\r\n\tThus, we call for research and review papers on the chemistry and physics of dyes, pigments, and their intermediates, including chemical constituents, spectroscopic aspects, surface, solution, crystal formation, photochemical, and ecological or biological properties. The book will be of interest to a wide variety of researchers worldwide whose work involves various fields of activity such as dyes and pigment synthesis, imaging, sensor, energy, medicine, polymers, food product, toxicological properties, etc.
",isbn:"978-1-83768-114-3",printIsbn:"978-1-83768-113-6",pdfIsbn:"978-1-83768-115-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"fcd069956c2e931195925b19a74ce9a3",bookSignature:"Dr. Brajesh Kumar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12081.jpg",keywords:"Heterocycles Pigments, Azo, Nitro, Indigo, Alizarin, Chromophores, Chromophores, Photochemical, Sulphonation, Diazotisation, UV-Vis Spectroscopy, Metal-Ligand",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 19th 2022",dateEndSecondStepPublish:"June 16th 2022",dateEndThirdStepPublish:"August 15th 2022",dateEndFourthStepPublish:"November 3rd 2022",dateEndFifthStepPublish:"January 2nd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"19 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Brajesh Kumar has worked as a faculty member in various universities in India, Ecuador, and South Korea. He has published numerous SCI/SCIE/Scopus research articles and is an active reviewer of more than 50 Journals. Dr. Kumar is a member of the American Chemical Society, the Indian Society of Chemists and Biologists, and the Indian Science Congress Association and holder of two registered patents. He is included in the top 2% of the scientist list prepared by experts at Stanford University,",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar",profilePictureURL:"https://mts.intechopen.com/storage/users/176093/images/system/176093.JPG",biography:"Dr. Brajesh Kumar is currently working as an Assistant Professor and Head in the Post Graduate Department of Chemistry, TATA College, Chaibasa, India. He received a Ph.D. in Chemistry from the University of Delhi, India. His research interest is in the development of sustainable and eco-friendly techniques for (a) nanoparticles synthesis and their applications for environmental remediation, (b) active films of organic solar cells, (c) nanomedicine, (d) sensors, (e) natural product extraction, purification, and analysis,(f) natural polymers, (g) peptide chemistry, (h) microwave and ultrasound-assisted organic synthesis and (i) organic synthesis. Dr. Brajesh Kumar has been credited for different national and international fellowships and he has also worked as a faculty member in various universities of India, Ecuador, and South Korea. He has also published numerous SCI/ SCIE/ Scopus research articles (h index = 28, Citations 2690) and is also an active reviewer of more than 50 Journals. He is also included in the top 2% of the scientist list prepared by experts at Stanford University, USA.",institutionString:"TATA College, Kolhan University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444318",firstName:"Nika",lastName:"Karamatic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444318/images/20011_n.jpg",email:"nika@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"64779",title:"Studying Growth and Vigor as Quantitative Traits in Grapevine Populations",doi:"10.5772/intechopen.82537",slug:"studying-growth-and-vigor-as-quantitative-traits-in-grapevine-populations",body:'
1. Introduction
In 1865, Mendelian studies gave birth to genetics as a science. The Mendelian model accurately explains inheritance for qualitative traits, with discontinuous distributions. But, what happens with quantitative, continuous traits, like growth or vigor? These quantitative, polygenic, complex traits reveal the expression of many genes with small but additive effects. The part of the chromosome where these genes are clustered is called quantitative trait loci or QTLs.
The main economic interesting traits, like production, growth, and vigor, have quantitative distributions and respond to QTLs. In addition, as they are being controlled by many genes, similar phenotypes may have different allelic variations, or plants with the same QTLs may have very different phenotypes in different environments. Additionally, the epistatic effect, caused by allelic combinations of different genes—meaning that the expression of a certain gene may affect the expression of another—adds variations in the final expression of the phenotype.
Sax [1] was the first to describe the theory of QTL mapping. Later, Thoday [2] suggested that it was possible to apply the well-known concept of segregation of simple genes, to linked QTL detection. The vital participation of molecular markers that have been developed through the years allowed improving the technique, permitting, in many cases, the identification of a certain gene or few genes responsible for the quantitative phenotypic variation [3]. In a very elegant thesis, Donoso Contreras [4] adopts the “needle in the hay” analogy to picture the difficulty in finding, in a whole genome, one gene with quantitative effect. QTL analysis allows dividing the hay into several “bunches of hay” and systematically looking for the “needle.”
QTL analysis links two types of information—phenotypic data (measurements) and genetic data (molecular markers)—in an attempt to explain the genetic bases of variations in complex traits [5, 6]. This analysis allows linking certain complex phenotypes to certain regions in the chromosomes. The original premise is to discover locus by co-segregation of the phenotypes with the markers.
Two things are essential for QTL mapping. In the first place, two contrasting parents for a certain trait are crossed, and a segregating population must be obtained. Later, genetic markers that distinguish the two parental lines are involved in the mapping. In this sense, molecular markers are preferred as they will rarely affect the studied trait. The markers linked to a QTL that influences the character or trait of interest will segregate with the trait (in high-frequency, lower recombination rate), while the non-linked markers will segregate separately (high recombination). For highly heterocygous species, like grapevines, to obtain pure homocygous lines is almost impossible, and the F1 progenies that do segregate are feasible to be studied. This progenies are called pseudo F1 progenies.
There are three statistic methodologies for the detection of a QTL: single marker analysis, simple interval mapping (SIM), and composite interval mapping (CIM). In the first case, single marker analysis, the technique is based on ANOVA and simple linear regression. It is simple and easy to do, not needing a genetic map as it analyzes the relation between each marker with the phenotype. On the other hand, SIM uses a genetic map to define the interval among adjacent pairs of linked markers [7]. Finally, CIM is combined with SIM for a single QTL in a given interval with multiple regression analysis of associated markers to other QTLs, including additional genetic markers or cofactors that control the genetic background. This is the most efficient and effective approach [8]. The results of QTL analysis are presented in terms of logarithm of the odds (LOD) scores or probabilities [9]. Strictly, a QTL is considered significant when its LOD score is higher than the LOD score calculated by permutation tests [10]. After localizing the QTL, the explained variability is calculated by means of the average values of the phenotypes of the genetic groups of the QTL, in the position of the map with maximum LOD score [3].
1.1 Vigor as a quantitative trait
Vigor is considered the genotype’s propensity to assimilate, store, and/or use nonstructural carbohydrates for producing large canopies, and it is associated with intense metabolism and fast shoot growth [11, 12]. Carbon assimilation (A) turns to be the vital mechanism that makes growth possible. For A to occur, CO2 must diffuse into the leaf mesophyll, through opened stomata. The trade-off of C assimilation is loss of water from the leaf to the atmosphere. This inevitable water loss through opened stomata (and the depreciable diffusion through cuticle) constitutes transpiration (E). This means that A and stomatal conductance (gs) are tightly correlated [13] and stomata are directly responsible for optimizing E vs. A [14].
Growth involves cell expansion and cell division [15]. Cell expansion takes place when cell walls deform under the action of tensile forces, generally caused by turgor [16]. The plant water uptake capacity is influenced by the hydraulic conductance (kH) of the roots which in turn confers different hydration and turgor to the canopy [17, 18], conferring different growth levels by cellular extension [19]. Keller [20] found that kH adapts to support canopy growth and carbon partitioning but may limit shoot vigor in grapevines. These differences in kH that account for variation in growth among genotypes have a genetic correlate. Marguerit et al. [21] detected quantitative trait loci (QTL) for E, soil water extraction capacity, and water use efficiency (WUE) when studying water stress response of Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier progeny. They observed that their QTLs co-localized with genes involved in the expression of hydraulic regulation and aquaporin activity that directly affect the plant kH, as previously proposed [18].
There is increasing interest in deepening on the genetic basis of vigor and biomass production. It is well stablished that growth and vigor are quantitative traits and their genetic architecture consists of multiple genes with small individual effects. Today, several linkage maps are available, like Syrah × grenache, Cabernet Sauvignon × Riesling, and Ramsey × Vitis riparia [22, 23, 24]. Lowe and Walker concluded that the Ramsey × V. riparia linkage map was a valuable tool with which to examine and map traits like biotic resistance, drought tolerance, and vigor. This map was used to study vigor and map QTLs in relation to this trait.
2. Physiological component of vigor
In 1997, under code 9715, in the University of California, Davis, a cross between Ramsey (Vitis champinii) and Vitis riparia Gloire de Montpellier (Figure 1) was done. The purpose of this cross was to study biotic resistances. Later, it was observed that the population also segregated for vigor and vegetative growth, among other quantitative traits [24]. This allowed the opportunity of inquiring about the genetic and mechanistic bases of this characteristic.
Figure 1.
Two extreme genotypes from the Ramsey (Vitis champinii) and Vitis riparia Gloire de Montpellier. UC Davis, Davis, CA, USA.
This population is a pseudo F1 cross of Ramsey and V. riparia GM. In grapevine, the high heterozygosity makes it impossible to recover pure homocygous lines and obtain F2 crosses or backcrosses. Segregation is possible in pseudo F1 populations. In this way, our F1 from Ramsey and V. riparia GM was obtained with the intention of studying biotic and abiotic resistances and vigor.
One hundred thirty-eight genotypes from a F1 progeny between Ramsey and V. riparia GM were evaluated at UC Davis, California, in the summer of 2014 and 2015. Shoot growth rate (b); leaf area (LA); leaf, shoot, and root dry biomasses (DWL, DWS, DWR); plant hydraulic conductance (kH); root hydraulic conductance (Lpr); stomatal conductance (gs); and water potential (Ψ) were measured as vigor-related traits. Specific leaf area (SLA: LA/leaf biomass) was calculated, and QTL mapping and detection were performed on both parental and consensus maps. A complete description of the techniques and methods used to measure and assess the variables studied is published by Hugalde et al. [25].
Hydraulic variables were not mapped, as they were measured in a smaller number of genotypes given the time-consuming nature of the methods that asses them. However, significant statistics evidenced an important role of root hydraulics in vigor definition [25].
A principal component analysis (PCA) of a subset of 50 genotypes explained 80% of the variability (Figure 2). Component 1 showed strong positive effects of LA, growth rate (b), and root dry weight (DWR), while strong and negative effect was found for specific root hydraulic conductance (Lpr, hydraulic conductance per gram of dry biomass). This negative effect explains that more vigor corresponds to lower Lpr, meaning that smaller plants and smaller root systems tend to be, when considered per biomass weight, more effective in water absorption than vigorous plants. This was also observed by Lovisolo et al. [26] in olive dwarfing rootstocks, Herralde et al. [17] when studying grapevine rootstocks under water stress, and Kaldenhoff et al. [27] with Arabidopsis thaliana and an antisense construct targeted to the PIP1b aquaporin gene. Later, similar results were observed in kiwi plants, where leaf area-specific conductance and gs were both higher in the low-vigor rootstocks [28]. Finally, one more study with two chickpea progenies showed the same type of behavior, being the low-vigor plants the ones with higher root hydraulic conductivity and higher transpiration rates [29]. This higher Lpr in small root systems of low-vigor plants seems to try to compensate the low biomass production, while vigorous plants, which may be less efficient per biomass unit, have bigger root systems, with more biomass accumulation, and in conclusion higher total root hydraulic conductance.
Figure 2.
Principal components analysis of the main phenotypic characters related to vigor under well-watered conditions in 2015. Lpr, root-specific hydraulic conductance; b, stem growth rate; SLA, specific leaf area; DWL, leaf dry weight; DWR, root dry weight; LA, leaf area; LA vs. total biomass, partitioning index. N = 50 [25]. This analysis was carried out with Statgraphics centurion XVI, 16.1.11.
For component 2, positive effects were explained by specific leaf area (SLA) and the partitioning index constituted by leaf area (LA) and total biomass. SLA is an important parameter of growth rate because the larger the SLA, the larger the area for capturing light per unit of previously captured mass. These indices indicate that different genotypes with different vigor also have different partitioning pathways; as for vigorous plants, more LA vs. total biomass can be expected, while for smaller plants, the opposite is expected. However, when comparing dry weights (biomass), low-vigor plants tend to have small canopies and also small root systems. This clearly shows how LA, which depends on leaf biomass and the hydraulic situation (turgor that allows cell expansion), is so different between opposite genotypes. Big plants with higher total plant hydraulic conductance have more leaf area, with respect to their biomasses, than small plants [25].
3. Genetic component of vigor: QTL mapping in a grapevine population
The Ramsey ×V. riparia GM progeny showed transgressive segregation and significant differences between small, intermediate, and big plants. Figure 3 shows vigor (canopy biomass, B) for the complete progeny and the parents, for 2014. Data for 2015 (not shown) showed similar results [25].
Figure 3.
Vigor (canopy biomass) for the complete progeny and the parents for 2014 [25].
For V. riparia GM, during the first year of study, 16 significant QTLs at the chromosome level were found (LOD scores higher than the threshold value calculated after 1000 permutations, for α 0.05), but only three resulted significant genome wide (LOD scores higher than the threshold calculated for the genome). The partitioning indices related to canopy vs. root biomass were significant at the group level and considered putative (Table 1).
Chromosome
Trait
LOD
Chromosome LOD threshold
Explained variance (%)
Genome LOD threshold
1
LA/total biomass
3.3
1.5
11.4
2.6–2.8
LA/DWR
2.13
1.5
7.5
SLA
2.6
1.5
9
LA
2.03
1.6
8
4
LA
3.48
1.6
12
Total biomass
2.15
1.6
8
Canopy
1.93
1.6
7
DWL
2.39
1.7
9
16
DWR/DWS
1.8
1.6
7
DWR
1.96
1.6
7
5
DWR/total biomass
2.45
1.5
8.5
Canopy/total biomass
2.45
1.5
8.5
DWS/total biomass
2.02
1.5
7
Canopy/DWR
2.44
1.5
8.5
19
Stem growth rate (b)
1.55
1.5
6
Table 1.
QTLs for the V. riparia GM parental map in 2014 [25].
Bold letter indicates genomewide significance for the trait.
For LA vs. total plant biomass and SLA, QTLs explaining 11.4 and 9% of variance were found in chromosome 1, next to a putative QTL for LA. For LA, another QTL, explaining 12% of total variance, was found in chromosome 4.
During the second year of study and mapping, the parental map of V. riparia GM showed five QTLs, significant at the chromosome level (Table 2). This time, chromosomes 4 and 16 showed once more QTLs for traits related to biomass partitioning and LA. This result allowed us to have good confidence about these QTLs, previously considered as putative, but found in two independent mapping processes. On the other side, for variables like SLA and growth rate, new QTLs were found during 2015.
Chromosome
Trait
LOD
Chromosome LOD threshold
Explained variance (%)
Genome LOD threshold
7
LA/total biomass
1.95
1.6
7
SLA
2.08
1.6
8
15
Stem growth rate (b)
2
1.3
7
2.6–2.8
16
DWS/total biomass
1.63
1.3
6
4
LA/total biomass
2.32
1.7
9
Table 2.
QTLs for parental V. riparia GM map in 2015.
Bold letter shows significant traits for 2014 and 2015, related to LA.
For the parental Ramsey map (Table 3), during 2014, the first year of mapping, seven putative QTLs were found. LA/total biomass, SLA, and partitioning indices were mapped. No QTLs for LA, growth rate, canopy, or total biomass could be detected.
Chromosome
Trait
LOD
Chromosome LOD threshold
Explained variance (%)
Genome LOD threshold
13
LA/total biomass
2.05
1.4
7.5
2.7–2.8
LA/DWR
2.28
1.4
8
SLA
1.45
1.3
5
DWS/total biomass
1.47
1.4
5
14
DWL/total biomass
2.21
1.9
8
DWS/DWL
1.93
1.8
7
DWR/DWL
2.05
1.9
7
Table 3.
