Parameters adopted in the modeling of TPS configurations of
\r\n\tIn this book the authors will provide complete introduction of Polymers chemistry. The book is mainly divided into three parts. The readers will learn about the basic introduction of general polymer chemistry in the first part of the book.
\r\n\tThe second part of the book starts with a chapter which includes kinetics of polymerization. Polymer weight determination, molecular weight distribution curve and determination of glass transition temperature. The final part of the book deals polymer degradation which includes types of degradation. The chapters of the present book consist of both tutorial and highly advanced material.
Currently a number of projects related to the development of reusable launch vehicles (RLV) both single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) are ongoing. This trend relates to objectives of future space missions that demand to improve vehicle operability, reducing at the same time flight costs of putting payload into orbit. Several preliminary studies/experiments related to this design scenario have been carried on. The European Space Agency developed two demonstrators, the EXPERT (European eXPErimental Re-entry Test-bed) program and the Intermediate eXperimental Vehicle (IXV), which performed an atmospheric lifting reentry from orbital speed [1]. Besides, an unmanned lifting body developed by Boeing X-37B has been put in orbit by an Atlas-5 rocket and performed a successful lifting-guided reentry. Furthermore, a growing demand for space tourism has emerged also in recent years [2]; therefore, a great deal of research effort has been put to design RLV as blended wing bodies also allowing a conventional and more comfortable landing on runways. The main requirements currently considered for RLV design are (i) to perform very low-g (nearly 1.5 g) reentry; (ii) to adopt a lightweight (passive), fully reusable thermal protection system (TPS) to withstand several flights without any replacement; and (iii) to provide vehicle autonomy to land at a predefined location for crew rescue [3, 4]. In order to fulfill all those requirements, the duration of reentry flight increases and consequently the integrated heat load absorbed by the structure [3].
\nThe above consideration incidentally demands a trade-off among several nonlinear conflicting design objectives, also satisfying a number of constraint functions. As an example, the design of the TPS of an RLV performing a suborbital lifting reentry requires a mandatory compromise between the maximum allowed peak heating and the integrated heat load. This requirement may conflict with the adoption of a fully reusable TPS, either limiting the choice of material category or penalizing the total mass. In preliminary design practice, thousands of design configurations are typically evaluated by an optimization algorithm to find the best fit [5, 6, 7, 8, 9, 10, 11]. Therefore, a preliminary appraisal of vehicle performances is commonly performed using high-efficiency, low-order fidelity methods that give a support to a multidisciplinary analysis performed with a computational effort which fit the typical timeline of the conceptual design phase [11]. In current studies, TPS sizing is performed using several simplified assumptions, carrying out a one-dimensional heat conduction analysis with panel thickness modeled using stackups of different materials [12].
\nThe aerothermal environment is a basic design criterion for either TPS sizing or choice of materials [13, 14]. Several works dealing with TPS sizing have been published in literature. Lobbia [8] determined the sizing of a TPS in the framework of a multidisciplinary optimization. Material densities and maximum reuse temperature were computed. TPS mass was estimated assuming the category of materials used for the space shuttle and thickness distribution assigned on a review of HL-20 materials for each component. Trajectory-based TPS sizing has been proposed by Olynick [13] for a winged vehicle concept. The heating peak was determined considering an X-33 trajectory, discretized in a number of fixed waypoints. The resulting aerothermal database was used as an input for a one-dimensional conduction analysis, and several one-dimensional stackups of different materials representative of TPS were consequently sized. Bradford et al. [14] developed an engineering software tool for aero-heating analysis and TPS sizing. The tool is applicable in the conceptual design phase for reusable, non-ablative TPS. The thermal model was based on a one-dimensional analysis, and TPS was modeled considering a stackup of ten different material layers. Mazzaracchio [15] proposed a method to perform the sizing of a TPS depending on the locations of ablative and reusable zone on a TPS considering the coupling between trajectory and heat shield. Multidisciplinary analysis, integrating a procedural NURBS-based shape representation, is adopted for a preliminary design [3]. NURBS parameterization allows a simple control over the aerodynamic shape using a limited number of sensitive design parameters acting as geometrical modifiers.
\nHowever, derivation of a unique parameterization to describe the overall changes of geometry resulting from a shape optimization is not always possible, and several surfaces are used to parameterize different parts of the geometry. Implicit surfaces are a powerful and alternative tool for creating shapes due to their smooth blending properties enabling creation of arbitrary shape. In the present work, a soft object-derived representation for TPS thickness and material attribution is introduced. According to the legacy formulation of this technique, originally developed in computer graphics for the rendering of complex organic shapes [16], three-dimensional object surfaces are (implicitly) obtained by defining a set of source points (or even more complex varieties) irradiating a potential field that is subsequently tracked according to an assigned isosurface. Following a quite different paradigm developed in [17], the full potential field irradiated by a set of by-dimensional soft objects is congruently mapped on a discretized RLV shape. The methodology is able to create arbitrary TPS distributions seamlessly increasing the thickness where critical heat loads are experienced and dropping out elsewhere. A similar, slightly modified procedure is also applied to create an arbitrary binary map of different TPS materials that may be operated independently (or synchronized) with the thickness distribution. The present formulation is formalized in the framework of a parametric model which exploits simple variations of parameters to perform the soft object mapping over discretized surface. Applications of the developed procedure to different arbitrary vehicle shape show the flexibility of the method.
\nSoft objects constitute a modeling technique which typically represents a domain using a scalar field, namely, a field function F, defined over a three-dimensional space. An implicit surface S defined as
\nthat is, an isosurface S of the field function F specified by the threshold T represents an object instance using a raster conversion algorithm. Soft object modeling overcomes the drawback given by the parametric surfaces; that is, they automatically allow a self-blending between different primitives. Therefore, complex shapes can be modeled defining n ≥ 1 potential field fi, with origin in points
A commonly adopted notation
\ncomposes the distance metric di (which determines the shape of the objects associated to the key point
A more powerful representation used in soft object modeling is based on morphological skeleton that synthesizes the morphological properties of a given domain. A skeleton Sk can be defined as a basic geometric entity (such as points, segments, and plain closed domains) around which more complex shapes can be created once the distance function is provided. The simplest soft object was introduced by Blinn that originally proposed the “blobby molecule,” an isotropically decaying Gaussian function modulated in strength and radius [16]:
\nwhere d is the Euclidean distance (k = 2 in Eq. (4)). Blobby molecule is a soft object defined around a point skeleton, and its field function has an infinite support. This aspect affects the computational effort in a practical implementation, because it has to be evaluated in all points of the space. However, in literature, several finite support potential functions have been proposed for different modeling purposes. Wyvill et al. [19] developed the following field function:
\nBlanc [18] proposed another field function introducing an internal hardness factor p, which tunes the blending between two different blobs. A higher value of p makes a blob stiffer in the blending, while a low hardness factor generates larger rounded shapes [17]:
\nThe field function
Two-dimensional soft objects preserve self-blending property. Figure 1a, b shows the support and the strength field, respectively, created superposing n = 6 discrete point source blobs with radius r, with origins in key point xi. If δe < 2r, two or more blobs superposes, and the strength of the potential field is obtained summing up the strengths of each blob (see Figure 1b). A set of n blobs represents a too complex entity if used to model a parametric variation of shape (a single blob is characterized by five independent parameters, i.e., scalar coordinates of centers, strength, and radius). Therefore, blobs can be conveniently and easily arranged in macroaggregates with key points placed on a geometric segment (straight or curved) denoted from now on as “sticks.” The point source blobs emulates a segment skeleton with the distance function expressed by Eq. (4) (see Figure 1a). However, a simple algebraic summation of potential fields creates a stick support having “bulges.” Increasing the number of blobs, the shape of the support becomes more regular, but the strength of the field function diverges. The above drawback is overcome modifying the definition of potential field given by Eq. (2) with the relation:
\nSupport (a) and strength field (b) of a stick created by a superposition of n = 6 point source blobs.
Equation (9) where F0(P) = 0 expresses the global potential field Fj(P) irradiated by a set of j blobs at a generic point P of space placed at a distance d from the key points, as the max between the previous j − 1 potentials accounted by the assembly layer Fj − 1(P) and the current potential Gj over the plane disk of radius r:
\nFigure 2a, b shows the support and the strength field of a two-dimensional stick primitive obtained with nblob = 6 and 20, respectively, computed with Eq. (8). By increasing the number of blob on a stick, the strength of F is still bounded to a maximum unit value. Figure 2c, d shows the same behavior for a tapered primitive having a linear variation of the blob radius along the axis of stick. Therefore, a seamlessly blending of blobs, with a bounded strength, is obtained adopting Eq. (9). The procedure proposed here relies on a similar idea to the one developed in [17] to generate self-stiffened structural panels. Specifically, rather than modeling an object tracking an iso-contour of its potential field, the full integral field generated by a set of blobs spatially arranged on a two-dimensional grid generates a smoothly varying field.
\nStick primitives obtained with nblob = 6 and 20: constant radius (a, b); variable radius (c, d). The stick support becomes more regular increasing nblob; the strength field remains bounded to unit value.
A generic shape of an RLV is represented by a grid formed by a quadrangular and/or by either degenerated triangular panel grid. Grid points are obtained using a proprietary procedure that authors fully detailed in [20, 21]. Without going into details of the shape model, we remark that the mesh arrangement over the RLV surface is obtained with no NURBS support surface: a three-dimensional parametric wireframe is created using cubic rational B-splines [22] and used to reconstruct computational surface grid. The control parameter allows a wide range of shape variations to handle different design objectives (thermal or dynamical) for a reentry mission. Grid topology is equivalent to a spherical surface with no singularities (open poles) and allows a mapping of the points in UV coordinates over an equivalent cylindrical surface. The above considerations ensure a topologically invariant shape.
\nThe modeling procedure for the TPS is defined starting from the definition of a set of soft objects which are represented on the topological map associated with the current morphology of the object, as shown in Figure 3. Consequently, the supports of the sticks are adjusted according to the normalized dimensions relative to this map. The topological map is emulated introducing a two-dimensional grid (from now, denoted as B-grid) having the same topology tree than the vehicle open grid (number of points, panels, and connectivity) but unit size. A geometric mapping between the B-grid and the vehicle grid is established, and elements of B-grid are univocally mapped onto corresponding elements of the vehicle surface (see Figure 3). Therefore, each centroid of panels which belong to topological map has the same neighboring points either on the topological or morphological map. Several stick primitives are emulated on B-grid placing a number of n equally spaced isotropic blobs, with radius r and length l, respectively, in a normalized unit. Stick emulation is performed by overlapping n blobs using the special formulation reported in [17] that ensures a convergent envelope of the finite support and a limited value of the blob strength. An exemplificative spatial distribution of sticks on the B-grid is shown in Figure 3.
\nMorphological (left) vs. topological map (right).
