Measurement of thermal heating and loss coefficient of different fibers.
Abstract
Whispering gallery modes (WGMs) are surface modes that propagate azimuthally around resonators with rotational symmetry (toroidal, spherical, or, as in our case, cylindrical shaped, since the optical fiber itself plays the role of the microresonator). These modes are resonant in optical wavelength, and the spectral position of the resonances depends on the radius and the refractive index of the microresonator material. Due to the high-quality factor of the resonances (as high as 107 in cylindrical microresonators), they allow measuring different parameters with high sensitivities and very low detection limits. Here, we report the use of WGMs to characterize the properties of the material that forms the microresonator. In particular, we highlight the use of this technique to measure temperature profiles along conventional and special fibers (such as photosensitive or doped fibers), elasto-optic coefficients, and UV-induced absorption loss coefficients of different photosensitive fibers. These parameters of the fibers set the optical response of fiber-based components and may change when the device is in use in an optical system; thus, this technique allows an accurate characterization of the devices and leads to proper designs of components with specific optical responses.
Keywords
- whispering gallery modes
- surface modes
- microresonators
- optical fibers
- fiber Bragg gratings
- elasto-optic effect
- thermo-optic effect
1. Introduction
Whispering gallery modes are surface modes that propagate azimuthally around resonators with rotational symmetry, generally a dielectric. This phenomenon was first described by Lord Rayleigh in the nineteenth century, when studying the propagation of acoustic waves in interfaces with a curvature [1]. St. Paul’s Cathedral (London, UK), the Temple of Heaven (Beijing, China), the Pantheon (Rome, Italy), the Tomb of Agamemnon (Mycenae, Greece), and the Whispering Gallery in the Alhambra (Granada, Spain) are examples of architectonical structures that support acoustic modes which propagate guided by the surface of the walls. It was at the beginning of the twentieth century when the study of this guiding mechanism was extended to the electromagnetic waves, since Mie developed his theory for the plane electromagnetic waves dispersed by spheres with diameters of the same size as the optical wavelength [2]. Shortly after, Debye stablished the equations for the optical resonances of dielectric and metallic spheres based on Mie’s dispersion theory [3]. The detailed study of the mathematical equations of WGMs was performed by Richtmyer [4] and Stratton [5], who predicted high-quality factors
Due to the intrinsic low losses, WGMs show very high
WGM resonances shift in wavelength as the refractive index of the external medium changes. The sensitivity of WGMs as a function of these variations is significant: when considering a silica-cylindrical microresonator of 125
2. Fundamentals
The guiding mechanism of WGMs in the azimuthal direction of a microresonator (MR) is total internal reflection, just as in the case of axial propagation in a conventional waveguide; see Figure 1a. Resonance occurs when the guided wave travels along the perimeter of the MR, and it drives itself coherently by returning in phase after every revolution. In its way, the wave follows continuously the surface of the MR, and the optical path in a circumnavigation must be equal to an integer multiple of the optical wavelength,
where
We do not intend to give a full description of the solution of this problem, which can be found in [14], but we will summarize the main equations and features of WGMs.
If we solve Maxwell’s equations with this uniaxial tensor, the modes split in two series of family modes that, analogously to the case of axial waveguides, are denoted as TE-WGMs, which show a transversal electric field (
In Eqs. (3) and (4),
By following this procedure, it is possible to calculate the dispersion curves of several WGMs propagating in a cylindrical, silica MR of 125
Regarding the distribution of the fields, Figure 3a shows the amplitude of the electric field of the first radial order TM-WGM, propagating in a cylindrical, silica MR of 10
3. Experimental setup
The general setup used in the experiments is shown in Figure 4a. The light source is a tunable diode, linearly polarized laser (TDL) with a narrow linewidth (<300 kHz). The tuning range covers from 1515 to 1545 nm. The laser integrated a piezoelectric-based fine frequency tuning facility that allows continuous scanning of the emitted signal around a given wavelength, with subpicometer resolution. A polarization controller (PC) after the laser allows rotating the polarization of the light, and, as a consequence, it allows exciting TE- and TM-WGMs separately. The optical signal is then launched through an optical circulator, which enables measuring the WGM resonances in reflection by means of a photodetector (PD).