QTLs para el mapa de Ramsey para 2014.
QTLs for parental Ramsey map in 2014.
During the second mapping, in 2015, Ramsey showed 21 QTLs (Table 4), among which four were genome-wide significant, being all the rest considered as putative (significant at the chromosome level). Among these putative QTLs, it is worthy to mention that the mapped traits were LA, growth rate, canopy, and total biomass, also found in the Riparia map. In addition, one of the putative QTLs corresponded to shoot biomass (DWS), also found in chromosome 14, in 2014. The four genome-wide significant QTLs were found in chromosomes 1 and 19 of the Ramsey map, corresponding to partitioning variables like DWR/DWL, DWR/total biomass, canopy/total biomass, and LA/total biomass. This last trait, which explains 11% of the phenotypic variance, has almost the same biological meaning as SLA, as it represents the possibility of the plant to transform biomass from its “whole body,” into sunlight-receiving screen, for photosynthesis. This variable was mapped in chromosome 19, along with SLA, probably evidencing that it could be possible that the same genes encode for both traits.
Chromosome
Trait
LOD
Chromosome LOD threshold
Explained variance (%)
Genome LOD threshold
14
DWS
2.23
1.7
8
Canopy
1.83
1.7
7
LA
1.91
1.8
7
Number of leaves
2.25
1.8
8
Growth rate b
2.25
1.7
9
9
DWR
2.23
1.5
8
Total biomass
1.62
1.4
6
6
DWR/total biomass
1.6
1.6
6
Canopy/total biomass
1.73
1.5
6
Canopy/DWR
2.08
1.7
8
2.5–2.8
1
Canopy/DWR
2.43
1.6
9
DWR/DWS
2.38
1.6
9
DWR/DWL
2.68
1.6
10
DWR/total biomass
2.86
1.6
10
Canopy/total biomass
2.86
1.7
10
19
SLA
2.05
1.5
8
LA/total biomass
3
1.4
11
8
DWS/DWL
1.52
1.3
5
17
DWS/DWL
1.52
1.2
5
4
DWS/total biomass
2.33
1.6
9
LA/total biomass
1.89
1.7
7
Table 4.
QTLs for the parental Ramsey map in 2015.
Bold letter shows genomewide significant traits and LA related traits.
Consensus maps of both mappings are shown in Tables 5 and 6.
Chromosome
Trait
LOD
Chromosome LOD threshold
Explained variance (%)
Genome LOD threshold
1
LA/total biomass
3.39
2.8
12
4
SLA
3.23
2.8
11
13
LA
2.8
2.8
10
4
LA
3.67
2.7
12.5
3
Canopy
2.95
2.5
10
DWS/DWL
2.64
2.4
9
DWL/total biomass
2.64
2.5
9
DWL
3.82
2.5
13
Total biomass
3.04
2.5
10.4
11
LA
2.9
2.7
10
5
DWR/DWL
2.92
2.4
10
DWR/total biomass
3.38
2.5
11.5
Canopy/total biomass
3.38
2.6
11.5
Leaf density
3.41
2.5
12
10
Canopy/DWR
2.85
2.6
10
7
Leaf density
3.65
2.7
12.5
Table 5.
QTLs for consensus maps for 2014.
Bold letters show traits related to LA.
Chromosome
Trait
LOD
Chromosome LOD threshold
Explained variance (%)
Genome LOD threshold
6
DWR
2.83
2.8
10
3
LA
2.75
2.6
10
1
DWR/DWL
3.16
2.8
11
DWR/total biomass
2.82
2.8
10
4.2
Canopy/total biomass
2.82
2.8
10
17
DWS/total biomass
2.81
2.6
10
19
LA/total biomass
4.28
2.7
15
Table 6.
QTLs for consensus map (2015).
Bold letters show genomewide significant traits.
Consensus map from 2014 (Table 5) showed significant QTLs at the chromosome level, but not genome wide. There was positive interaction in chromosomes 5 and 7 for leaf density and in chromosomes 5, 4, and 13 for LA, variables that were not mapped in the parents. In these consensus maps, significant QTLs were also mapped in chromosomes 3, 10, and 11 for canopy biomass (what we consider vigor), LA, and biomass partitioning (canopy/DWR).
Negative interaction was also found in chromosome 13 of Ramsey. LA/total biomass, LA/DWR, SLA, and DWS/total biomass were mapped in the parental map but were not found in the consensus map.
With regard to the consensus map of 2015 (Table 6), many QTLs that were not mapped in 2014 were mapped this time. Six QTLs were found to be significant at the chromosome level, while only one was significant genome wide. In chromosome 19, one QTL for LA/total biomass, also found in Ramsey, explained 15% of total variance.
As observed in 2014, negative interaction was also found in 2015. This time, DWS, canopy, leaf number, growth rate, total biomass, canopy/DWR, DWR/DWS, SLA, DWS/DWL, and DWS/DWL were mapped in the parental map of Ramsey, but were not found in consensus map. The same happened for SLA and growth rate in reference to the V. riparia GM parental map that showed QTLs for these traits, but were not found in consensus.
Figures 4–9 show the linkage map of Ramsey and V. riparia GM [24], the 19 chromosomes and the approximate localization of the QTLs mapped in consensus maps. In green, QTLs were found in the first year, 2014. In red, QTLs were found in the second mapping, from 2015. QTL mapping was carried out with JoinMap/MapQTL 6 2003–2018, Kyazma B.V.
Figure 4.
Consensus linkage map from Ramsey and Riparia Gloire de Montpellier. Chromosomes 1–3. In green, QTLs mapped in 2014. In red, QTLs mapped in 2015.
Figure 5.
Consensus linkage map from Ramsey and Riparia Gloire de Montpellier. Chromosomes 4–6. In green, QTLs mapped in 2014. In red, QTLs mapped in 2015.
Figure 6.
Consensus linkage map from Ramsey and Riparia Gloire de Montpellier. Chromosomes 7–10. In green, QTLs mapped in 2014.
Figure 7.
Consensus linkage map from Ramsey and Riparia Gloire de Montpellier. Chromosomes 11–13. In green, in chromosome 11, QTLs mapped in 2014 for LA.
Figure 8.
Consensus linkage map from Ramsey and Riparia Gloire de Montpellier. Chromosomes 14, 15, and 17. In green, QTLs mapped in 2014. In red, QTLs mapped in 2015.
Figure 9.
Consensus linkage map from Ramsey and Riparia Gloire de Montpellier. Chromosomes 18 and 19. In red, in chromosome 19, the QTLs mapped in 2015.
4. Identifying other quantitative traits in grapevine: QTL maps and underlying phenotypes
One major purpose in grapevine genetics is to identify quantitative loci, and underlying genes, that explain the natural genetic variation of specific traits. The frequent quantitative nature of genetic variation in grapevine requires the use of QTL mapping to understand the genetic architecture of traits. Several maps have been created and studied in grapevine with these purposes. Crosses between contrasting varieties have given birth to several progenies that constitute the basis for QTL/genetic mapping. Agronomic interesting traits like resistances to powdery and downy mildew, Phylloxera, Pierce’s disease, and Xiphinema were studied in V. vinifera complex hybrids, V. cinerea, V. rupestris, and V. arizonica [30, 31, 32, 33, 34, 35, 36, 37]. QTLs related to growth and development were found in progenies like Picovine × Ugni blanc [38], Riesling × Gewurztraminer [39], and Syrah and Grenache [40]. Also, in V. vinifera complex hybrids and V. cinerea, V. rupestris, and V. arizonica, traits related to plant physiology were studied: flowering and ripening dates, flower sex, and mineral deficiencies [21, 30, 31, 32, 41, 42]. Additionally, in Syrah × Pinot Noir, Grzeskowiak et al. [43] detected QTLs related to budburst, flowering beginning, the onset of ripening (véraison), and total fertility, while Bayo Canha [44] studied Monastrell × Syrah in search for QTLs related to phenology, enology-related traits, and productive and morphological traits.
Breeding purposes include a wide spectrum of objectives. Classic breeding programs have searched for biotic and abiotic resistances, as well as production, quality, growth, and developmental characteristics. Genomic studies and genetic mapping can significantly speed up the selection of seedlings with desired traits. Early identification of individuals carrying the desired allele combinations results in decreased maintenance and evaluation costs. The identification of genes and molecular markers underlying specific traits will help accelerate the breeding process, generating new prospects for crop improvement [44].
5. Conclusions
Vigor, a quantitative character, is particularly difficult to address. A large number of variables need to be studied in order to achieve a fine comprehension of the phenomena involved. In our study, we analyzed vigor from a wide physiological view and a genetic mapping approach. The mathematical function that represents growth, called sigmoid, starts with an initial plateau where small effects occur. Later, as these small effects accumulate, and cause successive effects, the function turns exponential. For quantitative characters, where positive feedbacks (typically exponential) can cause large effects, low but statistically significant explanatory levels, like the QTLs found, as well as the physiologic results, may have impressive effects.
It turns interesting to observe that many variables that physiologically showed to be significant in vigor explanation could be mapped and significant QTLs were found for them. The most important ones, SLA, LA, and LA/total biomass, showed to be significant in the PCA analysis as well as for the QTL mapping.
Previous studies bring support to our findings. When mapping the population of Picovine × Ugni blanc, Houel et al. [38] also found a QTL for LA in chromosome 4 of the parental map of ugni blanc and one QTL for LA in chromosome 9 of Picovine. In addition, QTLs related to budbreak explaining 11 and 12% of variation were mapped in chromosomes 4 and 19 in the Riesling × Gewurztraminer population [39], and five QTLs for growth rate were found in linkage groups 4, 10, 15, 17, and 18, in the Syrah and grenache population, altogether accounting for up to 30% of total variance [40]. Moreover, Díaz-Riquelme et al. [45] found that five MIKC genes (that encode for transcription factors with growth and developmental functions in plants) of grapevine were localized in chromosome 1. In our mapping, the major number of QTLs was found in chromosomes 1, 3, 5, 13, and 19, coincident with other studies.
After the QTL mapping, the next step would be to manage the search of candidate genes by saturating the portion of the chromosome that includes the interesting QTL and narrowing the piece of DNA that includes the candidate genes. As an example, by saturating chromosome 19, we could try to find candidate genes for the expression of the relation among LA and biomass production. This would finally support a breeding strategy, where to have a more efficient growing plant could turn to be important.
Vigor in grapevine, as many quantitative traits, appears to have a complex genetic background. This character, beside its biological significance, has a wide agronomical impact, not only related to the plant behavior but also linked to the amount and the quality of the harvest. In this paper, the analysis over a segregating progeny of Ramsey ×V. riparia GM was able to identify several vigor-linked traits with good statistical support. Whereas the effect expected to be explained for each individual trait appears to be small, it will shed light to this complex character.
The phenotyping of segregating progenies constitutes a valuable tool for clarifying the genetic basis of traits of complex nature. An accurate choice of the parameters to be studied is crucial in order to optimize the experimental procedure and data analysis. In consequence, a previous understanding of the physiological basis of a trait of interest, or at least a very well-supported hypothesis, should lead a population genetics study. When these issues are considered, the obtained results would be able to achieve the expected goal.
Acknowledgments
Results shown in this Chapter were supported by INTA EEA Mendoza, Argentina and Viticulture and Enology, UC Davis, CA, USA.
We especially thank Nina Romero, Joaquín Fraga, Andy Viet Nguyen, Cassie Bent, Becky Wheeler, Karla Huerta, Jake Uretsky and Ashley Eustis for their valuable help in assessing and measuring experiments.
