction",totalDownloads:267,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Fintech leads the most powerful technology and finance in the industry. Appearing recently in the newspapers, this term describes the disruptive challenge in the financial sectors. Fintech has primarily emerged in the world, and then Europe followed the lead before it starts in Tunisia. Although Fintech attracts the customers through the innovation and the technology, it worries users because of the absence of the intermediaries. Fintechs create metamorphosis in the financial field of digital disruption and really shake up the reserved world of banking services, savings, means of payment, and financing. The main idea of this chapter is to describe the Fintech ecosystem in Tunisia. It is about situating the concepts around Fintech by studying the reasons for its emergence and its business segments. Then, the analysis provides the elements of the Tunisian ecosystem of Fintech, the issues, and the challenges. This chapter aims to capture the essence of this phenomenon by discussing the challenges for both Fintech startups and traditional financial.",signatures:"Salma Zone",downloadPdfUrl:"/chapter/pdf-download/73041",previewPdfUrl:"/chapter/pdf-preview/73041",authors:[{id:"318405",title:"Dr.",name:"Salma",surname:"Zone",slug:"salma-zone",fullName:"Salma Zone"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"8644",title:"Accounting and Finance",subtitle:"New Perspectives on Banking, Financial Statements and Reporting",isOpenForSubmission:!1,hash:"05150c3d097ed7178a67213166db89b6",slug:"accounting-and-finance-new-perspectives-on-banking-financial-statements-and-reporting",bookSignature:"Reza Gharoie Ahangar and Can Öztürk",coverURL:"https://cdn.intechopen.com/books/images_new/8644.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"280253",title:"Dr.",name:"Can",middleName:null,surname:"Ozturk",slug:"can-ozturk",fullName:"Can Ozturk",profilePictureURL:"https://mts.intechopen.com/storage/users/280253/images/system/280253.jpg",biography:"Dr. Can Öztürk is an associate professor of financial, international and comparative accounting at the Department of Management, Çankaya University, Ankara, Turkey. He received his first Bachelor’s in Banking and Finance (2001) from Bilkent University, his second Bachelor\\'s in Finance (2003) and Master’s in Business Administration (2004) from the University of Massachusetts Dartmouth, USA as well as his Ph.D. in Accounting and Finance in 2011 from Başkent University, Turkey. His primary research interests are IFRS, IFRS for SMEs, Financial Reporting Standards for Non-Publicly Accountable Entities, ISAs, and Corporate Social Responsibility Reporting. He has published several articles in prestigious journals at the national and international context such as Accounting in Europe, Accounting and Management Information Systems, Emerging Markets Journal and The World of Accounting Science. He speaks English and French in addition to Turkish.",institutionString:"Çankaya University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Çankaya University",institutionURL:null,country:{name:"Turkey"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8649",title:"Strategy and Behaviors in the Digital Economy",subtitle:null,isOpenForSubmission:!1,hash:"1110e49aabc5cb3d7245dc32285010c0",slug:"strategy-and-behaviors-in-the-digital-economy",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/8649.jpg",editedByType:"Edited by",editors:[{id:"232969",title:"Prof.",name:"Beatrice",surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8149",title:"Selected Aspects of Non-Profit Organisations",subtitle:null,isOpenForSubmission:!1,hash:"22e2741eb76adf7847648890eda7968e",slug:"selected-aspects-of-non-profit-organisations",bookSignature:"Tatjana Horvat",coverURL:"https://cdn.intechopen.com/books/images_new/8149.jpg",editedByType:"Edited by",editors:[{id:"293992",title:"Dr.",name:"Tatjana",surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66065",slug:"corrigendum-to-eating-disorders-as-new-forms-of-addiction",title:"Corrigendum to: Eating Disorders as New Forms of Addiction",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66065.pdf",downloadPdfUrl:"/chapter/pdf-download/66065",previewPdfUrl:"/chapter/pdf-preview/66065",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66065",risUrl:"/chapter/ris/66065",chapter:{id:"52200",slug:"eating-disorders-as-new-forms-of-addiction",signatures:"Francisco J. Vaz-Leal, María I. Ramos-Fuentes, Laura Rodríguez-\nSantos and M. Cristina Álvarez-Mateos",dateSubmitted:"April 9th 2016",dateReviewed:"August 12th 2016",datePrePublished:null,datePublished:"February 1st 2017",book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"188555",title:"Prof.",name:"Francisco J.",middleName:null,surname:"Vaz-Leal",fullName:"Francisco J. Vaz-Leal",slug:"francisco-j.-vaz-leal",email:"fjvazleal@gmail.com",position:null,institution:null},{id:"188719",title:"Dr.",name:"María Cristina",middleName:null,surname:"Álvarez Mateos",fullName:"María Cristina Álvarez Mateos",slug:"maria-cristina-alvarez-mateos",email:"cristinaalvarezmateos@gmail.com",position:null,institution:null},{id:"195142",title:"Dr.",name:"Laura",middleName:null,surname:"Rodríguez Santos",fullName:"Laura Rodríguez Santos",slug:"laura-rodriguez-santos",email:"laura@unex.es",position:null,institution:null},{id:"195143",title:"Dr.",name:"María I",middleName:null,surname:"Ramos Fuentes",fullName:"María I Ramos Fuentes",slug:"maria-i-ramos-fuentes",email:"miramos@unex.es",position:null,institution:null}]}},chapter:{id:"52200",slug:"eating-disorders-as-new-forms-of-addiction",signatures:"Francisco J. Vaz-Leal, María I. Ramos-Fuentes, Laura Rodríguez-\nSantos and M. Cristina Álvarez-Mateos",dateSubmitted:"April 9th 2016",dateReviewed:"August 12th 2016",datePrePublished:null,datePublished:"February 1st 2017",book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"188555",title:"Prof.",name:"Francisco J.",middleName:null,surname:"Vaz-Leal",fullName:"Francisco J. Vaz-Leal",slug:"francisco-j.-vaz-leal",email:"fjvazleal@gmail.com",position:null,institution:null},{id:"188719",title:"Dr.",name:"María Cristina",middleName:null,surname:"Álvarez Mateos",fullName:"María Cristina Álvarez Mateos",slug:"maria-cristina-alvarez-mateos",email:"cristinaalvarezmateos@gmail.com",position:null,institution:null},{id:"195142",title:"Dr.",name:"Laura",middleName:null,surname:"Rodríguez Santos",fullName:"Laura Rodríguez Santos",slug:"laura-rodriguez-santos",email:"laura@unex.es",position:null,institution:null},{id:"195143",title:"Dr.",name:"María I",middleName:null,surname:"Ramos Fuentes",fullName:"María I Ramos Fuentes",slug:"maria-i-ramos-fuentes",email:"miramos@unex.es",position:null,institution:null}]},book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6348",leadTitle:null,title:"Advanced Electronic Circuits",subtitle:"Principles, Architectures and Applications on Emerging Technologies",reviewType:"peer-reviewed",abstract:"This research book volume offers an important learning opportunity with insights into a variety of emerging electronic circuit aspects, such as new materials, energy harvesting architectures, and compressive sensing technique. Advanced circuit technologies are extremely powerful and developed rapidly. They change industry. They change lives. And we know they can change the world. The exhibition on these new and exciting topics will benefit readers in related fields.",isbn:"978-1-78923-207-3",printIsbn:"978-1-78923-206-6",pdfIsbn:"978-1-83881-420-5",doi:"10.5772/intechopen.69787",price:119,priceEur:129,priceUsd:155,slug:"advanced-electronic-circuits-principles-architectures-and-applications-on-emerging-technologies",numberOfPages:194,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"c5a1bb3da69158c572f9983972ae97d0",bookSignature:"Mingbo Niu",publishedDate:"June 13th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6348.jpg",keywords:null,numberOfDownloads:12878,numberOfWosCitations:8,numberOfCrossrefCitations:11,numberOfDimensionsCitations:15,numberOfTotalCitations:34,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 22nd 2017",dateEndSecondStepPublish:"June 12th 2017",dateEndThirdStepPublish:"September 8th 2017",dateEndFourthStepPublish:"December 7th 2017",dateEndFifthStepPublish:"February 5th 2018",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"5 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"141595",title:"Dr.",name:"Mingbo",middleName:null,surname:"Niu",slug:"mingbo-niu",fullName:"Mingbo Niu",profilePictureURL:"https://mts.intechopen.com/storage/users/141595/images/system/141595.jpg",biography:"Mingbo Niu received a B. Eng. degree in Electronic Engineering from Northwestern Polytechnical University in China, and an M. Sc. (Eng.) degree (first-class) major in Communication and Information Systems from the same university. Prior to his Ph.D., he worked at a National Key Laboratory on Information and Signal Processing. He received his Ph.D. degree in Electrical and Computer Engineering from the University of British Columbia, Canada in 2013. From 2008 to 2012, he was a Research Assistant at Optical Wireless Communications Laboratory and Integrated Optics Laboratory where he contributed to the development of ultra-high speed optical data transmission links. Dr. Niu held a postdoctoral fellowship at Queen’s University from 2013 to 2015. He also worked for Defence Research and Development Canada (DRDC) at Calian Tech. Ltd where he contributed to statistical evaluation models of MIMO compressive sensing projects. He is now a Professor of Electrical Engineering at Okanagan College, Canada. Dr. Niu has co-authored more than 20 IEEE and OSA papers and supervised a number of students’ projects. Currently, he serves as a Lead Guest Editor for the journal Wireless Communications and Mobile Computing (IF: 1.899) and an Editor for InTech book projects on \\Advanced Analog/Digital Circuits\\. Dr. Niu was the recipient of numerous scholarships during his undergraduate and graduate studies, which included a Chinese Government Award, two University of British Columbia University Graduate Fellowships (UGFs), and a HuaWei Tech. Ltd Special Fellowship. His current research and teaching interests include digital communications, microcontrollers, MIMO, DSP, energy harvesting, electronic circuit theory, and ICs for data communication networks. Dr. Niu is a licensed Professional Engineer in British Columbia.",institutionString:"Chang'an University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Chang'an University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"739",title:"Electronic Circuits",slug:"electrical-and-electronic-engineering-electronic-circuits"}],chapters:[{id:"58662",title:"Self-Oscillatory DC-DC Converter Circuits for Energy Harvesting in Extreme Environments",slug:"self-oscillatory-dc-dc-converter-circuits-for-energy-harvesting-in-extreme-environments",totalDownloads:1182,totalCrossrefCites:0,authors:[{id:"175070",title:"Dr.",name:"Ming-Hung",surname:"Weng",slug:"ming-hung-weng",fullName:"Ming-Hung Weng"},{id:"215269",title:"Prof.",name:"Nick",surname:"Wright",slug:"nick-wright",fullName:"Nick Wright"},{id:"215271",title:"Dr.",name:"Alton",surname:"Horsfall",slug:"alton-horsfall",fullName:"Alton Horsfall"},{id:"222660",title:"Dr.",name:"Daniel",surname:"Brennan",slug:"daniel-brennan",fullName:"Daniel Brennan"}]},{id:"58795",title:"New Energy Harvesting Systems Based on New Materials",slug:"new-energy-harvesting-systems-based-on-new-materials",totalDownloads:1095,totalCrossrefCites:0,authors:[{id:"187612",title:"Dr.",name:"Lucian",surname:"Pîslaru-Dănescu",slug:"lucian-pislaru-danescu",fullName:"Lucian Pîslaru-Dănescu"},{id:"196151",title:"Dr.",name:"Laurentiu Constantin",surname:"Lipan",slug:"laurentiu-constantin-lipan",fullName:"Laurentiu Constantin Lipan"}]},{id:"58619",title:"Nanoarchitecture of Quantum-Dot Cellular Automata (QCA) Using Small Area for Digital Circuits",slug:"nanoarchitecture-of-quantum-dot-cellular-automata-qca-using-small-area-for-digital-circuits",totalDownloads:1615,totalCrossrefCites:6,authors:[{id:"218855",title:"Dr.",name:"Radhouane",surname:"Laajimi",slug:"radhouane-laajimi",fullName:"Radhouane Laajimi"}]},{id:"58442",title:"Millimeter-Wave Multi-Port Front-End Receivers: Design Considerations and Implementation",slug:"millimeter-wave-multi-port-front-end-receivers-design-considerations-and-implementation",totalDownloads:1504,totalCrossrefCites:2,authors:[{id:"34160",title:"Prof.",name:"Serioja O.",surname:"Tatu",slug:"serioja-o.-tatu",fullName:"Serioja O. Tatu"},{id:"212045",title:"Ph.D.",name:"Chaouki",surname:"Hannachi",slug:"chaouki-hannachi",fullName:"Chaouki Hannachi"}]},{id:"59972",title:"Applications of Compressive Sampling Technique to Radar and Localization",slug:"applications-of-compressive-sampling-technique-to-radar-and-localization",totalDownloads:1067,totalCrossrefCites:1,authors:[{id:"214787",title:"Dr.",name:"Francois",surname:"Chan",slug:"francois-chan",fullName:"Francois Chan"},{id:"214788",title:"Dr.",name:"Soheil",surname:"Salari",slug:"soheil-salari",fullName:"Soheil Salari"},{id:"214789",title:"Dr.",name:"Yiu-Tong",surname:"Chan",slug:"yiu-tong-chan",fullName:"Yiu-Tong Chan"}]},{id:"60655",title:"High-Speed Electronic Memories and Memory Subsystems",slug:"high-speed-electronic-memories-and-memory-subsystems",totalDownloads:860,totalCrossrefCites:0,authors:[{id:"218477",title:"Mr.",name:"Prateek",surname:"Asthana",slug:"prateek-asthana",fullName:"Prateek Asthana"},{id:"221356",title:"Mr.",name:"Loveneet",surname:"Mishra",slug:"loveneet-mishra",fullName:"Loveneet Mishra"}]},{id:"58744",title:"High Voltage Energy Harvesters",slug:"high-voltage-energy-harvesters",totalDownloads:4633,totalCrossrefCites:1,authors:[{id:"189098",title:"Dr.",name:"Xi Sung",surname:"Loo",slug:"xi-sung-loo",fullName:"Xi Sung Loo"},{id:"189214",title:"Prof.",name:"Kiat Seng",surname:"Yeo",slug:"kiat-seng-yeo",fullName:"Kiat Seng Yeo"},{id:"215816",title:"Prof.",name:"Joel",surname:"Yang",slug:"joel-yang",fullName:"Joel Yang"},{id:"215817",title:"Dr.",name:"Chee Huei",surname:"Lee",slug:"chee-huei-lee",fullName:"Chee Huei Lee"},{id:"215818",title:"Prof.",name:"Moe Z.",surname:"Win",slug:"moe-z.