\r\n\t(i) Quantum dots of very high-quality optical applications, Quantum dot light-emitting diodes (QD-LED) and ‘QD-White LED’, Quantum dot photodetectors (QDPs), Quantum dot solar cells (Photovoltaics).
\r\n
\r\n\t(ii) Quantum Computing (quantum bits or ‘qubits’), (vii) The Future of Quantum Dots (broad range of real-time applications, magnetic quantum dots & graphene quantum dots), Superconducting Loop, Quantum Entanglement, Quantum Fingerprints.
\r\n
\r\n\t(iii) Biomedical and Environmental Applications (to study intracellular processes, tumor targeting, in vivo observation of cell trafficking, diagnostics and cellular imaging at high resolutions), Bioconjugation, Cell Imaging, Photoelectrochemical Immunosensor, Membranes and Bacterial Cells, Resonance Energy-Transfer Processes, Evaluation of Drinking Water Quality, Water and Wastewater Treatment, Pollutant Control.
",isbn:"978-1-80356-594-1",printIsbn:"978-1-80356-593-4",pdfIsbn:"978-1-80356-595-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"0dd5611c62c91569bd2819e68852002a",bookSignature:"Prof. Jagannathan Thirumalai",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11756.jpg",keywords:"LED, Organic LEDs, Dyes & Pigments, Solar Cells, Laser Photonics, Electronic Switching Devices, Qubits, Josephson Junction, Bioconjugation, Cell Imaging, Photoelectrochemical Immunosensor, Membranes, and Bacterial Cells",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 16th 2022",dateEndSecondStepPublish:"May 27th 2022",dateEndThirdStepPublish:"July 26th 2022",dateEndFourthStepPublish:"October 14th 2022",dateEndFifthStepPublish:"December 13th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. J. Thirumalai received his Ph.D. from Alagappa University, Karaikudi, He was also awarded the Post-doctoral Fellowship from Pohang University of Science and Technology (POSTECH), the Republic of Korea. His research interests focus on luminescence, self-assembled nanomaterials, and thin-film optoelectronic devices. He has published more than 60 SCOPUS/ISI indexed papers and 11 book chapters, edited 4 books, and member of several national and international societies like RSC, OSA, etc. His h-index is 19.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai",profilePictureURL:"https://mts.intechopen.com/storage/users/99242/images/system/99242.png",biography:"Dr. J. Thirumalai received his Ph.D. from Alagappa University, Karaikudi in 2010. He was also awarded the Post-doctoral Fellowship from Pohang University of Science and Technology (POSTECH), Republic of Korea, in 2013. He worked as Assistant Professor of Physics, B.S. Abdur Rahman University, Chennai, India (2011 to 2016). Currently, he is working as Senior Assistant Professor of Physics, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam (T.N.), India. His research interests focus on luminescence, self-assembled nanomaterials, and thin film opto-electronic devices. He has published more than 60 SCOPUS/ISI indexed papers and 11 book chapters, edited 4 books and member in several national and international societies like RSC, OSA, etc. Currently, he served as a principal investigator for a funded project towards the application of luminescence based thin film opto-electronic devices, funded by the Science and Engineering Research Board (SERB), India. As an expert in opto-electronics and nanotechnology area, he has been invited as external and internal examiners to MSc and PhD theses, invited to give talk in some forum, review papers for international and national journals.",institutionString:"SASTRA University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"6",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"5348",title:"Luminescence",subtitle:"An Outlook on the Phenomena and their Applications",isOpenForSubmission:!1,hash:"d982c49fed4423a0ea7367af4f917b82",slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5348.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6489",title:"Light-Emitting Diode",subtitle:"An Outlook On the Empirical Features and Its Recent Technological Advancements",isOpenForSubmission:!1,hash:"20818f168134f1af35547e807d839463",slug:"light-emitting-diode-an-outlook-on-the-empirical-features-and-its-recent-technological-advancements",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6489.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6242",title:"Hydroxyapatite",subtitle:"Advances in Composite Nanomaterials, Biomedical Applications and Its Technological Facets",isOpenForSubmission:!1,hash:"6a18a9b6617ae6d943649ea7ad9655cc",slug:"hydroxyapatite-advances-in-composite-nanomaterials-biomedical-applications-and-its-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6242.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6124",title:"Micro/Nanolithography",subtitle:"A Heuristic Aspect on the Enduring Technology",isOpenForSubmission:!1,hash:"c94caf617c31b349bd3d9dd054a022a3",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6124.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5699",title:"Thin Film Processes",subtitle:"Artifacts on Surface Phenomena and Technological Facets",isOpenForSubmission:!1,hash:"164177fc1e3eca542ebad5fd34a79d1e",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5699.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9414",title:"Advances in Condensed-Matter and Materials Physics",subtitle:"Rudimentary Research to Topical Technology",isOpenForSubmission:!1,hash:"3aebac680de7d3af200eadd0a0b2f737",slug:"advances-in-condensed-matter-and-materials-physics-rudimentary-research-to-topical-technology",bookSignature:"Jagannathan Thirumalai and Sergey Ivanovich Pokutnyi",coverURL:"https://cdn.intechopen.com/books/images_new/9414.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5884",title:"Unraveling the Safety Profile of Nanoscale Particles and Materials",subtitle:"From Biomedical to Environmental Applications",isOpenForSubmission:!1,hash:"5e5811aa0f15ab9d8b6a235e8408875d",slug:"unraveling-the-safety-profile-of-nanoscale-particles-and-materials-from-biomedical-to-environmental-applications",bookSignature:"Andreia C. Gomes and Marisa P. Sarria",coverURL:"https://cdn.intechopen.com/books/images_new/5884.jpg",editedByType:"Edited by",editors:[{id:"146466",title:"Prof.",name:"Andreia",surname:"Ferreira de Castro Gomes",slug:"andreia-ferreira-de-castro-gomes",fullName:"Andreia Ferreira de Castro Gomes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7325",title:"Nanostructures in Energy Generation, Transmission and Storage",subtitle:null,isOpenForSubmission:!1,hash:"8e49924dd2c3e28c82fdc115ce04f925",slug:"nanostructures-in-energy-generation-transmission-and-storage",bookSignature:"Yanina Fedorenko",coverURL:"https://cdn.intechopen.com/books/images_new/7325.jpg",editedByType:"Edited by",editors:[{id:"199149",title:"Dr.",name:"Yanina",surname:"Fedorenko",slug:"yanina-fedorenko",fullName:"Yanina Fedorenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9230",title:"Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis",subtitle:null,isOpenForSubmission:!1,hash:"1d1af591d87490c9ad728a1352e62d96",slug:"smart-nanosystems-for-biomedicine-optoelectronics-and-catalysis",bookSignature:"Tatyana Shabatina and Vladimir Bochenkov",coverURL:"https://cdn.intechopen.com/books/images_new/9230.jpg",editedByType:"Edited by",editors:[{id:"237988",title:"Prof.",name:"Tatyana",surname:"Shabatina",slug:"tatyana-shabatina",fullName:"Tatyana Shabatina"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9322",title:"Hybrid Nanomaterials",subtitle:"Flexible Electronics Materials",isOpenForSubmission:!1,hash:"beff6cce44f54582ee8a828759d24f19",slug:"hybrid-nanomaterials-flexible-electronics-materials",bookSignature:"Rafael Vargas-Bernal, Peng He and Shuye Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/9322.jpg",editedByType:"Edited by",editors:[{id:"182114",title:"D.Sc.