\n',keywords:"PCA, QTL mapping, vegetative vigor, biomass partitioning, quantitative trait",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/64779.pdf",chapterXML:"https://mts.intechopen.com/source/xml/64779.xml",downloadPdfUrl:"/chapter/pdf-download/64779",previewPdfUrl:"/chapter/pdf-preview/64779",totalDownloads:888,totalViews:98,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:45,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:"July 2nd 2018",dateReviewed:"November 14th 2018",datePrePublished:null,datePublished:"March 20th 2019",dateFinished:"December 14th 2018",readingETA:"0",abstract:"Vigor is considered as a propensity to assimilate, store, and/or use nonstructural carbohydrates for producing large canopies, and it is associated with high metabolism and fast growth. Growth involves cell expansion and cell division. Cell division depends on hormonal and metabolic processes. Cell expansion occurs because cell walls are extensible, meaning they deform under the action of tensile forces, generally caused by turgor. There is increasing interest in understanding the genetic basis of vigor and biomass production. It is well established that growth and vigor are quantitative traits and their genetic architecture consists of a big number of genes with small individual effects. The search for groups of genes with small individual effects, which control a specific quantitative trait, is performed by QTL analysis and genetic mapping. Today, several linkage maps are available, like “Syrah” × “grenache,” “Riesling” × “Cabernet Sauvignon,” and “Ramsey” × Vitis riparia. This last progeny segregates for vigor and constituted an interesting tool for our genetic studies on growth.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/64779",risUrl:"/chapter/ris/64779",book:{id:"6974",slug:"integrated-view-of-population-genetics"},signatures:"Inés Pilar Hugalde, Summaira Riaz, Cecilia B. Agüero, Hernán Vila,\nSebastián Gomez Talquenca and M. Andrew Walker",authors:[{id:"265804",title:"M.Sc.",name:"Inés",middleName:null,surname:"Hugalde",fullName:"Inés Hugalde",slug:"ines-hugalde",email:"hugalde.ines@inta.gob.ar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"266196",title:"Dr.",name:"Cecilia",middleName:null,surname:"Aguero",fullName:"Cecilia Aguero",slug:"cecilia-aguero",email:"cbaguero@ucdavis.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"266197",title:"Dr.",name:"Sebastián",middleName:null,surname:"Gomez Talquenca",fullName:"Sebastián Gomez Talquenca",slug:"sebastian-gomez-talquenca",email:"gomez.talquenca@inta.gob.ar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"266198",title:"Dr.",name:"Hernán",middleName:null,surname:"Vila",fullName:"Hernán Vila",slug:"hernan-vila",email:"vila.hernan@inta.gob.ar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"266201",title:"Dr.",name:"Summaira",middleName:null,surname:"Riaz",fullName:"Summaira Riaz",slug:"summaira-riaz",email:"snriaz@ucdavis.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"266451",title:"Dr.",name:"Andrew",middleName:null,surname:"Walker",fullName:"Andrew Walker",slug:"andrew-walker",email:"awalker@inta.gob.ar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_1_2",title:"1.1 Vigor as a quantitative trait",level:"2"},{id:"sec_3",title:"2. Physiological component of vigor",level:"1"},{id:"sec_4",title:"3. Genetic component of vigor: QTL mapping in a grapevine population",level:"1"},{id:"sec_5",title:"4. Identifying other quantitative traits in grapevine: QTL maps and underlying phenotypes",level:"1"},{id:"sec_6",title:"5. Conclusions",level:"1"},{id:"sec_7",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics. 1923;8(6):552'},{id:"B2",body:'Thoday JM. Location of polygenes. Nature. 1960;191:368-370'},{id:"B3",body:'Torres AM et al. QTL detection and application to plant breeding. In: La genetica de los caracteres cuantitativos en al mejora vegetal del siglo XXI. España: Sociedad Espanola de Genetica; Sociedad Espanola de Ciencias Horticolas; 2012'},{id:"B4",body:'Donoso Contreras JM. Genética de la introgresión de genes del almendro (Prunus dulcis Mill.) en el melocotonero [P. persica (L.) Batsch]: desarrollo de una estrategia de selección de líneas casi isogénicas (Nils) con marcadores moleculares; 2014'},{id:"B5",body:'Falconer DS, Mackay TF, Frankham R. Introduction to quantitative genetics (4th ed). Trends in Genetics. 1996;12(7):280'},{id:"B6",body:'Lynch M, Walsh B. Genetics and Analysis of Quantitative Traits. Vol. 1. Massachusetts, USA: Sinauer Sunderland; 1998'},{id:"B7",body:'Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121(1):185-199'},{id:"B8",body:'Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994;136(4):1447-1455'},{id:"B9",body:'Boopathi NM. Marker-assisted selection. In: Genetic Mapping and Marker Assisted Selection. Springer; 2013. pp. 173-186'},{id:"B10",body:'Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138(3):963-971'},{id:"B11",body:'Ollat N et al. Vigour conferred by rootstock: Hypotheses and direction for research. Bulletin de l’OIV. 2003;76(869/870):581-595'},{id:"B12",body:'Rebolledo M et al. Phenotypic and genetic dissection of component traits for early vigour in rice using plant growth modelling, sugar content analyses and association mapping. Journal of Experimental Botany. 2015;66(18):5555-5566'},{id:"B13",body:'Wong SC, Cowan IR, Farquhar GD. Stomatal conductance correlates with photosynthetic capacity. Nature. 1979;282(5737):424'},{id:"B14",body:'Rogiers SY et al. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Tree Physiology. 2012;32(3):249-261'},{id:"B15",body:'Polymenis M, Schmidt EV. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes & Development. 1997;11(19):2522-2531'},{id:"B16",body:'Cosgrove DJ. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology. 2005;6(11):850-861'},{id:"B17",body:'De Herralde F et al. Effects of rootstock and irrigation regime on hydraulic architecture of Vitis vinifera L. cv. tempranillo. Journal International des Sciences de la Vigne et du Vin. 2006;40(3):133-139'},{id:"B18",body:'Lovisolo C et al. An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytologist. 2008;180(3):642-651'},{id:"B19",body:'Di Filippo M, Vila H. Influence of different rootstocks on the vegetative and reproductive performance of Vitis vinifera L. malbec under irrigated conditions. Journal International des Sciences de la Vigne et du Vin. 2011;45(2):75-84'},{id:"B20",body:'Keller M. The Science of Grapevines: Anatomy and Physiology. Prosser, WA, USA: Academic Press; 2015'},{id:"B21",body:'Marguerit E et al. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytologist. 2012;194(2):416-429'},{id:"B22",body:'Adam-Blondon A-F et al. Mapping 245 SSR markers on the Vitis vinifera genome: A tool for grape genetics. Theoretical and Applied Genetics. 2004;109(5):1017-1027'},{id:"B23",body:'Riaz S et al. A microsatellite marker based framework linkage map of Vitis vinifera L. Theoretical and Applied Genetics. 2004;108(5):864-872'},{id:"B24",body:'Lowe K, Walker M. Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theoretical and Applied Genetics. 2006;112(8):1582-1592'},{id:"B25",body:'Hugalde I et al. Physiological and Genetic Control of Vigour in A ‘Ramsey’ × ‘Riparia Gloire de Montpellier’ Population. Leuven, Belgium: International Society for Horticultural Science (ISHS); 2017'},{id:"B26",body:'Lovisolo C et al. Expression of PIP1 and PIP2 aquaporins is enhanced in olive dwarf genotypes and is related to root and leaf hydraulic conductance. Physiologia Plantarum. 2007;130(4):543-551'},{id:"B27",body:'Kaldenhoff R et al. Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. The Plant Journal. 1998;14(1):121-128'},{id:"B28",body:'Clearwater M, Lowe R, Hofstee B, Barclay C, Mandemaker A, Blattmann P. Hydraulic conductance and rootstock effects in grafted vines of kiwifruit. Journal of experimental botany. 2004;55:1371-1382'},{id:"B29",body:'Sivasakthi K et al. Chickpea genotypes contrasting for vigor and canopy conductance also differ in their dependence on different water transport pathways. Frontiers in Plant Science. 2017;8:1663'},{id:"B30",body:'Dalbó M et al. Marker-assisted selection for powdery mildew resistance in grapes. Journal of the American Society for Horticultural Science. 2001;126(1):83-89'},{id:"B31",body:'Fischer BM et al. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theoretical and Applied Genetics. 2004;108(3):501-515'},{id:"B32",body:'Welter LJ et al. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L.). Molecular Breeding. 2007;20(4):359-374'},{id:"B33",body:'Krivanek A, Riaz S, Walker M. Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theoretical and Applied Genetics. 2006;112(6):1125-1131'},{id:"B34",body:'Riaz S et al. Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theoretical and Applied Genetics. 2008;117(5):671'},{id:"B35",body:'Riaz S et al. Refined mapping of the Pierce’s disease resistance locus, PdR1, and sex on an extended genetic map of Vitis rupestris × V. arizonica. Theoretical and Applied Genetics. 2006;113(7):1317'},{id:"B36",body:'Roush TL, Granett J, Walker MA. Inheritance of gall formation relative to phylloxera resistance levels in hybrid grapevines. American Journal of Enology and Viticulture. 2007;58(2):234-241'},{id:"B37",body:'Xu K et al. Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theoretical and Applied Genetics. 2008;116(2):305-311'},{id:"B38",body:'Houel C et al. Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC Plant Biology. 2015;15(1):1'},{id:"B39",body:'Duchêne E et al. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theoretical and Applied Genetics. 2012;124(4):623-635'},{id:"B40",body:'Coupel-Ledru A et al. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proceedings of the National Academy of Sciences. 2016;113(32):8963-8968'},{id:"B41",body:'Mandl K et al. A genetic map of Welschriesling × Sirius for the identification of magnesium-deficiency by QTL analysis. Euphytica. 2006;149(1-2):133-144'},{id:"B42",body:'Costantini L et al. Berry and phenology-related traits in grapevine (Vitis vinifera L.): From quantitative trait loci to underlying genes. BMC Plant Biology. 2008;8(1):38'},{id:"B43",body:'Grzeskowiak L et al. Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine. Theoretical and Applied Genetics. 2013;126(11):2763-2776'},{id:"B44",body:'Bayo Canha A. Genetic Analysis of Traits of Interest in Vitis vinifera Using a Progeny of Wine Grapes. PhD thesis. Universidad Politécnica de Cartagena. Colombia: Monastrell x Syrah; 2015'},{id:"B45",body:'Díaz-Riquelme J et al. Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiology. 2009;149(1):354-369'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Inés Pilar Hugalde",address:"hugalde.ines@inta.gob.ar",affiliation:'
Estación Experimental Agropecuaria Mendoza, INTA, Argentina
Department of Viticulture and Enology, UC Davis, USA
Estación Experimental Agropecuaria Mendoza, INTA, Argentina
'},{corresp:null,contributorFullName:"M. Andrew Walker",address:null,affiliation:'
Department of Viticulture and Enology, UC Davis, USA
'}],corrections:null},book:{id:"6974",type:"book",title:"Integrated View of Population Genetics",subtitle:null,fullTitle:"Integrated View of Population Genetics",slug:"integrated-view-of-population-genetics",publishedDate:"March 20th 2019",bookSignature:"Rafael Trindade Maia and Magnólia de Araújo Campos",coverURL:"https://cdn.intechopen.com/books/images_new/6974.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78985-778-8",printIsbn:"978-1-78985-777-1",pdfIsbn:"978-1-83962-089-8",reviewType:"peer-reviewed",numberOfWosCitations:3,isAvailableForWebshopOrdering:!0,editors:[{id:"212393",title:"Prof.",name:"Rafael",middleName:"Trindade",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"265397",title:"Dr.",name:"Magnólia De Araújo",middleName:null,surname:"Campos",slug:"magnolia-de-araujo-campos",fullName:"Magnólia De Araújo Campos"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"429"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"65713",type:"chapter",title:"Introductory Chapter: Population Genetics - The Evolution Process as a Genetic Function",slug:"introductory-chapter-population-genetics-the-evolution-process-as-a-genetic-function",totalDownloads:2339,totalCrossrefCites:0,signatures:"Rafael Trindade Maia and Magnólia de Araújo Campos",reviewType:"peer-reviewed",authors:[{id:"212393",title:"Prof.",name:"Rafael",middleName:"Trindade",surname:"Trindade Maia",fullName:"Rafael Trindade Maia",slug:"rafael-trindade-maia"}]},{id:"64779",type:"chapter",title:"Studying Growth and Vigor as Quantitative Traits in Grapevine Populations",slug:"studying-growth-and-vigor-as-quantitative-traits-in-grapevine-populations",totalDownloads:888,totalCrossrefCites:0,signatures:"Inés Pilar Hugalde, Summaira Riaz, Cecilia B. Agüero, Hernán Vila,\nSebastián Gomez Talquenca and M. Andrew Walker",reviewType:"peer-reviewed",authors:[{id:"265804",title:"M.Sc.",name:"Inés",middleName:null,surname:"Hugalde",fullName:"Inés Hugalde",slug:"ines-hugalde"},{id:"266196",title:"Dr.",name:"Cecilia",middleName:null,surname:"Aguero",fullName:"Cecilia Aguero",slug:"cecilia-aguero"},{id:"266197",title:"Dr.",name:"Sebastián",middleName:null,surname:"Gomez Talquenca",fullName:"Sebastián Gomez Talquenca",slug:"sebastian-gomez-talquenca"},{id:"266198",title:"Dr.",name:"Hernán",middleName:null,surname:"Vila",fullName:"Hernán Vila",slug:"hernan-vila"},{id:"266201",title:"Dr.",name:"Summaira",middleName:null,surname:"Riaz",fullName:"Summaira Riaz",slug:"summaira-riaz"},{id:"266451",title:"Dr.",name:"Andrew",middleName:null,surname:"Walker",fullName:"Andrew Walker",slug:"andrew-walker"}]},{id:"64587",type:"chapter",title:"Weedy Rice: Competitive Ability, Evolution, and Diversity",slug:"weedy-rice-competitive-ability-evolution-and-diversity",totalDownloads:1189,totalCrossrefCites:2,signatures:"Swati Shrestha, Shandrea Stallworth and Te-Ming Tseng",reviewType:"peer-reviewed",authors:[{id:"268014",title:"Dr.",name:"Te-Ming",middleName:null,surname:"Tseng",fullName:"Te-Ming Tseng",slug:"te-ming-tseng"},{id:"268015",title:"MSc.",name:"Swati",middleName:null,surname:"Shrestha",fullName:"Swati Shrestha",slug:"swati-shrestha"},{id:"273965",title:"MSc.",name:"Shandrea",middleName:null,surname:"Stallworth",fullName:"Shandrea Stallworth",slug:"shandrea-stallworth"}]},{id:"64268",type:"chapter",title:"The Research of Population Genetic Differentiation for Marine Fishes (Hyporthodus septemfasciatus) Based on Fluorescent AFLP Markers",slug:"the-research-of-population-genetic-differentiation-for-marine-fishes-hyporthodus-septemfasciatus-bas",totalDownloads:907,totalCrossrefCites:0,signatures:"Yongshuang Xiao, Zhizhong Xiao, Jing Liu, Daoyuan Ma, Qinghua Liu\nand Jun Li",reviewType:"peer-reviewed",authors:[{id:"99828",title:"Prof.",name:"Zhizhong",middleName:null,surname:"Xiao",fullName:"Zhizhong Xiao",slug:"zhizhong-xiao"},{id:"267948",title:"Associate Prof.",name:"Yongshuang",middleName:null,surname:"Xiao",fullName:"Yongshuang Xiao",slug:"yongshuang-xiao"},{id:"275347",title:"Prof.",name:"Jing",middleName:null,surname:"Liu",fullName:"Jing Liu",slug:"jing-liu"},{id:"275348",title:"Prof.",name:"Daoyuan",middleName:null,surname:"Ma",fullName:"Daoyuan Ma",slug:"daoyuan-ma"},{id:"281056",title:"Dr.",name:"Qinghua",middleName:null,surname:"Liu",fullName:"Qinghua Liu",slug:"qinghua-liu"},{id:"281057",title:"Dr.",name:"Jun",middleName:null,surname:"Li",fullName:"Jun Li",slug:"jun-li"}]}]},relatedBooks:[{type:"book",id:"9743",title:"Genetic Variation",subtitle:null,isOpenForSubmission:!1,hash:"86b87245e21cb2af4c3bd568aefbbcb7",slug:"genetic-variation",bookSignature:"Rafael Trindade Maia and Magnólia