-win",fullName:"Moe Z. Win"},{id:"221473",title:"Prof.",name:"Rong",surname:"Zhao",slug:"rong-zhao",fullName:"Rong Zhao"}]},{id:"60585",title:"Experimental Studies of the Electrical Nonlinear Bimodal Transmission Line",slug:"experimental-studies-of-the-electrical-nonlinear-bimodal-transmission-line",totalDownloads:923,totalCrossrefCites:1,authors:[{id:"107261",title:"Dr.",name:"Diene",surname:"Ndiaye",slug:"diene-ndiaye",fullName:"Diene Ndiaye"},{id:"214425",title:"Dr.",name:"Abdou Karim",surname:"Farota",slug:"abdou-karim-farota",fullName:"Abdou Karim Farota"},{id:"214426",title:"Prof.",name:"Bouya",surname:"Diop",slug:"bouya-diop",fullName:"Bouya Diop"},{id:"214427",title:"Prof.",name:"Mouhamadou Mansour",surname:"Faye",slug:"mouhamadou-mansour-faye",fullName:"Mouhamadou Mansour Faye"},{id:"214429",title:"Prof.",name:"Mary Teuw",surname:"Niane",slug:"mary-teuw-niane",fullName:"Mary Teuw Niane"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"225753",firstName:"Marina",lastName:"Dusevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/225753/images/7224_n.png",email:"marina.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3563",title:"Advanced Microwave Circuits and Systems",subtitle:null,isOpenForSubmission:!1,hash:"2d0a7e4bb67e54ab0bbe098ebb9537d4",slug:"advanced-microwave-circuits-and-systems",bookSignature:"Vitaliy Zhurbenko",coverURL:"https://cdn.intechopen.com/books/images_new/3563.jpg",editedByType:"Edited by",editors:[{id:"3721",title:"Prof.",name:"Vitaliy",surname:"Zhurbenko",slug:"vitaliy-zhurbenko",fullName:"Vitaliy Zhurbenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3576",title:"Solid State Circuits Technologies",subtitle:null,isOpenForSubmission:!1,hash:"a14e0865ac126e0234df9b53a5943ebf",slug:"solid-state-circuits-technologies",bookSignature:"Jacobus W. Swart",coverURL:"https://cdn.intechopen.com/books/images_new/3576.jpg",editedByType:"Edited by",editors:[{id:"5235",title:"Professor",name:"Jacobus",surname:"Swart",slug:"jacobus-swart",fullName:"Jacobus Swart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3647",title:"Advances in Solid State Circuit Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-circuit-technologies",bookSignature:"Paul K Chu",coverURL:"https://cdn.intechopen.com/books/images_new/3647.jpg",editedByType:"Edited by",editors:[{id:"4759",title:"Prof.",name:"Paul",surname:"Chu",slug:"paul-chu",fullName:"Paul Chu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3106",title:"Photodiodes",subtitle:"From Fundamentals to Applications",isOpenForSubmission:!1,hash:"a10cd693ef0a38fe4f92eac11410db46",slug:"photodiodes-from-fundamentals-to-applications",bookSignature:"Ilgu Yun",coverURL:"https://cdn.intechopen.com/books/images_new/3106.jpg",editedByType:"Edited by",editors:[{id:"150727",title:"Prof.",name:"Ilgu",surname:"Yun",slug:"ilgu-yun",fullName:"Ilgu Yun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"491",title:"Photodiodes",subtitle:"World Activities in 2011",isOpenForSubmission:!1,hash:"6a3cd5b56e3b5d6c986ced6a2b9e38eb",slug:"photodiodes-world-activities-in-2011",bookSignature:"Jeong-Woo Park",coverURL:"https://cdn.intechopen.com/books/images_new/491.jpg",editedByType:"Edited by",editors:[{id:"4928",title:"Prof.",name:"Jeong Woo",surname:"Park",slug:"jeong-woo-park",fullName:"Jeong Woo Park"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3630",title:"VLSI",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"vlsi",bookSignature:"Zhongfeng Wang",coverURL:"https://cdn.intechopen.com/books/images_new/3630.jpg",editedByType:"Edited by",editors:[{id:"2569",title:"Dr.",name:"Zhongfeng",surname:"Wang",slug:"zhongfeng-wang",fullName:"Zhongfeng Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"879",title:"Advances in Piezoelectric Transducers",subtitle:null,isOpenForSubmission:!1,hash:"d868d46b3db64dcefa833403fec32346",slug:"advances-in-piezoelectric-transducers",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/879.jpg",editedByType:"Edited by",editors:[{id:"71997",title:"Dr.",name:"Farzad",surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5864",title:"Different Types of Field-Effect Transistors",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"586a8228e9e9228e77a6a141d8d170bf",slug:"different-types-of-field-effect-transistors-theory-and-applications",bookSignature:"Momcilo M. Pejovic and Milic M. Pejovic",coverURL:"https://cdn.intechopen.com/books/images_new/5864.jpg",editedByType:"Edited by",editors:[{id:"147994",title:"Dr.",name:"Momčilo",surname:"Pejović",slug:"momcilo-pejovic",fullName:"Momčilo Pejović"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5709",title:"Optoelectronics",subtitle:"Advanced Device Structures",isOpenForSubmission:!1,hash:"8b81ee1079b92050f9664d3ee61dfa39",slug:"optoelectronics-advanced-device-structures",bookSignature:"Sergei L. Pyshkin and John Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/5709.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6521",title:"MEMS Sensors",subtitle:"Design and Application",isOpenForSubmission:!1,hash:"0da20f1660250a3391770069a4655cc5",slug:"mems-sensors-design-and-application",bookSignature:"Siva Yellampalli",coverURL:"https://cdn.intechopen.com/books/images_new/6521.jpg",editedByType:"Edited by",editors:[{id:"62863",title:"Dr.",name:"Siva",surname:"Yellampalli",slug:"siva-yellampalli",fullName:"Siva Yellampalli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67178",title:"Forest Decline Under Progress in the Urban Forest of Seoul, Central Korea",doi:"10.5772/intechopen.86248",slug:"forest-decline-under-progress-in-the-urban-forest-of-seoul-central-korea",body:'
Urbanization expanding globally is recognized as a major causing environmental change [1]. Reduction of habitat size, fragmentation, and imbalanced distribution of green space due to urbanization led to influences on dynamics of vegetation remaining in urban area [2, 3]. Increases of temperature, precipitation, and nitrogen deposition due to urbanization also altered abiotic conditions of habitat patches remaining in urban area [1, 4]. These changes influence habitat quality, and, consequently, the species composition, species diversity, and functional diversity of vegetation remaining there [3, 5, 6], which in turn affect the ecosystem functions [7].
Forests are the typical types of urban green space [8]. Urban forests function as habitat of native species as well as recreation site for citizens [9, 10]. Urban forests can play a role of refugia of rare and threatened species and thus can display high conservation value [11, 12]. Among urban landscape elements, forest has substantially different site history, intensity of management and disturbance, and consequently different species composition from other landscape elements [3, 12, 13]. Urban forests are remnants of former continuous forests, a result of succession or artificial plantation [14]. They can also include urban orchards, urban park, cemeteries overgrown by trees, or residential garden [12, 13].
Land transformation and increase of impervious surface cover affect forests throughout the landscape through increased local temperatures and altered ecosystem processes. Anthropogenic drivers of global change, i.e., land-use change, introduction of exotic species, pollution, and climate change, affect forest composition and function across the landscape [15]. In particular, change of land-use pattern including urbanization and their effects on remaining vegetation constitute one of the major factors influencing on natural ecosystems [16, 17]. In the case of forests, about 70% of remaining forest around the world is within 1 km from the forest’s edge [18]. Therefore, it is very difficult that they maintain integrate structure and healthy function. As land is transformed into urbanized area, the effects of the transformation on the remaining vegetation are getting more apparent. Increased local temperature and altered hydrologic and nutrient cycle, land transformation, and increased impervious surface cover have been recognized as elements affecting forest health and resilience to other stress factors [19, 20, 21]. Those remaining natural forest patches are still critical in terms of air quality improvement, flooding reduction, urban heat island effect mitigation, and supply of other ecosystem services that are important to both human societies and natural environment [22, 23, 24]. Therefore, understanding how urbanization affects structure and function of remnant forest ecosystems is critical to both conservation and management of this ecological resource.
One of the principal changes that urbanization induced is the increase of land covered by impervious surfaces such as asphalt and concrete pavement, concrete buildings, and tightly compacted soils. Percentage-paved land surface is an appropriate proxy for urban heat island effects as a main factor increasing the land surface temperature [25, 26]. Urban heat islands develop around areas with high heat absorptive capacity such as asphalt, concrete buildings, bare ground, and other developed lands, which heat up rapidly and increase local temperature greatly compared with surrounding natural areas [27, 28]. In an area that natural forest is conserved to urbanized area, land surface temperature increased more than 70% and soil moisture decreased about 15%. These changes of the microclimate in urbanized areas can affect vegetation remaining there [29]. Trees growing in areas covered by impervious surface densely represented low drought resilience compared with trees in forested areas [30] and experienced severer moisture stress and insect damage compared with trees in intact forests [31]. In general, increased impervious surface cover increases water stress and vulnerability to drought and thus makes trees in intensively urbanized landscapes more sensitive to cavitation and lower protection from embolism formation [32].
Increasing urbanization could aggravate the impact of climate change on forest. Increasing temperature accompanies severer and more frequent droughts that could increase tree mortality [33, 34]. Even though most forest species can tolerate changes in mean climatic conditions, it is not clear that they could withstand the extreme weather events like drought [35, 36].
Thus, the synergistic effects of extreme weather events, like drought and temperature increase in relation to urbanization, could influence severely on the health and resilience of forests remaining in urban areas [37, 38]. A decline of forest health and the following changes in species composition and vegetation structure would lead to change of ecosystem function and ultimately alter ecosystem services in those ecosystems [39, 40].
In Korea, forest began to show decline symptoms around the industrial complexes and large cities [41, 42]. Further, change of mesoclimate due to excessive land use in urban area led to changes of vegetation structure and dynamics as well as soil properties [39, 42, 43, 44, 45, 46, 47, 48]. In addition, new environmental stress due to climate change is imposed additively to this forest decline and thereby incites degradation of urban forest in recent years.
This chapter addresses the following: (1) landscape structure in Seoul, (2) changes of mesoclimate and soil due to imbalanced distribution of greenery space, (3) retrogressive succession due to such environmental changes, and (4) drought-induced tree mortality.
Forest decline here includes deforestation, forest degradation, or a combination of both based on the definition of FAO [49].
Seoul, the capital of South Korea, is located in the Central Korean Peninsula and covers 605 km2 of land (126°46′15″ to 127°11′15″ E longitude, 37°25′50″ to 37°41′45″ N latitude; Figure 1). Topography of Seoul is the typical basin that Han River runs through the center and is backed by mountains. The elevation of the study area ranges from 20 to 800 m above sea level. The parent rock of the mountainous areas around Seoul is usually composed of granite and gneiss, and the flat land beside rivers and streams is consisted of alluvium. Soil in these areas was classified into the Suam, Osan, Asan, and Anryong series, which developed on gneiss and granite bedrock [39, 50]. The climate of Seoul is continental, with warm and moist summers and cold and dry winters. From 1981 to 2010, the mean annual temperature was 12.5°C and the mean annual precipitation was 145.1 cm [51].
A map showing the study area, Seoul, the capital of South Korea. (1) Mt. Nam, (2) Mt. Bukhan, (3) Mt. Surak, (4) Mt. Bulam, (5) Mt. Acha, (6) Mt. Daemo, (7) Mt. Cheonggye, (8) Mt. Jeombong.
The mountainous vegetation of Seoul is consisted of four major plant communities distributed along an elevation gradient: the Korean red pine (
An ecological map to grasp landscape structure was obtained from Seoul City [59]. Landscape ecological analyses of the maps were determined with ArcGIS program (ver. 10.0).