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63141",title:"Hypothalamic Control of Sleep-Wake Circadian Cycle",doi:"10.5772/intechopen.79899",slug:"hypothalamic-control-of-sleep-wake-circadian-cycle",body:'\n
\n
1. Hypothalamus as a sleep-wake cycle regulator aside the RAS
\n
The invention of the EEG by Hans Berger was a landmark in the history of sleep science. Until then, sleep was primarily considered to be a passive state, resulting from an exhaustion-modulated partial disconnection of sensory-motor circuitry from the higher-level neural regulators [1]. When early and after the first recordings of brain electrical activity, Berger established the alpha and beta waves as the EEG-dominant oscillations in healthy subjects [2]; he was proposing the electrophysiological definition of being awake. Later developments of Berger research allowed Frédéric Bremer, who was studying the physiology of the cerebellum and the neural control of muscular tone, to further investigate on the side effects of sleepiness after a lesion was produced on the hypothalamus. Although not precisely involved in sleep research, Bremer curiosity on exploring the functional effects of lower brain damages further led him to perform cats’ decerebration by which the forebrain was left in situ after a mesencephalic transection at intercollicular level. The results of this approach—the “cerveau isolé” model—leading to a persistent and indefinite condition with the brain deprived from the ascending sensory information, except for olfaction and optical ones, led Bremer to consider the hypothesis of sleep being a consequence of a complete deprivation of a sensory input arriving from the spinal cord. In this model, the cortical EEG pattern was dominated by a high-amplitude, low-frequency activity, like that observed in the slow-wave sleep (SWS). The following experiments, where the brain transection was performed at the level of the meeting point between the brain stem and the spinal cord, revealed very different results. In this “encephale isolé” model, an interchangeable oscillation between the sleep and the wake states, with an EEG pattern varying from the spontaneous low-frequency, high-amplitude activity usually observed in SWS, and high-frequency, low-amplitude activity, typical of wakefulness and rapid eye movement, was observed, not different from what can be noticed in a healthy condition. Although, at this time, Bremer was unaware of the reticular activating system (RAS), the assumption taken from his work that sleep was derived from a reduction in cortical tone while wakefulness resulted from the maintained sensorial flow to the brain served as the basis for later developments on sleep-wake cycle neurophysiology [3].
\n
RAS was identified about 14 years later by Moruzzi and Magoun who significantly contributed to sleep-wake physiology by showing that brainstem reticular formation stimulation abolished EEG low-frequency activity and induced high-frequency activity in the cortical recordings [4]. Further experiments using the transection technique concluded that RAS underlies wakefulness, while its absence or its “silence” precipitates sleep [5]. These results were, however, obtained in acute experiments when EEG was assessed almost immediately after the brain damage. However, Villablanca [6] observed that, in the animals transected and maintained alive days or weeks after the surgical procedure, a waking-like EEG activity characterized by low-amplitude high-frequency waves was observed, suggesting that the forebrain could be involved in this partial recovery of the normal rhythm, in particular, its magnocellular region which contains cholinergic, GABAergic, and glutamatergic neurons. This allowed conceptualizing that the wake-state modulation may also be dependent regions located rostral to RAS, in particular, of the forebrain. Some studies showed that the electrical stimulation of the posterior hypothalamus and the basal forebrain in the isolated cat forebrain induced fast cortical EEG rhythms [7]. On the other hand, the cholinergic stimulation of these areas was shown to induce arousal, suggesting a role in the modulation of a wakening mechanism.
\n
In a “diencephalic model,” resulting from the removal of the cortex and striatum, leaving the thalamus, hypothalamus, and basal forebrain connected to the brain stem, animals became hyperactive, hyperreactive to sensory stimuli, and with a low-amplitude, high-frequency activity in the thalamus. In “athalamic animal” in which the thalamus was removed, they were also hyperactive and reactive to sensory stimuli, but they could not localize the stimuli and do not show very much awareness with only brief periods of low-amplitude, high-frequency activity.
\n
To evaluate how close is the relationship between the structure and the elicited command to develop wake, we can infer using the latency of a stimuli to induce awake EEG. The stimulation of RAS-thalamic pathway is several times faster on inducing a wake-like pattern than stimulating basal forebrain or lateral hypothalamic/orexin pathways, thus meaning that for both regions, there is a need to project elsewhere to induce such a wake EEG pattern.
\n
In the 1920s, during the influenza epidemic, a new type of encephalitis, attacking brain regions and regulating sleep and wakefulness, was described by Constantin von Economo. This disorder, which was eventually called encephalitis lethargica or von Economo’s sleeping sickness, swept through Europe and North America, with some patients exhibiting severe insomnia, while others slept for 20 or more hours per day, arising only briefly to eat and drink. The postmortem autopsies of these patients indicated that those with an insomnia-like phenomenon had a damage in the anterior hypothalamus, whereas those with abnormally increased sleep periods showed an abnormal posterior hypothalamus. In view of that, an ascending arousal system originating in the brainstem that kept the forebrain awake was proposed and later described by Moruzzi and Magoun as the ascending reticular activating system. Later studies, during the 1980s, clarified the nature of this pathway.
