Abstract
The author of this work basing on her own investigations of AxMO2 cathode materials (A = Li, Na; M = 3d) has demonstrated that the electronic structure of these materials plays an important role in the electrochemical intercalation process. The proposed electronic model of intercalation is universal and has outstanding significance with regard to tailoring the properties of electrode materials to the most efficient application in Li-ion and Na-ion batteries. The paper reveals correlation between electronic structure, transport, and electrochemical properties of layered LixCoO2, LixNi1−y−zCoyMnzO2 and NaxCoO2 cathode material and explains of apparently different character of the discharge/charge curve in LixCoO2 (monotonous curve) and NaxCoO2 systems (step-like curve). Comprehensive experimental studies of physicochemical properties of LixNi1−y−zCoyMnzO2 cathode material (XRD, electrical conductivity, and thermoelectric power) are supported by electronic structure calculations performed using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) to account for chemical disorder. It is found that even small oxygen defects (~1%) may significantly modify DOS characteristics via formation of extra broad peaks inside the former gap leading to its substantial reduction.
Keywords
- lithium and sodium intercalation
- electronic structure
- LixCoO2
- LixNi1−y−zCoyMnzO2
- NaxCoO2
1. Introduction
Lithium or sodium intercalation into layered MO2 transition metal oxides involves both ions and electrons, and can be expressed by the equations:
This reaction involves energy at the level of several eV/atom, which is associated with deep
The many years of the author’s studies of various transition metal compounds: LixTiS2 and NaxTiS2 [1], LixCoO2 [2], NaxCoO2 [3, 4, 5, 6], LixVO2 [7, 8], LixWyV1−yO2 [9], LiNiO2 [10], LixWO3 [11], LixYBa2Cu3O7−δ [12, 13], LixMn2O4 [14, 15], Lix(Co,Ni,Mn)O2 [16], LiNi0.5−yCuyMn1.5O4−δ [17] showed that the electronic structure and transport properties of the cathode material play a significant role in the intercalation process. Experience in the field of ionic and electronic defect structure in transition metal compounds allowed the author to see the phenomenon of intercalation as an ionic-electronic process from a perspective different than the one that is commonly presented in the literature. This became a starting point for the proposition of an original concept of the intercalation process and the related phenomena [3, 14, 18, 19].
For a A/A+/AxMO2-type cell (A = Li or Na) with a cathode material with the concentration of electronic charge carriers in AxMO2 determined by the concentration of intercalated alkaline ions, it can be demonstrated that the variation of the cell’s electromotive force as a function of intercalation degree corresponds to variations of the Fermi level in the cathode material [4, 14]. The electromotive force (E) of a A/A+/AxMO2 cell is the difference in the chemical potential of lithium (sodium) in the cathode and anode (metallic Li or Na) materials:
Since the potential of the A/A+ anode is constant (constant concentration of Li+ or Na+ ions in electrolyte), the variations of electromotive force of the cell can be ascribed to the changes in μA(cathode), i.e. −F·ΔE = ΔμA(cathode). The chemical potential of lithium (sodium) in the cathode material can be represented as a sum of chemical potentials of lithium (sodium) ions and electrons:
Since the chemical potential of lithium (sodium) ions can be expressed as:
thus:
where
The chemical potential of electrons in the cathode material can be identified as the energy of the Fermi level; the changes in the latter are determined by the electronic structure (DOS—density of states) in the vicinity of EF, and can vary in the range of 1 eV or more upon the introduction of electrons during lithium (sodium) intercalation. For a change in lithium (sodium) ion concentration that is of the order of 1 mole (Δ[A+] ~ 1), the change in the chemical potential of lithium (sodium) ions in the cathode material (ΔμA +) is of the order of kBT, i.e. only 0.025 eV at the room temperature (Eq. (5)), while the change in the chemical potential of electrons in the cathode material may be as much as two orders of magnitude higher (ΔμA + < < Δμe). Therefore, the variations of the electromotive force of the A/A+/AxMO2 cell which accompany the intercalation reaction correspond mainly to those in the chemical potential of electrons (i.e. Fermi level variations) of the cathode material. Figure 1 shows the electronic scheme of the A/A+/AxMO2 cell and depicts the difference in the chemical potentials of electrons in the cathode and anode materials and the related electromotive force of the cell. The electrons inserted into the cathode material during intercalation together with an equivalent number of lithium (sodium) ions (Eq. (1)) occupy the available electronic states at the Fermi level and raise it in a way dependent on the profile of the density of states function.