Soil samples were collected from 150 grids, dividing 2 km × 2 km intervals, throughout the entire area of Seoul (all 605 km2). Soil properties were measured for pH, Ca2+, Mg2+, and Al3+ contents, which can explain acidification and its effects. Soil pH was measured with a benchtop probe after mixing the soil with distilled water (1:5 ratio, weight per volume) and filtering the extract through Whatman No. 44 paper. Exchangeable Ca2+, Mg2+, and Al2+ concentrations were measured after extraction with 1 N ammonium acetate (pH = 7.0 for Ca2+ and Mg2+ and pH = 4.0 for Al3+) and using inductively coupled plasma (ICP) atomic emission spectrometry (Shimadzu ICPQ-1000) described in Allen [60].
Vegetation data were collected in the urban areas (Mts. Nam, Daemo, Bulam, Acha, Surak, Bukhan, and Cheonggye) and a natural area (Mt. Jeombong) (Figure 1). Vegetation survey was conducted in 66 plots, with 8, 10, 7, 8, 10, 4, 10, and 9 plots in each of the following sites: Mts. Nam (Mt. N hereafter), Daemo (Mt. D), Bulam (Mt. Bl), Acha (Mt. A), Surak (Mt. S), Bukhan (Mt. Bk), Cheonggye (Mt. Cg), and Jeombong (Mt. J), respectively. The size of each plot was 20 m × 20 m. All the plant species in each plot were identified using the Korea Plant Name Index [61]. For major tree species, stem diameters (at breast height for mature trees or at stem base for seedlings and saplings) were measured and sorted by diameter classes. The vegetation survey was conducted by applying the phytosociological procedure of Braun-Blanquet [62]. Dominance of each species in each plot was estimated by ordinal scale (1 for ≤5% up to 5 for ≥75%), and each ordinal scale was converted to the median value of percent cover range in each cover class. Relative coverage was regarded as the importance value of each species. Relative coverage was determined by dividing the cover fraction of each species by the summed cover of all species in each plot and then multiplying by 100. A matrix of importance values for all species in all plots was constructed and used as data for ordination using detrended correspondence analysis (DCA) [63]. To describe and compare species diversity and dominance among sites, rank abundance curves [55, 64, 65] were plotted. The Shannon-Wiener diversity index (H′) [65] was also calculated for each stand in each site.
Meteorological data to confirm drought state were obtained from the Korea Meteorological Administration (https://data.kma.go.kr). The amount of evapotranspiration and evaporative demand was obtained by applying a method of Blaney and Criddle [66].
Field survey for investigating drought-induced plant damage was carried out from May to early July before rainy season in 2017 and from July to August in 2018. Survey in 2018 focused on verifying the result assessed in 2017 survey.
Field survey was conducted by recording degree of leaf surface injury of all plants appearing along the trampling path. Damage degree was classified into five groups based on the percentage of injury showed on leaf surface: very severe (V, more than 75% of total leaf area damaged), severe (IV 50–75% damaged), moderate (III, 25–50% damaged), slight (II, less than 25% damaged), and none (I, 0%) (Figure 2). We regarded the plant that all leaves were withered as dead individual in survey of 2017 and confirmed the result in the survey of 2018. The length of trampling path where field survey was conducted was about 4.0 km, and horizontal range was within 10 m in both sites.
Photos showing the grades for assessing drought-induced plant damage. I, none damaged; II (slight), less than 25% damaged; III (moderate), 25–50% damaged; IV (severe), 50–75% damaged; V (very severe), more than 75% damaged.
As the result of analysis on the landscape ecological map generated for Seoul, urban area occupied the widest as 60.8% of total area, secondary forests (12.7%), plantations (8.6%), river and reservoir (5.6%), landscape architectural plantation (4.5%), agricultural fields (2.5%), grasslands (2.4%), inaccessible area (2.3%), and bare ground (0.7%) followed (Figure 3). Forests composed of secondary forests and plantations and agricultural fields were usually concentrated to the city’s fringe, and the urban center has little vegetation. Moreover, vegetation in the urban center was of low ecological quality, as most were fragmented into small patches and consisted of species introduced by landscape architects without ecological consideration or exotic plants [39, 40]. Therefore, green space showed severe imbalanced spatial distribution (Figure 3).
A map showing spatial distribution of vegetation and land-use types in the Seoul metropolitan area (redrawn from Seoul City [
Spatial structure of the urban heat island in Seoul was investigated based on temperature data measured at 23 automatic weather stations (AWSs) in the Seoul metropolitan area.
Figure 4 shows the average spatial distribution of air temperature in the Seoul metropolitan area for each season and the whole year for 20 years from 1998 to 2017. A relative warm area extends in the east-west direction, and warm cores are pronounced in residential and commercial area with high-story buildings and heavy traffics. A relative cold area is observed in mountainous areas, which is near the borderline of Seoul except the southwestern and southeastern borderlines where the sprawling expansion of urbanization has already progressed.
Spatial distribution of air temperature in the Seoul metropolitan area averaged for each season and year.
Cities are often referred to as urban heat islands, with the urban center having the highest temperatures. This is primarily due to the low amount of vegetation in urban center compared to the suburbs and beyond (Figure 1). Cities also use large amounts of energy, and emit this energy as waste heat, further exacerbating the urban heat island effect.
On the other hand, forests and other vegetation types use large amounts of solar energy and evaporate water by means of transpiration to cool leaf surfaces. Evaporative water used through transpiration also contributes in reducing air temperatures in urban areas. Forests and other vegetation can also contribute indirectly to temperature reduction by reducing urban energy consumption through intercepting and using solar energy and by reducing building energy demand through shading and reducing wind speed. Therefore, low vegetation coverage in urban center results in larger temperature gradients between urban center and urban fringe or beyond [67, 68, 69]. Indeed, Seoul’s heat island effect is very large [27, 70], as the temperature difference between the urban center and boundary was about 5°C (Figure 4).
The urban heat island is closely linked to the land-use pattern (Figure 3). Buildings, asphalt, and concrete pavement absorb solar radiation and emit long-wave radiation that warms the atmosphere [71, 72, 73]. Moreover, those artificial structures hold heat for extended periods. This heat moves from buildings, asphalt, and concrete pavement to the cool air as the air temperature decreases after sunset to form atmospheric temperature inversion (warm air over cold air) [74, 75, 76, 77]. Therefore, many cities located in basins with limited ventilation like Seoul experience serious air pollution problems. The ventilation of an urban basin can be limited not only by orographic barriers but also by urban heat island-induced circulations and/or the capping effect of temperature inversions. Furthermore, land-use and land-cover changes caused by urbanization alter the dynamics of temperature inversions and urban heat islands, thereby affecting air quality in an urban valley [78].
Temperature inversions are frequently observed in most urban areas including Seoul. Temperature inversion results in poor dispersion of pollutants. Strong thermal inversion induces pollutant accumulation and thereby become a primary cause of the heavy air pollution. In addition, Seoul is backed by mountains, which intensified the accumulation of pollutants generated in the city itself and blown from other regions, particularly China, which is relatively closely located to Seoul.
In recent decades, East Asia has been significantly industrialized and urbanized through its rapid economic growth. The industrialization and urbanization have resulted in adverse effect on air quality not only in this region but also in neighboring countries [78].
Temperature gradient between urban center and suburbs results in a local circulation of air. As air heated in urban center rises and relatively cool air of suburbs flows into urban center, a micro-current is formed. In this air circulation process, temperature inversion layer formed in the urban air inhibits the vertical movement of air, and thereby the polluted air from urban center comes down on the urban fringe [77]. Such an air circulation occurring through interaction of temperature differences between urban and suburban areas and temperature inversion can transport light gaseous air pollutants from the urban center to the urban fringe [74, 79].
Spatial distribution of soil properties reflected the effects of such an air circulation. Soil pH tended to be lower in grids in the urban fringe than in grids within the urban center (Figure 5). Ca2+ and Mg2+ concentrations of soil followed the pH trends (Figure 4), but Al3+ concentration was the vice versa as it was higher in the urban fringe than in the urban center (Figure 4). Most of these chemical properties of soil are strongly related to soil acidification and to each other (Figure 5).
Spatial distribution of physicochemical properties of soil, such as pH, Ca2+, Mg2+, and Al3+, in the Seoul metropolitan area.
Soil acidification in those sites was due to deposition of acid precipitates, such as SOx and NOx [46]. Gaseous SOx and NOx are transformed to sulfuric acid (H2SO4) and nitric acid (HNO3) as they interact chemically with water in the air and soil and are deposited in dry and wet form on soil [80, 81].
Acidified soils of the urban periphery contained lower concentrations of basic cations, such as Ca2+ and Mg2+, than soils in the urban center, because they were leached through cation exchange mechanisms [82]. But higher concentrations of Ca2+ and Mg2+ in soils in the urban center are also related to deposition of heavy particulate probably from building materials (e.g., cement concrete; [83]) or to direct applications of calcium chloride (CaCl2) used for melting snow. In addition, acidified soil releases the Al3+ ion when soil is particularly acidified to below pH 4.5. Such an Al3+ ion inhibits plant cell division and consequently retards plant growth as a toxic ion [84]. These serial changes in soil chemistry are known to cause forest decline [82].
Changes of those soil properties tend to be intensified compared with the result of the former research [39].
Mongolian oak (
Stand ordination of the Mongolian oak forest established in urban and suburban areas around Seoul.
Species richness was usually lower in the urban areas than that in natural areas although a few exceptional areas exist such as Mts. Surak, Bukhan, Bulam, and Cheonggye (see x-axis in Figure 7). The slope of species rank-dominance curve was steeper in sites with low species richness than that in sites with high species richness and thereby showed lower evenness (Figure 7).
Rank-abundance curves of the Mongolian oak forests established in 10 study areas.
Mongolian oak stands established in urban area showed a difference even in successional trend from those in natural area. In mountains located on urban area, the diameter class distribution of major trees in these Mongolian oak stands revealed that oaks dominated the larger diameter classes, while
Frequency distribution of diameter classes of major tree species composed of the Mongolian oak forests established in several mountains of Seoul and in Mt. Jeombong as a natural area.
Size distributions of trees are useful indicators for understanding the structure of tree populations and for predicting dynamics of them [86, 87, 88]. The diameter class distribution of plant populations has generally been computed as frequency histograms [89]. Frequency distribution patterns of each diameter class indicate the potential change of the population in a plant community. A plant population, where young individuals are numerous and mature ones are fewer, is recognized as having a reverse J-shaped diameter distribution pattern [90, 91]. It is recognized that the population that shows a reverse J-shaped distribution pattern can persist continuously [90, 91, 92, 93]. On the other hand, the normal population pattern with fewer juveniles relative to adults is typically replaced by another population in the future [92, 93], but a bimodal pattern is shown in a population that is regenerated with periodic disturbance [94, 95].
Based on this principle, it is expected that Mongolian oak stands in the natural area could be maintained continuously, whereas urban oak stands would be replaced by Korean mountain ash. Considered that Mongolian oak stands are the representative vegetation of the late successional stage in the Korean peninsula [85], this successional trend could be interpreted as being retrogressive [95].
As was mentioned above, the Mongolian oak forests in urban area of Seoul had different species composition, lower diversity, and retrogressive successional trends compared to those in natural area (Figures 6
Retrogressive succession, signs of which appeared in our urban oak communities, is usually caused by frequent or intense disturbance [100, 101]. Although such situations have been frequently observed in the vicinity of industrial complexes exposed to severe air pollution [102, 103, 104, 105, 106, 107], it is a very rare phenomenon in urban areas. Retrogressive succession would be expected where pollution damage to forests is usually intense and acute. However, pollution in most urban areas is less severe than near industrial sites but is chronic [106]. Although we could observe signs of severe air pollution damage from analyzing the vegetation structure in Seoul, severe visible damage on vegetation surface was not found as observed in forests near the industrial areas [50, 108]. Therefore, our results in Seoul could be explained as resulting from synergistic interactions between chronic air pollution and urban climate, rather than resulting solely from severe pollution [109]. Air circulation specific to urban area from interaction of atmospheric temperature inversions and microcurrents occurred due to local temperature differences, and soil acidification due to air pollutants transported along the air circulation interact to cause a change in vegetation structure and consequently change vegetation dynamics. From these results, we can recognize a new type of forest decline in Mongolian oak stands as a general phenomenon occurring on the upper slopes surrounding the Seoul basin [39, 53, 54].
Although annual precipitation showed a variation, precipitation when the amount was low, for example, 2014 and 2015, fell short of the threshold that temperate forest can be persisted in this region (Figure 9). Considering that annual mean temperature in Seoul is 12.2°C, precipitation more than 100 cm is required to maintain temperate forest [110, 111]. But precipitations in 2014 and 2015, 80.89 cm and 79.21 cm, did not fulfill the level.
Changes of annual precipitation for recent 30 years in Seoul. Considered annual mean temperature is 12.2°C; precipitation more than 100 cm is required to maintain temperate forest. But years, which is not fulfill the level, for example 2014 (80.89 cm) and 2015 (79.21 cm) appear in recent years due to climate change.
Trends of monthly mean precipitation and potential evapotranspiration also showed very dangerous pattern (Figure 9). Gaps between precipitation and potential evapotranspiration during spring and fall seasons in 2017 when drought-induced plant damage was investigated were far bigger than that between mean values of them. In 2018, rainfall during spring season is far more than that of normal year, while that during rainy season, usually July to August, was very short (Figure 10). Consequently, rainfall pattern was deviated greatly from the normal pattern. Patterns in 2014 and 2015 when precipitation was very short resembled that in 2018. Water budget in 2014 and 2015 evaluated based on relationship between precipitation and potential evapotranspiration was more severe. Potential evapotranspiration exceeded precipitation.