\n
Although Von Economo’s work represented a crucial achievement for sleep research, the seminal studies of the hypothalamic-hypocretin system were performed by Lecea and Kilduff who characterized the mRNA-encoding hypocretin and identified that the neurons were responsible for its production [8]. Soon after their findings, the relationship between hypocretin/orexin neurons and narcolepsy was established with a mutation in the orexin-2/hypocretin-2 receptor observed in a narcoleptic dog [9]. Symptoms of narcolepsy, a disorder characterized by hypersomnolence and muscle weakness (cataplexy) triggered by emotion, were also associated to the absence of orexin/hypocretin [10] to the lack of orexinergic/hypocretinergic neurons [11] or orexin/hypocretin 2 receptor [12]. Cell bodies of those neurons are in the perifornical area and lateral hypothalamus (LH), responsible for RAS and tuberomammillar nucleus (TMN) neurons activation and are active during wake state and rapid eye movement (REM) sleep [13].
\n
\n
\n
2. Orexinergic neurons, their receptors, and physio-pharmacological aspects of orexinergic system related to the sleep-wake cycle
\n
Prepro-orexin protein is the precursor protein, generating the excitatory neuropeptides orexins A and B (hypocretins 1 and 2). Orexin A (hypocretin 1), with a structure of 33 amino acids and 3.5 kDa, is completely conserved among different mammals which reflects its physiological relevance. Orexin B (hypocretin 2) is a 28-amino acid peptide with 2.9 kDa with 46% similarity to orexin A [14]. Their neurons, located on the LH, project widely throughout the brain and spinal cord [15]. Orexin excites target neurons through two types of expressed G-protein-coupled receptors. Orexin 1 receptor (OX1R) is dominantly expressed in the locus coeruleus (LC) and orexin 2 receptor (OX2R) is dominantly expressed in the arcuate nucleus (Arc), ventrolateral hypothalamus (VMH), LH, and TMN. Both OX1R and OX2R are expressed in the raphe nucleus and ventral tegmental area (VTA).
\n
Similar to other wake-promoting neurons, orexin neurons fire mainly during active wakefulness when orexin levels are highest and are silenced during NREM and REM sleep, concurring with the lowest levels of orexin [16].
\n
Different neuronal pathways involving orexin and neurotransmitters affecting its activity were identified. Neuropeptide Y (NPY) and agouti-related peptide (AgRP) in the Arc project to orexin neurons [17]. Also, serotoninergic neurons in the median/paramedian raphe nucleus and GABAergic neurons in the ventrolateral preoptic (VLPO) nucleus send axons to orexin neurons [18]. VLPO is of major importance on initiating and maintaining NREM sleep as their neurons are activated by the somnogens adenosine [19] and prostaglandin D2 [20], and VLPO damage reduces NREM and REM sleep [21]. Orexinergic neurons are also targeted by neuronal projections from the bed nucleus of the stria terminalis (BST), supraventricular zone, and dorsomedial hypothalamus (DMH) [18] and receive neuronal projections from the suprachiasmatic nucleus—the human master circadian clock [22]. A direct neuronal pathway between SCN and orexinergic neurons was not identified until now.
\n
Since orexinergic neurons in LH are scarce and difficult to distinguish from other neurons just by morphology, a slice-path clamp technique, an electrophysiological method based on the expression of enhanced green fluorescent protein (EGFP) under the control of orexin promoter in transgenic mice, has been used in order to identify substances affecting orexinergic neuron activity [23, 24]. For instance, this allowed to assume the effects of distinct neurotransmitters on orexin neurons: glutamate receptor agonists AMPA and NMDA depolarize orexin neurons, while GABAA and GABAB receptor agonists muscimol and baclofen hyperpolarize those cells. Serotonin and noradrenaline hyperpolarize all orexin neurons through two receptors coupled to inhibitory Gi proteins (5HT1A and alpha 2A receptors, respectively) and subsequently activate protein-coupled inwardly rectifying potassium channels. Recent optogenetic methods allowed to confirm that the activation of serotoninergic neuron terminal inhibits orexin neurons either directly (via 5-HT1A receptor) or indirectly (via facilitation of GABAergic-inhibitory inputs) [25]. Dopamine also hyperpolarizes orexin neurons possibly by an indirect action through alpha 2A receptor [26], and glycine inhibits the activity of orexin neurons either directly and indirectly [27].
\n
One complementary method to study the function of orexinergic neurons is to look for the physiological consequences of its ablation. Hara and coworkers generated transgenic mice, in which orexin neurons are ablated, and showed a phenotype similar to human narcolepsy [11], which also occurred in OX1r and OX2r knockout mice [28]. In transgenic mice, experimentally induced gradual ablation of orexin neurons using a specific “time-controlled death” technique was associated to a fragmentation of the usual sleep-wake cycle [29]. The anatomical proximity and the genetic co-localization of the orexin neurons regulating sleep-wake state have recently benefitted from optogenetics. Using this kind of approach, Adamantidis and collaborators showed that by increasing the activity of orexin neurons, there was also an increased probability of transition to wakefulness from either NREM or REM sleep [30]. On the other hand, results from Zhang group using the same kind of approach indicate that the acute inhibition of orexinergic neurons leads to a time-of-day-dependent induction of NREM sleep [31]. To overcome some difficulties related to the study of neuronal networks located deeper in the brain, several new-generation optogenetic tools are being developed with an expected great impact on the near future in the areas of chronobiology and sleep physiology.
\n
\n
\n
3. Melanin-concentrating hormone (MCH) and MCH neurons
\n
The melanin-concentrating hormone is a 19-amino acid peptide predominant in specific neurons with the cell body located in the lateral hypothalamus and incerto-hypothalamic area of mammals. Apart from the sleep-active neurons in the preoptic area, these groups of neurons are also active during sleep, especially in REM sleep [32]. MCH neurons project throughout the brain with a dense innervation of the cholinergic and monoaminergic arousal centers [33]. MCH decreases cAMP levels in the cell through the MCH receptor 1(MCHR1), a G-protein-coupled receptor linked to Gq, Gi, and Go subunits which are expressed widely in the brain [34], and cellular electrophysiological studies showed that MCH has both presynaptic and postsynaptic strong inhibitory effects [35, 36]. The evidence that MCHR1 is expressed in several areas of the brain including those which are part of physiological pathways within sleep-wake control mechanisms (hippocampus, subiculum, basolateral amygdala, shell of the nucleus accumbens, ventromedial nucleus, arcuate nucleus, tuberomammillary nucleus, dorsolateral pons including dorsal raphe, and locus coeruleus) [37] supports that MCH neurons must play an essential role on sleep-wake physiology.