Figure 1.
(a) Density of states of LixMO2 and lithium illustrating difference in chemical potential of electrons and resulting electromotive force of Li/Li+/LixMO2 cell. Expected character of the discharge curve (EMF) of the Li/Li+/LixMO2 cell, depending on the electronic structure of the cathode material (step-like (b) and monotonic (c)).
The character of the density of states function determines the shape of the discharge curve (monotonic or step-like). Figure 1b and c illustrate the correlation between the electronic structure of a cathode material and the nature of its discharge curve. A continuous density of states function in a cathode material leads to a monotonic discharge curve that is beneficial from the point of view of practical application (Figure 1c), while a discontinuous density of states function leads to an adverse, step-like nature of the discharge curve (Figure 1b). In addition, the localization of electronic states that accompany the discontinuous density of states function limits the kinetics of the lithium intercalation process, reducing the current density of a cell and making the utilization of the theoretical capacity of a cathode material impossible.
The proposed electronic model of electrochemical intercalation explains both the monotonic and step-like characters of the discharge curve, and allows the anticipation and engineering of the properties of intercalated electrode materials. The presented model also demonstrates that a method of studying the Li+/LixMO2 cathode potential by measuring the electromotive force of a Li/Li+/LixMO2 cell is an excellent tool with regard to experimental solid state physics, allowing the direct observation of changes in the position of the Fermi level in LixMO2 during “lithium intercalation.” Similar conclusions are valuable for NaxMO2 systems.
Below we present three examples of intercalated transition metal oxides LixCoO2 [5, 20], Lix(Co,Ni,Mn)O2 [21] and NaxCoO2 [3, 4, 5], in which through the intercalation of alkali metal the controlled crossing insulator-metal can be performed, and track changes in the position of the Fermi level as a function of concentration of electrons introduced in the intercalation process (along with alkali ions).
2. LixCoO2
LiCoO2 is currently used as a cathode material in commercial Li-ion batteries, due to, among other advantages, its high voltage. Cycling with upper cut off set at 4.2 V corresponds to deintercalation/intercalation of about 0.5 Li per LiCoO2 formula unit, and gives a specific capacity of about 140 mAh g−1. Deeper deintercalation causes structural instability of the LixCoO2 cathode material, loss of oxygen from the material, and its reactivity with liquid electrolyte [22, 23, 24, 25].
LiCoO2 exhibits hexagonal-type lattice (O3 structure) with

Figure 2.
Hexagonal O3 structure of LiCoO2 with the R-3m space group.
Our results, presented in papers [20], diverge with the mentioned literature data, where it is stated that hex-II phase replaces hex-I phase for the compositions with

Figure 3.
(a) Variations of lattice parameters of hexagonal LixCoO2 phase during deintercalation of lithium, (b) the mole fraction of hex-II phase and (c) changes of z parameter during deintercalation of lithium.
One can see that hex-II phase appears for
In this work, electronic structure calculations for LixCoO2 system were performed using the Green function Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA), which allows to account for chemical disorder [20, 32, 33, 34]. Figure 4 presents such calculations for the stoichiometric LiCoO2 and for the deintercalated LixCoO2 with x = 0.99, 0.97 and 0.6. Electronic structure of the starting LiCoO2 (Figure 4a) consists of valence and conductivity band, separated by an energy gap of the order of 1 eV. The valence states are formed essentially from strongly hybridized