Position and orientation of each stick are determined by assigning coordinates of centers Ci and precession angles θi, respectively, with respect to a Cartesian frame of reference Oxz oriented as in Figure 3. Therefore, a generic distribution of sticks created on vehicle grid is equally mapped on the vehicle surface whatever is the morphological map considered. In the present case, gray-colored regions (1) denote points of the B-grid mapped on the windward side of RLV shape (see Figure 3), while white regions (2) relate to leeward regions of the vehicle. Regions of vehicle surface mainly subjected to heating peaks during the reentry maneuver are (i) nose, (ii) leading edge, and (iii) tail. The global potential field generated by the sticks onto the B-grid is adjusted in a suitable dimensional scale and subsequently mapped on the mesh panels of the vehicle surface grid to obtain an easy and powerful control of the thickness distribution. The proposed methodology is able to create virtually arbitrary TPS distributions and can be easily tuned up to locally increase the thickness where critical heat loads are expected and dropping out elsewhere. A similar, slightly modified procedure is also applied to create an arbitrary binary map distribution of different TPS materials that may be operated independently of the thickness distribution. Figure 4 shows an arbitrary distribution of stick primitives (not suitable for application purposes) created over the topological map.
\nArbitrary stick distribution created over the topological map.
The resulting potential field created by the superposition of sticks modulates y-coordinate of grid points as shown in Figure 4.
\nAs demonstrative example, a parametric representation of TPS is obtained using a limited set of sticks primitive (nstick = 5), oriented as shown in Figure 5. Skin sticks characterized by a large radius and limited strength are spread over the skin surface in longitudinal direction in order to provide a thickness graded baseline. A constant minimum thickness is superposed in all remaining points of B-grid, ensuring a nonzero value in any point of the grid. Furthermore, additional parametric sticks, specifically positioned and oriented to affect thickness in critical regions as nose, leading edge, and trailing edge, complete the support for TPS and create a rational distribution of insulating material suitable with a reentry mission. Parametric position of sticks and axis of orientation are defined by assigning centroid coordinates xc,zc and angle θth, measured with respect to the system of reference reported in Figure 5. Length (l) and strength (th) are expressed with the parametric relations
\nArbitrary stick distribution with a longitudinal gradient onto B-grid adopted for TPS modeling.
Skin (q = 1, 2) and nose sticks (q = 3) have a tapered support obtained imposing a linear variation of point source blob radius. Conversely, a constant radius is adopted for the leading edge (q = 4) and trailing edge (q = 5) sticks.
\nA similar but completely independent stick-based parameterization has been also defined to model a dynamic distribution map of different insulating materials, denoted here generically as material 1 and material 0 represented with red and blue colors, respectively. We assume that material 1 outperforms material 0. Therefore, material 1 is adopted on the nose, leading edge, and trailing edge, respectively. Differently than sticks used for thickness distribution, this additional set of primitives returns just binary values used to define specific materials. In this case the field function mth (see relation (12)) assumes a constant value equal to one inside the finite support of a stick and zero elsewhere. The parametric equations which describe material assignments are
\nwith normalized parameters reported in Table 1.
\nParameter | \nValue | \nParameter | \nValue | \n
---|---|---|---|
st1, ad | \n0 | \nmt1, ad | \n1 | \n
st2, ad | \n0.01 | \nmt2, ad | \n0.01 | \n
st3, ad | \n0.05 | \nmt3, ad | \n0.05 | \n
st4, ad | \n1 | \nmt4, ad | \n1 | \n
st5, ad | \n0.8 | \nmt5, ad | \n0.8 | \n
lt1, ad | \n1 | \nmlt1, ad | \n1 | \n
lt2, ad | \n0.1 | \nmlt2, ad | \n0.1 | \n
lt3, ad | \n1 | \nmlt3, ad | \n1 | \n
lt4, ad | \n1 | \nmlt4, ad | \n1.2 | \n
lt5, ad | \n1 | \nmlt5, ad | \n1 | \n
pt1, ad | \n1 | \n_ | \n_ | \n
pt2, ad | \n0.2 | \n_ | \n_ | \n
pt3, ad | \n0.5 | \n_ | \n_ | \n
pt4, ad | \n0.2 | \n_ | \n_ | \n
pt5, ad | \n0.6 | \n_ | \n_ | \n
d1min, ad | \n0.5 | \nd1max, ad | \n1 | \n
d2inin, ad | \n0.01 | \nd2max, ad | \n0.3 | \n
d3min, ad | \n0.09 | \nd3max, ad | \n1 | \n
d4min, ad | \n0.1 | \nd4max, ad | \n0.5 | \n
d5min, ad | \n0.02 | \nd5max, ad | \n0.5 | \n
th’min, ad | \n0.07 | \nth’max, ad | \n0.12 | \n
th”min, ad | \n0.132 | \nth”max, ad | \n0.25 | \n
Parameters adopted in the modeling of TPS configurations of
The previously introduced modeling procedure has been applied on a conceptual RLV shape created with the model described in Section 4 and detailed in [20, 21]. Figure 6 shows a topological map obtained for an arbitrarily chosen distribution of stick primitives.
\nTopological map created to represent TPS thickness on different RLV configurations.
A local thickness is assigned on the nose, the leading edge, and the trailing edge. The topological map shown in Figure 6 creates a morphologically adaptive TPS on two RLV shapes with different dimensions: (RLV-1) with length ltot = 9.8 m, wingspan ws = 5.6 m, cabin height h = 1.6 m, and (RLV-2) with length ltot = 15 m, wingspan ws = 9.2 m, and cabin height h = 2 m. The parameters characterizing the distribution of thickness and of the materials are reported in Table 1. Figure 7a, b shows the application of TPS modeling over the first configuration (RLV-1), on leeward (a) and windward (b) surface, respectively. Different colors denote different values of thickness and are represented in a dimensional scale.
\nExample of thickness and material distribution over RLV configuration (RLV-1): (a, b) thickness modulation [m]; (c, d) two material map (red/blue color indicates material 1/0, respectively).
It can be observed that the thickness map can be easily tuned up for best covering of regions where maximum heat loads occur (i.e., the nose and leading edge). Figure 7 shows the capability to create arbitrary seamless thickness distribution up to the value of the baseline thickness which has been arbitrarily set equal to thmin = 0.05 m (denoted in blue color). This corresponds to a region of the leeward surface not covered by the skin stick. Figure 7c, d shows the map of two different insulating materials created with Eq. (7). Red colors indicate material 1, which is placed on regions of the vehicle subjected to higher heat loads. Comparisons between Figure 7a, b and Figure 7c, d also exhibit the capability of the model to handle independently both the thickness and material distribution. Finally, Figure 8a, b and Figure 8c, d show the same blob distribution adopted either for thickness or material modeling applied on a different RLV configuration (RLV-2). The procedure creates, as it was expected, the same TPS distribution both for thickness or materials on two different shapes and is completely independent by their morphology.
\nExample of thickness and material distribution over RLV configuration (RLV-2): (a, b) thickness modulation [m]; (c, d) two material map (red/blue color indicates material 1/0, respectively).
In the present paper, a special modeling procedure of the TPS designed for a conceptual RLV has been developed. A set of macroaggregates of point source blobs organized in envelopes of finite supports, and with a bounded strength, has been successfully created on the topological map associated with the computational grid. Applications of the modeling procedure to different design configurations highlighted the sensitivity and powerful control to radically change the TPS using a limited number of parameters. The promising capabilities of the developed modeling procedure suggest that the present methodology can give support to a multidisciplinary analysis optionally included in a conceptual design framework. Further developments of the considered procedure are about to be integrated in a companion paper by the authors [23].
\nThis work was supported by the Universitá della Campania: “Luigi Vanvitelli.”
\nThe authors declare that there is no conflict of interest regarding the publication of this chapter.
Chiropractic Biophysics® (CBP®) technique is a full-spine and posture correcting method that incorporates engineering and mathematical principles into a unique approach in the treatment of spine disorders [1, 2, 3, 4, 5]. CBP technique is best described as a ‘structural’ rehabilitation approach as opposed to ‘functional’ rehabilitation that typically encompasses physiotherapeutic modalities, stretching and exercises to regain function. The goal in structural rehabilitation is to restore the spine alignment and posture to as near normal as possible.
CBP operates on three main premises: 1. There is a normal/ideal static spinal configuration; 2. Abnormal alterations of the spine/posture result in abnormal function disrupting homeostatic balance; 3. Altered static spine/postural alignment results in abnormal dynamics [1]. The contemporary spine literature supports all three of these premises (See Section 4). CBP technique has published research on many facets of the technique including defining what normal/ideal spine alignment is, how to measure spine alignment parameters with reliable and repeatable methods, how to correct/re-align spinal displacements, and evidence proving correcting spine and postural displacements correlates with improvements in pain, disability and quality of life (QOL) measures (These studies are detailed later).
Herein, an overview is given of the scientific approach to treating spine disorders (i.e. subluxation) by the unique approach of CBP technique. A review will be given of the historical beginnings of CBP, rotations and translations of posture, the Harrison normal spinal model, radiographic analysis, posture and spinal coupling, the CBP protocol, clinical evidence of efficacy as well as the safety of the use of X-rays (The term ‘X-rays’ imply the use of plain radiographs throughout this chapter).
Donald D. Harrison, who had a Master’s degree in Mechanical Engineering and a Doctorate degree in Applied Mathematics developed a devote urgency to bring contemporary science to chiropractic. In the late 1970s, Harrison was the main instructor for the chiropractic technique named ‘Pettibon.’ Dissatisfied with the failure to produce spinal correction, he often incorporated his own methods in certain cases to better attain spine and posture improvements. It was in the treatment of one particular case (circa 1980) where he discovered that the body must be treated using the principles of mathematics; the term ‘mirror image®’ adjusting he later coined to describe these new approaches [1].
A 1974 paper by Panjabi et al. describes a Cartesian coordinate system for use in the description and study of joint biomechanics (Figure 1) [6]. Harrison was the first to apply this system of analysis to upright human posture (Figures 2 and 3). Harrison began discovering the rotations and translations of human posture in 1980. During the early 1980s, the analysis system evolved to incorporate a full spine analysis of the head, rib cage and pelvis in three-dimensions. The technique methods continued to evolve with intellectual contributions from early practitioners of CBP including among others, Drs. DeGeorge, Gambale, Pope and Deed Harrison (founder’s son).
A vertebra described in terms of rotations about and translations along the
If the head, thoracic cage, and pelvis are considered rigid bodies, then the possible rotations in three-dimensions are illustrated. Flexion and extension are rotations on the
If the head, thoracic cage, and pelvis are considered rigid bodies, then the possible translations in three-dimensions are illustrated. Lateral translations occur along the
One of the unique methods within CBP is the use of ‘extension traction’ to restore the normal cervical or lumbar lordosis (Figures 4 and 5). The first cervical extension traction was with use of an inclined bench that utilized a camlock and pulley system to hyperextend the neck by pulling on the forehead [7]. This is the traction used in the first CBP non-randomized controlled clinical trial (nRCT) that showed that no traction either by no treatment or only cervical manipulation but no traction resulted in no improved alignment, while the traction group (also receiving cervical spinal manipulation) achieved improved lordosis [7].
Cervical extension traction (courtesy CBP seminars).