The MR will consist on a section of the bare optical fiber under test (FUT). Depending on the experiment, it will be a conventional telecom fiber, a rare-earth doped fiber, a photosensitive fiber, or a fiber where a grating has been previously inscribed. It is carefully cleaned and mounted on a three-axis flexure stage. WGMs are excited around the FUT by using the evanescent optical field of an auxiliary microtaper with a waist of 1–2
The transmission of the taper was measured using a photodetector, and the signal was registered by an oscilloscope synchronized with the TDL. A typical transmission trace consists on a signal that will present a series of notches at the resonant wavelengths. For MRs of 125
As it was mentioned before, the position of the resonances will depend on the value of the refractive index of the material. In the next sections, we will study the characterization of different fibers and fiber components by means of the measurement of the shift of WGM resonances as the effective index of the MR is modified.
4. Measurement of temperature profiles in doped fibers and fiber gratings
When a silica fiber is heated up, two effects occur. First, the expansion of the fiber leads to a change of the diameter. Second, the thermo-optic effect induces a change in the refractive index of the material due to a variation of temperature. This variation modifies the spectral position of the WGM. From Eq. (1) it is possible to evaluate the shift of the resonant wavelength,
In the case of optical fibers as MRs, it is a good approximation to assume that the thermo-optic coefficient (i.e., the second term in Eq. (5)) can be replaced by that of the pure silica, since the optical field of the WGMs is mainly localized in the fiber cladding (see Figure 3). The high sensitivity of WGMs to variations of temperature has been demonstrated for different geometries of the MR, such as microspheres [19, 20] or cylinders [21]. Moreover, the propagation of an optical signal of moderate power (
Here, we will present the characterization of temperature variations in two different examples: (i) rare-earth doped active fibers and (ii) fiber gratings inscribed in commercial photosensitive fibers.
4.1. Measurement of temperature in rare-earth doped fibers
Heating of rare-earth doped fibers can be an issue in fiber-based lasers and amplifiers. For example, thermal effects can be a limit to the maximum output power that these systems can provide [22]. Another example is the shift in wavelength observed in distributed Bragg reflectors (DBR) and distributed feedback (DFB) lasers due to a pump-induced increment of temperature [23]. The heat is due to the non-radiative processes related to the electronic relaxation of some dopants: for example, this effect is less important in ytterbium-doped fibers, while Er/Yb-codoped and erbium-doped fibers exhibited a high increase of temperature with pump, due to its specific electronic-level system [24]. Thus, it is an intrinsic characteristic of the doped fibers that one needs to evaluate in order to design the proper optical system.
In the experiments presented here, several commercially available single-mode, core-pumped doped fibers from Fibercore were investigated. Specifically, the FUTs were three Er-doped fibers (DF-1500-F-980, M12-980/125, and I25-980/125), a Yb-doped fiber (DF-1100), and an Er/Yb-codoped fiber (DF-1500 Y). The values for absorption coefficients at the pump wavelength were 5.5 dB/m (DF-1500-F-980), 12 dB/m (M12-980/125), 21.9 dB/m (I25-980/125), 1000 dB/m (DF-1100), and 1700 dB/m (DF-1100). Short sections of
At this point, several features of this technique must be clarified. First, it is worth to point out that the shift in wavelength is virtually independent of the particular resonance used for the measurements, that is, it does not depend on its radial and azimuthal order nor on its polarization. The sensitivity to thermal variations of different WGM resonances was theoretically calculated around 1.53
The second aspect to highlight is related to the fact that the dopants in the active fibers are located in their core, while WGMs are highly confined in the outer region of the cladding (see Figure 3). From the study of heat conduction in doped fibers carried out by Davis et al. [25], it is possible to calculate that, at the steady state, the increase of temperature at the core of the fiber is just 1.5% larger than at the outer surface.