Figure 4.
Electronic structure calculations (KKR-CPA) for starting LiCoO2 and deintercalated LixCoO2 for (a) x = 1, (b) x = 0.99, (c) x = 0.97 and (d) x = 0.6.
What are electronic structure predictions about the properties of LixCoO2 system during deintercalation of lithium i.e. during extraction of electrons?
What about evolution of the Fermi level position and its influence on a character of the OCV curve changes occurring during charge of Li/Li+/LixCoO2 cell?
What about modification of transport properties of LixCoO2 in this process?
For starting, stoichiometric LiCoO2, the Fermi level is situated in the energy gap (Figure 4a), so semiconducting properties should be observed. During deintercalation of lithium, the electrons are extracted from the valence band, and the Fermi level is sharply shifted to a new position in the valence band Figure 4b), while further changes to its placement, occurring during the deintercalation process should be monotonous in a wide range of lithium concentration (Figure 4b–d). Therefore, electrical properties of LixCoO2 should become more and more metallic, due to the shifting of the Fermi level in these regions, where sharp increase of the density of states appears.
In order to verify our electronic structure predictions on transport and electrochemical properties of LixCoO2 system, comprehensive studies of the OCV charge curve and transport properties were conducted. Figure 5 present charge curve (OCV) for LixCoO2. Points denotes lithium concentrations, for which the work of the cathode material was stopped in order to examine its structural properties, conduct NEXAFs measurements, as well as perform electrical conductivity and thermoelectric power studies. Figure 6a and b present temperature dependence of the electrical conductivity and thermoelectric power for LixCoO2 system. Comparison and analysis of Figures 5

Figure 5.
LixCoO2 charge curve (OCV).

Figure 6.
Temperature dependence of (a) electrical conductivity and (b) thermoelectric power for LixCoO2 system.

Figure 7.
(a–d) Electronic structure calculations (KKR-CPA) for LiCoO2 for different
Deintercalation of lithium (related to an extraction of electrons from the valence band) leads to a fast movement of the Fermi level to the valence band, followed by a monotonous changes in a wide range of lithium concentration (monotonous part of the charge curve Figure 5). According to our predictions, electrical properties modify toward metallic-like ones. Only for
Analysis of the electronic structure of LixCoO2 leads to the ascertainment that valence states do not evolve in a regular way with Li concentration (Figure 4a–d). Electronic spectrum for
Figure 8 shows NEXAFS oxygen 1 s spectra of the LixCoO2 samples with lithium concentration

Figure 8.
NEXAFS oxygen 1 s spectra for LixCoO2 samples with lithium concentration x = 1.00, 0.99, 0.98, 0.97, 0.94 and 0.60.
3. LiNi1−y−zCoyMnzO2
To correlate electrochemical properties of LixNi0.65Co0.25Mn0.1O2 and LixNi0.55Co0.35Mn0.1O2 mixed cathode materials with their transport and electronic structure properties, we stopped the work of the cathode material at the characteristic points of the charge curve (EMF, Figure 9a) in order to examine its properties as a function of lithium content.

Figure 9.
(a) EMF curves for Li/Li+/LixNi0.65Co0.25Mn0.1O2 and Li/Li+/LixNi0.55-Co0.35Mn0.1O2 cells. Points 1–14 denote lithium concentration, for which the work of the cathode material was stopped in order to study its physicochemical properties. (b) Unit cell parameters vs. Li content in LixNi0.65Co0.25Mn0.1O2 and LixNi0.55Co0.35Mn0.1O2 cathode materials.
The evolution of a and c parameters during the lithium deintercalation of LixNi0.65Co0.25Mn0.1O2 and LixNi0.55Co0.35Mn0.1O2 oxides are presented in Figure 9b. The a parameter decreases due to oxidation of the transition metal ions (Ni and Co) and c parameter increases due to the increase in electrostatic repulsion between ((Ni,Co,Mn)O2)n sheets. The monotonic changes of the lattice parameters indicate that the crystal structure is maintained during electrochemical deintercalation of lithium. However for lithium content lower than 0.4 mol mol−1, the c parameter starts to decrease and the a parameter starts to increase that is caused due to the structural instability of the deintercalated LixNi0.9−yCoyMn0.1O2 materials in this range (oxygen ions oxidize, leave two electrons and molecular oxygen evolves from the crystal structure). Higher structural stability is observed for oxides with higher nickel content.
The temperature dependences of electrical conductivity for electrochemically deintercalated LixNi0.65Co0.25Mn0.1O2 and LixNi0.55Co0.35Mn0.1O2 oxides are presented in Figure 10a and b. The collected data show that electrical conductivity decreases with decreasing lithium concentration, and it retains its thermally activated character with activation energy of the order of 0.15–0.25 eV in the entire lithium deintercalation range. However for lithium content near xLi = 0.3, the conductivity starts to increase (Figure 10a and b). Figure 11 presents the evolution of DOS for LixNi0.65Co0.25Mn0.1O2−y from KKR-CPA calculations for selected Li content in the presence of oxygen vacancy as low as y = 0.01 [21]. From precise oxygen nonstoichiometry measurements performed for LixNi0.65Co0.25Mn0.1O2−y oxide synthesized in air at the temperature of 850°C and quenched to room temperature, the oxygen nonstoichiometric value (y) could be estimated to be 0.06.

