Micronutrient deficiencies and their effects on people.
\r\n\tgas sensors.
",isbn:"978-1-80356-963-5",printIsbn:"978-1-80356-962-8",pdfIsbn:"978-1-80356-964-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"8eeb7ab232fa8d5c723b61e0da251857",bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",keywords:"Fabrication Technologies, Applications, Characterizations, Case Studies, Various Gas Sensors, Improvement of Lifestyle, Societal Benefit, Bio-Sensors, Bioreceptor Molecules, Integration, Packaging, Lab-on-Chip",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 8th 2022",dateEndSecondStepPublish:"May 6th 2022",dateEndThirdStepPublish:"July 5th 2022",dateEndFourthStepPublish:"September 23rd 2022",dateEndFifthStepPublish:"November 22nd 2022",remainingDaysToSecondStep:"10 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in nanowire heterostructures and laser spectroscopy, recipient of JSPS (Govt. of Japan) and NPDF (Govt. of India) fellowships, and member of MRS(USA), MRS(India), IPA(India).",coeditorOneBiosketch:"Assistant Professor with the School of Medical Science and Technology, Indian Institute of Technology Kharagpur with research interests that include the design and characterization of portable biosensors, biodevices, and sensor interfaces for miniaturized systems and biomedical applications for point-of-care testing.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",middleName:null,surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara",profilePictureURL:"https://mts.intechopen.com/storage/users/196334/images/system/196334.jpeg",biography:"Dr. Dhara received his Ph. D in Physics in 2012 from Indian Institute of Technology Guwahati, India. Presently, he is associated with the Faculty of Science, Sri Sri University, India as an Assistant Professor in Physics. Prior to joining the current\naffiliation, he was a postdoctoral fellow at different renowned institutions, Kobe University Japan, S. N. Bose National Centre for Basic Sciences, India and Cardiff University, United Kingdom. He was awarded prestigious JSPS postdoctoral fellowship based on his research contribution on semiconducting nanowires. He has published more than 32 research articles including 1 review article in high profile international journals and 3 book chapters to his credit. His research trust areas of interests are semiconductor nanostructures, optoelectronics, solid state lighting and light sensors, spectroscopy of nanomaterials, thin-film transistors (TFTs) etc.",institutionString:"Sri Sri University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Sri Sri University",institutionURL:null,country:{name:"India"}}}],coeditorOne:{id:"442408",title:"Dr.",name:"Gorachand",middleName:null,surname:"Dutta",slug:"gorachand-dutta",fullName:"Gorachand Dutta",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. Gorachand Dutta, PhD is an Assistant Professor with the School of MedicalScience and Technology, Indian Institute of Technology Kharagpur. His research interests include the design and characterization of portable\r\nbiosensors, biodevices and sensor interfaces for miniaturized systems and biomedical applications for point-of-care testing. He received his Ph.D in Biosensor and Electrochemistry from Pusan National University, South Korea,\r\nwhere he developed different class of electrochemical sensors and studied the electrochemical properties of gold, platinum, and palladium based metal electrodes. He completed his Post-doctoral fellowships in the Department of\r\nMechanical Engineering, Michigan State University, USA and Department of Electronic and Electrical Engineering at University of Bath, UK. He has expertise on label-free multichannel electrochemical biosensors, electronically\r\naddressable biosensor arrays, aptamer- and DNA-based sensors and surface bio-functionalization.",institutionString:"Indian Institute of Technology Kharagpur",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Indian Institute of Technology Kharagpur",institutionURL:null,country:{name:"India"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429341",firstName:"Paula",lastName:"Gavran",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"paula@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63243",title:"Metallic Glass Matrix Composites",doi:"10.5772/intechopen.76526",slug:"metallic-glass-matrix-composites",body:'\nThe metallic glass or bulk metallic glass (BMG) is the alloy without crystals, or so-called noncrystalline alloys. In BMGs, the microstructure is so-called amorphous state, referring to the long-range disordered structures between atoms inside a material. The amorphous materials can be produced by non-crystalized cooling from melting state or vapor deposition, mechanical alloying methods, etc. To date, the amorphous materials occupy a large proportion in nature materials, from conventional oxide glass to amorphous semi-conductor, then to amorphous metals or bulk metallic glasses. The amorphous materials have been very important engineering materials to support the modern economy, as well as economic and social developments. Besides the daily-used glassy materials, in high-tech fields, amorphous materials have been also applied a lot to optical communication, laser technology, new solar battery, power transmission materials and so on.
\nUnlike the conventional oxide glasses, the amorphous alloys or metallic glasses possess metallic bond between atoms instead of covalent bond. Thus, the characteristics related with metals are maintained, such as opacity, good toughness, etc. We can say the amorphous structure is faultless for the lack of dislocations or grain boundaries. We can also say the amorphous structure or random-arranged structure is full of defects because you can find no periodicity in it.
\nEven though both amorphous alloys and bulk metallic glasses are noncrystalline materials, which are obtained from rapid cooling from liquid state, hindering the crystallization kinetics [1]. The high rate of heat transfer required to prevent crystallization often limits these noncrystalline materials to thin samples or ribbon-shaped samples. These noncrystalline materials are called amorphous alloys. Recently, bulk metallic glasses with slower nucleation kinetics in undercooled liquids have been processed by conventional casting at cooling rate of 10−1–10−2 K/s [2–6]. The critical size can be larger than 1 mm rods; these “bulk” noncrystalline alloys are called bulk metallic glasses. Figure 1 illustrates the conditions for processing both the more recently developed bulk amorphous alloys as well as traditional metallic glass alloys developed before 1990 [4]. The plot correlating critical cooling rate and maximum sample thickness as a function of the reduced glass transition temperature (Tg/Tm) shows a clear tendency for the glass-forming ability to increase with increasing Tg/Tm, as such these alloys have lower critical cooling rates and larger possible bulk cross-sectional dimensions.
\nPlot correlating critical cooling rate (Rc), maximum sample thickness (tmax), and reduced glass transition temperature (Tg/Tm) for bulk metallic alloys illustrating conditions for processing both the more recently developed bulk amorphous alloys as well as ordinary amorphous alloys developed before 1990 [
The criteria [7–10] for slow crystallization kinetics, a stabilized supercooled liquid and high glass-forming ability, resulting in the formation of bulk metallic glasses, have been shown to include:
Multi-component alloys of increased complexity and size of crystal unit cells such that the energetic advantage of an ordered structure is reduced by increasing the configurational entropy of the supercooled liquid phases.
Atomic radius mismatch between elements, which leads to higher packing density and smaller free volume, requiring a greater volume increase for crystallization, as well as limiting the solubility of these atoms in crystalline states.
Negative heat of mixing between the elements, which increases the energy barrier at the solid–liquid interface and accelerates atomic diffusivity, thus slowing local atomic rearrangements and crystal nucleation rate, thereby extending the supercooled liquid temperature.
Alloy composition close to deep eutectic, which forms a liquid stable at low temperatures that can freeze into the glassy state.
The research and developments of BMGs indicate that compared with traditional crystalline materials, BMGs have an advantage in usability. The main points are as follows:
Better mechanical properties such as high yielding strength, large elastic strain limit, mainly perfect elasticity before yielding, mainly perfect plasticity after yielding, no work hardening, high fatigue resistance and high abrasive resistance. With the developments of BMGs, the ultimate strength of metallic materials is renewed again and again. The strength of Mg-based BMGs has increased from 600 to 800 MPa [11]. The strength of Cu-based BMGs is over 2000 MPa [12]. Especially for Co-Fe-Ta-B alloy, the strength is over 5000 MPa [12], which sets up a record in natural world.
Good processability. Near glass transition temperature (Tg), the elongation of La-Al-Ni BMGs can be 15,000% [13]. Other BMGs also show super-plasticity to varying degrees, thus according to different application, BMGs can be manufactured into micro- or nano-level by machining deformation.
Better corrosion resistance against many kinds of medium. The corrosion resistance of Fe-Cr-Mo-B-P BMGs is 10,000 times higher than conventional stainless steel and can be used in much severed environments [14].
Good physical properties such as soft and hard magnetism, unique expansive quantity. For example, the saturation magnetization of Fe-based amorphous alloys can be over 1.5 T and coercivity is lower than 1 A/m2 [15]. When some BMGs are annealed to form nanocrystalline alloys, better soft or hard magnetism can be obtained, which are considered as excellent substitute for conventional materials.
For the better physical, chemical, mechanical properties and precision shaping abilities of BMGs than conventional materials, BMGs have shown important application value in aerospace device, precision machine, information technology and so on. The researches of BMGs have attracted a lot of attentions from physical, chemical and material scientists.
\nBecause of the metallic bonding in amorphous alloys, strain can be accommodated at the atomic level through changes in neighborhood; atomic bonds can be broken and reformed at the atomic scale. However, unlike crystalline metals and alloys, metallic glasses do not exhibit long-range translational symmetry. Thus, the deformation mechanisms such as dislocations, which allow changes in atomic neighborhood at low energies or stresses, do not exist in metallic glasses. The local rearrangement of atoms in metallic glasses is a relatively high-energy or high-stress process. The exact nature of local atomic motion in deforming metallic glasses is not fully understood, although there is general consensus that the fundamental unit must be a local rearrangement of atoms accommodating the shear strain. An example of such a local rearrangement is depicted in the two-dimensional schematic of Figure 2a, originally proposed by Argon and Kuo [16] on the basis of an atomic-analog bubble-raft model, called a “shear transformation zone” (STZ) [17–20]. The STZ is essentially a local cluster of atoms that undergoes an inelastic shear distortion from one relatively low energy configuration to a second such configuration, crossing an activated configuration of higher energy and volume. The STZs are common to deformation of all amorphous metals, although details of the structure, size and energy scales of STZs may vary from one glass to the other. In a metallic glass body experiencing uniform stress, the STZ that is activated first is selected from among many potential sites on the basis of energetics, which vary with the local atomic arrangements [21–23]. The continued propagation of the applied shear strain occurs when one STZ creates a localized distortion of the surrounding material, which triggers the formation of large planar bands of STZs along the maximum shear stress plane, or so-called “shear bands”, as shown in Figure 2b. For most BMGs, the deformation occurs in homogeneous through plastic strains concentrated in localized shear bands at room temperature. Once a shear band initiates, the propagation of it can be very fast (~1000 m/s), thus, the BMGs fracture catastrophically after elastic deformation. Therefore, the room-temperature brittleness, especially under the uniaxial compression or tension, has been one fatal problem for the wide application of BMGs.
\nSchematic illustrating of (a) “shear transformation zone” in which strain accommodation occurs through localized cluster of atoms undergoing intense distortion and (b) shear band formation along maximum shear stress plane.
To date, there are several ways that have been developed to improve the room-temperature plasticity of BMGs, including intruding a secondary phase to develop a composite microstructure, surface coating, composition adjustment to induce intrinsic heterogeneity, severe plastic deformation such as shot peening and high pressure torsion [24–27]. Although introducing a secondary phase to make a composite structure seems to be most primal methods, it is reported that composite structure is one of the most efficient method and very easy to realize. Furthermore, there are many combinations of amorphous matrix and reinforcing phases, giving an infinite possibility to improve the mechanical properties of BMGs.
\nFor now, there are mainly two ways to introduce the secondary phases, ex-situ direct adding and in-situ precipitation. For ex-situ method, the various combinations of secondary particle or fiber and the amorphous matrix makes the fabrication process easier to design. But the interface bonding between the secondary phase and the matrix is not strong because of the formation of surface oxide layers, which degrades the mechanical properties of them. For in-situ method, even though the interface bonding is stronger than those ex-situ composites because the secondary phases are intrinsically formed in the melt during cooling, but the fabrication process is very difficult to design. Furthermore, for ex-situ method, the size and volume fraction of secondary phases can be easily controlled by using various sized particles or fibers with various amounts when adding. However, for in-situ method, it is difficult to optimize the microstructures because the optimization process is related with the composition adjustment. Hereafter, we will introduce the researches on both ex-situ and in-situ BMGMCs, including their composite structure and mechanical properties.
\nThe selection of ex-situ secondary phases includes fibers, particles, pores and porous particles. Hereafter, we will introduce the microstructures and mechanical properties of each kind of ex-situ BMGMCs.