Lumbar extension traction (courtesy CBP seminars).
Further development in cervical traction involved the addition of a posterior-to-anterior (PA) pull through the mid cervical spine with simultaneous extension and distraction of the head while sitting in a chair, so-called ‘Pope’s 2-way’ traction (Figure 4) [8]. A slight modification of this traction involves the use of a chin-forehead strap to add weight directly to the patients head as an extension-compression 2-way traction (Figure 4) [9]. More recently, a cervical extension orthotic (Denneroll) has been shown to be effective at increasing cervical lordosis (Figure 4).
In the mid 1990s, Deed Harrison helped to develop precision vectors for lumbar extension traction (Figure 5), where the first nRCT showing lumbar curve restoration was published in the
CBP technique is one of the most scientifically based posture and spine correcting techniques. There are many randomized controlled trials (RCTs), nRCTs, and well over 100 case reports/series documenting the improvement of diverse spine deformity patterns with concomitant reduction of pain, disability and increased QOL measures [11].
The main strength of CBP technique is its fundamental underpinnings in engineering and mathematics [1]. It is a general theorem that any object can be decomposed as a rotation, a translation and a deformation [12]. Acknowledging that deformation of living tissues occurs, as in compressing of discs, ligaments, muscles etc., we divert attention to rotations and translations of posture. The main masses of the body, namely the head, thorax and pelvis can be described in relation to the body mass below within a Cartesian coordinate system (Figures 2 and 3). That is, the head is described in relation to the thorax, the thorax in relation to the pelvis, and the pelvis in relation to the feet [1, 13].
Any rotations or translations of the body masses as seen in neutral posture via external observation or internally by X-ray is acknowledged as abnormal. Therefore, no offset of the masses equates to the normal postural alignment (i.e. un-subluxated position). It is important to note that in the assessment of a patient, it is the presence of a rotation or translation in the neutral standing position that is abnormal. When Harrison first applied this method of analysis, the treatment became apparent with the postural diagnosis. That is, for any rotation or translation apparent in neutral standing posture, the opposite position would need to be the treatment as applied during exercises, spinal traction or spinal adjustments, as this is the mathematical solution, “the exact reversing of the patient’s abnormal posture.” [1] In fact, because the soft tissues require a significant magnitude of stress and strains to attempt to correct the spinal position via mirror image methods, Harrison suggested that postural reflections (i.e. ‘mirror image’ adjustments) need to be applied in “twice the negative of the translation distances and rotation angles.” [1].
It should be noted when Harrison finally developed the full spine analysis of rotations and translations of posture in the mid 1980s, he discovered that virtually 50% of all human movements had never been studied (except forward head posture). Thus, the Harrison research group performed several studies to evaluate the normal range of motion for several translation postures including lateral head and thoracic postures as well as anterior and posterior thoracic translation postures (Discussed in Section 6). [2, 3] Clinically, the spinal coupling patterns as discovered to be associated with these common postural positions are of utmost importance in the treatment of these spinal disorders.
Importance of the study of these never previously studied translation postures can be highlighted in the distinction between true scoliosis and ‘pseudo-scoliosis’ (Figure 6) [14] Pseudo-scoliosis is a lateral thoracic translation posture that characteristically features little to no vertebral rotation (simple to correct) [15, 16], whereas, true scoliosis characteristically features significant vertebral rotation (and is typically much more difficult to treat). X-ray screening of the spine is the only way to differentiate true scoliosis from pseudo-scoliosis.
Posture image and antero-posterior lumbar radiographs depicting a left lateral thoracic translation (side shift). Both patients in the radiographs have a 20 mm left lateral shift of T10 off midline. Left patient has a pure left lateral thoracic translation posture, aka ‘pseudo-scoliosis.’ Right patient has a true left lumbar scoliosis (vertebral rotation). Green line is vertical; red line highlights patient alignment (courtesy CBP seminars).
As mentioned, the absence of rotations and translations of the body masses in standing posture is normal. However, the shape of the spine position, particularly in the sagittal plane has traditionally been debated.
In the mid 1990s to the mid 2000s, the Harrison research team performed a series of spine modeling studies of the sagittal spinal curves (Figure 7) [17, 18, 19, 20, 21, 22, 23, 24]. To this day, this seminal work serves as the treatment outcome goal (i.e. gold standard) for providing structural rehabilitation by CBP methods (Figure 8). In a series of systematic studies, elliptical shape modeling of the path of the posterior longitudinal ligament was performed as it could be easily compared to the posterior vertebral body margins on X-rays, the same anatomical region used for measuring the sagittal spinal curves (i.e. Harrison posterior tangents (Figure 9) [25, 26, 27, 28]).
The Harrison normal sagittal spine model as the path of the posterior longitudinal ligament. The cervical, thoracic and lumbar curves are all portions of an elliptical curve having a unique minor-to-major axis ratio. The cervical curve is circular meaning the minor and major axes are equal (courtesy CBP seminars).
Three patients demonstrating dramatically different spine alignment patterns. Left: excessive lumbar hyperlordosis, L4 anterolisthesis, and excessive anterior sagittal balance in a mid-aged female with disabling low back pain; middle: excessive thoracolumbar kyphosis and early degenerative changes in a mid-aged male; right: excessive thoracic hyperkyphosis in a young male with Scheuermann’s disease. Red line is contiguous with posterior vertebral body margins; green line represents Harrison normal spinal model (courtesy PAO).
Harrison posterior tangent method involves lines drawn contiguous with the posterior vertebral body margins. Intersegmental as well as regional sagittal curves are easily quantified having a standard error of measurement within about 2° (courtesy CBP seminars).
Computer iterations of spine shape modeling were applied to determine the best-fit geometric spinal shapes by fitting ellipses of varying minor-to-major axis ratios to the digitized data points from the posterior vertebral body corners from X-ray samples for each of the three regions of the spine (cervical [17, 18, 19], thoracic [20, 21], and lumbar spine [22, 23, 24]). As shown in Figure 7, the Harrison normal spinal model features a circular cervical lordosis, an elliptical thoracic curve featuring greater curvature cephalad with a straightened thoraco-lumbar junction and an elliptical lumbar lordosis showing a greater distal lumbar curvature. The spine is assumed to be vertical in the front view.
Although some have attempted to criticize the Harrison normal spinal model, it is important to acknowledge that it has been validated in several ways. Simple analysis of alignment data on samples of normal, asymptomatic populations have been done [17, 18, 19, 20, 21, 22, 23, 24]. Comparison studies between normal samples to symptomatic samples have been performed [17, 29]. Comparisons between normal samples to theoretical ideal models have been done [17, 18, 20, 23]. Statistical differentiation of asymptomatic subjects from symptomatic pain group patients based on alignment data has been performed [19, 24].
In subsequent biomechanical modeling studies, the Harrison group used a validated postural loading model to verify that sagittal spinal balance and the sagittal curves of the spine are critical biomechanical parameters for maintaining postural load balance in healthy subjects [30]. Keller et al. [30] stated “because the pattern of [intervertebral disc] IVD postural stresses mirrored the sagittal curvatures and sagittal displacement of the spine, a failure of the IVD’s hydrostatic mechanism under these sustained loads could occur”. In a similar biomechanical modeling study, Harrison et al. determined that anterior sagittal thoracic posture (anterior thorax translation relative to the pelvis) resulted in significant increases in disc loads and stresses for all vertebral levels below T9 and that the extensor muscle loads required to maintain static equilibrium in upright anterior posture increased almost five times that of normal [31]. In another study Keller et al. [32] determined that “postural forces are responsible for initiation of osteoporotic spinal deformity in elderly subjects”.
The Harrison group also used an elliptical shell model to evaluate the loads and bending moments on the cervical vertebrae in varying cervical spine deformity alignments [33, 34]. They found that in normal lordosis the anterior and posterior vertebral body stresses are nearly uniform and minimal, whereas, in cervical deformity configurations having kyphosis (S-shape kyphosis high or low, total kyphosis), the vertebral body stresses are ‘very large’ and opposite in direction compared to normal lordosis [33]. They concluded “This analysis provides the basis for the formation of osteophytes (Wolff’s Law) on the anterior margins of vertebrae in kyphotic regions of the sagittal cervical curve. This indicates that any kyphosis is an undesirable configuration in the cervical spine” [33]. Anterior head translation and a ‘military’ neck also displayed significantly increased vertebral body stresses that are reverse in direction from C5-T1 and are also proven to be “undesirable configurations in the cervical spine” [34].
All radiographs should be taken in the ‘neutral’ standing position with the feet positioned with the heels at hips width apart. This is to avoid any induced postural deviations due to foot position. Also, to ensure a reproducible neutral (i.e. natural) body position, the subject should close their eyes and nod the head back and forth a couple times to where the subject should stop in their preferred position and then open their eyes while maintaining this adopted stance. Any postural misalignments seen in the subject should not be corrected. The lower body mass on the particular view being taken should be centered to the bucky. All X-rays should be taken without footwear.
It should be mentioned that the measurement of different sagittal spinal contours including regional curves or absolute rotation angles (ARAs) (i.e. cervical/lumbar lordosis; thoracic kyphosis) and intersegmental relative rotation angles (RRAs) between adjacent vertebrae can be easily quantified by use of the Harrison posterior tangent (HPT) lines (Figure 9) [25, 26, 27, 28]. The HPT method is preferred for three main reasons, 1. The posterior margins of the vertebral bodies are less affected by osteoarthritic changes as compared to the anterior margins which makes anatomical measurements more reliable and valid; 2. The posterior tangents are contiguous with the slope of the spinal curves and represent the first derivative in an engineering analysis and therefore, their intersection accurately depicts the sagittal configuration; 3. The HPT method has a small standard error of measurement (SEM) of approximately 2° versus higher SEMs with the Cobb (4.5–10°) [25, 26, 27]. This is why the HPT method is superior to other methods of sagittal spine mensuration including the popular Cobb method.
Generally, the global curves are measured as C2-C7, T1-T12, and L1-L5, however since the inflection of the cervical lordosis to thoracic kyphosis occurs at T1, some clinicians prefer to measure the cervical curve from C1-T1, and the thoracic curve from T2-T11 or T3-T10. Anterior sagittal translation distances are simply measured by the horizontal displacement offset between comparison vertebrae such as C2-S1, C2-C7 or T1, T1-T12, etc.
The anterior-to-posterior (AP) or PA X-rays are taken using the same postural positioning. The modified Risser-Ferguson method is employed to measure coronal plane alignment (Figure 10) [28]. On the AP/PA cervicothoracic view an upper angle is created as the angle between the best fit line of the upper cervical segments and intersection with the bite line, and a lower angle is formed between the best fit lines of the upper to lower spine segments [28]. The Rz angle is the angle formed by a vertical axis line (VAL) drawn from T4 and the lower cervicothoracic best fit line. Normal upper angle, lower angle and Rz cervicothoracic angles are 90°, 0° and 0°, respectively. The AP/PA thoracic view may show an angle. The lumbo-pelvic view has an upper angle, the angle between the best fit line of the upper versus lower lumbar segments, and a lower angle, the angle between the best fit line between the lower segments and the horizontal pelvic line [28]. The upper angle and lower angle should be 0° and 90°, respectively. Any regional or full-spine coronal balance offset (i.e. imbalance) can be easily quantified as the horizontal distance between the uppermost segment to the lowermost segment (e.g. C2-T2, T1-T12, T12-S1, C2-S1).