\n
Furthermore, while intracerebroventricular infusion of MCH peptide facilitates REM and NREM sleep [38], knockout of MCH is associated to a more active wakefulness state [39] and to a reduction on either REM or NREM sleep. Optogenetically selectively activated MCH neurons generally increase REM sleep duration [40, 41, 42]. Consistent results have shown that MCH neurons are strongly activated on REM sleep and de-activated during NREM, suggesting that MCH neurons promote REM sleep [32]. However, studies with timing-controlled ablation of MCH neurons revealed an increase in wakefulness and a reduction in NREM sleep, showing that MCH is also involved in the regulation of NREM sleep.
\n
MCH neurons seem to inhibit some awake center neurons through GABAergic-inhibitory synapses onto histaminergic neurons of tuberomammillary nucleus. Recent work showed that the acute activation of MCH neurons, at the onset of REM sleep, extended the duration of this sleep stage but not that of the NREM sleep [42]. The inhibition of MCH neurons on the other hand reduces the frequency of theta rhythms from the hippocampus without interfering on REM sleep duration [41].
\n
MCH neurons are excited by orexin, AMPA agonists, NMDA, and cannabinoid type-1 receptor agonists [43, 44, 45] and inhibit orexinergic and adjacent GABAergic neurons [46]. It is clear, however, that orexin may also inhibit MCH neurons via GABAa receptors [47]. Dopamine is also an MCH neuronal inhibitor either via alpha-2 receptor [48] or via D1- and D2-like receptors [49]. Furthermore, MCH neurons are inhibited by MCH itself and by GABA, noradrenaline, serotonin, acetylcholine, neuropeptide Y, and histamine [50]. This mutual inhibitory interaction between orexin neurons and MCH neurons in the LH is crucial for the regulation of sleep-wake physiological cycle [51, 52, 53].
\n
\n
\n
4. Circadian regulation of sleep-wake cycles and some of its disturbances
\n
Sleep disorders are complex phenomena. A detailed correlation of sleep-wake regulation and clinical states is beyond the scope of this chapter, but a few examples can help to bridge the basic science concepts to everyday clinical scenarios. Since the first description of the hypocretin/orexin system 20 years ago, a body of literature investigating the physiologic and pathophysiology role of this system, as well as the potential for drug development, has emerged. Disruption of this system has been linked to pathological sleep-wake states such as insomnia and narcolepsy. A role for the hypocretin/orexin system in other sleep disorders and in sleepiness associated with other neurological disorders has also deserved some investigation. Recent results indicate that subjects with head trauma or encephalitis may have moderately but significantly decreased hypocretin levels. A few selected subjects with Guillain-Barré syndrome, Parkinson’s disease (PD), multiple system atrophy, and other neurodegenerative disorders have also been found to have shallow hypocretin levels. Importantly, central actions of orexin regulate motivated behaviors, stress response, and energy/glucose metabolism by coordinating regions of the central autonomic network and the endocrine system, these multiple actions of orexin being critical to maintaining life.
\n
Considering these putative clinical targets, there has been an ongoing research in the development of selective hypocretin/orexin receptor agonists and antagonists. Recently, suvorexant became the first US Food and Drug Administration (FDA)-approved hypocretin/orexin receptor antagonist for the treatment of insomnia [54], and Nagahara and coworkers published a work on the first hypocretin/orexin agonist with good potency and pharmacological selectivity [55].
\n
\n
4.1. Primary hypersomnias
\n
\n
4.1.1. Narcolepsy
\n
As previously mentioned, narcolepsy has been associated with changes in the orexinergic/hypocretinergic neurons. It is a disabling neurologic condition affecting around 1 in 2000 individuals, characterized by excessive daytime sleepiness, frequently running with sudden muscle paralysis (cataplectic attacks), and transitions from wakefulness into REM sleep [56]. Human narcolepsy is a genetically complex disorder and environmentally influenced. The association of HLA with human narcolepsy suggests that it may have an autoimmune origin. Available treatment strategies are mainly symptomatic and include amphetamine-like stimulants and antidepressants, being met with unsatisfactory results.
\n
Canines with narcolepsy were found to have a mutation in the orexin-2 (hypocretin-2) receptor [57] while mice lacking the orexin peptide or the neurons containing orexin (hypocretin) displayed behavioral and EEG signs of narcolepsy [11, 58]. Human subjects with narcolepsy have been found to have a lack or very low levels of hypocretin neurons (with an 85–95% reduction in the number of neurons) and orexin-A in the CSF [59]. These findings have been corroborated by postmortem examination of brain tissue of subjects with narcolepsy, depicting massive losses of orexin neurons [60]. It is not yet entirely clear what leads to this massive loss of the orexin neurons. By contrast, the number of melanin-concentrating hormone (MCH) neurons is not reduced in number, indicating that the cell loss is relatively specific for hypocretin neurons.
\n
\n
\n
4.1.2. Idiopathic hypersomnia
\n
Idiopathic hypersomnia is characterized by excessive daytime sleepiness, without sudden muscle paralysis (cataplectic attacks) nor abrupt transitions from wakefulness into REM sleep but with a dopaminergic and overall aminergic impairment associated with this condition. Some authors have described low but detectable levels of hypocretin in these patients [61], while others reported normal levels [62, 63]. Postmortem studies are not available yet.
\n
\n
\n
\n
4.2. Hypocretin studies in neurodegenerative disorders
\n
\n
4.2.1. Parkinson’s disease
\n
Sleep disturbances often occur in patients with Parkinson’s disease (PD) and can even precede the motor symptoms, showing, in this way, the close relation at a central level between autonomic (non-motor symptoms) and sleep centers. Excessive daytime sleepiness has been reported in almost half of the PD patients [64, 65]. In postmortem brain studies, hypocretin-1 tissue concentrations in the prefrontal cortex were almost 40% lower in these patients, with the total number of hypocretin neurons being almost half compared with controls [66, 67]. A progressive loss of MCH neurons has also been described, increasing with the disease progression [67].