\nThe fiber-reinforced BMGMCs mainly focus on tungsten fiber, steel fiber and carbon fiber [28–34]. Dandliker et al. have firstly fabricated the tungsten and carbon-steel continuous wire reinforced Zr-based BMGMCs by quenching the metallic melt to a glass after infiltrating the reinforcement [28]. The continuous long fibers in the glass matrix can efficiently hinder the propagation of main shear bands, improving the plastic strain from 0% of monolithic BMG to over 2% of those reinforced with steel wires. Kim et al. have successfully fabricated carbon fiber reinforced Zr-based BMGMCs by infiltrating the alloy melt to the bundle of carbon fibers in a quartz tube which are cleaned and preheated [30]. Figure 3a shows the backscattered SEM image of the carbon fiber reinforced composite. The carbon fibers are uniformly distributed in the matrix and the matrix appears to be uniform and free of heterogeneity. The volume fraction of carbon fibers is about 50% and the diameter is about 5 μm. They also found that a carbide reaction zone is formed surrounding the carbon fibers, as shown in Figure 3b, starting from the carbon fibers, a diffusion zone of Ni, Cu within the fiber, a crystallize reaction zone of (Zr + Ti)C and ZrC, to the BMG matrix. Qiu et al. cast the sample in a resistive furnace by melting the ingots in an evacuated quartz tube packed with the tungsten fibers, followed by pressure infiltration [34]. After pressurization the tube was quenched in a supersaturated brine solution. The nominal diameter of the fibers is 250 μm. The volume fraction of the fibers varies from 10 to 70%.
\n(a) Backscattered SEM image of carbon fiber reinforced bulk metallic glass composite; (b) dark field TEM of the interfacial region between a carbon fiber and the matrix.
During compression test, unlike the catastrophic fracture of monolithic BMG, the composites reinforced with tungsten fibers shows yielding and plastic deformation. The yielding strength also increases with a higher volume fraction of fibers. They also found that the failure mode changes with various volume fractions of fibers. The monolithic glass fractures on 45° planes. As the volume fraction of fiber increases, failure mode shifts from shear to localized buckling and tilting.
\nThe particle-reinforce BMGMCs includes ceramic particles, metal particles and the matrix includes Zr-based, Ti-based and Mg-based alloy system [35–43].
\nChoi-Yim and Johnson have firstly introduced ceramic particle such as SiC, WC and TiC, and the metal particles W and Ta into Zr-based and Cu-based BMG matrix [35]. A mixture of the pre-alloyed metallic glass forming elements and secondary phase material are combined by induction melting the glass forming alloy together with the solid secondary phase material on a water-cooled copper boat under a Ti-gettered argon atmosphere. The volume fractions of particles range from 5 to 30% and the sizes of the particles vary between 20 and 80 μm. Figure 4 shows the uniformly distributed WC particles in the metallic glass matrix with the volume fraction of 10%. The matrix composition is chosen for several reasons. A relatively low melting temperature suppresses the chemical interactions between the reinforcement particles and the glass. A low glass transition temperature decreases differential thermal stresses which arise between the reinforcement and the matrix during freezing and cooling.
\nAn optical micrograph showing uniformly distributed WC particles in the matrix.
Zhang et al. have introduced Ta particles into Zr-Cu-Al-Ag BMG matrix, the average size of Ta particles is about 40 μm and the volume fraction varies from 5 to 20% [36]. The composite is prepared by induction melting the Zr-Cu-Al-Ag alloy together with Ta powder in a quartz tube and subsequently injecting through a nozzle into a copper mold. Figure 5a shows the SEM images of the as-cast BMGMCs containing 10% Ta, consisting of homogeneously dispersed particles embedded in the metallic glass matrix. Figure 5b shows the compressive stress-strain curves of the composites containing 5–20% Ta. The monolithic glassy alloy fails immediately after yielding at 1885 MPa. However, the composites exhibit apparent work hardening and plastic strain. For 10% Ta-containing composite, the yield strength, fracture strength and plastic strain are 1717, 2600 MPa and 31%, respectively. The composite containing 20% Ta shows no plasticity which may originate from the crystallization of the matrix. Ta particles play an important role in the initiation and propagation of the multiple shear bands. The differences in Young’s modulus between Ta particles and glassy matrix generates high-stress concentration occurs at the interfaces, which promotes the initiation of shear bands at the interface prior to the formation of shear bands on the maximum shear surface.
\n(a) SEM image of the as-cast BMGMC containing 10% Ta; (b) compressive stress-strain curves of the BMGMCs containing 0–20% Ta; (c) SEM image of the composite containing 8% Nb (inset shows the XRD pattern); (d) compressive stress-strain curves for single phase BMG and Nb-containing composite (4 and 8%).
Pan et al. have added Nb particles into Mg-based BMG matrix to fabricate the ex-situ particle-reinforced BMGMCs [43]. The size of Nb particles is 20–50 μm, the volume fraction varies from 4 to 8%. The particles are added during inductively melting the master alloy. The composite alloy is remelted by induction in a quartz tube and injected with argon pressure into copper molds. Figure 5c shows the SEM micrograph of the cross-sectional surface of the composite with 8% Nb particles, which exhibits the uniform distribution of the particles without interfacial reaction. Figure 5b shows stress-strain curves for monolithic BMG and Nb-containing composite with 4 and 8% Nb particles. The BMG fails just after the elastic limit of 2%, but the composites yield at about 900 MPa and exhibit significantly plastic strain as well as work hardening and softening. The overall engineering plastic strain is determined to be about 12.1% for 8% Nb-containing composite. Ductile Nb particles serve as obstacles to impede shear bands propagation. When encountering an Nb particle, the shear band has to be either blocked or bypass around the particle due to the strong bonding between the particles and the matrix. Furthermore, if the sear deformation travels into the ductile Nb particles, the particle can dramatically plastic deform by dislocation mode to absorb the shear strain and prevent the catastrophic failure from taking place by the free propagation of unstable shear bands.
\nBesides fiber and particle reinforcement, recently, some new kind of secondary phases have been introduced to BMG matrix, such as pores and porous particles [43–46].
\nWada et al. introduced pores into Pd-based BMG matrix [44]. The master alloy melts are subjected to four distinct hydrogenation treatments at 853 K in tubes of fused silica: (i) 12 h at 1 MPa, then oil quench, (ii) the same, then water quench; (iii) 3 h at 4 MPa, then oil quench, and (iv) the same, then water quench to form porous rods. The porosities of BMG rods are calculated to be 1.7–3.7% from their density. The pore size is observed to be 20–30 μm, as shown in Figure 6a. The stability of the fine uniform pore distribution during casting follows from the high viscosity of the melt. Compressive stress-strain curves are strongly affected by porosity, as shown in Figure 6b. The porous alloy with the highest porosity of 3.7% shows the plastic strain over 18%, greatly enhanced compared to the pore-free BMG. But during tension, no plasticity can be observed. The shear band pattern is affected by the pores acting as stress concentrators. The pores are comparable in radius with the notch roots giving enhanced toughness, and are expected to induce extensive shear banding.
\n(a) Pore distributed BMG rods, water quenched from a melt held at 853 K for 3 h under 4 MPa hydrogen; (b) tensile and compressive stress-strain curves of pore reinforced BMGMCs with different porosities.
Jang et al. have introduced porous Mo particles into Mg-Cu-Gd-Ag BMG matrix [45]. During master alloy melting, high purity porous Mo particles with a spherical shape and a size of 20–70 μm are added in the matrix alloy. The volume fraction of porous Mo particles ranges from 10 to 25%. For the introduced porous particles, the overall microstructure of the composite is separated into larger-scale compartment, ~50 μm between Mo particles, and the fine-scale compartment, 1–5 μm within one porous Mo particle, as shown in Figure 7a and b. The composites containing 20–25 vol% porous Mo particles exhibit superior mechanical performance with ultimate compression stress up to 0.95 and 1.1 GPa and plastic strain up to 10%, as shown in Figure 7c. Unlike solid particles, the crack propagation in the present composite is arrested by the porous Mo particles. For the porous nature of the reinforcing phase, the numbers of particles are calculated to be 1.4 times higher than those with solid ones, i.e., the mean interspacing of the porous Mo particles is less than that of the solid Mo ones. This should favor to the confining the shear-banding behavior, thus enable more halting propagation of the shear bands. The porous Mo particles separates and restricts the highly localized shear banding into many isolated small regions, and can confine lots of microsized compartments of the matrix within porous particles, which results in the formation of multiple shear bands within or around the porous particles, promoting the deformation to distribute more uniformly across the sample.
\n(a) SEM observation of the porous Mo particles in the BMG matrix, with the inserted XRD pattern; (b) an enlarged image of a single porous Mo particle; (c) representative room-temperature compressive engineering stress-strain curves for the BMGMCs.
Guo et al. have used an original method, so-called top-down process, to fabricate porous NiTi shape memory alloy (SMA) powders [46]. In this process, the multiphase precursor powder of Ni-Ti-Gd is firstly produced with B2-NiTi and Ni-Gd phase, then by leaching in nitric acid solution to remove Ni-Gd phase and leaving pore in the powder, as shown in Figure 8a. The size and interspacing between NiTi within one porous particle are as small as 200 nm. The porous NiTi powders are subsequently added to Mg-Cu-Gd-Ag glass former liquid to fabricate the BMGMC, as shown in Figure 8b, with volume fraction ranged from 5 to 20%. The porous particles are homogeneously distributed in the glassy matrix. The composites containing 20 vol% porous NiTi particles exhibits the best mechanical properties, including a true plastic strain of up to 10.6% and a fracture stress of up to 1173 MPa, as shown in Figure 8c. Similar to porous Mo, many microcracks are confined in the inter-particle regions and should result from local shear banding within the amorphous matrix. Furthermore, compared with solid particles, the porous particles can generate more interfaces, which makes the yield strength follows the load-bearing mode even with low volume fraction of particles. This composite also shows very obvious work hardening behavior, which is considered to originate from the stress-induced martensitic transformation of B2-NiTi phase, which is very attractive and different from those conventional metal or ceramic particles.
\n(a) Porous NiTi powder by top-down process; (b) SEM images of BMGMCs containing 20 vol% porous particles; (c) compressive true stress-strain curves for monolithic base BMG and BMGMCs with various volume fraction of porous NiTi addition.
For in-situ BMGMCs, the fabrication process is very important and difficult to design, such as how to induce in-situ precipitated phase, how to control the volume fraction and size of secondary phase. For different alloy systems, the process and reinforcing phases are quite different, thus, this part will be divided by alloy systems, not by reinforcing phases.
\nβ-Zr phase is one of the in-situ reinforcements in Zr-based BMGMCs that has been studied a lot. Hays et al. have reported the development of β phase reinforced Zr-Ti-Cu-Ni-Be-Nb BMGMCs [47]. Both XRD patterns and SEM images suggest the precipitation of β phase during rapid quenching. The β phase is in the dendritic and distributed in the glassy matrix homogeneously, as shown in Figure 9a. The volume fraction of β phase is estimated to be ~25%. The dendritic structures are characterized by primary dendrite axes with lengths of 50–150 μm and radius of about 1.5–2 μm. Regular patterns of secondary dendrite arms with spacing of 6–7 μm can be observed from SEM images. This composite shows about 5% plastic strain under three point bending. Figure 9b shows that the shear bands propagate preferentially through many successive dendrite arms, occasionally initiate or terminate within the arms, and clearly propagate as localized bands through the β-phase arms. This composite also shows good plasticity during compression, as shown in Figure 9c. It yields at 1.3 GPa when the β phase yields and deforms, and shear band patterns develop, as the glassy matrix is locally loaded beyond its critical shear stress. The plastic strain is over 6%. The composite even shows about 5% plastic strain during tension. Clear necking and deformation can be observed. The dendritic microstructure of the β phase acts to seed the initiation of organized shear band patterns, confines the propagation of individual shear bands to domains having a spatial scale of the order of the primary dendritic axes length, and lead to shear band spacing which is related to the dendrite arm spacing.
\n(a) SEM image of in-situ β-Zr reinforced BMGMCs (inset: XRD patterns); (b) shear band patterns array from compressive failure region of bend test sample; (c) compressive stress strain curve for the composite.