AP radiographic line drawing by modified Risser-Ferguson method.
Postural rotations and translations as described by Harrison (Figures 2 and 3) are understood as ‘main motions’ and the corresponding spinal displacements to accommodate the postural positions are termed ‘coupled motions’ [2, 3, 35, 36, 37, 38]. In CBP, a considerable clinical significance is placed on the correlation between the patient’s three-dimensional postural presentation (posture displacement in terms of rotations and translations) and the two-dimensional X-ray coupled motion (spinal rotations and translations) [2, 3, 38].
Of prime importance is the appreciation that unless there is buckling, anomalies or ligament damage, standing neutral postural rotation and translation displacements of the head or thorax
A classic demonstration of the ‘matching’ versus ‘mismatching’ of rotations and translations of posture and spine coupling patterns can be illustrated with forward head posture, aka, anterior head translation (AHT) (Figure 11). The natural and expected spine coupling with a forward translated head posture involves lower cervical spine flexion and upper cervical spine extension. As seen in Figure 11, many spine different vertebral coupling patterns are possible including hyperlordosis, hypolordosis, or kyphosis and accordingly, each cervical configuration requires its own unique application of CBP methods for its ideal correction.
Forward head translation as shown in posture and in three unique lateral cervical radiographs. All three X-ray images have about 25 mm of forward head translation. Left: hyperlordosis; middle: hypolordosis; right: kyphosis. Green line is normal alignment; red line highlights patient alignment.
These cervical spine patterns have been termed harmonics and their presence can only be determined by radiography [2, 39]. Importantly, in CBP treatment approaches, each cervical spine coupling pattern (harmonic) requires its own unique treatment protocol. This is why many manual therapy approaches (e.g. Mackenzie head retractions) are inadequate at correcting posture and spine alignment as these are prescribed universally (i.e. ‘blackbox treatment’) resulting in many patients receiving treatment protocols that are contraindicated. A patient with a hyperlordotic cervical spine should never be prescribed neck extension exercises as this would dynamically hyperextend the cervical joints. A patient with a complete cervical kyphosis should never be prescribed head retraction exercises as this often ‘buckles’ the spine into further kyphosis.
Also, as mentioned and illustrated in Figure 6, ‘pseudo-scoliosis’ or pure lateral translations of the thorax (or head) must be distinguished from true scoliosis by examination of the spinal coupling patterns [14]. If there is minimal or no vertebral rotation then this represents a typical case requiring CBP mirror image postural correction [3]. If there is vertebral rotation then it is considered true scoliosis and a completely different application of CBP methods (i.e. non-commutative properties of finite rotation angles [40, 41]). Case examples of the special application of CBP methods in the treatment of scoliosis is described later.
The CBP patient management protocol [2, 3, 4] involves all typical initial patient examination procedures including the consultation, examination as well as pain, disability and quality of life questionnaires (Figure 12). In addition, CBP treatment consideration requires, without exception, a full-spine posture assessment as well as full-spine AP and lateral standing radiographs. Posture needs to be either qualitatively, but ideally quantitatively assessed as rotations and translations of the head, thorax and pelvis in three-dimensions (Figures 2 and 3). The X-rays need to be digitized and quantified, ideally with the Harrison posterior tangent method for the sagittal images and with the modified Risser-Ferguson on the AP images.
CBP protocol treatment algorithm.
As seen in Figure 12, if appropriate, a new patient should be treated for their acute pain that is distinct and separate from CBP methods. It is recommended that the acute ‘pain care’ treatment include spinal manipulation, stretching (e.g. proprioceptive neuromuscular facilitation (PNF), Yoga, etc.), heat/ice, soft tissue myofascial therapy (e.g. transverse friction, Nimmo-receptor tonus technique, etc.). Once the patient experiences some initial pain relief (e.g. 6–12 treatments) they can be re-assessed and graduated to CBP structural rehabilitation. The decision to first treat a new patient with ‘acute’ pain care is a clinical decision that is mainly for patients that have either never seen a chiropractor previously or they have not been previously treated for their acute condition. For patients who have received recent previous treatment without relief, CBP rehabilitation care is recommended from the start of treatment [2, 3, 4].
CBP structural rehabilitation is suggested as either three times per week for 12-weeks (36 treatments) or four times per week for 9-weeks (36 treatments), however, the controlled trial data support treatment blocks of 30–40 treatment sessions [7, 8, 9, 10, 15, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. An initial patient who has acute or chronic pains and who has not been treated recently or at all for their current spine issue should be treated for an initial 6–12 sessions to provide pain relief. After signs of relief have occurred, a progress exam should be performed and the patient should be transitioned or ‘graduated’ to CBP corrective care.
CBP treatment occurs in ‘blocks of care.’ Numerous CBP controlled clinical trials (RCTs [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55] and nRCTs [7, 8, 9, 10, 15, 42]) provide evidence for spine altering changes to occur in the range of 30–40 treatment sessions; thus, it is the practitioners’ choice to set their protocol within this range (i.e. treatment blocks). The end of each ‘block’ of CBP care requires a progress exam which includes all of the typical assessment procedures as well as a posture and X-ray assessment. Exam results may either dictate the need for further CBP treatment or the recommendation for ‘supportive’ or maintenance care. An initial block of CBP structural rehabilitation will include any acute care provided in the first 2–4 weeks. It is always recommended that ongoing ‘progress exams’ be performed regularly, at either 4-week or 12 treatment intervals, or as frequently as recommended by each practitioner’s regional regulatory board requirements.
CBP does not specifically support ‘long-term’ care plans. However, based on the data, an adult typically needs 6-months of corrective care (e.g. 72 treatments over 6-months at 3x/week) which is an evidence-based recommendation. Although, any given patient may require a shorted (i.e. 3-month) or longer treatment program based on their initial presenting postural parameters—approximate treatment extrapolations can be made by studying Tables 1–3. There is also support for supportive/maintenance care at a frequency of approximately 2×/month [8, 9, 10].
Study | Journal | Traction method | Traction time | Number of treatments | Change (*) | Change/txt (*) | Theoretical treatment extrapolation | ||
---|---|---|---|---|---|---|---|---|---|
Hypolordotic -20° | No curve 0° | Kyphotic +20° | |||||||
RCTs | |||||||||
Moustafa | Sci Reports | Denneroll | 20m | 30 | 13.9 | 0.46 | 32 | 76 | 119 |
Moustafa | Heliyon | Denneroll | 15–20m | 30 | 13.4 | 0.45 | 34 | 78 | 123 |
Moustafa | J Athl Train | Denneroll | 20m | 30 | 14.7 | 0.49 | 31 | 71 | 112 |
Moustafa | APMR | Denneroll | 20m | 30 | 13.1 | 0.44 | 34 | 80 | 126 |
Moustafa | EJPRM | Denneroll | 20m | 30 | 13.7 | 0.46 | 33 | 77 | 120 |
Moustafa | BFPTCU | Denneroll | 20m | 36 | 12.8 | 0.36 | 42 | 98 | 155 |
nRCTs | |||||||||
Harrison | JMPT | Pope 2-way | 20m | 38 | 17.9 | 0.47 | 32 | 74 | 117 |
Harrison | APMR | 2way | 20m | 35 | 14.2 | 0.41 | 37 | 86 | 136 |
Harrison | JMPT | Ext-comp | 10m | 60 | 13.2 | 022 | 68 | 159 | 250 |
Summary of cervical lordosis improvement by number of treatments, magnitude correction/treatment and the extrapolation to typical sagittal cervical curve subluxation types and the theoretical treatment number required for their correction to -35° C2-7 ARA.
*Note: Correction is estimated to achieve -35 of cervical lordosis.
Study | Journal | Traction method | Traction time | Number of treatments | Change (*) | Change/ txt (*) | Theoretical treatment extrapolation | ||
---|---|---|---|---|---|---|---|---|---|
Hypolordotic -30° | Hypolordotic -15° | No curve 0° | |||||||
RCTs | |||||||||
Moustafa | JBMR/JMPT | LET | 20m | 30 | 6.2 | 0.21 | 48 | 121 | 194 |
Moustafa | Clin Rehab | LET | 20m | 30 | 8.7 | 0.29 | 34 | 86 | 138 |
nRCTs | |||||||||
Harrison | APMR | LET | 20m | 36 | 11.3 | 0.31 | 32 | 80 | 127 |
Summary of lumbar lordosis improvement by number of treatments, magnitude correction/treatment and the extrapolation to typical sagittal lumbar curve subluxation types and the theoretical treatment number required for their correction to -40° L1-5 ARA.
*Note: Correction is estimated to achieve -40 of lumbar lordosis.
Study | Journal | Traction method | Traction time | Number of treatments | Change (mm) | Change/txt (mm) | Theoretical treatment extrapolation | ||
---|---|---|---|---|---|---|---|---|---|
Mild offset ±10mm | Moderate offset ±20mm | Severe offset ±30mm | |||||||
nRCTs | |||||||||
Head trans Harrison | JRRD | Lat trans | 20 m | 37 | 6.9 | 0.19 | 54 | 107 | 161 |
Thorax trans Harrison | Eur Sp J | Lat trans | 20 m | 36 | 7.7 | 0.21 | 47 | 94 | 140 |
Summary of AP head and thorax lateral translation reduction by number of treatments, magnitude correction/treatment and the extrapolation to larger coronal plane offset subluxations and the theoretical treatment number required for their correction.
Note: Correction is estimated to achieve 0mm of offset.
As mentioned, CBP technique has an abundance of clinical evidence supporting its effectiveness in correcting spine deformity and posture [7, 8, 9, 10, 15, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. Recently, systematic reviews have summarized the clinical evidence as reported in the published controlled trials on these methods [56, 57]. We summarize the evidence here in four parts: cervical lordosis, lumbar lordosis, lateral translation (pseudo-scoliosis) postures of the head and thorax, and finally, evolving evidence from case reports/series on other important spine deformities including lumbar spondylolisthesis, cervical spondylolisthesis, thoracic hyperkyphosis, thoraco-lumbar junctional kyphosis, thoracic hypokyphosis (straight back syndrome), anterior sagittal balance, lumbar kyphosis (flat back syndrome), lumbar hyperlordosis, post-surgical cervical spine fusion and scoliosis.
A recent systematic review found that of the RCTs and nRCTs on CBP extension traction methods, a 12–18° improvement in cervical lordosis can be achieved in 10–15 weeks after 30–36 treatment sessions [57]. Most RCTs have used the cervical Denneroll [43, 44, 45, 46, 47, 49, 50], and the three nRCTs all used different CET methods (Table 1) [7, 8, 9].