In order to calibrate the shift in wavelength of the WGM resonances with the heating, a FBG inscribed in the core of a doped fiber was used for comparison. The procedure is described in [21]. The WGM resonances shift at a rate of 8.2 pm/
Figure 6 summarizes the measurements performed for the different doped fibers. A similar trend can be observed in all the cases; the resonances shift fast in wavelength for low pump powers, and, beyond certain pump, heating tends to saturate. It can be observed that the Yb fiber DF 1100 shows a similar increase of temperature to those of the Er-doped fibers, although the concentration of the dopants in the Yb fiber is much larger (note the absorption coefficient around 975 nm). Also, the highest temperature increment corresponds to the Er/Yb-doped fiber (DF 1500 Y), despite that it shows a lower absorption coefficient than its equivalent Yb-doped fiber (DF 1100). These results are in accordance to the fact that the heating is related to the existence of non-radiative transitions for the relaxation of electrons in the active medium.
4.2. Measurement of temperature profiles in fiber components
As it was mentioned before, WGMs are axially localized: their extension along the fiber is
The FBGs used in the experiments were written in germanium-silicate boron codoped, photosensitive fibers from Fibercore, using a doubled-argon UV laser and a uniform phase mask. The length of all the gratings was
As a preliminary experiment, a section of fiber Fibercore PS980 was uniformly irradiated (i.e., there was no grating inscribed). The length was 5 mm, and the UV fluence power used in the irradiation was 150 J/mm2. The wavelength shift of the resonances was measured as the MR was illuminated with a 1550 nm optical signal, compared to the original position of the resonances, with no illumination along the FUT. Figure 7a shows the results. The data show a clear difference between the irradiated length (
The temperature profile along a FBG with strong reflectivity was measured using this technique. The FBG had a reflectivity higher than 99.9%; the Bragg wavelength was 1556 nm, its length was 12 mm, and it was fabricated in PS1250 fiber (Fibercore). First, the illumination signal was tuned well outside the reflection band, at 1540 nm; in this case, there is no reflection of the optical signal; it just propagates through the FBG. The power launched to the MR was 800 mW. Curve (i) in Figure 8 shows the obtained results. As expected, a similar result to the case shown in Figure 7a was obtained: the heating over the length of the FBG was fairly constant,
Finally, the temperature profile was measured when the optical signal was tuned to the Bragg wavelength (power, 1 W) (see curve (ii) in Figure 8). In this case, one should take into account that the UV irradiation is constant over its length, and the gradient temperature is due to the fact that the optical signal is reflected as it penetrates into the grating. A sharp increment of temperature at the beginning of the grating, at the extreme that is illuminated, can be observed. The maximum is located at the vicinities of the point where the FBG begins. The decay of temperature extends over a length of
5. Measurement of absorption coefficients in photosensitive fibers
In the previous section, the gradient of temperature induced in fiber-optic components by means of an illumination signal has been characterized and discussed. It has been shown that there is a difference in temperature between the sections that have been irradiated with UV light compared to the pristine fibers. It is well known that the UV irradiation induces a change in the index of photosensitive fibers, which is employed to fabricate FBGs and LPGs. According to Kramers-Kronig relations, the change in the refractive index is associated with a variation of the absorption coefficient. In addition, the exposure of the fiber to the levels of UV light usually employed in the grating fabrication induces mechanical deformations in the fiber [27]. This leads to an increase of the loss due to scattering. Thus, when a fiber is UV irradiated, its loss,
The increase of
Different types of photosensitive fibers were studied [11]: (i) Fibercore PS980, (ii) Fibercore PS1250, (iii) Fibercore SM1500, and (iv) Corning SMF28; this fiber was hydrogenated for 15 days (pressure: 30 bar) to increase its photosensitivity. The setup used in the experiments was the same than in the previous experiments shown in this chapter. In this case, the FUTs were short sections of the different fibers, which were exposed to a UV fluence of 150 J/mm2. Similar temperature profiles to that shown in Figure 7a were obtained for all of them, but with different temperature increments, since the photosensitivity was also different for each of them.