de Araújo Campos",coverURL:"https://cdn.intechopen.com/books/images_new/9743.jpg",editedByType:"Edited by",editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"75504",title:"Introductory Chapter: Genetic Variation - The Source of Biological Diversity",slug:"introductory-chapter-genetic-variation-the-source-of-biological-diversity",signatures:"Rafael Trindade Maia and Magnólia de Araújo Campos",authors:[{id:"212393",title:"Prof.",name:"Rafael",middleName:"Trindade",surname:"Trindade Maia",fullName:"Rafael Trindade Maia",slug:"rafael-trindade-maia"},{id:"344747",title:"Associate Prof.",name:"Magnólia",middleName:"De Araújo",surname:"de Araújo Campos",fullName:"Magnólia de Araújo Campos",slug:"magnolia-de-araujo-campos"}]},{id:"74809",title:"Genetic Variability through Induced Mutation",slug:"genetic-variability-through-induced-mutation",signatures:"Faisal Saeed Awan, Bushra Sadia, Javaria Altaf, Madiha Habib, Kiran Hameed and Shabbir Hussain",authors:[{id:"174565",title:"Dr.",name:"Javaria",middleName:null,surname:"Altaf",fullName:"Javaria Altaf",slug:"javaria-altaf"},{id:"207896",title:"Dr.",name:"Bushra",middleName:null,surname:"Sadia",fullName:"Bushra Sadia",slug:"bushra-sadia"},{id:"296510",title:"Dr.",name:"Faisal Saeed",middleName:null,surname:"Awan",fullName:"Faisal Saeed Awan",slug:"faisal-saeed-awan"},{id:"323448",title:"Dr.",name:"Kiran",middleName:null,surname:"Hameed",fullName:"Kiran Hameed",slug:"kiran-hameed"},{id:"323449",title:"Dr.",name:"Madiha",middleName:null,surname:"Habib",fullName:"Madiha Habib",slug:"madiha-habib"},{id:"331130",title:"Dr.",name:"Shabbir",middleName:null,surname:"Hussain",fullName:"Shabbir Hussain",slug:"shabbir-hussain"}]},{id:"74216",title:"Adaptive Evolution and Addressing the Relevance for Genetic Improvement of Sago Palm Commodity",slug:"adaptive-evolution-and-addressing-the-relevance-for-genetic-improvement-of-sago-palm-commodity",signatures:"Barahima Abbas",authors:[{id:"323514",title:"Prof.",name:"Barahima",middleName:null,surname:"Abbas",fullName:"Barahima Abbas",slug:"barahima-abbas"}]},{id:"74804",title:"The Sensitiveness of Expected Heterozygosity and Allelic Richness Estimates for Analyzing Population Genetic Diversity",slug:"the-sensitiveness-of-expected-heterozygosity-and-allelic-richness-estimates-for-analyzing-population",signatures:"María Eugenia Barrandeguy and María Victoria García",authors:[{id:"186063",title:"Dr.",name:"María Eugenia",middleName:null,surname:"Barrandeguy",fullName:"María Eugenia Barrandeguy",slug:"maria-eugenia-barrandeguy"},{id:"186560",title:"Dr.",name:"María Victoria",middleName:null,surname:"Garcia",fullName:"María Victoria Garcia",slug:"maria-victoria-garcia"}]},{id:"74239",title:"Genetic Diversity of Coffea arabica",slug:"genetic-diversity-of-em-coffea-arabica-em-",signatures:"Juliano Lino Ferreira, Eveline Teixeira Caixeta, Fernanda Fatima Caniato, Tesfahun Setotaw, Gustavo César Sant’Ana and Leila Maria Ferreira",authors:[{id:"87534",title:"Dr.",name:"Juliano",middleName:"Lino",surname:"Ferreira",fullName:"Juliano Ferreira",slug:"juliano-ferreira"},{id:"110703",title:"Dr.",name:"Tesfahun Alemu",middleName:null,surname:"Setotaw",fullName:"Tesfahun Alemu Setotaw",slug:"tesfahun-alemu-setotaw"},{id:"275651",title:"MSc.",name:"Leila",middleName:null,surname:"Ferreira",fullName:"Leila Ferreira",slug:"leila-ferreira"},{id:"324835",title:"Dr.",name:"Eveline",middleName:null,surname:"Teixeira Caixeta",fullName:"Eveline Teixeira Caixeta",slug:"eveline-teixeira-caixeta"},{id:"324838",title:"Dr.",name:"Fernanda Fátima",middleName:null,surname:"Caniato",fullName:"Fernanda Fátima Caniato",slug:"fernanda-fatima-caniato"},{id:"336511",title:"Dr.",name:"Gustavo César",middleName:null,surname:"Sant'Ana",fullName:"Gustavo César Sant'Ana",slug:"gustavo-cesar-sant'ana"}]},{id:"73657",title:"Potential of Mutation Breeding to Sustain Food Security",slug:"potential-of-mutation-breeding-to-sustain-food-security",signatures:"Arain Saima Mir, Meer Maria, Sajjad Muhammad and Sial Mahboob Ali",authors:[{id:"329068",title:"Dr.",name:"Arain Saima Mir",middleName:null,surname:"Saima Mir",fullName:"Arain Saima Mir Saima Mir",slug:"arain-saima-mir-saima-mir"},{id:"330046",title:"Ms.",name:"Meer",middleName:null,surname:"Maria",fullName:"Meer Maria",slug:"meer-maria"},{id:"330047",title:"Dr.",name:"Sajjad",middleName:null,surname:"Muhammad",fullName:"Sajjad Muhammad",slug:"sajjad-muhammad"},{id:"330048",title:"Dr.",name:"Sial",middleName:null,surname:"Mahboob Ali",fullName:"Sial Mahboob Ali",slug:"sial-mahboob-ali"}]},{id:"74579",title:"Exploring Plant Genetic Variations with Morphometric and Molecular Markers",slug:"exploring-plant-genetic-variations-with-morphometric-and-molecular-markers",signatures:"Bushra Sadia, Faisal Saeed Awan, Fozia Saleem, Javaria Altaf, Abdullah Bin Umar, Muhammad Nadeem, Samra Hameed, Farwa Ashraf and Mariam Nasir",authors:[{id:"207896",title:"Dr.",name:"Bushra",middleName:null,surname:"Sadia",fullName:"Bushra Sadia",slug:"bushra-sadia"},{id:"296510",title:"Dr.",name:"Faisal Saeed",middleName:null,surname:"Awan",fullName:"Faisal Saeed Awan",slug:"faisal-saeed-awan"},{id:"207897",title:"Dr.",name:"Fozia",middleName:null,surname:"Saleem",fullName:"Fozia Saleem",slug:"fozia-saleem"},{id:"326838",title:"Dr.",name:"Javaria",middleName:null,surname:"Altaf",fullName:"Javaria Altaf",slug:"javaria-altaf"},{id:"326885",title:"Ms.",name:"Farwa",middleName:null,surname:"Ashraf",fullName:"Farwa Ashraf",slug:"farwa-ashraf"},{id:"326888",title:"Mr.",name:"Abdullah Bin",middleName:null,surname:"Umar",fullName:"Abdullah Bin Umar",slug:"abdullah-bin-umar"},{id:"326889",title:"Ms.",name:"Mariam",middleName:null,surname:"Nasir",fullName:"Mariam Nasir",slug:"mariam-nasir"},{id:"337891",title:"Mr.",name:"Muhammad",middleName:null,surname:"Nadeem",fullName:"Muhammad Nadeem",slug:"muhammad-nadeem"},{id:"337893",title:"Ms.",name:"Samra",middleName:null,surname:"Hameed",fullName:"Samra Hameed",slug:"samra-hameed"}]},{id:"73671",title:"Genetic Diversity of Fusarium Wilt Disease of Banana",slug:"genetic-diversity-of-fusarium-wilt-disease-of-banana",signatures:"Gilberto Manzo-Sánchez, Marco Tulio Buenrostro-Nava, Carlos L. Leopardi, Mario Orozco-Santos and Mauricio Guzman-Quesada",authors:[{id:"98793",title:"Dr.",name:"Gilberto",middleName:null,surname:"Manzo-Sánchez",fullName:"Gilberto Manzo-Sánchez",slug:"gilberto-manzo-sanchez"},{id:"172036",title:"Dr.",name:"Mario",middleName:null,surname:"Orozco-Santos",fullName:"Mario Orozco-Santos",slug:"mario-orozco-santos"},{id:"322970",title:"Dr.",name:"Marco Tulio",middleName:null,surname:"Buenrostro-Nava",fullName:"Marco Tulio Buenrostro-Nava",slug:"marco-tulio-buenrostro-nava"},{id:"322971",title:"Dr.",name:"Carlos Luis",middleName:null,surname:"Leopardi-Verde",fullName:"Carlos Luis Leopardi-Verde",slug:"carlos-luis-leopardi-verde"},{id:"324778",title:"Dr.",name:"Mauricio",middleName:null,surname:"Guzman Quesada",fullName:"Mauricio Guzman Quesada",slug:"mauricio-guzman-quesada"}]},{id:"73491",title:"Adaptation to Mediterranea",slug:"adaptation-to-mediterranea",signatures:"Jelena M. Milenković, Dijana R. Stojanović and Jelena G. Najdanović",authors:[{id:"214091",title:"Dr.",name:"Jelena G.",middleName:null,surname:"Najdanović",fullName:"Jelena G. Najdanović",slug:"jelena-g.-najdanovic"},{id:"324532",title:"Dr.",name:"Jelena M.",middleName:null,surname:"Milenkovic",fullName:"Jelena M. Milenkovic",slug:"jelena-m.-milenkovic"},{id:"324537",title:"Prof.",name:"Dijana R.",middleName:null,surname:"Stojanovic",fullName:"Dijana R. Stojanovic",slug:"dijana-r.-stojanovic"}]},{id:"73379",title:"Co-Evolution between New Coronavirus (SARS-CoV-2) and Genetic Diversity: Insights on Population Susceptibility and Potential Therapeutic Innovations",slug:"co-evolution-between-new-coronavirus-sars-cov-2-and-genetic-diversity-insights-on-population-suscept",signatures:"Mahmood A. Al-Azzawi and Moustafa A. Sakr",authors:[{id:"238646",title:"Dr.",name:"Mahmood",middleName:"A.",surname:"Al-Azzawi",fullName:"Mahmood Al-Azzawi",slug:"mahmood-al-azzawi"},{id:"329010",title:"Dr.",name:"Moustafa",middleName:null,surname:"Sakr",fullName:"Moustafa Sakr",slug:"moustafa-sakr"}]},{id:"74275",title:"Sequencing of Norovirus in Southern, Nigeria: Prevalent Genotypes and Putative GII.4 Novel Recombinants among Children",slug:"sequencing-of-norovirus-in-southern-nigeria-prevalent-genotypes-and-putative-gii-4-novel-recombinant",signatures:"Favour Osazuwa",authors:[{id:"324660",title:"MSc.",name:"Favour",middleName:null,surname:"Osazuwa",fullName:"Favour Osazuwa",slug:"favour-osazuwa"}]},{id:"73378",title:"Genetic Diversity of Insulin Resistance and Metabolic Syndrome",slug:"genetic-diversity-of-insulin-resistance-and-metabolic-syndrome",signatures:"Sanghoo Lee, Jinwoo Ahn, Jimyeong Park, Hyeonkyun Na, Youngkee Lee, Yejin Kim, Gayeon Hong and Kyoung-Ryul Lee",authors:[{id:"326192",title:"Ph.D.",name:"Sanghoo",middleName:null,surname:"Lee",fullName:"Sanghoo Lee",slug:"sanghoo-lee"},{id:"326442",title:"Dr.",name:"Kyoung-Ryul",middleName:null,surname:"Lee",fullName:"Kyoung-Ryul Lee",slug:"kyoung-ryul-lee"},{id:"329806",title:"Mr.",name:"Jinwoo",middleName:null,surname:"Ahn",fullName:"Jinwoo Ahn",slug:"jinwoo-ahn"},{id:"329808",title:"Ms.",name:"Jimyeong",middleName:null,surname:"Park",fullName:"Jimyeong Park",slug:"jimyeong-park"},{id:"329809",title:"MSc.",name:"Hyeonkyun",middleName:null,surname:"Na",fullName:"Hyeonkyun Na",slug:"hyeonkyun-na"},{id:"329810",title:"BSc.",name:"Youngkee",middleName:null,surname:"Lee",fullName:"Youngkee Lee",slug:"youngkee-lee"},{id:"329811",title:"MSc.",name:"Yejin",middleName:null,surname:"Kim",fullName:"Yejin Kim",slug:"yejin-kim"},{id:"329812",title:"BSc.",name:"Gayeon",middleName:null,surname:"Hong",fullName:"Gayeon Hong",slug:"gayeon-hong"}]},{id:"73391",title:"Genetics in Osteoarthritis Knee",slug:"genetics-in-osteoarthritis-knee",signatures:"Rajeshwar Nath Srivastava, Amar Chandra Sharma, Sudeepti Ratan Srivastava, Saloni Raj and Lavini Raj",authors:[{id:"238561",title:"Dr.",name:"Rajeswar",middleName:"Nath",surname:"Srivastava",fullName:"Rajeswar Srivastava",slug:"rajeswar-srivastava"},{id:"252280",title:"Ms.",name:"Sudeepti R.",middleName:null,surname:"Srivastava",fullName:"Sudeepti R. Srivastava",slug:"sudeepti-r.-srivastava"},{id:"325917",title:"Dr.",name:"Amar Chandra",middleName:null,surname:"Sharma",fullName:"Amar Chandra Sharma",slug:"amar-chandra-sharma"},{id:"325921",title:"Dr.",name:"Saloni",middleName:null,surname:"Raj",fullName:"Saloni Raj",slug:"saloni-raj"},{id:"329970",title:"Ms.",name:"Lavini",middleName:null,surname:"Raj",fullName:"Lavini Raj",slug:"lavini-raj"}]},{id:"73214",title:"Serum Hepcidin Hormone Level and Its Genes Polymorphism",slug:"serum-hepcidin-hormone-level-and-its-genes-polymorphism",signatures:"Safa A. Faraj and Naeem M. Al-Abedy",authors:[{id:"323102",title:"Dr.",name:"Safa",middleName:"A.",surname:"Faraj",fullName:"Safa Faraj",slug:"safa-faraj"},{id:"328693",title:"Dr.",name:"Naeem",middleName:null,surname:"Al- Abedy",fullName:"Naeem Al- Abedy",slug:"naeem-al-abedy"}]},{id:"75740",title:"Palindromic Rheumatism: Biology and Treatment Options",slug:"palindromic-rheumatism-biology-and-treatment-options",signatures:"Ayesha Noor, Ali Raza Ishaq, Fatima Noor, Tahira Younis, Afshan Syed Abbas, Fatima Jalal, Rahmawaty Samad, Sara Mumtaz and Faiza Jabeen",authors:[{id:"80263",title:"Dr.",name:"Fatima",middleName:null,surname:"Jalal",fullName:"Fatima Jalal",slug:"fatima-jalal"},{id:"259738",title:"Dr.",name:"Faiza",middleName:null,surname:"Jabeen",fullName:"Faiza Jabeen",slug:"faiza-jabeen"},{id:"280030",title:"Mr.",name:"Ali",middleName:null,surname:"Ishaq",fullName:"Ali Ishaq",slug:"ali-ishaq"},{id:"333633",title:"Assistant Prof.",name:"Afshan Syed",middleName:null,surname:"Abbas",fullName:"Afshan Syed Abbas",slug:"afshan-syed-abbas"},{id:"345824",title:"Mrs.",name:"Ayesha",middleName:null,surname:"Noor",fullName:"Ayesha Noor",slug:"ayesha-noor"},{id:"345825",title:"Ms.",name:"Fatima",middleName:null,surname:"Noor",fullName:"Fatima Noor",slug:"fatima-noor"},{id:"345827",title:"Dr.",name:"Rahmawaty",middleName:null,surname:"Samad",fullName:"Rahmawaty Samad",slug:"rahmawaty-samad"},{id:"349331",title:"Dr.",name:"Tahira",middleName:null,surname:"Younis",fullName:"Tahira Younis",slug:"tahira-younis"},{id:"353480",title:"Dr.",name:"Sara",middleName:null,surname:"Mumtaz",fullName:"Sara Mumtaz",slug:"sara-mumtaz"}]},{id:"73276",title:"Metagenomics and Pandemic Viruses",slug:"metagenomics-and-pandemic-viruses",signatures:"Paulo Vitor Marques Simas and Clarice Weis Arns",authors:[{id:"325458",title:"Ph.D.",name:"Paulo Vitor",middleName:null,surname:"Marques Simas",fullName:"Paulo Vitor Marques Simas",slug:"paulo-vitor-marques-simas"}]}]}],publishedBooks:[{type:"book",id:"2253",title:"Genetic Diversity in Microorganisms",subtitle:null,isOpenForSubmission:!1,hash:"209e2075adb4614d4061ea69f1cb3c99",slug:"genetic-diversity-in-microorganisms",bookSignature:"Mahmut Caliskan",coverURL:"https://cdn.intechopen.com/books/images_new/2253.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6974",title:"Integrated View of Population Genetics",subtitle:null,isOpenForSubmission:!1,hash:"d0fce1c94e04593f309f807a4620cb39",slug:"integrated-view-of-population-genetics",bookSignature:"Rafael Trindade Maia and Magnólia de Araújo Campos",coverURL:"https://cdn.intechopen.com/books/images_new/6974.jpg",editedByType:"Edited by",editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9743",title:"Genetic Variation",subtitle:null,isOpenForSubmission:!1,hash:"86b87245e21cb2af4c3bd568aefbbcb7",slug:"genetic-variation",bookSignature:"Rafael Trindade Maia and Magnólia de Araújo Campos",coverURL:"https://cdn.intechopen.com/books/images_new/9743.jpg",editedByType:"Edited by",editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7947",title:"The Recent Topics in Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!1,hash:"d77e0df1c9ae7d3721747744650bfcd3",slug:"the-recent-topics-in-genetic-polymorphisms",bookSignature:"Mahmut Çalışkan, Osman Erol and Gül Cevahir Öz",coverURL:"https://cdn.intechopen.com/books/images_new/7947.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10886",title:"Genetic Polymorphisms",subtitle:"New Insights",isOpenForSubmission:!1,hash:"a71558dd7dfd16ad140168409f887f7e",slug:"genetic-polymorphisms-new-insights",bookSignature:"Mahmut Çalışkan",coverURL:"https://cdn.intechopen.com/books/images_new/10886.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"6974",title:"Integrated View of Population Genetics",subtitle:null,isOpenForSubmission:!1,hash:"d0fce1c94e04593f309f807a4620cb39",slug:"integrated-view-of-population-genetics",bookSignature:"Rafael Trindade Maia and Magnólia de Araújo Campos",coverURL:"https://cdn.intechopen.com/books/images_new/6974.jpg",editedByType:"Edited by",editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"75083",title:"The Commercial Value of Mangrove-Based Pigments as Natural Dye for Batik Textiles",doi:"10.5772/intechopen.95341",slug:"the-commercial-value-of-mangrove-based-pigments-as-natural-dye-for-batik-textiles",body:'
1. Introduction
One of the most valuable and potential natural resources in coastal areas of Indonesia is the mangrove forest. With a coastal line exceeding 80,000 km, Indonesia possesses 4.2 million ha total area of mangrove forest [1]. In 2014, the total coverage area of mangrove forest in Indonesia is 4,227,800 ha, which comprises approximately 25.79% global coverage area of mangrove forest [2]. However, mangrove forests in Indonesia continue to be threatened albeit relatively more protected as private sectors, NGOs, and environmental protection communities strive to preserve what is left.