Table 1 shows the improvement in degrees per treatment as well as theoretical numbers of treatments for various presenting cervical spine subluxations. On average, there appears to be just less than a half degree improvement per treatment session; obviously, there are patients that will have both more correction and less correction than this. Using this estimation as an initial guideline, evidence-based treatment numbers can be predicted. For example, a patient presenting with a cervical kyphosis of 20° would require over 100 treatments to restore the neck to a curve of 35°.
Figures 13 and 14 show the long-term outcomes in patients receiving cervical extension traction versus comparative groups not receiving the traction. The patients restoring lordosis via CBP traction methods show improved cervical alignment which is maintained at a years’ follow-up (Figure 13) whereas, comparative groups receiving various physiotherapeutic treatments less the extension traction do not experience cervical improvement (Figure 13) and also show that any initial pain relief regresses back towards baseline levels after the cessation of treatment (Figure 14). Patient’s with improved lordosis retain their initial pain relief a year later (Figure 14). This is alarming as it shows patients receiving various physiotherapeutic treatments who do not improve their cervical lordosis (in hypolordotic patients) will have a future regression of symptoms post-treatment and may be misled by ‘apparent treatment efficacy’ [5, 57].
Data from five RCTs demonstrates patients achieving cervical lordosis improvement (via extension traction) as well as conventional treatments have lordosis improvements that are sustained for 1 year after stopping treatment versus the cervical curve of comparative groups (controls not achieving lordosis improvement) remain unaffected by conventional treatments (weighted averages from five RCTs [
Data from five RCTs demonstrates patients achieving cervical lordosis improvement (via extension traction) as well as conventional treatments have pain reductions that are sustained for 1 year after stopping treatment versus comparative groups (controls not achieving lordosis improvement) who show a regression (increase) of pain intensity towards baseline after stopping treatment (weighted averages from five RCTs [
A recent systematic review found “Limited but good quality evidence substantiates that the use of extension traction methods in rehabilitation programs definitively increases lumbar hypolordosis” [56]. The authors further stated: “Preliminarily, these studies indicate these methods provide longer-term relief to patients with low back disorders versus conventional rehabilitation approaches tested” [56]. On average, a 7–11° increase in lordosis can be achieved over 10–12 weeks after 30–36 treatment sessions (Table 2).
It must be mentioned that lumbar extension traction is necessary to increase the lumbar lordosis. Importantly, using the data from published trials [10, 53, 54, 55], one can extrapolate approximate treatment duration (Table 2). As seen, a mild hypolordotic lumbar spine of 30° (L1-L5 ARA) may only require 32–48 treatments, whereas, a flat lumbar curve would require 127–194 treatments to achieve a normal 40° lordosis.
The same trend as observed in patients receiving cervical lordosis correction versus comparative groups not receiving lordosis improvement is seen in the trials on the lumbar spine [5, 56]. Lordosis increase in patients receiving lumbar extension traction is achieved and maintained at 6-months follow-up (Figure 15); these patients also retain their initial pain relief whereas, comparative patient groups not receiving lordosis improvement (Figure 15) lose their initial pain relief by 6-months after cessation of treatment (Figure 16). Again, this is alarming and shows how active low back treatment, although offering transient pain relief, will likely regress after treatment if not receiving concurrent lordosis correction in those suffering from hypolordotic-related LBP [5, 56].
Data from two RCTs demonstrates patients achieving lumbar lordosis improvement (via extension traction) as well as conventional treatments have lordosis improvements that are sustained for 6-months after stopping treatment versus the lumbar curve of comparative groups (controls not achieving lordosis improvement) remain unaffected by conventional treatments (weighted averages from two RCTs [
Data from two RCTs demonstrates patients achieving lumbar lordosis improvement (via extension traction) as well as conventional treatments have pain reductions that are sustained for 6-months after stopping treatment versus comparative groups (controls not achieving lordosis improvement) who show a regression (increase) of pain intensity towards baseline after stopping treatment (weighted averages from two RCTs [
Coronal plane lateral translations of the head and thorax also referred to as ‘pseudo-scoliosis’ each has an nRCT published [15, 42] and many case reports demonstrating its reduction [16, 58, 59, 60, 61, 62, 63]. As discussed earlier, the differentiation from true scoliosis is that the involved vertebrae have minimal to no rotation, whereas, true scoliosis has substantial vertebral rotation (Figure 6). Also, the spinal coupling pattern of a laterally translated body mass (head or thorax) will demonstrate the lower involved spinal region to laterally flex towards the side of the translation and the upper involved spinal region to laterally flex back towards the vertical [35, 36].
Based on the data, a laterally translated body mass can be reduced about 7–8 mm after about 35 treatments. On average, correction of a laterally translated head or thorax can be corrected at about 0.2 mm per treatment, or about 1 mm per five treatments. Extrapolations of treatment numbers to patient subluxation presentation are shown in Table 3. From the data in each of the nRCTs, an approximate 50% reduction of the initial laterally translated head and thorax postures occurred; therefore, an average patient having an approximate 15 mm translation posture (head or rib cage) requires 6-months of corrective care (approximately 72 treatments). It must also be mentioned that many case reports have demonstrated larger lateral translation postural corrections/reductions with CBP methods in similar time frames [16, 58, 59, 60, 61, 62, 63], thus, these serve as approximate treatment extrapolations.
It is known that the science for manual therapies is lacking [64]. Therefore, lesser forms of evidence must be considered when evaluating various treatment approaches used to treat various spinal conditions by manual therapists [65, 66]; this includes treatment utilizing CBP methods. We now highlight more recent case studies and series showing structural spinal correction for a variety of relatively common disorders.
Fedorchuk et al. [67] reported on an 11 mm reduction (13.3–2.4 mm) of an L4 anterolisthesis in a 69-year old suffering from LBP and leg cramping. Pain relief was achieved after 60 treatments over 45 weeks. This was the first documented report of a reduction of a Grade 2 lumbar spondylolisthesis by CBP methods, as well as any other non-surgical method.
Oakley and Harrison reported on the reduction of multiple retrolistheses from L1-L4 ranging from 4.5 to 5.9 mm in a 32-year old male with LBP [68]. These were all reduced to within normal (<4.5 mm) after approximately 36 treatments over 14-weeks. A 13-month follow-up indicated the patient remained well and reported no back pain and the corrections had remained stable.
Fedorchuk et al. [69] reported on the reduction of L1 (−6.6 to −1.7 mm) and L2 (−6.1 to −2.0 mm) retrolistheses and an L5 anterolisthesis (+6.8 to −2.5 mm) in a 63-year old female bodybuilder with severe LBP and osteoarthritis. Thirty treatments were given over 10-weeks which resulted in normalizing all spondylolistheses as well as a dramatic reduction in pain and an ability to leg press 60 more pounds in the gym.
Fedorchuk et al. reported the complete reduction of an L3 retrolisthesis and L4 anterolisthesis after 50 treatments over a 7-month period [70]. The patient was 57-years old with severe LBP and sciatica. The L3 retrolisthesis reduced from −5.3 to −1.7 and the L4 anterolisthesis reduced from +5.4 to +1.0 mm. After treatment the patient was able to return to playing hockey and experienced full resolution of the back pain which had forced him to retire from sport. A 1-year follow-up showed the patient had remained well and maintained the corrections.
Recently, Fedorchuk et al. present a case series of eight female patients with concomitant cervical hypolordosis, forward head translation and spondylolistheses [71]. All were in motor vehicle collisions, each having at least one, and at most four simultaneous cervical vertebral spondylolistheses ranging in magnitude from >2 mm up to 4.5 mm. All cases experienced a reduction in translational offset of the spondylolistheses, and increase in cervical lordosis and a decrease in forward head translation as well as an increase in spinal canal diameter at the location of the spondylolisthesis after 30 treatment sessions that included cervical extension traction over a duration of 12-weeks. On average, the spondylolistheses reduced by 2.6 mm and there was an average drop in neck disability by 30%.
In another case, Fedorchuk et al. presented a single case of a 52-year old with chronic neck pain [72]. The patient had a C4 anterolisthesis of 2.4 mm which was reduced to 0.7 mm as well as an increase in cervical lordosis and reduction in forward head translation after 30 treatments over 12-weeks. The patient reported a resolution of their neck pain and stiffness.
Thoracic hyperkyphosis is a relatively common subluxation pattern in the aging. Although there is one RCT on CBP methods showing reduction of the deformity, it is yet to be formally published [52]. A systematic review of CBP methods used to reduce thoracic hyperkyphosis was published [73] and summarized the outcomes of several case reports and series [74, 75, 76, 77, 78, 79]. In Table 2 of the Oakley and Harrison review an average 12° reduction in thoracic kyphosis occurred after 32 treatments over 14.5 weeks from a total of 17 patients [52]. The improved posture correlated with reduced pain, disability and improved QOL [52]. Figures 17 and 18 show various CBP mirror image spinal exercises and traction, respectively.
CBP recommended mirror image exercises for patients with thoracic hyper-kyphosis.
CBP mirror image traction for patients with thoracic hyper-kyphosis.
Thoracolumbar kyphosis is the forward angled spine at the junction of the thoracic and lumbar spine and is associated with chronic LBP (CLBP). Gubbels et al. presented a case of the minimization of pain in a 16-year old female after a 22° reduction of thoracolumbar kyphosis, a 48 mm reduction of posterior sagittal balance, an 11° increase in lumbar lordosis and a 10° increase in sacral inclination [80]. Twenty-four in office treatments were given over an 8-week period with daily home traction resulting in a minimization of back pains.
Thoracic spine hypolordosis is termed straight back syndrome (SBS) and is associated with back pains and exertional dyspnea. Fortner et al. [81] reported on an 18-year old male suffering from back pains and exertional dyspnea. Twenty-four treatments over a 9-week period resulted in a 15° increase in thoracic kyphosis, a decrease in pain and improved exertional dyspnea symptoms. A 4-month follow-up showed the patient remained well.
Betz et al. [82] reported the improvement in a 19-year old male who suffered from exertional dyspnea and back pain. Over 12-weeks a 14° increase in thoracic curve was achieved resulting in relief of exertional dyspnea and pain, as well as increases in both the antero-posterior thoracic diameter and the ratio of antero-posterior to transthoracic diameter, both measures critical to the wellbeing of patients with SBS. A 2.75-year follow-up showed the patient remained well.
Fedorchuk et al. [83] reported on a 13° increased thoracic curve in a 26-year old male with back pains and type 1 diabetes. Treatment over 7-weeks included 36 sessions. Back pains reduced and importantly, there was also improvement in blood glucose immediately following the onset of each visit. An improvement in blood glucose averages, percentage of time of blood glucose in a healthy target range, and glycosylated hemoglobin occurred and the patient was able to reduce their basal insulin need by approximately half after the 7-weeks of care.
Mitchel et al. [84] reported a 10° increase in thoracic curve over 16-weeks in a 33-year old male suffering from exertional dyspnea and back pains. The measured lung capacity improved by 2L, the back pain diminished and the exertional dyspnea resolved. A 7-month follow-up indicated the patient remained well.