Figure 10.
Temperature dependence of the electrical conductivity of partially deintercalated (a) LixNi0.65Co0.25Mn0.1O2, (b) LixNi0.55Co0.35Mn0.1O2 oxides.

Figure 11.
(a–d) DOS in LixNi0.65Co0.25Mn0.1O2−y for x = 1.0, 0.8, 0.65 and 0.35 when accounting for oxygen vacancy concentration y = 0.01, as calculated by the KKR-CPA method. Total and site-decomposed DOS (per atom) are plotted (see legend). The Fermi energy (EF) is shifted to zero. Extra peaks inside the energy are clearly observed.
Our thermogravimetric studies show a much lower value 0.014. It is found that such defects strongly affect the electronic states particularly in the vicinity of the conductivity band edge, forming three additional DOS peaks inside the gap. Due to high degree of chemical disorder on transition metal sites, the observed ‘defect’ states are quite broad on comparing with the corresponding results in LixCoO2 [20]. Interestingly, the KKR-CPA calculations deliver two important results: (i) the ‘defect’ states mostly contain d-states of Ni, Co and Mn, not p-states of O and, (ii) the DOS details evolve remarkably with varying Li content. Hence, it is difficult to estimate whether, in such a disordered system, the Fermi level could fall into the real gap at any Li concentration, but surely the oxygen vacancies substantially reduce the energy gap seen on DOS of LiCoO2 [5, 20] and LixNi0.9−yCoyMn0.1O2 (Figure 11). Thus, the activation character of measured electrical conductivity could be rather related to the pseudo-gap behavior observed on DOS.
When plotting DOS at the Fermi level in the two aforementioned series of oxides (Figure 12a) with varied Li concentrations, we observe the finite values of DOS for all considered compositions with a deep minimum obtained for about 0.5–0.6 Li content. It is worth considering that DOS characteristics should have an important influence on electron transport properties, which are mainly governed by electronic states lying in close vicinity to the Fermi level. Indeed, the measured temperature-dependent electrical conductivity in LixNi0.55Co0.35Mn0.1O2 and LixNi0.65Co0.25Mn0.1O2exhibit rather irregular behaviors with varying Li content (Figure 10), which could be tentatively interpreted by the variable character of the corresponding DOS curves. Such electronic structural behaviors cause both types of charge carriers, electrons and holes, to conduct electrical current in these materials. Furthermore, the character of electrical conductivity curves is mainly guided by competition between semiconducting like vs. metallic-like character.

Figure 12.
(a) Variation of DOS at EF in LixNi0.65Co0.25Mn0.1O2−y and LixNi0.55Co0.35Mn0.1O2−y and (b) conductivity with varying Li content, when accounting for oxygen vacancy concentration y = 0.01.
Figure 12b shows variation of electrical conductivity of LixNi0.65Co0.25Mn0.1O2−y and LixNi0.55Co0.35Mn0.1O2−y in function of lithium content at room temperature. Strong correlation between the electronic structures of layered LixNi0.9−yCoyMn0.1O2−y cathode materials and its electron transport properties was evidenced with characteristic minimum for 0.5 < xLi < 0.6 for both DOS and electrical conductivity (Figure 12).
The observed variations of the electromotive force of the Li/Li+/LixNi0.9−yCoyMn0.1O2−y cells are in good agreement with the calculated variations of chemical potential of electrons (i.e. the Fermi level variations) of the LixNi0.9−yCoyMn0.1O2−y cathode material. Figure 13 presents calculations of relative variation of Fermi energy (with respect to x = 1) with Li content. It is interesting to note that difference of the Fermi energy for the whole range of Li content is at the order of 1.5 eV, which corresponds well to the variation of EMF of the Li/Li+/LixNi0.9−yCoyMn0.1O2−y cell (Figure 9a).

