History of worldwide magnesium plants before 2000s.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"16",leadTitle:null,fullTitle:"Biomedical Engineering, Trends in Electronics, Communications and Software",title:"Biomedical Engineering, Trends in Electronics",subtitle:"Communications and Software",reviewType:"peer-reviewed",abstract:"Rapid technological developments in the last century have brought the field of biomedical engineering into a totally new realm. Breakthroughs in material science, imaging, electronics and more recently the information age have improved our understanding of the human body. As a result, the field of biomedical engineering is thriving with new innovations that aim to improve the quality and cost of medical care. This book is the first in a series of three that will present recent trends in biomedical engineering, with a particular focus on electronic and communication applications. More specifically: wireless monitoring, sensors, medical imaging and the management of medical information.",isbn:null,printIsbn:"978-953-307-475-7",pdfIsbn:"978-953-51-4534-9",doi:"10.5772/549",price:159,priceEur:175,priceUsd:205,slug:"biomedical-engineering-trends-in-electronics-communications-and-software",numberOfPages:750,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"d76a5792507e65ca56715b9661e8a66e",bookSignature:"Anthony N. Laskovski",publishedDate:"January 8th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/16.jpg",numberOfDownloads:122172,numberOfWosCitations:130,numberOfCrossrefCitations:81,numberOfCrossrefCitationsByBook:6,numberOfDimensionsCitations:164,numberOfDimensionsCitationsByBook:6,hasAltmetrics:0,numberOfTotalCitations:375,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 7th 2010",dateEndSecondStepPublish:"May 5th 2010",dateEndThirdStepPublish:"September 9th 2010",dateEndFourthStepPublish:"October 9th 2010",dateEndFifthStepPublish:"December 8th 2010",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"2205",title:"Dr.",name:"Anthony",middleName:"Nikola",surname:"Laskovski",slug:"anthony-laskovski",fullName:"Anthony Laskovski",profilePictureURL:"https://mts.intechopen.com/storage/users/2205/images/1554_n.jpg",biography:"Anthony N. Laskovski completed his Bachelor of Engineering (Electrical) Degree at the University of Newcastle, Australia in 2006 on a UNISS industrial scholarship with the power distributer Energy Australia.\nHis research interests include RF electronics and implantable electronic devices for biomedical applications, with a particular focus on wireless power transmitters, inductive coils and implantable telemetry architecture. His publications include various conference and journal papers and book chapters.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"692",title:"Biotechnology",slug:"engineering-biomedical-engineering-biotechnology"}],chapters:[{id:"12898",title:"Biosignal Monitoring Using Wireless Sensor Networks",doi:"10.5772/12946",slug:"biosignal-monitoring-using-wireless-sensor-networks",totalDownloads:4327,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Carlos Andres Lozano, Camilo Eduardo Tellez and Oscar Javier Rodriguez",downloadPdfUrl:"/chapter/pdf-download/12898",previewPdfUrl:"/chapter/pdf-preview/12898",authors:[{id:"13529",title:"Prof.",name:"Carlos",surname:"Lozano Garzon",slug:"carlos-lozano-garzon",fullName:"Carlos Lozano Garzon"},{id:"13530",title:"Prof.",name:"Oscar Javier",surname:"Rodriguez Riveros",slug:"oscar-javier-rodriguez-riveros",fullName:"Oscar Javier Rodriguez Riveros"},{id:"13531",title:"Prof.",name:"Camilo Eduardo",surname:"Tellez Villamizar",slug:"camilo-eduardo-tellez-villamizar",fullName:"Camilo Eduardo Tellez Villamizar"}],corrections:null},{id:"12899",title:"Wireless Telemetry for Implantable Biomedical Microsystems",doi:"10.5772/12997",slug:"wireless-telemetry-for-implantable-biomedical-microsystems",totalDownloads:5634,totalCrossrefCites:12,totalDimensionsCites:21,hasAltmetrics:0,abstract:null,signatures:"Farzad Asgarian and Amir M. Sodagar",downloadPdfUrl:"/chapter/pdf-download/12899",previewPdfUrl:"/chapter/pdf-preview/12899",authors:[{id:"13648",title:"Mr.",name:"Farzad",surname:"Asgarian",slug:"farzad-asgarian",fullName:"Farzad Asgarian"},{id:"15327",title:"Dr.",name:"Amir M.",surname:"Sodagar",slug:"amir-m.-sodagar",fullName:"Amir M. Sodagar"}],corrections:null},{id:"12900",title:"Microsystem Technologies for Biomedical Applications",doi:"10.5772/13340",slug:"microsystem-technologies-for-biomedical-applications",totalDownloads:3469,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Francisco Perdigones, Jose Miguel Moreno, Antonio Luque, Carmen Aracil and Jose Quero",downloadPdfUrl:"/chapter/pdf-download/12900",previewPdfUrl:"/chapter/pdf-preview/12900",authors:[{id:"14367",title:"BSc.",name:"Jose Miguel",surname:"Moreno Lopez",slug:"jose-miguel-moreno-lopez",fullName:"Jose Miguel Moreno Lopez"},{id:"14467",title:"Prof.",name:"Jose",surname:"Quero",slug:"jose-quero",fullName:"Jose Quero"},{id:"14942",title:"Prof.",name:"Francisco",surname:"Perdigones",slug:"francisco-perdigones",fullName:"Francisco Perdigones"},{id:"14943",title:"Dr.",name:"Antonio",surname:"Luque",slug:"antonio-luque",fullName:"Antonio Luque"},{id:"14944",title:"Prof.",name:"Carmen",surname:"Aracil",slug:"carmen-aracil",fullName:"Carmen Aracil"}],corrections:null},{id:"12901",title:"A Low Cost Instrumentation Based Sensor Array for Ankle Rehabilitation",doi:"10.5772/13852",slug:"a-low-cost-instrumentation-based-sensor-array-for-ankle-rehabilitation",totalDownloads:2715,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Samir Boukhenous and Mokhtar Attari",downloadPdfUrl:"/chapter/pdf-download/12901",previewPdfUrl:"/chapter/pdf-preview/12901",authors:[{id:"15442",title:"Dr.",name:"Samir",surname:"Boukhenous",slug:"samir-boukhenous",fullName:"Samir Boukhenous"}],corrections:null},{id:"12902",title:"New Neurostimulation Strategy and Corresponding Implantable Device to Enhance Bladder Functions",doi:"10.5772/13624",slug:"new-neurostimulation-strategy-and-corresponding-implantable-device-to-enhance-bladder-functions",totalDownloads:3134,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Faycal Mounaim and Mohamad Sawan",downloadPdfUrl:"/chapter/pdf-download/12902",previewPdfUrl:"/chapter/pdf-preview/12902",authors:[{id:"15436",title:"Dr.",name:"Faycal",surname:"Mounaim",slug:"faycal-mounaim",fullName:"Faycal Mounaim"},{id:"24137",title:"Prof.",name:"Mohamad",surname:"Sawan",slug:"mohamad-sawan",fullName:"Mohamad Sawan"}],corrections:null},{id:"12903",title:"Implementation of Microsensor Interface for Biomonitoring of Human Cognitive Processes",doi:"10.5772/12986",slug:"implementation-of-microsensor-interface-for-biomonitoring-of-human-cognitive-processes",totalDownloads:3025,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"E. Vavrinsky, P. Solarikova, V. Stopjakova, V. Tvarozek and I. Brezina",downloadPdfUrl:"/chapter/pdf-download/12903",previewPdfUrl:"/chapter/pdf-preview/12903",authors:[{id:"4932",title:"Dr.",name:"Erik",surname:"Vavrinsky",slug:"erik-vavrinsky",fullName:"Erik Vavrinsky"}],corrections:null},{id:"12904",title:"Wireless Communications and Power Supply for In Vivo Biomedical Devices Using Acoustic Transmissions",doi:"10.5772/13658",slug:"wireless-communications-and-power-supply-for-in-vivo-biomedical-devices-using-acoustic-transmissions",totalDownloads:2460,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Graham Wild and Steven Hinckley",downloadPdfUrl:"/chapter/pdf-download/12904",previewPdfUrl:"/chapter/pdf-preview/12904",authors:[{id:"2593",title:"Dr.",name:"Graham",surname:"Wild",slug:"graham-wild",fullName:"Graham Wild"},{id:"15691",title:"Prof.",name:"Steven",surname:"Hinckley",slug:"steven-hinckley",fullName:"Steven Hinckley"}],corrections:null},{id:"12905",title:"Power Amplifiers for Electronic Bio-Implants",doi:"10.5772/13557",slug:"power-amplifiers-for-electronic-bio-implants",totalDownloads:3296,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Anthony N. Laskovski and Mehmet R. Yuce",downloadPdfUrl:"/chapter/pdf-download/12905",previewPdfUrl:"/chapter/pdf-preview/12905",authors:[{id:"2205",title:"Dr.",name:"Anthony",surname:"Laskovski",slug:"anthony-laskovski",fullName:"Anthony Laskovski"},{id:"2184",title:"Dr.",name:"Mehmet",surname:"Rasit Yuce",slug:"mehmet-rasit-yuce",fullName:"Mehmet Rasit Yuce"}],corrections:null},{id:"12906",title:"Subthreshold Frequency Synthesis for Medical Implantable Transceivers",doi:"10.5772/14234",slug:"subthreshold-frequency-synthesis-for-medical-implantable-transceivers",totalDownloads:3363,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Tarek Khan and Kaamran Raahemifar",downloadPdfUrl:"/chapter/pdf-download/12906",previewPdfUrl:"/chapter/pdf-preview/12906",authors:[{id:"15481",title:"Prof.",name:"Tarek",surname:"Khan",slug:"tarek-khan",fullName:"Tarek Khan"},{id:"17241",title:"Dr.",name:"Kaamran",surname:"Raahemifar",slug:"kaamran-raahemifar",fullName:"Kaamran Raahemifar"}],corrections:null},{id:"12907",title:"Power Efficient ADCs for Biomedical Signal Acquisition",doi:"10.5772/13070",slug:"power-efficient-adcs-for-biomedical-signal-acquisition",totalDownloads:3429,totalCrossrefCites:4,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Alberto Rodríguez-Pérez, Manuel Delgado-Restituto and Fernando Medeiro",downloadPdfUrl:"/chapter/pdf-download/12907",previewPdfUrl:"/chapter/pdf-preview/12907",authors:[{id:"13771",title:"Dr.",name:"Alberto",surname:"Rodríguez-Pérez",slug:"alberto-rodriguez-perez",fullName:"Alberto Rodríguez-Pérez"},{id:"14909",title:"Dr.",name:"Manuel",surname:"Delgado-Restituto",slug:"manuel-delgado-restituto",fullName:"Manuel Delgado-Restituto"},{id:"14910",title:"Prof.",name:"Fernando",surname:"Medeiro",slug:"fernando-medeiro",fullName:"Fernando Medeiro"}],corrections:null},{id:"12908",title:"Cuff Pressure Pulse Waveforms: Their Current and Prospective Applications in Biomedical Instrumentation",doi:"10.5772/13475",slug:"cuff-pressure-pulse-waveforms-their-current-and-prospective-applications-in-biomedical-instrumentati",totalDownloads:3865,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Milan Stork and Jiri Jilek",downloadPdfUrl:"/chapter/pdf-download/12908",previewPdfUrl:"/chapter/pdf-preview/12908",authors:[{id:"14710",title:"Dr.",name:"Milan",surname:"Stork",slug:"milan-stork",fullName:"Milan Stork"},{id:"60736",title:"Dr.",name:"Jiri",surname:"Jilek",slug:"jiri-jilek",fullName:"Jiri Jilek"}],corrections:null},{id:"12909",title:"Integrated Microfluidic MEMS and Their Biomedical Applications",doi:"10.5772/13063",slug:"integrated-microfluidic-mems-and-their-biomedical-applications",totalDownloads:2844,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Abdulilah A. Dawoud Bani-Yaseen",downloadPdfUrl:"/chapter/pdf-download/12909",previewPdfUrl:"/chapter/pdf-preview/12909",authors:[{id:"13761",title:"Dr.",name:"Abdulilah",surname:"Bani-Yaseen",slug:"abdulilah-bani-yaseen",fullName:"Abdulilah Bani-Yaseen"}],corrections:null},{id:"12910",title:"MEMS Biomedical Sensor for Gait Analysis",doi:"10.5772/12905",slug:"mems-biomedical-sensor-for-gait-analysis",totalDownloads:4379,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Yufridin Wahab and Norantanum Abu Bakar",downloadPdfUrl:"/chapter/pdf-download/12910",previewPdfUrl:"/chapter/pdf-preview/12910",authors:[{id:"13450",title:"Dr.",name:"Yufridin",surname:"Wahab",slug:"yufridin-wahab",fullName:"Yufridin Wahab"}],corrections:null},{id:"12911",title:"Low-Wavelengths SOI CMOS Photosensors for Biomedical Applications",doi:"10.5772/12992",slug:"low-wavelengths-soi-cmos-photosensors-for-biomedical-applications",totalDownloads:2985,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Olivier Bulteel, Nancy Van Overstraeten-Schlögel, Aryan Afzalian, Pascal Dupuis, Sabine Jeumont, Leonid Irenge, Jérôme Ambroise, Benoit Macq, Jean-luc Gala and Denis Flandre",downloadPdfUrl:"/chapter/pdf-download/12911",previewPdfUrl:"/chapter/pdf-preview/12911",authors:[{id:"13635",title:"Prof.",name:"Olivier",surname:"Bulteel",slug:"olivier-bulteel",fullName:"Olivier Bulteel"},{id:"14838",title:"Dr.",name:"Aryan",surname:"Afzalian",slug:"aryan-afzalian",fullName:"Aryan Afzalian"},{id:"14839",title:"Dr.",name:"Pascal",surname:"Dupuis",slug:"pascal-dupuis",fullName:"Pascal Dupuis"},{id:"14840",title:"Dr.",name:"Nancy",surname:"Van Overstraeten-Schlögel",slug:"nancy-van-overstraeten-schlogel",fullName:"Nancy Van Overstraeten-Schlögel"},{id:"14841",title:"Prof.",name:"Sabine",surname:"Jeumont",slug:"sabine-jeumont",fullName:"Sabine Jeumont"},{id:"14842",title:"Dr.",name:"Leonid",surname:"Irenge",slug:"leonid-irenge",fullName:"Leonid Irenge"},{id:"14843",title:"Prof.",name:"Jérôme",surname:"Ambroise",slug:"jerome-ambroise",fullName:"Jérôme Ambroise"},{id:"14844",title:"Prof.",name:"Benoit",surname:"Macq",slug:"benoit-macq",fullName:"Benoit Macq"},{id:"14845",title:"Prof.",name:"Jean-Luc",surname:"Gala",slug:"jean-luc-gala",fullName:"Jean-Luc Gala"},{id:"14846",title:"Prof.",name:"Denis",surname:"Flandre",slug:"denis-flandre",fullName:"Denis Flandre"}],corrections:null},{id:"12912",title:"LEPTS – a Radiation-Matter Interaction Model at the Molecular Level and its Use in Biomedical Applications",doi:"10.5772/13061",slug:"lepts-a-radiation-matter-interaction-model-at-the-molecular-level-and-its-use-in-biomedical-applicat",totalDownloads:2576,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Martina Fuss, Ana G. Sanz, Antonio Muñoz, Francisco Blanco, Marina Téllez, Carlos Huerga and Gustavo Garcia",downloadPdfUrl:"/chapter/pdf-download/12912",previewPdfUrl:"/chapter/pdf-preview/12912",authors:[{id:"13757",title:"Dr.",name:"Gustavo",surname:"Garcia",slug:"gustavo-garcia",fullName:"Gustavo Garcia"},{id:"15284",title:"Prof.",name:"Martina",surname:"Fuss",slug:"martina-fuss",fullName:"Martina Fuss"},{id:"15285",title:"Prof.",name:"Ana G.",surname:"Sanz",slug:"ana-g.-sanz",fullName:"Ana G. Sanz"},{id:"15286",title:"Prof.",name:"Antonio",surname:"Muñoz",slug:"antonio-munoz",fullName:"Antonio Muñoz"},{id:"15287",title:"Dr.",name:"Francisco",surname:"Blanco",slug:"francisco-blanco",fullName:"Francisco Blanco"},{id:"15407",title:"Dr.",name:"Marina",surname:"Téllez",slug:"marina-tellez",fullName:"Marina Téllez"},{id:"15408",title:"Dr.",name:"Carlos",surname:"Huerga",slug:"carlos-huerga",fullName:"Carlos Huerga"}],corrections:null},{id:"12913",title:"Integrated High-Resolution Multi-Channel Time-to-Digital Converters (TDCs) for PET Imaging",doi:"10.5772/13080",slug:"integrated-high-resolution-multi-channel-time-to-digital-converters-tdcs-for-pet-imaging",totalDownloads:3937,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Wu Gao, Deyuan Gao, Christine Hu-Guo and Yann Hu",downloadPdfUrl:"/chapter/pdf-download/12913",previewPdfUrl:"/chapter/pdf-preview/12913",authors:[{id:"13783",title:"Dr.",name:"Wu",surname:"Gao",slug:"wu-gao",fullName:"Wu Gao"},{id:"13784",title:"Prof.",name:"Deyuan",surname:"Gao",slug:"deyuan-gao",fullName:"Deyuan Gao"},{id:"13785",title:"Prof.",name:"Yann",surname:"Hu",slug:"yann-hu",fullName:"Yann Hu"},{id:"14814",title:"Dr.",name:"Christine",surname:"Hu-Guo",slug:"christine-hu-guo",fullName:"Christine Hu-Guo"}],corrections:null},{id:"12914",title:"Parkinson's Disease Diagnosis and Prognosis Using Diffusion Tensor Medical Imaging Features Fusion",doi:"10.5772/13492",slug:"parkinson-s-disease-diagnosis-and-prognosis-using-diffusion-tensor-medical-imaging-features-fusion",totalDownloads:2656,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Roxana Oana Teodorescu, Vladimir-Ioan Cretu and Daniel Racoceanu",downloadPdfUrl:"/chapter/pdf-download/12914",previewPdfUrl:"/chapter/pdf-preview/12914",authors:[{id:"14892",title:"Dr.",name:"Roxana Oana",surname:"Teodorescu",slug:"roxana-oana-teodorescu",fullName:"Roxana Oana Teodorescu"},{id:"14894",title:"Prof.",name:"Vladimir Ioan",surname:"Cretu",slug:"vladimir-ioan-cretu",fullName:"Vladimir Ioan Cretu"},{id:"14895",title:"Prof.",name:"Daniel",surname:"Racoceanu",slug:"daniel-racoceanu",fullName:"Daniel Racoceanu"}],corrections:null},{id:"12915",title:"Non Invasive Foetal Monitoring with a Combined ECG - PCG System",doi:"10.5772/13554",slug:"non-invasive-foetal-monitoring-with-a-combined-ecg-pcg-system",totalDownloads:3979,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Mariano Ruffo, Mario Cesarelli, Craig Jin, Gaetano Gargiulo, Alistair McEwan, Colin Sullivan, Paolo Bifulco, Maria Romano, Richard W. Shephard, and André van Schaik",downloadPdfUrl:"/chapter/pdf-download/12915",previewPdfUrl:"/chapter/pdf-preview/12915",authors:[{id:"6212",title:"Dr.",name:"Gaetano",surname:"Gargiulo",slug:"gaetano-gargiulo",fullName:"Gaetano Gargiulo"},{id:"24068",title:"Prof.",name:"Paolo",surname:"Bifulco",slug:"paolo-bifulco",fullName:"Paolo Bifulco"},{id:"24069",title:"Prof.",name:"Mario",surname:"Cesarelli",slug:"mario-cesarelli",fullName:"Mario Cesarelli"},{id:"24070",title:"Prof.",name:"Colin",surname:"Sullivan",slug:"colin-sullivan",fullName:"Colin Sullivan"},{id:"24071",title:"Dr.",name:"André",surname:"van Shaik",slug:"andre-van-shaik",fullName:"André van Shaik"},{id:"24072",title:"Prof.",name:"Craig",surname:"Jin",slug:"craig-jin",fullName:"Craig Jin"},{id:"24073",title:"Prof.",name:"Mariano",surname:"Ruffo",slug:"mariano-ruffo",fullName:"Mariano Ruffo"},{id:"24080",title:"Dr.",name:"Maria",surname:"Romano",slug:"maria-romano",fullName:"Maria Romano"},{id:"24081",title:"Dr.",name:"Richard",surname:"Shephard",slug:"richard-shephard",fullName:"Richard Shephard"},{id:"24083",title:"Dr.",name:"Alistair",surname:"McEwan",slug:"alistair-mcewan",fullName:"Alistair McEwan"}],corrections:null},{id:"12916",title:"Parametric Modelling of EEG Data for the Identification of Mental Tasks",doi:"10.5772/13383",slug:"parametric-modelling-of-eeg-data-for-the-identification-of-mental-tasks",totalDownloads:4434,totalCrossrefCites:1,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Simon G. Fabri, Kenneth P. Camilleri and Tracey Cassar",downloadPdfUrl:"/chapter/pdf-download/12916",previewPdfUrl:"/chapter/pdf-preview/12916",authors:[{id:"14574",title:"Dr.",name:"Simon",surname:"Fabri",slug:"simon-fabri",fullName:"Simon Fabri"},{id:"14575",title:"Prof.",name:"Kenneth",surname:"Camilleri",slug:"kenneth-camilleri",fullName:"Kenneth Camilleri"},{id:"14588",title:"Prof.",name:"Tracey",surname:"Cassar",slug:"tracey-cassar",fullName:"Tracey Cassar"}],corrections:null},{id:"12917",title:"Automatic Detection of Paroxysms in EEG Signals Using Morphological Descriptors and Artificial Neural Networks",doi:"10.5772/13444",slug:"automatic-detection-of-paroxysms-in-eeg-signals-using-morphological-descriptors-and-artificial-neura",totalDownloads:2715,totalCrossrefCites:0,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Christine F. Boos, Fernando M. de Azevedo Geovani R. Scolaro and Maria do Carmo V. Pereira",downloadPdfUrl:"/chapter/pdf-download/12917",previewPdfUrl:"/chapter/pdf-preview/12917",authors:[{id:"14116",title:"Dr.",name:"Geovani Rodrigo",surname:"Scolaro",slug:"geovani-rodrigo-scolaro",fullName:"Geovani Rodrigo Scolaro"},{id:"14728",title:"M.Sc.",name:"Christine",surname:"Boos",slug:"christine-boos",fullName:"Christine Boos"},{id:"15302",title:"PhD.",name:"Maria Do Carmo",surname:"Pereira",slug:"maria-do-carmo-pereira",fullName:"Maria Do Carmo Pereira"},{id:"15303",title:"Dr.",name:"Fernando