Anterior sagittal balance (ASB) is the forward displacement of the upper body over the pelvis. Haas et al. reported on the dramatic 110 mm reduction in ASB in an 87-year old female with CLBP and sciatica [85]. Treatment consisted of 24 in office sessions over an 8-week period. The patient achieved a dramatic reduction of symptoms, improvements in flexibility and orthopedic testing.
Anderson et al. [86] reported on a 91 mm reduction in ASB in a 59-year old male patient suffering from a variety of symptoms associated with Parkinson’s disease. Initial treatment involved 38 treatments over 5 months. The patient experienced significant improvements in multiple postural parameters, gait, balance, hand tremors, low back and knee pains and SF-36 values. A 21-month follow-up showed the patient remained essentially well and most of the initial postural improvements were maintained.
Flat back syndrome (FBS) is the anterior translation of the upper body and gross loss (or kyphosis) of the lumbar spine and is associated with high pain and disability. In a case series, Harrison and Oakley describe the significant restoration of lumbar lordosis in two patients suffering from debilitating CLBP from flat back syndrome [87]. One patient had a 50° lordosis improvement in 100 treatments over 20 weeks, the other had a 26° lordosis improvement in 70 treatments over 16.5 weeks. In the discussion section of the report, it was calculated that the treatment costs of the patients receiving CBP treatment versus the projected costs for the surgical procedures recommended to the two patients equated to only 1–8%; the authors stated “at first 70 or 100 treatments may be criticized as ‘over-treatment,’ however, considering the overall cost-effectiveness and positive patient outcomes, it certainly is not” [87].
Although lumbar hypolordosis is the most common lumbar misalignment in those presenting with chronic LBP [10], lumbar hyperlordosis is also seen clinically. CBP methods can be directed at decreasing lumbar lordosis and its typically associated anteriorly rotated pelvis. In a recent case, Oakley et al. [88] presented a case demonstrating the relief of CLBP and hip pains after an 8° reduction in lumbar hyperlordosis, a 5° reduction in pelvic tilt and an accompanying 17 mm reduction of forward sagittal balance. This occurred over a period of 13 months and 73 total treatments.
Post-surgical cervical spine intervertebral fusion is not a common finding in clinical practice however, it is occasionally encountered. Many of these patients continue to suffer years after the intervention. Harrison et al. [89] presented a case showing improvement in sagittal postural parameters which corresponded with improved clinical outcome in a 52-year old male. Over a 6-month period, a 6° increase in cervical lordosis was achieved as well as a 13 mm reduction in anterior head translation (AHT). These improvements were maintained at a 2.5-year follow-up.
Fedorchuk et al. [90] also presented a successful outcome in a 43-year old with a C5-6 intersegmental fusion. After 36 treatments over 3-months, there was a 13° increase in cervical lordosis, a 9 mm decrease in AHT and a 5 mm reduction in lateral head translation.
Although too large of a topic to address in this chapter, CBP technique has a unique approach in the treatment of scoliosis [3]. CBP methods incorporates the ‘non-commutative property of finite rotation angles under addition’ to ascertain the order of postural movements to be prescribed in the mirror image treatment of this disorder. Harrison and Oakley described reductions in curve magnitude in five lumbar or thoracolumbar scoliosis patients ranging from 5° to 24° after 18–84 treatments [40]. All patients were female and ranged in age from 19 to 45 years.
Haggard et al. reported a 19° reduction in a thoracolumbar curve in a 15-year old female patient after 24 office treatments over 15-weeks. The patient also performed 45 at home spine blocking sessions as prescribed by the attending chiropractor [41]. The patients LBP and headaches were dramatically improved, and the curve was reduced to 8°.
Use of X-ray for spine analysis is essential for treating spine deformities, including with CBP technique methods. Historically, there has been concerns of carcinogenicity associated with X-ray use. Recently, however, new evidence has come to light showing that anti-X-ray sentiment stemming from the supposed carcinogenicity is based on flawed science [91, 92, 93]. The bottom line is the linear no-threshold (LNT) model used to support radiation risk analysis is not scientific as it is not consistent with current radiobiological data [94, 95, 96, 97, 98].
X-rays and CT scans deliver low-dose radiation doses (<200 mGy), and because of this they cannot cause cancer. This is because low-dose (versus high-dose) radiation exposures stimulate the adaptive repair systems of the body to repair any damage done [99, 100, 101]. Although this topic is important, it is a much larger issue than the scope of this chapter but many recent reviews have found that X-rays (and CT scans) are not harmful [103]. In fact, after a substantial and critical review of higher quality studies on radiation exposure, Schultz et al. concluded: “The evidence suggests that exposure to multiple CT scans and other sources of low-dose radiation with a cumulative dose up to 100 mSv (approximately 10 scans), and possibly as high as 200 mSv (approximately 20 scans), does not increase cancer risk.” Thus, there should be no hesitation or misunderstanding surrounding X-ray risks. Doctors and patients need to become updated on X-ray safety and not succumb to the traditional carcinogenicity misinformation.
CBP technique is a well-studied approach to the structural improvement of spinal disorders. Many spinal disorders with associated pain and functional syndromes have either well characterized or evolving evidence for their treatment by the mirror image approach that underpins CBP methods. The correlation of the spine alignment and postural rotations and translations of posture are of critical importance and unique in the CBP approach.
We acknowledge the pioneering work of Dr. Donald D. Harrison.
D.E.H. teaches spine rehabilitation methods and sells products related to the treatment of spine deformities; P.A.O. is a paid consultant to CBP.
AHT | anterior head translation |
ASB | anterior sagittal balance |
AP | anterior-to-posterior |
ARA | absolute rotation angle |
CBP | Chiropractic BioPhysics® |
CLBP | chronic low back pain |
HPT | Harrison posterior tangent |
IVD | intervertebral disc |
LBP | low back pain |
LNT | linear no-threshold |
nRCT | non-randomized controlled trial |
QOL | quality of life |
PA | posterior-to-anterior |
PNF | proprioceptive neuromuscular facilitation |
RCT | randomized controlled trial |
RRA | relative rotation angle |
SEM | standard error of measurement |
SBS | straight back syndrome |
IntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"12,15,16"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism",subtitle:null,isOpenForSubmission:!0,hash:"0c5043c6174db167599cb3f762e8bba8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11694",title:"Preterm Birth",subtitle:null,isOpenForSubmission:!0,hash:"32122a528d743d1f8843ac6b1c9cd564",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11694.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11713",title:"Chiropractic Medicine",subtitle:null,isOpenForSubmission:!0,hash:"b4e556ae0275a66d0c662a53aac5cb92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11713.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11727",title:"Bronchitis",subtitle:null,isOpenForSubmission:!0,hash:"bde0bf7ccc8a2c1798f43ab5b56d338c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11727.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11838",title:"Football Science",subtitle:null,isOpenForSubmission:!0,hash:"e69975f96f195be8093194346f8bbe58",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11838.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:105},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:118},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4383},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"491",title:"Organometallic Chemistry",slug:"chemistry-inorganic-chemistry-organometallic-chemistry",parent:{id:"83",title:"Inorganic Chemistry",slug:"chemistry-inorganic-chemistry"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:35,numberOfWosCitations:35,numberOfCrossrefCitations:10,numberOfDimensionsCitations:32,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"491",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7549",title:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"7bbd9beaeefecb9ec112a0a09432d241",slug:"basic-concepts-viewed-from-frontier-in-inorganic-coordination-chemistry",bookSignature:"Takashiro Akitsu",coverURL:"https://cdn.intechopen.com/books/images_new/7549.jpg",editedByType:"Edited by",editors:[{id:"147861",title:"Dr.",name:"Takashiro",middleName:null,surname:"Akitsu",slug:"takashiro-akitsu",fullName:"Takashiro Akitsu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5879",title:"Chemical Reactions in Inorganic Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"2bcf0f925171dfef401e934443e0d296",slug:"chemical-reactions-in-inorganic-chemistry",bookSignature:"Saravanan Chandraleka",coverURL:"https://cdn.intechopen.com/books/images_new/5879.jpg",editedByType:"Edited by",editors:[{id:"196005",title:"Dr.",name:"Chandraleka",middleName:null,surname:"Saravanan",slug:"chandraleka-saravanan",fullName:"Chandraleka Saravanan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5848",title:"Recent Progress in Organometallic Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"aa9478b98a858b7c57bf056ac5c6e197",slug:"recent-progress-in-organometallic-chemistry",bookSignature:"Mohammed Muzibur Rahman and Abdullah Mohamed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/5848.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"62941",doi:"10.5772/intechopen.80233",title:"Inorganic Coordination Chemistry: Where We Stand in Cancer Treatment?",slug:"inorganic-coordination-chemistry-where-we-stand-in-cancer-treatment-",totalDownloads:2084,totalCrossrefCites:5,totalDimensionsCites:10,abstract:"Metals have unique characteristics such as variable coordination modes, redox activity, and reactivity being indispensable for several biochemical processes in cells. Due to their reactivity, their concentration is tightly regulated inside the cells, and abnormal concentrations are associated with many disorders, such as cancer. As such metal complexes turned out to be very attractive as potential anticancer agents. The discovery of cisplatin was a crucial moment, which prompted the interest in Pt(II) and other metal complexes as potential anticancer agents. This chapter highlights the state of the art on metal complexes in cancer therapy, highlighting their uptake mechanisms, biological targets, toxicity, and drug resistance. Finally, based on the importance of selective target of cancer cells, drug delivery systems will also be discussed.",book:{id:"7549",slug:"basic-concepts-viewed-from-frontier-in-inorganic-coordination-chemistry",title:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry",fullTitle:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry"},signatures:"Pedro Pedrosa, Andreia Carvalho, Pedro V. Baptista and Alexandra R. Fernandes",authors:[{id:"253664",title:"Prof.",name:"Alexandra R",middleName:null,surname:"Fernandes",slug:"alexandra-r-fernandes",fullName:"Alexandra R Fernandes"}]},{id:"55951",doi:"10.5772/intechopen.69588",title:"Sol-Gel Processes of Functional Powders and Films",slug:"sol-gel-processes-of-functional-powders-and-films",totalDownloads:1650,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The key principles of sol-gel process and its characteristics are outlined and its major control parameters are summarized. Different samples of functional powders and films with magnetic, optical, and dielectric properties prepared by the sol-gel method are described. To determine the relationship between microstructure and properties, the effects of preparation conditions on the size and microstructure and electric properties, dielectric properties, optical properties, and magnetic properties are analyzed.",book:{id:"5879",slug:"chemical-reactions-in-inorganic-chemistry",title:"Chemical