Figure 13.
Relative variation of Fermi energy (with respect to x = 1) with Li content of LixNi0.55Co0.35Mn0.1O2−y and LixNi0.65Co0.25Mn0.1O2−y cathode materials.
4. NaxCoO2−y
Sodium analogue to LiCoO2 has been extensively investigated as a potential candidate Na-intercalation-type cathode material [6, 35]. NaxCoO2 exhibits different electrochemical behavior, comparing to LiCoO2 and shows subtle, but important differences in the crystal structure. NaxCoO2 presents step-like character of the discharge curve, which in according to electronic model of intercalation is surprising for the metallic system.
P2-type structure of NaxCoO2 (x ≈ 0.7) consists of Na layers, which are stacked between layers of edge sharing CoO6 octahedra (Figure 14) In this structure sodium occupies two different types of trigonal prismatic site: Na(1), which shares only faces with two CoO6 octahedra of adjacent slabs, whereas Na(2) shares edges with the six surrounding CoO6 octahedra. In addition, it can be expected that Na(1) site is less favorable energetically, due to a stronger electrostatic repulsion from the Co ions, but simultaneous occupation of Na(1) and Na(2) sites results in a larger average Na-Na distance, comparing to a situation when only Na(2) sites are occupied. Changes of Na(1) to Na(2) ratio as a function of Na content give rise to a multitude of different types of Na ordering motifs, which can be grouped in three main pattern types: row-like, zigzag-like and droplet-like [36, 37].

Figure 14.
Two different crystallographic sites of sodium in the NaxCoO2−y structure.
NaxCoO2 is a potential material for thermoelectric applications due to high absolute values of thermoelectric power and metallic-type character of the electrical conductivity [38]. Sodium cobaltate exhibits superconductivity only in a narrow range of sodium content (1/4 <
The structural properties of the CoO2 layers in NaxCoO2 and LixCoO2 significantly affect electronic structure of these compounds. Generally, it can be stated that two-dimensional metallic CoO2 layers, in which cobalt exists as Co3+ and Co4+ ions, which are separated by intercalating Li+ or Na+ ions layers, are a source of specific electronic, magnetic and electrochemical properties. Near
It may be a consequence of a relatively large size of sodium cations (0.104 nm), which gives rise to a dramatic expansion of thickness of CoO2 layers in NaxCoO2. According to the differences between geometry of CoO2 layers in sodium and lithium system for 0.5 <

Figure 15.
(a) Step-like character of an OCV discharge curve for the Na/Na+/Na0.7CoO2−y cell, (b) evolution of lattice parameters with sodium content, (c) partial occupancy of two Na+ sites, (d) parameter
Below we present the results of electronic structure calculations of NaxCoO2−y performed by KKR-CPA technique (the Korringa-Kohn-Rostoker method combined with coherent potential approximation) [3, 32, 33], which take into account the chemical disorder in the system arising from the presence of oxygen vacancies and the two different crystallographic sites of sodium. Our calculations [3] show that there is no effect of sodium sublattice ordering on the electronic structure of Na0.75CoO2. For four different crystallographic configurations of sodium, only very small changes in the shape of the valence band are observed, and no extra defect bands in the energy gap. Figure 16b presents the influence of the non-stoichiometry in oxygen sublattice on the electronic structure of Na0.75CoO2−y, calculated by KKR-CPA method. The combination of defects at two different O sites leads to three extra defect bands in the energy gap, formed essentially from 3d-Co and 2p-O states. To put this into context: for strictly stoichiometric Na0.75CoO2, there are no extra defect bands in the energy gap (Figure 16a).