Another important in-situ secondary phase in Zr-based BMGMCs is refractory metal phase. Fan et al. have introduced in-situ Ta-rich precipitates in Zr-Cu-Al-Ni-Ta BMGMCs [48]. For the high melting temperature of Ta, there are two steps arc-melting during master alloy preparation. Firstly, Zr-Ta ingot is fabricated which forms solid solutions of Zr-Ta, and remaining elements are subsequently mixed with Zr-Ta ingots. The microstructure of the as-cast composite samples consists of both glassy matrix and Ta-rich particles with an average size of 10–30 μm, as shown in Figure 10a. The particles are oblong in shape and do not appear to possess a dendritic structure, they distribute homogeneously among the matrix and the volume faction is about 4%. This composite yields at 1.7 GPa and exhibits apparent work hardening and significant plastic strain, as shown in Figure 10b. The elastic incompatibility between the particles and the matrix introduces stress concentrations which may promote shear band initiation. The particles may also impede shear band propagation. Guo et al. have applied dealloying in metallic melt method to further optimize the microstructure and mechanical properties of Ta-rich phase reinforced BMGMCs [49]. The dealloying in metallic melt phenomenon occurs when immerging Zr-Ta solid solution precursor in Cu-Al-Ni melt. For the negative enthalpy of mixing between Zr and Cu-Al-Ni and positive enthalpy of mixing between Ta and Cu-Al-Ni, Zr is gradually selectively leached from precursor ingot to the melt and forming a glass-former liquid, while at the same time, remaining Ta breaks into small particles and distribute in the melt. By finally quenching, the BMGMCs can be fabricated. Interestingly, the size of Ta-rich particles by dealloying method is much smaller than that by conventional arc-melting method, 40 μm of arc-melting sample and 10 μm of dealloying sample, as shown in Figure 10c and d.
\n(a) SEM image of in-situ Ta reinforced BMGMCs; (b) compressive stress-strain curves for as-cast in-situ Ta reinforced BMGMCs; (c) SEM images of the sample by conventional arc-melting; (d) SEM images of the sample by novel dealloying method; (e) true compressive stress-strain curves and (f) tensile stress-strain curves of monolithic BMG, BMGMC by arc-melting (ZT-A) and BMGMC by dealloying (ZT-D).
The reason is considered to be that during conventional arc-melting, the Ta-rich particles precipitate during cooling and its size can be hardly controlled, while during dealloying, for the low melting temperature, the Ta-rich particles remain in solid state and finally fine particle can be obtained. With these finer particles, the composite by dealloying method shows better plasticity than that by arc-melting method under both compression and tension, as shown in Figure 10e and f. The plastic strain for arc-melting sample is 3% under compression and 0% under tension. However, the value for dealloying sample is 14% under compression and 1.8% under tension. As discussed before, the stress concentration at the interfaces between Ta-rich particles and glassy matrix contributes a lot to the overall plasticity. For the finer size of particles in dealloying samples, the number density of particle and equivalent interface area per mm3 are quite larger than arc-melting sample, 34.4 × 104, 108 mm2 for dealloying sample and 0.4 × 104 and 22.5 mm2 for arc-melting sample. Thus, the five times larger area of interfaces in dealloying sample can plasticize the sample more.
\nRecently, B2-CuZr shape memory secondary phase in Zr-based BMGMCs have attracted a lot of interests. Unlike conventional metal or ceramic reinforcing phases, the shape memory phase can undergo the stress-induced martensitic transformation during deformation, which can both further improve the plasticity and give the sample obvious work hardening behavior [50]. Xu et al. have induced B2-CuZr phase in Zr-Cu-Al-Co system, as shown in Figure 11a [51]. The spheroidal crystal phases of B2-CuZr (confirmed by XRD, not shown here) are embedded in the amorphous matrix. The volume fraction of B2-CuZr is estimated to be about 10%. The composite exhibits obvious plastic deformation under compression with various strain rates, as shown in Figure 11b. Moreover, the flow stress increases with the increasing strain after yielding, exhibiting obvious work-hardening behavior. Even though the B2-CuZr reinforced Zr-based BMGMCs have shown good plasticity and work-hardening, but the inhomogeneous distribution of B2-CuZr limits the further improvement of the mechanical properties. During cooling, the B2-CuZr phase tends to precipitate in the center of the sample where the cooling rate is lower than that near the edge. Guo and Saida have successfully homogenized the distribution of B2-CuZr phase by minor doping Ta [52]. During cooling, the primary precipitated Ta-rich phase acts as effective nucleants that promoted copious nucleation of the B2-CuZr phase. As shown in Figure 11c, the dark phase of shape memory phase forms around the gray phase of Ta-rich particle. The total volume fraction of crystalline secondary phase, including both Ta-rich particles and B2-CuZr (some transforms to B19’-CuZr because of the residual heat at the interface), is estimated to be ~80% by comparing the heat of crystallization of both the composites and monolithic BMG. The volume fraction of Ta-rich particles is estimated to be ~10% based on the image analysis. This composite shows a superior plasticity of 8.4% plastic strain during tension, as well as obvious work-hardening and a unique triple yielding phenomenon, as shown in Figure 11d.
\n(a) Typical OM images of the B2-CuZr reinforced BMGMCs (inset: enlarged parts of rectangular area); (b) true stress-strain curves of the composites with various strain rates; (c) SEM image of ta-doped sample; (d) true tensile stress-strain curves of both monolithic base alloy (Ta0) and Ta-doped multiphase reinforced BMGMC (Ta5).
The shape memory phase has also been introduced into Ti-based BMGMCs. Hong et al. have successfully induced B2 phase in Ti-Cu-Ni-Zr-Sn-Si system [53]. The size and distribution of B2 phase can be also tailored by varying the composition, as shown in Figure 12a and b. The size of B2 phase varies from 2–5 to 70–150 μm. The volume fraction varies from 10 to 33%. The composites also shows good plasticity under compression, the largest plastic strain is about 12.7%, as shown in Figure 12c. Furthermore, the yield strength exhibits a tendency to decrease with the increase of volume fraction of B2 phase, which originates from the early deformation on softer B2 phase. However, the plastic strain increases with more and larger B2 phase. The large B2 phase is found to be effective in dissipating the localization of shear stress, thus causing branching and multiplication of the shear bands. It is also observable that the severe deformation in the B2 phase, formation of wrinkles suggesting the possible deformation-induced phase transformation, as shown in Figure 12d.
\n(a) and (b) SEM images of B2 phase reinforced Ti-based BMGMCs with different composition; (c) stress-strain curves of B2 phase reinforced Ti-based BMGMCs; (d) SEM image from the lateral surface of fractured sample.
Another important reinforcement in Ti-based BMGMCs is the β phase. Very good plasticity can be even observed for such composites under tension [54]. However, most of these composites contains Be, which is toxic and should be avoided when used as biomaterials. To induce β phase in Be-free alloy system, the β phase stabilizers, such as Ta, V and etc. Yamamoto et al. have successfully induced β-Ti phase in Ti-Cu-Ni-Sn-Ta system [55]. As shown in Figure 13a, for the low glass-forming ability of the matrix, Ti2Ni also forms besides β-Ti phase. Thus, the plasticity of this composite is not very good, the plastic strain is about 1.6%, as shown in Figure 13b.To further improve the mechanical property, Guo and Kato have chosen a better glass former, Ti-Zr-Cu-Pd-Sn alloy, and used Mo as the β-Ti phase stabilizer element [56]. By doping 2 at% Mo, homogeneously distributed oblong-like β-Ti phase can be observed from Figure 14a. The volume fraction and average size of β-Ti are estimated to be about 25 μm and 25%. This composite also shows a good plasticity under compression, fracture strength of 2160 MPa and plastic strain of 13.4%, as shown in Figure 14b. The nanoindentation test has shown that the β-Ti phase is softer than the matrix, indicating the propagation of the main shear band is hindered by the interfaces between the softer β-Ti and glassy matrix. The shear band is deflected, branched, or multiplied. Furthermore, after elastic deformation of both β-Ti and matrix to the yielding point, the β-Ti appears to yield and deform, contributing to the work-hardening behavior. The composite also shows about 3% plastic strain under three point bending test, see Figure 14c.
\n(a) XRD patterns and (b) stress-strain curves under compression for β phase reinforced Ti-Cu-Ni-Sn-Ta BMGMCs.
(a) OM image of Mo-doped β-Ti based BMGMCs; (b) compressive true stress-strain curves for both monolithic base alloy and Mo-doped BMGMCs; (c) bending stress-strain curves for both base alloy and BMGMCs (inset: XRD patterns for bending samples).
The researches on in-situ Mg-based BMGMCs are not as much as those in Zr-based or Ti-based systems for the difficulty to design proper fabrication process. However, recently, the application of novel dealloying in metallic melt method or selective phase leaching method in fabrication of in-situ Mg-based BMGMCs have attracted a lot of attentions.
\nOka et al. have successfully introduced α-Ti phase in Mg-Cu-Gd BMG system by using novel dealloying in metallic melt method [57]. The schematic of this method is shown in Figure 15a. For the negative value of heat of mixing (miscible) between Ti-Cu and Gd-Cu while positive value (immiscible) of Ti-Gd, Ti-Cu and Gd-Cu phases are expected to form in the prealloy. Similarly, for the negative value of heat of mixing between Mg-Gd and Mg-Cu while positive value of Mg-Ti. When the Ti-Cu-Gd prealloy consisting of Cu-Gd and Ti-Cu phases is immersed in the Mg-melt, the Cu-Gd phase and Cu dealloyed from the Ti-Cu phase are expected to dissolve. They will form the Mg-Cu-Gd BMG formable liquid if the Mg, Cu and Gd proportions are correctly balanced. The remaining elemental Ti from Ti-Cu phase is thought to form the porous structure by a surface diffusion mechanism in the Mg-Cu-Gd alloy liquid. Rapid cooling of the semi-solid mother alloy yields Mg-Cu-Gd BMG with in-situ Ti dispersoids, as shown in Figure 15b. By using this strategy, the in-situ Ti dispersoids have been successfully introduced. Furthermore, for the Ti dispersoids are directly dealloyed from Ti-Cu phase, thus, the size of them can be reduced by decreasing the size of Ti-Cu phase. By increasing the cooling rate of Ti-Cu-Gd prealloy, the Ti-Cu phase is refined and subsequently the size of Ti dispersoids also decreased. As shown in Figure 15c, during four point bending test, the composite with large and fine Ti dispersoids shows a fracture strength of 230 and 387 MPa, 6 and 78% higher than the monolithic BMG, respectively. With fine pore Ti dispersoids, the size and inter-particle spacing of Ti phase is estimated to be ~500 nm, which is very close to the characteristic plastic processing zone size of reported Mg-based BMG, 100–1000 nm. Thus, optimum condition for the composite effect has locally achieved within and surrounding the porous Ti dispersoids. Therefore, these regions and surrounded area of glassy near porous Ti could deform plastically. However, for the low volume fraction of Ti dispersoids (~2%), macroscopic plasticity is not obtained in this system. Subsequently, Guo et al. have applied similar dealloying reaction in Mg-Cu-Gd-Ag system with better glass-forming ability [49]. As shown in Figure 16a, homogenous distributed α-Ti phase among the glassy matrix can be observed. The average size and volume fraction are estimated to be about 6 μm and 13%, respectively. This composite shows improved mechanical properties compared with its monolithic counterpart, that is, ~6.1% of plastic strain and 920 MPa of fracture strength during compression test, see Figure 16b. The stress concentration at the interfaces between Ti dispersoids and surrounding matrix is in favor of initiating multiple shear bands. Furthermore, when the stress exceeds the yield strength of Ti, it can release the stress concentration condition. The suppression of propagation of the single main shear band is enhanced by such yielding, which causes branching, blocking or multiplying the shear bands. It is therefore, the sample is deformed with a significant plasticity. The composite also shows improved fracture stress and strain during four point bending test, 331 MPa of fracture stress and 0.42% of fracture strain, as shown in Figure 16c. The calculated fracture toughness of this composite is ~1.73 MPa m1/2, 45% higher than its monolithic counterpart. However, it is still low and cannot lead to plasticity during bending.
\n(a) Schematic showing porous Ti formation by dealloying in metallic melt; (b) schematic showing the preparation of the mother alloy; (c) stress-strain curves of BMGMCs using rapid cooling prealloy and slow cooling prealloy, under four point bending test.