There have been efforts to restore ecological, socio-cultural and socio-economical functions of mangrove forest, particularly in the northern coast of Java Island. One of most common restoration efforts is the replanting of mangrove trees.
Mangunhardjo Village, Urban Community of Mangunhardjo, Mangkang Area, Kecamatan of Tugu, Central Java Province, Indonesia was an area which mostly consisted of brackish water ponds. This area had been impacted by climate change, which caused yearly flood from the overflow of Beringin River and seawater intrusion (rob), reducing the production capacity of the brackish water ponds. The community in this area was affected by this condition, considering the brackish water ponds were the main source of income for many people in the area, as presented in Figure 1. To cope with this adversity, many people in the Urban Community of Mangunhardjo shifted their livelihood.
Figure 1.
The site of Mangunhardjo Village, Urban Community of Mangunhardjo, Mangkang Area, Kecamatan of Tugu, Cental Java Province, Indonesia before mangrove forest restoration (a) and after mangrove forest restoration (b).
Most of the brackish water fish farmers became motorcycle taxi drivers, fragrant oil sellers, drinking water refill providers, fish-based food producers, mangrove tree seeders, etc. Today, what was once brackish water pond area has been turned into a mangrove forest restoration site. The existence of mangrove in the area has met the criteria of mangrove ecosystem. The ecosystem is protected from waves and currents as to support conservation of coastal areas in Semarang [3]. The shift in the socio-economic landscape of the community in Mangunhardjo Village came along with the progress of mangrove forest restoration. Once the restoration has shown viability, many in the community changed their focus on utilizing mangrove as a source of income. The restoration of the mangrove forest has had positive impact to the welfare of its surrounding community. In addition to enhancing the natural beauty and livability of the area and mitigating the negative impact of climate change, mangrove forest can provide a source of income to the surrounding community. Mangrove can provide economic benefit as the mangrove restoration project provide employment opportunity by sustainable planting and selling mangrove seedlings, producing and selling mangrove-based food, sourcing mangrove as basic materials for bioactivator in compost, and processing mangrove waste into natural textile dye.
2. Mangrove tree planting
Due to the decrease in productivity of brackish water pond, the community of Mangunhardjo, Semarang, took part in mangrove forest restoration project. This activity involved almost everyone from all ages in the community. In addition to plating the mangrove used to alleviate ecological stress through enhancing biodiversity by conservation activities, the local community also nurse seedlings to be sold all over the country. Today, ecosystem of mangrove forest and its diverse plant and animal life strives in Mangunhardjo village. Healthy mangrove ecosystem provide shelter and feeding ground for various marine life, such as fish, prawn and crab, which in turn provides additional source of income for the surrounding community.
3. Mangrove-based food
Mangrove fruit can be processed into snacks and food, such as chips, syrup, brownies, klepon, sticks and other kind of snacks. The species used in making food are Lindur (Bruquiera gymnorrhiza), Api-api (Avecennia sp), and Pidada (Sonneratia sp), (Rizhopora sp) Lindur fruit is rich in carbohydrate, higher than that of rice. Mangrove fruit has tannin content, which gives it a bitter taste. To lower its tannin contents, the fruits are boiled or immersing overnight, before they are processed. Boiling or immersion has proven to reduce the tannin content of mangrove fruits by 40%. The fruits are also made into flour, to preserve its quality. Storing mangrove fruits as flours halts its metabolism and giving it a longer shelf life due to the lack of water, making it a viable ingredient for various food.
R Mangrove-based food made and marketed by women of the fishing community of Mangunhardjo village are chips, syrup, sticks, klepon, and cakes, as presented in Figure 2.
Figure 2.
Cookies made from Avecenia mangrove fruit.
4. Mangrove-based bacterial bioactivator for composting
Microorganisms associated with mangrove waste synthesize secondary metabolites similar to their host. These microbes are viable source of new compounds. Symbiont bacteria of mangrove waste are bacteria which thrive in association with mangrove waste. These associated bacteria contribute in the cycle of nutrition of its host and are decomposing agents for the waste. Compounds produced by symbiont bacteria has the potential to be used as precursors for the biosynthesis metabolism of immunity against pathogenic bacteria and other predators [4]. Microbes are the most numerous of all the organisms living on water, and as symbiotes of other organisms [5]. One way that bacteria contributes to its ecosystem is to act as a decomposer in breaking down organic materials such as dead leaves around mangrove plants. Due to bacterial activities, dead mangrove leaves are eventually broken down into nutrition. One of the processes in mangrove ecosystem which significantly contribute to the biodiversity in the water is decomposition, or specifically, the disintegration of mangrove leaves into nutrition. Disintegration is a step in the decomposition process, which in turn will produce important nutrients within the food chain, through the productivity of the surrounding waters [6]. Decomposition bacteria are groups of bacteria with the capability of decomposing other dead microorganisms into its basic building blocks, all of which will return to the environment. These decomposition bacteria are categorized into saprophytic organisms, due to its ability to break down organic compounds in nature. Saprophytic bacteria break down dead plants or animals and remains or waste of other organisms [7, 8]. Mangrove waste is a supply of organic materials to mangrove ecosystems, which maintains the carrying capacity of the surrounding area [9].
Microbes isolated from plants with bioactive compounds have been known to have similar compound to its host and, in some cases, even indicate greater activity than that of its host [10]. A study on symbiont microbes with bioactivator potential found four viable species, namely Pseudomonas sp., Flavobacterium sp., Acinetobacter sp., and Bacillus subtilis. The consortium of the 4 species can act as organic waste decomposer and restore the color and odor of fresh water [11]. The symbiont bacteria from mangrove waste have seen application in bioactivator products which has been used by the community in Urban Community of Tembalang, Semarang, Central Java to process organic waste into compost, as presented in Figure 3 below.
Figure 3.
Liquid Bioactivator products from symbiont bacteria of mangrove waste, which are used in making compost.
5. Using mangrove waste as natural textile dye
The latest development in fashion industry sees a demand for breakthrough from designers and scholars to create textile materials and clothes that are creative, innovative and marketable. Batik, as one of the most sought after fashion products in Indonesia, are mostly made using synthetic dye. Synthetic dye has its advantages, namely its availability, range of colors and the practicality of its application. However, the use of synthetic dye pose health risk of consumers, and even greater threat to the environment. Due to its carcinogenic nature, the use of these dyes in fabric may trigger allergy reaction. The process by which these dyes is made also presents environmental hazards. Therefore, there is an opportunity to reintroduce natural dye as a safer, more environmentally friendly alternative. Batik clothes and fabric made using natural dye have high commercial value because of its artistry, unique colors and the sustainability by which they are made and sourced. The use of natural dye in batik also give impressions of ethnic-look and exclusiveness.
Rhizophora mucronata is one of the potential mangrove species to be used in the production of natural dye. Other than being an important species for the mangrove restoration project in Mangunhardjo village, Semarang, R. mucronata still sees limited utilization by the surrounding community. Yet, parts of mangrove have been known to be used as natural dye in several other areas in Indonesia such as Papua and Takisung. [12] mentioned that R. mucronata is a natural tanning agent commonly used in textile industry and can produce color variation depending on the mordant used. A number of studies also indicate the potency of R. mucronata as dye material. In Bontang, Borneo, fruit of R. mucronata is used as a material in dye production for the local industry [13]. One study also found that natural dye made from R. mucronata passed the quality test with a predicate of ‘fine’ [14]. Although color pigments of R. mucronata parts can be sourced as a material for natural dye, there are more color variation and and ways to retain colors that has yet to be tested.
Pigments of R. mucronata is a unique potential of this species of mangrove. The pigment content can become an asset through effective and efficient utilization, which can provide economic value to the community around mangrove ecosystem. Therefore, further studies on pigments of bark, propagules, and leaves of R. mucronata in relation to their application in batik as dye materials.
Batik has experience a rise in popularity among both the locals and foreigners in the last few decades. The increasing demand of batik products also creates increasing demand for and use of synthetic dye. This is due to the fact that synthetic dyes are marketed at a lower price point and have better color retention compared to natural dyes. However, as more and more consumers become more aware of environmental issues, fabrics with natural dyes becomes more popular in the market. Synthetic dye has been known to be carcinogenic, and the waste from its production poses danger for the environment. [15] mentioned that synthetic dye is mutagenic and non-degradable in nature. Orange II is one example of the most prevalent artificial dye in the industry. This artificial dye has been known to not easily broken down by natural means. The waste from production and use of synthetic dyes has also been known to contain high levels of heavy metals such as chromium, zinc, copper, etc. [15, 16] wrote that waste water from textile production activity was found to pose health hazard to the surrounding community in Palembang, due to its high content of corrosive chemicals, organic pollutants, and high levels of acidity in its waste. Pollutants from synthetic dye production and use contains high leves of heavy metals, and intermediate dyes which are mutagenic in nature [17]. Not only does this damage the environment, it also pose health hazard to the community.
Compared to stock of sythetic dyes, the availability of natural dyes is more limited since artificial dyes are mass produced and have better distribution chain whereas natural dye often see limited production and must be sourced directly from its native area. Yet, not all sythetic dyes in Indonesian market is produced within the country. R. mucronata with its application potential as a material for natural dye can be found all over Indonesia, yet there has been limited commercial exploitation for this use. Studies of R. mucronata parts to be used as dyes for batik fabric are expected to contribute to the novelty of R. mucronata as an alternative source for dye in batik textile industry.
6. The biology of R. mucronata
R. mucronata is a species prevalent in the Indo-Pacific region. In Indonesia, R. mucronata is known locally as “Bakau Hitam” (lit. Black Mangrove), “Bakau Korap”, “Bakau Merah” (lit. Red Mangrove), “Angka Hitam”, “Belukap”, “Dongoh Korap”, “Jankar”, “Lenggayong”, and “Lolaro”. This mangrove often become the choice plant in mangrove restoration programs [18].
R. mucronata is classified into the genus Rhizophora. One distinguishing feature of this species is its broad leaves. There are two other species within the Rhizophora genus, namely Rhizophora apiculata andRhizophora stylosa along with two hybrids, namely Rhizophora lamarckii (a hybrid between R. apiculata and R. stylosa) and Rhizophora annamalayana (a hybrid between R.apiculata and R. mucronata) [19].
The tree of R. mucronata can reach a height of 30 meters. The trunk diameter can grow up to 70 cm with bark which is dark, mostly black and a horizontal crevice. Stilt roots and aerial roots grow on the lower branches of the tree. The stilt roots can be quite sizable and are woody. The stilt roots of R. mucronata are usually abortive, whereas the lateral roots can be quite numerous in one tree and extend from the tip of the branch as well as possessing numerous branches on itself, which are also known as stilt roots/hoop/pile-like which supports the tree. Aerial roots can sometimes be found in the lower branches. The trunk itself is enclosed cylindrical in form, with bark that are black or dark red, has a coarse, scaly texture, and with horizontal crevices formed around the bark [20].
The leaves of R. mucronata has layers with green stalks. The leaves can reach a length of 23 cm. They are typically elliptical with narrow tips. The propagules of R. mucronata have an egg-like shape. The color of the fruit varies from green to brownish. The base of the fruit has a coarse texture and typically monocots. When ripe, the cotyledon neck will turn yellow.
R. mucronata is a species with the highest tolerance for sandy environment, compared to other Rhizophora species. This species is commonly found in tidal area with sand substrates [21]. R. mucronata thrives in mud with fine, grainy soil and is believed to be one of the mangrove species capable of surviving during inundation by high tide [22].
7. Chemical composition of Rhizophora mucronata
Mangrove commonly contains compounds such as alkaloid, flavonoid, phenol, terpenoid, steroids, and saponins [23]. Proximate analysis of R. mucronata fruit by [24] found that there were 46.63% of water, 1.96% of fat, 0.41% of protein, 1.25% of ash and 22.29% of carbohydrate. [25] identified the phytochemical contents of R. mucronata bark, and found Positive results on phenolic compounds (including flavonoid and tannins), and believed that the tannins are drawn in the methanol extract with testing using FeCl3. In addition to phenolic group compounds, secondary metabolites such as terpenoids/steroids, alkaloid and saponins were also found in the bark of R. mucronata, only in this study the results were obtained by the use of multiple solvents (ethyl acetate and methanol) and varying reagents.
The leaves of R. mucronata was indicated as the most effective part to be used in extraction process [26]. It was found that the leaves of R. mucronata are rich in phenolic compounds, consisting of several flavonoid, phenolic acids, and tannin [27]. R. mucronata leaves contains dihydroflavonol with free 5-OH and 7-OH, with restored raffinose at 3-OH, caffeic acid, vanillic acid, p-hydroxybenzoate acid, and tannin, believed to be catechin tannin. [28] elaborated that the extract of R. mucronata leaves, both fresh and dried, and extracted using sterilized distilled water contains the following phytochemical constituents: alkaloid, carboxylic acid, coumarin, flavonoid, phenol, protein, amino acid, quinone, resin, saponin, steroids/phtyosterols, tannins, xanthoprotein.
8. The use of Rhizophora mucronata
In Madagascar, the wood of R. mucronata is extensively used in making boats and fishing nets for fish and shrimps, and is domestically used as a construction material for fences, housings and cooking fuel [29]. The indigenous people of Papua has also been using R. mucronata as materials for fence poles, walls and boats. In addition, fruits if R. mucronata has been used to treat diarrhea. Whereas in general, parts of the Rhizophora tree are brewed into alcoholic drinks in the Wondama Bay area [30]. In the field of biochemistry, bark from R. mucronata containing polysaccharides has been used as an in-vitro treatment for human immunodeficiency virus (HIV) [31].
[32] stated that R. mucronata is one of eight types of sources for natural dye used by the people of Papua. This species is used for several purposes such as a material for dye, food ingredients, and cosmetics [33]. R. mucronata bark from Takisung area has been used for dyeing batik cloth [34]. [35] wrote that R. mucronata bark, which has a natural brown pigment, is used as a textile dye because its tannin content reaches 30%. [36] successfully used the stem and leaf waste of R. mucronata as a natural dye for batik on cotton and silk fabrics.
9. Batik
Batik is a form of textile product that are generally used in the form of various crafts, tablecloths, sheets, and clothing. In 2009, UNESCO awarded Indonesian Batik as an Intangible Cultural Heritage of Humanity. The uniqueness of batik products are often found in their style, use, and design which are not only attractive to the local market, but also to the international market. In the period between January to June 2014, Batik became one of the commodity groups that had the highest export value in Central Java, compared to the other two commodities, namely textiles and textile goods. Textile and textile goods have the largest contribution of 36.84% of total export value or approximately US$189.01 million. This export value shows that textiles and textile products in Central Java have a huge potential as a contributor to the country’s foreign exchange.