\n
\n
\n
4.2.2. Multiple system atrophy
\n
Sleep disturbances occur in 70% of patients with multiple system atrophy (MSA), a progressive neurodegenerative disease of undetermined etiology, characterized by parkinsonian features, cerebellar, autonomic, and urogenital dysfunction and corticospinal disorders [68]. The clinical features include reduced and fragmented sleep, excessive daytime sleepiness, rapid eye movement (REM), sleep behavior disorder (RBD), stridor, and sleep-disordered breathing [69, 70]. In these patients, Benarroch and coworkers found up to 70% reduction in the total number of hypocretin neurons in these populations of patients and described abundant glial cytoplasmic inclusions in the hypocretin distribution area [71].
\n
\n
\n
\n
4.3. Immune-mediated neurological disorders
\n
\n
4.3.1. Guillain-Barré syndrome
\n
Guillain-Barré syndrome is a post-infectious polyradiculopathy affecting mainly the peripheral nervous system, frequently presenting also with autonomic nervous system failure symptoms. Not infrequently, these patients also show other signs of hypothalamic disturbance. Guillain-Barré syndrome has been the only disorder besides narcolepsy in which undetectable levels of hypocretin have been consistently observed [63, 72]. Patients with the lowest levels tend to have a more severe and rapid disease course, running with tetraplegia and respiratory failure. The mechanism underlying the lack or very decreased levels of hypocretin in Guillain-Barré syndrome remains unknown, but an immune-mediated hypothalamic dysfunction has been hypothesized.
\n
\n
\n
\n
4.4. Orexin and sleep-related physical disorders: cardiovascular disease
\n
Almost all bodily functions are dependent on the autonomic nervous system (ANS), which exerts precise control over visceral functions. Sleep disruption causes an increased activity of the sympathetic nervous system in association with an elevated blood pressure, and the risks of hypertension and cardiovascular disease are increased as a consequence of either strong acute or long-term sleep disruption [73]. The hypocretin/orexin system also contributes to the regulation of cardiovascular functions via the autonomic nervous system. Hypocretin/orexin neurons project to several brain regions involved in the regulation of cardiovascular activity, namely the paraventricular nucleus (PVN), nucleus tractus solitarius, and the rostral ventrolateral medulla (RVLM), all areas of the central autonomic network [74].
\n
Over-activation of the hypocretin/orexin system has been implicated in the pathogenesis of hypertension. It has been shown that the central administration of orexins A and B increases arterial blood pressure and elicits tachycardia in animal models [74]. Conversely, orexin/ataxin-3 transgenic rats, lacking orexin neurons, have a significantly reduced sympathetic nervous system tone and a lower systolic blood pressure when compared with controls [75]. In addition, spontaneously hypertensive rats (SHRs) have increased levels of hypocretin/orexin [74] that, when blocked by the oral administration of almorexant or by intracerebroventricular injections of TCSOX229, led to a significant reduction of systolic blood pressure while not affecting arterial blood pressure in normotensive animals [76, 77]. These data suggest that hypocretin/orexin may play a significant role in the pathogenesis of hypertension. In humans, Dauvilliers and coworkers reported a lower cardiac activation associated with periodic leg movements during sleep in narcoleptic patients which was proposed to be related to changes in baroreflex sensitivity [78]. The same group found a large percentage of diastolic non-dippers, with 64% failing to achieve the 15% fall point on diastolic blood pressure [79], and recent data suggested that narcoleptic patients displayed a nighttime non-dipping blood pressure pattern with increased systolic blood pressure during nighttime REM sleep [80].
\n
The blunted cardiac activation and sleep-related blood pressure fall in narcoleptic patients may be clinically relevant and may indicate an increased risk for cardiovascular events among attributable to a potentially clinically significant hypocretin/orexin deficiency.
\n
\n
\n
\n
5. Conclusion
\n
In summary, despite being present throughout the animal kingdom, the precise sleep function is still relatively elusive. However, it is evident that sleep regulation is fundamental for survival having the hypothalamus a significant role in those modulatory processes through the orexin/hypocretin and the MCH neurons. Nevertheless, further studies on sleep physiology are needed to determine the inner mechanisms associated with sleep-wake cycle and their regulatory processes.