Mean monthly trends of precipitation and potential evapotranspiration in 2014, 2015, 2017, and 2018 compared with mean values for recent 30 years from 1981 to 2010 in Seoul. Seoul, which is attributed to Asian monsoon climate zone, usually shows water balances with deficits in the spring season of the year, but the phenomenon was severer in 2017 and showed very different pattern in 2018. Patterns in 2014 and 2015 when precipitation was very short resembled that in 2018. Potential evapotranspiration exceeded precipitation in 2014 and 2015. Potential evapotranspiration was obtained applying a method of Blaney and Criddle [
From those results we can deduce that plants would endure severe water deficiency during growing season particularly. In fact, drought-induced plant damage investigated in urban forest of Seoul reflects those results.
Drought-induced plant damage was shown in Table 1. Among canopy trees and understoried trees,
Life form | Species | Damage degree | No. of damaged individuals | No. of dead individuals |
---|---|---|---|---|
Tree and understory tree | V | 100 | 96 | |
IV | 3 | |||
III | 50 | |||
IV | 9 | 1 | ||
I – IV | 27 | 6 | ||
I – III | 23 | |||
III | 1 | |||
II – IV | 15 | |||
I | 1 | |||
II – IV | 8 | 1 | ||
III | 2 | |||
II - III | 2 | |||
II | 1 | |||
I | 1 | |||
II | 2 | |||
I- III | 2 | |||
I - V | 2 | 1 | ||
III | 1 | |||
II | 2 | |||
II - III | 3 | |||
Shrub | I | 1 | ||
III - IV | 4 | 1 | ||
II | 1 | |||
IV | 20 | |||
III | 8 | |||
III | 1 | |||
III | 1 | |||
III | 3 | |||
III | 2 | |||
III - IV | 2 | |||
II | 1 | |||
I - V | 2 | |||
III - IV | 7 | |||
III | 2 | 1 |
Around 310 damaged plants in 34 species were observed (Table 1).
Around 107 plants in 7 species died due to drought (Table 1).
Drought-induced plant damage started from withering of leaves of plants introduced for landscaping in the urban area. Over time, branches died and death of the whole plant body followed. We regarded these phenomena due to that they were introduced without ecological consideration at this time. But die-off of
As drought continues, plant damage spreads toward the urban forest beyond the residential area in the urban center. Damage of exotic plants, such as
Retrogressive succession from forests of stable late successional stage such as
In this situation, severe drought due to climate change continued for several years and threatened ecological stability of the region substantially. Annual precipitation of the region, which experiences severe drought at present, falls short to the level, about 1000 mm, that temperate forest can establish in this region [110]. In addition, aggravation of spring drought, which comes from reduction of snow fall due to temperature rise during winter season and temperature rise and evaporation increase due to climate change, incites vegetation damage [37, 38].
Climate change does not induce temperature rise only simply but accompanies diverse and complex environmental changes likewise drought that we experience now. Moreover, vegetation damage spreads into various native plants beyond several sensitive plants. Environmental change due to climate change may cause additive retrogressive succession into poor vegetation near to open woodland rather than simple change from the deciduous broad-leaved forest to the evergreen broad-leaved forest as the general public think.
The damage of
In Seoul, the capital of South Korea, most flat plains and hilly terrain were transformed from the natural land surface to the artificial impervious one with the increase of population due to both birth and influx from the rural area. Consequently, green space shows imbalanced spatial distribution as it is restricted to the urban fringe, where the land is mountainous and thus development is difficult topographically and deficient in urban center. This imbalanced distribution of green space led to severe urban heat island effect, and the effect was followed by temperature inversion. Subsequently, this change produced altered air circulation patterns specific to city, particularly city with basin-type topography like Seoul [77, 79]. Movement of air pollutants from urban area is likely dominated by this air circulation. In this process, relatively heavy particulates are felled in urban center, while light gaseous pollutants are transported to the forested area in urban boundary. Spatial distribution of physicochemical properties of soil reflects the trends. Forest of this area experiences retrogressive succession from Mongolian oak forest of the late successional stage to Korean mountain ash forest of the earlier successional stage as it is continuously exposed to air pollutants blowing from urban center, and soil is acidified due to the effect. As the results of such changes, urban Mongolian forest shows decline symptom that species composition is different and species diversity is lower than that in natural landscape. Further, the result increases vulnerability to environmental stresses related to climate change including drought.
Plant damage due to drought begun from withering of leaves of plants introduced for landscaping in the urban park. Over time, branches died and death of the whole plant body followed. As drought continues, plant damage spreads toward the urban forest beyond the residential area in the urban center. Damage of exotic plants or plants introduced for landscaping was observed first of all. But damage of the native plants began to appear soon after. In particular, damage of
This paper was supported by LTER program of the Ministry of Environment of Korea.
This paper was prepared by supplementing and reediting papers that prof. C.S. Lee had published [39, 40, 46, 47, 99].
The specificity protein 1 (Sp1)/Krüppel-like factor (KLF) proteins are a family of highly conserved transcription factors that are characterized by the presence of three highly homologous Cys2/His2-type zinc fingers near the C-terminus that bind GC/CACCC box. Amino acid sequences in the transcription activation/repression domains are less conserved among family members; however, there are subfamilies based on sequence similarities within this group. These subfamilies tend to share co-activators or co-repressors to aid in how they regulate genes. So far, seven members in the specificity protein (Sp) subgroup and 18 members in the KLF subgroup have been identified in mammalian cells [1]. This family of transcription factors is able to function as both transcriptional activators and repressors based on the gene and cellular contexts. KLFs gained notoriety as Krüppel-like factor 4 (KLF4), Krüppel-like factor 2 (KLF2), and Krüppel-like factor 5 (KLF5) were suggested to be important for embryonic stem cells and stem cell reprogramming [2, 3, 4, 5, 6, 7] alongside Oct4, Sox2, and Nanog. However, we have only begun to touch the surface of the transcriptional control these factors exert during embryonic development, maintenance of normal function, and the breakdown of normal processes seen in many diseases.
\nThe goal of this chapter is to begin to describe our current knowledge of how the KLFs are regulated during development or disease. We seek to begin to understand the ways cells either promote or repress the presence of the KLFs through a variety of transcriptional and translational mechanisms.
\nKrüppel-like factor 1 (KLF1) or erythroid Krüppel-like factor is an essential transcription factor for erythroid development and was found to be key in the regulation of many facets of blood development. KLF1 is expressed in the developing blood as well as being weakly expressed in mast cells [1]. KLF1 is key to blood development as Klf1−/− mice die around E14 due to severe anemia [8]. Several studies also showed KLF1 is able to directly bind to the β-globin promoter to activate the gene’s transcription as part of fetal hematopoiesis in the liver [9, 10]. The null embryos provided a wealth of knowledge about KLF1 early on, suggesting that β-thalassemia could be linked with KLF1 deletions [11]. More recent studies have also shown that KLF1 is able to either directly or indirectly repress the transcription of the 𝛾-globin gene to promote the expression of β-globin during blood development [12].
\nIn humans, >140 KLF1 variants, causing different erythroid phenotypes, have been described. The KLF1 Nan variant, a single amino acid substitution (p.E339D) in the DNA-binding domain, causes hemolytic anemia and is dominant over wild-type KLF1 [13]. This variant in the developing liver demonstrates defects in erythroid maturation that resemble those seen with the KLF1−/−, again demonstrating the importance of KLF1 in blood development. Furthermore, recent studies suggest that there is an enhancer element in the KLF1 gene that is susceptible to methylation and that elevated levels of methylation in that region correlate with patients with juvenile myelomonocytic leukemia (JMML) [14]. KLF1 was also found to play a role in the inhibition of megakaryocytes while also stimulating erythroid lineages at the same time [15].
\nKrüppel-like factor 2 or lung Krüppel-like factor (LKLF) was isolated in humans in 1999 and found to be 85% similar in nucleotide identity and 90% similar in its amino acids to mouse and located on chromosome 19p13.1 [16]. Of special interest, a region of 75 nucleotides within its proximal promoter was found to be identical between human and mouse [16]. This identical region in the mouse and human promoters for KLF2 has been found to be critical for its regulation in lung, blood, endothelial cell, and T lymphocyte development [15, 16, 17, 18, 19, 20, 21, 22]. KLF2 was shown to be essential for normal development within mice, and knockout embryos were lethal around day 12.5 and lung function was also severely impaired in KLF2−/− chimeras [22]. KLF2 expression appears to also be important for the maintenance of normal lung function, as methylation of KLF2 was associated with metastasis and worsening prognosis in non-small-cell lung cancer [23].
\nKLF2 was also shown to be essential for early erythropoiesis and regulation of the β-globin gene, and klf2−/− mice also exhibited hemorrhage in developing blood cells [17]. In mature T cells, KLF2 is required for T-cell trafficking, and elimination of KLF2 in T cells affects the expression of sphingosine-1-phosphate receptor and CD2L and beta7 integrins, receptors all important in T-cell trafficking [18, 24]. ERK5 was also shown to be important in T-cell activation, and ERK5−/− cells were unable to activate genes for T-cell function [25, 26].
\nKLF2 is also an important regulator of heart and aorta development and normal maintenance of endothelial cells [27, 28, 29]. KLF2 has been shown to be activated by shear stress through the conserved 75-base pair region in the human and mouse promoters [30]. This region was shown to requite PI3K for activation and PCAF (p300/CAMP-response element-binding protein-associated factor) and heterogeneous nuclear riboprotein D to induce acetylation of H3 and H4 histones [31]. Additional riboproteins and acetyltransferases such as HnRNP-U, hnRNP-D, and p300 were also found to bind via this conserved region in the KLF2 promoter [32]. KLF2 was also found to be activated by nucleolin in endothelial cells following shear stress, and activation via nucleolin was also PI3K dependent [33].
\nIn terms of a negative regulation of KLF2 in endothelial cells, KLF2 was shown to be negatively regulated by p53, which bound to the KLF2 promoter to induce deacetylation of the KLF2 histone H3 [34]. Tumor necrosis factor alpha (TNF-α) was shown to activate NF-Кβ p65 to complex with histone deacetylase 4 to prevent MEF2 binding to the KLF2 promoter, demonstrating a possible additional mechanism of the downregulation of KLF2 in endothelial cells in response to injury. Finally, low-density lipoprotein (LDL) cholesterol was found to stimulate the methylation of both DNA and histones on the KLF2 promoter and to contribute to the downregulation of KLF2 in response to LDL cholesterol. These mechanisms suggest there are a number of complex pathways that control the expression of KLF2 in a number of different tissue types.
\nKrüppel-like factor 3 (KLF3) or basic Krüppel-like factor (BKLF) is widely expressed and abundant in erythroid cells. KLF3 is believed to regulate adipogenesis, erythropoiesis, and B-cell development [35, 36]. KLF3 is able to interact with the co-repressor CtBP to repress gene transcription much like Krüppel-like factor 8 (KLF8) and Krüppel-like factor 12 (KLF12), and the N-terminal repression domain is important for this interaction in KLF3 [37, 38, 39]. KLF3 has been found to be sumoylated and that this sumoylation also affects its interaction with CtBP [37]. KLF3 has been shown to have a role in adipogenesis as forced expression of KLF3 was shown to block adipocyte differentiation [40]. Recent methylation data from endothelial cells demonstrates that KLF3 is highly methylated in flow-dependent conditions but can be reversed with 5-aza-2′-deoxycytidine treatments [41]
\nKrüppel-like factor 4 or gut-enriched Krüppel-like factor (GKLF) or endothelial zinc finger (EZF) protein is most similar to KLF2 and functions in the regulation of the epithelial of the gut and skin, endothelial cells, smooth muscle cells in vascular disease, and induced pluripotent stem cells (iPSC) [1, 42]. KLF4−/− mice died shortly after birth due to epithelial barrier defects in skin and gut barriers [43]. KLF4 is regulated by AP-2alpha during early and mid-embryogenesis to help regulate proliferation [44].
\nKLF4 became well-known after the discovery that it was one of the regulating factors along with Oct4, Sox2, and Nanog of induced pluripotent stem cells [4, 5, 6, 7]. Oct4 was later found to regulate the expression of KLF2, while LIF/Stat3 was thought to regulate the activation of KLF4 in embryonic stem cells [45, 46]. Additional studies have suggested that posttranslational modifications increase or decrease the stability of KLF4 mRNA and these modifications control the exit from pluripotency [47]. Furthermore, these modifications mediate the ability of KLF4 to complex with other pluripotency transcription factors and bind DNA. Finally, Oct4 has been shown to contain a linker region that is important for loosening chromatin, complexing with Brg1, and allowing for KLF4 to bind during cellular reprogramming [2]. Clearly, the interactions and mechanisms of pluripotency factors in stem cells are complex and require further investigation.
\nKLF4 is required for normal functioning of the gut epithelial as deletion of KLF4 resulted in altered proliferation [48]. KLF4 and KLF5 are often found in the same types of tissues, bind to similar or identical DNA elements, and often exert opposing affects in different tissue types. KLF4 has been found to bind with p53 on the p21 genes in epithelial cells and in smooth muscle cells to inhibit proliferation [42, 49, 50].