Reactions in Inorganic Chemistry",fullTitle:"Chemical Reactions in Inorganic Chemistry"},signatures:"Chao-Qun Ye",authors:[{id:"198716",title:"Dr.",name:"Chaoqun",middleName:null,surname:"Ye",slug:"chaoqun-ye",fullName:"Chaoqun Ye"}]},{id:"54947",doi:"10.5772/68132",title:"Voltammetric Analysis of Platinum Group Metals Using a Bismuth-Silver Bimetallic Nanoparticles Sensor",slug:"voltammetric-analysis-of-platinum-group-metals-using-a-bismuth-silver-bimetallic-nanoparticles-senso",totalDownloads:1467,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"This study dealt with the development of a bismuth-silver bimetallic nanosensor for differential pulse adsorptive stripping voltammetry of platinum group metals (PGMs) in environmental samples. The nanosensor was fabricated by drop coating a thin bismuth-silver bimetallic film onto the active area of the screen-printed carbon electrodes. Optimization parameters such as pH, dimethylglyoxime (DMG) concentration, deposition potential and deposition time, stability test and interferences were also studied. In 0.2 M acetate buffer (pH = 4.7) solution and DMG as the chelating agent, the reduction signal for PGMs ranged from 0.2 to 1.0 ng L−1. In the study of possible interferences, the results have shown that Ni(II), Co(II), Fe(III), Na+, SO42−, and PO43− do not interfere with Pd(II), Pt(II), and Rh(III) in the presence of DMG with sodium acetate buffer as the supporting electrolyte solution. The limit of detection for Pd(II), Pt(II), and Rh(III) was found to be 0.07, 0.06 and 0.2 ng L−1, respectively. Good precision for the sensor application was obtained with a reproducibility of 7.58% for Pd(II), 6.31% for Pt(II), and 5.37% for Rh(III) (n = 10).",book:{id:"5848",slug:"recent-progress-in-organometallic-chemistry",title:"Recent Progress in Organometallic Chemistry",fullTitle:"Recent Progress in Organometallic Chemistry"},signatures:"Charlton van der Horst, Bongiwe Silwana, Emmanuel Iwuoha and\nVernon S. Somerset",authors:[{id:"6648",title:"Associate Prof.",name:"Vernon",middleName:null,surname:"Somerset",slug:"vernon-somerset",fullName:"Vernon Somerset"}]},{id:"62661",doi:"10.5772/intechopen.79472",title:"Mechanism of Interactions of Zinc(II) and Copper(II) Complexes with Small Biomolecules",slug:"mechanism-of-interactions-of-zinc-ii-and-copper-ii-complexes-with-small-biomolecules",totalDownloads:2012,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Over the past few decades, transition metal complexes have attracted considerable attention in medicinal inorganic chemistry, especially as synthetic metallonucleases and metal-based anticancer drugs that are able to bind to DNA under physiological conditions. The use of metal-based drugs presents the most important strategy in the development of new anticancer and antimicrobial agents. Negative side effects during treatment (such as vomiting, resistance, nephrotoxicity, ototoxicity, neurotoxicity and cardiotoxicity) prompted researchers to design new classes of DNA and protein targeting metal-based anticancer agents with potential in vitro selectivity and less toxicity. Knowledge of mechanism of the interaction zinc(II) and copper (II) ions with biomolecules and other relevant ligands is essential for understanding the cellular biology of delivery complexes to DNA and proteins. Results obtained from investigations provide useful information for the future design of potential zinc- and copper-based anticancer drugs. Different mechanism of interactions with selected biomolecules compared to platinum-based drugs has been observed.",book:{id:"7549",slug:"basic-concepts-viewed-from-frontier-in-inorganic-coordination-chemistry",title:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry",fullTitle:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry"},signatures:"Tanja Soldatović",authors:[{id:"256260",title:"Dr.",name:"Tanja",middleName:"V.",surname:"Soldatovic",slug:"tanja-soldatovic",fullName:"Tanja Soldatovic"}]},{id:"54684",doi:"10.5772/68071",title:"Physicochemical Properties and Catalytic Applications of Iron Porphyrazines and Phthalocyanines",slug:"physicochemical-properties-and-catalytic-applications-of-iron-porphyrazines-and-phthalocyanines",totalDownloads:1725,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Porphyrazines and phthalocyanines belong to porphyrinoids, which are macrocyclic compounds consisting of four pyrrole or indole rings, respectively. The aromatic rings of porphyrazines and phthalocyanines are fused together by azamethine bridges (meso nitrogen atoms) in place of methine bridges present in porphyrins. The physicochemical properties of these macrocycles can be modified in two ways. The first is by substitution of metal cation in the core, whereas the second relies on peripheral modification with various substituents. Porphyrazines and phthalocyanines can be modified inside the macrocyclic core with various transition metal cations, including iron(II/III), which impacts their electrochemical properties and influences potential applications in redox reactions. Due to their unique optical and electrochemical properties, porphyrazines and phthalocyanines found many potential and practical applications in medicine and technology. They were mainly researched as photosensitizers in photodynamic therapy, as sensors in biomedical and analytical applications or as building blocks for materials chemistry. This chapter presents physicochemical properties and catalytic applications of iron porphyrazines and phthalocyanines. The first part summarizes the influence of peripheral and axial substituents of iron(II/III) porphyrazines and phthalocyanines on their spectral properties, whereas the second focuses on the electrochemical properties of these molecules. The third part covers the activity of selected iron(II/III) porphyrazines and phthalocyanines of potential value for diverse applications including catalytic reactions.",book:{id:"5848",slug:"recent-progress-in-organometallic-chemistry",title:"Recent Progress in Organometallic Chemistry",fullTitle:"Recent Progress in Organometallic Chemistry"},signatures:"Tomasz Koczorowski, Wojciech Szczolko and Tomasz Goslinski",authors:[{id:"194381",title:"Prof.",name:"Tomasz",middleName:null,surname:"Goslinski",slug:"tomasz-goslinski",fullName:"Tomasz Goslinski"},{id:"196559",title:"MSc.",name:"Tomasz",middleName:null,surname:"Koczorowski",slug:"tomasz-koczorowski",fullName:"Tomasz Koczorowski"},{id:"199685",title:"Dr.",name:"Wojciech",middleName:null,surname:"Szczolko",slug:"wojciech-szczolko",fullName:"Wojciech Szczolko"}]}],mostDownloadedChaptersLast30Days:[{id:"62941",title:"Inorganic Coordination Chemistry: Where We Stand in Cancer Treatment?",slug:"inorganic-coordination-chemistry-where-we-stand-in-cancer-treatment-",totalDownloads:2070,totalCrossrefCites:5,totalDimensionsCites:10,abstract:"Metals have unique characteristics such as variable coordination modes, redox activity, and reactivity being indispensable for several biochemical processes in cells. Due to their reactivity, their concentration is tightly regulated inside the cells, and abnormal concentrations are associated with many disorders, such as cancer. As such metal complexes turned out to be very attractive as potential anticancer agents. The discovery of cisplatin was a crucial moment, which prompted the interest in Pt(II) and other metal complexes as potential anticancer agents. This chapter highlights the state of the art on metal complexes in cancer therapy, highlighting their uptake mechanisms, biological targets, toxicity, and drug resistance. Finally, based on the importance of selective target of cancer cells, drug delivery systems will also be discussed.",book:{id:"7549",slug:"basic-concepts-viewed-from-frontier-in-inorganic-coordination-chemistry",title:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry",fullTitle:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry"},signatures:"Pedro Pedrosa, Andreia Carvalho, Pedro V. Baptista and Alexandra R. Fernandes",authors:[{id:"253664",title:"Prof.",name:"Alexandra R",middleName:null,surname:"Fernandes",slug:"alexandra-r-fernandes",fullName:"Alexandra R Fernandes"}]},{id:"62661",title:"Mechanism of Interactions of Zinc(II) and Copper(II) Complexes with Small Biomolecules",slug:"mechanism-of-interactions-of-zinc-ii-and-copper-ii-complexes-with-small-biomolecules",totalDownloads:2007,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Over the past few decades, transition metal complexes have attracted considerable attention in medicinal inorganic chemistry, especially as synthetic metallonucleases and metal-based anticancer drugs that are able to bind to DNA under physiological conditions. The use of metal-based drugs presents the most important strategy in the development of new anticancer and antimicrobial agents. Negative side effects during treatment (such as vomiting, resistance, nephrotoxicity, ototoxicity, neurotoxicity and cardiotoxicity) prompted researchers to design new classes of DNA and protein targeting metal-based anticancer agents with potential in vitro selectivity and less toxicity. Knowledge of mechanism of the interaction zinc(II) and copper (II) ions with biomolecules and other relevant ligands is essential for understanding the cellular biology of delivery complexes to DNA and proteins. Results obtained from investigations provide useful information for the future design of potential zinc- and copper-based anticancer drugs. Different mechanism of interactions with selected biomolecules compared to platinum-based drugs has been observed.",book:{id:"7549",slug:"basic-concepts-viewed-from-frontier-in-inorganic-coordination-chemistry",title:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry",fullTitle:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry"},signatures:"Tanja Soldatović",authors:[{id:"256260",title:"Dr.",name:"Tanja",middleName:"V.",surname:"Soldatovic",slug:"tanja-soldatovic",fullName:"Tanja Soldatovic"}]},{id:"63759",title:"Modern Techniques in Synthesis of Organometallic Compounds of Germanium",slug:"modern-techniques-in-synthesis-of-organometallic-compounds-of-germanium",totalDownloads:1198,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Germanium is one of the most significant semiconductors to be used for electronic devices due to small bandgap and high intrinsic mobility of holes and electrons. Germanium has received a large attention due to its extraordinary reactivity and properties. It is commonly used in fluorescent lamps and as catalyst as well to produce various types of plastic. Germanium nanomaterials have broad range of applications from photovoltaic devices to phase-change memory materials. Germanium forms complexes by reacting with numerous elements such as carbon, oxygen, nitrogen, hydrogen, and phosphorous as a part of several organic compounds. Germanium coordinates with these elements by single, double, and triple linkages. Interestingly, all such reactions occur at ambient temperature usually in tetrahydrofuran under vacuum. Germanium may also react directly with primary and secondary nitrogen in the presence of a suitable base, whereas with tertiary nitrogen, it may react directly even in the absence of a base. Nevertheless, this chapter describes the modern techniques in synthesis of organometallic compounds of germanium.",book:{id:"7549",slug:"basic-concepts-viewed-from-frontier-in-inorganic-coordination-chemistry",title:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry",fullTitle:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry"},signatures:"Hina Hayat and Muhammad Adnan Iqbal",authors:[{id:"253633",title:"Dr.",name:"Muhammad Adnan",middleName:null,surname:"Iqbal",slug:"muhammad-adnan-iqbal",fullName:"Muhammad Adnan Iqbal"},{id:"253635",title:"Ms.",name:"Hina",middleName:null,surname:"Hayat",slug:"hina-hayat",fullName:"Hina Hayat"}]},{id:"55634",title:"Concerning Organometallic Compounds in Environment: Occurrence, Fate, and Impact",slug:"concerning-organometallic-compounds-in-environment-occurrence-fate-and-impact",totalDownloads:1892,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Organometallic compounds can be found in our surrounding environmental compartments either because of human extensive activities or their existence as natural products in the environment. Since organometallic species of trace metals were found often more