Figure 16.
KKR-CPA total and site-decomposed DOS for Na0.75CoO2 without oxygen vacancies (a) and nonstoichiometric Na0.75CoO1.99 (b).
Figure 17a presents an electronic model of a Na/Na+/NaxCoO2−y cell, with the proposed electronic structure of NaxCoO2−y (KKR-CPA calculations), which explains the step-like character of the discharge curve. In this structure, one can distinguish a valence band separated from the conductivity band by a 0.7 eV gap. Interestingly, three additional defect bands (denoted as “defect band 1,” “defect band 2” and “defect band 3” in Figure 17a) are located within the band gap. Electrons introduced during sodium intercalation quickly fill the nearly fully-occupied valence band and then fill the three subsequent defect bands (Figure 17a); this is accompanied by an abrupt increase in the Fermi level and, in consequence, the step-like discharge curve (Figure 17b). Comprehensive studies of electrical conductivity, thermoelectric power, and electronic specific heat as well as oxygen K-edge NEXAFS, carried out at characteristic points of a Na/Na+/NaxCoO2−y cell’s discharge curve, i.e. on “potential pseudo-plateaus” as well as potential jumps (Figure 17b), confirmed the anomalous, non-monotonic evolution of transport properties as a function of sodium content: metallic/semiconducting/metallic/semiconducting/metallic/semiconducting/metallic, which indicates anomalous, peaked density of states near the Fermi level and confirms the theoretical calculations of the electronic structure for this material. Figure 17c presents the measured temperature characteristics of electrical conductivity, documenting that a cathode material with a composition corresponding to a “potential pseudo-plateau” (e.g. samples no. 2–6), for which the Fermi level is located within a “defect band 1,” exhibits metallic properties (cf. Figure 17a–c). Similarly, samples no. 7–9, at another “potential pseudo-plateau,” also exhibit metallic behavior, although not as pronounced as the previous ones, due to the location of the Fermi level within the narrower “defect band 2” (Figure 17a). Sample no. 11, at the subsequent “potential pseudo-plateau,” for which the Fermi level is located within the residual “defect band 3,” exhibits even worse electrical conductivity, almost at the localization edge (Figure 17a–c). On the other hand, the cathode material with xNa at potential jumps (samples no. 10 and 12, Figure 17b) corresponding to the location of the Fermi level in the energy gap of the density of states (Figure 17a), exhibits an activated character above 300 K, with an activation energy of 0.1 eV (Figure 17c, inset). This activation energy corresponds to the band gap between adequate bands in Figure 17a and the potential jumps of 0.1 V on the discharge curve (Figure 17b).

Figure 17.
(a) Electronic diagram of a Na/Na+/NaxCoO2−y cell and a schematic diagram of the density of states for NaxCoO2−y calculated via KKR-CPA method [
In order to support the electronic nature of step-like character of the discharge curve of a Na/Na+/NaxCoO2−y cell, electronic specific heat was measured for NaxCoO2−y at characteristic points of the cell’s discharge curve, as in the case of the studies of electrical conductivity and thermoelectric power. The Sommerfeld coefficient,

Figure 18.
(a) Density of states for NaxCoO2−y from KKR-CPA [
The above-presented new and globally unique results unambiguously document the “strictly electronic nature” of the step-like character of the discharge curve of a Na/Na+/NaxCoO2−y cell. The obtained results prove that the source of the step-like discharge curve of a Na/Na+/NaxCoO2−y cell is the anomalous electronic structure of the NaxCoO2−y cathode material, induced by oxygen nonstoichiometry and two sodium crystallographic sites. They refute the current understanding of the principles of operation of lithium and sodium batteries, which assumes that mainly the ordering of the alkaline component and its mobility in the lithium or sodium sublattice plays a major role in the batteries parameters.
The author demonstrate that electronic structure “engineering” is a method suitable for controlling the properties of cathode materials by controlling its density of states and changing the character of the discharge curve from the unfavorable, step-like shape to the monotonic one via the modification of and control over the density of states function of a cathode material. The author has already obtained preliminary results that indicate the possibility of adjusting the properties of a cathode material via the modification of the electronic structure of NaxCoO2−y performed by substitution of cobalt with manganese (NaxCo1−zMnzO2−y). The electronic structure calculated for this system reveals a shift of the Fermi level deeper in the valence band; as a consequence of this shift, its evolution during the electrochemical deintercalation/intercalation of sodium takes place within the valence band, resulting in a monotonic, favorable character of the discharge/charge curve for an Na/Na+/NaxCo1−zMnzO2−y cell (Figure 19).