Mendes",surname:"De Azevedo",slug:"fernando-mendes-de-azevedo",fullName:"Fernando Mendes De Azevedo"}],corrections:null},{id:"12918",title:"Multivariate Frequency Domain Analysis of Causal Interactions in Physiological Time Series",doi:"10.5772/13065",slug:"multivariate-frequency-domain-analysis-of-causal-interactions-in-physiological-time-series",totalDownloads:3261,totalCrossrefCites:24,totalDimensionsCites:39,hasAltmetrics:0,abstract:null,signatures:"Luca Faes and Giandomenico Nollo",downloadPdfUrl:"/chapter/pdf-download/12918",previewPdfUrl:"/chapter/pdf-preview/12918",authors:[{id:"13764",title:"Dr.",name:"Luca",surname:"Faes",slug:"luca-faes",fullName:"Luca Faes"},{id:"14999",title:"Dr.",name:"Giandomenico",surname:"Nollo",slug:"giandomenico-nollo",fullName:"Giandomenico Nollo"}],corrections:null},{id:"12919",title:"Biomedical Image Segmentation Based on Multiple Image Features",doi:"10.5772/13490",slug:"biomedical-image-segmentation-based-on-multiple-image-features",totalDownloads:3191,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jinhua Yu, Jinglu Tan and Yuanyuan Wang",downloadPdfUrl:"/chapter/pdf-download/12919",previewPdfUrl:"/chapter/pdf-preview/12919",authors:[{id:"14886",title:"Dr.",name:"Jinhua",surname:"Yu",slug:"jinhua-yu",fullName:"Jinhua Yu"},{id:"15335",title:"Dr.",name:"Jinglu",surname:"Tan",slug:"jinglu-tan",fullName:"Jinglu Tan"},{id:"24203",title:"Dr.",name:"Yuanyuan",surname:"Wang",slug:"yuanyuan-wang",fullName:"Yuanyuan Wang"}],corrections:null},{id:"12920",title:"A General Framework for Computation of Biomedical Image Moments",doi:"10.5772/13101",slug:"a-general-framework-for-computation-of-biomedical-image-moments",totalDownloads:2564,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"G.A. Papakostas, D.E. Koulouriotis, E.G. Karakasis and V.D. Tourassis",downloadPdfUrl:"/chapter/pdf-download/12920",previewPdfUrl:"/chapter/pdf-preview/12920",authors:[{id:"294154",title:"Prof.",name:"George",surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas"}],corrections:null},{id:"12921",title:"Modern Trends in Biomedical Image Analysis System Design",doi:"10.5772/13575",slug:"modern-trends-in-biomedical-image-analysis-system-design",totalDownloads:2793,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Oleh Berezsky, Grygoriy Melnyk and Yuriy Batko",downloadPdfUrl:"/chapter/pdf-download/12921",previewPdfUrl:"/chapter/pdf-preview/12921",authors:[{id:"15210",title:"Dr.",name:"Oleh",surname:"Berezsky",slug:"oleh-berezsky",fullName:"Oleh Berezsky"},{id:"15229",title:"MSc.",name:"Grygoriy",surname:"Melnyk",slug:"grygoriy-melnyk",fullName:"Grygoriy Melnyk"},{id:"15230",title:"MSc.",name:"Yuriy",surname:"Batko",slug:"yuriy-batko",fullName:"Yuriy Batko"}],corrections:null},{id:"12922",title:"A New Tool for Nonstationary and Nonlinear Signals: The Hilbert-Huang Transform in Biomedical Applications",doi:"10.5772/12871",slug:"a-new-tool-for-nonstationary-and-nonlinear-signals-the-hilbert-huang-transform-in-biomedical-applica",totalDownloads:5710,totalCrossrefCites:4,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"Rui Fonseca-Pinto",downloadPdfUrl:"/chapter/pdf-download/12922",previewPdfUrl:"/chapter/pdf-preview/12922",authors:[{id:"13354",title:"Prof.",name:"Rui",surname:"Fonseca-Pinto",slug:"rui-fonseca-pinto",fullName:"Rui Fonseca-Pinto"}],corrections:null},{id:"12923",title:"Periodic-MAC: Improving MAC Protocols for Wireless Biomedical Sensor Networks through Implicit Synchronization",doi:"10.5772/13223",slug:"periodic-mac-improving-mac-protocols-for-wireless-biomedical-sensor-networks-through-implicit-synchr",totalDownloads:2011,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Stig Støa and Ilangko Balasingham",downloadPdfUrl:"/chapter/pdf-download/12923",previewPdfUrl:"/chapter/pdf-preview/12923",authors:[{id:"14139",title:"Dr.",name:"Stig",surname:"Støa",slug:"stig-stoa",fullName:"Stig Støa"},{id:"14163",title:"Dr.",name:"Ilangko",surname:"Balasingham",slug:"ilangko-balasingham",fullName:"Ilangko Balasingham"}],corrections:null},{id:"12924",title:"Biomedical Electronic Systems to Improve the Healthcare Quality and Efficiency",doi:"10.5772/13112",slug:"biomedical-electronic-systems-to-improve-the-healthcare-quality-and-efficiency",totalDownloads:2893,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Roberto Marani and Anna Gina Perri",downloadPdfUrl:"/chapter/pdf-download/12924",previewPdfUrl:"/chapter/pdf-preview/12924",authors:[{id:"13841",title:"Prof.",name:"Anna Gina",surname:"Perri",slug:"anna-gina-perri",fullName:"Anna Gina Perri"},{id:"13842",title:"Dr.",name:"Roberto",surname:"Marani",slug:"roberto-marani",fullName:"Roberto Marani"}],corrections:null},{id:"12925",title:"Practical Causal Analysis for Biomedical Sensing Based on Human-Machine Collaboration",doi:"10.5772/13169",slug:"practical-causal-analysis-for-biomedical-sensing-based-on-human-machine-collaboration",totalDownloads:2263,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Naoki Tsuchiya and Hiroshi Nakajima",downloadPdfUrl:"/chapter/pdf-download/12925",previewPdfUrl:"/chapter/pdf-preview/12925",authors:[{id:"14011",title:"Prof.",name:"Naoki",surname:"Tsuchiya",slug:"naoki-tsuchiya",fullName:"Naoki Tsuchiya"},{id:"15358",title:"Dr.",name:"Hiroshi",surname:"Nakajima",slug:"hiroshi-nakajima",fullName:"Hiroshi Nakajima"}],corrections:null},{id:"12926",title:"Design Requirements for a Patient Administered Personal Electronic Health Record",doi:"10.5772/12948",slug:"design-requirements-for-a-patient-administered-personal-electronic-health-record",totalDownloads:2524,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Rune Fensli, Vladimir Oleshchuk, John O’Donoghue and Philip O’Reilly",downloadPdfUrl:"/chapter/pdf-download/12926",previewPdfUrl:"/chapter/pdf-preview/12926",authors:[{id:"13539",title:"Dr.",name:"Rune",surname:"Fensli",slug:"rune-fensli",fullName:"Rune Fensli"},{id:"15297",title:"Prof.",name:"Vladimir",surname:"Oleshchuk",slug:"vladimir-oleshchuk",fullName:"Vladimir Oleshchuk"},{id:"15298",title:"Prof.",name:"Philip",surname:"O'Reilly",slug:"philip-o'reilly",fullName:"Philip O'Reilly"},{id:"15299",title:"Dr.",name:"John",surname:"ODonoghue",slug:"john-odonoghue",fullName:"John ODonoghue"}],corrections:null},{id:"12927",title:"Nonparametric Variable Selection Using Machine Learning Algorithms in High Dimensional (Large P, Small N) Biomedical Applications",doi:"10.5772/13541",slug:"nonparametric-variable-selection-using-machine-learning-algorithms-in-high-dimensional-large-p-small",totalDownloads:2994,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Christina M.R. Kitchen",downloadPdfUrl:"/chapter/pdf-download/12927",previewPdfUrl:"/chapter/pdf-preview/12927",authors:[{id:"14763",title:"Prof.",name:"Christina",surname:"Ramirez Kitchen",slug:"christina-ramirez-kitchen",fullName:"Christina Ramirez Kitchen"}],corrections:null},{id:"12928",title:"Biomedical Knowledge Engineering Using a Computational Grid",doi:"10.5772/13809",slug:"biomedical-knowledge-engineering-using-a-computational-grid",totalDownloads:2034,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Marcello Castellano and Raffaele Stifini",downloadPdfUrl:"/chapter/pdf-download/12928",previewPdfUrl:"/chapter/pdf-preview/12928",authors:[{id:"13891",title:"Prof.",name:"Marcello",surname:"Castellano",slug:"marcello-castellano",fullName:"Marcello Castellano"},{id:"15986",title:"Prof.",name:"Raffaele",surname:"Stifini",slug:"raffaele-stifini",fullName:"Raffaele Stifini"}],corrections:null},{id:"12929",title:"Efficient Algorithms for Finding Maximum and Maximal Cliques: Effective Tools for Bioinformatics",doi:"10.5772/13245",slug:"efficient-algorithms-for-finding-maximum-and-maximal-cliques-effective-tools-for-bioinformatics",totalDownloads:10319,totalCrossrefCites:16,totalDimensionsCites:27,hasAltmetrics:0,abstract:null,signatures:"Etsuji Tomita, Tatsuya Akutsu and Tsutomu Matsunaga",downloadPdfUrl:"/chapter/pdf-download/12929",previewPdfUrl:"/chapter/pdf-preview/12929",authors:[{id:"14192",title:"Prof.",name:"Etsuji",surname:"Tomita",slug:"etsuji-tomita",fullName:"Etsuji Tomita"},{id:"14194",title:"Prof.",name:"Tatsuya",surname:"Akutsu",slug:"tatsuya-akutsu",fullName:"Tatsuya Akutsu"},{id:"14195",title:"Dr.",name:"Tsutomu",surname:"Matsunaga",slug:"tsutomu-matsunaga",fullName:"Tsutomu Matsunaga"}],corrections:null},{id:"12930",title:"A Software Development Framework for Agent-Based Infectious Disease Modelling",doi:"10.5772/13669",slug:"a-software-development-framework-for-agent-based-infectious-disease-modelling",totalDownloads:2843,totalCrossrefCites:0,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Luiz C. Mostaço-Guidolin, Nick J. Pizzi, Aleksander B. Demko and Seyed M. Moghadas",downloadPdfUrl:"/chapter/pdf-download/12930",previewPdfUrl:"/chapter/pdf-preview/12930",authors:[{id:"15558",title:"Dr.",name:"Nick",surname:"Pizzi",slug:"nick-pizzi",fullName:"Nick Pizzi"},{id:"24044",title:"Prof.",name:"Luiz",surname:"Mostaço-Guidolin",slug:"luiz-mostaco-guidolin",fullName:"Luiz Mostaço-Guidolin"},{id:"24045",title:"Dr.",name:"Aleksander",surname:"Demko",slug:"aleksander-demko",fullName:"Aleksander Demko"},{id:"24046",title:"Dr.",name:"Seyed M.",surname:"Moghadas",slug:"seyed-m.-moghadas",fullName:"Seyed M. Moghadas"}],corrections:null},{id:"12931",title:"Personalized Biomedical Data Integration",doi:"10.5772/13017",slug:"personalized-biomedical-data-integration",totalDownloads:2446,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Xiaoming Wang, Olufunmilayo Olopade and Ian Foster",downloadPdfUrl:"/chapter/pdf-download/12931",previewPdfUrl:"/chapter/pdf-preview/12931",authors:[{id:"13647",title:"Prof.",name:"Xiaoming",surname:"Wang",slug:"xiaoming-wang",fullName:"Xiaoming Wang"},{id:"15026",title:"Prof.",name:"Ian",surname:"Forster",slug:"ian-forster",fullName:"Ian Forster"},{id:"15027",title:"Prof.",name:"Olufunmilayo",surname:"Olopade",slug:"olufunmilayo-olopade",fullName:"Olufunmilayo Olopade"}],corrections:null},{id:"12932",title:"Smart Data Collection and Management in Heterogeneous Ubiquitous Healthcare",doi:"10.5772/13458",slug:"smart-data-collection-and-management-in-heterogeneous-ubiquitous-healthcare",totalDownloads:2244,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Luca Catarinucci, Alessandra Esposito, Luciano Tarricone, Marco Zappatore and Riccardo Colella",downloadPdfUrl:"/chapter/pdf-download/12932",previewPdfUrl:"/chapter/pdf-preview/12932",authors:[{id:"14440",title:"Dr.",name:"Luciano",surname:"Tarricone",slug:"luciano-tarricone",fullName:"Luciano Tarricone"},{id:"14828",title:"Prof.",name:"Luca",surname:"Catarinucci",slug:"luca-catarinucci",fullName:"Luca Catarinucci"},{id:"14829",title:"Prof.",name:"Riccardo",surname:"Colella",slug:"riccardo-colella",fullName:"Riccardo Colella"},{id:"14830",title:"Prof.",name:"Alessandra",surname:"Esposito",slug:"alessandra-esposito",fullName:"Alessandra Esposito"},{id:"14831",title:"Prof.",name:"Marco",surname:"Zappatore",slug:"marco-zappatore",fullName:"Marco Zappatore"}],corrections:null},{id:"12933",title:"Quality of Service, Adaptation, and Security Provisioning in Wireless Patient Monitoring Systems",doi:"10.5772/13235",slug:"quality-of-service-adaptation-and-security-provisioning-in-wireless-patient-monitoring-systems",totalDownloads:2864,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Wolfgang Leister, Trenton Schulz, Arne Lie, Knut Grythe and Ilangko Balasingham",downloadPdfUrl:"/chapter/pdf-download/12933",previewPdfUrl:"/chapter/pdf-preview/12933",authors:[{id:"14163",title:"Dr.",name:"Ilangko",surname:"Balasingham",slug:"ilangko-balasingham",fullName:"Ilangko Balasingham"},{id:"14161",title:"Dr.",name:"Wolfgang",surname:"Leister",slug:"wolfgang-leister",fullName:"Wolfgang Leister"},{id:"14164",title:"Dr.",name:"Arne",surname:"Lie",slug:"arne-lie",fullName:"Arne Lie"},{id:"14165",title:"Prof.",name:"Knut",surname:"Grythe",slug:"knut-grythe",fullName:"Knut Grythe"},{id:"14749",title:"MSc.",name:"Trenton",surname:"Schulz",slug:"trenton-schulz",fullName:"Trenton Schulz"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"481",title:"Biomedical Engineering",subtitle:"Trends in Materials Science",isOpenForSubmission:!1,hash:null,slug:"biomedical-engineering-trends-in-materials-science",bookSignature:"Anthony N. Laskovski",coverURL:"https://cdn.intechopen.com/books/images_new/481.jpg",editedByType:"Edited by",editors:[{id:"2205",title:"Dr.",name:"Anthony",surname:"Laskovski",slug:"anthony-laskovski",fullName:"Anthony Laskovski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"509",title:"Biomedical Science, Engineering and Technology",subtitle:null,isOpenForSubmission:!1,hash:"eec1ae8717629372ed7f0c0499dee14c",slug:"biomedical-science-engineering-and-technology",bookSignature:"Dhanjoo N. Ghista",coverURL:"https://cdn.intechopen.com/books/images_new/509.jpg",editedByType:"Edited by",editors:[{id:"35845",title:"Prof.",name:"Dhanjoo N.",surname:"Ghista",slug:"dhanjoo-n.-ghista",fullName:"Dhanjoo N. Ghista"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3652",title:"Advances in Haptics",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-haptics",bookSignature:"Mehrdad Hosseini Zadeh",coverURL:"https://cdn.intechopen.com/books/images_new/3652.jpg",editedByType:"Edited by",editors:[{id:"6239",title:"Dr.",name:"Mehrdad Hosseini",surname:"Zadeh",slug:"mehrdad-hosseini-zadeh",fullName:"Mehrdad Hosseini Zadeh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2241",title:"Biomedical Engineering",subtitle:"From Theory to Applications",isOpenForSubmission:!1,hash:"933a7a2f008c47fd232180ef1b3f0a8c",slug:"biomedical-engineering-from-theory-to-applications",bookSignature:"Reza Fazel-Rezai",coverURL:"https://cdn.intechopen.com/books/images_new/2241.jpg",editedByType:"Edited by",editors:[{id:"1995",title:"Dr.",name:"Reza",surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"508",title:"Biomedical Engineering",subtitle:"Frontiers and Challenges",isOpenForSubmission:!1,hash:"7f5bfc734fd607df80a0dc2fe965b313",slug:"biomedical-engineering-frontiers-and-challenges",bookSignature:"Reza Fazel-Rezai",coverURL:"https://cdn.intechopen.com/books/images_new/508.jpg",editedByType:"Edited by",editors:[{id:"1995",title:"Dr.",name:"Reza",surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"482",title:"Biomedical Engineering",subtitle:"Trends, Research and Technologies",isOpenForSubmission:!1,hash:"8ec55bcda429a187bb7ddb2920d2ddc0",slug:"biomedical-engineering-trends-research-and-technologies",bookSignature:"Malgorzata Anna Komorowska and Sylwia Olsztynska-Janus",coverURL:"https://cdn.intechopen.com/books/images_new/482.jpg",editedByType:"Edited by",editors:[{id:"58190",title:"Dr.",name:"Sylwia",surname:"Olsztynska",slug:"sylwia-olsztynska",fullName:"Sylwia Olsztynska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3187",title:"Intelligent and Biosensors",subtitle:null,isOpenForSubmission:!1,hash:"f771fc891e588298df1acd59ba2a2185",slug:"intelligent-and-biosensors",bookSignature:"Vernon S. Somerset",coverURL:"https://cdn.intechopen.com/books/images_new/3187.jpg",editedByType:"Edited by",editors:[{id:"6648",title:"Associate Prof.",name:"Vernon",surname:"Somerset",slug:"vernon-somerset",fullName:"Vernon Somerset"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"238",title:"Applied Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b85b6fd9a3e8bedfbc1592745a0dfba3",slug:"applied-biomedical-engineering",bookSignature:"Gaetano D. Gargiulo and Alistair McEwan",coverURL:"https://cdn.intechopen.com/books/images_new/238.jpg",editedByType:"Edited by",editors:[{id:"24082",title:"Dr.",name:"Gaetano",surname:"Gargiulo",slug:"gaetano-gargiulo",fullName:"Gaetano Gargiulo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3185",title:"Biosensors",subtitle:null,isOpenForSubmission:!1,hash:"024d5c9c5c209691737a0729b92365ed",slug:"biosensors",bookSignature:"Pier Andrea Serra",coverURL:"https://cdn.intechopen.com/books/images_new/3185.jpg",editedByType:"Edited by",editors:[{id:"6091",title:"Prof.",name:"Pier Andrea",surname:"Serra",slug:"pier-andrea-serra",fullName:"Pier Andrea Serra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2215",title:"Biomedical Engineering",subtitle:"Technical Applications in Medicine",isOpenForSubmission:!1,hash:"db499ba76d3f33ce5d543946aa4dc072",slug:"biomedical-engineering-technical-applications-in-medicine",bookSignature:"Radovan Hudak, Marek Penhaker and Jaroslav Majernik",coverURL:"https://cdn.intechopen.com/books/images_new/2215.jpg",editedByType:"Edited by",editors:[{id:"145701",title:"Dr.",name:"Radovan",surname:"Hudak",slug:"radovan-hudak",fullName:"Radovan Hudak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74511",slug:"corrigendum-to-has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-de",title:"Corrigendum to: Has the Yield Curve Accurately Predicted the Malaysian Economy in the Previous Two Decades?",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74511.pdf",downloadPdfUrl:"/chapter/pdf-download/74511",previewPdfUrl:"/chapter/pdf-preview/74511",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74511",risUrl:"/chapter/ris/74511",chapter:{id:"72452",slug:"has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-decades-",signatures:"Maya Puspa Rahman",dateSubmitted:"December 9th 2019",dateReviewed:"March 21st 2020",datePrePublished:"June 11th 2020",datePublished:"December 23rd 2020",book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Associate Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316535",title:"Associate Prof.",name:"Maya Puspa",middleName:null,surname:"Rahman",fullName:"Maya Puspa Rahman",slug:"maya-puspa-rahman",email:"mayapuspa@iium.edu.my",position:null,institution:null}]}},chapter:{id:"72452",slug:"has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-decades-",signatures:"Maya Puspa Rahman",dateSubmitted:"December 9th 2019",dateReviewed:"March 21st 2020",datePrePublished:"June 11th 2020",datePublished:"December 23rd 2020",book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Associate Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316535",title:"Associate Prof.",name:"Maya Puspa",middleName:null,surname:"Rahman",fullName:"Maya Puspa Rahman",slug:"maya-puspa-rahman",email:"mayapuspa@iium.edu.my",position:null,institution:null}]},book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Associate Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11627",leadTitle:null,title:"Oilseed Crops - Biology, Production and Processing",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tOil crops are an important class of agronomic crops and very important for the human diet. Oil crops not only provide edible oils but some of them have diverse uses like feeds, fuel, medicine, etc. These also contain many other mineral components in significant amounts and that is why the popularity of oil crops has increased in the last few decades. In the last few years, researchers have developed many new varieties and plant types of oil crops which has contributed to total edible oil production in the world. However, agronomic management, other production practices, and processing greatly vary depending on the plant types and the environment. Therefore, understanding the appropriate production and processing of oil crops is important. So, far researchers have gained considerable achievements in this area.