(a) SEM images of in-situ Ti reinforced Mg-based BMGMC by dealloying method (inset: XRD patterns of both BMGMC and its monolithic counterpart); (b) true compressive stress-strain curves of both BMGMC and its base alloy (inset: SEM images of fractured BMGMC); (c) stress-strain curves by four point banding test.
As stated above, the shape memory phase has attracted a lot of interest recently for its unique stress-induced martensitic transformation behavior. However, the research on shape memory phase reinforced BMGMCs mainly focus on Zr-based or Ti-based BMGMCs. Guo and Kato have successfully induced in-situ B2-NiTi shape memory phase in Mg-Ni-Gd-Ag BMGMCs by using novel selective phase leaching in metallic melt method [58]. A schematic of the novel designed process is shown in Figure 17a, which contains roughly three steps: Ni-Ti-Gd precursor preparation by arc-melting, master alloy preparation by induction melting and composite preparation by copper mold casting. From the Ni-Ti, Ti-Gd and Ni-Gd phase diagrams, it is possible to prepare a Ni-Ti-Gd ternary precursor consisting of only NiTi and Ni-Gd phases if the proportions of Ti, Ni, and Gd are properly balanced. Then, the temperature of master alloy preparation is kept low enough for NiTi dispersoids not to melt or dissolve, but high enough for the Ni-Gd phase to dissolve into the Mg-Ag melt, owing to their different reactivities. Moreover, the amounts of Mg-Ag melt and dissolved Ni-Gd was properly balanced to form the glass-forming matrix. Finally, Mg-based BMGMCs, an Mg-Ni-Gd-Ag BMG matrix with in-situ NiTi dispersoids, is fabricated by casting this semi-solid melt into a copper mold. By using such strategy, the in-situ B2-NiTi phase have been successfully induced, as shown in Figure 17b, the average size is ~8 μm and the volume fraction is ~15%. As shown in Figure 17c, the composite shows a higher fracture stress (~906 MPa), plastic strain (~7%), and work hardening than its monolithic counterpart. The shear bands were considered to be obstructed by the in-situ ductile NiTi dispersoids, which deflected their propagation and caused branching or multiplying of the shear bands, typically observed in ductile metal reinforced BMGMCs and is known as the “blocking effect”. Moreover, a stress-induced phase transformation from B2-NiTi to B19’-NiTi during deformation releases the stress concentration around the dispersoids to restrict free volume accumulation. This process hindered the rapid propagation of shear bands, meaning that additional stress was required to move the shear bands, called the “TRIP effect”. Since the B2-NiTi phase precipitates during Ni-Ti-Gd precursor preparation and has no change from then on, the size of it can be refined by increasing the cooling rate of the precursor. Thus, the precursor rods by tilt casting technique are produced with various diameters, i.e., various cooling rate. With a higher cooling rate, the size of B2-NiTi is smaller, from 8 to 2 μm, as shown in Figure 18a and b. With finer B2-NiTi phase, the composite shows higher fracture strength and larger plastic strain, as shown in Figure 18c. The sample with finest particle size exhibits the best mechanical properties, i.e., 1096 MPa fracture strength and 15.5% plastic strain. The volume fraction of the B2-NiTi phase has also been improved by adjusting the composition with higher Ti amount. The volume fraction increases from 15 to 32% and the optimized composite shows superior plasticity during compression, as shown in Figure 19a, a fracture stress of 1212 MPa and a fracture strain of 25.3%. Figure 19b summarizes the compressive property data of various in-situ Mg-based BMGMCs, including Fe, long-period stacking ordered structure (LPSO), NiZr, AgMg, and quasicrystal reinforced composites [59–63]. Both the fracture strength and fracture strain of the optimized B2-NiTi reinforced BMGMC are the highest among all in-situ Mg-based BMGMCs reported to date.
\n(a) Schematic of the fabrication process; (b) SEM image of B2-NiTi reinforced mg-based BMGMC; (c) compressive true stress-strain curves for both base alloy and BMGMC.
SEM images of the composites using rapid cooling precursor: (a) 8 mm rod precursor; (b) 3 mm rod precursor; (c) compressive true stress-strain curves of the composites using rapid cooling precursor with various diameter, 8, 5 and 3 mm.
Compressive true stress-strain curves of the optimized B2-NiTi reinforced BMGMCs; (b) fracture strength versus fracture strain for various in-situ Mg-based BMGMCs to date.
In this chapter, both ex-situ and in-situ BMGMCs developed in Zr-based, Ti-based, Mg-based systems have been introduced, such as ceramic particle, metal particle, porous particle reinforced ex-situ BMGMCs and B2-phase, β-phase reinforced in-situ BMGMCs. The microstructures, mechanical properties as well as deformation mechanisms are discussed for each kind of BMGMCs. Compared with nearly zero plasticity of monolithic BMGs, the BMGMCs reinforced by secondary phases show significant improvement in plasticity, e.g., β-phase reinforced Ti-based BMGMCs show over 10% plastic strain under tension, B2-NiTi reinforced Mg-based BMGMCs show over 20% plastic strain under compression, etc. For the limitation of the chapter, more works on various reinforcements and alloy systems cannot be covered. The detailed deformation mechanisms of BMGMCs are not discussed fully either. For further development of BMGMCs, more works should be done on more complex composite structure, the deformation mechanisms, designing novel processing methods, tailoring the microstructures and mechanical properties of the existed BMGMCs. The research on BMGMCs will greatly extend the application potentials of amorphous materials as engineering materials.
\nHunger is a complicated issue, and several names are used to characterize its varied manifestations.
Generally, the term “hunger” refers to the distress caused by a deficiency of caloric. According to the United Nations’ Hunger Report, hunger states “define periods when populations are facing significant food insecurity” in which people do not have enough food to survive. Hunger, according to the FAO, is defined as a circumstance in which a person has an unusual and uncomfortable feeling as a result of a deficiency of food components in their diet that is required for a healthy life.
Undernutrition is defined as a deficiency in calories or one or more important nutrients. Undernutrition can arise individuals are unable to get or prepare food, have a disorder that makes it difficult to eat or absorb food or require an excessive amount of calories. Undernutrition is frequently visible: people are underweight, their bones frequently fall out, their skin is dry and stretchy, and their hair is dry and starts falling out. Clinicians can usually diagnose malnutrition based on a person’s appearance, height and weight, and overall health (including information about diet and weight loss). Food is provided to people through the mouth, if possible, in progressively increasing volumes, but it is also supplied via a tube carried from the throat to the stomach or put into a vein (intravenously). Undernutrition is commonly assumed to be caused by a lack of calories (i.e., overall food consumption) or protein. Vitamin and mineral deficiencies are so often thought to be different illnesses. However, when there is a calorie deficiency, vitamins and minerals are often more likely to be present. These, in turn, are the result of several factors, including household food insecurity, poor maternal health or childcare practices, and a lack of access to health services, safe drinking water, and sanitation.
Malnutrition refers to both under- and over-nutrition. Micronutrient deficiency occurs when vitamin and mineral intake or absorption is insufficient to sustain healthy growth and development in children and proper physical and mental function in adults. Poor nutrition, disease, or unmet micronutrient needs during pregnancy and lactation could all be contributing factors [1]. Over 2 billion individuals worldwide suffer from hidden hunger, more than double the 805 million people who do not get enough calories to consume [2]. The subcontinent of South Asia and much of Sub-Saharan Africa are hotspots for hidden hunger. In Latin America and the Caribbean, where diets are less reliant on single staples and where intensive micronutrient interventions, nutrition education, and basic health care are more prevalent, the rates are lower [3]. While the poorest countries bear a disproportionate amount of the expense of hidden hunger, micronutrient deficiencies, especially iron and iodine deficiency, are also widespread in the developed world. The worldwide malnutrition problem is becoming more complicated. Developing countries are shifting away from traditional diets based on minimally processed foods and toward highly processed, energy-dense, micronutrient-deficient foods, and beverages, which contribute to obesity and chronic diseases linked to diet. As a result of this nutritional change, many developing countries are experiencing the “triple burden” of malnutrition, micronutrient deficiencies, and obesity [4]. As a result, people’s food does not provide the vitamins and minerals they require for proper growth and development. It has an impact on two billion individuals all over the world [5]. Micronutrient deficiencies are thought to be responsible for 1.1 million of the 3.1 million children who die each year due to malnutrition [6, 7]. By impairing the immune system, vitamin A and zinc deficiency have a negative impact on children’s health and survival. Zinc deficiency inhibits growth in children and can cause stunting. Iodine and iron deficiencies hampered children’s physical and intellectual development [8].
Women and children have higher dietary needs than men [9]. Throughout pregnancy and conception, the nutritional state of women has a long-term impact on the fetus’s growth and development. Iodine deficiency causes nearly 18 million infants to be born with brain damage each year. Severe anemia is responsible for the deaths of 50,000 women each year after giving birth. In addition, 40 percent of women in impoverished countries suffer from an iron deficiency, which saps their energy. Women, infants, and young children are the primary targets of most initiatives to eliminate hidden hunger and improve nutrition outcomes. Treatments that focus on these people can have a high rate of return on investment by improving later-life health, nutrition, and cognition. Iodine, iron, zinc, and other micronutrient deficits are the most commonly identified micronutrient deficiencies in people of all ages (Table 1). Vitamin A deficiency affects an estimated 190 million preschool children and 19 million pregnant women [10], making it a less common but significant public health issue. Other important micronutrients, such as calcium, vitamin D, and B vitamins like folate, are typically insufficient [11]. Although concealed hunger is most commonly associated with pregnant women, toddlers, and teenagers, it affects people at all stages of their lives. The major objective of this chapter is to present information regarding government programs and food-based techniques in industrialized countries like India to combat hidden hunger.
Micronutrients deficiency | Effects |
---|---|
Vitamin A | Visual impairment, night blindness, increased risk of severe illness and death from common infections; (in pregnant women) night blindness, increased risk of death |
Vitamin D | Mood changes, bone loss, muscle cramps, bone and joint pain, fatigue |
Vitamin B12 | Fatigue, breathlessness, numbness, poor balance and memory trouble. |
Folic Acid | Megaloblastic anemia |
Iron | Anemia, impaired motor and cognitive development, increased risk of maternal mortality, premature births, low birth weight, low energy |
Iodine | Brain damage in newborns, reduced mental capacity, goiter |
Zinc | Weakened immune system, more frequent infections, stunting |
Micronutrient deficiencies and their effects on people.
PubMed, Google, and other databases are searched for relevant material. We conducted a search of all review papers using the keywords “hidden hunger, malnutrition, India.” Additionally, the global scenario, efforts, control programmes, critical evaluations, government reports, agency reports, and publicly available data were analyzed. The necessary data was gathered, compiled, and analyzed.
India’s greatest national treasure is its children; nonetheless, hunger continues to be a significant threat to children’s survival, growth, and development. It has assumed the proportions of a secret emergency in India. India is ranked 94th out of 107 analyzed countries on the 2020 Global Hunger Index (GHI), with a score of 27.2 for a “serious” level of hunger. Additionally, it states that wasting is “very prevalent” among children under the age of five in India. According to the Global Health Initiative, India has the greatest proportion of wasted children (children who are underweight for their height) of any country in the world (17.3 percent). Furthermore, India has 14% of malnourished children under the age of five and 34.7 percent of stunted children under the age of five. Whereas India ranks 101st out of 116 countries on the 2021 Global Hunger Index, with a score of 27.5, India has a severe level of hunger. Pakistan, Nepal, and Bangladesh, India’s neighbors, have achieved a higher ranking. Nepal ranks 77th, Bangladesh ranks 76th, and Pakistan ranks 92nd [12, 13].
The National Family Health Surveys NFHS-4 (2015–2016) and NFHS-5 (2019–2021) data show falling patterns in some of India’s important health characteristics as a result of these nutritional initiatives [14, 15].
During the 2019–2020 academic year, the NFHS-5 collected data from around 6.1 lakh households. Many of the indicators in NFHS-5 are comparable to those in NFHS-4, which was conducted in 2015–2016 to allow for temporal comparisons. It serves as a tracking indicator for the country’s Sustainable Development Goals (SDGs), which it wants to accomplish by 2030. Preschool education, disability, access to a toilet facility, death registration, bathing practices during menstruation, and techniques and reasons for abortion are all included in NFHS-5. New target areas in NFHS-5 will offer the necessary feedback for enhancing existing programs and developing new policy intervention techniques. Expanded domains of child immunization components of micronutrients for children are among the topics. Expanded age ranges for evaluating hypertension and diabetes among all people aged 15 and up are among the noncommunicable disease (NCD) components. The NFHS-5 asked for information on the percentage of women and men who had ever accessed the Internet for the first time in 2019.