10. Textile dye
Color becomes visible to the eye when there is absorption of a portion of the color spectrum in the visible area by molecules. The molecular structure is responsible for the presence of compounds that absorb visible light, which will be interpreted as colors. Molecules in plants consist of chains of carbon, oxygen, and hydrogen as main compounds and a few additional heteroatoms such as nitrogen. Molecules that absorb visible light are filled by chains of alternating and single carbon bonds that are alternating or conjugated. The longer the double bond, the more vivid the colors will appear. This bond can absorb visible light in certain areas, which provides coloration to the compounds [37].
Textile dyes, based on the materials from which they are sourced, are classified into two namely Natural Dyes (ZPA) and Synthetic Dyes (ZPS). ZPA is a dye obtained from natural ingredients, which generally comes from the extracts of plants or animals. ZPS is artificial dyes or syntheses made by chemical reactions using the basic ingredients of charcoal, coal, or petroleum which are the result of aromatic hydrocarbon derivatives such as benzene, naphthalene, and anthracene [38].
The intensity of the color produced in natural dyes depends on the type of coloring matter. Coloring matter is the substance that determines the hue of natural dyes and is an organic compound. The classification of natural dyes based on coloring matter is divided into four groups namely mordant dyes, direct dyes, acid/base dyes, and laver dyes. Mordant (natural) dyes in the coloring process must be combined with a metal oxide complex to form an insoluble dye. Natural dyes in mordant dyes have good color resistance potential, for example Moridin dyes from Noni roots. Direct dyes are retained to the fabric fibers based on hydrogen bonds, making the color retention low, for example Curcumin from turmeric. Acid/base dyes consist of a combination of acid and base groups, such as flavonoid pigments. The last group is laver dye. These dyes must go through the process of reduction–oxidation (redox) in the fabric dyeing process. In addition, laver dyes are also known as the oldest dyes in the world because they have the best color retention among the three other classes of natural dyes. One example of laver dyes is Indigo from torn leaves [13]. Natural dyes that have been explored from plants and have been used in fabric coloring include sengon leaves (Albizia falcataria) as silk fabric dyes, mangosteen rind (Garcinia mangostana) as natural dyes on cotton fabrics, Morinda citrifolia bark on Morinda citrifolia cotton cloth, purple sweet potato (Ipomea batatas), etc. [39, 40, 41, 42]. Extraction of natural dyes is mostly carried out using polar solvents such as distilled water, ethyl acetate, methanol, acetone and n-hexane [25, 37, 43].
11. Dye extract
In general, the results of extraction from leaves, bark, and propagules show brown color with different color density variations (Figure 4). The brown color indicates the presence of tannin [11]. Previous studies have found that high levels of tannin produce a dense color on tea leaves [44]. Several factors such as the extraction temperature below 100°C, the type of solvent (polar) used for extraction, particle size, and extraction time are things that need to be taken into account in producing quality tannins [45]. Tannins are found in the bark, fruit (propagules), and leaves of R. mucronata [46].
Figure 4.
Batik fabric coloring from mangrove waste extraction with lime, tunjung and alum fixations.
However, there is variation in tannin content in each part of the tree. The content of tannin R. mucronata has similarities with tannin derived from Ceriops tagal bark, which is soluble in distilled water that has polar properties [47, 48]. The tannin content produced from extraction using distilled water did not differ significantly compared to other solvents with similar polarity.
12. FTIR analysis and UV-Vis spectrophotometry
UV Vis spectropometry to extracts of R. mucronata leaves, bark, and propagules extracted at 70°C shows the maximum absorbance located at a wavelength of 412 nm. This shows the existence of conjugated C=C and C=O bonds. The maximum absorbance value obtained at wavelengths between 300 and 550 nm indicates the presence of π → π * denoting conjugated C=C and n transitions → π * in the form of chromophore C=O [49]. Tannins are classified as natural polyphenol compounds which contain phenolic hydroxyl groups and carboxyl groups. In addition, there are also chromophore groups which generally give color to a compound. The C=C conjugated bonds and C=O are included in the chromophore group, thus supporting the notion that the brown color that arises from extraction is caused by the presence of tannin content.
Subsequent testing to see the absorption pattern using an infrared spectrophotometer. Test results on the three types of dye extracts on leaves, bark and propagules showed a similar absorption pattern. Absorption in the range of wave numbers 3500 to 3000 cm−1 and 2000 to 1500 cm−1 indicates the presence of C-H groups. The C-O group is also indicated although it must be further analyzed in the fingerprint area. The C-O group forms an aromatic compound, which is part of the tannin together with the O-H and -CH2 groups [50]. The solid-shaped extract of D70 shows a different absorption pattern. O-H, C-H, C=O ester, and C-O-C ether groups are indicated. The existence of these four types of functional groups shows that the flavonoid compound is indicated in D70 extract. This is supported by research conducted by [51] who found that the flavonoid compounds from the flavonone group had the OH functional group bound, aliphatic CH, C=O, C=C Aromatic, C-O and C-H aromatics. [52] revealed that flavonoids are building blocks of proanthocyanidin compounds which are condensed tannins. Flavan-3-ols polymer compounds consisting of (+)-catechin and (−)-epicathecin are the main constituents of the group of flavonoid compounds that fall into the category of condensed tannins. To support these findings, Total Phenol Content and Total Flavonoid Content were conducted.
13. Total phenol content and total flavonoid content
Determination of total phenol in D70 extract was carried out using the Folin–Ciocalteu reagent. This reagent is sensitive in reducing compounds such as polyphenols and in its reaction will show blue when measured by spectrophotometer [53]. The test results showed that the phenol content were 2.4950 mg GAE/g. The presence of phenol in the extract can be an indication of tannin. In general tannins are high molecular weight polyphenol compounds, which naturally form complexes with protein [54]. Testing of total flavonoids was also carried out and the results obtained were 0.6516 mg QE/g. Flavonoids are still included in polyphenol compounds and usually consist of flavones, flavonols, and condensed tannins, which are secondary metabolites of plants [53, 54].
14. Fabric with mangrove-based dye
Fabric dyeing using natural dyes of R. mucronata was done by immersing dry, white cotton fabric with the dye and then air-drying them. This step was repeated three times. When immersing the fabric into the dye solution, the fabric undergoes swelling so that the pores of the fabric fibers will open and the dye can be absorbed into the fiber together with the dye solution. Dyes that have been absorbed into the fiber will be bound by reactive groups on cellulose fibers in the form of hydroxyl groups (OH) and form hydrogen bonds. The finished dyed fabric was then aerated with protection from sun exposure. After the cloth dries, the cloth is then immersed in alum color-fixating agent (KAl(SO4)2.12H2O). When dyeing, the dye is absorbed into the fabric fibers. But in general there are substances on the fabric surface that block the process, so fixation agents such as alum are needed to help the absorption of dyes on the fabric and increase color retention by binding the dye molecules to the fibers of the fabric. The reaction between the fabric which has been dyed and fixated by alum (KAl(SO4)2.12H2O) does not produce complex salts but compounds which are ionically bonded [55].
The colors produced by the three types of dyes from R. mucronata after fixation with alum through qualitative observations based on [56] were shades of tawny/tenné brown. The tawny brown digital code according to [57] is AE6938. Tawny brown can be described as a light brown hue with a combination of brown and orange The tawny brown color that was obtained after fixation with alum was not much different from the color before the addition of alum. This is in accordance with the nature of alum which gives out hue according to its original color [58].
15. Color retention test
The results of the color retention test of dyed fabrics from parts of the R. mucronata through extraction with temperature variations and fixation using alum showed permanent color properties. The value of Gray Scale and Staining Scale in the color retention test against fabric rubbing showed almost the same results, namely in the category 4 (fine) and 4–5 (fine). In the soap washing test, the average results showed 3–4 (adequate) to 4 (fine). Leaf extracts heated at 70°C (D70) and bark extract heated at the same temperature (K70) consistently showed a staining scale value of 4 showing the ‘fine’ category at three replications of the test. In general, all test results met the minimal SNI standards of 3.
Tannin commonly used as dyes are found in Ceriops tagal mangrove bark and can produce a brownish red color [48]. The leaves have 15% less tannin content. Types of tannins in Ceriops tagal and R. mucronata are tannins condensed with procyanidin types. Tannin extraction from plants is strongly influenced by the composition of the solvent used [59]. The optimal solvent will be able to produce tannins in large quantities. In addition to the dyes obtained, the color retention of the fabric also depends on the fixation agent. Staining quality test results that showed the category of ‘adequate’ and ‘fine due to the use of alum fixation, creating strong molecular bond which in turn contributes to good color retention. According to [59], the strength of the bond that occurs between fabric fibers and dyes determines the color retention during the washing process. Dyes strongly retained in the fabric fibers will create better, more vibrant colors after being washed.
16. Conclusions
Mangroves can be used as natural dyes on batik cloth, because of their high availability and positive impact on the household economy of the local community. Rhizophora mucronata, a mangrove species commonly found in the coastal areas of Semarang, is used in conservation efforts and beneficial in the field of fisheries. The existence of this species of mangrove forests can improve the catch and welfare of the local fishing community.
\n',keywords:"batik, mangrove, natural dye, Rhizopora mucronata, waste",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/75083.pdf",chapterXML:"https://mts.intechopen.com/source/xml/75083.xml",downloadPdfUrl:"/chapter/pdf-download/75083",previewPdfUrl:"/chapter/pdf-preview/75083",totalDownloads:265,totalViews:0,totalCrossrefCites:0,dateSubmitted:"January 16th 2020",dateReviewed:"December 2nd 2020",datePrePublished:"February 4th 2021",datePublished:"September 29th 2021",dateFinished:"February 4th 2021",readingETA:"0",abstract:"Mangrove, or bakau as it is known in Indonesia, is one of the vegetations commonly found along the shallow coasts, estuaries, deltas and protected coastal areas and are still influenced by rising tides. After the Aceh tsunami disaster, mangrove restoration was intensively conducted in coastal areas all over Indonesia and was made into a special conservation program by the government. Mangrove is distinguishable by its big, wooden stilt roots, sharpening tip in the form of supporting leaves. The roots of the mangrove tree are morphologically distinguishable into heart root which grows into the ground and the stilt root which appear to grabs onto the surface of the ground. Mangrove forests serve several important ecological roles: they act as filters which turns saline water into fresh water, buffer from seawater intrusion, prevent erosion and abrasion, hold sediments to form new habitats, feeding ground, nursery ground, and spawning ground for a number of aquatic wildlife. Mangrove forest also possess economical functions such as as source of income, industrial ingredients for the locals and as source of new mangrove seedlings. Mangunhardjo Village, Urban Community of Mangunhardjo, Mangkang Area, Kecamatan of Tugu, Semarang City, Indonesia was an area dotted with brackish water pond. However, the area had been suffering from the effects of climate change, being inundated by overflow of river and seawater intrusion (rob). These disasters caused decline in the productivity of the ponds in the area. In an effort to combat the adverse effect of environmental change in the area, the locals of Mangunhardjo village decided to shift their livelihood by restoring the surrounding mangrove forest. Mangrove conservation at Mangunhardjo Village was conducted through activities of the program such as mangrove planting, mangrove-based food production, and mangrove waste management by applications of bioactivator bacteria for mangrove composting and production of mangrove-based natural dye for batik fabric. Mangrove-based natural dye for batik fabric from Rhizopora mucronata mangrove waste is a quite promising product and increases people’s income.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/75083",risUrl:"/chapter/ris/75083",signatures:"Delianis Pringgenies, Ali Ridlo, Lutfianna Fatma Dewi and Ali Djunaedi",book:{id:"8050",type:"book",title:"Mangrove Ecosystem Restoration",subtitle:null,fullTitle:"Mangrove Ecosystem Restoration",slug:"mangrove-ecosystem-restoration",publishedDate:"September 29th 2021",bookSignature:"Sahadev Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/8050.