\r\n\r\n\tThis book intends to provide the reader with a comprehensive overview of the various aspects of oil crops – their biology, production technologies, and processing.
",isbn:"978-1-80356-171-4",printIsbn:"978-1-80356-170-7",pdfIsbn:"978-1-80356-172-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"010cdbbb6a716d433e632b350d4dcafe",bookSignature:"Prof. Mirza Hasanuzzaman and MSc. Kamrun Nahar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11627.jpg",keywords:"Plant Physiology, Abiotic Stress, Soil Management, Climate Change, Crop Management, Canola, Soybean, Sesame, Sunflower, Water Relations, Photosynthesis, Oil Content",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 3rd 2022",dateEndSecondStepPublish:"April 6th 2022",dateEndThirdStepPublish:"June 5th 2022",dateEndFourthStepPublish:"August 24th 2022",dateEndFifthStepPublish:"October 23rd 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Professor of Agronomy at Sher-e-Bangla Agricultural University in Dhaka whose publications have received about 9,500 citations (h-index 50 on Scopus). Recipient of the World Academy of Sciences Young Scientist Award and Publons Peer Review Award on 2017, 2018, and 2019.",coeditorOneBiosketch:"Professor at Sher-e-Bangla Agricultural University, Dhaka, and expert in Agricultural Botany and Plant Physiology. Dr. Nahar published 100 articles and chapters related to plant physiology and environmental stresses.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],coeditorOne:{id:"166818",title:"MSc.",name:"Kamrun",middleName:null,surname:"Nahar",slug:"kamrun-nahar",fullName:"Kamrun Nahar",profilePictureURL:"https://mts.intechopen.com/storage/users/166818/images/system/166818.png",biography:"Dr. Kamrun Nahar is a Professor of Agricultural Botany at Sher-e-Bangla Agricultural University, Bangladesh. She received her Ph.D. in Environmental Stress Physiology of Plants from the United Graduate School of Agricultural Sciences, Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Dr. Nahar has been involved in research with field crops emphasizing stress physiology since 2006. She has completed several research works and is currently working on a research project funded by Sher-eBangla Agricultural University Research System and the Ministry of Science and Technology, Bangladesh. She is also supervising MS students. Dr. Nahar has published more than 100 articles and book chapters related to plant physiology and environmental stresses. Her publications have received about 9,500 citations with an h-index of 51. She is involved in editorial activities and is a reviewer of international journals. She is an active member of about twenty professional societies. Dr. Nahar has attended numerous international conferences and presented twenty papers and posters at these conferences.",institutionString:"Sher-e-Bangla Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9345",title:"Sustainable Crop Production",subtitle:null,isOpenForSubmission:!1,hash:"5135c48a58f18229b288f2c690257bcb",slug:"sustainable-crop-production",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10165",title:"Legume Crops",subtitle:"Prospects, Production and Uses",isOpenForSubmission:!1,hash:"5ce648cbd64755df57dd7c67c9b17f18",slug:"legume-crops-prospects-production-and-uses",bookSignature:"Mirza Hasanuzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/10165.jpg",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65711",title:"External and Internal Anatomy of Maxillary Permanent First Molars",doi:"10.5772/intechopen.84518",slug:"external-and-internal-anatomy-of-maxillary-permanent-first-molars",body:'In the maxillary arch, the permanent first molar is the largest tooth. The anatomical crown of this tooth is broader buccolingually than mesiodistally (usually by 1 mm). This, however, may be changed from one individual to another. Even though, the crown is slightly shorter than premolars, it is wider both mesiodistally and buccolingually, giving the occlusal table its generous surface area that helps in food grinding [1].
This tooth has five cusps, four of which are well-developed to perform the intended function. These include the mesiobuccal, the mesiolingual, the distobuccal, and the distolingual cusps. The fifth one has yet been considered as a supplemental cusp of little physiological importance [1]. This little cusp have several names including accessory cusp, supplemental cusp, mesiolingual elevation, fifth lobe, Carabelli’s tubercle, etc. [2] and can take various shapes ranging from a well-developed cusp to an interconnecting depressions, grooves, or pits on the mesial half of the palatal surface. The presence of this cusp or a developmental groove at its normal site is used to distinguish the maxillary first molar from other teeth [1]. In addition, it has been considered as a representative trait in anthropological and forensic studies for identifying different racial populations [1, 3]. High prevalence of Carabelli trait was reported in North West Europe origin Americans [4] whereas Eskimo of unmixed descent had no Carabelli trait at all [5]. Russians [6], Brazilians [7], Malaysians [8] and Saudis [9] show moderate Carabelli trait prevalence.
Among the maxillary teeth, the permanent first molar has the strongest anchorage in the maxillary arch due to their well-developed widely separated roots [1]. Typically, this tooth has three roots, the mesiobuccal, distobuccal, and palatal [10]. These roots diverge in a manner parallel to the direction of the maximum force that could be applied diagonally against the crown in a buccolingual direction [1]. The palatal root is conical and smoothly rounded in shape. The mesiobuccal root is broader buccolingually with subsequent increased resistance to rotational forces. The distobuccal root is the smallest one with smooth rounded cross section. Normally, the palatal root is the longest one, and the other two roots have approximately similar lengths [1]. It has been reported that the average lengths of the mesiobuccal, distobuccal and palatal roots are 12.9 mm (8.5–18.8 mm); 12.2 mm (8.9–15.5 mm) and 13.7 mm (10.6–17.5 mm) respectively [11]. Generally, the average length of roots is approximately twice that of the crown [1].
Although anatomical variations have been reported in the literature however, the development of these teeth barely deviates from the typical morphology [1]. Several studies conducted in different populations (Korean, Thai, Chinese, polish, Russian, Burmese, and Kuwait populations) have reported that all or nearly all maxillary first molars presented with three separated roots [12, 13, 14, 15, 16, 17, 18]. It has also been reported that the prevalence of maxillary firs molars with two roots, four roots and single root are very low, (1.8%), (0.3%) and (0.2%) respectively [11]. However, Alrahabi and Sohail Zafar [19] used the CBCT technique to study the morphology of maxillary molars in a Saudi population and reported 94% of teeth with three separated roots, while the reminder 6% have four separated roots.
Normally, roots of the molars develop as one common root at the crown base before dividing into three roots (for the maxillary molars) or two roots (for the mandibular molars). This common root base is known as root trunk [1]. It extends from the cervical line to the entrance of the furcation [20]. In maxillary molars, the root trunk divides into three widely separated roots with three furcations, one buccally and two proximally. The access to these furcations is usually located in the coronal thirds of the roots. The buccal furcation entrance is approximately located at the center mesiodistally, while the entrances of the mesiopalatine and distopalatine furcations are slightly palatal to the center buccopalataly [21].
From a periodontal perspective, furcations of the maxillary first molars are more commonly involved than those of the mandibular first molars [22]. Additionally, the buccal furcations of the maxillary first molars are the most frequently affected, followed by the mesiopalatal and distopalatal furcations [23]. However, fortunately, the buccal furcation is the most accessible one for both patients and clinicians. The access to the periodontal lesion in proximal furcations represents a challenge for maintaining good oral hygiene and performing an optimal periodontal treatment [21].
It is generally accepted that root trunk length play an important role in the susceptibility of maxillary molars to periodontal disease [24]. Several studies evaluated the length of the root trunks in maxillary first molars [20, 25, 26, 27, 28, 29, 30]. There was a general agreement in the majority of these studies that the mean trunk length in the buccal aspect is shorter than those in the mesial and distal ones [20, 25, 27, 29]. However, the mean length of the mesial and distal root trunks varies among different studies. Some authors found that the mean mesial root trunk is greater than the distal one [20, 27] whereas others reported that the distal root trunk was the longest one [28, 30]. Moreover, equal length of the mesial and distal root trunks has also been reported [26]. Although teeth with short root trunk are more susceptible for periodontal lesion on the furcation, however these teeth have a favorable prognosis after periodontal therapy since less attachment loss has occurred [31].
In maxillary first molars, a deep groove is frequently found on the buccal aspect of the root trunk which extends from the furcation to end as a shallow concavity at the cemento-enamel junction (CEJ) [1]. Jackson Lu [32] founded that about 94% of the evaluated furcations have a developmental depression of different depth on the root trunks of molars. These concavities may complicate the coronal adaptation of the membrane along the trunk surface during the guided tissue regeneration procedure. Furthermore, Kerns et al. [26] reported that the mean distances from the CEJ to these developmental grooves ranged between 1.35 mm and 1.65 in the maxillary first molars. Therefore, they stated that guided tissue regenerative therapy for short trunk molars could be compromised particularly if developmental root trunk grooves are present.
Root fusion is thought to be caused either by cementum deposition over time or due to inability of Hertwig epithelial sheath to form or fuse at the furcation area [33]. This is based on the fact that the three roots are initially developed as a single root projecting from the crown base then divided into three roots by the growth and fusion of the Hertwig root sheath. Frequently, root fusion in the mandibular molars takes the form of a C-shaped root, while maxillary molars may show different fusion patterns, such as partial or complete fusion of two or more roots [34]. According to Zhang et al. [34], there are six different patterns of root fusion in maxillary molars including Type 1 (MBR fused with DBR), Type 2 (MBR fused with PR), Type 3 (DBR fused with PR), Type 4 (MBR fused with DBR, PR fused MBR, or DBR), Type 5 (PR fused with MBR and DBR) and Type 6 (PR, MBR, and DBR fused to a cone-shaped root).
Generally, root fusion is less prevalent in maxillary first molars. The proportion of fused roots in maxillary second molars is about four folds greater than that in maxillary first molars [35]. Concluded from several cone beam computed tomographic studies, the averages of different types of root fusion in maxillary first molars are Types I (1.13%), type III (1.1%), type II (0.23%), type IV (0.2%), type V (0.2%) and type VI (0.1%) [11].
Although it is a rare variation, several studies have reported different proportions of root fusion in the maxillary first molars in different populations [10, 12, 36, 37]. Using cone-beam computed tomography (CBCT), Kim et al. [12] identified 0.73% of the first molars in a Korean population show fused roots. Neelakantan et al. [36] reported that root fusion present in 2.2% of the first maxillary molars in an Indian population. By using clearing techniques, Rwenyonyi et al. [37] found fused roots in 4.1% of the same teeth in Uganda. However, Al Shalabi et al. [38] reported that 11% of the maxillary first molars teeth of Irish population have fused roots. These variations could be in part due to that there has been no widely accepted definition of the fused root [12, 34]. Some authors have considered roots as fused if fusion extended along the entire root length. Others have categorized teeth in the fused group if one third or less of the roots were fused and subsequently ended up with higher prevalence. Therefore, the defining criteria of fused roots have to be clarified in to justify whether these differences in prevalence were true variations [12].
Root fusion has a strong clinical impact in periodontics and oral surgery and to a less extent in endodontics [35]. However, taking in consideration that a high proportion of fused roots also have their main root canals merging, it is obvious that root fusion represent challenges not only to root canal preparation but also to endodontic microsurgery [11, 35]. For example, merging canals can create angles which increase the stress on endodontic instruments. Moreover, roots with multiple canals show more isthmi and more complicated apical anatomy which may negatively influence the approach of the endodontic microsurgery [35].
Knowledge of the apical root curvature is also an important factor that should be assessed properly before root canal treatment as well as prior to tooth extraction. Such knowledge enables the clinicians to perform a safe and efficient dental treatment through the selection of suitable instruments and approaches. According to Versiani et al. [11], the direction of the apical curvature for the three roots of the maxillary first molar has been reported. 78% of the mesiobuccal roots had distal apical curvature while 21% were straight and the remaining 1% showed s-shaped root. Although majority of the distobuccal roots were straight (54%), mesial curved, distal curved and s-shaped distobuccal roots have also been reported (19, 17 and 10% respectively). The palatal root showed buccal apical curvature in 55% of teeth while it was straight in 40.7%. In 3.2 and 1.1% of teeth, the palatal root showed mesial and distal curvature respectively. It is worth mentioning that root curvatures in the buccolingual direction are frequently underestimated and undiscovered clinically through the conventional projections of the two-dimensional intra-oral radiography. Therefore, different angled projections are necessary to identify the presence and direction of root curvature.
In 1907, Fischer [39] showed, for the first time, the anatomical complexity of the apical root canal by injecting the teeth with a collodion solution. Due to this unpredictability and complexity of the canal morphology, he came up with the widely used description “root canal System”. Therefore, the thought of a single uniform root canal with a single centered apical foramen is a misconception [40]. Generally, pulp cavity consists of the pulp chamber that is situated within the anatomical crown and the root canal system that is located inside the anatomical root [41]. Other anatomical features of the pulp space include pulp horns, canal orifices, furcation, lateral and accessory canals, inter-canal anastomosis, and apical foramina [41].
Generally, the shape of the pulp chamber follows the shape of the tooth crown. Therefore, the pulp chamber of maxillary first molar is rather rectangular from the mesial aspect and squared from the buccal aspect of the tooth [1]. Theses shapes are usually constricted at the floor of the pulp chamber [21]. This tooth has a relatively large pulp chamber with four prominent projections (horns) under the well-developed four cusps [1]. However, the size of the pulp chamber is reduced with age either physiologically by the continued formation of secondary dentine or pathologically through the formation of reparative or tertiary dentine as a consequent of pulp irritation or dental trauma [42]. Moreover, the formation of the secondary dentin is not uniformly distributed. Greater amount of secondary dentine production takes place at the roof and floor of the pulp chamber when compared with the other walls [43]. Therefore, a flattened, disc-like pulp chamber is frequently seen in old aged patients which may complicate the access cavity preparation and canals identification during root canal treatment [41]. In such situation, the pulp chamber roof is very close to the floor which decreases the clinician’s tactile perception and may result in perforation during access cavity preparation [44, 45].
It is clear that knowledge of the average dimensions and general location of the pulp chamber in molars may decrease the occurrence of chamber perforations during the access preparation. Unfortunately, few studies have been conducted to correlate external anatomical landmarks with the floor and roof of the chamber [46]. Sterrett et al. [47] measured the distance from the pulp chamber floor to the furcation of the maxillary and mandibular molars. They found that this distance range from 2.7 to 3 mm in maxillary and mandibular molars. In their study, Majzoub and Kon [48] reported that the average distance from the chamber floor to the furcation was not more than 3 mm in 86% of the measured maxillary molars. Several distances from multiple anatomical landmarks have been measured in the maxillary molars by Deutsch and Musikant [46]. The mean distance from the chamber floor to the furcation was 3.05 mm, from the chamber roof to furcation was 4.91 mm, from the tip of the buccal cusp to the furcation was 11.15 mm, from the buccal cusp tip to the chamber floor was 8.08 mm and from the buccal cusp tip to the chamber roof was 6.24 mm. They also found that the roof pulp chamber was located at the same level of the cementoenamel junction (CEJ) in 98% of the maxillary molars. Townsend et al. [49] conducted similar study on the maxillary first molars of an Indian population and found comparable results as follows: the distance from chamber floor to the furcation = 2.7 ± 0.63; distance from the chamber roof to the furcation = 5.34 ± 0.9; distance from the palatal cusp tip to the furcation = 11.58 ± 1.01; distance from the tip of the palatal cusp to the chamber floor = 8.86 ± 0.68; distance from the tip of the palatal cusp to the chamber roof = 6.2 ± 0.66. Similarly, the roof of the pulp chamber was found at the level of the CEJ in 96% of the measured teeth.