5% of children under the age of five are stunted (low height for their age).
About 3% of children are wasted (low weight for height).
32% are underweight (low weight for their age).
More crucially, according to the most recent national survey, 7.7% of children suffer from severe acute malnutrition.
State-by-state, child nutrition indices indicate a heterogeneous pattern. While many states and UTs have seen improvements, some have seen a slight downturn.
Malnutrition has gotten worse. Stunting has been raised in 11 out of 18 states. Wasting is going up in 14 states.
Stunting: The percentage of stunted children has increased in 13 of the 22 states and UTs surveyed.
Wasted: In comparison to NFHS-4, the percentage of children under the age of five wasted has increased in 12 of the 22 states and UTs surveyed.
Obesity: The percentage of overweight children under the age of five has increased in 20 states and territories.
Children who had diarrhea in the 2 weeks prior to the study increased from 6.6 to 7.2 percent.
Children under 6 months who were exclusively breastfed also showed a sharp improvement, going from 54.9 to 63.7%.
The proportion of children (12–23 months) who were fully vaccinated improved from 62–76%.
The proportion of anemic children (5–59 months) increased from 58–67%.
Women aged 15–49 who were anemic increased from 53–57% and men of the same age increased from 29–31% between both editions of the NFHS.
In most states and UTs, the sex ratio at birth (SRB) has remained constant or increased.
The majority of the states are at a normal sex ratio of 952 or above.
SRB is below 900 in Telangana, Himachal Pradesh, Goa, Dadra & Nagar Haveli, and Daman & Diu.
States such as Tripura, Manipur, Andhra Pradesh, Himachal Pradesh, and Nagaland have also shown an increase in teenage pregnancies.
Children in the age group (6–23 months) receiving an adequate diet also showed a sharp improvement, from 9.6 to 11.3%.
Between 2019 and 2021, the U5MR dropped dramatically from 49.7 to 41.9%.
In India, the U5MR is 41.9 per 1000 live births, whereas the IMR is 35.2/1000 live births, and the NMR is 24.9 per 1000 live births.
Infant and child mortality rates have decreased in most Indian states. The best performers were Sikkim, Jammu & Kashmir, Goa, and Assam, which saw significant reductions in neonatal mortality rate (NMR), infant mortality rate (IMR), and under-five mortality rate (U5MR).
All three categories of child mortality increased in Tripura, Andaman & Nicobar Island, Meghalaya, and Manipur.
Among the 22 states and union territories surveyed, Bihar had the highest prevalence of NMR (34), IMR (47), and U5MR (56), whereas Kerala had the lowest death rates.
In the last 5 years, Maharashtra’s child mortality rate has remained unchanged.
Improved Sanitation and Cooking Facilities: Over the last 4 years, the percentage of households with improved sanitation and clean cooking fuel has increased in almost all of the 22 states and UTs (from 2015 to 2016 to 2019–2020).
Anemia among women and children continues to be a cause of concern. In 13 of the 22 states and UTs, more than half of the children and women are anemic. In addition, despite a significant increase in the consumption of IFA tablets by pregnant women for 180 days or more, anemia among pregnant women has increased in half of the States/UTs compared to NFHS-4.
The state of hidden hunger in India is alarming. A lot of work has been done, and while progress has been made, the pace of improvement is too slow.
Integrated Child Development Services (ICDS) is an Indian government programme that provides Supplementary nutrition, nutrition and health education, vaccinations, health screenings, referral services to children and their mothers under the age of six, non-formal pre-school education, and contraceptive counseling for teenagers. The scheme was initiated in 1975, suspended in 1978 under Morarji Desai’s government, and then reintroduced under the Tenth Five Year Plan. The tenth five-year plan also established a link between ICDS and Anganwadi centers, which are primarily located in rural regions and manned by frontline workers. Along with boosting child nutrition and immunization, the initiative aims to eliminate gender inequality by ensuring equitable access to resources for girls and boys [16].
The Midday Meal Scheme is a school meal program in India that aims to improve the nutritional status of school-aged children across the country. On working days, the program provides free lunch to children in primary and upper primary classes who attend government, government-aided, local body, Education Guarantee Scheme, and alternative innovative education centers, Madarsa and Maqtabs, supported by the Sarva Shiksha Abhiyan, and Ministry of Labour-run National Child Labour Project schools. With 120 million children served in 1.27 million schools and Education Guarantee Scheme centers, the Midday Meal Scheme is the world’s largest of its kind. In September 2021, the MoE (Ministry of Education), which serves as the scheme’s nodal ministry, changed the scheme’s name to PM-POSHAN (Pradhan Mantri Poshan Shakti Nirman) Scheme. According to the Central Government, by 2022, the scheme would cover an extra 24 lakh children getting pre-primary education at government and government-aided institutions. The program has undergone various adjustments since its introduction in 1995. The Midday Meal Scheme is established by the National Food Security Act of 2013. The National School Lunch Act in the United States is the legal basis for the Indian school lunch program.
The National Health Mission (NHM), which combines the National Rural Health Mission with the National Urban Health Mission, was announced by the Indian government in 2013. It was renewed in March 2018 for another year, till March 2020. It is headed by a Mission Director and controlled by National Level Monitors chosen by the Government of India. The National Health Mission (NHM) is responsible for several key initiatives, including Rogi Kalyan Samiti, Hospital Management Society, Untied Grants to Sub-Centres, Health Care Contractors, Accredited Social Health Activists National Mobile Medical Units (NMMUs), Janani Suraksha Yojana, National Ambulance Services Some of the initiatives include Janani Shishu Suraksha Karyakram (JSSK), Rashtriya Bal Swasthya Karyakram (RBSK), maternal and child health wings (MCH Wings), free medications and diagnostic services, district hospital and knowledge center (DHKC), National Iron+ Initiative, and tribal tuberculosis eradication.
SABLA is another name for this program. The initiative was unveiled by the Indian government on November 19, 2010, in the Plenary Hall of the Vigyan Bhavan in New Delhi. According to the Plan, adolescent girls between the ages of 11 and 18 will be included in all ICDS programs. The scheme’s goals are to help adolescent girls achieve self-development and empowerment, improve their nutrition and health, raise awareness about health, hygiene, nutrition, adolescent reproductive and sexual health (ARSH), and family and child care, improve their home-based skills, life skills, and vocational skills, mainstream out-of-school adolescent girls into formal or non-formal education, and inform and guide adolescent girls.
Under IGMSY a centrally sponsored scheme sanctioned by the Government of India in October 2010 under which grant-in-aid is distributed to states and UTs. promoting (ideal) infant and young child feeding (IYCF) practices, particularly early and exclusive breastfeeding for the first 6 months; and contributing to a more supportive environment by providing economic incentives to pregnant and nursing mothers for improved health and nutrition.
The National Horticulture Mission (NHM) is one of the sub-schemes of the Mission for Integrated Development of Horticulture (MIDH), and it is implemented through State Horticulture Missions (SHM) in selected districts across 18 states and six union territories. Farmers or beneficiaries should contact the district’s Horticulture Officer to receive benefits and assistance under the scheme.
The government of India introduced this centrally funded initiative, termed the “National Food Security Mission,” in October 2007 in response to stagnated foodgrain output and an increasing consumption requirement of India’s growing population. The mission was a spectacular success, with increased output of rice, wheat, and pulses. During the 12th Five Year Plan, the mission was expanded with new targets of an additional 25 million tonnes of food grain output by the end of the Plan, including 10 million tonnes of rice, 8 million tonnes of wheat, 4 million tonnes of pulses, and 3 million tonnes of coarse cereals. Based on previous experience and the performance of the 12th Plan, the program has been extended to 2019–2020, corresponding with the Fourteenth Finance Commission (FFC) period. Rice will account for 5 million tonnes, wheat will account for 3 million tonnes, pulses will account for 3 million tonnes, and coarse cereals will account for 2 million tonnes, to increase foodgrain production by 13 million tonnes.
The Mahatma Gandhi Employment Guarantee Act 2005 (or, NREGA, later renamed as the “Mahatma Gandhi National Rural Employment Guarantee Act” or MGNREGA), is an Indian labour law and social security measure that aims to ensure the “right to work”. This act was enacted on August 23, 2005 by Prime Minister Dr. Manmohan Singh’s UPA government. It aims to improve rural residents’ livelihood security by offering at least 100 days of paid employment per year to each household whose adult members volunteer to perform unskilled manual labour. The MGNREGA was established with the goal of “improving livelihood stability in rural regions by providing at least 100 days of guaranteed wage employment every fiscal year to every household with adult members who volunteer to perform unskilled manual work.”
The Swatchh Bharat Mission (SBM), also known as the Swatchh Bharat Abhiyan or the Clean India Mission, is an Indian government-led campaign to eliminate open defecation and improve solid waste management in 2014. It is a revamped version of the Nirmal Bharat Abhiyan, launched in 2009 but failed to achieve its goals. On October 2, 2014, Prime Minister Narendra Modi launched the campaign in Rajghat in New Delhi. With 3 million government workers and students from around the country participating in 4043 cities, towns, and rural villages, India’s largest cleaning campaign to date.
On August 7, 2018, India’s Comptroller and Auditor General (CAG) issued its findings on the “National Rural Drinking Water Programme.” In 2009, the National Rural Drinking Water Program (NRDWP) was created. It strives to provide rural residents with safe and sufficient water for drinking, cooking, and other home requirements on a sustainable basis.
On July 10th, 2018, FSSAI launched “The Eat Right Movement” to boost public health in India and counteract unfavorable nutritional trends associated with lifestyle disorders. On a unified platform, the food industry, public health specialists, civil society and consumer organizations, influencers and celebrities promised to make real efforts to magnify “The Eat Right Movement” in the country.
On behalf of the Ministry of Women and Child Development, Prime Minister Narendra Modi launched the POSHAN Abhiyaan in Jhunjhunu, Rajasthan, in March 2018. Its goal is to reduce undernutrition and other related issues by organizing various nutrition-related programs. Stunting, malnutrition, anemia (especially among young children, women, and adolescent girls), and low birth rates are also addressed. It will oversee and evaluate the implementation of all such plans, using existing organizational structures within line ministries where possible. By 2022, it plans to expand interventions supported by the ongoing World Bank-funded ICDS Systems Strengthening and Nutrition Improvement Project (ISSNIP) to all districts in the country.
The Ministry of Women and Child Development administers the Maternity Benefit Scheme, a federally funded program. It is a maternity benefit program that began on January 1, 2017, in all districts of the country.
The National Food Security Act of 2013 (also known as the “Right to Food Act”) is an Indian law that aims to provide subsidized food grains to about two-thirds of the country’s 1.2 billion people. It was signed into law on September 12, 2013, with a retroactive date of July 5, 2013. The existing government of India’s food security programs is converted into legal entitlements under the National Food Security Act, 2013 (NFSA 2013). The Midday Meal Program, Integrated Child Development Services Program, and Public Distribution System are all part of it. Furthermore, the NFSA 2013 recognizes maternity benefits. The Integrated Child Development Services Scheme and the Midday Meal Scheme are universal. In contrast, the PDS will serve roughly two-thirds of the population (75 percent in rural areas and 50 percent in urban areas).
The government of India’s health mission is known as Indradhanush. Union Health Minister J. P. Nadda introduced it on December 25, 2014. The effort’s goal is to achieve and maintain 90 percent vaccination coverage in India by 2020. Vaccination is available nationwide against eight vaccine-preventable diseases, including Diphtheria, Whooping Cough, Tetanus, Polio, Measles, a severe form of childhood tuberculosis, Hepatitis B, and meningitis and pneumonia caused by Haemophilus influenza type B, as well as Rotavirus diarrhea and Japanese Encephalitis in selected states and districts.
Increasing food grain production to ensure food security.
By supporting the production and availability of nutritionally dense food items, we may endeavor to improve the population’s dietary pattern.
Increasing the poor’s purchasing power and lowering their susceptibility in order for them to purchase a balanced, nutrition-dense diet.
Expansion and improvement of the public distribution system
Increasing student awareness of nutrition through school curricula, etc.