\nIn the case of smooth muscle cell proliferation, sumoylation of KLF4 causes it to fall off the p21 promoter and decreases p21 transcription following PDGF-BB treatments [51]. Sumoylation is also believed to affect binding of KLF4 to smooth muscle marker genes in TGFβ treatment [52, 53]. In smooth muscle cells in vascular disease, KLf4 has been shown to be activated by Sp1 and Oct4 binding to the KLF4 promoter [54, 55]. Separately, in macrophages KLF4 sumoylation promotes an IL-4-induced macrophage polarization to an M2 state, suggesting KLF4 plays a role in inflammation and macrophage polarization states [56]. However, in endothelial cells KLF4 is important along with KLF2 for the maintenance of endothelial cell integrity and normal endothelial barrier function [29]. KLF4 function in vascular disease could fill chapters of books investigating its many roles and functions; however, our goal is to highlight some of the mechanisms of its regulation in these processes.
\nFinally, KLF4 is also regulated by DNA methylation in several different types of cancers. KLF4 was found to be hypermethylated in renal cell carcinomas [57] and endometrial cancers [58]. However, a surprising discovery was KLF4 can bind to methylated regions of chromatin to mediate activation of transcription without the need for demethylation of the DNA in some types of cancer cells [59, 60]. These studies demonstrate a new role for some transcription factors as methylation readers in the transcription process.
\nKrüppel-like factor 5 or intestinal-enriched Krüppel-like factor (IKLF) or basic transcription element-binding protein 2 (BTEB2) is located on chromosome 13q22.1 and is important in the expression of the gut epithelia, vascular smooth muscle cells, and white adipose tissues [1, 61]. KLF5 is important in epithelial cells as it is located in the base of the crypts where cells are proliferating toward the villi. In general, KLF4 and KLF5 have been shown to compete to the same sites on DNA [62] and have also been suggested to be involved in their own regulation [42]. KLF5 has been shown to be important in gastric tumor progression and initiation and often correlate with KRAS mutations [63, 64].
\nKLF5 has also demonstrated to be important in the development and maintenance of the heart, aorta, and lung systems [20, 65, 66, 67, 68, 69]. Following angiotensin II induction, KLF5 was shown to bind to PDGF-A and activate it. KLF5 was also shown to be activated by RARα binding site in the KLF5 promoter [65, 70]. KLF5 has been shown to be regulated by acetylation. When KLF5 is associated with p300, it is acetylated and able to activate gene expression. Conversely, when SET is bound to KLF5, it prevents acetylation of KLF5 and its transcriptional activity [71]. These studies suggest that KLF5 can be regulated directly by modifications to control its transcriptional activity.
\nExpression of KLF5 in breast cancers was found to be correlated with a negative prognosis and decreased survival [72], while in clear cell renal cell carcinoma, hypermethylation and decreased expression of KLF5 were associated with a poorer prognosis [73]. Hypermethylation of KLF5 in acute myeloid leukemia was also associated with a poorer prognosis [74]. These studies suggest that KLF5 function in cancer is cell and perhaps even cell lineage specific. Within various cancers, KLF5 has also been demonstrated to be regulated by micro-RNAs. In gastric cancer, miR-145-5p directly targets KLF5 and promotes the differentiation of gastric cancer via KLF5 downregulation [75]. Separately, in hepatocellular carcinoma miR-214-5p acted as a tumor suppressor that could directly target and promote the downregulation of KLF5 [76]. These data demonstrate complex regulatory pathways involved in KLF5 regulation in cancer progression.
\nKrüppel-like factor 6 (KLF6) or zinc finger transcription factor 9 (ZF9) has been shown to be important for endothelial biology, adipogenesis, and tumor suppression in a wide variety of cancers. During embryogenesis, it is expressed in a time-sensitive manner in the kidney, cornea, gut, and yolk sac [77, 78, 79, 80]. KLF6−/− mice are embryonic lethal due to yolk sac abnormalities [77, 78, 79, 80]. KLF6 has been suggested to have a role in endothelial vascular remodeling following injury as it binds and activated urokinase plasminogen activator 1, endoglin, and matrix metalloproteinase 9 [81]. Interestingly, KLF6 has an alternative form of regulation because the gene produces at least four different isoforms that are able to affect DNA binding and transcription [82]. The full-length isoform of KLF6 is believed to function as a tumor suppressor and can be regulated by loss of heterozygosity, mutation, or decreased expression in different cancer types. The full-length KLf6 was found to have one deleted allele in prostate cancer, and the leftover allele was mutated 71% of the time, preventing KLF6 from functioning to activate p21 [83]. Of the isoforms of KLF6, the Krüppel-like factor 6 splice variant 1 (KLF6-SV1) was found to be oncogenic and upregulated in prostate, lung, and breast cancers and inhibits the activity of the full-length KLF6 [82]. This is the first KLF to be regulated in part by alternative splicing and suggests that directed targeting of the splice variants of KLF6 could represent a potential target for elimination therapy.
\nKLF6 can be regulated by methylation both to downregulate its expression and to prevent its binding to certain sites in cancer. Studies have suggested a possible role for methylation of KLF6 in hepatocellular carcinoma and in colorectal cancer [84, 85]. Separately, KLF6 can be prevented from binding on the SIRT5 promoter by the presence of DNA methylation during adipocyte differentiation [86]. KLF6 also could not bind the tissue factor pathway inhibitor-2 promoter following hypermethylation of its promoter during adipocyte formation [87].
\nKrüppel-like factor 7 (KLF7) or ubiquitous Krüppel-like factor (UKLF) has high expression in the brain and spinal cord and is important in the developing brain and nervous system [88]. KLF7 was identified originally in 1998, located on chromosome 2, and was believed to share a strong similarity with KLF6 [89]. Studies by Laub et al. found that KLF7 was important for upregulation of p21, repression of cyclin D1, and growth arrest in neuronal cells, thereby helping to lead to their differentiation and maturation [88]. In separate but related studies, the same laboratory found that elimination of KLF7 leads to neonatal lethality and the elimination affected areas of the olfactory, visual system, cerebral cortex, and hippocampus [90]. They also further investigated the roles of p21 and p27 and found KLF7 affected their expression in these areas during development [90]. Additional studies suggest that KLF7 regulates a number of genes in olfactory neuron development and axonal growth [91, 92]. In corneal epithelial differentiation, KLF7 was found by ChIP-sequencing to inhibit the activity of KLF4 to promote a corneal “progenitor”-like state [93].
\nKLF7 has also been suggested to play a role in type 2 diabetes. Studies have suggested that there are single nucleotide polymorphisms (SNPs) in the KLF7 gene that are associated with increased type 2 diabetes in Asian populations [94]. The same group further investigated the role of KLF7 and found that overexpression of KLF7 impaired the insulin production system and secretion in pancreatic beta cells while also inhibiting insulin sensitivity in the peripheral tissues [95]. KLF7 was also found to activate the TLR4/NF-kB/IL-6 pathway in adipocytes [96]. Finally, KLF7 has recently been also been found to be elevated in gastric cancers in patient samples in some populations and has been suggested to be a possible biomarker for the disease [97].
\nKrüppel-like factor 8 is expressed at low level in most tissue types [1]. KLF8 is a member of the same subfamily of Krüppel-like factors that includes KLF3 and KLF12 as all three KLFs recruit CtBP to repress transcription [37, 38, 39, 98]. These data also demonstrated that KLF8 needs its own DNA-binding domain to bind DNA but needs its repression domain for interaction with CtBP. KLF8 has been shown to be upregulated and activated during several types of cancers including those from ovarian, breast, and renal carcinomas [99, 100, 101]. KLF8 was also shown to activate the FHL2 gene in pancreatic cancer cells and to promote metastasis and epithelial-to-mesenchymal (EMT) transitions in pancreatic tumor cells [100, 101]. Furthermore, KLF8 was shown in gastric cancer to induce HIF-1 expression and promote epithelial-to-mesenchymal transitions in gastric cancer [102]. Finally, KLF8 methylation levels were also tested in prostate cancer cell lines but did not prove to be causally related to the progression of prostate tumors [103].
\nKrüppel-like factor 9 (KLF9) or basic transcription element-binding protein (BTEB) is broadly expressed, but its expression is especially high in the developing brain and thymus and in the smooth muscle of the gut and bladder [1, 104]. Interestingly, it has been demonstrated that although the mRNA for KLF9 is transcribed in many areas, the brain is the main organ where it is translated into protein [105]. The zinc fingers of the KLF9 gene are commonly now thought to be very closely related to Sp1 as they have a high sequence similarity. However, beyond their DNA-binding domains, these proteins share little sequence similarity [105]. In the brain expression, there is a thyroid hormone response element in the promoter of the KLF9 gene that accounts for its transcription and expression in the postnatal brain [105, 106]. KLF9 was also found to bind to a number of proximal promoter regions on genes important for brain function to repress transcription in hippocampal neurons [106, 107].
\nKLF9 expression has been noted in cancers of the mammary glands and uterus because of its ability to interact with the progesterone response elements to stimulate progesterone response elements [108, 109]. KLF9 is also required for the development of fertility in females as KLF9−/− mice were subfertile and were unable to differentiate their reproductive tissue without KLF9 [109]. KLF9−/− mice also were found to have aberrant regulation of their intestinal crypt cell proliferation and villus migration [110]. These data suggest that KLF9 also regulates the smooth muscle and the turnover of intestinal cells.
\nFinally, in follicular lymphoma, KLF9 was found to be hypermethylated and silenced in tumors along with a number of polycomb genes [111]. Separately, in breast cancer hypermethylation of KLF9 was correlated with a favorable cancer prognosis [112].
\nKrüppel-like factor 10 (KLF10) or transforming growth factor-inducible early gene 1 (TIEG1) is known as a TGFβ-inducible gene as it is rapidly induced by TGFβ treatments and then quickly returns back to basal levels [113, 114]. KLF10 is induced by multiple members of the TGFβ superfamily and then goes on to suppress Smad7 and co-activate together with Smad2. It is believed that KLF10 plays a major role in the mediation of TGFβ inhibition of cell proliferation and inflammation and induction of apoptosis [113, 115]. The rapid induction and then degradation of KLF10 are believed to be accounted for by SIAH proteasomal degradation [113]. In these studies, KLF10 was found to interact directly with SIAH which then mediates its degradation [113]. These studies suggest a protein degradation method of regulation.
\nKLF10 has been cited to be important in bone development and osteoporosis, adipocyte development, and heart, lung, brain, and T-cell activation [1, 116]. In adipocyte differentiation, C/EBPβ was found to bind and activate the KLF10 promoter, while KLF10 bound to the C-EBPα promoter to inhibit its activation [117]. In bone development, SNP analysis revealed that variants in the KLF10 gene were associated with bone loss in older men [118]. Conversely, studies in KLF10 null mice suggest a gender-specific role of KLF10 in the maintenance of bone density [19]. KLF10 null osteoblasts were also found to be defective in mineralization and in osteoblast support of osteoclast differentiation [119]. Finally, KLF10 null mice had impaired tendon function as adults with corresponding difficulty in tendon function [120].
\nIn heart development, KLF10−/− mice developed cardiac hypertrophy and an increase in ventricle size and an increase in wall thickness, suggesting the importance of KLF10 to the maintenance of normal heart function [121]. KLF10 is also important in T-cell and Treg development along with TGFβ as deletion of KLF10 in T cells augmented atherosclerosis and led to impaired T-cell function [122].
\nKLF10 has been shown to be methylated in pancreatic cancers by DNMT1 with a correlation between methylation status and tumor grade [123]. The more the methylation and repression of the KLF10 promoter, the worse the tumor grade. These studies suggest that an important regulatory mechanism for KLF10 is also via methylation of its promoter.
\nKrüppel-like factor 11 (KLF11) or transforming growth factor-inducible early gene 2 (TIEG2) or FKLF is known to be expressed in the pancreas and in erythroid cells in the fetal liver. KLF11 is located in humans at chromosome 2p25 [1, 124, 125, 126]. KLF11 shares 91% homology with KLF10 in the zinc finger domain and 44% homology with the N-terminus of KLF10 [127]. These studies also demonstrated that overexpression of KLF11 inhibits cell proliferation [127] and is induced by TGFβ signaling pathways.
\nKLF11 contains three repression domains that are believed to be important for its repressor activities [128]. TGFβ signaling pathway induction means that KLF11 often cooperates with Smads to induce changes in transcription following TGFβ treatment. KLF11 later was found to be activated by several members of the TGFβ superfamily and not just by TGFβ treatment alone [114]. Studies have shown in neuronal cells that KLF11 regulates the transcription of the dopamine D2 receptor by complexing with p300, a histone acetylase, to promoter transcription [129]. KLF11 was also found to regulate collagen gene expression through the heterochromatin protein 1 gene-silencing pathway, as mutants defective for coupling to this epigenetic modifier lose the ability to repress COL1A2 and to prevent fibrosis in KLF11−/− mice [130]. As part of the TGFβ induction of KLF11, TGFβ induction allows KLF11 to interact with Smad3 and to repress certain promoters. In the case of pancreatic cancer, KLF11 was found to bind with Smad3 to the c-myc promoter following TFG-β treatment [131].