The canal orifices of the maxillary first molars form a triangular shape in the floor of the pulp chamber; the base of the triangle connects the mesiobuccal and the palatal canals while the orifice of the distobuccal canal represents the apex of the triangle. The orifice of the palatal canal is located at the center lingually. The orifice of the mesiobuccal canal is located at the acute corner of the pulp chamber while the distobuccal canal is located somewhat distal and palatal to the mesiobuccal canal, close to the obtuse corner of the pulp chamber. If it is present, the second mesiobuccal canal (MB2) will be positioned palatal to the mesiobuccal canal and at or slightly mesial to the imaginary line connecting the mesiobuccal and the palatal canals [1].
This knowledge has a direct clinical influence on the form and extent of the endodontic access cavity. Conventionally, a triangular shaped access cavity was prepared during root canal treatment of these teeth. However, this seems to be inconsistent with the fact that maxillary first molars frequently have an extra-canal (MB2) in the mesiobuccal root which is difficult to locate and prepare [50, 51]. The presence of MB2 has to be expected by the clinician until the clinical and radiographic assessment show the opposite [50]. In order to locate the extra-canals, it has been proposed that the outline form of the access cavity should be guided by the morphology of the pulp chamber floor [52]. Therefore, several authors have advised to re-assess the shape and design of the endodontic access cavity for maxillary molar teeth [53, 54, 55]. To locate MB2 in maxillary molars, the shape of the access opening should be first modified from the conventional triangular outline to the rhomboidal shape [56]. Besides the access cavity modification, different angled radiographs, NaOCl bubble test, surgical loupe and operating microscope represent other clinical facilities for locating extra-canals [51, 52].
Root canal is the radicular portion of the pulp space. It starts as a funnel shaped orifice on the floor of the pulp chamber at or somewhat apical to cervical line, and ends as one or multiple apical foramina at or lateral (0–3 mm) to the center of the anatomical apex of the root [21, 57, 58].
The root canal morphology of the maxillary first molar is one of the most complex root canal anatomies in human dentition [11]. Generally, the most frequent pattern of the maxillary permanent first molar in the literature has three roots and four canals with a high incidence of a second canal in the mesiobuccal root (MB2) [10, 11]. This is consistent with the broad buccolingual dimension of the mesiobuccal root and with the root depressions on its proximal surfaces [1].
The horizontal shape of the root canals varies along its length. From the canal orifice to the midroot, the mesiobuccal canal is oval or flat oval in cross section and then tapers to terminate as a round canal with very small diameter. Frequently, the palatal canal and distobuccal canal are oval or round in shape and taper gradually to the apex [1, 11].
Any branch of the pulp cavity, other than the main canals, that communicates with the periodontium is called an accessory canal. Additionally, any accessory canal extending horizontally from the cervical or middle third of the main canal is called a lateral canal [59]. These canals are thought to be formed during the calcification due to the entrapment of blood vessels from the periodontium into the Hertwig’s root sheath [60]. Studying root canal anatomy of the human permanent teeth, Vertucci [57] reported that accessory canals were more commonly located in the apical third of the root (73.5%), followed by the middle third (11.4%) and the coronal third (6.3%). In the maxillary permanent first molars, he found that accessory canals are more prevalent in the mesiobuccal and palatal roots (51% and 48% respectively) than those in the distobuccal root (36%). In multi-rooted teeth, accessory canals can also be located in the trifurcation or bifurcation, and are called furcation canals [61]. They are forms as a consequence of blood vessels entrapment during the fusion of the root diaphragm [60]. The incidence of such canals in the maxillary first molars is 18% [11, 57]. Accessory canals represent an additional pathway for the transmission of irritants mainly from the pulp space to the periodontium, resulting in primary endodontic lesions [41].
An isthmus is a thin transverse anastomosis that connects two roots canals [62]. It can be found in any root with multiple canals [41]. This intercanal connection serves as a bacterial reservoir which is difficult to be cleaned mechanically even with the most sophisticated engine driven endodontic instruments. It has been reported that 52% of the mesiobuccal roots of the maxillary first molar show transverse anastomosis (10% coronally, 75% at midroot and 15% apically) [11, 41]. Weller et al. [63] reported that most of the anastomosis in the mesiobuccal root of the maxillary first molars was found at 3–5 mm short of the apex. The presence of such anastomosis may jeopardize the outcome of the surgical endodontic treatment [64, 65]. Therefore, Cambruzzi and Marshall [62] emphasized that these anastomosis should be cleaned, prepared and filled during endodontic surgery. They also suggested the use of methylene blue stain to facilitate the identification of an isthmus occurrence in the resected root surface.
In a large proportion of maxillary first molars, the apical foramina of the three root canals are located lateral to the corresponding root tip (82% of the palatal roots, 81% of the distobuccal roots and 76% of the mesiobuccal roots) [11]. On average, majority of the MB2 canals (61.6%) merge with the mesiobuccal canals at the midroot or apical region and share the same foramen while minority of them (38.4%) end in a separated foramen [10].
The presence of more than one apical foramen is not uncommon. Morfis et al. [66] used a scanning electron microscope to study the apical anatomy of 213 permanent teeth. They found that the presence of more than one apical foramen was observed in all roots except for the distal root of mandibular molars and the palatal root of the maxillary molars. They also reported that the mesiobuccal root of the maxillary molars showed a high prevalence of multiple apical foramina (41.7%).
Marroquín et al. [67] studied the apical anatomy of the maxillary and mandibular molars in an Egyptian population using stereomicroscope. They found that most of the roots (70%) have oval apical constrictions. The average of the narrow and wide diameters of the apical constriction in maxillary molars was 0.18–0.25 mm in the mesiobuccal and distobuccal root, and 0.22–0.29 mm in the palatal root. They also found a high frequency (71%) of two main foramina in the mesiobuccal root of the maxillary first molars. Additionally, the accessory foramina were found in about 33% of these roots.
Moreover, apical ramifications have been reported to be found in 32–86% of maxillary first molar teeth [11]. All these anatomical irregularities show the complex nature of the root canal system in maxillary first molars which invariably complicates the root canal treatment procedures.
Preoperative recognition of the root canal curvature is of paramount importance during the root canal treatment. This is considered as an important factor in determining the level of difficulty, and the probability of procedural errors during root canal treatment [68]. This will invariably guide the clinician to select the most appropriate technique and instruments to effectively prepare the root canal system. Root canal curvature could be a gradual smooth curve of the whole canal or a sharp bent in the apical part of the canal [41]. Versiani et al. [11] have reported the range of curvature degree for each root canal of the maxillary first molars in the clinical view (MB1 0–42°; MB2 23–49°; DB, 0–48°; P, 0–47°) as well as proximal views (MB1, 0–54°; MB2, 0–36°; DB, 0–41°; P, 0–38°). Several methods [69, 70, 71] have been proposed to assess the root canal curvature, by measuring the angle of the curvature and/or the radius of the curvature. Radiographically, Schäfer et al. [72] evaluated the degree of curvature of more than 1160 root canals in all human teeth from the clinical (0–75°) and proximal views (0–69°). They reported that the most severe curvature was found in the clinical projection of the mesiobuccal root canals of maxillary permanent molars and in the mesial root canals of the mandibular permanent molars. According to Vertucci [41], almost all root canals in human are curved apically, especially in the buccolingual direction. Therefore, in order to recognize the presence, severity, and direction of the root canal curvature, it is necessary to evaluate the tooth radiographically from different angled projections.
The internal anatomy of the mesiobuccal root is the main focus of many morphological studies as the incidence of more than one canal is highly variable [41, 73]. In addition to the variations due to the age [55, 74] and gender [74, 75], several studies in various populations revealed that, the anatomy of root canal system has ethnic features [13, 76, 77, 78]. Therefore, many researchers had studied the internal root anatomy of the maxillary first molar, mesiobuccal root in particular, in different racial populations and subpopulations using different techniques [12, 13, 14, 15, 19, 38, 52, 57, 78, 79, 80, 81, 82].
A wide range of ethnic variations has been inferred from several studies conducted to evaluate the root and canal anatomy of mesiobuccal root of maxillary first molar in various populations. For example, a high prevalence of the MB2 has been reported in Japanese (88.2%) [52], Iranian (86.6%) [78], Ireland (78%) [38], Australian (73.6%) [83], Caucasian (71%) [84] and Saudi (70.6%) [19] populations. However, a lower prevalence has been reported in Korean (63.59%) [12], Thailand (63.3%) [13], Russian (59.8%) [17], Polish (59.5%) [15], Greek (53.2%) [85] and Pakistani (48%) [81] populations. According to two different studies, the lowest reported incidence of MB2 was in Brazil (42.63%) [80] and (25%) [86]. As a result of such ethnic variations, the evaluation of root canal anatomy for all populations and ethnic groups is indispensable [36, 87].
Regarding the variation with age, many studies concluded that the prevalence of MB2 decreases by aging, due to dentine apposition which subsequently results in narrowing and obliteration of the canal [55, 88, 89]. For example, Razumova et al. [17] evaluated the presence of MB2 canal in different age groups; young (20–44 years), middle-aged (45–60 years) and elderly (>60 years). They observed that the presence of MB2 was higher in young group with 48.8% than that in middle with 33.2% and elderly group with 18%. Similar results were obtained in a study by Zheng et al. [14] in which they observed a higher prevalence of MB2 among patients between 20 and 30 years of age. However, these findings are in contrast with those of Ratanajirasut et al. [13] and Katarzyna and Pawlicka [15] who did not find correlation between age and the prevalence of MB2 in the maxillary first molars. Unexpectedly, in a study conducted on a Chilean population, a higher occurrence of the MB2 canal in the maxillary first and second molars in older patients was observed [90]. These differences could be related to the sample size and the anatomical variations among populations. However, MB2 could exist in any age group, and the clinician should be aware of finding and treating it [17].
Few studies have reported gender differences in the morphology of the root canal system [91]. Sert and Bayirli [75] studied the root canal morphology of 2800 extracted teeth (1400 teeth from each gender) from Turkish individuals by using decalcification and clearing method. For each gender, they included 100 teeth of each type of the permanent dentition, except the third molars, in their sample. Even though only 100 teeth of each tooth type for each gender were evaluated, a significant morphological difference has been noted between males and females. Regarding the mesiobuccal root, type I Vertucci canal configuration was found in only 3% of males compared to 10% of females. Therefore, they suggested that morphological variations due to gender and ethnic background should be considered during the preoperative evaluation for the root canal therapy. Similarly, Kim et al. [12] reported higher numbers of additional canals in males’ mesiobuccal root of maxillary first molars. However, there are conflicting results with respect to gender and the number of canals [55, 75, 89, 92].
In addition to the previously mentioned variation factors, differences in reported results may also be influenced by the design of the study (clinical versus laboratory) [93]. Some authors conducted studies to compare the results of in vivo versus in vitro techniques. Seidberg et al. [94] found MB2 canal in 33.3% of 201 first maxillary molars in their clinical in vivo study compared to 62% in their in vitro sectioning evaluation of 100 of the same tooth type. These results were comparable to another study conducted by Pomeranz and Fishelberg [95]. They reported that MB2 canal was found in 31% of 100 teeth examined in vivo. This percentage increased to 69% when the same number of teeth was evaluated in their in vitro study. The more common use of SOM or loupes in recent clinical studies has resulted in an increased prevalence of the clinical detection of the MB2 canal [73, 96]. The effect of magnification on the incidence of MB2 was assessed in a clinical study by Buhrley et al. [96]. They reported that MB2 canal was located in 71.1% of the maxillary first molars treated with the aid of surgical operating microscope (SOM). When the dental loupe was used, this percentage was reduced to 62.5%. In the nonmagnification group, the percentage was decreased dramatically to only 17.2% of the teeth. Sempira and Hartwell [73] concluded that the incidence of MB2 increased significantly when the SOM is used during the root canal therapy.
In conclusion, the wide variation in the reported prevalence of MB2 canal is significantly affected by the method of evaluation being used. As a result, any attempt to compare MB2 prevalence of different populations should take in consideration the similarity of the evaluation methods. For example, considering only CBCT in vivo studies, MB2 prevalence vary from 86% in Iran [78] to 30.9% in China [97], with in-between proportions in other countries such as Portugal (71%) [84], Korea (63.6%) [12], and Brazil (44.4%) [80]. Another issue is that all these studies were conducted by different research teams which can lead to variations in the CBCT assessment among different observers. This in turn affects the validity of any attempt of direct comparison.
To overcome these drawbacks, recent global in vivo study [98] has been conducted to evaluate the prevalence of the MB2 canal in the maxillary first molars in 21 different geographic regions around the world using CBCT method. The special issue in this study is that twenty-one observers from different countries have been uniformly pre-calibrated to reduce the inter-observers variability. They found that MB2 prevalence ranged widely from 48.0 to 97.6% among the studied countries, with a global MB2 proportion of 73.8%. However, the authors also clarified some drawbacks of their study. Bearing in mind the effect of age and gender on the MB2 prevalence, it seems to be difficult to compare the different regions in this study due to the high variations in their mean age and gender proportions. In addition, although serious attempts were performed to pre-calibrate the observers, assessment differences may still present due to the differences in personal experience and beliefs. They suggested that these limitations can be overcome by gathering CBCT databases of patients having the same age and enrolling both genders equally in the all different regions. Then, all these databases have to be assessed by a single qualified observer [98].
Several studies have investigated the simultaneous presence of MB2 root canal in the contra-lateral maxillary first molars among different populations. High proportions of bilateral occurrence of MB2 canal in maxillary first molars have been reported in selected Korean [12], Malaysians [99], and Chinese [100] populations (82.9; 82.36; and 74% respectively). Clinically, previous knowledge about the presence of MB2 in one maxillary first molar should make the clinician aware about the increased likelihood of MB2 occurrence in the contra-lateral molar of the same patient.
According to Cleghorn et al. review [10], single canal (98.3%) with a single apical foramen (98%) is the most frequent canal pattern in the distobuccal root. In a similar manner, the majority of the palatal roots have a single canal and a single foramen (99 and 98.8% respectively). Although anatomical variations for these root canals have been reported, they are significantly rare. Several studies addressed this issue in different populations. Alrahabi and Sohail Zafar [19] conducted a study on a Saudi population and found that the distobuccal and the palatal root had one root canal in 100% of cases. In Razumova et al. [17] study on a Russians population, the distobuccal root contained single canal in most of cases and two canals in 0.5%. Similar results were obtained by Ratanajirasut et al. [13] (Thai population), Zheng et al. [14] (Chinese), Neelakantan et al. [36] (Indians), and Kim et al. [12] (Koreans), in which second distobuccal was found in 1, 1.2, 2.2, and 1.25% of cases, respectively.
Generally, the most frequent pattern of the maxillary permanent first molar in the literature has three roots and four canals with a high incidence of a second canal in the mesiobuccal root (MB2), [10, 11]. Although anatomical anomalies have been reported in the literature however, they are barely mentioned in studies [10]. Maxillary first molar with four roots [101], five roots [101], two roots [102], single conical root [103, 104] and single O-shaped root [105] have been reported. Additionally, it has been inferred from several CBCT studies that the incidence of C-shaped root canals in maxillary first molars ranges from 0.3% to 1.1% with an average equal to 0.83% [11]. Other anatomical anomalies such as maxillary first molars with One canal [103], five canals [106], six canals [107], seven canals [108], eight canals [109], and hypertaurodontism [110] are extremely rare and have been documented as case reports.
Enamel pearls and trunk developmental grooves are most prevalent in the maxillary molars [1]. These anatomical anomalies are considered as local cofactors that increase the risk of periodontal disease development [111].
Maxillary first molars present the greatest clinical challenge for endodontic treatment. This is because the complexity of the root canal system surpasses that of all other teeth within the human dentition [11]. It is generally accepted that the mesiobuccal root of these teeth has a second canal in majority of cases. Although this canal is usually difficult to be negotiated, it must be expected to be there until clinical and radiographic examinations prove its absence [50]. Clinically, the location of this canal varies to a large extent, but it is frequently positioned mesial to or along the imaginary line connecting the mesiobuccal and palatal canals, within average area of 2 mm mesially and 3.5 mm palatally from the orifice of the MB1 canal [112]. Radiographically, it is mandatory to take and carefully evaluate two or more different angled radiographs which would provide much required information about the morphology of the root canal system [41, 113].
According to Görduysus et al. [112], 16% of MB2 canals cannot be negotiated down beyond the orifice. This could be due to several reasons such as the presence of a dentine ledge which covers the orifice, its mesiobuccal inclined entrance on the chamber floor, its route coronally which frequently shows single or multiple sharp curves and its tendency to be more calcified especially in old aged individuals [11, 41]. Therefore, Vertucci [41] suggested that countersinking or troughing of the developmental groove, which is located palatal to the MB1 canal, by using ultrasonic tips would eliminate most of these obstacles. During this procedure, the groove should be deepened apically (0.5–3 mm) and widened mesially. This may require a slight modification in the access outline to extend more mesially. Due to the presence of a concavity on the distal surface of this root, troughing should be prepared with cautions to avoid perforation into the furcation.
Despite their frequency of occurrence, high variations in the number of canals for maxillary first molars have been reported in the literature. Accordingly, the mesiobuccal and the palatal roots may have one, two, or three canals, whereas the distobuccal root may contain one or two canals [11]. In order to locate these additional canals properly, several diagnostic aids should be taken in consideration. These include examination of the chamber floor by using a sharp endodontic explorer, using methylene blue to stain the orifices, visual inspection of the bleeding points, performing the ‘champagne bubble’ test using sodium hypochlorite and magnification of the pulp floor using dental loupe or surgical operating microscope [41, 51, 52]. Surgical operating microscope (SOM) significantly enhances the visibility and lightening of minute details. Using SOM, clinician is able to remove obstacles and calcifications selectively in a precise manner that would minimize the procedural errors [41].
Although the palatal root usually has a large and easily accessible canal on the pulpal floor, it requires skillful cleaning and shaping procedure. This root canal often curves buccally in its apical part. Since it is difficult to be recognized with the two dimensional intra-oral radiograph, this may results in under-estimation of the working length with subsequent short preparation and obturation of this canal [21].
The need for weight-saving in the automotive and mass transportation sector, like trains and civil airplanes, has historically pushed the usage of magnesium, which, for shared knowledge, is the metallic material at the lowest density, nearly to dense polymers. But, much more effectively, magnesium alloys are characterized by very high specific strength. A long tradition and past knowledge of the magnesium industry accumulated from the 1970s till its Golden Age in the early 1980s. In those years, you could buy primary magnesium at its lowest price on the marketplace, and many bet that the turn against rival aluminum was just around the corner. However, the forecast high growth rate of the magnesium market has not succeeded yet.
Today, you can hear about big worries about magnesium:
It could be an unsafe material, susceptible to easy burning and explosion.
It has a high cost and poor availability on the market.
It has a high carbon footprint in the extractive, refining, and casting processes.
You could also add to the list a poor knowledge of the wrought alloys and their deformation processes and concerns about their poor corrosion and creep resistance. Those barriers prevented magnesium from competing with its main rival in weight-saving strategies in the transport sector, the aluminum metal. In the following, we try to give readers a more detailed view, considering that we have to know what we were in the past to get a keen comprehension of today’s concerns.