Figure 19.
(a) Na0.75CoO1.99 and step-like character of a discharge curve for Na/Na+/NaxCoO1.99. (b) Density of states of Na0.75Co0.7Mn0.3O2 and a monotonic character of a discharge curve for Na/Na+/NaxCo0.7Mn0.3O2 [
Acknowledgments
The project was funded by the National Science Centre Poland under UMO-2015/19/B/ST8/00856 and UMO-2016/23/B/ST8/00199 grants and Polish Ministry of Science and Higher Education under project AGH No. 11.11.210.911. This work was carried out using infrastructure of the Laboratory of Materials for Renewable Energy Conversion and Storage, Centre of Energy AGH.
References
- 1.
Than D, Molenda J, Stokłosa A. Correlation between electronic and electrochemical properties of LixTi1+yS2. Electrochimica Acta. 1991; 36 :1555-1560 - 2.
Molenda J, Stokłosa A, Baṃk T. Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ionics. 1989; 36 :53-58 - 3.
Molenda J, Baster D, Molenda M, Swierczek K, Tobola J. Anomaly in the electronic structure of the NaxCoO2−y cathode as a source of its step-like discharge curve. Physical Chemistry Chemical Physics. 2014; 16 :14845-14857 - 4.
Molenda J, Baster D, Gutowska MU, Szewczyk A, Puźniak R, Tobola J. Electronic origin of the step-like character of the discharge curve for NaxCoO2−y cathode. Functional Materials Letters. 2014; 7 - 5.
Molenda J, Delmas C, Hagenmuller P. Electronic and electrochemical properties of NaxCoO2−y cathode. Solid State Ionics. 1983; 9 :431-435 - 6.
Molenda J, Baster D, Milewska A, Świerczek K, Bora DK, Braun A, et al. Electronic origin of difference in discharge curve between LixCoO2 and NaxCoO2 cathodes. Solid State Ionics. 2015; 271 :15-27 - 7.
Molenda J, Stokłosa A. Electronic structure and electrochemical properties of VO2. Solid State Ionics. 1989; 36 :43-52 - 8.
Gȩdziorowski B, Kondracki Ł, Świerczek K, Molenda J. Structural and transport properties of Li1+xV1−xO2 anode materials for Li-ion batteries. Solid State Ionics. 2014; 262 - 9.
Molenda J, Bąk T. Effect of tungsten on the electrical and electrochemical properties of the LiyWxVO2 cathode. Physica Status Solidi. 1993; 135 :263-271 - 10.
Molenda J, Wilk P, Marzec J. Structural, electrical and electrochemical properties of LiNiO2. Solid State Ionics. 2002; 146 :73-79 - 11.
Molenda J, Kubik A. Transport properties and reactivity of tungsten trioxide. Solid State Ionics. 1999; 117 :57-64 - 12.
Molenda J, Stokłosa A, Bak T. Transport properties of YBa2Cu3O7−y at high temperatures. Physica C: Superconductivity and Its Applications. 1991; 175 :555-565 - 13.
Molenda J, Bak T, Stoko̵sa A. Influence of lithium on the electronic structure of YBa2Cu3O7−δ.Physica C: Superconductivity and Its Applications. 1993; 207 :147-158 - 14.
Molenda J, Marzec J, Świerczek K, Ojczyk W, Ziemnicki M, Molenda M, et al. The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel. Solid State Ionics. 2004; 171 :215-227 - 15.
Molenda J, Marzec J, Świerczek K, Pałubiak D, Ojczyk W, Ziemnicki M, et al. The effect of 3d substitutions in the manganese sublattice on the electrical and electrochemical properties of manganese spinel. Solid State Ionics. 2004; 175 :297-304 - 16.
Molenda J, Marzec J. Functional Cathode Materials For Li-ion Batteries - Part III: Potential Cathode Materials LixNi1−y−zCoy MnzO2 and LiMn2O4. Functional Materials Letters. 2009; 2 :1-7 - 17.
Milewska A, Kondracki L, Molenda M, Bakierska M, Molenda J. Structural, transport and electrochemical properties of LiNi0.5−yCuyMn1.5O4−δ spinel cathode materials. Solid State Ionics. 2014; 267 :27-31 - 18.
Molenda J. Electronic Processes in Electrode Materials of AxMX2-Type. Physica Status Solidi. 1984; 122 :591-598 - 19.
Molenda J. Material problems and prospects of Li-ion batteries for vehicles applications. Functional Materials Letters. 2011; 4 :107-112 - 20.