The different increases of temperature between the irradiated fiber and the pristine fiber will provide us information to quantify the variation in the
where
Thus, with this analysis and the experimental data obtained from the measurement of the wavelength shift of WGM resonances in irradiated points (1) and pristine points (2) of the FUT, this ratio between the respective
Direct measurements of transmission loss variation as the fibers were irradiated were carried out for a PS980 fiber. First, the value of the loss of the pristine fiber was measured at 1550 nm by means of the cutback method: the obtained value was
The contribution to the loss by means of the absorption mechanism was measured using the WGM technique (see Figure 9b). In this case, a 1550 nm laser (maximum power, 1 W) was launched to the FUT, and the thermal shift of the resonances was measured as the laser power was increased, at two different points, one within the irradiated section and one outside it. The data does not show any sign of saturation of the heating, at this range of power. The temperature of the irradiated section increased linearly, at a rate of
This process was repeated for all the different fibers mentioned before: PS1250, SM1500, and hydrogenated SMF28, at 1550. Table 1 includes the results from the measurements and the corresponding analysis:
WGM technique | Direct measurements | |||||
---|---|---|---|---|---|---|
|
|
|
|
|||
Irradiated | Pristine | Irradiated | Pristine | |||
PS980 |
|
|
|
|
|
|
PS1250 |
|
|
|
|
|
|
SM1500 | >401 |
|
|
|
|
1.954 |
H2-SMF28 |
|
|
|
n/a2 |
|
n/a1 |
The results, compiled in Table 1, allow establishing several conclusions of interest. First, as expected, the absorption coefficient is substantially increased due to the UV irradiation. As a consequence, even for signals of moderate powers, FBGs might experience shifts and chirps that should be taken into account [31]. Second, the results show that
Finally, Eq. (6) can be used to calculate the absolute value of the absorption and scattering coefficients by taking into account the values of
Thus, by means of the combination of both techniques, it is possible to quantify the different contributions to the loss, even for short sections of fiber. This information might be useful, for example, in the design of novel-active doped fibers, since it is possible to evaluate if the doping technique increases the scattering loss unnecessarily, but not so much the absorption.
6. Measurement of Pockels coefficients in optical fibers
The elasto-optic effect consists on the variation in the refractive index generated by any strain applied to the fiber. The correspondent elasto-optic coefficients are usually determined by measuring the optical activity induced by a mechanical twist and the phase change induced by longitudinal strain [32, 33]. This technique relies on the use of the conventional axial modes propagating through the fiber. Since these modes are essentially transverse to the axis of the fiber [34], the anisotropy of the elasto-optic effect does not show up. On the contrary, WGMs have a significant longitudinal component; hence, their optical fields experience the anisotropy of the elasto-optic effect intrinsically. In the last years, researchers have demonstrated a number of fiber devices in which the longitudinal components of the electromagnetic modes are significant, such as microfibers [35] and microstructured optical fibers with a high air-filling fraction [36]. For these cases, the measurement and characterization of the anisotropy of the elasto-optic effect and its Pockels coefficients are of high interest. Roselló-Mechó et al. reported a technique based on the different wavelength shifts of TE- and TM-WGM resonances in a fiber under axial strain, to measure these coefficients [37]. This technique has the additional advantage that, since it does not involve the conventional modes of the fiber, there is no need that the FUTs are single mode in order to carry out the measurements. Then, the coefficients can be measured at different wavelengths to determine their dispersion; this is a limitation of the usual technique based on the optical activity which is overcome by means of WGM technique [38].