\n
\n
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"hypothalamus, sleep-wake, circadian rhythm, hypocretin, orexin",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/63141.pdf",chapterXML:"https://mts.intechopen.com/source/xml/63141.xml",downloadPdfUrl:"/chapter/pdf-download/63141",previewPdfUrl:"/chapter/pdf-preview/63141",totalDownloads:1091,totalViews:272,totalCrossrefCites:2,totalDimensionsCites:2,totalAltmetricsMentions:0,impactScore:1,impactScorePercentile:62,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"October 15th 2017",dateReviewed:"July 3rd 2018",datePrePublished:"November 5th 2018",datePublished:"December 5th 2018",dateFinished:"August 21st 2018",readingETA:"0",abstract:"Sleep-wake cycle is probably the most truthful signature of life. These unavoidable interchangeable states are together the matrix for all that occurs in physiology, and its rhythms are regulated by homeostatic and circadian processes involving different neuronal structures and distinct neural substrates. Hypothalamic regulation of sleep-wake cycle becomes of relevance as several neuropeptide-producing neurons involved in sleep and wakefulness regulation are located there. In this chapter, we provide a review of the hypothalamic regulation of sleep-wake cycle, focusing on the hypocretin system and melanin-concentrating hormone (MCH)-producing neurons located in the lateral hypothalamic area (LHA).",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/63141",risUrl:"/chapter/ris/63141",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases"},signatures:"Miguel Meira e Cruz, Sérgio Matoso Laranjo and Isabel Rocha",authors:null,sections:[{id:"sec_1",title:"1. Hypothalamus as a sleep-wake cycle regulator aside the RAS",level:"1"},{id:"sec_2",title:"2. Orexinergic neurons, their receptors, and physio-pharmacological aspects of orexinergic system related to the sleep-wake cycle",level:"1"},{id:"sec_3",title:"3. Melanin-concentrating hormone (MCH) and MCH neurons",level:"1"},{id:"sec_4",title:"4. Circadian regulation of sleep-wake cycles and some of its disturbances",level:"1"},{id:"sec_4_2",title:"4.1. Primary hypersomnias",level:"2"},{id:"sec_4_3",title:"4.1.1. Narcolepsy",level:"3"},{id:"sec_5_3",title:"4.1.2. Idiopathic hypersomnia",level:"3"},{id:"sec_7_2",title:"4.2. Hypocretin studies in neurodegenerative disorders",level:"2"},{id:"sec_7_3",title:"4.2.1. Parkinson’s disease",level:"3"},{id:"sec_8_3",title:"4.2.2. Multiple system atrophy",level:"3"},{id:"sec_10_2",title:"4.3. Immune-mediated neurological disorders",level:"2"},{id:"sec_10_3",title:"4.3.1. Guillain-Barré syndrome",level:"3"},{id:"sec_12_2",title:"4.4. Orexin and sleep-related physical disorders: cardiovascular disease",level:"2"},{id:"sec_14",title:"5. Conclusion",level:"1"},{id:"sec_18",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'Kirsch DB. There and back again: A current history of sleep medicine. Chest. 2011;139:939-946\n'},{id:"B2",body:'Berger H. Über das Elektroenzenkephalogram des Menschen. Archiv für Psychiatrie und Nervenkrankheiten. 1931;94:16-60\n'},{id:"B3",body:'Bremer F. Preoptic hypnogenic area and reticular activating system. Archives Italiennes de Biologie. 1973;111:85-111\n'},{id:"B4",body:'Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG.Electroencephalography and Clinical Neurophysiology. 1949;1:455-473\n'},{id:"B5",body:'Lindsley DB, Bowden JW, Magoun HW. Effect upon the EEG of acute injury to the brainstem activating system. Electroencephalography and Clinical Neurophysiology. 1949;1:475-486\n'},{id:"B6",body:'Villablanca J. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. Journal of Sleep Research. 2004;13:179-200\n'},{id:"B7",body:'Berladetti F, Borgia R, Mancia M. Prosencephalic mechanisms of EEG desynchronization in the “cerveau isolé” of the cat. Electroencephalography and Clinical Neurophysiology. 1964;42:213-225\n'},{id:"B8",body:'de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, et al. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:322-327\n'},{id:"B9",body:'Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor2 gene. Cell. 1999;98:365-376\n'},{id:"B10",body:'Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, et al. Narcolepsy in orexinknockout mice: Molecular genetics of sleep regulation. Cell. 1999;98:437-451\n'},{id:"B11",body:'Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345-354\n'},{id:"B12",body:'Willie JT et al. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: Molecular genetic dissection of Non-REM and REM sleep regulatory process. Neuron. 2003;38:715-730\n'},{id:"B13",body:'Siegel JM. Hypocretin (orexin): Role in normal behavior and neuropathology. Annual Review of Psychology. 2004;55:125-148\n'},{id:"B14",body:'Sakurai T. The neural circuit of orexin (hypocretin): Maintaining sleep and wakefulness. Nature Reviews. Neuroscience. 2007;8:171-181\n'},{id:"B15",body:'Peyron C, Tighe DK, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience. 1998;18:9996-10015\n'},{id:"B16",body:'Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioural correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;46:787-798\n'},{id:"B17",body:'Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T. The neuropeptide Y/agouti gene related protein (AGRP) brain circuitry in normal, anoretic, and monosodium glutamate-treated mice. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:15043-15048\n'},{id:"B18",body:'Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, Koyama Y, Shioda S, Yanagisawa M. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron. 2005;46:297-308\n'},{id:"B19",body:'Kumar S, Rai S, Hsieh K-C, McGinty D, Alam MN, Szymusiak R. Adenosine A2A receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology. 2013;305(1):R31-R41. DOI: 10.1152/ajpregu.00402.2012\n'},{id:"B20",body:'Scammell T, Gerashchenko D, Urade Y, Onoe H, Saper C, Hayaishi O. Activation of ventrolateral preoptic neurons by the somnogen prostaglandin D2. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:7754-7759\n'},{id:"B21",body:'Lu J, Greco MA, Shiromani P, Saper CB. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. Journal of Neuroscience. 2000;20(10):3830-3842\n'},{id:"B22",body:'Leak RK, Moore RY. Topographic organization of suprachiasmatic nucleus projection neurons. Journal of Comparative Neurology. 