Food adulteration should be monitored and prevented.
Initiate more community involvement in nutrition surveillance.
The term “hidden hunger” refers to a more subtle sort of shortage produced by consuming inexpensive, satisfying foods that are low in important vitamins and minerals. While the implications of subclinical micronutrient deficiencies are becoming more understood and monitored, they frequently go unreported in the population. This is why vitamin deficits have been dubbed “hidden hunger.” Micronutrient deficits can occur even in places with an adequate food supply to support the population’s energy needs. When people cannot afford to diversify their diets sufficiently with fruits, vegetables, or animal-source foods containing micronutrients, shortages are unavoidable. Micronutrients are vitamins and minerals that humans require in order to boost cellular growth and metabolism. Iron, iodine, and vitamin A deficiency are the most prevalent forms of micronutrient malnutrition with serious public health effects. Other micronutrients have been demonstrated to contribute to illness prevention (e.g., folic acid and calcium) or growth promotion (e.g., zinc) [17].
FAO views food-based initiatives as a sustainable way to address the nutritional needs of population groupings. These are as follows:
Supplementation
Fortification
Bio-fortification
Dietary diversification
Community-based interventions for micronutrient status improvement
Supplementation is a technical term that refers to the process of delivering nutrients directly to the target population via syrup or pill. It has the advantage of providing an appropriate amount of a specific nutrient or nutrients in an easily absorbed form and is frequently the quickest option to address deficiency in people or demographic groups diagnosed as insufficient. Supplementation programmes are typically used as a temporary treatment and then phased out in favor of long-term, sustainable food-based interventions like fortification and dietary change, which typically involve increasing food diversity.
By 2024, all rice available at ration shops, rice available in mid-day meals, and rice available through all schemes will be fortified, Prime Minister Narendra Modi declared during his 75th Independence Day address from the Red Fort in New Delhi. The Prime Minister’s declaration is crucial for the nation and represents a forward-thinking strategy, as the government distributes approximately 300,000 tonnes of rice annually through various programmes authorized by the National Food Security Act, 2013. (NFSA). The Centre has allocated 328 lakh tonnes of rice under the NFSA for TPDS (Targeted Public Distribution System), MDM (Mid-day Meal), and ICDS (Integrated Child Development Services). Rice fortification will assist in addressing micronutrient deficiencies or “hidden hunger,” both of which contribute to undernutrition, a type of malnutrition. But before we discuss the benefits of the aforementioned declaration, if done properly, let us first define fortification and why it is necessary to combat malnutrition in India [18]. Food fortification is a cost-effective, scalable, and sustainable worldwide solution that tackles micronutrient deficiency. In October 2016, the Food Safety and Standards Authority of India (FSSAI) operationalized the Food Safety and Standards (Fortification of Foods) Regulations, 2016 to fortify staple foods such as wheat flour and rice (with iron, vitamin B12, and folic acid), milk and edible oil (with vitamins A and D), and double fortified salt (with iodine and iron) in order to address India’s high burden of micronutrient malnutrition. The “+F” symbol has been designated for the purpose of identifying fortified foods. Each package of fortified food shall bear the words “fortified with (fortificant name)” and the +F logo. Additionally, it may have the tagline “Sampoorna Poshan Swasth Jeevan” beneath the emblem, which is optional and not required (Figure 1) [19].
Food fortification logo used on fortified foods in India in Hindi and English language. [Source:
Fortification is the process of supplementing staple foods such as rice, wheat, oil, milk, and salt with essential vitamins and minerals such as iron, iodine, zinc, and vitamins A and D to increase their nutritional content. These nutrients may have been present in the food at the time of manufacture or may have been lost during processing.
Micronutrient deficiency or malnutrition, commonly referred to as “hidden hunger,” is a severe health concern. Access to safe and nutritious food is critical, and occasionally, owing to a lack of a balanced diet, a lack of variety in the diet, or food insecurity, individuals do not receive essential micronutrients. Often, significant minerals are lost during food processing as well. One strategy for addressing this issue is the fortification of food. This strategy complements other strategies for improving nutrition, such as diet variety and food supplementation. India suffers from a high rate of micronutrient deficiencies caused by Vitamin A, Iodine, Iron, and Folic Acid, which result in night blindness, goiter, anemia, and a variety of birth abnormalities. According to the National Family Health Survey (NFHS-4), anemia affects 58.4% of children aged 6 to 59 months, 53.1 percent of women of reproductive age, and 35.7 percent of children under the age of five. Fortification is an internationally proven technique that addresses the population’s widespread vitamin deficiencies.
The benefit-to-cost ratio of food fortification is extremely favorable. According to the Copenhagen Consensus, every rupee spent on fortification results in an economic value of nine rupees. Although the equipment and vitamin and mineral premix require an initial investment, the ultimate cost of fortification is quite inexpensive. Even if all programme costs are passed on to customers, the price rise will be between 1 and 2 percent, which is less than the regular price variance. The following are some of the numerous advantages of food fortification:
Because staple foods are extensively consumed, nutrients are added to them. Thus, this is an ideal way to simultaneously improve the health of a wide segment of the population.
It is a safe approach to enhancing people’s nutrition. The addition of micronutrients to food poses no risk to human health. The amount supplied is minimal and considerably below the Recommended Daily Allowances (RDA), and is strictly monitored to ensure safe use.
It is a cost-effective strategy that does not require individuals to alter their dietary habits or eating patterns. It is a socially and culturally acceptable method of nutrient delivery.
It has no effect on the food’s properties such as taste, aroma, or texture [20].
In this circumstance, fortification is the most practical option in terms of population access. This is referred to as the fortification of staple foods. The government of India has recognized this truth. This is why standards for five fortified essentials have been released, along with a logo (+F) to distinguish fortified foods: wheat flour, rice, edible oil, milk, and Double Fortified Salt. Recently, regulations for processed meals such as breakfast cereals, buns, rusks, pasta, and noodles were also released. Additionally, in collaboration with Tata Trusts, the Food Fortification Resource Centre (FFRC) has been located at FSSAI under the Ministry of Health and Family Welfare. The Food Fortification Resource Centre (FFRC) is a non-profit organization dedicated to the advancement of food fortification. The FFRC was established as a resource hub to serve as a shared platform for bringing together all major actors in food, nutrition, and health to collaborate on eradicating hidden hunger (Figure 2) [21].
Diagrammatic representation of food fortified with minerals and vitamins in India. [Source:
Salt is an excellent medium for iodine fortification and has been effectively used to combat iodine deficiency around the world. The properties of iodine salts used in fortification Salts of iodates and iodides in sodium and potassium are the two chemical forms employed in salt iodization. Fortification levels range between 30 and 200 parts per million. The WHO recommends that, under typical situations where salt is lost at a rate of 20% from manufacturing to household, an additional 20% be lost during cooking prior to consumption. The average person consumes 10 g of salt each day. This method was developed by the National Institute of Nutrition in Hyderabad to address the dual problems of iron and iodine deficiency. Given the widespread consumption of staple cereals, fortification makes sense. Wheat flour is enriched with iron and other minerals in various countries. There have been concerns concerning the bioavailability of iron from wheat atta due to its high phytate (absorption inhibitor) concentration. Certain chemicals, such as Na-Fe-EDTA and perhaps the enzyme phytase, may overcome phytate’s inhibitory effect. The higher expense of this salt may be offset by the fact that it has a higher bioavailability and therefore requires less fortification. Rice is the staple food for more than half of India’s population. Fortification of rice has been attempted by combining fortified extruded grains from rice flour with unfortified rice (Ultra rice). Wheat flour fortification with thiamin, riboflavin, niacin, and iron has been used successfully for a long period of time.
Vitamin A added to wheat flour showed excellent stability in studies conducted in the United States. In the Philippines and Sri Lanka, efficacy trials on wheat flour fortified with vitamin A and wheat flour fortified with iron are presently underway. Since late 1997, the United States and Canada have required wheat to be fortified with folic acid. In South America, in Chile and Costa Rica, fortification of wheat flour with folic acid has proved helpful in minimizing neural tube abnormalities. Zinc sulphate fortification of wheat flour was observed to decrease iron absorption; however, zinc oxide had no such inhibitory impact. Around 2.2 million tonnes of wheat flour are fortified in India. Since 2000, a few states, including Madhya Pradesh and Gujarat, and a few districts in West Bengal have fortified wheat flour. Numerous countries have enriched cereal products with folic acid to help minimize the prevalence of neural tube abnormalities. Fortification with folic acid, maybe in conjunction with vitamin B12, may also help reduce serum homocysteine levels. Because vitamin A is fat soluble, fats and oils may be useful carriers for it. In India and Pakistan, vegetable ghee (hydrogenated vegetable oil) is fortified. Margarine is vitamin A-fortified in approximately 24 countries, including Brazil, Chile, Colombia, Mexico, and Indonesia. Brazil is conducting trials on vitamin A-fortified soybean oil. Edible oils enriched with vitamin A and D are sold through market channels in India’s Madhya Pradesh and Rajasthan regions. In Venezuela, vitamin A, thiamin, riboflavin, niacin, and iron are added to precooked corn flour. In countries such as Mexico, where corn is the predominant food, fortification of maize with micronutrients is being studied. Maize flour is fortified with iron, zinc, and a vitamin B complex. Maize flour was enriched with soy protein and examined for its ability to aid in the development of the brain in rats. Additionally, research is being conducted to strengthen corn tortillas on a home and industrial scale [22].
Biofortification is a method that increases the nutrient density of food crops through conventional plant breeding, enhanced agronomic practises, and/or current biotechnology without sacrificing any consumer or farmer-preferred trait [23]. It is acknowledged as a nutrition-sensitive agriculture strategy that has the potential to significantly minimize vitamin and mineral deficiencies [24, 25, 26]. Zinc biofortification of beans, cowpeas, and pearl millet, as well as provitamin A carotenoid biofortification of cassava, maize, rice, and sweet potato, are all ongoing and at various stages of development. The biological process by which biofortified crops improve nutritional status is straightforward: biofortified crops are more nutrient-dense than conventional crops. Individuals will consume [27] and absorb [28] more micronutrients by eating biofortified crops than by eating the same amount of non-biofortified crops, assuming comparable micronutrient bioavailability [29] and retention [30] following heating or processing and storage. Consumption of biofortified staple crops can increase micronutrient intake in communities with a diet deficient in these nutrients.
Increasing dietary diversity is one of the most effective strategies for preventing hidden hunger on a long-term basis [31]. Even when socioeconomic factors are controlled for, dietary diversity is related to improved child nutritional outcomes [32]. In the long run, dietary diversification promotes a balanced and appropriate intake of macronutrients (carbohydrates, lipids, and protein); necessary micronutrients; and additional food-derived compounds such as dietary fiber. The majority of people may receive adequate nutrition from a mix of cereals, legumes, fruits, vegetables, and animal-source foods. Certain populations, such as pregnant women, may require supplements [33]. Effective solutions for promoting dietary diversity include food-based tactics such as home gardening and educating people about proper infant and young child feeding practises, food preparation, and nutrient-saving storage and preservation methods. Several low-cost, food-based approaches for improving micronutrient status can be advocated at the community level. Culturally relevant dietary adjustments should be established to assist individuals in identifying concrete measures that can increase both food supply and micronutrient absorption. This information must be distributed to the public using conventional methods of communication.
Promoting exclusive breastfeeding for newborns up to 6 months of age and continuing breastfeeding for older infants
Identifying and promoting the use of culturally suitable micronutrient-dense weaning foods.
Identifying and promoting the use of traditional green-leafed vegetables and fruits to increase dietary diversity.
Micronutrient preservation in fruits and vegetables by solar drying or canning processes.
Promoting kitchen gardening and small animal husbandry.
Increasing year-round access to micronutrient-dense foods.
Numerous issues confront developing nations, including health care, education, sanitation, water supply, and housing. As a result, focusing exclusively on a specific vitamin shortfall or technique will not be the most effective way to reduce micronutrient deficiencies. Complementary public health measures that can help minimize micronutrient deficiency include deworming, malaria prevention, increased access to safe drinking water and sanitation, and childhood immunization. Successful plans address all of these issues holistically and cooperatively, with full political commitment.