According to Eq. (1), a variation in the refractive index will tune the WGM resonances in wavelength. In this case, an axial strain will be applied to the FUT in order to induce this variation in the index, due to the elasto-optic effect. This feature was applied in different works in order to tune the WGM resonances [39, 40]. However, there was not any mention to the different behaviors of TE- and TM-WGM.
An axial strain introduces a refractive index perturbation in an isotropic, cylindrical MR, due to the elasto-optic effect, which will be different for the axial (
where
The refractive index perturbation is not the only factor to take into account when evaluating the wavelength shift of WGM resonances due to strain: the radius a of the MR also varies with it according to Poisson’s ratio,
With all these ideas in mind, the relative shift of the WGM resonances,
The measurements were repeated at 1064 nm, to study the dispersion of the elasto-optic effect. Results at both wavelengths are compiled in Table 3 and are compared with those reported in the literature. Both sets of measurements are in good agreement, and the small differences might be due to the fact that the technique based in WGM measures the
7. Conclusions
In this chapter, we described a technique based on the excitation of WGMs around cylindrical MRs, to measure properties of the MR material. The resonant nature of the WGMs confers this technique with high sensitivity and low detection limits. Also, the technique allows measuring these parameters with axial resolution; hence, it is possible to detect changes of the parameters point to point along the MR.
The technique has been applied to different experiments. Mainly, thermo-optic effect and elasto-optic effect have been investigated in silica fibers. The variation in the index, due to a change in the temperature or strain, rules the shift in wavelength of the WGM resonances. When the technique was applied to different types of fibers and components, different information were obtained from the experiments. In particular, we measure temperature profiles in pumped, rare-earth doped fibers and in FBGs; the absorption coefficient in irradiated photosensitive fibers; and the Pockels coefficients in telecom fibers. Novel results were obtained: for example, it was possible to measure absorption and scattering loss coefficients separately, and, also, the anisotropy of the elasto-optic effect was observed experimentally. The information provided by the WGM-based technique might help to optimize the fabrication procedures of doped fibers and fiber components as FBGs or LPGs.
Acknowledgments
This work was funded by Ministerio de Economía y Competitividad of Spain and FEDER funds (Ref: TEC2016-76664-C2-1-R) and Generalitat Valenciana (Ref: PROMETEOII/2014/072), Universitat de València (UV-INV-AE16-485280). X. Roselló-Mechó’s contract is funded by the FPI program (MinECo, Spain, BES-2014-068607). E. Rivera-Pérez’s contract is funded by the Postdoctoral Stays in Foreigner Countries (291121, CONACYT, Mexico).
References
- 1.
Rayleigh L. The Theory of Sound. Vol. 2. London: Macmillan; 1896 - 2.
Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik. 1908; 330 (3):377-445. DOI: 10.1002/andp.19083300302 - 3.
Debye P. Der Lichtdruck auf Kugeln von beliebigem Material. Annalen der Physik. 1909; 335 (11):57-136. DOI: 10.1002/andp.19093351103 - 4.
Richtmyer RD. Dielectric resonators. Journal of Applied Physics. 1939; 10 (6):391-398. DOI: 10.1063/1.1707320 - 5.
Stratton JA. Electromagnetic Theory. 1st ed. New York: McGraw-Hill; 1941 - 6.
Braginsky VB, Gorodetsky ML, Ilchenko VS. Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A. 1989; 137 (7):393-397. DOI: 10.1016/0375-9601(89)90912-2 - 7.
Sumetsky M. Mode localization and the Q-factor of a cylindrical microresonator. Optics Letters. 2010; 35 (14):2385-2387. DOI: 10.1364/OL.35.002385 - 8.
Knight JC, Cheung G, Jacques F, Birks TA. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Optics Letters. 1997; 22 (15):1129-1131. DOI: 10.1364/OL.22.001129 - 9.
Gorodetsky ML, Savchenkov AA, Ilchenko VS. Ultimate Q of optical microsphere resonators. Optics Letters. 1996; 21 (7):453-455. DOI: 10.1364/OL.21.000453 - 10.
Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ. Ultra-high-Q toroid microcavity on a chip. Nature. 2003; 421 :925-928. DOI: 10.1038/nature01371 - 11.
Roselló-Mechó X, Delgado-Pinar M, Cruz JL, Díez A, Andrés MV. Measurement of UV-induced absorption and scattering losses in photosensitive fibers. Optics Letters. 2018; 43 (12):2897-2900. DOI: 10.1364/OL.43.002897 - 12.
Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. Label-free, single-molecule detection with optical microcavities. Science. 2007; 317 (5839):783-787. DOI: 10.1126/science.1145002 - 13.
Birks TA, Knight JC, Dimmick TE. High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment. IEEE Photonics Technology Letters. 2000; 12 (2):182-183. DOI: 10.1109/68.823510 - 14.
Rivera-Pérez E. Microcavidades ópticas cilíndricas y sus aplicaciones [thesis]. Universidad Autónoma de San Luis de Potosí-IICO; 2015. pp. 1-84 - 15.
Schiller S, Byer RL. High-resolution spectroscopy of whispering gallery modes in large dielectric spheres. Optics Letters. 1991; 16 (15):1138-1140. DOI: 10.1364/OL.16.001138 - 16.
Arques L, Carrascosa A, Zamora V, Díez A, Cruz JL, Andrés MV. Excitation and interrogation of whispering-gallery modes in optical microresonators using a single fused-tapered fiber tip. Optics Letters. 2011; 36 (17):3452-3454. DOI: 10.1364/OL.36.003452 - 17.
Kenny RP, Birks TA, Oakley KP. Control of optical fibre taper shape. Electronics Letters. 1991; 27 (18):1654-1656. DOI: 10.1049/el:19911034 - 18.
Sumetsky M, Dulashko Y. Radius variation of optical fibers with angstrom accuracy. Optics Letters. 2010; 35 (23):4006-4008. DOI: 10.1364/OL.35.004006 - 19.
Guan G, Arnold S, Otugen V. Temperature measurements using a microoptical sensor based on whispering gallery modes. AIAA Journal. 2006; 44 (10):2385-2389. DOI: 10.2514/1.20910 - 20.
Ma Q, Rossmann T, Guo Z. Temperature sensitivity of silica micro-resonators. Journal of Physics D: Applied Physics. 2008; 41 (24):245111. DOI: 10.1088/0022-3727/41/24/245111 - 21.
Rivera-Pérez E, Villegas IL, D´ ıez A, Andrés MV, Cruz JL, Rodríguez-Cobos A. Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes. IEEE Photonics Technology Letters. 2013; 25 (24):2498-2500. DOI: 10.1109/LPT.2013.2288865 - 22.
Wang Y, Xu CQ, Hong P. Thermal effects in kilowatt fiber lasers. IEEE Photonics Technology Letters. 2004; 16 (1):63-65. DOI: 10.1109/LPT.2003.818913 - 23.
Hadeler O, Ibsen M, Zervas MN. Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain. Applied Optics. 2001; 40 (19):3169-3175. DOI: 10.1364/AO.40.003169 - 24.
MJF D. Rare-earth-doped fiber lasers and amplifiers, revised and expanded. In: Optical Science and Engineering. Boca Raton: Taylor & Francis; 2001 - 25.
Davis MK, Digonnet MJF, Pantell RH. Thermal effects in doped fibers. Journal of Light-Wave Technology. 1998; 16 (6):1013-1023. DOI: 10.1109/50.681458 - 26.
Delgado-Pinar M, Villegas IL, Díez A, Cruz JL, Andrés MV. Measurement of temperature profile induced by the optical signal in fiber Bragg gratings using whispering-gallery modes. Optics Letters. 2014; 39 (21):6277-6280. DOI: 10.1364/OL.39.006277 - 27.
Poumellec B, Guénot P, Riant I, Sansonetti P, Niay P, Bernage P, et al. UV induced densification during Bragg grating inscription in Ge: SiO2 preforms. Optical Materials. 1995; 4 (4):441-449. DOI: 10.1016/0925-3467(94)00114-6 - 28.