2001;433(3):312-334\n'},{id:"B23",body:'Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tomi-naga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 2003;38:701-713\n'},{id:"B24",body:'Yamanaka A, Muraki Y, Tsujino N, Goto K, Sakurai T. Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochemical and Biophysical Research Communications. 2003;303:120-129\n'},{id:"B25",body:'Chowdhury S, Yamanaka A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Scientific Reports. 2016;6:36039\n'},{id:"B26",body:'Muraki Y, Yamanaka A, Tsujino N, Kilduff TS, Goto K, Sakurai T. Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. The Journal of Neuroscience. 2004;24:7159-7166\n'},{id:"B27",body:'Hondo M, Furutani N, Yamasaki M, Watanabe M, Sakurai T. Orexin neurons receive glycinergic innervations. PLoS One. 2011;6:e25076\n'},{id:"B28",body:'Kalogiannis M, Hsu E, Willie JT, Chemelli RM, Kisanuki YY, Yanagisawa M, Leonard CS. Cholinergic modulation of narcoleptic attacks in double orexin receptor knockout mice. PLoS One. 2011;6:e18697\n'},{id:"B29",body:'Tabuchi S, Tsunematsu T, Black SW, Tominaga M, Maruyama M, Takagi K, Minokoshi Y, Sakurai T, Kilduff TS, Yamanaka A. Conditional ablation of orexin/hypocretin neurons: A new mouse model for the study of narcolepsy and orexin system function. The Journal of Neuroscience. 2014;34:6495-6509\n'},{id:"B30",body:'Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450:420-424\n'},{id:"B31",body:'Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446:633-639\n'},{id:"B32",body:'Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:2418-2422\n'},{id:"B33",body:'Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE. The melanin-concentrating hormone system of the rat brain: An immuno- and hybridization histochemical characterization. The Journal of Comparative Neurology. 1992;319:218-245\n'},{id:"B34",body:'Hawes BE, Kil E, Green B, O’Neill K, Fried S, Graziano MP. The melanin-concentrating hormone receptor couples to multiple G proteins to activate diverse intracellular signaling pathways. Endocrinology. 2000;141:4524-4532\n'},{id:"B35",body:'Gao XB, Ghosh PK, van den Pol AN. Neurons synthesizing melanin-concentrating hormone identified by selective reporter gene expression after transfection in vitro: Transmitter responses. Journal of Neurophysiology. 2003;90:3978-3985\n'},{id:"B36",body:'Wu M, Dumalska I, Morozova E, van den Pol A, Alreja M. Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:17217-17222\n'},{id:"B37",body:'Saito Y, Cheng M, Leslie FM, Civelli O. Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. The Journal of Comparative Neurology. 2001;435:26-40\n'},{id:"B38",body:'Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neuroscience. 2003;4:19\n'},{id:"B39",body:'Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M. Abnormal response of melanin-concentrating hormone deficient mice to fasting: Hyperactivity and rapid eye movement sleep suppression. Neuroscience. 2008;156:819-829\n'},{id:"B40",body:'Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. The Journal of Neuroscience. 2014;34:6896-6909\n'},{id:"B41",body:'Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ. Optogenetic stimulation of MCH neurons increases sleep. The Journal of Neuroscience. 2013;33:10257-10263\n'},{id:"B42",body:'Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nature Neuroscience. 2013;16:1637-1643\n'},{id:"B43",body:'Huang H, van den Pol AN. Rapid direct excitation and long-lasting enhancement of NMDA response by group I metabotropic glutamate receptor activation of hypothalamic melanin-concentrating hormone neurons. The Journal of Neuroscience. 2007;27:11560-11572\n'},{id:"B44",body:'Huang H, Acuna-Goycolea C, Li Y, Cheng HM, Obrietan K, van den Pol AN. Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: Implications for cannabinoid actions on food intake and cognitive arousal. The Journal of Neuroscience. 2007;27:4870-4881\n'},{id:"B45",body:'van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron. 2004;42:635-652\n'},{id:"B46",body:'Gao XB, van den Pol AN. Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. The Journal of Physiology. 2001;533:237-252\n'},{id:"B47",body:'Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schone C, Aitta-Aho T, Adamantidis A, Burdakov D. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. The Journal of Neuroscience. 2015;35:5435-5441\n'},{id:"B48",body:'Alberto CO, Trask RB, Hirasawa M. Dopamine acts as a partial agonist for alpha2A adrenoceptor in melanin-concentrating hormone neurons. The Journal of Neuroscience. 2011;31:10671-10676\n'},{id:"B49",body:'Conductier G, Nahon JL, Guyon A. Dopamine depresses melanin concentrating hormone neuronal activity through multiple effects on alpha2-noradrenergic, D1 and D2-like dopaminergic receptors. Neuroscience. 2011;178:89-100\n'},{id:"B50",body:'Parks GS, Olivas ND, Ikrar T, Sanathara NM, Wang L, Wang Z, Civelli O, Xu X. Histamine inhibits the melanin-concentrating hormone system: Implications for sleep and arousal. The Journal of Physiology. 2014;592:2183-2196\n'},{id:"B51",body:'Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935-941\n'},{id:"B52",body:'Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neuroscience Research. 2017;118:74-81\n'},{id:"B53",body:'Yamashita T, Yamanaka A. Lateral hypothalamic circuits for sleep-wake control. Current Opinion in Neurology. 2017;44:94-100\n'},{id:"B54",body:'Patel KV, Aspesi AV, Evoy KE. Suvorexant: A dual orexin receptor antagonist for the treatment of sleep onset and sleep maintenance insomnia. The Annals of Pharmacotherapy. 2015;49(4):477-483\n'},{id:"B55",body:'Nagahara T, Saitoh T, Kutsumura N, et al. Design and synthesis of non-peptide, selective orexin receptor 2 agonists. Journal of Medicinal Chemistry. 2015;58(20):7931-7937\n'},{id:"B56",body:'Dauvilliers Y, Arnulf I, Mignot E. Narcolepsy with cataplexy. Lancet. 2007;369:499-511\n'},{id:"B57",body:'Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365-376. DOI: 10.1016/s0092-8674(00)81965-0\n'},{id:"B58",body:'Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell. 1999;98:437-451. DOI: 10.1016/s0092-8674(00)81973-x\n'},{id:"B59",body:'Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355:39-40. DOI: 10.1016/s0140-6736(99)05582-8\n'},{id:"B60",body:'Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Medicine. 2000;6:991-997. DOI: 10.1038/79690\n'},{id:"B61",body:'Ebrahim IO, Sharief MK, de Lacy S, Semra YK, Howard RS, Kopelman MD, et al. Hypocretin (orexin) deficiency in narcolepsy and primary hypersomnia. Journal of Neurology, Neurosurgery, and Psychiatry. 