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-800-9",printIsbn:"978-1-83962-799-6",pdfIsbn:"978-1-83962-801-6",isAvailableForWebshopOrdering:!0,editors:[{id:"227169",title:"Ph.D.",name:"Sahadev",middleName:null,surname:"Sharma",slug:"sahadev-sharma",fullName:"Sahadev Sharma"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"317472",title:"Dr.",name:"Delianis",middleName:null,surname:"Pringgenies",fullName:"Delianis Pringgenies",slug:"delianis-pringgenies",email:"dpringgenies@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"319512",title:"Dr.",name:"Ali",middleName:null,surname:"Ridlo",fullName:"Ali Ridlo",slug:"ali-ridlo",email:"aliridlo26@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Diponegoro University",institutionURL:null,country:{name:"Indonesia"}}},{id:"319514",title:"Dr.",name:"Ali",middleName:null,surname:"Djunaedi",fullName:"Ali Djunaedi",slug:"ali-djunaedi",email:"alidjunaedi@ymail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Diponegoro University",institutionURL:null,country:{name:"Indonesia"}}},{id:"319515",title:"Ms.",name:"Lutfianna Fatma",middleName:null,surname:"Dewi",fullName:"Lutfianna Fatma Dewi",slug:"lutfianna-fatma-dewi",email:"lutfiannafd@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Diponegoro University",institutionURL:null,country:{name:"Indonesia"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Mangrove tree planting",level:"1"},{id:"sec_3",title:"3. Mangrove-based food",level:"1"},{id:"sec_4",title:"4. Mangrove-based bacterial bioactivator for composting",level:"1"},{id:"sec_5",title:"5. Using mangrove waste as natural textile dye",level:"1"},{id:"sec_6",title:"6. The biology of R. mucronata",level:"1"},{id:"sec_7",title:"7. Chemical composition of Rhizophora mucronata",level:"1"},{id:"sec_8",title:"8. The use of Rhizophora mucronata",level:"1"},{id:"sec_9",title:"9. Batik",level:"1"},{id:"sec_10",title:"10. Textile dye",level:"1"},{id:"sec_11",title:"11. Dye extract",level:"1"},{id:"sec_12",title:"12. FTIR analysis and UV-Vis spectrophotometry",level:"1"},{id:"sec_13",title:"13. Total phenol content and total flavonoid content",level:"1"},{id:"sec_14",title:"14. Fabric with mangrove-based dye",level:"1"},{id:"sec_15",title:"15. Color retention test",level:"1"},{id:"sec_16",title:"16. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'Tarigan, M.S. 2008. Sebaran dan Luas Hutan Mangrove di Wilayah Pesisir Teluk Pising Utara Pulau Kabaena Provinsi Sulawesi Tenggara. Makara Sains, 12 (2): 108-112'},{id:"B2",body:'Hamilton, S.E. dan D. Casey. 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Journal of Macroecology, 25 (6): 729-738'},{id:"B3",body:'Zaky, C. Suryono, and R. Pribadi, "Kajian Kondisi Lahan Mangrove di Desa Bedono, Kecamatan Sayung, Kabupaten Demak dan Kelurahan Mangunharjo, Kecamatan Tugu, Kota Semarang," Journal of Marine Research, vol. 1, no. 2, pp. 88-97, Feb. 2013'},{id:"B4",body:'Taylor, W. J., dan R. Ford., 2007. Chickpea. In: Chittarajan, K., Genome Mapping and Molecular Breeding in Plants, 3 (6): 109-122'},{id:"B5",body:'Pelczar, M. J., dan E. C. S. Chan. 2008. Dasar-Dasar Mikrobiologi Jilid I. Jakarta: UI Press'},{id:"B6",body:'Widhitama S, Purnomo PW, Suryanto A. 2016. Produksi dan Laju Dekomposisi Serasah Mangrove Berdasarkan Tingkat Kerapatannya di Delta Sungai Wulan, Demak, Jawa Tengah. Diponegoro. Journal of Maquares. 5: 311-319'},{id:"B7",body:'Todar, K. 2008. Online Textbook of Bacteriology. http://www.text book of bacteriology.net/index.html'},{id:"B8",body:'Saraswati, R. dan Prihatini, T. 2004. Teknologi pupuk mikroba untuk meningkatkan efisiensi pemupukan dan keberlanjutan sistem produksi padi sawah. Dalam: Fahmuddin,A,. et al. Tanah sawah dan teknologi pengelolaannya. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat. Bogor 40'},{id:"B9",body:'Lestari, T. 2015. Kumpulan teori untuk kajian pustaka penelitian kesehatan. Yogyakarta: Nuha Medika'},{id:"B10",body:'Krinsky, N.I., dan E. J. Johnson. 2005. Carotenoid Actions and Their Relation to Health And Disease. Molecular Aspects of Medicine, 26: 459-516'},{id:"B11",body:'Pringgenies, D., R. Widiyadmi., D. Ariyanto., R. Idris., dan A. Djunaedi. 2018. Bakteri Konsorsium dari Serasah Mangrove untuk Produksi Kompos. Jurnal Pengelolaan Perairan, 1(2): 19-26'},{id:"B12",body:'Lacasse, K. dan W. Baumann. 2004. Textile Chemicals: Environmental Data and Facts. Springer Science & Business Media, Berlin, 1184 p'},{id:"B13",body:'Sulistyo, I. dan B. Budi. 2013. Pemberdayaan Masyarakat melalui Program Corporate Social Responsibility (CSR) berupa Pengembangan Pewarna Alami dari Buah Mangrove Spesies Rhizophora mucronata untuk Batik Khas Bontang Kalimantan Timur. Jurnal Komunikasi Massa, 6 (2): 135-150'},{id:"B14",body:'Kwartiningsih, E., Paryanto, W. Agung W., E. Mastuti, R. Sonia A., dan Y. Pipit N. 2014. Pemanfaatan Ekstrak Buah Mangrove (Rhizophora mucronata) untuk Pewarna Alami Batik. Seminar Nasional Tekstil, Bandung'},{id:"B15",body:'Agustina, T.E., E. Nurisman, Prasetyowati, N. Haryani, L. Cundari, A. Novisa, dan O. Khristina. 2011. Pengolahan Air Limbah Pewarna Sintetis dengan Menggunakan Reagen Feton. Dalam: Prosiding Seminar Nasional AVoER ke-3 di Palembang Tanggal 26-27 Oktober 2011. Fakultas Teknik Universitas Sriwijaya, pp. 260-266'},{id:"B16",body:'Indrianingsih, A.W. dan C. Darsih. 2013. Natural Dyes from Plants Extract and Its Applications in Indonesian Textile Small Medium Scale Enterprise. Technical Implementation Unit for Chemical Engineering Processes, 11(1): 16-22'},{id:"B17",body:'Tanziz, R. 2009. Laporan Teknis : Identifikasi Logam Berat dalam Zat Warna Tekstil, Balai Besar Tekstil, Bandung'},{id:"B18",body:'Duke, N., K. Kathiresan, S.G. Salmo III, E.S. Fernando, J.R. Peras, S. Sukardjo, dan T. Miyagi. 2010. Rhizophora mucronata. The IUCN Red List of Threatened Species 2010: e.T178825A7618520. http://dx.doi.org/10.2305/IUCN.UK.2010-2.RLTS.T178825A7618520.en (11 April 2016)'},{id:"B19",body:'Setyawan, A.D., Y.I. Ulumuddin, dan P. Ragavan. 2014. Review: Mangrove hybrid of Rhizophora and its parental species in Indo-Malayan region. Nusantara Bioscience, 6 (1): 69-81'},{id:"B20",body:'Orwa, C., A. Mutua, R. Kindt, R. Jamnadass, dan S. Anthony. 2009. Rhizophora mucronata.http://www.worldagroforestry.org/treedb/AFTPDFS/Rhizophora'},{id:"B21",body:'Noor, R.Y., M. Khazali, dan I.N.N. Suryadiputra. 1999. Panduan Pengenalan Mangrove di Indonesia. PHKA/WI-IP, Bogor'},{id:"B22",body:'Tan, R. 2001. Rhizophora mucronata. http://www.naturia.per.sg/buloh/plants/rhizophora%20mucronata.htm (12 Mei 2016)'},{id:"B23",body:'Kordi K, Guhufran H. 2012. Ekosistem Mangrove, Potensi, Fungsi, dan Pengelolaan. Jakarta : Rineka Cipta'},{id:"B24",body:'Bunyapraphatsara, N., Srisukh, V., Jutiviboonsuk, A., Sornlek, P., Thongbainoi, W., Chuakul, W., Fong, H.H.S., Pezzuto, J.M. and Kosmeder, J. 2002. Vegetables from the mangrove areas. Thai Journal of Phytopharmacy 9(1): 1-12. (1) (PDF) Study of ripe Rhizophora mucronata fruit flour as functional food for antidiabetic'},{id:"B25",body:'Pradana, D., D. Suryanto, dan Yunasfi. 2014. Uji Daya Hambat Ekstrak Kulit kayu Rhizophora mucronata terhadap Pertumbuhan Bakteri Aeromonas hydrophila, Streptococcus agalactiae, dan Jamur Saprolegnia sp. Secara In Vitro. Aquacoastmarine, 2(1): 78-92'},{id:"B26",body:'Yasmon, A. 2000. Sensitifitas Vibrio Parahaemolyticus terhadap Ekstrak Mangrove Rhizopora Apiculata di Dalam Lumpur dan Air Laut. Skripsi Sarjana Fakultas Perikanan dan IlmuKelautan Universitas Riau. 37p'},{id:"B27",body:'Sutjihati, R., S. Soetarno, dan S. Kusmardiyani. 1995. Pemeriksaan Senyawa Fenolik Daun Rhizophora mucronata lamk. (Rhizoporaceae), Suatu Tumbuhan Mangrove [Skripsi]. Sekolah Farmasi ITB. http://bahan-alam.fa.itb.ac.id (12 Mei 2016)'},{id:"B28",body:'Babuselvam, M., K. Kathiresan, S. Ravikumar, M. Uthiraselvam, dan E. Rajabudeen. 2012. Scientific evaluation of aqueous extracts of fresh and dried leaves from Rhizophora mucronata lamk (Rhizophoracea) in Rats. African Journal of Pharmacy and Pharmacology, 6 (11): 814-817'},{id:"B29",body:'Rasolofo, M.V. 1997. Use of Mangroves by Traditional Fishermen in Madagascar. Mangroves and Salt Marshes Vol. 1(4): 243-253'},{id:"B30",body:'Arobaya, Agustina Y.S. dan Freddy Pattiselanno. 2010. Potensi mangrove dan Manfaatnya bagi Kelompok Etnik di Papua. Biota, 5(3): 494-500'},{id:"B31",body:'Premanathan, M., Arakaki, R, Izumi, Kandasamy, K. Nakano, Masatoshi, Yamamoto, N. Nakashima, H. (1999). Antiviral properties of a mangrove plant, Rhizophora apiculata Blume, against human immunodeficiency virus. Antiviral Research. 44. 113-122. 10.1016/S0166-3542(99)00058-3'},{id:"B32",body:'Makabori, S. 1999. Teknik silvikultur jenis-jenis tanaman penghasil warna alam Irian Jaya. Seminar Menggali Potensi Warna Alam Irian Jaya. Departemen Kehutanan dan Perkebunan Propinsi Irian Jaya'},{id:"B33",body:'Wibowo, A. 2003. Identifikasi Jenis-jenis Tumbuhan Penghasil Warna Alami dan Pemanfaatannya dalam Kehidupan Suku Hatam di Kampung Mbenti Distrik Anggi Kabupaten Manokwari. [Skripsi]. Manokwari: Fakultas Kehutanan Universitas Negeri Papua'},{id:"B34",body:'Hamidah, S. 2006. Rendemen dan Kadar Tanin Kulit Kayu Bakau (Rhizophora mucronata Lamck) dari daerah Takisung. Jurnal Hutan Tropis Borneo (18): 15-23'},{id:"B35",body:'Prabhu, K.H. dan A.S. Bhute. 2012. Plant based natural dyes and mordnats: A Review. J. Nat. Prod. Plant Resour., 2(6): 649-664'},{id:"B36",body:'Pulungan, A.S.S. 2014. Pengaruh Fiksasi terhadap Ketuaan Warna dengan Menggunakan Pewarna Alami Batik dari Limbah Mangrove. Dalam: Prosiding Seminar Nasional Biologi dan Pembelajarannya di Medan tanggal 23 Agustus 2014. Medan, pp: 297 – 301'},{id:"B37",body:'Budimarwanti, C. dan S. Handayani. 2010. Efektivitas Katalis Asam Basa pada Sintesis 2-hidroksikalkon, Senyawa yang Berpotensi sebagai Zat Warna. . Dalam: Prosiding Seminar Nasional Kimia dan Pendidikan Kimia Tanggal 30 Oktober 2010. Yogyakarta, pp'},{id:"B38",body:'Isminingsih. 1978. Pengantar Kimia Zat Warna. Bandung: STTT Press'},{id:"B39",body:'Kusriniati, D. 2008. Pemanfaatan Daun Sengon (Albizia falcataria) sebagai Pewarna Kain Sutera menggunakan Mordan Tawas dengan Konsentrasi yang Berbeda. Teknobuga, 1 (1): 7-14'},{id:"B40",body:'Manurung, M. 2012. Aplikasi Kulit Buah Manggis (Garcinia mangostana L.) sebagai Pewarna Alami pada Kain Katun secara Pre-Mordanting. Jurnal Kimia, 6(2): 183-190'},{id:"B41",body:'Thomas, M., M. Manurung, dan I.A.R.A. Asih. 2013. Pemanfaatan Zat Warna Alam dari Ekstrak Kulit Akar Mengkudu (Morinda citrifolia Linn) pada Kain Katun. Jurnal Kimia, 7(2): 119-126'},{id:"B42",body:'Winarti, S., U. Sarofa, dan D. Anggrahini. 2008. Ekstraksi dan Stabilitas Ubi Jalar Ungu (Ipomoea batatas L.) sebagai Pewarna Alami. Jurnal Teknik Kimia, 3(1): 207-214'},{id:"B43",body:'Artati, E.K. dan Fadilah. 2007. Pengaruh Kecepatan Putar Pengadukan dan Suhu Operasi pada Ekstraksi Tanin dari Jambu Mete dengan Pelarut Aseton. Ekuilibrium, 6(1): 33-38'},{id:"B44",body:'Adriana, N., R. Batubara, dan E. Julianti. 2015. Nilai Kesukaan Konsumen terhadap The Daun Gaharu (Aquilaria malaccensis Lamk.) berdasarkan Letak Daun pada Batang. Peronema Forestry Science Journal, 4(4): 1-5'},{id:"B45",body:'Hamidah, S. 2006. Rendemen dan Kadar Tanin Kulit Kayu Bakau (Rhizophora mucronata Lamck) dari daerah Takisung. Jurnal Hutan Tropis Borneo (18): 15-23'},{id:"B46",body:'Musman, M. 2010. Tanin Rhizophora mucronata sebagai Moluskosida Keong Mas (Pomacea canaliculata). Bionatura, Jurnal Ilmu-ilmu Hayati dan Fisik, 12(3): 184-189'},{id:"B47",body:'Handayani, P.A. dan I. Maulana. 2013. Pewarna Alami Batik dari Kulit Soga Tinggi (Ceriops tagal) dengan Metode Ekstraksi. Jurnal Bahan Alam Terbarukan, (2): 1-6'},{id:"B48",body:'Jansen, P.C.M dan D. Cardon. 2005. Dyes and Tannins. Volume 3. Backhuys Publishers, Wageningen, 215 p'},{id:"B49",body:'Sastrohamidjojo, H., 2001, Spektroskopi, 3-4, 11, Liberty Press, Yogyakarta'},{id:"B50",body:'Hutauruk, S. 2004. Uji Aktivitas Tanin pada Daun Jati Belanda (Guazuma ulmifolia Lamk.) sebagai Tabir Surya. [Skripsi]. Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Diponegoro, Semarang, 32 hlm'},{id:"B51",body:'Parubak, Apriani Sulu. 2013. Senyawa Flavonoid yang Bersifat Antibakteri dari Akway (Drimys becarina Gibbs). Chemistry Progress, 6(1): 34-37'},{id:"B52",body:'Dixon RA, Xie DY, and Sharma SB. 2005. Proanthocyanidins--a final frontier in flavonoid research?. New Phytol. 2005 Jan;165(1):9-28'},{id:"B53",body:'Sultana, M., P.K. Verma, R. Raina, S. Prawez, dan M.A. Dar. 2012. Quantitative Analysis of Total Phenolic, Flavonoids, and Tannin Contents in Acetone and n-Hexane Extracts of Ageratum conyzoides. Journal of ChemTech Research, 4(3): 996-999'},{id:"B54",body:'Baba, S.A. dan S.A. Malik. 2015. Determination of Total Phenolic and Flavonoid Content, Antimicrobial, and Antioxidant Activity of A Root Extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science, 9: 449-454'},{id:"B55",body:'Prayitno, R.E., S. Wijana, dan B.S. Diyah. 2014. Pengaruh Nahan FIksasi terhadap Ketahnan Luntur dan Intensitas Warna Kain Mori Batik Hasil Pewarnaan Daun Alpukat (Persea Americana Mill.). Jurnal Lulusan TIP FTP UB, 1-8'},{id:"B56",body:'Maerz, A.J. dan M.R. Paul. 1930. A Dictionary of Color. http://people.csail.mit.edu/jaffer/Color/M.htm (19 Agustus 2016)'},{id:"B57",body:'Ridgway, R. 1912. Color Standards and Color Nomenclature. http://people.csail.mit.edu/jaffer/Color/R.htm'},{id:"B58",body:'Widowati, T.B. dan G. Sutapa. 2012. Pemanfaatan Bagian Cabang dan Pucuk Cabang Dalbergia latifolia sebagai Pewarna Alami Kain Batik. Dalam: Prosiding Seminar Nasional Masyarakat Peneliti Kayu Indonesia (MAPEKI) XVI di Makassar Tanggal 6-7 November 2012'},{id:"B59",body:'Yuliana, P. 2014. Ekstraksi Senyawa Tanin dan Saponin dari Tanaman serta Efeknya terhadap Fermentasi Rumen dan Metanogenesis In Vitro. [Tesis]. Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor, p.37'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Delianis Pringgenies",address:"delianispringgenies@lecturer.undip.ac.id",affiliation:'
Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
IntechOpen’s Academic Editors and Authors have received funding for their work through many well-known funders, including: the European Commission, Bill and Melinda Gates Foundation, Wellcome Trust, Chinese Academy of Sciences, Natural Science Foundation of China (NSFC), CGIAR Consortium of International Agricultural Research Centers, National Institute of Health (NIH), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), National Institute of Standards and Technology (NIST), German Research Foundation (DFG), Research Councils United Kingdom (RCUK), Oswaldo Cruz Foundation, Austrian Science Fund (FWF), Foundation for Science and Technology (FCT), Australian Research Council (ARC).
Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\\n\\n
In order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\\n\\n
\\n\\t
Does your institution already have a budget for covering Open Access publication costs?
\\n\\t
Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\\n
\\n\\n
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\\n\\n
Please note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\\n\\n
Please be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\n\n
In order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\n\n
\n\t
Does your institution already have a budget for covering Open Access publication costs?