Most concerns about the magnesium market do not depend on geographical lack of raw material. Still, trade issues, production base, and export policies made primary production in Europe not competitive. The last primary production plant in Europe shut down in 2001 since European-based smelters could not compete with low-cost Chinese production. As a result, the availability of primary material is a genuine concern, as European demand depends mainly on China’s imports. Therefore, one main drawback for broader use in the automotive industry is the lack of a solid supply base with stable prices over a medium-term period combined with competitive magnesium production outside China. The last primary production plant in Europe shut down in 2001 since European-based smelters could not compete with low-cost Chinese production. As a result, the availability of primary material is a genuine concern, as European demand depends mainly on China’s imports. Therefore, one main drawback for broader use in the automotive industry is the lack of a solid supply base with stable prices over a medium-term period combined with competitive magnesium production outside China. But few people know which milestones were in the history of the magnesium market. Why did magnesium growth not meet reasonable expectations? Why did the material price increase and fluctuate after prolonged stability at the lowest price level targeted in the 1980s, the years of maximum Western production? What shaped today’s market structure based on perilous dependency on Chinese producers? In the following, we’ll try to give you a compass to never get lost in such a multifaced and complex market.
During First World War, Americans noticed the importance of magnesium for its strategic pyrotechnics application. Magnesium was the base of flares incorporated in rocket devices that, fired into the air, descended with a parachute, lighting the enemy’s corridor for several minutes. During the Interwar period, 1919–1939, the interest in strategic magnesium for national armaments industries rose worldwide (Table 1). The rise in the magnesium demand was pushed by lightweight structural applications. Alliances were surprised by the German Luftwaffe supremacy of the burning European skies. German airplanes were faster and capable of carrying unexpected bomb shipments. By studying some German planes that crashed, the British discovered that they contained a large percentage of magnesium alloys, the “Elektron metal” as the Germans called it. The weight-saving in German aircraft was the key to such a significant advantage in the European skies. Magnesium was instantly proclaimed as a strategic metal for the second time. The U.S. Government allocated all of the U.S. nation’s total production (at that time produced by Dow Chemical) to national defense. At the beginning of the Second World War, the production of magnesium was 33,500 tons, whereas 5 years later, magnesium production reached a peak of 426,000 tons [1].
Starting year | Process | Sources | Company | Region | Type |
---|---|---|---|---|---|
1895 | I.G. Farbenindustrie | Seawater/brine | I.G. Farbenindustrie | Germany | Electrolytic |
1915 | Dow process | Seawater/brine | Dow Chemical | Midland, Michigan (USA) | Electrolytic |
1920 | Dow process | Fluoride material and magnesium oxide | American Magnesium Corporation (Alcoa) | California (USA) | Electrolytic |
1920 | Dow process | Seawater/brine | De Norske Saltverker AS | Bergen, Norway | Electrolytic |
1931 | I.G. Farbenindustrie’s technology | Dolomite/FeSi | National AluminiumMagnesium Institute (VAMI) USSR | Leningrad | |
1933 | I.G. Farbenindustrie’s technology | Dolomite/FeSi | Riken Metal Manufacturing Co. | Ube (Japan) | Thermal |
1935 | I.G. Farbenindustrie’s technology | Dolomite/FeSi | Government plant | Zaporozhye and Solikamsk (USSR) | Electrolytic |
1936 | I.G. Farbenindustrie’s technology | Dolomite/FeSi | Magnesium Electron Company (MEL) | United Kingdom | Electrolytic |
1941 | Dow process | Seawater | Dow | Freeport, Texas (USA) | Electrolytic |
1945 | I.G. Farbenindustrie’s technology | Brucite Mg (OH)2 | Aluminum Company of Canada (Alcan) | Arvida (Quebec) | Electrolytic |
1951 | I.G. Farbenindustrie’s technology | Seawater | Norsk Hydro | Porsgrunn, Norway | Electrolytic |
1959 | Pidgeon | Dolomite/FeSi | Alabama Metallurgical Corp. | Selma, Alabama (USA) | Thermal |
1960 | Pidgeon | Dolomite/FeSi | Furukawa Magnesium Corp. | Oyama (Japan) | Thermal |
1964 | Magnetherm | Dolomite/FeSi | Pechiney | Marignac (France) | Thermal |
1964 | Pidgeon | Dolomite/FeSi | Ube Kosan | Ube (Japan) | Thermal |
1969 | Modified IG I.G. Farbenindustrie’s technology | Brine | National Lead Industries (From 1980, facility operated by Amax Inc.; from 1989, facility operated by Magnesium Corp. of America. MagCorp) | Great Salt Lake, Utah (USA) | Electrolytic |
1970 | Modified IG I.G. Farbenindustrie’s technology | Dolomite/FeSi | AM Magnesium | Texas (USA) | Electrolytic |
1972 | Dow process | seawater | Dow Chemical | Texas (USA) | Electrolytic |
1974 | Amati-Ravelli | Dolomite/FeSi | Magnesium do Brasil | Ceara (Brasil) | Thermal |
1975 | Magnetherm | Dolomite/FeSi | Alcoa’s Northwest Alloys | Washington (USA) | Thermal |
1992 | Norsk Hydro | Magnesite | Norsk Hydro | Quebec (Canada) | Electrolytic |
1993 | VAMI/ UTI Technology (Russian) | Brine | Dead Sea magnesium | Israel | Electrolytic |
1994 | Alcan | Asbestos | Noranda | Canada | Electrolytic |
1997 | Alcan | Magnesite | Queensland Metals Corporation Limited | Australia | Electrolytic |
History of worldwide magnesium plants before 2000s.
Americans developed their own wrought and cast magnesium alloys. Enormous quantities of magnesium were put on military aircraft to curb the weight of liquid and air-cooled engines, wheels, oil tanks, frame structures, instrument housings, gyro frames, and many others. The jet-propelled prototype “Flying Wing” airplane was an aircraft bomber, designed for high speed and maneuverability, made primarily of magnesium (Figure 1a). It never entered service in favor of the B-36 bomber (Figure 1b) that used a total of 3800 kg of magnesium in castings, forgings, and sheets for airframe parts ad fuselage skin. At the same time, for civilian scope, commercial truck vehicle, body, and motor engine parts, benefited as well from the light-weighting that was made possible by magnesium. Magnesium alloys were extensively used in the airframe skin of the large airplane Convair XC-99 built by the U.S. Air force that remained in activity from the 1940s to 1950s. By 1948, the military aircraft Lockheed F-80C “Shooting Star” was the first American project for constructing a combat-ready jet fighter capable of exceeding 500 mph in level flight. One F-80C (47-171) constructed magnesium throughout, redesignated NF-80C-LO, is today visible at the United States Air Force Museum, Ohio (Figure 2).
(a) The “Flying Wing” airplane and (b) the B-36 bomber airplane.
The Lockheed F-80C is constructed of magnesium throughout, today visible at the United States Air Force Museum, Ohio.
However, following the end of the Second World War, military applications of magnesium lost their strategic importance. The magnesium extractive industry contracted to register a new peak demand in the early ‘50s because of the Korean War.
The production peak registered during Second World War drawn by U.S. national production was not surpassed until the ‘70s. Widespread post-war applications of magnesium would be expected in automobiles and civil aircraft to reduce engine weight and dynamic masses. Still, magnesium demand finally decreased till the ‘70s, not being sustained by aggressive market growth strategies. Magnesium soon revealed losing in front of the prominence of aluminum alloys. The significant factor restricting the growth of magnesium after wartimes can be researched—as a comparison—looking to a good lesson taught by the rival aluminum industry. The primary aluminum industry had a long tradition of cooperation. A group of pioneers in the European aluminum industry set up an “Aluminum Association” way back in 1901, just 15 years after the modern electrolysis smelting process patents of Charles Martin Hall and Paul Héroult. It was created to promote the widespread use of aluminum (at that time, aluminum was a pioneering material for few applications) to provide economic governance to the nascent aluminum market [2]. The Aluminum Association shared information on markets, feedback from customers on applications, on the quality of the metal. All those information was necessary to align demand requirements and supply features and to encourage the private sector’s investments. It was an observatory to analyze the market trends to make the use of aluminum alloys easier. Moreover, the Aluminum Association directed specific actions toward pricing policy based on stable selling prices to promote demand growth. This stability consolidated a nonspeculative market, and it allowed to plan a gradual and programmable extension of the productive capacities of big plants.
These efforts were not completely replicated in the nascent magnesium market to sustain post-war demand. It is true that a prominent American producer, the Dow company, broadened civilian markets by the ‘1950s. Precisely, the date 1954 was when the Dow company started the mass production of Samsonite Ultralite luggage bag, 20% lighter than other luggage bags, entering in operativity a mammoth large-scale magnesium sheet mill. At that time, several advancements in magnesium alloys were made. New coatings (anodic, electroless-Ni, and Cr-plating) were produced in the 1950s to protect the magnesium alloys from corrosion; viable ceramic and porcelain coatings for magnesium were developed, processes for cladding magnesium sheet and plate alloys with other magnesium alloys and aluminum.
At Dow company, people frequently told that Dow’s metallurgists within the 1960s probably had alloyed magnesium with any possible element with good wettability like Li, Al, Si, Ca, Mn, Cu, Zn, Sr, Y, Zr, Ag, and Rare Earth [3]. Researchers soon focused on the overall properties of a fabricated Mg-alloy component as a result of microstructure [4] finally realized by alloy chemistry and processing parameters to promote beneficial solid solution distribution, dispersoids, intermetallic precipitation by heat treatments, grain refining.
Corrosion behavior of Mg alloys developed was enormously improved by limiting impurities Fe, Ni, and Cu that largely influence corrosion resistance of Mg because of the formation (and dispersion) of micro-galvanic cells. New Mg-RE, Mg-Th, and Mg-Th-Zr high-temperature alloys were developed at the beginning of the ‘60s for use at temperatures of 200–350°C but were limited to their high costs to jet aircraft and military missiles. Following the first hot chamber die-casting process developed at Dow Chemical Company [5], further die-casting techniques were improved and widely used to make engine-driven tools (chain saws, post hole diggers, etc.). Researchers and metallurgy laboratories at magnesium companies provided many answers to questions about phase equilibria, alloying effects, and the relationship of structure and properties for their potential customers (casters, forgers, extruders). During the 1960s in Europe, 20,000–25,000 tons, supplied mainly by Norwegian Norsk Hydro, were being used in the Volkswagen Beetle’s air-cooled engine and gearbox. Those components were installed above and behind the rear wheels, and this required the German engineers to produce a drive system as light as possible so that the front wheels gripped the road adequately. The 1960s were also the Cold War years, and several magnesium sheets were used in the lightweight intercontinental ballistic missiles. A machined magnesium-lithium alloy LA 141 was chosen for its high stiffness, low weight, and sound vibration damping characteristics for manufacturing the chassis of the Launch Vehicle Digital Computer (LVDC) that provided the autopilot for the Saturn V, the liquid-fueled rocket developed under the Apollo program for human exploration of the Moon. High-temperature magnesium-thorium alloys in sheet and extrusion form constituted a large part of the large conical structure of the Retro-Rocket Modules of the Gemini spacecraft (the white-painted portions in Figure 3, just near the black-painted cone).
The Gemini spacecraft with the centered, white-painted portion in magnesium alloy.
However, it was symbolic of what president Roger Wheeler said at the 23rd Annual Meeting of the Magnesium Association (still, International Magnesium Association) in 1966. He said that the magnesium industry had failed in the previous 15 years to take its place as a fundamental industrial commodity metal in the U.S. [6]. At that time, magnesium consumption was one order less than forecast one decade earlier. The Magnesium Association recognized that the future of magnesium growth in North America could depend on the automotive market, and automotive engineers needed to lose their concerns about magnesium, following the example of Germans [7]. In Germany, likewise the air-cooled Volkswagen Beetle die-cast engines, in 1967 Porsche developed the 166 kg crankcase for their six-cylinder 911 series (Figure 4a), following visionary forecast in the post-wartime (Figure 4b).
(a) The Porsche 166 kg crankcase for the six-cylinder 911 series; (b) the November 1944 issue of Light Metal Age presented an image of “Tomorrow’s light metal car.” In the associated article, the writers talk about the use of aluminum and magnesium in the sleek-lined, spaced-aged cars of the future.
By the 1970s, developments were extended to new composite magnesium-based materials, new high-temperature magnesium alloys, new fluxing methods, squeeze casting, recycling methods, and new anodizing processes for magnesium [8]. They were good news for the magnesium industry, but, in reality, in the middle 1970s, world demand for magnesium was about not more than 2% of the aluminum. Economic uncertainties by the oil crisis caused the rapid decrease in sales of the Beetle caused German automakers to curtail magnesium consumption [9]. Despite aluminum pricing that remained steady, the rising magnesium price made aluminum much more competitive. Whether during the late 1970s and beginning 1980s, the need for cutting fuel cost of automobiles could represent an opportunity for the magnesium industry, desulphurization and deoxidation of steel were (unfortunately) still considered the most favorable growth market for magnesium [10]. Magnesium for aluminum alloying was expanding market sector as it consumed almost half of the magnesium production, and it was expected to grow at about 5% per year, while some other markets such as desulphurization and die casting were expected to grow more rapidly [10]. Many efforts were made by researchers to develop high-performance alloys for automotive applications to curb as much weight as possible from massive engine blocks, including advanced rapidly solidified magnesium alloys [11] and magnesium alloy composites [12].
Over the second half of the 1980s and early 1990s years, the period was a time of great ferment for magnesium potentialities in the automotive sector [8]. The dominant technology for magnesium production was still electrolysis with giant plants, and the leading producer countries were the United States, Canada, and Norway. Die casting consumption with different magnesium die-cast components in automobile sectors drove the significant annual growth rate of North America—thus more or less the total world magnesium demand at that time. General Motors die-casted in a single-shot, a large part an instrument panel beam for the GMC Savana and Chevrolet Express van. It was a 12 kg part 4 mm thick, which provided 32% mass saving compared to the steel design with improved crashworthiness and high vibration damping. It was less costly thanks to a few parts assemblies, 25 parts in the magnesium design compared to the 67-parts in the steel-made product [13]. To shape much more complex parts made of magnesium, in 1991, the Dow Company registered the Patent for a method and apparatus for the injection molding of magnesium metal, a process based on the foundation of the fundamental discoveries on semi-solid metals by Flemings and his students at Massachusetts Institute of Technology, MIT [14].
During that golden age for magnesium, the US Dow Company increased its almost monopolistic control of the magnesium market thanks to the economy of scale of its giant and old electrolytic plants powered by low-cost power sources available in Texas. In 1991 Dow could produce 109,000 tons per year, namely around 35% of the world’s entire output. But the cost of making magnesium in Texas began to rise gradually as the time of cheap natural gas ended. With almost 20 kW-h of electricity to produce a kilogram of magnesium, a lot of power was available, but all that power had been contracted for by the big aluminum producers like Alcoa, Kaiser, and Reynolds [3]. The old Dow plant became soon antiquated, and to stay in business at a competitive level, the most significant World producer would have had to build a new efficient plant, as planned at the Great Salt Lake, a project that never started. Factors leading to Dow’s success, and that driven till the early 1990s all magnesium market, have been: early entry, cost efficiency, and strategic deterrence behavior [3]. The biggest world’s magnesium producer started to hand over its 60 years of harvests by the early 1970s when Dow began to reap the benefits of its magnesium business rather than investing beyond its old plants in Texas. Dow company switched from a “limit pricing” strategy originally designed to deter entry to a “skim pricing” type of strategy that ultimately sacrificed the firm’s viability as a magnesium producer [15].
Unlike Dow, other dominant firms have opted to expand tactically in related industries (e.g., DuPont in titanium dioxide and Alcoa in aluminum before 1945). One potential explanation is that Dow’s cost advantage was not sustainable. Dow’s production process benefited from years of incremental improvements but was not fundamentally different from the technology potentially available to others [15]. The Dow big electrolytic plants worked at an efficient scale in the decades after wartime characterized by modest demand for magnesium, and there were substantially no further opportunities for new efficient-scale plants until the U.S. But a radical change, as depicted, started with an automotive interest in magnesium at the beginning of the 1990s. Magnesium would switch its position in the marketplace from a specialty material with one dominant producer with considerable knowledge accumulated in 60 years into a commodity product with a competitive global market [15].
The rest of the story is like what happened to dominant Western countries firms in similar markets for commodity products. As the Cold War ended around 1990 and as the Chinese economic reform entered its Second Stage (the establishment of the Socialist Market Economy), individual Chinese enterprises were allowed to exist and to be protected by the law of the People’s Republic of China. The primary market forces began to shift very rapidly in Western countries. In China, a multiplicity of low-investment production plants with the Pidgeon process were building at the minor technology scale. Hundreds of those plants based on a very high labor-intensive process were set up and ramped up very rapidly, in a few months, producing per capita just a few hundred metric tons per year. There was no Chinese knowledge at that time about magnesium alloying and alloys applications; those plants needed just to sell primary magnesium to the Western countries at almost their marginal cost. This new situation created confusion in the not-stabilized marketplace [3]. However, it is a fact that the Pidgeon process produced a significant amount of World War II magnesium. Those Pidgeon plants during wartime could not compete with the electrolytic process.
On the contrary, in the 1990s, when small Chinese plants started to supply 4% of the world’s magnesium, Chinese labor cost was very low. In that period, Chinese-made magnesium was sold at about 0.72 USD/lb. while Dow’s production cost was not less than 1.08 USD/lb. That magnesium price had been starting to crush the marketplace, a problem that never ended till that time. By far, the principal use of magnesium, almost 50%, that year was recorded in alloying the large numbers in the aluminum beverage cans sector, in which magnesium was (and is) used as a strengthening agent instead of in structural alloys for engineering applications.
Very soon, China, with its low prices, supplied 50% of World magnesium demand (Figure 5), becoming the world’s largest supplier of primary magnesium. Between 2000 and 2010, magnesium production in China tripled, mainly due to the high costs of the process in the USA, Canada, France, and Norway. Most of the big magnesium plants in those countries were closed due to lower competitiveness. Despite the establishment of duties that could reduce imports, U.S. producers of magnesium began to exit the market. In 1998, Dow Chemical decided to leave the magnesium business, contracting a licensing deal for its technology to Samaj, a Pima Mining’s subsidiary, for the South Australian magnesium project. Northwest Alloys Inc. closed its plant in Washington by 2001. Renco Metals Inc., the Magnesium Corporation of America parent, filed for chapter 11 bankruptcy in August 2001. In the same year, Norsk Hydro ended magnesium production in Norway, and after 6 years, in 2007, it ended its operation at Becancour, Canada. Noranda, which operated in Quebec the Magnolia electrolytic magnesium plant relied on serpentine tails from nearby asbestos mines, closed the smelter in 2003.
Evolution of magnesium production per region (1990–2017) [
By 2015, more than 80% of the world’s magnesium production took place in China, followed by Russia, Israel, and Kazakhstan, with only a few percent market share. In 2021, due to curbs in domestic power consumption, Chinese production of magnesium had been halted or curtailed to such an extent that deliveries to Europe have drastically dropped since 20 September 2021. In the second half of 2021, in the world’s main magnesium production hubs, Shaanxi and Shanxi Provinces, 25 magnesium plants would have to shut down. Five other plants had to cut production by 50% amid China’s power curbing rollout. With an 87% global share in magnesium production, the Chinese supply shortfall has already resulted in record prices, reaching the never recorded price of 6 Eur per kg and a worldwide global distortion in the supply chain.