\nKLF11 is important not only for its TGFβ response but also for its associations with diabetes and obesity [132, 133]. A variant of KLF11 was found that could lead to type 2 diabetes and obesity [134]. Further studies revealed additional variants that may affect KLF11 regulation of the insulin promoter and type 2 diabetes [133]. KLF11 was also found to interact with p300 in maturity-onset diabetes of the young to induce transcriptional changes in the pancreas [135]. In converse, KLF11 can also interact with mSin3a in pancreatic cancer by repression of the Smad7 promoter [136]. Ectopic expression of KLF11 increased the sensitivity of cells to oxidative drugs [137]. Methylation of KLF11 has been suggested to be one mechanism of its downregulation in several types of cancers [138, 139].
\nKrüppel-like factor 12 or BETB1 was first identified in the regulation of the AP-2α gene and is located on chromosome 13q21-13q22 [140]. In the case of the AP-2α gene, KLF12 functions as a transcriptional activator and appears to relate back to KLF12’s function as a marker of tumor development [141, 142, 143]. KLF12 is a marker for gastric cancer progression, and overexpression of KLF12 promotes tumor cell invasion and progression [142]. However, in lung cancer cell lines, it was shown that KLF12 was important for the regulation of anoikis and the progression through the S phase of cell cycle [141]. These data suggest that KLF12 may have multiple different roles in cancer beyond what was previously identified. KLF12 is also one of the KLF factors to interact with the mSin3a repressor complex via an alpha-helical motif in a repression domain of the transcription factor [144].
\nKLF12 not only plays roles in tumor progression but is also believed to play a role in the developing kidney after birth. KLF12 was shown to be expressed in the collecting ducts of the kidney after birth and could directly regulate the UT-A1 but not the ENaC promoters, two genes important for the development of the collecting ducts [145]. A recent study suggests that KLF12 might in part be regulated in cancer by the methylation of miR-205 by long noncoding RNA ELF3-antisense RNA 1. These data suggest that miR-205 and RNA ELF3-antisense RNA 1 exist in a complex regulatory loop involving KLF12 [146].
\nKrüppel-like factor 13 (KLF13) or BTEB3, FKLF2, or RFLAT-1 was first discovered along with Krüppel-like factor 14 (KLF14) using an expressed sequence tag database to search for additional conserved KLF DNA-binding domains [129]. KLF13−/− mice are one of the few KLF mice that are viable and fertile; however, they display abnormal blood cell development [147, 148] suggesting that KLF13 is critical for both B- and T-cell developments [148, 149, 150]. One part of this developmental process is KLF13’s interaction with PPAR4 [151] to regulate CCL5. Not only is KLF13 important for blood cell development, it has also been shown to be important for the developing heart [104, 152]. To this end, KLF14 can also be linked to Holt-Oram syndrome, an inherited disorder characterized by abnormalities of the upper limbs and heart, via its interaction with the TBX5 promoter [153].
\nKLF13 has also recently been suggested to be a tumor suppressor in glioma cells [154]. These studies found that KLF13 was downregulated by hypomethylation across the gene to promote its silencing; however, decreases in DNMT1 expression or decreases in hypomethylation patterns of KLF13 decreased proliferation and migration of glioma cells [154]. Another example of KLF13 methylation is the methylation of the obesity-related variant of KLF13: cg07814318. The methylation of this particular SNP appears to be related to increased childhood obesity [155]. These studies suggest that methylation of promoters could be one possible mechanism of regulation of KLFs in development or disease.
\nAnother possible mechanism of regulation of KLF13 is through the co-repressor complex mSin3a [144]. In this instance, KLF13 was found to interact with the mSin3a repressor complex via an alpha-helical motif in a repression domain [144]. Additional studies from this group suggest that multiple KLF factors (BTEB1, BTEB3, BTEB4) could also contain this alpha-helical domain in their repression regions.
\nKrüppel-like factor 14 was first discovered using expressed sequence tag databases to search for the presence of additional conserved KLF DNA-binding domains [129]. KLF14 has 72% similarity with the human Sp2; however, the majority of its similarity exists within its DNA-binding domain [129]. Most reports suggest that its expression is ubiquitous [1]. Interestingly, KLF14 is intron-less and exists on chromosome 7q32. KLF14 is a mono-allelic expression pattern and shown to be hypomethylated in many tissues, further suggesting a pattern of ubiquitous expression [156]. Further evidence also suggests that KLF14 could be derived from a retro-transposed copy of Krüppel-like factor 16 (KLF16) [156] and could be an example of accelerated evolution. KLF14 deletion has recently been linked with centrosome amplification, aneuploidy, and spontaneous tumorigenesis because KLF14 functions as a repressor of polo-like kinase 4 (PLK4). Without the repressive activities of KLF14 on PLK-14, PLK-14 can cause chromosomal abnormalities and promote tumorigenesis in cancer cells. The KLF14 gene has been linked to genomic variants that are highly correlative with basal cell carcinoma [157].
\nGenome-wide association studies not only revealed that KLF14 was linked with basal cell carcinoma, it also has revealed that KLF14 is linked with cholesterol metabolism, metabolic disease, and coronary artery disease. These studies suggest that KLF14 might function as an imprinted master regulator of metabolic function and that mutation of certain SNPs within the KLF14 gene can lead to a large-scale deregulation of metabolic gene function [158]. KLF14 was also found to regulate levels of HDL-C and hepatic ApoA-I production [159]. Guo et al. were able to find evidence that perhexiline was able to activate KLF14 and to reduce lesions in ApoE−/− atherosclerotic mice [159]. Separate but related studies suggest that this activity is related to the phosphorylation of KLF14 by both p38 MAPK and ERK kinase [160]. However, KLF14 was found to be decreased in endothelial cells in atherosclerosis, and overexpression of KLF14 actually inhibited NF-KB signaling by suppressing p65 [161]. KLF14 has also been shown to interact with p300 to promote sphingosine kinase activation and to enhance sphingosine production [162]. These data suggest a complicated pattern of expression for a ubiquitous transcription factor that could produce paradoxical effects in inflammatory disease such as cardiovascular disease or cancer. Interestingly, there still appears to be less known about how KLF14 itself is regulated.
\nKLF15 or kidney-enriched Krüppel-like factor (KKLF) demonstrates low levels of cardiac-specific expression during development but then exhibits adult expression in the kidney, liver, pancreas, heart, skeletal muscle, lung, and ovary. KLF15 was originally thought to be important for the regulation of different cell types in the kidney and repressed genes such as CLC-K1 and CLC-K2 [163]. However, its regulatory effects can be seen in the heart, skeletal muscle, gluconeogenesis, and circadian rhythms. In terms of the heart, KLF15 was demonstrated to be an inhibitor of cardiac fibrosis by repression of connective tissue growth factor (CTGF) [164]. In this mechanism, KLF15 inhibits the recruitment of the co-activator P-CAF but does not prevent SMAD3 from binding to the promoter [164]. Additional studies by the same group demonstrated that KLF15 was a negative regulator of cardiac hypertrophy via inhibition of GATA4 and MEF2 functions [165]. Recent studies further suggest that KLF15 was identified as a putative upstream regulator of metabolic gene expression in the heart via RNA-Seq and methylation sequencing and that KLF15 was itself regulated by EZH2 in a SET domain-dependent manner [166]. KLF15 was demonstrated to be silenced via methylation in ischemic cardiomyopathy which in turn leads to the silencing of many cardiac-specific genes.
\nKLF15 has been shown to also be important for metabolism [167]. In terms of the skeletal muscle, overnight fasting and endurance exercise induce KLF15 expression, while knockout of KLF15 induces abnormal energy flux, excessive muscle fatigue, and impaired endurance capacity [168]. KLF15 was later shown to complex in the liver with liver X receptor (LXR) to inhibit SREBF1 during fasting by recruiting the co-repressor RIP140 [169]. Finally, KLF15 is also important for nitrogen homeostasis and the maintenance of circadian rhythm as KLF15 knockout mice had no amino acid rhythm and no rhythm of the production of urea from ammonia [170]. These studies suggest the importance of KLF15 and suggest that investigations into how it is regulated by chromatin readers and writers will become important to these metabolic diseases.
\nKrüppel-like factor 16 or dopamine receptor regulating factor (DRRF) was first discovered in its regulation of the dopamine receptors in the developing brain and eye [171]. It is now known that KLF16 is expressed not only in the developing brain but also in the thymus, intestine, kidney, liver, heart, and bladder. KLF16 has recently been shown to not only regulate the dopamine receptor but also to regulate the ephrin receptor A5 (EphA5), but this regulation was methylation specific as methylation of the EphA5 promoter prevented KLF16 from binding [171]. These data suggest that one possible epigenetic mechanism regulating KLF16 is methylation of regions near its binding site.
\nKLF16 was found by Daftary et al. to bind to all three types of KLF binding site, the GC, CA, and BTE boxes using electromobility shift assays but prefers binding to the BTE box in cells and to mediate its effects via mSin3a, a transcriptional co-repressor complex but suggests that this function is both promoter and cell context dependent [172]. To further study this interaction, site-directed mutagenesis was performed of all of the serine, threonine, and tyrosine residues believed to be possible targets for kinase phosphorylation signaling and found that mutation of tyrosine-10 altered the ability of KLF16 to interact with mSin3a [172]. Finally, KLF16 was also found to be regulated by nuclear localization and to be excluded from heterochromatin within the nucleus [172]. These studies suggest complex posttranslational regulatory mechanisms for KLF16 function in a cell- and promoter-dependent manner.
\nKrüppel-like factor 17 (KLF17) was first discovered in mouse as zinc finger protein 393 (ZFP393) or ZNF393 where it was shown to be expressed in the testis and ovaries, and the gene spans 8 kb in the distal portion of chromosome 4 in the mouse [173]. In humans KLF17 maps to chromosome 1p34.1. When it was discovered back in 2002, it was believed to be the first C2H2 germ cell-specific zinc finger protein. Identification of KLF17 in the human revealed that KLF17 was expressed not only in the testis but also in the brain and bone, albeit at relatively low amounts [174]. KLF17 also contains low sequence similarity between the human and mouse orthologues; however, a detailed transcriptional binding analysis by van Vliet et al. was able to demonstrate that KLF17 was a Krüppel-like transcription factor rather than being more closely linked to the specificity protein factor family (Sp family) [173].
\nKLF17 is hypothesized to be a tumor suppressor in multiple types of cancers, and a decrease in its expression has become correlated with a poor cancer prognosis [175]. KLF17 was demonstrated to be a tumor suppressor gene in metastatic breast cancer lines whose downregulation promotes the epithelial-to-mesenchymal transition in cancer cells [176]. These studies also suggested that KLF17 is a direct negative regulator of inhibitor of DNA binding 1 (ID1). Sadly, they do not offer a direct mechanism for the downregulation of KLF17 during breast cancer metastasis, but they do provide compelling data to suggest that KLF17 might have multiple functions in the male and female sex organs and that suppression of this factor could lead to increased tumorigenic potential [176].
\nFurther evidence in non-small-cell lung cancer also suggests that KLF17 could function as a tumor suppressor [177]. These studies suggested that p53 recruits p300 to the KLF17 promoter to acetylate and turn on transcription [177]. In addition, p53 also physically interacts with KLF17 and promotes binding of KLF17 to certain gene promoters and promotes transcription of p53, p21, and pRB [177]. These data suggest an intricate cross-talk between KLF17 and p53 in tumorigenesis. Another way KLF17 is believed to inhibit cancer progression is through inhibition of proliferation via repression of UPAI-1 [178], which Cai et al. proposed inhibited the invasive properties of small-cell lung cancer cells. KLF17 was also suggested to be a tumor suppressor through a TGFB-/SMAD-dependent mechanism where KLF17 physically interacts with SMAD3 to target genes to prevent metastases [179]. MiR-9, a micro-RNA important for tumor invasion and metastasis, has been shown to inhibit the activation of KLF17 by directly binding to the 3′-untranslated region (3′-UTR) [175]. These pathways suggest that KLF17 can be regulated both by direct promoter activation and by posttranscriptional modifications such as RNA degradation by micro-RNAs.
\nIn converse, in endometrial cancer KLF17 was found to be an inducer of epithelial-to-mesenchymal transition and resulted in activation of TWIST1 [180]. This finding demonstrated that KLF17 bound directly to the TWIST promoter to activate its transcription [180]. KLF17 was also shown to bind directly to estrogen receptor alpha (ERα) to prevent it from being able to bind directly to chromatin [181]. ERα then also contributed to the suppression of KLF17 using the co-repressor histone deacetylase 1 (HDAC1) to promote KLF17 deacetylation and chromatin condensation [181].
\nKrüppel-like factor 18 (KLF18) was identified in 2013 from sequence similarity searches and gene synteny analyses and was shown at that time to be highly related to KLF17 [182]. Like KLF17, it is believed to be expressed in the developing testis and restricted to that area. Little data currently exists examining its function; however, a detailed analysis of its structure and phylogenic tree in placental mammals has been investigated in detail by Pei et al. [182]. This group also suggested that KLF18 might be a pseudogene of KLF17 since its expression pattern is restricted and it is similar in sequence to KLF17. Despite this hypothesis, three genes in mouse and rat were identified that closely resemble KLF18: Zfp352, Zfp352-like, and Zfp353 [182]. The promoter and/or details into the transcriptional activation of this KLF are currently unknown. A more detailed analysis of the functions and regulations of KLF18 would provide more insight into this transcription factor’s function.