Milewska A, Świerczek K, Tobola J, Boudoire F, Hu Y, Bora DK, et al. The nature of the nonmetal–metal transition in LixCoO2 oxide. Solid State Ionics. 2014; 263 :110-118 - 21.
Molenda J, Milewska A, Zajaṃc W, Rybski M, Tobola J. Correlation between electronic structure, transport and electrochemical properties of a LiNi1−y−zCoyMnzO2 cathode material. Physical Chemistry Chemical Physics. 2017; 19 :25697-25706 - 22.
Belov D, Yang M-H. Failure mechanism of Li-ion battery at overcharge conditions. Journal of Solid State Electrochemistry. 2008; 12 :885-894 - 23.
Maleki H, Deng G, Anani A, Howard J. Thermal stability studies of Li-Ion cells and components. Journal of the Electrochemical Society. 1999; 146 :3224-3229 - 24.
Dahn JR, Fuller EW, Obrovac M, Von Sacken U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics. 1994; 69 :265-270 - 25.
Chen Z, Lu Z, Dahn JR. Staging phase transitions in LixCoO2. Journal of the Electrochemical Society. 2002; 149 :A1604-A1609 - 26.
Van der Ven A, Aydinol MK, Ceder G, Kresse G, Hafner J. First-principles investigation of phase stability in LixCoO2. Physical Review B. 1998; 58 :2975 - 27.
Marianetti CA, Kotliar G, Ceder G. A first-order Mott transition in LixCoO2. Nature Materials. 2004; 3 :627-631 - 28.
Ménétrier M, Saadoune I, Levasseur S, Delmas C. The insulator-metal transition upon lithium deintercalation from LiCoO2: Electronic properties and 7Li NMR study. Journal of Materials Chemistry. 1999; 9 :1135-1140 - 29.
Ohzuku T, Ueda A. Solid-State redox reactions of LiCoO2 (R3̅m) for 4 volt secondary lithium cells. Journal of the Electrochemical Society. 1994; 141 :2972-2977 - 30.
Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin. 1980; 15 :783-789 - 31.
Chebiam RV, Kannan AM, Prado F, Manthiram A. Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochemistry Communications. 2001; 3 :624-627 - 32.
Kaprzyk S, Bansil A. Green’s function and a generalized Lloyd formula for the density of states in disordered muffin-tin alloys. Physical Review B. 1990; 42 :7358-7362 - 33.
Stopa T, Kaprzyk S, Tobola J. Linear aspects of the Korringa–Kohn–Rostoker formalism. Journal of Physics. Condensed Matter. 2004; 16 :4921-4933 - 34.
Bansil A, Kaprzyk S, Mijnarends PE, Tobola J. Electronic structure and magnetism of Fe[3−x]V[x]X (X = Si, Ga, and Al) alloys by the KKR-CPA method. Physical Review B. 1999; 60 :396-412 - 35.
Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nature Materials. 2011; 10 :74-80 - 36.
Meng YS, Hinuma Y, Ceder G. An investigation of the sodium patterning in NaxCoO2 (0.5 < = x < =1) by density functional theory methods. The Journal of Chemical Physics. 2008; 128 :104708 - 37.
Hinuma Y, Meng YS, Ceder G. Temperature-concentration phase diagram of P2-NaxCoO2 from first-principles calculations. Physical Review B. 2008; 77 :224111 - 38.
Lee M, Viciu L, Li L, Wang Y, Foo ML, Watauchi S, et al. Large enhancement of the thermopower in NaxCoO2 at high na doping. Nature Materials. 2006; 5 :537-540 - 39.
Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian RA, Sasaki T. Superconductivity in two-dimensional CoO2 layers. Nature. 2003; 422 :53-55 - 40.
Banobre-Lopez M, Rivadulla F, Caudillo R, López-Quintela MA, Rivas J, Goodenough JB. Role of doping and dimensionality in the superconductivity of NaxCoO2. Chemistry of Materials. 2005; 17 :1965-1968 - 41.
Hertz JT, Huang Q , McQueen T, Klimczuk T, Bos JWG, Viciu L, et al. Magnetism and structure of LixCoO2 and comparison to NaxCoO2. Physical Review B. 2008; 77 :75119 - 42.
Baster D, Zajac W, Kondracki Ł, Hartman F, Molenda J. Improvement of electrochemical performance of Na0.7Co1−yMnyO2−δ cathode material for rechargeable sodium-ion batteries. Solid State Ionics. 2016; 5 :213
Notes
- Precise measurements of potential at the plateau indicate its decrease with sodium content.