worrying than their parent compounds, intensive research on their properties, pathways of transformation in different environmental compartment as well as their fate and interactions between different environmental compartments (under different external and internal conditions), and not finally their end-up and disposal, has become a requirement from many public health and environmental protection agencies.",book:{id:"5848",slug:"recent-progress-in-organometallic-chemistry",title:"Recent Progress in Organometallic Chemistry",fullTitle:"Recent Progress in Organometallic Chemistry"},signatures:"Kovacs Melinda Haydee and Kovacs Emoke Dalma",authors:[{id:"197543",title:"Dr.",name:"Melinda",middleName:null,surname:"Kovacs",slug:"melinda-kovacs",fullName:"Melinda Kovacs"},{id:"199573",title:"MSc.",name:"Emoke Dalma",middleName:null,surname:"Kovacs",slug:"emoke-dalma-kovacs",fullName:"Emoke Dalma Kovacs"}]},{id:"54684",title:"Physicochemical Properties and Catalytic Applications of Iron Porphyrazines and Phthalocyanines",slug:"physicochemical-properties-and-catalytic-applications-of-iron-porphyrazines-and-phthalocyanines",totalDownloads:1719,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Porphyrazines and phthalocyanines belong to porphyrinoids, which are macrocyclic compounds consisting of four pyrrole or indole rings, respectively. The aromatic rings of porphyrazines and phthalocyanines are fused together by azamethine bridges (meso nitrogen atoms) in place of methine bridges present in porphyrins. The physicochemical properties of these macrocycles can be modified in two ways. The first is by substitution of metal cation in the core, whereas the second relies on peripheral modification with various substituents. Porphyrazines and phthalocyanines can be modified inside the macrocyclic core with various transition metal cations, including iron(II/III), which impacts their electrochemical properties and influences potential applications in redox reactions. Due to their unique optical and electrochemical properties, porphyrazines and phthalocyanines found many potential and practical applications in medicine and technology. They were mainly researched as photosensitizers in photodynamic therapy, as sensors in biomedical and analytical applications or as building blocks for materials chemistry. This chapter presents physicochemical properties and catalytic applications of iron porphyrazines and phthalocyanines. The first part summarizes the influence of peripheral and axial substituents of iron(II/III) porphyrazines and phthalocyanines on their spectral properties, whereas the second focuses on the electrochemical properties of these molecules. The third part covers the activity of selected iron(II/III) porphyrazines and phthalocyanines of potential value for diverse applications including catalytic reactions.",book:{id:"5848",slug:"recent-progress-in-organometallic-chemistry",title:"Recent Progress in Organometallic Chemistry",fullTitle:"Recent Progress in Organometallic Chemistry"},signatures:"Tomasz Koczorowski, Wojciech Szczolko and Tomasz Goslinski",authors:[{id:"194381",title:"Prof.",name:"Tomasz",middleName:null,surname:"Goslinski",slug:"tomasz-goslinski",fullName:"Tomasz Goslinski"},{id:"196559",title:"MSc.",name:"Tomasz",middleName:null,surname:"Koczorowski",slug:"tomasz-koczorowski",fullName:"Tomasz Koczorowski"},{id:"199685",title:"Dr.",name:"Wojciech",middleName:null,surname:"Szczolko",slug:"wojciech-szczolko",fullName:"Wojciech Szczolko"}]}],onlineFirstChaptersFilter:{topicId:"491",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X",scope:"\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",slug:"taufiq-choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"86",title:"Business and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/86.jpg",isOpenForSubmission:!0,editor:{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek",profilePictureURL:"https://mts.intechopen.com/storage/users/128342/images/system/128342.jpg",biography:"Dr. Vito Bobek works as an international management professor at the University of Applied Sciences FH Joanneum, Graz, Austria. He has published more than 400 works in his academic career and visited twenty-two universities worldwide as a visiting professor. Dr. Bobek is a member of the editorial boards of six international journals and a member of the Strategic Council of the Minister of Foreign Affairs of the Republic of Slovenia. He has a long history in academia, consulting, and entrepreneurship. His own consulting firm, Palemid, has managed twenty significant projects, such as Cooperation Program Interreg V-A (Slovenia-Austria) and Capacity Building for the Serbian Chamber of Enforcement Agents. He has also participated in many international projects in Italy, Germany, Great Britain, the United States, Spain, Turkey, France, Romania, Croatia, Montenegro, Malaysia, and China. Dr. Bobek is also a co-founder of the Academy of Regional Management in Slovenia.",institutionString:"Universities of Applied Sciences FH Joanneum, Austria",institution:null},editorTwo:{id:"293992",title:"Dr.",name:"Tatjana",middleName:null,surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hXb0hQAC/Profile_Picture_1642419002203",biography:"Tatjana Horvat works as a professor for accountant and auditing at the University of Primorska, Slovenia. She is a Certified State Internal Auditor (licensed by Ministry of Finance RS) and Certified Internal Auditor for Business Sector and Certified accountant (licensed by Slovenian Institute of Auditors). At the Ministry of Justice of Slovenia, she is a member of examination boards for court expert candidates and judicial appraisers in the following areas: economy/finance, valuation of companies, banking, and forensic investigation of economic operations/accounting. At the leading business newspaper Finance in Slovenia (Swedish ownership), she is the editor and head of the area for business, finance, tax-related articles, and educational programs.",institutionString:null,institution:{name:"University of Primorska",institutionURL:null,country:{name:"Slovenia"}}},editorThree:null},{id:"87",title:"Economics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",isOpenForSubmission:!0,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},{id:"88",title:"Marketing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/88.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:9,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:33,paginationItems:[{id:"424419",title:"Dr.",name:"Matthew",middleName:"Ayorinde",surname:"Ayorinde Adebayo",slug:"matthew-ayorinde-adebayo",fullName:"Matthew Ayorinde Adebayo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/424419/images/17356_n.jpg",biography:null,institutionString:null,institution:null},{id:"354033",title:"Dr.",name:"Ahmed",middleName:null,surname:"Nasri",slug:"ahmed-nasri",fullName:"Ahmed Nasri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435702",title:"Dr.",name:"Amel",middleName:null,surname:"Hannachi",slug:"amel-hannachi",fullName:"Amel Hannachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420857",title:"Prof.",name:"Ezzeddine",middleName:null,surname:"Mahmoudi",slug:"ezzeddine-mahmoudi",fullName:"Ezzeddine Mahmoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420856",title:"Prof.",name:"Hamouda",middleName:null,surname:"Beyrem",slug:"hamouda-beyrem",fullName:"Hamouda Beyrem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435703",title:"Dr.",name:"Hary",middleName:null,surname:"Demey",slug:"hary-demey",fullName:"Hary Demey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Cartagena",country:{name:"Spain"}}},{id:"425026",title:"Mr.",name:"Kholofelo",middleName:null,surname:"Clifford Malematja",slug:"kholofelo-clifford-malematja",fullName:"Kholofelo Clifford Malematja",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Tshwane University of Technology",country:{name:"South Africa"}}},{id:"435701",title:"Dr.",name:"Mohamed",middleName:null,surname:"Allouche",slug:"mohamed-allouche",fullName:"Mohamed Allouche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420855",title:"Prof.",name:"Patricia",middleName:null,surname:"Aïssa",slug:"patricia-aissa",fullName:"Patricia Aïssa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435699",title:"Dr.",name:"Takoua",middleName:null,surname:"Mhadhbi",slug:"takoua-mhadhbi",fullName:"Takoua Mhadhbi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"442300",title:"Prof.",name:"Véronique",middleName:null,surname:"Perrier",slug:"veronique-perrier",fullName:"Véronique Perrier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Montpellier",country:{name:"France"}}},{id:"445179",title:"Mr.",name:"Aman",middleName:null,surname:"Jaiswal",slug:"aman-jaiswal",fullName:"Aman Jaiswal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Science Education and Research Mohali",country:{name:"India"}}},{id:"445178",title:"Mr.",name:"Dhiraj",middleName:null,surname:"Dutta",slug:"dhiraj-dutta",fullName:"Dhiraj Dutta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"445180",title:"Dr.",name:"Rama",middleName:null,surname:"Dubey",slug:"rama-dubey",fullName:"Rama Dubey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"424992",title:"Dr.",name:"Mohamed",middleName:null,surname:"Helal",slug:"mohamed-helal",fullName:"Mohamed Helal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Institute of Oceanography and Fisheries",country:{name:"Egypt"}}},{id:"428329",title:"Mr.",name:"Collet",middleName:null,surname:"Maswanganyi",slug:"collet-maswanganyi",fullName:"Collet Maswanganyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"428546",title:"MSc.",name:"Ndivhuwo",middleName:null,surname:"Shumbula",slug:"ndivhuwo-shumbula",fullName:"Ndivhuwo Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"352155",title:"Dr.",name:"Poslet",middleName:"Morgan",surname:"Shumbula",slug:"poslet-shumbula",fullName:"Poslet Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"435064",title:"Dr.",name:"Mohammadtaghi",middleName:null,surname:"Vakili",slug:"mohammadtaghi-vakili",fullName:"Mohammadtaghi Vakili",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yangtze Normal University",country:{name:"China"}}},{id:"437268",title:"Dr.",name:"Linda Lunga",middleName:null,surname:"Sibali",slug:"linda-lunga-sibali",fullName:"Linda Lunga Sibali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437269",title:"Dr.",name:"Peter P.",middleName:null,surname:"Ndibewu",slug:"peter-p.-ndibewu",fullName:"Peter P. Ndibewu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424106",title:"Ph.D. Student",name:"Siyabonga",middleName:null,surname:"Aubrey Mhlongo",slug:"siyabonga-aubrey-mhlongo",fullName:"Siyabonga Aubrey Mhlongo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424233",title:"Ph.D. Student",name:"Ifeoluwa Oluwafunmilayo",middleName:null,surname:"Daramola",slug:"ifeoluwa-oluwafunmilayo-daramola",fullName:"Ifeoluwa Oluwafunmilayo Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446429",title:"Dr.",name:"Dev Vrat",middleName:null,surname:"Kamboj",slug:"dev-vrat-kamboj",fullName:"Dev Vrat Kamboj",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"425585",title:"Dr.",name:"NISHA",middleName:null,surname:"GAUR",slug:"nisha-gaur",fullName:"NISHA GAUR",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"226635",title:"Prof.",name:"Amany",middleName:null,surname:"El-Sikaily",slug:"amany-el-sikaily",fullName:"Amany El-Sikaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"435668",title:"Dr.",name:"Sara",middleName:null,surname:"Ghanem",slug:"sara-ghanem",fullName:"Sara Ghanem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426808",title:"Associate Prof.",name:"Yesim",middleName:null,surname:"Gucbilmez",slug:"yesim-gucbilmez",fullName:"Yesim Gucbilmez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423291",title:"Assistant Prof.",name:"Giovanni",middleName:null,surname:"Cagnetta",slug:"giovanni-cagnetta",fullName:"Giovanni Cagnetta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"27",type:"subseries",title:"Multi-Agent Systems",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}}]},publishedBooks:{paginationCount:0,paginationItems:[]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:287,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/67134",hash:"",query:{},params:{id:"67134"},fullPath:"/chapters/67134",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()