\nOver the past 20 years since the discovery of the first KLF transcription factor, there continues to be a growing body of evidence to suggest that KLFs are important to tumor progression, cardiovascular disease, metabolism, and even circadian rhythm [1]. While much of the work has focused on the functions of these factors and their roles in various disease processes, there still remains additional needed work to explain how the various KLFs become activated and/or repressed during diseased states. There is a growing body of evidence, which we have attempted to discuss in some detail in this chapter, in the more extensively studied KLFs such as KLF4, KLF5, and KLF2 that suggest that the KLFs are regulated extensively by posttranslational modifications such as phosphorylation, acetylation, ubiquitination, and sumoylation. These modifications appear to be critical for co-factor recruitment and determination of whether KLFs interact with either activators or repressors of transcription. It has been interesting to see the wealth of information that has developed over the past 20 years investigating the roles of these various factors in various diseases; however, relatively speaking, we still know little about how these factors are activated and/or repressed transcriptionally during diseased states.
\nSince the onset of the era of big data, more of the KLF field has come to focus on the roles of pathway analysis following genetic ablation of a KLF in a cell-specific manner. These studies have yielded enormous amounts of data that offer valuable insight into the overlap between various KLF factors in diseases [183]. It will be of interest in the future to see how the integration of single-cell genomics will come into play with various different roles of the same KLF in various cell types in diseased states [184]. For example, the integration of single-cell RNA-Seq [184] with Assay for Transposase-Accessible Chromatin using sequencing (ATAC-Seq) [185, 186] in cells where a single KLF bear separate functions could offer deeper insight of the role of the niche environment on KLF function and/or on the roles of KLFs in downstream activations of different types of pathways during disease. Cardiovascular diseases have recently begun to investigate single-cell sequencing with other factors, such as Tcf21, and were able to use these innovative studies to investigate the role of this factor in smooth muscle cell to fibroblast transitions during atherosclerosis [184]. It will be exciting to see how KLF biology will use this technology to further investigate how these transcription factors regulate disease.
\nNot only will the integration of single-cell studies with KLF function give us greater insight into KLF function in development and disease, but the study of the role of RNA posttranscriptional modifications will most likely play an emerging role in the KLF field in the near future [184]. Since the sequencing of the human genome and the growing realization of the stronger role of RNA in transcriptional and translational control, there has been a re-emergence of interest in the field of RNA posttranscriptional modifications [187]. There are over 100 different types of RNA modifications of which the N6-methyladenosine (m6A) modification is the most common [187]. Interestingly, m6A has recently been shown to be concentrated in the 3′-UTR of many messenger RNAs and that micro-RNAs are capable of mediating this modification via a sequence pairing mechanism to help promote stem cell pluripotency [187, 188, 189, 190, 191, 192]. This new role for RNA modification and stem cell maintenance has immense implications for KLFs involved in induced pluripotent stem maintenance like KLF4. Therefore, it will be of interest to determine whether RNA modifications affect other disease processes by similar sequence pairing mechanisms.
\nIn conclusion, the KLF field has offered many insights to different disease processes since the discovery of the first KLF over the past 20 years. New insights into the regulation of these factors will hopefully grant novel methods to directly and properly target these factors to inhibit diseased states that currently have no medical treatment therapy. Perhaps the newly emerging CRISP technology will be able to directly target KLFs in a cell-specific manner as many KLFs have opposing functions in many different cell types. In any case, this transcription factor family has offered much excitement since its discovery and hopefully will offer new insights as the field studies these factors in more depth in the future.
\nThis work was supported by the AHA Scientist Development Grant 14SDG18730000 (MS). The content is solely the responsibility of the authors and does not necessarily represent the views of the AHA.
\nThe authors declare no conflict of interest.
We thank Anthony Herring and Cindy Dodson for their knowledge and technical expertise.
\n\n DNA methyltransferase 1 Ephrin receptor A5 Epithelial-to-mesenchymal transition Estrogen receptor Histone deacetylase Inhibitor of DNA binding 1 Interleukin-4 Interleukin-6 Nuclear Factor kappa-light-chain-enhancer of activated B cells Krüppel-like factor N6-methyladenosine Co-repressor complex used for repression Histone acetylase TP53 or tumor protein Subunit of NF-KB Subunit of NF-KB signaling p21CIP1, cyclin-dependent protein inhibitor Platelet-derived growth factor BB Phosphorylated RB Smooth muscle cells Proteins transduce signals from transforming growth factor beta Smooth muscle alpha actin Specificity proteins Transforming growth factor beta Tumor necrosis factor alpha TWIST1-protein Zinc finger transcription factor Zinc finger protein
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"11"},books:[{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11938",title:"Ballistics",subtitle:null,isOpenForSubmission:!0,hash:"9c64ef67aac55216f08c65a2a179835c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11938.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11941",title:"Advances in Turbomachinery",subtitle:null,isOpenForSubmission:!0,hash:"fe2c693976d70c5d0cc5f8003e6e73c5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11941.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11942",title:"Updates on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f4ac095defb765e0e9bfebc06dac719e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11942.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12024",title:"UWB Technology",subtitle:null,isOpenForSubmission:!0,hash:"6158349f714de7cee2337adf57b2617d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12024.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12060",title:"Offshore Constructions",subtitle:null,isOpenForSubmission:!0,hash:"1ef3e82fa480e0ea47994959072c694a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12060.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12025",title:"Cognitive Radio Systems",subtitle:null,isOpenForSubmission:!0,hash:"75b14778d5efbcfe9c1f51d2e31f6aeb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12025.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12062",title:"Public Transportation",subtitle:null,isOpenForSubmission:!0,hash:"c045089da37d46be1ee7e5e74f93cc93",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12062.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12026",title:"Induction Motor",subtitle:null,isOpenForSubmission:!0,hash:"0273a4ffd6bc66faed9db00380771240",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12026.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12027",title:"Optical Fiber",subtitle:null,isOpenForSubmission:!0,hash:"479f515bddf75aa9857e4f0ccf3e7c74",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12027.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12029",title:"Temperature Sensors",subtitle:null,isOpenForSubmission:!0,hash:"dab57974c019f161e2cd3a0c80cae256",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12029.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12030",title:"Remote Sensing",subtitle:null,isOpenForSubmission:!0,hash:"4c72e8ef86d70bb4f35a3b70ff698427",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12030.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:37},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:98},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:31},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"914",title:"Biotechnology",slug:"materials-science-biochemistry-biotechnology",parent:{id:"153",title:"Biochemistry",slug:"materials-science-biochemistry"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:70,numberOfWosCitations:5,numberOfCrossrefCitations:18,numberOfDimensionsCitations:48,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"914",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7012",title:"Biochemical Testing",subtitle:"Clinical Correlation and Diagnosis",isOpenForSubmission:!1,hash:"1aa28a784b136633d827933ad91fe621",slug:"biochemical-testing-clinical-correlation-and-diagnosis",bookSignature:"Varaprasad Bobbarala, Gaffar Sarwar Zaman, Mohd Nasir Mohd Desa and Abdah Md Akim",coverURL:"https://cdn.intechopen.com/books/images_new/7012.jpg",editedByType:"Edited by",editors:[{id:"207119",title:"Dr.",name:"Varaprasad",middleName:null,surname:"Bobbarala PhD",slug:"varaprasad-bobbarala-phd",fullName:"Varaprasad Bobbarala PhD"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8244",title:"New Advances on Fermentation Processes",subtitle:null,isOpenForSubmission:!1,hash:"d14302686630dee0aa70e9dda9540c27",slug:"new-advances-on-fermentation-processes",bookSignature:"Rosa María Martínez-Espinosa",coverURL:"https://cdn.intechopen.com/books/images_new/8244.jpg",editedByType:"Edited by",editors:[{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"69881",doi:"10.5772/intechopen.90029",title:"Bioprocess Development for Human Mesenchymal Stem Cell Therapy Products",slug:"bioprocess-development-for-human-mesenchymal-stem-cell-therapy-products",totalDownloads:1439,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Mesenchymal stem cells (MSCs) are advanced therapy medicinal products used in cell therapy applications. Several MSC products have already advanced to phase III clinical testing and market approval. The manufacturing of MSCs must comply with good manufacturing practice (GMP) from phase I in Europe and phase II in the US, but there are several unique challenges when cells are the therapeutic product. Any GMP-compliant process for the production of MSCs must include the expansion of cells in vitro to achieve a sufficient therapeutic quantity while maintaining high cell quality and potency. The process must also allow the efficient harvest of anchorage-dependent cells and account for the influence of shear stress and other factors, especially during scale-up. Bioreactors are necessary to produce clinical batches of MSCs, and bioprocess development must therefore consider this specialized environment. For the last 10 years, we have investigated bioprocess development as a means to produce high-quality MSCs. More recently, we have also used bioreactors for the cocultivation of stem cells with other adult cells and for the production of MSC-derived extracellular vesicles. This review discusses the state of the art in bioprocess development for the GMP-compliant manufacture of human MSCs as products for stem cell therapy.",book:{id:"8244",slug:"new-advances-on-fermentation-processes",title:"New Advances on Fermentation Processes",fullTitle:"New Advances on Fermentation Processes"},signatures:"Jan Barekzai, Florian Petry, Jan Zitzmann, Peter Czermak and Denise Salzig",authors:[{id:"297959",title:"Dr.",name:"Denise",middleName:null,surname:"Salzig",slug:"denise-salzig",fullName:"Denise Salzig"},{id:"312719",title:"MSc.",name:"Jan",middleName:null,surname:"Barekzai",slug:"jan-barekzai",fullName:"Jan Barekzai"},{id:"312720",title:"MSc.",name:"Florian",middleName:null,surname:"Petry",slug:"florian-petry",fullName:"Florian Petry"},{id:"312721",title:"Dr.",name:"Jan",middleName:null,surname:"Zitzmann",slug:"jan-zitzmann",fullName:"Jan Zitzmann"},{id:"312723",title:"Prof.",name:"Peter",middleName:null,surname:"Czermak",slug:"peter-czermak",fullName:"Peter Czermak"}]},{id:"70255",doi:"10.5772/intechopen.90006",title:"Craft Beers: Current Situation and Future Trends",slug:"craft-beers-current-situation-and-future-trends",totalDownloads:1326,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"During the twentieth century, the consolidation of large multi-national beer companies and the homogenization of the specified beer types have led to a considerable growth in the beer industry. However, the growing demand by consumers of a single and distinctive product, with a higher quality and better sensory complexity, is allowing for a new resurgence of craft beer segment in recent years. This chapter reviews some different alternatives of innovation in the craft brewing process: from the bottle fermented beers with non-Saccharomyces yeast species, to the use of special malts or specific adjuncts, hop varieties, water quality, etc. All of them open a lot of new possibilities to modulate flavor and other sensory properties of beer, reaching also new consumers looking for a specific story in one of the oldest fermented beverages.",book:{id:"8244",slug:"new-advances-on-fermentation-processes",title:"New Advances on Fermentation Processes",fullTitle:"New Advances on Fermentation Processes"},signatures:"María Jesús Callejo, Wendu Tesfaye, María Carmen González and Antonio Morata",authors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"},{id:"201383",title:"Prof.",name:"María Jesús",middleName:null,surname:"Callejo",slug:"maria-jesus-callejo",fullName:"María Jesús Callejo"},{id:"201384",title:"Prof.",name:"Carmen",middleName:null,surname:"González",slug:"carmen-gonzalez",fullName:"Carmen González"},{id:"287144",title:"Dr.",name:"Wendu",middleName:null,surname:"Tesfaye",slug:"wendu-tesfaye",fullName:"Wendu Tesfaye"}]},{id:"66048",doi:"10.5772/intechopen.84672",title:"Amino Acids Profiling for the Diagnosis of Metabolic Disorders",slug:"amino-acids-profiling-for-the-diagnosis-of-metabolic-disorders",totalDownloads:3263,totalCrossrefCites:3,totalDimensionsCites:8,abstract:"Inborn errors of metabolism (IEM) represent a group of inherited diseases in which genetic defect leads to the block on a metabolic pathway, resulting in a single enzyme dysfunction. As a downstream consequence of the residual or full loss of the enzymatic activity, there is an accumulation of toxic metabolites in the proximity of the metabolic block and/or a deficiency of an essential metabolic product which leads to the clinical presentation of the disease. While individually IEMs are rare, a collectively estimated incidence of metabolic inherited disorders is 1:800. The genetic basis of IEMs can involve abnormalities such as point mutations, deletions or insertions, or more complex genomic rearrangements. Categorization of IEM can be simply made on the basis of the affected metabolic network: fatty acids oxidation disorders, protein/amino acids metabolism disorders, disorders of carbohydrate metabolism, lysosomal storage diseases, peroxisomal disorders, and mitochondrial diseases. This chapter will overview amino acid