India ranks 102 out of 116 countries in the Global Hunger Index 2021. While eliminating malnutrition in India would be tough, it is not impossible. Achieving a sustainable end to hunger needs prompt action. Over 2 billion people, or one-third of the world’s population, are malnourished. Malnutrition and micronutrient deficiencies have a significant impact on child and mother mortality, mental impairment, and workforce productivity. The current paradigm of seeing food security only through the lens of energy security must change. Simply pumping grains to satisfy hunger will not provide nutrition and health. The objective should be to ensure that the diet is balanced in terms of macro-and micronutrients. To maintain MN security, laboratory, clinical, and community-based (operations) studies are required. A balanced approach of food fortification, dietary diversity, biofortification, and supplementation aided in the early detection and treatment of clinical deficiencies. A fortification program’s performance can be judged in terms of its public health effects and sustainability. The mechanism for extension must be robust. Support from the media is critical for raising awareness and promoting compliance. Large-scale initiatives including food fortification, dietary diversity, biofortification, and micronutrient supplementation are making significant headway in lowering the morbidity and mortality associated with micronutrient deficiencies. Current programs must be enhanced and work on their effective implementation must be done to ensure that they reach the poor. While targeted legislation must be enacted to rein in the proliferation of schemes, the judiciary must be an active player in the debate on nutritional justice for the people.
We pay our profound sense of gratitude to Dr. Satish Kumar Yadav for his assistance, encouragement, and insightful advice throughout in constructing this book chapter. We also apologize for not citing the research papers of all the authors that helped me in better understanding this topic.
Authors declare no conflict of interest.
All Works published by IntechOpen prior to October 2011 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-BC-SA 3.0). Works published after October 2011 are licensed under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0), the latter allowing for the broadest possible reuse of published material.
",metaTitle:"Translation Policy",metaDescription:"Translation of Works - Book Chapters",metaKeywords:null,canonicalURL:"/page/translation-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\\n\\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\\n\\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\\n\\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\n\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\n\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\n\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11530",title:"Solid Waste Management - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"e3e2cbc06fea6858df1f375d49431b66",slug:null,bookSignature:"Prof. Suhaiza Zailani",coverURL:"https://cdn.intechopen.com/books/images_new/11530.jpg",editedByType:null,editors:[{id:"172845",title:"Prof.",name:"Suhaiza",surname:"Zailani",slug:"suhaiza-zailani",fullName:"Suhaiza Zailani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11832",title:"Neurorehabilitation and Physical Therapy",subtitle:null,isOpenForSubmission:!0,hash:"37f858c8b681abe60704245c7a1e89ee",slug:null,bookSignature:"Prof. Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/11832.jpg",editedByType:null,editors:[{id:"196461",title:"Prof.",name:"Hideki",surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11671",title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",subtitle:null,isOpenForSubmission:!0,hash:"2bd98244cd9eda2107f01824584c1eb4",slug:null,bookSignature:"Associate Prof. Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",editedByType:null,editors:[{id:"270856",title:"Associate Prof.",name:"Suna",surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11548",title:"Intelligent Video Surveillance - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"4d13a124dd9eb965b2e6958786b710cb",slug:null,bookSignature:"Dr. Pier Luigi Mazzeo",coverURL:"https://cdn.intechopen.com/books/images_new/11548.jpg",editedByType:null,editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11726",title:"Systemic Lupus Erythematosus - Pathogenesis and Management",subtitle:null,isOpenForSubmission:!0,hash:"7005f26b225e5923d4ce4cd7c52f6fe9",slug:null,bookSignature:"M.D. Sophia Lionaki and Dr. Minas Karagiannis",coverURL:"https://cdn.intechopen.com/books/images_new/11726.jpg",editedByType:null,editors:[{id:"213115",title:"M.D.",name:"Sophia",surname:"Lionaki",slug:"sophia-lionaki",fullName:"Sophia Lionaki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11807",title:"Advances in Diptera - Insight, Challenges and Management Tools",subtitle:null,isOpenForSubmission:!0,hash:"530031c8ad9b3661090e69f0561e31f0",slug:null,bookSignature:"Dr. Sarita Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11807.jpg",editedByType:null,editors:[{id:"177117",title:"Prof.",name:"Sarita",surname:"Kumar",slug:"sarita-kumar",fullName:"Sarita Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11592",title:"COVID-19 Pandemic, Mental Health and Neuroscience - New Scenarios for Understanding and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"fa5536e967d8b33da78e7e5369abaf75",slug:null,bookSignature:"Ph.D. Sara Palermo and Prof. Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/11592.jpg",editedByType:null,editors:[{id:"233998",title:"Ph.D.",name:"Sara",surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11929",title:"Drilling Engineering and Technology - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"969d1c6315b04584c2f011e03dad69c2",slug:null,bookSignature:"Dr. Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/11929.jpg",editedByType:null,editors:[{id:"92105",title:"Dr.",name:"Mansoor",surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11481",title:"Active Learning - Research and Practice",subtitle:null,isOpenForSubmission:!0,hash:"3aba1eb3600a8c9ff880c628f70b3298",slug:null,bookSignature:"Ph.D. Delfín Ortega-Sánchez",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",editedByType:null,editors:[{id:"302925",title:"Ph.D.",name:"Delfín",surname:"Ortega-Sánchez",slug:"delfin-ortega-sanchez",fullName:"Delfín Ortega-Sánchez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11934",title:"Hydrogen Energy - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"360fe5dabd12a1f91a5658a5fe3eff66",slug:null,bookSignature:"Associate Prof. Murat Eyvaz and Dr. Ahmed Albahnasawi",coverURL:"https://cdn.intechopen.com/books/images_new/11934.jpg",editedByType:null,editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11565",title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",subtitle:null,isOpenForSubmission:!0,hash:"e642ce6df40b676fae9ab16d5c414af1",slug:null,bookSignature:"Prof. Laura Cristina Rusu and Dr. Lavinia Ardelean",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",editedByType:null,editors:[{id:"174262",title:"Prof.",name:"Laura",surname:"Rusu",slug:"laura-rusu",fullName:"Laura Rusu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11878",title:"Advances in the Auditory and Vestibular Systems",subtitle:null,isOpenForSubmission:!0,hash:"a664ad52eded5aa2ca06403e76bab30a",slug:null,bookSignature:"Prof. Stavros Hatzopoulos and Dr. Andrea Ciorba",coverURL:"https://cdn.intechopen.com/books/images_new/11878.jpg",editedByType:null,editors:[{id:"174266",title:"Prof.",name:"Stavros",surname:"Hatzopoulos",slug:"stavros-hatzopoulos",fullName:"Stavros Hatzopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:20},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:406},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"149",title:"Immunochemistry",slug:"immunochemistry",parent:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:42,numberOfWosCitations:54,numberOfCrossrefCitations:17,numberOfDimensionsCitations:50,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"149",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7013",title:"Immunohistochemistry",subtitle:"The Ageless Biotechnology",isOpenForSubmission:!1,hash:"cd11a72871d4b30ec4855a33d49adf3f",slug:"immunohistochemistry-the-ageless-biotechnology",bookSignature:"Charles F. Streckfus",coverURL:"https://cdn.intechopen.com/books/images_new/7013.jpg",editedByType:"Edited by",editors:[{id:"29033",title:"Prof.",name:"Charles",middleName:"F.",surname:"Streckfus",slug:"charles-streckfus",fullName:"Charles Streckfus"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2295",title:"Trends in Immunolabelled and Related Techniques",subtitle:null,isOpenForSubmission:!1,hash:"995b8354458c26a34858374c0e59d003",slug:"trends-in-immunolabelled-and-related-techniques",bookSignature:"Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/2295.jpg",editedByType:"Edited by",editors:[{id:"120202",title:"Dr.",name:"Eltayb",middleName:null,surname:"Abuelzein",slug:"eltayb-abuelzein",fullName:"Eltayb Abuelzein"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"36210",doi:"10.5772/35692",title:"Immunological Methods for the Detection of Campylobacter spp. - Current Applications and Potential Use in Biosensors",slug:"immunological-methods-for-the-rapid-detection-of-campylobacter-spp-current-applications-and-potent",totalDownloads:3412,totalCrossrefCites:0,totalDimensionsCites:12,abstract:null,book:{id:"2295",slug:"trends-in-immunolabelled-and-related-techniques",title:"Trends in Immunolabelled and Related Techniques",fullTitle:"Trends in Immunolabelled and Related Techniques"},signatures:"Omar A. Oyarzabal and Cynthia Battie",authors:[{id:"105485",title:"Prof.",name:"Omar",middleName:null,surname:"Oyarzabal",slug:"omar-oyarzabal",fullName:"Omar Oyarzabal"},{id:"106668",title:"Prof.",name:"Cynthia",middleName:null,surname:"Battie",slug:"cynthia-battie",fullName:"Cynthia Battie"}]},{id:"36202",doi:"10.5772/36688",title:"Recent Progress in Noncompetitive Hapten Immunoassays: A Review",slug:"noncompetitive-immunoassay-to-hapten-molecules",totalDownloads:1759,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"2295",slug:"trends-in-immunolabelled-and-related-techniques",title:"Trends in Immunolabelled and Related Techniques",fullTitle:"Trends in Immunolabelled and Related Techniques"},signatures:"Mingtao Fan and Jiang He",authors:[{id:"15909",title:"Dr.",name:"Jiang",middleName:null,surname:"He",slug:"jiang-he",fullName:"Jiang He"},{id:"109372",title:"Prof.",name:"Mingtao",middleName:null,surname:"Fan",slug:"mingtao-fan",fullName:"Mingtao Fan"}]},{id:"36206",doi:"10.5772/37193",title:"Ferret TNF-α and IFN-γ Immunoassays",slug:"ferret-tnf-alpha-and-ifn-gamma-immunoassays",totalDownloads:1950,totalCrossrefCites:0,totalDimensionsCites:5,abstract:null,book:{id:"2295",slug:"trends-in-immunolabelled-and-related-techniques",title:"Trends in Immunolabelled and Related Techniques",fullTitle:"Trends in Immunolabelled and Related Techniques"},signatures:"Alyson Ann Kelvin, David Banner, Ali Danesh, Charit Seneviratne, Atsuo Ochi and David Joseph Kelvin",authors:[{id:"111714",title:"Dr.",name:"David",middleName:null,surname:"Kelvin",slug:"david-kelvin",fullName:"David Kelvin"},{id:"111731",title:"Dr.",name:"Alyson",middleName:null,surname:"Kelvin",slug:"alyson-kelvin",fullName:"Alyson Kelvin"},{id:"111732",title:"MSc.",name:"David",middleName:null,surname:"Banner",slug:"david-banner",fullName:"David Banner"}]},{id:"66392",doi:"10.5772/intechopen.85055",title:"Low-Specificity and High-Sensitivity Immunostaining for Demonstrating Pathogens in Formalin-Fixed, Paraffin-Embedded Sections",slug:"low-specificity-and-high-sensitivity-immunostaining-for-demonstrating-pathogens-in-formalin-fixed-pa",totalDownloads:1256,totalCrossrefCites:5,totalDimensionsCites:5,abstract:"The present review describes a part of the author’s own experience in applying immunoperoxidase staining to routine histopathological diagnosis. The target disorder was focused on infection. In the practice of pathology diagnosis services, it is important for us diagnostic pathologists to judge whether the lesion is caused by an infection or not. When an infectious disease is highly likely, the visualization of pathogens within the inflammatory lesion is required to suggest a causative agent. Two main approaches the author would like to introduce include (1) the use of commercially available antisera showing wide cross-reactivity to a variety of bacteria and (2) the use of diluted patients’ sera. These immunohistochemical studies employing “low-specificity” and “high-sensitivity” probes are useful for confirming the localization of pathogen within the infectious lesion.",book:{id:"7013",slug:"immunohistochemistry-the-ageless-biotechnology",title:"Immunohistochemistry",fullTitle:"Immunohistochemistry - The Ageless Biotechnology"},signatures:"Yutaka Tsutsumi",authors:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi"}]},{id:"36200",doi:"10.5772/35160",title:"Evaluation of an Immuno-Chromatographic Detection System for Shiga Toxins and the E. coli O157 Antigen",slug:"evaluation-of-an-immuno-chromatographic-detection-system-for-shiga-toxins-and-e-coli-o157-antigen",totalDownloads:2170,totalCrossrefCites:2,totalDimensionsCites:4,abstract:null,book:{id:"2295",slug:"trends-in-immunolabelled-and-related-techniques",title:"Trends in Immunolabelled and Related Techniques",fullTitle:"Trends in Immunolabelled and Related Techniques"},signatures:"Ylanna Burgos and Lothar Beutin",authors:[{id:"103223",title:"Dr.",name:"Lothar",middleName:null,surname:"Beutin",slug:"lothar-beutin",fullName:"Lothar Beutin"},{id:"103567",title:"Dr.",name:"Ylanna",middleName:"Kelner",surname:"Burgos",slug:"ylanna-burgos",fullName:"Ylanna