\n\t
Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\n
\n\n
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
Please note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\n\n
Please be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"135796",title:"Prof.",name:"Jim",middleName:null,surname:"Van Os",slug:"jim-van-os",fullName:"Jim Van Os",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Utrecht University",country:{name:"Netherlands"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:17575},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11803",title:"Alternative Dietary Lifestyles",subtitle:null,isOpenForSubmission:!0,hash:"54e1d61b9b0befe1e198556039143205",slug:null,bookSignature:"Dr. Paz Otero",coverURL:"https://cdn.intechopen.com/books/images_new/11803.jpg",editedByType:null,editors:[{id:"356318",title:"Dr.",name:"Paz",surname:"Otero",slug:"paz-otero",fullName:"Paz Otero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11785",title:"Ginger - Cultivation and Use",subtitle:null,isOpenForSubmission:!0,hash:"1caa2d6d054af82de4a88ecb2b3fedfa",slug:null,bookSignature:"Dr. Prashant Kaushik",coverURL:"https://cdn.intechopen.com/books/images_new/11785.jpg",editedByType:null,editors:[{id:"311935",title:"Dr.",name:"Prashant",surname:"Kaushik",slug:"prashant-kaushik",fullName:"Prashant Kaushik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11930",title:"Reliability-Based Design in Structure and Geotechnical Engineering",subtitle:null,isOpenForSubmission:!0,hash:"63cb9ce2478d12b0649b47deaab8ab56",slug:null,bookSignature:"Dr. Faham Tahmasebinia",coverURL:"https://cdn.intechopen.com/books/images_new/11930.jpg",editedByType:null,editors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11892",title:"Facial Nerve Palsy - A Practitioner’s Guide",subtitle:null,isOpenForSubmission:!0,hash:"3022a85c51fe3ba1d2cc2a5de4e66072",slug:null,bookSignature:"Dr. Pratap Sanchetee, Dr. Kirti Sachdev and Dr. Rajeswari R.",coverURL:"https://cdn.intechopen.com/books/images_new/11892.jpg",editedByType:null,editors:[{id:"206518",title:"Dr.",name:"Pratap",surname:"Sanchetee",slug:"pratap-sanchetee",fullName:"Pratap Sanchetee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11935",title:"Oil Spills",subtitle:null,isOpenForSubmission:!0,hash:"8ef4f1400c5e99e53d93847aaf92216b",slug:null,bookSignature:"Prof. Prof.Dr. Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/11935.jpg",editedByType:null,editors:[{id:"96666",title:"Prof.",name:"Prof.Dr. Maged",surname:"Marghany",slug:"prof.dr.-maged-marghany",fullName:"Prof.Dr. Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11520",title:"Direct Torque Control",subtitle:null,isOpenForSubmission:!0,hash:"6504dee75dbbfd7792308293a8f1a27f",slug:null,bookSignature:"Prof. Moulay Tahar Lamchich",coverURL:"https://cdn.intechopen.com/books/images_new/11520.jpg",editedByType:null,editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:435},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"98",title:"Astronomy and Astrophysics",slug:"astronomy-and-astrophysics",parent:{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:107,numberOfWosCitations:104,numberOfCrossrefCitations:54,numberOfDimensionsCitations:102,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"98",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10210",title:"Solar System Planets and Exoplanets",subtitle:null,isOpenForSubmission:!1,hash:"b7f57c0e93406f0925482b204ad392ec",slug:"solar-system-planets-and-exoplanets",bookSignature:"Joseph Bevelacqua",coverURL:"https://cdn.intechopen.com/books/images_new/10210.jpg",editedByType:"Edited by",editors:[{id:"115462",title:"Dr.",name:"Joseph",middleName:"John",surname:"Bevelacqua",slug:"joseph-bevelacqua",fullName:"Joseph Bevelacqua"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7338",title:"Planetology",subtitle:"Future Explorations",isOpenForSubmission:!1,hash:"d52566a2f61bb3d7021ed630a149e1e6",slug:"planetology-future-explorations",bookSignature:"Bryan Palaszewski",coverURL:"https://cdn.intechopen.com/books/images_new/7338.jpg",editedByType:"Edited by",editors:[{id:"279275",title:"M.Sc.",name:"Bryan",middleName:null,surname:"Palaszewski",slug:"bryan-palaszewski",fullName:"Bryan Palaszewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8444",title:"Lunar Science",subtitle:null,isOpenForSubmission:!1,hash:"f1dcf511a174e8ec89d97ca8c0c6146a",slug:"lunar-science",bookSignature:"Yann H. Chemin",coverURL:"https://cdn.intechopen.com/books/images_new/8444.jpg",editedByType:"Edited by",editors:[{id:"270578",title:"Dr.",name:"Yann",middleName:"H.",surname:"Chemin",slug:"yann-chemin",fullName:"Yann Chemin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1629",title:"Astrophysics",subtitle:null,isOpenForSubmission:!1,hash:"95209a68cff9bc045b51611c513b63bd",slug:"astrophysics",bookSignature:"Ibrahim Kucuk",coverURL:"https://cdn.intechopen.com/books/images_new/1629.jpg",editedByType:"Edited by",editors:[{id:"102957",title:"Prof.",name:"İbrahim",middleName:null,surname:"Küçük",slug:"ibrahim-kucuk",fullName:"İbrahim Küçük"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1617",title:"Exploring the Solar Wind",subtitle:null,isOpenForSubmission:!1,hash:"7695d3592f3bb8f5c0a52de901949a74",slug:"exploring-the-solar-wind",bookSignature:"Marian Lazar",coverURL:"https://cdn.intechopen.com/books/images_new/1617.jpg",editedByType:"Edited by",editors:[{id:"107684",title:"Dr.",name:"Marian",middleName:null,surname:"Lazar",slug:"marian-lazar",fullName:"Marian Lazar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32544",doi:"10.5772/37359",title:"The Polar Cap PC Indices: Relations to Solar Wind and Global Disturbances",slug:"the-polar-cap-pc-indices-relations-to-solar-wind-and-global-disturbances",totalDownloads:3219,totalCrossrefCites:13,totalDimensionsCites:19,abstract:null,book:{id:"1617",slug:"exploring-the-solar-wind",title:"Exploring the Solar Wind",fullTitle:"Exploring the Solar Wind"},signatures:"Peter Stauning",authors:[{id:"112396",title:"M.Sc.",name:"Peter",middleName:null,surname:"Stauning",slug:"peter-stauning",fullName:"Peter Stauning"}]},{id:"32539",doi:"10.5772/39281",title:"Suprathermal Particle Populations in the Solar Wind and Corona",slug:"suprathermal-particle-populations-in-the-solar-wind-and-corona",totalDownloads:3298,totalCrossrefCites:8,totalDimensionsCites:12,abstract:null,book:{id:"1617",slug:"exploring-the-solar-wind",title:"Exploring the Solar Wind",fullTitle:"Exploring the Solar Wind"},signatures:"M. Lazar, R. Schlickeiser and S. Poedts",authors:[{id:"107684",title:"Dr.",name:"Marian",middleName:null,surname:"Lazar",slug:"marian-lazar",fullName:"Marian Lazar"}]},{id:"32533",doi:"10.5772/37908",title:"Measuring the Isotopic Composition of Solar Wind Noble Gases",slug:"measuring-the-isotopic-composition-of-solar-wind-noble-gases",totalDownloads:2752,totalCrossrefCites:6,totalDimensionsCites:9,abstract:null,book:{id:"1617",slug:"exploring-the-solar-wind",title:"Exploring the Solar Wind",fullTitle:"Exploring the Solar Wind"},signatures:"Alex Meshik, Charles Hohenberg, Olga Pravdivtseva and Donald Burnett",authors:[{id:"114740",title:"Prof.",name:"Alexander",middleName:null,surname:"Meshik",slug:"alexander-meshik",fullName:"Alexander Meshik"},{id:"115300",title:"Prof.",name:"Donald",middleName:null,surname:"Burnett",slug:"donald-burnett",fullName:"Donald Burnett"},{id:"115301",title:"Prof.",name:"Charles",middleName:null,surname:"Hohenberg",slug:"charles-hohenberg",fullName:"Charles Hohenberg"},{id:"115302",title:"Dr.",name:"Olga",middleName:null,surname:"Pravdivtseva",slug:"olga-pravdivtseva",fullName:"Olga Pravdivtseva"}]},{id:"32538",doi:"10.5772/39278",title:"Kinetic Models of Solar Wind Electrons, Protons and Heavy Ions",slug:"kinetic-models-of-solar-wind-electrons-protons-and-heavy-ions",totalDownloads:2999,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1617",slug:"exploring-the-solar-wind",title:"Exploring the Solar Wind",fullTitle:"Exploring the Solar Wind"},signatures:"Viviane Pierrard",authors:[{id:"149538",title:"Prof.",name:"Viviane",middleName:null,surname:"Pierrard",slug:"viviane-pierrard",fullName:"Viviane Pierrard"}]},{id:"32546",doi:"10.5772/36791",title:"Turbulence in the Magnetosheath and the Problem of Plasma Penetration Inside the Magnetosphere",slug:"turbulence-in-the-magnetosheath-and-the-problem-of-plasma-penetration-inside-the-magnetosphere",totalDownloads:2482,totalCrossrefCites:0,totalDimensionsCites:7,abstract:null,book:{id:"1617",slug:"exploring-the-solar-wind",title:"Exploring the Solar Wind",fullTitle:"Exploring the Solar Wind"},signatures:"Elizaveta E. Antonova, Maria S. Pulinets, Maria O. Riazantseva, Svetlana S. Znatkova, Igor P. Kirpichev and Marina V. Stepanova",authors:[{id:"108722",title:"Prof.",name:"Elizaveta",middleName:null,surname:"Antonova",slug:"elizaveta-antonova",fullName:"Elizaveta Antonova"},{id:"108731",title:"Dr.",name:"Maria",middleName:null,surname:"Riazantseva",slug:"maria-riazantseva",fullName:"Maria Riazantseva"}]}],mostDownloadedChaptersLast30Days:[{id:"77169",title:"Solar System Planets and Exoplanets",slug:"solar-system-planets-and-exoplanets",totalDownloads:332,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Solar System planets have been studied for centuries, but the observation of exoplanets is only a few decades old. Consequently, knowledge of exoplanets is considerably more limited than Solar System planets. This chapter reviews the essential characteristics of Solar System planets and associated data derived from a variety of observational approaches. Exoplanet characteristics and their comparison to Solar System planets are provided as well as general detection methods and planned probes to gather additional data.",book:{id:"10210",slug:"solar-system-planets-and-exoplanets",title:"Solar System Planets and Exoplanets",fullTitle:"Solar System Planets and Exoplanets"},signatures:"Joseph Bevelacqua",authors:[{id:"115462",title:"Dr.",name:"Joseph",middleName:"John",surname:"Bevelacqua",slug:"joseph-bevelacqua",fullName:"Joseph Bevelacqua"}]},{id:"65725",title:"On the Deviation of the Lunar Center of Mass to the East: Two Possible Mechanisms Based on Evolution of the Orbit and Rounding Off the Shape of the Moon",slug:"on-the-deviation-of-the-lunar-center-of-mass-to-the-east-two-possible-mechanisms-based-on-evolution-",totalDownloads:941,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"It is known that the Moon’s center of mass (COM) does not coincide with the geometric center of figure (COF) and the line “COF/COM” is not directed to the center of the Earth, but deviates from it to the South-East. Here, we discuss two mechanisms to explain the deviation of the lunar COM to the East from the mean direction to Earth. The first mechanism considers the secular evolution of the Moon’s orbit, using the effect of the preferred orientation of the satellite with synchronous rotation to the second (empty) orbital focus. It is established that only the scenario with an increase in the orbital eccentricity e leads to the required displacement of the lunar COM to the East. It is important that high-precision calculations confirm an increase e in our era. In order to fully explain the shift of the lunar COM to the East, a second mechanism was developed that takes into account the influence of tidal changes in the shape of the Moon at its gradual removal from the Earth. The second mechanism predicts that the elongation of the lunar figure in the early era was significant. As a result, it was found that the Moon could have been formed in the annular zone at a distance of 3–4 radii of the modern Earth.",book:{id:"8444",slug:"lunar-science",title:"Lunar Science",fullTitle:"Lunar Science"},signatures:"Boris P. Kondratyev",authors:[{id:"277909",title:"Prof.",name:"Boris",middleName:"Petrovich",surname:"Kondratyev",slug:"boris-kondratyev",fullName:"Boris Kondratyev"}]},{id:"68357",title:"Solar System Exploration Augmented by In Situ Resource Utilization: System Analyses, Vehicles, and Moon Bases for Saturn Exploration",slug:"solar-system-exploration-augmented-by-in-situ-resource-utilization-system-analyses-vehicles-and-moon",totalDownloads:807,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Human and robotic missions to Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft and astronomy, in situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion is benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high-power nuclear electric and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in situ resource utilization on Saturn’s moons are discussed. At Saturn, the best locations for exploration and the use of the moons as central locations for Saturn moon exploration are assessed. Environmental issues on Titan’s surface may present extreme challenges for some ISRU processes. In-space bases for moon-orbiting propellant processing and ground-based processing will be assessed.",book:{id:"7338",slug:"planetology-future-explorations",title:"Planetology",fullTitle:"Planetology - Future Explorations"},signatures:"Bryan Palaszewski",authors:[{id:"279275",title:"M.Sc.",name:"Bryan",middleName:null,surname:"Palaszewski",slug:"bryan-palaszewski",fullName:"Bryan Palaszewski"}]},{id:"65534",title:"Solar System Exploration Augmented by In Situ Resource Utilization: Lunar Base Issues",slug:"solar-system-exploration-augmented-by-in-situ-resource-utilization-lunar-base-issues",totalDownloads:1079,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Creating a presence and an industrial capability on the Moon is essential for the development of humankind. There are many historical study results that have identified and quantified the lunar resources and analyzed the methods of obtaining and employing those resources. The idea of finding, obtaining, and using these materials is called in situ resource utilization (ISRU). The ISRU research and development efforts have led to new ideas in rocket propulsion. Applications in chemical propulsion, nuclear electric propulsion, and many other propulsion systems will be critical in making the initial lunar base and future lunar industries more sustainable and will lead to brilliant futures for humanity.",book:{id:"8444",slug:"lunar-science",title:"Lunar Science",fullTitle:"Lunar Science"},signatures:"Bryan Palaszewski",authors:[{id:"279275",title:"M.Sc.",name:"Bryan",middleName:null,surname:"Palaszewski",slug:"bryan-palaszewski",fullName:"Bryan Palaszewski"}]},{id:"32533",title:"Measuring the Isotopic Composition of Solar Wind Noble Gases",slug:"measuring-the-isotopic-composition-of-solar-wind-noble-gases",totalDownloads:2752,totalCrossrefCites:6,totalDimensionsCites:9,abstract:null,book:{id:"1617",slug:"exploring-the-solar-wind",title:"Exploring the Solar Wind",fullTitle:"Exploring the Solar Wind"},signatures:"Alex Meshik, Charles Hohenberg, Olga Pravdivtseva and Donald Burnett",authors:[{id:"114740",title:"Prof.",name:"Alexander",middleName:null,surname:"Meshik",slug:"alexander-meshik",fullName:"Alexander Meshik"},{id:"115300",title:"Prof.",name:"Donald",middleName:null,surname:"Burnett",slug:"donald-burnett",fullName:"Donald Burnett"},{id:"115301",title:"Prof.",name:"Charles",middleName:null,surname:"Hohenberg",slug:"charles-hohenberg",fullName:"Charles Hohenberg"},{id:"115302",title:"Dr.",name:"Olga",middleName:null,surname:"Pravdivtseva",slug:"olga-pravdivtseva",fullName:"Olga Pravdivtseva"}]}],onlineFirstChaptersFilter:{topicId:"98",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:289,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:51,paginationItems:[{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:20,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"5",type:"subseries",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",slug:"fernando-jose-andrade-narvaez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",slug:"ricardo-izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:289,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/64779",hash:"",query:{},params:{id:"64779"},fullPath:"/chapters/64779",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()