metabolism-related inherited disorders and amino acid analysis for the diagnosis and routine monitoring of this category of IEMs.",book:{id:"7012",slug:"biochemical-testing-clinical-correlation-and-diagnosis",title:"Biochemical Testing",fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis"},signatures:"Yana Sandlers",authors:[{id:"285558",title:"Dr.",name:"Yana",middleName:null,surname:"Sandlers",slug:"yana-sandlers",fullName:"Yana Sandlers"}]},{id:"67829",doi:"10.5772/intechopen.87160",title:"Solid-State Fermentation of Cassava Products for Degradation of Anti-Nutritional Value and Enrichment of Nutritional Value",slug:"solid-state-fermentation-of-cassava-products-for-degradation-of-anti-nutritional-value-and-enrichmen",totalDownloads:1129,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"The cassava plant is grown in tropical and subtropical countries, which represents, alongside with its by-products, an important source of food and feed. Hence, this plant has the capacity to promote the economic development of those countries and provide food security. However, cassava has some disadvantages due to the antinutrient compounds produced in its tissues. In addition, the cassava roots have a low protein content. Due to the economic and practical advantages, the solid-state fermentation (SSF) has been used as a cost-effective and efficient processing method to detoxify the cassava products and enrich them in nutrients. This chapter reviews the solid-state fermentation technique of cassava products for the production of valuable components for food and feed applications, microorganisms involved in this process, and key factors used to optimize the SSF process.",book:{id:"8244",slug:"new-advances-on-fermentation-processes",title:"New Advances on Fermentation Processes",fullTitle:"New Advances on Fermentation Processes"},signatures:"Mohamed Hawashi, Tri Widjaja and Setiyo Gunawan",authors:[{id:"297246",title:"Dr.",name:"Setiyo",middleName:null,surname:"Gunawan",slug:"setiyo-gunawan",fullName:"Setiyo Gunawan"},{id:"304847",title:"Prof.",name:"Tri",middleName:null,surname:"Widjaja",slug:"tri-widjaja",fullName:"Tri Widjaja"},{id:"304848",title:"Mr.",name:"Mohamed",middleName:null,surname:"Hawashi",slug:"mohamed-hawashi",fullName:"Mohamed Hawashi"}]},{id:"66237",doi:"10.5772/intechopen.84969",title:"Urinary Iodine: Biomarker for Population Iodine Nutrition",slug:"urinary-iodine-biomarker-for-population-iodine-nutrition",totalDownloads:1114,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Many reports or manuals had focused on the implementation of iodine deficiency disorder (IDD) elimination programme from the point of view of the programme managers. In this chapter, we will focus on the importance of urinary iodine testing, its related diagnosis and further biomarker testing suggested for further diagnosis related to thyroid health. This chapter will be relevant for the respondents to the monitoring programme, particularly the 8–10-year-old schoolchildren and pregnant women, i.e., the vulnerable targeted groups from either the iodine-deficient areas or the Universal Salt Iodization (USI) gazetted areas. USI has been proposed by the World Health Organization (WHO) as the most cost-effective programme to eliminate IDD, and it is also a way to increase the intelligent quotient (IQ) of the world population for the future. This chapter had been laid out so that the readers will know briefly the rationale behind the testing of urinary iodine among schoolchildren and pregnant women under the implementation of the USI programmes in their countries and their benefits, especially the utilisation of urinary iodine as the biomarker to portray the population iodine status. Diagnosis including iodine-induced thyroid diseases and further biomarkers measurement besides urinary iodine is also discussed briefly.",book:{id:"7012",slug:"biochemical-testing-clinical-correlation-and-diagnosis",title:"Biochemical Testing",fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis"},signatures:"Husniza Hussain, Rusidah Selamat, Lim Kuang Kuay, Fuziah Md Zain and Muhammad Yazid Jalaludin",authors:[{id:"219402",title:"Dr.",name:"Husniza",middleName:null,surname:"Hussain",slug:"husniza-hussain",fullName:"Husniza Hussain"},{id:"239718",title:"MSc.",name:"Rusidah",middleName:null,surname:"Selamat",slug:"rusidah-selamat",fullName:"Rusidah Selamat"},{id:"289785",title:"Dr.",name:"Fuziah",middleName:null,surname:"Md Zain",slug:"fuziah-md-zain",fullName:"Fuziah Md Zain"},{id:"289787",title:"Dr.",name:"Muhammad Yazid",middleName:null,surname:"Jalaludin",slug:"muhammad-yazid-jalaludin",fullName:"Muhammad Yazid Jalaludin"},{id:"295170",title:"Dr.",name:"Lim Kuang",middleName:null,surname:"Kuay",slug:"lim-kuang-kuay",fullName:"Lim Kuang Kuay"}]}],mostDownloadedChaptersLast30Days:[{id:"66048",title:"Amino Acids Profiling for the Diagnosis of Metabolic Disorders",slug:"amino-acids-profiling-for-the-diagnosis-of-metabolic-disorders",totalDownloads:3263,totalCrossrefCites:3,totalDimensionsCites:8,abstract:"Inborn errors of metabolism (IEM) represent a group of inherited diseases in which genetic defect leads to the block on a metabolic pathway, resulting in a single enzyme dysfunction. As a downstream consequence of the residual or full loss of the enzymatic activity, there is an accumulation of toxic metabolites in the proximity of the metabolic block and/or a deficiency of an essential metabolic product which leads to the clinical presentation of the disease. While individually IEMs are rare, a collectively estimated incidence of metabolic inherited disorders is 1:800. The genetic basis of IEMs can involve abnormalities such as point mutations, deletions or insertions, or more complex genomic rearrangements. Categorization of IEM can be simply made on the basis of the affected metabolic network: fatty acids oxidation disorders, protein/amino acids metabolism disorders, disorders of carbohydrate metabolism, lysosomal storage diseases, peroxisomal disorders, and mitochondrial diseases. This chapter will overview amino acid metabolism-related inherited disorders and amino acid analysis for the diagnosis and routine monitoring of this category of IEMs.",book:{id:"7012",slug:"biochemical-testing-clinical-correlation-and-diagnosis",title:"Biochemical Testing",fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis"},signatures:"Yana Sandlers",authors:[{id:"285558",title:"Dr.",name:"Yana",middleName:null,surname:"Sandlers",slug:"yana-sandlers",fullName:"Yana Sandlers"}]},{id:"67429",title:"Resource-Based View of Laboratory Management: Tissue Bank ATMP Production as a Model",slug:"resource-based-view-of-laboratory-management-tissue-bank-atmp-production-as-a-model",totalDownloads:1079,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Modern health care organizations, e.g., tissue banks, require a resource-based view (RBV) for an efficient stimulation of innovation, productivity, and performance, especially in the context of laboratory management and new product development. High quality advanced therapy medicinal products (ATMPs) are expected to bring important health benefits; therefore, their production has to be performed in accordance with good manufacturing practice (GMP). Although there are no precisely defined criteria for quality control/evaluation methods of obtained ATMPs, all aspects of pharmaceutical quality of ATMPs’ development, manufacturing, distribution, inspection, and review processes ought to be strictly fulfilled. Explicit performance management and production regimes in accordance with pharmacopeia and RBV philosophy have been proposed in this chapter.",book:{id:"7012",slug:"biochemical-testing-clinical-correlation-and-diagnosis",title:"Biochemical Testing",fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis"},signatures:"Wojciech Smętek, Jacek Węgrzyk, Agnieszka Klama-Baryła, Wojciech Łabuś, Małgorzata Kraut, Michał Szapski, Mariusz Nowak and Diana Kitala",authors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"},{id:"204300",title:"Dr.",name:"Agnieszka",middleName:null,surname:"Klama-Baryła",slug:"agnieszka-klama-baryla",fullName:"Agnieszka Klama-Baryła"},{id:"204303",title:"Dr.",name:"Mariusz",middleName:null,surname:"Nowak",slug:"mariusz-nowak",fullName:"Mariusz Nowak"},{id:"271428",title:"Dr.",name:"Wojciech",middleName:null,surname:"Łabuś",slug:"wojciech-labus",fullName:"Wojciech Łabuś"},{id:"294857",title:"M.Sc.",name:"Wojciech",middleName:"Grzegorz",surname:"Smętek",slug:"wojciech-smetek",fullName:"Wojciech Smętek"},{id:"294860",title:"Ms.",name:"Małgorzata",middleName:null,surname:"Kraut",slug:"malgorzata-kraut",fullName:"Małgorzata Kraut"},{id:"294861",title:"Mr.",name:"Michał",middleName:null,surname:"Szapski",slug:"michal-szapski",fullName:"Michał Szapski"},{id:"294862",title:"Mr.",name:"Jacek",middleName:null,surname:"Węgrzyk",slug:"jacek-wegrzyk",fullName:"Jacek Węgrzyk"}]},{id:"69881",title:"Bioprocess Development for Human Mesenchymal Stem Cell Therapy Products",slug:"bioprocess-development-for-human-mesenchymal-stem-cell-therapy-products",totalDownloads:1439,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Mesenchymal stem cells (MSCs) are advanced therapy medicinal products used in cell therapy applications. Several MSC products have already advanced to phase III clinical testing and market approval. The manufacturing of MSCs must comply with good manufacturing practice (GMP) from phase I in Europe and phase II in the US, but there are several unique challenges when cells are the therapeutic product. Any GMP-compliant process for the production of MSCs must include the expansion of cells in vitro to achieve a sufficient therapeutic quantity while maintaining high cell quality and potency. The process must also allow the efficient harvest of anchorage-dependent cells and account for the influence of shear stress and other factors, especially during scale-up. Bioreactors are necessary to produce clinical batches of MSCs, and bioprocess development must therefore consider this specialized environment. For the last 10 years, we have investigated bioprocess development as a means to produce high-quality MSCs. More recently, we have also used bioreactors for the cocultivation of stem cells with other adult cells and for the production of MSC-derived extracellular vesicles. This review discusses the state of the art in bioprocess development for the GMP-compliant manufacture of human MSCs as products for stem cell therapy.",book:{id:"8244",slug:"new-advances-on-fermentation-processes",title:"New Advances on Fermentation Processes",fullTitle:"New Advances on Fermentation Processes"},signatures:"Jan Barekzai, Florian Petry, Jan Zitzmann, Peter Czermak and Denise Salzig",authors:[{id:"297959",title:"Dr.",name:"Denise",middleName:null,surname:"Salzig",slug:"denise-salzig",fullName:"Denise Salzig"},{id:"312719",title:"MSc.",name:"Jan",middleName:null,surname:"Barekzai",slug:"jan-barekzai",fullName:"Jan Barekzai"},{id:"312720",title:"MSc.",name:"Florian",middleName:null,surname:"Petry",slug:"florian-petry",fullName:"Florian Petry"},{id:"312721",title:"Dr.",name:"Jan",middleName:null,surname:"Zitzmann",slug:"jan-zitzmann",fullName:"Jan Zitzmann"},{id:"312723",title:"Prof.",name:"Peter",middleName:null,surname:"Czermak",slug:"peter-czermak",fullName:"Peter Czermak"}]},{id:"69537",title:"Serum Protein Electrophoresis and Its Clinical Applications",slug:"serum-protein-electrophoresis-and-its-clinical-applications",totalDownloads:1975,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"This chapter focuses on the principle of electrophoresis and its utilization in a clinical laboratory. A sincere attempt has been made to discuss about clinical applications of serum protein electrophoresis, throwing light on the significance of serum protein electrophoresis in the management of multiple myeloma. Emphasis has been made on quality assurance in terms of accuracy and precision in electrophoresis to ensure reliability of patient results. A note on issues with lack of standardization of reporting of electrophoresis and an insight into global efforts to standardize the reporting of the assay has been included in this chapter.",book:{id:"7012",slug:"biochemical-testing-clinical-correlation-and-diagnosis",title:"Biochemical Testing",fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis"},signatures:"Satish Ramanathan and Chakravarthy Narasimhachar Srinivas",authors:[{id:"229011",title:"Dr.",name:"Satish",middleName:null,surname:"Ramanathan",slug:"satish-ramanathan",fullName:"Satish Ramanathan"}]},{id:"68145",title:"Current Status of Alkaline Fermented Foods and Seasoning Agents of Africa",slug:"current-status-of-alkaline-fermented-foods-and-seasoning-agents-of-africa",totalDownloads:1814,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Fermented foods and seasoning agents play central roles in the food and nutrition security of nations across the world, but particularly so in Africa, Asia, South America and Oceania. As several people across the world gravitate back to “eating natural,” there is a new emphasis on these fermented foods and seasoning agents which are also critical cultural foods in countries and societies where they are important. The result is the growth in demand for these products beyond what the traditional kitchen technologies is able to cope with. In Africa, many of the seasoning agents are products of alkaline fermentation of legume seeds, pulses and in some cases animal proteins and sea foods. There is an upswing in the popularity of these seasoning agents and around them, new cottage industries are growing, as against the kitchen technology that sustained them through the ages. This chapter will explore the state of biotechnological developments around these foods and seasoning agents and point the way to good manufacturing practice and industrial development and the need to grow this value chain that has helped to sustain societies through ages.",book:{id:"8244",slug:"new-advances-on-fermentation-processes",title:"New Advances on Fermentation Processes",fullTitle:"New Advances on Fermentation Processes"},signatures:"Jerry O. Ugwuanyi and Augustina N. Okpara",authors:[{id:"297797",title:"Prof.",name:"Jerry",middleName:null,surname:"Ugwuanyi",slug:"jerry-ugwuanyi",fullName:"Jerry Ugwuanyi"},{id:"297799",title:"Dr.",name:"Augustina",middleName:null,surname:"Okpara",slug:"augustina-okpara",fullName:"Augustina Okpara"}]}],onlineFirstChaptersFilter:{topicId:"914",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:41,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424836",title:"Dr.",name:"Orsolya",middleName:null,surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",country:{name:"Romania"}}},{id:"422262",title:"Ph.D.",name:"Paola Andrea",middleName:null,surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Guadalajara",country:{name:"Mexico"}}}]}},subseries:{item:{id:"5",type:"subseries",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",slug:"fernando-jose-andrade-narvaez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",slug:"ricardo-izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/67178",hash:"",query:{},params:{id:"67178"},fullPath:"/chapters/67178",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()