Burgos"}]}],mostDownloadedChaptersLast30Days:[{id:"63122",title:"Immune Cell Profiling in Cancer Using Multiplex Immunofluorescence and Digital Analysis Approaches",slug:"immune-cell-profiling-in-cancer-using-multiplex-immunofluorescence-and-digital-analysis-approaches",totalDownloads:1594,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"During the last years, multiplex immunofluorescence (mIF) has emerged as a very powerful tool in multiple epitope detection to study tumor tissues. This revolutionary technology is providing an important visual technique for tumor examination in formalin-fixed paraffin-embedded specimens for a better understanding of tumor microenvironment, new treatment discoveries, cancer prevention, as well as translational studies. The aim of this chapter is to highlight the use of tyramide signal amplification methodology in mIF and image analysis to identify several proteins at the same time in one single tissue and their spatial distribution in different tumor specimens including whole sections, core needle biopsies, and tissue microarrays. This type of methodology associated with image analysis can perform high-quality throughput assay in translational research studies to be applied in cancer prevention and treatments.",book:{id:"7013",slug:"immunohistochemistry-the-ageless-biotechnology",title:"Immunohistochemistry",fullTitle:"Immunohistochemistry - The Ageless Biotechnology"},signatures:"Edwin Roger Parra",authors:null},{id:"64808",title:"Detection Systems in Immunohistochemistry",slug:"detection-systems-in-immunohistochemistry",totalDownloads:1985,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Immunohistochemistry (IHC) is a process of selectively imaging antigens in cells or tissue sections by exploiting antibody specificity. This technique is widely used in diagnostic pathology and research experiments for tracking specific molecular markers characteristic of a particular cell type or cellular events such as cancerous cell development, cell proliferation, or apoptosis. Visualizing the target antigen following an antibody-antigen interaction is accomplished by different detection systems. In the simplest instance, primary antibody directly conjugated to an enzyme is responsible for both specifically binding to the antigen and catalyzing a color-producing reaction. Alternatively, complex detection systems could be designed to profoundly improve minimal detection level of the antigen. During the past years, there has been a considerable improvement in designing and introduction of new and highly sensitive detection systems. The choice of an IHC detection system is a compromise of a variety of variables including desired sensitivity, cost, and the time needed for an IHC staining to be performed. This chapter covers the immunohistochemistry detection systems with emphasis on their principle, history, advantages, and limitations and delineates factors needed to be considered for choosing an appropriate detection system for IHC applications.",book:{id:"7013",slug:"immunohistochemistry-the-ageless-biotechnology",title:"Immunohistochemistry",fullTitle:"Immunohistochemistry - The Ageless Biotechnology"},signatures:"Sorour Shojaeian, Nasim Maslehat Lay and Amir-Hassan Zarnani",authors:null},{id:"65712",title:"In Situ Identification of Ectoenzymes Involved in the Hydrolysis of Extracellular Nucleotides",slug:"in-situ-identification-of-ectoenzymes-involved-in-the-hydrolysis-of-extracellular-nucleotides",totalDownloads:883,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Adenosine triphosphate (ATP) and other nucleotides and nucleosides, such as adenosine, are signaling molecules involved in many physiological and pathophysiological processes. The group of cell and tissue responses mediated by these molecules is known as purinergic signaling. Ecto-nucleotidases are ectoenzymes expressed at the cell membrane that act sequentially to efficiently hydrolyze extracellular ATP into adenosine, and they are key elements of this signaling. There is growing interest in studying these enzymes in relation to various pathologies, especially those with an inflammatory component such as cancer. This review summarizes the main protocols for the study of the expression and in situ activity of ectoenzymes in tissue slices and cultured cells.",book:{id:"7013",slug:"immunohistochemistry-the-ageless-biotechnology",title:"Immunohistochemistry",fullTitle:"Immunohistochemistry - The Ageless Biotechnology"},signatures:"Mireia Martín-Satué, Aitor Rodríguez-Martínez and Carla Trapero",authors:null},{id:"66392",title:"Low-Specificity and High-Sensitivity Immunostaining for Demonstrating Pathogens in Formalin-Fixed, Paraffin-Embedded Sections",slug:"low-specificity-and-high-sensitivity-immunostaining-for-demonstrating-pathogens-in-formalin-fixed-pa",totalDownloads:1259,totalCrossrefCites:5,totalDimensionsCites:5,abstract:"The present review describes a part of the author’s own experience in applying immunoperoxidase staining to routine histopathological diagnosis. The target disorder was focused on infection. In the practice of pathology diagnosis services, it is important for us diagnostic pathologists to judge whether the lesion is caused by an infection or not. When an infectious disease is highly likely, the visualization of pathogens within the inflammatory lesion is required to suggest a causative agent. Two main approaches the author would like to introduce include (1) the use of commercially available antisera showing wide cross-reactivity to a variety of bacteria and (2) the use of diluted patients’ sera. These immunohistochemical studies employing “low-specificity” and “high-sensitivity” probes are useful for confirming the localization of pathogen within the infectious lesion.",book:{id:"7013",slug:"immunohistochemistry-the-ageless-biotechnology",title:"Immunohistochemistry",fullTitle:"Immunohistochemistry - The Ageless Biotechnology"},signatures:"Yutaka Tsutsumi",authors:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi"}]},{id:"64314",title:"Antigen Retrieval for Light and Electron Microscopy",slug:"antigen-retrieval-for-light-and-electron-microscopy",totalDownloads:1142,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Heat-induced antigen retrieval (HIAR) method reported by Shi et al. in 1991 has greatly contributed not only to immunohistochemistry but also to studying gene expressions using archived formalin-fixed and paraffin-embedded (FFPE) specimens. Heating cleaves crosslinks (methylene bridges) in formaldehyde-fixed proteins and extends polypeptides to expose epitopes hidden in the inner portion of antigens or covered by adjacent macromolecules. In this chapter, the following topics are described to reconsider the concept of immunohistochemistry flexibly and to apply HIAR for further immunological studies using a variety of specimens: (1) antigen-antibody interactions in tissues; (2) mechanisms of chemical fixation with formaldehyde, glutaraldehyde, and osmium tetroxide; (3) unmasking of epitopes using HIAR for specimens fixed with chemical fixatives, including highly masked epitopes; (4) a standardized fixative for immunoelectron microscopy-based HIAR; (5) HIAR for conventionally processed electron microscopy specimens embedded in epoxy resins; and (6) effects of antibody diluents on immunohistochemistry.",book:{id:"7013",slug:"immunohistochemistry-the-ageless-biotechnology",title:"Immunohistochemistry",fullTitle:"Immunohistochemistry - The Ageless Biotechnology"},signatures:"Shuji Yamashita",authors:null}],onlineFirstChaptersFilter:{topicId:"149",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:86,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:96,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:283,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:138,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:128,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:100,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:8,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:26,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11603",title:"People Management - Highlighting Futures",coverURL:"https://cdn.intechopen.com/books/images_new/11603.jpg",hash:"982c56a5fb4684d966f8f5e76b2638f5",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 22nd 2022",isOpenForSubmission:!0,editors:[{id:"450553",title:"Dr.",name:"Diana",surname:"Dias",slug:"diana-dias",fullName:"Diana Dias"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:120,paginationItems:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}},{id:"351159",title:"BSc.",name:"Kalum J.",middleName:null,surname:"Ost",slug:"kalum-j.-ost",fullName:"Kalum J. Ost",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}},{id:"325029",title:"Dr.",name:"Prem Chand",middleName:null,surname:"Jain",slug:"prem-chand-jain",fullName:"Prem Chand Jain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Shiv Nadar University",country:{name:"India"}}},{id:"357275",title:"Dr.",name:"Thomas",middleName:null,surname:"Mih",slug:"thomas-mih",fullName:"Thomas Mih",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Buea",country:{name:"Cameroon"}}},{id:"305305",title:"Dr.",name:"Arturo Yosimar",middleName:null,surname:"Jaen-Cuellar",slug:"arturo-yosimar-jaen-cuellar",fullName:"Arturo Yosimar Jaen-Cuellar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Autonomous University of Queretaro",country:{name:"Mexico"}}},{id:"305315",title:"Dr.",name:"David Alejandro",middleName:null,surname:"Elvira-Ortiz",slug:"david-alejandro-elvira-ortiz",fullName:"David Alejandro Elvira-Ortiz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Autonomous University of Queretaro",country:{name:"Mexico"}}},{id:"344374",title:"Dr.",name:"Manuel",middleName:null,surname:"Toledano-Ayala",slug:"manuel-toledano-ayala",fullName:"Manuel Toledano-Ayala",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Autonomous University of Queretaro",country:{name:"Mexico"}}}]}},subseries:{item:{id:"20",type:"subseries",title:"Animal Nutrition",keywords:"Sustainable Animal Diets, Carbon Footprint, Meta Analyses",scope:"An essential part of animal production is nutrition. Animals need to receive a properly balanced diet. One of the new challenges we are now faced with is sustainable animal diets (STAND) that involve the 3 P’s (People, Planet, and Profitability). We must develop animal feed that does not compete with human food, use antibiotics, and explore new growth promoters options, such as plant extracts or compounds that promote feed efficiency (e.g., monensin, oils, enzymes, probiotics). These new feed options must also be environmentally friendly, reducing the Carbon footprint, CH4, N, and P emissions to the environment, with an adequate formulation of nutrients.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:7,paginationItems:[{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79866",title:"Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants",doi:"10.5772/intechopen.101582",signatures:"Yosra Ahmed Soltan and Amlan Kumar Patra",slug:"ruminal-microbiome-manipulation-to-improve-fermentation-efficiency-in-ruminants",totalDownloads:214,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78998",title:"Effect of Various Feed Additives on the Methane Emissions from Beef Cattle Based on an Ammoniated Palm Frond Feeds",doi:"10.5772/intechopen.100142",signatures:"Mardiati Zain, Rusmana Wijaya Setia Ningrat, Heni Suryani and Novirman Jamarun",slug:"effect-of-various-feed-additives-on-the-methane-emissions-from-beef-cattle-based-on-an-ammoniated-pa",totalDownloads:142,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78895",title:"Health Hazards of Toxic and Essential Heavy Metals from the Poultry Waste on Human and Aquatic Organisms",doi:"10.5772/intechopen.99549",signatures:"Adesakin Taiwo Adekanmi",slug:"health-hazards-of-toxic-and-essential-heavy-metals-from-the-poultry-waste-on-human-and-aquatic-organ",totalDownloads:173,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78573",title:"Analysis of Inputs Parameters Used to Estimate Enteric Methane Emission Factors Applying a Tier 2 Model: Case Study of Native Cattle in Senegal",doi:"10.5772/intechopen.99810",signatures:"Séga Ndao",slug:"analysis-of-inputs-parameters-used-to-estimate-enteric-methane-emission-factors-applying-a-tier-2-mo",totalDownloads:97,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78008",title:"Advances in Pasture Management and Animal Nutrition to Optimize Beef Cattle Production in Grazing Systems",doi:"10.5772/intechopen.99687",signatures:"Andressa Scholz Berça, Eliéder Prates Romanzini, Abmael da Silva Cardoso, Luís Eduardo Ferreira, André Pastori D’Aurea, Lauriston Bertelli Fernandes and Ricardo Andrade Reis",slug:"advances-in-pasture-management-and-animal-nutrition-to-optimize-beef-cattle-production-in-grazing-sy",totalDownloads:230,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}}]},publishedBooks:{paginationCount:5,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:86,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:96,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:283,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:138,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:128,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:100,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Artificial Intelligence",id:"14"},selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 7th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:96,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda",middleName:"R.",surname:"Gharieb",fullName:"Reda Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/63243",hash:"",query:{},params:{id:"63243"},fullPath:"/chapters/63243",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()