The dependency on Chinese producers has created magnesium users worldwide a deadly embrace. Fluctuant prices over the 2000s depend on Chinese supplies. From the end of 2007 to the end of the first quarter of 2008, the average U.S. spot Western price increased significantly, as in China and Europe. Several factors contributed to these price escalations. In the United States, a decline in imports from Russia and Canada, two of the leading import sources, caused a supply shortage on the spot market. In China, increased prices for ferrosilicon, power, and transportation were causes for the rapid price increase [1]. In addition, environmental crackdowns by the Government of China may have led to shutdowns at some smaller and highly pollutant Pidgeon plants. In the United States, the Platts Metals Week U.S. spot Western price range reached a peak of USD 3.50 to USD 3.70, while in China, the magnesium price range reached a high of USD 5950 to USD 6250 per metric ton. The increased production cost of Chinese magnesium is firmly attributed to higher prices for raw material (main ferrosilicon), decreased production due to stricter environmental regulations at smelters and coal mines, increased labor costs, and an increase in coal power cost. Table 2 represents the cost-shares breakdown of primary magnesium and significant differences between the old Western big electrolytic plant and the small Pidgeon plants powered by coal, primary actors of national magnesium production expansion in the first decade of the 2000s.
Electrolytic reduction (Western) (%) | Thermal reduction (China Pidgeon, coal-powered) (%) | |
---|---|---|
Materials | 6 | 50 |
Capital | 37 | 20 |
Energy | 18 | 8 |
Labour | 16 | 5 |
Other | 24 | 17 |
Total | 100 | 100 |
Cost shares breakdown of primary magnesium and significant differences existing among the old Western big electrolytic plant and the small Pidgeon plants.
Though the raw material cost is essential, price stability is a much more relevant factor. For this reason, several projects are currently being developed to increase primary magnesium production capacity worldwide. In Nevada, United States, one company has obtained permission to build a pilot plant to test magnesium production from a dolomite deposit. In Quebec, Canada, a company started the construction of a secondary magnesium smelter. A company in Australia with a 3000 ton per year plant is going to be completed; it will recover magnesium from coal fly ash [17].
Now, let us go a bit in-depth about price concerns.
On the one hand, manufacturers are under the constant pressure of product costs that must be affordable; on the other hand, they cannot easily justify the use of bright material characterized by a (historical) uncertainty of supply over a medium-term period. Figure 6 shows the price history of magnesium metal (US Market spot price) relative to magnesium and aluminum [USGS Bulletins]. On that source, it is crucial to notice that the ratio between magnesium and (primary) aluminum price has been over the ratio of 1.6, which is generally considered the affordable price ratio for magnesium versus aluminum, usually calculated by the inverse ratio densities of the two materials.
Yearly average U.S. market spot price for aluminum and magnesium [
On the other hand, it would be more appropriate to consider the switching cost for each kg of steel that you would substitute with the alternative light metal for the same function. Table 3 represents a viability study on the structural application of light metal alloy for manufacturing the automobile outdoor body panel that shall guarantee equal (or higher) stiffness and denting capability. To evaluate whether it is technically convenient to replace galvanized mild steel with lighter aluminum and magnesium metal alloys for stamping an outer door panel of a road vehicle, we need to know for alternative lightweight scenarios the substitution factors that are defined as the mass ratio between the lightweight (aluminum and magnesium) and the baseline (steel) component. The mass is obtained by multiplying the material density by the volume of the panel. Otherwise, the outer door panel volume is obtained by the front area of the panel that is usually fixed due to geometry constraints (e.g., the perimetral geometry defined by screen and center pillars) and the thickness of the panel sheet cold drawn. Furthermore, it is a multiple constraints problem: it is a strength-limited design problem with constraints in terms of the same (or higher) dent resistance and same (or higher) flexural stiffness of the panel. Under these circumstances, substitution factors for an aluminum alloy AA 5083 sheet cold drawn ranges 0.5–0.6, for a magnesium alloy AZ31D twin rolled cast sheet warm stamped ranges 0.4–0.5 (refer again to Table 3).
Baseline | Lightweight solutions | ||
---|---|---|---|
AISI 1045 steel | Aluminum 6061 | AZ31D twin rolled cast sheet, warm formed | |
Density [g/cm3] | 7.8 | 2.7 | 1.8 |
Yield strength (minimum) [N/mm2] | 350.0 | 250.0 | 135.0 |
Elastic modulus | 210.0 | 70.0 | 45.0 |
thickness for bending load parity and stiffness [mm] | 0.8 | 1.2 | 1.3 |
Strength-to-weight ratio (kNm/kg) | 44.9 | 91.2 | 75.0 |
Minimum thickness to achieve bending load parity with galvanized steel [mm] | — | 1.2 | 1.3 |
Minimum thickness to achieve stiffness parity to galvanized steel [mm] | — | 0.9 | 1.3 |
Panel mass [kg] | 15.9 | 8.1 | 6.2 |
Substitution factor (SF) | 1.0 | 0.5 | 0.4 |
Weight saved in percentage with lightweight solution | 0% | 49% | 61% |
Current production cost (Eur/kg) | 0.9 | 3.3 | 6.5 |
Elastic module [GPa] | 210.0 | 70.0 | 45.0 |
Switching cost per each kg steel substituted with an alternative metal for the same function, equivalent stiffness, and load (denting) capability, calculated as (price of 1 kg material) × SF: [Eur] | 0.9 | 1.7 | 2.5 |
Material unitary cost for steel parity, calculated as (unitary steel price)/SF: [Eur/kg] | 0.9 | 1.8 | 2.3 |
Feasibility study about the affordability of lightweight solutions with aluminum and magnesium alloy for an outdoor body panel for the automobile; comparison with baseline steel scenario.
Thus, by calculating the material substitution factor for each light metal considered, we would evaluate how much is the switching cost of each kg of steel when it is substituted with 0.6 kg aluminum alloy or with 0.4 kg magnesium alloy. Table 3 shows the switching costs per kg of steel in the case of both aluminum and magnesium solutions. Much more interesting is the line indicating the “steel parity” unitary material price (Euro/kg) for the outdoor panel: it represents how much it should be the unitary price for an alternative material to manufacture the body panel at the exact cost of the baseline case, the steel made pan.
Hence, the big question: is the steel parity cost the unique parameter to consider if magnesium is attractive as light material?
Nowadays, the transportation sector impacts around 25% of direct CO2 emissions from fossil fuel combustion. Among the variety of transportation means, road vehicles, particularly passenger cars and freight vehicles such as heavy trucks, busses, and two-wheelers, are estimated by the International Energy Agency (IEA), accounting for nearly three-quarters of transport CO2 emissions. Although CO2 emissions from aviation and shipping have been increasing in the last decade, the road share of total transport sector emissions has fluctuated around 75% of total transport emissions for two decades. If several efforts and advancements have been made in road-vehicle electrification, otherwise larger (and heavier) vehicles are still preferred by lots of consumers. The worldwide market share of SUVs has increased in the last two decades, and in 2019, before the pandemic crisis, it represented nearly half of the global light-duty vehicle market in several countries. Growing demand for the urban transport of goods is rising, adversely affecting air quality, noise, safety, and liveability in the city. The automotive sector has been putting efforts for reversing CO2 emissions growth by several strategies; one of those strategies focuses on energy efficiency countermeasures that would be implemented in the form of:
managing/rationalizing travel habits to reduce the frequency and/or distance switching from high-energy-intensity modes (e.g., private car and or air) to most efficient methods (i.e., train for traveling long distances plus rented new efficient vehicles on local base).
deploying energy-efficient technologies for vehicles and fuels.
more stringent requirements on vehicle efficiency, namely, power consumption per km.
The latter strategy is thought a valuable approach for accompanying market migration from heavy vehicles powered by combustion engines fueled by gasoline toward cleaner electrified cars that could be likely powered by near-zero-emission electricity. During vehicle operation, the fuel consumption rate can be approximated as the sum of a linear function of the vehicle mass and—as a second contribution—the loss in aerodynamic drag; both of them through coefficients that depends on several vehicle characteristics. Strategies approaching weight reduction are actually most effective during transient driving cycles; instead, during constant speed traveling, the vehicles’ fuel efficiency mostly depends on aerodynamic drag forces. Global average fuel consumption of new cars has been too slowly decreased, less than 2% per year, setting around 7 L gasoline equivalent per 100 km (Lge/100 km). To get on track with 2030 targeted 4.5 Lge/100 km, expected standards will become significantly more stringent to achieve efficiency goals. In 2021 the European Commission proposed new CO2 emissions targets for 2030 and 2035 that require CO2 emissions reductions of half actual emissions for cars and vans.
Despite wide literature on life cycle assessment of on-road vehicles considers fossil fuel-powered vehicles, a similar approach is being deployed in the case of electric motor-powered vehicles (considering the energy efficiency of kWh per km traveled) or hydrogen-gas fueled road vehicles (considering hydrogen gas supplied to fuel cell unit per km traveled). Precisely for fully electric cars, the weight of full-electric vehicles is a sum of the mass of the vehicle’s architecture and the mass of battery packs. Thus, its common sense considering that the travel range represents for the consumers the independence from the plug-in commences with battery size. That’s the Achille’s heel of plugged-in vehicles for fossil-fueled vehicle buyers. On the one hand, travel range increases with battery capacity, but on the other hand, larger battery capacity means a heavier vehicle to travel.
While vehicle downsizing improvements in fuel efficiency could be achieved, it appears in contrast with buyers’ needs; thus, reducing size for reducing mass could not target a competitive strategy for automakers.
For this reason, a weight-saving strategy primarily implemented by extensive use of lightweight materials—better to say, by higher specific strength—is, therefore, most promising for pursuing consumers’ satisfaction. Meanwhile, environmental aspects are successfully addressed, as they cannot be deferrable. It has been estimated that a 10% of vehicle weight curbing increases the vehicle’s fuel efficiency by nearly 7%. But the ability to introduce new lightweight materials into vehicles is not a simple remove-and-replace process. Concerns about the impact of material changes on manufacturing lines, supplying network reliability, material cost stability, secure material availability in the marketplace are the main drivers in the material-shift decision process as they all could be more important for automakers than the percentage of weight saved. The potentiality of any lightweight scenarios steered by material replacement rates is based on the actual capability of lighter but weaker materials to safely replace heavier but stronger ferrous alloys, like steels and cast irons. As shown in Table 3, the weight-saving potentialities of lighter material depends on the specific substitution factor for the specific function, and it’s a fact that the materials substitution factor strongly depends on: the physical properties of the material (e.g., its density and its elastic module as key-factor impacting on stiffness-limited design), the shaped part mechanical properties that are strongly dependent on the shaping process employed (e.g., fatigue limit obtained by cold pressure die-casting operations is different from fatigue limit obtained with low-pressurized die-casting), the geometrical constraints fixed by design (e.g., limited space of fixed boundaries to frame architecture).
As it is usual for any comparative analysis, we need a baseline and parameter to use in the calculation of data output to compare. The fuel consumption reduction coefficient is conventionally used as a measure of fuel-mass correlation. It provides the saving in specific consumption achieved through a 100 kg weight-saving. Recent literature set in the range 0.3–0.5 L/(100 km × 100 kg), varying with modeling assumptions, such as vehicle class, car model, driving cycle, the fuel consumption reduction coefficient for internal combustion engine vehicles [19], and values in the range of 0.47–1.17 kWh/(100 km × 100 kg) for electric vehicles [20].
But there is always a “but”; light-weighting is not a stand-alone measure whether its motivation is pollution curbs [21]. The extractive metallurgy (mining and refining) of nonferrous structural metals that are highly reactive toward oxygen like aluminum, titanium, and magnesium is complicated due to their low grade. The high complexity of the ore extraction and the energy-intensive pyrometallurgical or hydrometallurgical processes employed for pure metal refining are critical stages for the potential release of gas, liquid, and solid emissions (i.e., direct pollutant emissions) and for a large amount of CO2 emissions correlated to lots of energy consumed (i.e., indirect pollutant emissions). In the next sections, we’ll go into details, but for the moment, we can summarize by this way:
light nonferrous alloys are the cleaner solution in their usage phase in the transport sector because they can target a consistent weight curb capable of reducing direct emissions at the tailpipe of fossil-fueled vehicles. For internal combustion engine vehicles with average tailpipe emissions near 120 gCO2/km, assuming 2.4 KgCO2 emitted al tailpipe per liter gasoline burned, it can be calculated to reduce by 100 kg onboard vehicle mass, nearly 1.2 kgCO2 is the pollution cut per 100 km traveled.
The direct CO2 curb obtained in the usage phase could be reduced (sometimes nullified) by the sum of pollution (direct and indirect) emitted during the extractive phase, the refining process, and the manufacturing of the lighter products. For example, on average, the greenhouse gases emitted as equivalent CO2 per kg of product manufactured can vary from 2.0 to 2.5 kgCO2eq per each kg of steel made products and 12.0–16.0 kgCO2eq per each kg of aluminum products.
Therefore, a broad vision must encompass the net CO2 emissions over the road vehicle lifespan.
A qualitative scheme representing the green ability of light alloys against heavier metal, such as steel, is depicted in Figure 7. The baseline case (1) represents a reference, for example, a body panel made of galvanized plain carbon steel. For the steel-made product, the total CO2 emitted over the product’s lifespan is the sum of the CO2 (direct and indirect) emitted during the manufacturing stage and the usage phase (traveling). By replacing steel-made products with lighter metal alloy (2), we shall consider more pollutant emissions in the fabricating stage. For this reason, the break-even point T1 versus the baseline scenario (1) could be targeted at the T1 traveled distance. The beneficial effect of weight saving is visible by the gray shaded area from T1 to the expected vehicle lifespan representing the net CO2 curb by lightweight solution. Case (3) represents the use of much lighter material (due to the reduced slope of the line), but with higher CO2 emitted in the manufacturing stage as per the higher linear coefficient of the line (3). In this second scenario, the break-even point switches to the higher T2 mileage. The difference between the two shaded areas represents the net CO2 cut for alternative weight-saving scenarios (2) and (3) compared to the baseline scenario (1).
Three qualitative scenarios for addressing the environmental impact of automotive body panels over the product lifespan.
We refer again to Table 3. On average, you may consider 0.5 the aluminum substitution factor applicable in structural engineering applications, thus 100 kg of steel (that accounts for around 230 kgCO2 for the manufacturing stage) would be potentially replaced by approximately 50 kg of aluminum, which accounts for about 700 kgCO2eq emitted in the manufacturing phase. On the other hand, referring to the schematic representation in Figure 7, aluminum onboard would potentially save 50 kg. Now you can account for nearly 0.2 gramCO2, the pollution cut per kg of weight saved and per each km traveled. Putting onboard an internal combustion engine-powered vehicle 50 kg aluminum to replace steel, we would cut around 5.95 gCO2 per km traveled.
Now, we can proceed with a further step.
The net CO2 emissions from the aluminum-steel switch account for around 470 kgCO2eq emitted in the “cradle-to-gate” phase (including extractive, refining, alloying, and manufacturing stages). Aluminum bodies shall travel onboard around 78,000 km to achieve the break-even point, namely the traveling distance necessary to offset the 470 kgCO2 extra emissions over the steel-made bodies (the baseline scenario). The environmental sustainability of the lighter solution is therefore strongly influenced by the environmental impact of the raw material fabrication phase, mostly the extractive stage. For that reason, intensive use of recycled patterns to limit the use of primary (virgin) metal for such energy-intensive lightweight alloys is the key to excellent sustainable use of light alloys on-road vehicles. And what about magnesium products? Former data about the carbon footprint of magnesium production have indicated an extensive range of 37–47 kgCO2eq/kg of magnesium [22]. With such numbers, many still consider magnesium from a technical point of view an exciting opportunity to implement lightweight strategies but an unsound option for a cross-cutting greening approach. It would be effortless to calculate whether 37 kgCO2eq is the carbon footprint per kg of magnesium to put onboard for replacing 1.6 kg of steel, the CO2 emitted for the manufacturing phase could be “absorbed”, traveling for a lot, above 200,000 km. What are the reasons for such a high carbon footprint of magnesium metallurgy? And shall we consider those numbers still valid today? We’ll try to get an answer to those questions in the following sections.
There are two primary sources of direct and indirect pollutant emissions in the magnesium industry. The first source is correlated to high reactivity with the oxygen of magnesium when molten. In the air, molten magnesium is coated with an oxide layer, which, in contrast to the aluminum oxide layer, cannot protect highly reactive magnesium from oxygen. It is true that molten aluminum, too, is highly reactive with oxygen. However, the alumina layer that instantaneously forms on liquid metal in oxygen is dense and not permeable to further oxygen. The magnesium oxide layer formed during melting is characterized by low density. The Pilling–Bedworth number (PBR) explains the high-temperature oxidation behavior of different metals and their oxides [23] by the ratio between the molar volume of oxide and the molar volume of metal. This volume change is responsible for varying types of surface stress in the oxide layer.
For PBR <1, tensile stress on the oxide layer promotes the layer to crack: that’s what happens in molten magnesium metal. When the PBR is equal to 1 (the better situation with PBR above 1), it represents a safe condition. Sound compressive stresses develop in the thin dense, and stable oxide layer, protecting the molten metal from the outer atmosphere. This happens for iron, aluminum, titanium, and other metals. Unfortunately, this does not apply to magnesium. Emley [24] found that up to 450°C, magnesium forms a protective magnesium oxide layer, but it becomes porous and non-protective over 450°C. The high reactivity with oxygen causes magnesium to easily ignite and endangers the workers and the production line.
The time to ignition depends on the magnesium alloy composition [23, 25]. The real big problem of flame ignition in magnesium is that the oxidation reaction is highly exothermic. Magnesium oxide, white powder, creates a net release of energy in the form of heat. Magnesium ignited burns with flame at more than 2000°C; thus, no crucible can resist if the flame is not extinguished. Furthermore, magnesium atoms are also capable of reducing water to the highly flammable hydrogen gas by the reaction Mg(s) + 2H2O → Mg (OH)2(s) + H2(g); meanwhile, hydrogen gas could be easily ignited by the excess heat given by the magnesium reduction reaction. Magnesium metal can also react with carbon dioxide when present in the atmosphere to promote and sustain magnesium oxide formation accordingly with the following: Mg(s) + CO2 → 2MgO(s) + C(s). For this reason, conventional carbon dioxide fire extinguishers cannot be used for extinguishing magnesium fires (required Class D dry chemical fire extinguisher or covering the fire with sand to remove air source).
This hazardous behavior of magnesium metal is therefore historically correlated to conditions that lead to flame ignition of molten magnesium or magnesium in the form of powder, ribbon, thin strips, and foils, namely those fine structure forms that can be quickly heated up just by relatively low heating source, for example by friction. The highly exothermic oxidation reaction could bring explosive hazards in the presence of moisture when flame ignition is not adequately managed by specific knowledge and expertise. For these reasons, particularly in the presence of molten magnesium (for example, during cast shaping), fluorine-based compounds, such as SF6, for protection of molten magnesium have been used since the 1930s [26]. Before introducing SF6, magnesium was protected with alkali metal halide fluxes, sulfur dioxide (SO2), or even elemental sulfur. The decomposition and following reaction between the fluorine and liquid magnesium keeps separate highly reactive molten magnesium from oxygen. On the one hand, these reactions are thought capable of creating on the molten metal surface an elastic, nonporous protective film containing MgO and MgF2 with a Pilling-Bedworth ratio larger than 1 [27]. On the other hand, significant impact is ascribable to the use of SF6 as a cover gas. The SF6 environmental impact has been calculated to be 22,800 kg CO2eq/kg of SF6 used (in other words, 22,800 times greater than 1 kg of CO2 emitted). Usually, 1 kg of SF6 is required as cover gas per ton of melting magnesium, resulting in a 22,800 kg CO2 equivalent per kilogram of melt magnesium. In Europe, SF6 is banned, while in the United States, its use is optional for the industry.