Canning J, Åslund M, Hu PF. Ultraviolet-induced absorption losses in hydrogen-loaded optical fibers and in presensitized optical fibers. Optics Letters. 2000; 25 (22):1621-1623. DOI: 10.1364/OL.25.001621 - 29.
Arigiris A, Konstantaki M, Ikiades A, Chronis D, Florias P, Kallimani K, et al. Fabrication of high-reflectivity superimposed multiple-fiber Bragg gratings with unequal wave-length spacing. Optics Letters. 2002; 27 (15):1306-1308. DOI: 10.1364/OL.27.001306 - 30.
Gagné M, Loranger S, Lapointe J, Kashyap R. Fabrication of high quality, ultra-long fiber Bragg gratings: Up to 2 million periods in phase. Optics Express. 2014; 22 (1):387-398. DOI: 10.1364/OE.22.000387 - 31.
Lauzon J, Thibault S, Martin J, Ouellette F. Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient. Optics Letters. 1994; 19 (23):2027-2029. DOI: 10.1364/OL.19.002027 - 32.
Bertholds A, Dandliker R. Determination of the individual strain-optic coefficients in single-mode optical fibres. Journal of Lightwave Technology. 1988; 6 (1):17-20. DOI: 10.1109/50.3956 - 33.
Dragic PD, Ballato J, Morris S, Hawkins T. Pockels’ coefficients of alumina in aluminosilicate optical fiber. Journal of the Optical Society of America B: Optical Physics. 2013; 30 (2):244-250. DOI: 10.1364/JOSAB.30.000244 - 34.
Bertholds A, Dandliker R. Deformation of single-mode optical fibers under static longitudinal stress. Journal of Lightwave Technology. 1987; 5 (7):895-900. DOI: 10.1109/JLT.1987.1075583 - 35.
Skelton SE, Sergides M, Patel R, Karczewska E, Maragó OM, Jones PH. Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers. Journal of Quantitative Spectroscopy and Radiation Transfer. 2012; 113 (18):2512-2520. DOI: 10.1016/j.jqsrt.2012.06.005 - 36.
Lægsgaard J. Theory of surface second-harmonic generation in silica nanowires. Journal of the Optical Society of America B: Optical Physics. 2010; 27 (7):1317-1324. DOI: 10.1364/JOSAB.27.001317 - 37.
Roselló-Mechó X, Delgado-Pinar M, Díez A, Andrés MV. Measurement of Pockels’ coefficients and demonstration of the anisotropy of the elasto-optic effect in optical fibers under axial strain. Optics Letters. 2016; 41 (13):2934-2937. DOI: 10.1364/OL.41.002934 - 38.
Jülich F, Aulbach L, Wilfert A, Kratzer P, Kuttler R, Roths J. Gauge factors of fibre Bragg grating strain sensors in different types of optical fibres. Measurement Science and Technology. 2013; 24 (9):094007. DOI: 10.1088/0957-0233/24/9/094007 - 39.
Pöllinger M, O’Shea D, Warken F, Rauschenbeutel A. Ultrahigh-Q tunable whispering-gallery-mode microresonator. Physical Review Letters. 2009; 103 :053901. DOI: 10.1103/PhysRevLett.103.053901 - 40.
Linslal CL, Kailasnath M, Mathew S, Nideep TK, Radhakrishnan P, Nampoori VPN, et al. Tuning whispering gallery lasing modes from polymer fibers under tensile strain. Optics Letters. 2016; 41 (3):551-554. DOI: 10.1364/OL.41.000551 - 41.
Lide DR. CRC Handbook of Chemistry and Physics. 84th ed. Boca Raton: CRC Press; 2003 - 42.
Shackelford JF, Alexander W. CRC Materials Science and Engineering Handbook. 3rd ed. Boca Raton: CRC Press; 2001