To present date, banded SF6 has been substituted by less impacting hydrofluorocarbons such as HFC-134a, however, considered a greenhouse gas but much less impacting. A much lower impact is for sulfur dioxide, but it presents limits for its toxicity and its corrosive properties. Usually, a specific blend of them is used. Recently the Novec 612 fluid—registered by the 3 M Company— promises a meager global warming potential (GWP, expressed as kgCO2eq/kg product) of 1, equivalent to CO2. Furthermore, to limit the intense use of protective substances, an old approach recently proposed consists of adding unique alloying elements to improve the ignition resistance of magnesium alloys. In the past, Emley [24] claimed that additions of small amounts of Be, Al, and Ca enhanced the oxidation resistance of solid Mg alloy near the melting point. Such magnesium alloys could be melted in the air if the oxide skin on the ingot was not broken. Sakamoto et al. [28] verified the oxide film on the Mg-Ca consists of a CaO surface thin layer, and just below this layer, a mixture of MgO-CaO exists. To date, the main reason for this protective effect from Ca-O is not clarified. One prominent hypothesis embraces the PBR rule. The higher thermodynamic stability of Ca-O added oxide layer and the kinetics of the diffusion and reaction of Mg ion at and through the oxide layer formed by a mixture of MgO and CaO. When the oxide layer consists of a combination of MgO and CaO, the large volume of CaO might compensate for the shrinkage due to MgO formation. Phenomena involved in retarding flame ignition in Mg alloys systems when alloyed with Ca, Be, and Y has been studied for years but not wholly clarified today.
To summarize, reasonable and sustainable practices are available today in the marketplace to safely treat magnesium and significantly reduce the pollutant emissions in handling molten magnesium in foundries.
But the second source of pollution for the magnesium industry, much more relevant and challenging to control, depends on the vast amount of energy necessary for the magnesium extractive and refining phase, namely the primary magnesium fabrication. There are only a few processes available for the primary magnesium fabrication as they are based on sources of the raw materials by which magnesium can be extracted: raw materials ores (such as dolomite, magnesite, hydroxide mineral brucite, halide mineral carnallite) and brine, which is a mainly a highly concentrated water solution of common salts like hydrated magnesium chloride, magnesium sulfate and magnesium bromide, whose preferred reservoirs are the higher concentrated seawater such as the Great Salt Lake and the Dead Sea. By the way, magnesium raw material sources are considered practically inexhaustible, as magnesium is the 4th abundant metal in the Hearth crust, following iron, aluminum, and silicon. Moreover, inexhaustibility is properly true for seawater reservoirs of magnesium chloride salts. Depending on the type of magnesium source employed, we can distinguish two prominent process patterns to produce magnesium metal: (a) the electrolysis of fused anhydrous magnesium chloride obtained by various refining upstream processes (e.g., dehydration of magnesium chloride brines or chlorination of magnesium oxide) and (b) the thermal reduction of magnesium oxide by ferrosilicon derived from carbonate ores. Today’s electrolytic processes are mainly based on the oldest and original Dow process employing seawater as a primary magnesium source.
The Dow process was developed in the first decade of the twentieth century, as the USA started an extensive magnesium production for military scopes. Electrolytic cells are vessels equipped with multiple steel cathodes and graphite anodes partially submerged in the dehydrated molten salt electrolyte. They generally operate to temperatures from 680 to 750°C to develop the basic reaction: MgCl2 → Mg (liquid metal) + Cl2 (gas). While the Dow process was starting and ramping up US national production, Germans continued investigating carbo-chlorination of magnesite to produce liquid anhydrous magnesium chloride. During those years, when the second peak of magnesium demand rose, Canadian scientist Lloyd Montgomery Pidgeon developed the thermal process for reducing magnesium oxide with silicon in externally heated retorts. Silicon is generally obtained by ferrosilicon ores, and it is produced in an arc furnace, mixed with calcined dolomite, and then briquetted. The briquettes are placed in a retort and heated to extract magnesium vapors condensed at the cold end of the retort with a relatively small diameter. The process is a batch process. It requires metal to be removed from the condensers, slag to be evacuated as a solid, and finally, it is possible to recharge the retort. Thus, the Pidgeon process has reduced the productivity of magnesium per day compared to big electrolytic cells plants. We would simplify the basic reaction as: 2CaO + 2MgO + Si ➔ 2Mg + Ca2SiO4. It is an endothermic reaction, and a large amount of heat must be applied to initiate it and continue.
Therefore, the Pidgeon main environmental problem is the combustible used for firing furnace; oil or gas are commonly used for the scope. Former literature ascribed to oil firing the high environmental impact of polluting emissions, ranging from 37 to 47 kgCO2eq/kg of Mg extracted [22].
Another thermal process, the Bolzano process, like the Pidgeon process, employs the dolomite-ferrosilicon briquettes. Briquettes are stacked on a unique charge support system through which internal electric heating is conducted to the charge. In that case, most carbon emissions are drawn by the indirect carbon emissions of the energy mix used. Depending on the electricity carbon footprint on a local base, the Bolzano process ranges from 13 to 33 kgCO2eq/kg of Mg depending on the local electricity share produced by hydropower [29].
In brief, we can summarize. On the one hand, the Pidgeon process advantage consists of low investments to recoup, fewer constraints on the minimum size to be profitable, short time for facility construction, equipment installation, and plant ramp-up, flexible production. On the other hand, it suffers from low productivity, high labor requirement, and high energy consumption.
But to reply to the big question: Are the environmental concerns about magnesium extractive processes still valid today? It is necessary to ponder data from the most recent life cycle assessment studies committed to an in-depth investigation of magnesium green ability. In 2013, the International Magnesium Association (IMA) published the study “Life Cycle Assessment (LCA) of Magnesium Components in Vehicle Construction” which analyzed the entire life cycle of magnesium components for transport applications [30]. The study addressed primary magnesium production, alloying, component production, use phase, and the end-of-life of magnesium components, particularly for passenger vehicles comparing differences in emissions among Pidgeon process employed in small factories during the first decade of the 2000s with the most recent Pidgeon process practiced in larger plants. The worst numbers in former LCA studies before 2011 addressed massive emissions from small Pidgeon process plants developed in China from the 1990s to 2011. Pollution emissions from small plants significantly decreased following the imposed shutdown of several high pollutant firms, including small magnesium plants, ordered by the Chinese Government 1 month before starting the Beijing Olympic Games to improve air quality. Small factories in the primary magnesium business would have targeted more stringent environmental prescriptions before they could resume production, but several small factories had not restarted production. Survived small plants restarted, at higher operating costs, improving the energy Efficiency with substitution of coal by gaseous fuels, with more efficient re-use of waste heat, and installing additional air treatment equipment.
Therefore, the 2013 LCA analysis published by the International Magnesium Association downscaled the overall average emissions from the Pidgeon process under the improvements mentioned above to 28 kg CO2eq, including all upstream processes [30]. It is worth noticing the magnesium production plant located in Brazil uses a silicothermic process, a modified type of the Bolzano Process. It targeted an excellent result of 10.1 kgCO2eq/kg magnesium.
Alternatively to the Pidgeon process, the big electrolytic plants could have a meager environmental impact, depending on the primary energy source. The Dead Sea Magnesium plant, which produces magnesium from the Dead Sea evaporite deposits in Israel, uses natural gas as an energy supply. The global warming potential of this process is accounted for 17.8 kg CO2eq/kg Mg [30]. As in this electrolysis plant, two main by-products are produced, liquefied chlorine (Cl2) and KCl-rich salt. They can have a wide range of potential uses; thus, they are used as raw materials for other sectors. Credits for their re-use, therefore, contribute to decreasing the global warming potential to 14.0 kg CO2eq/kg magnesium [30].
Since 2017 a new electrolysis plant with a capacity of 100,000 metric tons per annum has been operating in China by the Qinghai Salt Lake Magnesium Co. (QSLM). The QSLM electrolytic magnesium smelter is located at Golmud in Qinghai Province. This process produces pure magnesium from magnesium chloride (MgCl2) brine, an adjacent potash production waste product. The smelter produces low CO2 embedded magnesium metal thanks to energy power used for the complex supplied from regional hydro facilities (75%), solar (9%), and wind, as well as a local thermal power station. With support from the Qinghai Provincial Government and the national Government in Beijing, QSLM has plans to expand the production of pure magnesium alloys from current levels to 150,000 mtpa soon and then to 450,000 mtpa. Adjacent to the electrolytic magnesium smelter, Magontec has constructed a new primary magnesium alloy cast house facility with an output capacity of 60,000 metric tons per annum that will take pure liquid magnesium from the adjacent smelter. Magontec’s plant benefits the QSLM’s energy supply of 75% hydro and nearly 10% solar. The overall greenhouse gas emissions of the electrolysis amount to 8.5 kg CO2eq/kg magnesium. Apart from pure magnesium, the electrolysis of magnesium chloride produces gaseous chlorine. The amount of chlorine produced cannot finally be predicted at this stage of the project, but a chlorine yield of around 2.5 kg per kg of magnesium can be assumed. This by-product is used as feedstock for the nearby PVC plant. Producing 2.5 kg of chlorine usually leads to greenhouse gas emissions of about 3.2 kg CO2eq [30]. Thus, crediting these emissions, which the magnesium electrolysis has saved, leads to overall emissions of 5.3 kg CO2eq/kg of magnesium ingot [30]. The Qinghai plant has not reached its total capacity but is still ramp-up.
It is a fact that government policies of the country in which plants operate play an essential role in the environmental impact of magnesium. The national electricity mix used for plant operations, disposal, and recycling routes and the grade of technical solution development drastically reduce electrolytic routes’ effects. Under the updated LCA data, the following Table 4 recalculates the GWP for the body panel case study (refer to Table 3). GWP for the three options refers to average updated data published in [30]. Finally, since GWP are expressed per unit mass of material used, it is necessary to consider the actual usage of light material for the specific application. Table 4 estimates the kgCO2eq emitted by aluminum and magnesium solution for substituting each kg of steel in the inner door panel for the same function, at equivalent (or higher) stiffness, and equivalent (or higher) denting capability. The calculation method follows:
Baseline | Lightweight solutions | ||
---|---|---|---|
AISI 1045 steel | Aluminum 6061 | AZ31D twin rolled cast sheet, warm formed | |
Substitution factor (SF) | 1.0 | 0.5 | 0.4 |
KgCO2eq emitted for substituting 1 kg of steel with alternative metals for same function, equivalent stiffness, and load (denting) capability (kgCO2eq emitted per kg of material) × SF [kgCO2eq] | 2.3 | 4.91 | 2.02 |
10.83 | |||
Steel parity GWP calculated as (GWP_steel)/(SF): [kgCO2eq/kg] | 2.3 | 4.7 | 3.7 |
Recalculated GWP data for comparative scenarios in manufacturing a lightweight outdoor body panel with light metal alloys.
The last line of Table 2 shows the recalculated GWP for aluminum and magnesium light solutions to the “steel parity” calculated as:
The (2) represents the GWP of metal alloys give parity to body panel made of steel at equal (or higher, as for magnesium solution) stiffness and load capability.
Recycling metals is critical to their overall sustainability. Magnesium retains most of the necessary physical integrity when recycled if it is not contaminated. Remelting and forming of ingots are the main energy requirement for recycling, but generally, secondary production of magnesium ingots requires substantially less energy than primary production [32]. Otherwise, this process’s greenhouse gas emission mainly depends on the selected cover gas; generally, a cumulative 3.6 kgCO2eq/kg of secondary magnesium produced could be released [33].
Today the recycling of magnesium is technologically feasible. Currently, the primary source of magnesium alloy scrap comes from the magnesium die-casting industry (the most common method of fabricating new magnesium alloys parts). Die casting foundries can manage the amount of process scrap in three different ways:
The scrap can be sold on the open market and downgraded for recycling in other sectors, such as steel desulphurization.
The scraps can be recycled internally or externally within a closed-loop system; this could optimize the demand for primary raw material saving up 50% primary magnesium in casting automotive parts, rising to 85% for electronic die-cast products. Among factors that influence the number of recycled scraps and recycling ratio optimization we should consider: the amount of material lost in the melting cycle, the number of different components that are cast, the percentage of cast parts that must be rejected during production, the end quality of process scrap, and the recycling operation efficiency all affect the amount of process scrap, and primary magnesium utilized [34].
Remelting of magnesium chips from machining of die castings, considering that, due to high magnesium susceptibility to oxidize and fine forms of chips, chips remelting could produce further dross quantity. For this reason, preliminary treatments are required to eliminate possible lubricants (e.g., aqueous washing treatment, steam treatment). The second treatment in liquid acid pickling solution (deoxidizer) specific for magnesium alloys helps to reduce oxide contamination.
Recent studies [35] successfully validated the no-melting route for recycling magnesium chips by hot forging and extrusion as it is done for aluminum chips.
On the other hand, the processing of end-of-life vehicles is today still not easily practicable and needs technological improvement. Shredded magnesium can be contaminated with iron, nickel, and copper from coatings and fasteners, all of which are detrimental to the corrosion resistance of the metal. Although the low-value markets mentioned above (aluminum alloys and steel desulphurization) can absorb low-quality post-consumer magnesium, options for separating it from other metals are necessary for magnesium structural alloys applications. The main viable option is melting magnesium in contact with molten salt to remove oxides from the liquid metal. This process is today not fully capable of separating magnesium from other metals. Another possibility is metal vapor distillation: due to higher vapor pressure and low boiling point of magnesium compared to aluminum and many other metals.
On the other hand, a too high magnesium-aluminum chemical affinity results in poor separation. A much more viable route is collecting and separating magnesium from the high-quality scraps made of aluminum-magnesium alloys: the beverage can stock (e.g., the aluminum 3xxx series alloys employed for the body, the aluminum 5xxxs series used for edge), and the aluminum 5xxxs series today preferred for body panels of automobiles. To separate magnesium, chlorine gas bubbling through the liquid alloyed metal can remove magnesium by reaction, but such a hydrometallurgy process requires large amounts of chlorine and energy. Further recent advancements in magnesium separation from aluminum alloy scraps focus on electrorefining. It is a process in which metals are purified in an electrolytic cell where the anode is the impure metal, and the cathode is a very pure sample of the metal [36]. To summarize, an efficient recycling route for magnesium by automotive scraps is still an issue. Broad approaches based on the design for corrosion-free assembling and easy disassembling of magnesium parts in the multi-material structure are on track.
One significant value that manufacturers usually give to magnesium is its excellent die-castability resources, compared with aluminum. It is mainly due to very low viscosity in the molten state and reduced (or absent) die-soldering phenomena with steel mold-die that broadly extend mold-dies lifespan. The high castability is one metallurgy factor that allows die-casters to realize large, thin-walled, and complex casting shapes. It is due to a less costly manufacturing process that would replace steel-made components by assembling numerous steel stamped pieces or heavily reinforced plastic members [37]. As magnesium alloys can be cast with thinner walls than aluminum, the lower elastic modulus of magnesium alloys can be compensated using located ribs of thin wall thickness that allow restoring stiffness at required values. Secondly, the lower latent heat for solidification of magnesium compared to aluminum leads to considerably shorter casting cycle times, compensating for the lower heat conductivity of magnesium. For a comprehensive overview of die-casting processes and recent advancements, you may refer to [38], here in the following, shortly resumed. Two main casting processes are available for magnesium, the pressure-assisted cold, and hot-chamber injection, with an alternative represented by low-pressure die casting. In pressurized injection casting processes, high pressure is exerted after the liquid metal injection to compensate for metal shrinkage and remove as much possible air entrapped during the shot sleeve movement that accelerated to pressurize liquid metal into the die. The metal solidifies at high cooling rates (higher for the cold chamber than the hot chamber), leaving a fine-grained material (more satisfactory for the cold-chamber process) with secondary dendrite arm spacing in the range of 5–10 μm. As it is usual for any metal, particularly for magnesium alloys, grain refinement is one primary strengthening mechanism capable of saving good ductility and though properties, generally lower for the common magnesium-aluminum alloys containing more than 3–4% of aluminum. If, on one hand, aluminum promotes a strengthening mechanism based on a solid solution, on the other hand, an excess of aluminum (it is limited up to 9%) produces an almost continuous secondary phase of aluminum enriched—the magnesium aluminide, Mg17Al12. The magnesium aluminide decreases local plastic resources at the alpha-solution grain boundaries, where magnesium aluminide precipitates.
The long tradition of magnesium automotive part die-casting is proper for magnesium manufacturers, as shown in Figure 8, where an example of Meridien’s timeline for automobile products is summarized. Magnesium die-casting is evolving in Mercedes-Benz automatic transmission cases, from the first seven-speed automatic transmission case developed in 2003 (Figure 9) to the current eight-speed transmission case, still manufactured by magnesium alloy.
Meridian product development timeline (courtesy of IMA).
The 2003 case of the 7G-TRONIC, the world’s first seven-speed automatic transmission.
Figure 10a shows the recent magnesium die-cast liftgate inner for the 2017 Chrysler Pacifica Mini-Van realized by Meridian Company with Fiat-Chrysler Automobiles. The liftgate assembly consists of:
Magnesium alloy die-cast internal structure, around 80% of the liftgate at the nominal.
Wall stock of 2.3 mm, 20% with localized ribbing and thick patches.
Aluminum wiper bracket.
Two-piece aluminum outer skin.
(a) Diecast liftgate inner by Meridien (courtesy of IMA), 1450 mm wide, 1210 mm in height, the mass of 6.9 kg, (b) Strut bar Audi A8 (courtesy of IMA).
An AM60B alloy has been used due to elongation, strength, castability, and energy-absorbing properties. The magnesium casting allows replacing seven steel stampings, including reinforcements in hinge & latch areas, two plastic pieces, joining technologies. In the final assembly, a powder coat was applied to all structures to prevent galvanic corrosion problems. Figure 10b shows the new die-cast strut bar of Strut bar for Audi A8 realized by Stihl Magnesium. In Figure 11, several magnesium-made parts have been recently put onboard vehicles.
Recent die cast parts from magnesium industry [courtesy of GF Casting Solutions]: (a) Porsche Control Box Cover, made of MgAl4RE4 alloy, 2.6 kg weight, realized by multistage process (casting, stamping, machining), then assembled; (b) E-vehicle upper door frame alloy made of AM 50 alloy, 2.9 kg weight, realized by multistage process (casting, punching, machining, e-coating); (c) Ranger Rover Front End & Cross Car beam made of AM60 alloy, 6.0 kg weight realized by the multistage process then assembled (casting, machining, stamping); (d) Daimler SLK 2 seat back frame, AM 50 alloy by die-casting, 2.6 kg weight (courtesy of GF Casting Solution AG).
Magnesium part manufacturers deploy a long-tradition cumulated in warm and hot deformation processes (Figure 12). Opposite to the common thought about magnesium deformation resources, wrought magnesium alloys are suitable for sheet forming contributing to weight-saving projects in the automotive sector. Indeed, significant drawbacks in magnesium alloys’ sheet forming and deformation processes exist, especially compared to aluminum alloys. Due to its hexagonal structure, to activate enough slip systems for assuring sufficient plasticity, magnesium alloys must be formed above 200°C. Furthermore, the different heat transfer capability compared to aluminum is an issue to consider for optimizing pre and re-heating temperatures in the hot-deformation multistage processes. Extrusion of magnesium alloys is usually carried out in multiple steps, starting with a pre-extrusion of large billets into smaller diameter billets. After the preliminary stage, the billet can be re-heated and subsequently extruded into the final shape. Generally, the pressure per unit volume material extruded is higher than in aluminum alloys. Thus, extrusion speed shall be carefully controlled and optimized for specific magnesium alloy to avoid local melting and local oxidation phenomena, particularly critical for hollow sections extrusion process by porthole dies, as typically employed for aluminum alloys. These aspects are firm limits for semi-finishing and net-shape forming processes, prominently for affordability.
The Chevrolet Corvette SS Race Car, 1957, made of magnesium-formed panels.
But on the other hand, warm deep drawing is also possible for magnesium alloys, as for aluminum alloys; in the range of 100–180°C thin sheet of 0.5 mm approximately can be drawn, with precise temperature control and at a lower speed [39]. The recent application of magnesium sheets we can find in the literature illustrates the successful use of a novel Mg-Zn-Ca-Zr alloy in sheet form produced by twin-roll casting. This alloy has been used to manufacture a Volkswagen Passat decklid magnesium-made that saved half 6 kg of the original 12 kg steel weight [40]. Large magnesium components can also be produced by die casting (see Figure 13).
(a) The Porsche window frame realized by AM50 magnesium alloy with multi process stages (casting, laser cutting, machining), finally coated and joined; (b) The Aston Martin cover door made AM50 with multi-stage process (Casting, Stamping, Flattening) [courtesy of GF Casting Solutions AG].
Net-shape semi-solid forming has attracted automakers with alternate attention since the middle 1990s. The net-shape semi-solid forming is possible for magnesium alloys thanks to its thixotropic state realized when vigorously sheared in a semi-solid state. Shearing reduces the viscosity of the slurry mass to a similar value of the liquid metal, providing similar (sometimes better) castability of the liquid form. Still, the semi-solid state allows shaping with lower latent heat in the mass; this creates advantages for shorter casting cycles than die-casting (depending on chosen semisolid process) lower metal shrinkage to compensate, and consequently near-net shaping. The industrial application of semi-solid net-shaping in the magnesium industry commenced in the early 1980s with the Dow Chemical Company. Dow Chemical patented the Thixomolding technology based on the architecture of plastic injection molding machinery for injecting magnesium alloys in the semi-solid state into a mold die.
Further advantages of injection molding of magnesium alloys are that this technology’s highly complex shaping capability allows for more innovative design concepts and a multi-body-material concept design. Direct assembly of different parts during injection molding in a molded-in technique, thanks to inserting aluminum parts directly in the tool. As a semi-solid process, less energy is consumed by the Thixomolding apparatus; the power energy is estimated to be on the order of 12–24% lower than the total energy required by a conventional casting process. An additional benefit is that the Thixomolding product cycle employs inert gas, usually argon, to protect magnesium feedstock from oxidation once introduced in the hopper in particulate and solid forms (pellets or chips) [41]. However, it is worth noticing that current die-casting processes align with the environmental sustainability of the Thixomolding process thanks to much more environmentally friendly cover gases mixtures today used instead of the banded SF6. With relevant advantages of the Thixomolding process in net-shaping part of high complexity in a single shot, two are the most drawbacks acknowledged by part manufacturers. The high price and the limited number of suppliers of chip or pellet forms of magnesium alloys, namely the material feedstock of Thixomolding machinery, and the maximum clamping force exerted during the metal injection into mold dies. Clamping forces of 2700–6500 kN generally allow the production of thin flat surfaces (0.8 mm, not possible by high pressure die-casting) such as that for tablet terminals, notebook computers, electronics, sports goods. Instead, the interest of the automotive sector is to even thicker and wider structural components with a weight of over 2 kg. This would require more giant machines with increased clamping forces over 8000 kN [41].
The historical and current primary market for structural applications of magnesium alloys is high-pressure die-cast parts. We find those components in the automobile’s powertrain, chassis, or body areas. Depending on the type of structural part to shape, key technical features that need to target are the safe-at-break behavior avoiding fast-fracture failure modes, sufficient toughness (i.e., minimum impact energy to rupture and fracture toughness), specific strength, corrosion resistance, high-temperature resistance, or creep resistance (for powertrain applications). From the manufacturing point of view, the requirements addressed shall target affordable production cost, which merges fixed and variable costs, derived from the accounting of investment costs (machinery and tools, energy, labor, etc.) and operating costs (raw material cost, trimming, machining, coating costs, etc.) to recoup.
Specifically, in automotive assemblies, corrosion concerns are crucial. Today high purity versions of magnesium alloys show corrosion properties comparable to aluminum die casting alloys, but galvanic corrosion problems persist when magnesium parts have to be assembled with different materials. Therefore, advancements in coating techniques are the basis for safely combining magnesium parts with other materials. High ductility magnesium alloys are of interest to the automotive sector. Advancements in alloying are crucial for the correct choice of the structural ability of magnesium material. The higher creep resistance of Mg-Al-Si, the AS series, acknowledged by Germans during WII, is allowed by Si addition which forms fine and hard Mg2Si particles along the grain boundaries to help retard grain boundary sliding. The remarkable grain-refining ability of zirconium in the Mg-Zn-Zr series alloys allows high strength and ductility for use either at elevated temperatures or for energy-absorbing applications, however at a higher cost due to Zr. The ZE series achieved further mechanical properties in the die-cast part with Mg-Rare Earth-Zn-Zr casting alloys. RE elements (La, Ce, etc.) are added as they are active during aging treatment by promoting high-temperature stable precipitates with a strengthening effect. The costly Magnesium-Yttrium casting alloys, the WE series, containing approximately 4–5 wt.% Y, exhibit high strength with good creep resistance at temperatures up to 300°C and superior corrosion resistance (comparable to some aluminum-based casting alloys). Furthermore, the WE43 and the Elektron 21, a proprietary magnesium-based casting alloy containing neodymium, gadolinium, and zinc developed by Magnesium Elektron (today part of Luxfer MEL Technology), passed stringent flammability tests of Federal Aviation Administration FAA-FAR 25.853 Part 25, Appendix F, Part 2 Modified Seat Cushion Test. Both alloys did not burn when melted, or they are self-extinguished.
More cost-efficient production routes for sheet products are believed to create new opportunities for the automotive market segment. Considerable efforts have been directed at innovative developments of global efforts in expanding the manufacturing capabilities of magnesium sheets through the twin-roll casting process route, offering many benefits, including a reduction in the number of processing steps and energy savings [42].
Finally, last but not least, die-casting and semisolid process design strategies are similar to those employed for injection molding of structural plastics. But, in general, plastic designs require thicker sections than magnesium die-castings. Both materials allow complex shapes with ribs to enhance stiffness (Figure 14), but magnesium die-castings need more minor material for these features than plastics. As a result, magnesium die-castings can be designed more efficiently (less volume, less weight, more significant feature variation) and offer a higher degree of definition than comparable plastic designs, superior mechanical properties, and the capability to integrate several functional design features, material recyclability. The latter feature is not of minor importance, being automakers sensitive to recyclability resources of material used for car manufacturing. Although the material price-based approach leads to the obvious choice of plastics, complex and large parts could present unforeseen internal costs to the product line, negatively impacting final product marketability. A whole approach cost also considers the impact on a company’s internal costs structure and the value-added needs of the next customer in the product chain, up to and including the end-user. In a total system cost strategy, the benefits of using magnesium tend to outweigh the lowest material price strategy. This is typical for products like instrument panel structures. The benefits of higher stiffness, elongation, toughness, and design flexibility allow the magnesium part to readily integrate many features in a one-piece to be fully assembled and quickly installed into the vehicle with weight-saving up to 50% compared to plastic designs.
Magnesium AM 50 die cast front center console for Audi A8, high stiffness, no machining and all connection and fixing points are intergrated (courtesy of GF Casting Solutions).
An interesting overlap of cast magnesium’s mechanical and physical properties with reinforced plastics, primarily strength, and density, would drive the material switch. In the interior design of automotive vehicles today, large bodies are made of non-fully recyclable plastics. Thus, other potentialities for magnesium die-casting and injection molding could be redesigning today’s plastic structural components with recyclable and more robust magnesium metal.
In this chapter, we tried to resume the magnesium for lightweight approach over the past, till today. Hopefully, but not exhaustively, this was tentative to answer where the magnesium industry is going. We must not forget the past, learning lessons that are still valid today. However, we must consider some new factors, mainly based on the magnesium trade, were unknown in the past century or during the golden Age of magnesium peak demand. It is a fact that when going through magnesium history, several articles projected an optimistic future for magnesium.
Forecasting the future of magnesium, especially in current pandemic times, is difficult. Nevertheless, one aspect appears clear by going through past and recent magnesium history: magnesium had survived continuous fluctuating demand; meanwhile, price volatility registered over time depended on the current (nonstructured and programmed) supply capacity over time and trade issues.
Several concerns about magnesium’s potential applications are today derived from false myths. Eighty years ago, Germans and (after) Americans employed magnesium for aircraft weight-saving, but today it is wrongly thought there are few proofs of its capabilities in realizing lightweight bodies. What is clear from the lesson learned in the past (and today) is that it is necessary to dramatically increase the primary magnesium supply with modern low impacting big plants. Looking at recent history, we are probably on the right track. As learned from the past, prices are not volatile once the supply is stable, and the magnesium’s demand (driven by automakers primarily) rises.
The authors appreciated the input and feedback by members of the International Magnesium Association (IMA) founded in 1943 with the mission of promoting the use of magnesium in material selection and to encourage innovative applications.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6602},{group:"region",caption:"Middle and South America",value:2,count:5908},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12542},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132766},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,10,11,14,15,20,22,24"},books:[{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11470",title:"Graphene - Recent Advances, Future Perspective and Applied Applications",subtitle:null,isOpenForSubmission:!0,hash:"409e022e3baf48795e816576a6ee66e3",slug:null,bookSignature:"Dr. Mujtaba Ikram, Dr. Asghari Maqsood and Dr. Aneeqa Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/11470.jpg",editedByType:null,editors:[{id:"286820",title:"Dr.",name:"Mujtaba",surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11519",title:"Vibration Monitoring and Analysis - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"f0d2d82a5c1a49020abf39dc8aabd89d",slug:null,bookSignature:"Dr.Ing. Louay Yousuf",coverURL:"https://cdn.intechopen.com/books/images_new/11519.jpg",editedByType:null,editors:[{id:"322417",title:"Dr.Ing.",name:"Louay",surname:"Yousuf",slug:"louay-yousuf",fullName:"Louay Yousuf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11468",title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",slug:null,bookSignature:"Prof. Yong A Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",editedByType:null,editors:[{id:"203937",title:"Prof.",name:"Yong",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11525",title:"Wood Industry - Past, Present and Future Outlook",subtitle:null,isOpenForSubmission:!0,hash:"ccb74142053c89e0e572ac1c5d717a11",slug:null,bookSignature:"Prof. Guanben Du and Dr. Xiaojian Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/11525.jpg",editedByType:null,editors:[{id:"291315",title:"Prof.",name:"Guanben",surname:"Du",slug:"guanben-du",fullName:"Guanben Du"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11484",title:"Thin Film Deposition - Fundamentals, Processes, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9c10a55203c2f0f7d47c743e6cfa2492",slug:null,bookSignature:"Dr. Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11484.jpg",editedByType:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11512",title:"Photodetectors - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"01d4be8e37c9bf12fd8dcb67c135b29b",slug:null,bookSignature:"Prof. Kuan W. A. Chee",coverURL:"https://cdn.intechopen.com/books/images_new/11512.jpg",editedByType:null,editors:[{id:"206271",title:"Prof.",name:"Kuan",surname:"Chee",slug:"kuan-chee",fullName:"Kuan Chee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11121",title:"Crystal Growth - Technologies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"81f076fab2acb567946aeaa4b7281fc1",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/11121.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11544",title:"Failure Analysis",subtitle:null,isOpenForSubmission:!0,hash:"4ff5277ca99c7d717cc47be22b0d92de",slug:null,bookSignature:"Dr. Gobinath Ravindran",coverURL:"https://cdn.intechopen.com/books/images_new/11544.jpg",editedByType:null,editors:[{id:"145364",title:"Dr.",name:"Gobinath",surname:"Ravindran",slug:"gobinath-ravindran",fullName:"Gobinath Ravindran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11490",title:"Advances in Plate Tectonics",subtitle:null,isOpenForSubmission:!0,hash:"412f2e209ff259650a5a1c7df151e3a7",slug:null,bookSignature:"Dr. Gaurav D. Chauhan, Dr. Subhash Bhandari and Dr. M. G. Thakkar",coverURL:"https://cdn.intechopen.com/books/images_new/11490.jpg",editedByType:null,editors:[{id:"239938",title:"Dr.",name:"Gaurav",surname:"Chauhan",slug:"gaurav-chauhan",fullName:"Gaurav Chauhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11534",title:"Renewable Energy - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"170d1a20a1925b6a29c6146f12ade4a5",slug:null,bookSignature:"Prof. Ahmed M. Nahhas",coverURL:"https://cdn.intechopen.com/books/images_new/11534.jpg",editedByType:null,editors:[{id:"140058",title:"Prof.",name:"Ahmed",surname:"Nahhas",slug:"ahmed-nahhas",fullName:"Ahmed Nahhas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:176},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"452",title:"Economic Sociology",slug:"development-economics-economic-sociology",parent:{id:"65",title:"Development Economics",slug:"development-economics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:24,numberOfWosCitations:55,numberOfCrossrefCitations:44,numberOfDimensionsCitations:63,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"452",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1682",title:"An Ethnography of Global Landscapes and Corridors",subtitle:null,isOpenForSubmission:!1,hash:"f29f609042bf26a006413c690a52bb39",slug:"an-ethnography-of-global-landscapes-and-corridors",bookSignature:"Loshini Naidoo",coverURL:"https://cdn.intechopen.com/books/images_new/1682.jpg",editedByType:"Edited by",editors:[{id:"106389",title:"Dr.",name:"Loshini",middleName:null,surname:"Naidoo",slug:"loshini-naidoo",fullName:"Loshini Naidoo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"31537",doi:"10.5772/34659",title:"Natural Interactions in Artificial Situations: Focus Groups as an Active Social Experiment",slug:"natural-interactions-in-artificial-situations-focus-groups-as-an-active-social-experiment-",totalDownloads:2286,totalCrossrefCites:7,totalDimensionsCites:15,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Jakob Demant",authors:[{id:"101137",title:"Dr.",name:"Jakob",middleName:null,surname:"Demant",slug:"jakob-demant",fullName:"Jakob Demant"}]},{id:"31540",doi:"10.5772/34178",title:"A Service Value Creation Model and the Role of Ethnography",slug:"a-service-value-creation-model-and-the-role-of-ethnography",totalDownloads:2259,totalCrossrefCites:14,totalDimensionsCites:12,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Michitaka Kosaka",authors:[{id:"99047",title:"Prof.",name:"Michitaka",middleName:null,surname:"Kosaka",slug:"michitaka-kosaka",fullName:"Michitaka Kosaka"}]},{id:"31539",doi:"10.5772/34719",title:"Accessing Material Culture by Following Intermediary Objects",slug:"following-intermediary-objects-in-order-to-access-material-culture",totalDownloads:2108,totalCrossrefCites:5,totalDimensionsCites:10,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Dominique Vinck",authors:[{id:"101342",title:"Prof.",name:"Dominique",middleName:null,surname:"Vinck",slug:"dominique-vinck",fullName:"Dominique Vinck"}]},{id:"31534",doi:"10.5772/39248",title:"Ethnography: An Introduction to Definition and Method",slug:"introduction-to-ethnography",totalDownloads:7013,totalCrossrefCites:7,totalDimensionsCites:9,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Loshini Naidoo",authors:[{id:"106389",title:"Dr.",name:"Loshini",middleName:null,surname:"Naidoo",slug:"loshini-naidoo",fullName:"Loshini Naidoo"}]},{id:"31535",doi:"10.5772/36039",title:"Ethnographic Field Notes and Reflexivity",slug:"ethnographic-field-notes-and-reflexivity-",totalDownloads:4408,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Päivi Eriksson, Elina Henttonen and Susan Meriläinen",authors:[{id:"106870",title:"Prof.",name:"Paivi",middleName:null,surname:"Eriksson",slug:"paivi-eriksson",fullName:"Paivi Eriksson"},{id:"108700",title:"Dr.",name:"Elina",middleName:null,surname:"Henttonen",slug:"elina-henttonen",fullName:"Elina Henttonen"},{id:"108701",title:"Prof.",name:"Susan",middleName:null,surname:"Merilainen",slug:"susan-merilainen",fullName:"Susan Merilainen"}]}],mostDownloadedChaptersLast30Days:[{id:"31535",title:"Ethnographic Field Notes and Reflexivity",slug:"ethnographic-field-notes-and-reflexivity-",totalDownloads:4408,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Päivi Eriksson, Elina Henttonen and Susan Meriläinen",authors:[{id:"106870",title:"Prof.",name:"Paivi",middleName:null,surname:"Eriksson",slug:"paivi-eriksson",fullName:"Paivi Eriksson"},{id:"108700",title:"Dr.",name:"Elina",middleName:null,surname:"Henttonen",slug:"elina-henttonen",fullName:"Elina Henttonen"},{id:"108701",title:"Prof.",name:"Susan",middleName:null,surname:"Merilainen",slug:"susan-merilainen",fullName:"Susan Merilainen"}]},{id:"31546",title:"Written Reminiscences and Media Ethnography: Television Creating Worldview",slug:"written-reminiscences-and-media-ethnography-television-creating-worldview",totalDownloads:2889,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Jukka Kortti",authors:[{id:"106727",title:"Dr.",name:"Jukka",middleName:null,surname:"Kortti",slug:"jukka-kortti",fullName:"Jukka Kortti"}]},{id:"31534",title:"Ethnography: An Introduction to Definition and Method",slug:"introduction-to-ethnography",totalDownloads:7014,totalCrossrefCites:7,totalDimensionsCites:9,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Loshini Naidoo",authors:[{id:"106389",title:"Dr.",name:"Loshini",middleName:null,surname:"Naidoo",slug:"loshini-naidoo",fullName:"Loshini Naidoo"}]},{id:"31539",title:"Accessing Material Culture by Following Intermediary Objects",slug:"following-intermediary-objects-in-order-to-access-material-culture",totalDownloads:2108,totalCrossrefCites:5,totalDimensionsCites:10,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Dominique Vinck",authors:[{id:"101342",title:"Prof.",name:"Dominique",middleName:null,surname:"Vinck",slug:"dominique-vinck",fullName:"Dominique Vinck"}]},{id:"31541",title:"Food and Nutrition in Embera Indigenous People",slug:"food-and-nutrition-in-embera-indigenous-people",totalDownloads:2456,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Javier Rosique, Aída Gálvez, María Teresa Restrepo, Luz Mariela Manjarrés and Erika Valencia",authors:[{id:"98472",title:"Dr.",name:"Javier",middleName:null,surname:"Rosique Gracia",slug:"javier-rosique-gracia",fullName:"Javier Rosique Gracia"},{id:"98482",title:"Dr.",name:"Aida",middleName:null,surname:"Galvez A.",slug:"aida-galvez-a.",fullName:"Aida Galvez A."},{id:"107822",title:"MSc.",name:"Maria Teresa",middleName:null,surname:"Restrepo",slug:"maria-teresa-restrepo",fullName:"Maria Teresa Restrepo"},{id:"108064",title:"Ms.",name:"Erika",middleName:null,surname:"Valencia C.",slug:"erika-valencia-c.",fullName:"Erika Valencia C."},{id:"109834",title:"Dr.",name:"Luz Mariela",middleName:null,surname:"Manjarres",slug:"luz-mariela-manjarres",fullName:"Luz Mariela Manjarres"}]}],onlineFirstChaptersFilter:{topicId:"452",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/65711",hash:"",query:{},params:{id:"65711"},fullPath:"/chapters/65711",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()