2003;74:127-130\n'},{id:"B62",body:'Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Archives of Neurology. 2002;59:1553-1562\n'},{id:"B63",body:'Ripley B, Overeem S, Fujiki N, Nevsimalova S, Uchino M, Yesavage J, et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology. 2001;57:2253-2258\n'},{id:"B64",body:'Arnulf I, Bonnet AM, Damier P, Bejjani BP, Seilhean D, Derenne JP, et al. Hallucinations, REM sleep, and Parkinson\'s disease: A medical hypothesis. Neurology. 2000;55:281-288\n'},{id:"B65",body:'Hobson DE, Lang AE, Martin WR, Razmy A, Rivest J, Fleming J. Excessive daytime sleepiness and sudden-onset sleep in Parkinson disease: A survey by the Canadian Movement Disorders Group. JAMA. 2002;287:455-463\n'},{id:"B66",body:'Fronczek R, Overeem S, Lee SY, Hegeman IM, van Pelt J, van Duinen SG, et al. Hypocretin (orexin) loss in Parkinson\'s disease. Brain. 2007;130:1577-1585\n'},{id:"B67",body:'Thannickal TC, Lai YY, Siegel JM. Hypocretin (orexin) cell loss in Parkinson\'s disease. Brain. 2007;130:1586-1595\n'},{id:"B68",body:'Ghorayeb I, Yekhlef F, Chrysostome V, Balestre E, Bioulac B, Tison F. Sleep disorders and their determinants in multiple system atrophy. Journal of Neurology, Neurosurgery, and Psychiatry. 2002;72:798-800\n'},{id:"B69",body:'Iranzo I. Sleep and breathing in multiple system atrophy. Current Treatment Options in Neurology. 2007;9(5):347-353\n'},{id:"B70",body:'Ferini-Strambi L, Marelli S. Sleep and breathing in multiple system atrophy. Current Treatment Options in Neurology. 2012;14(5):464-473\n'},{id:"B71",body:'Benarroch EE, Schmeichel AM, Sandroni P, Low PA, Parisi JE. Involvement of hypocretin neurons in multiple system atrophy. Acta Neuropathologica. 2007;113:75-80\n'},{id:"B72",body:'Nishino S, Kanbayashi T, Fujiki N, Uchino M, Ripley B, Watanabe M, et al. CSF hypocretin levels in GuillainnBarre syndrome and other inflammatory neuropathies. Neurology. 2003;61:823-825\n'},{id:"B73",body:'Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nature and Science of Sleep. 2017;9:151-161\n'},{id:"B74",body:'Rani M, Kumar R, Krishan P. Implicating the potential role of orexin in hypertension. Naunyn-Schmiedeberg\'s Archives of Pharmacology. 2017;390:667-676\n'},{id:"B75",body:'Murakami M, Ohba T, Kushikata T, Niwa H, Kurose A, Imaizumi T, et al. Involvement of the orexin system in sympathetic nerve regulation. Biochemical and Biophysical Research Communications. 2015;460:1076-1081\n'},{id:"B76",body:'Lee YH, Dai YW, Huang SC, Li TL, Hwang LL. Blockade of central orexin 2 receptors reduces arterial pressure in spontaneously hypertensive rats. Experimental Physiology. 2013;98:1145-1155\n'},{id:"B77",body:'Li A, Hindmarch CC, Nattie EE, Paton JF. Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats. The Journal of Physiology. 2013;591:4237-4248\n'},{id:"B78",body:'Dauvilliers Y, Pennestri MH, Whittom S, Lanfranchi PA, Montplaisir JY. Autonomic response to periodic leg movements during sleep in narcolepsy-cataplexy. Sleep. 2011;34:219-223\n'},{id:"B79",body:'Dauvilliers Y, Jaussent I, Krams B, Scholz S, Lado S, et al. Non-dipping blood pressure profile in narcolepsy with cataplexy. PLoS One. 2012;7(6):e38977\n'},{id:"B80",body:'Grimaldi D, Calandra-Buonaura G, Provini F, Agati P, Pierangeli G, et al. Abnormal sleep-cardiovascular system interaction in narcolepsy with cataplexy: Effects of hypocretin deficiency in humans. Sleep. 2012;35:519-528\n'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Miguel Meira e Cruz",address:null,affiliation:'
Faculdade de Medicina da Universidade de Lisboa, Centro Cardiovascular da Universidade de Lisboa, Instituto de Fisiologia, Portugal
Faculdade de Medicina da Universidade de Lisboa, Centro Cardiovascular da Universidade de Lisboa, Instituto de Fisiologia, Portugal
'}],corrections:null},book:{id:"6331",type:"book",title:"Hypothalamus in Health and Diseases",subtitle:null,fullTitle:"Hypothalamus in Health and Diseases",slug:"hypothalamus-in-health-and-diseases",publishedDate:"December 5th 2018",bookSignature:"Stavros J. Baloyannis and Jan Oxholm Gordeladze",coverURL:"https://cdn.intechopen.com/books/images_new/6331.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-445-0",printIsbn:"978-1-78984-444-3",pdfIsbn:"978-1-83881-407-6",reviewType:"peer-reviewed",numberOfWosCitations:2,isAvailableForWebshopOrdering:!0,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"36345",title:"Prof.",name:"Jan",middleName:"Oxholm",surname:"Gordeladze",slug:"jan-gordeladze",fullName:"Jan Gordeladze"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"215"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"63258",type:"chapter",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4604,totalCrossrefCites:6,signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",reviewType:"peer-reviewed",authors:[null]},{id:"58773",type:"chapter",title:"Studies on the Character of Hypothalamic GnRH Neurons and Kisspeptin Neurons Using Hypothalamic Cell Models",slug:"studies-on-the-character-of-hypothalamic-gnrh-neurons-and-kisspeptin-neurons-using-hypothalamic-cell",totalDownloads:1164,totalCrossrefCites:0,signatures:"Haruhiko Kanasaki, Aki Oride, Tuvshintugs Tumurbaatar and Satoru\nKyo",reviewType:"peer-reviewed",authors:[null]},{id:"63141",type:"chapter",title:"Hypothalamic Control of Sleep-Wake Circadian Cycle",slug:"hypothalamic-control-of-sleep-wake-circadian-cycle",totalDownloads:1091,totalCrossrefCites:2,signatures:"Miguel Meira e Cruz, Sérgio Matoso Laranjo and Isabel Rocha",reviewType:"peer-reviewed",authors:[null]},{id:"58252",type:"chapter",title:"Role of the Dorso- and Ventrolateral Pons in Cardiorespiratory Hypothalamic Defense Responses",slug:"role-of-the-dorso-and-ventrolateral-pons-in-cardiorespiratory-hypothalamic-defense-responses",totalDownloads:1074,totalCrossrefCites:0,signatures:"Amelia Díaz-Casares, Manuel Víctor López-González and Marc\nStefan Dawid-Milner",reviewType:"peer-reviewed",authors:[{id:"213305",title:"Prof.",name:"Marc Stefan",middleName:null,surname:"Dawid Milner",fullName:"Marc Stefan Dawid Milner",slug:"marc-stefan-dawid-milner"},{id:"213307",title:"Dr.",name:"Amelia",middleName:null,surname:"Díaz-Casares",fullName:"Amelia Díaz-Casares",slug:"amelia-diaz-casares"},{id:"213308",title:"Associate Prof.",name:"Manuel Víctor",middleName:null,surname:"López-González",fullName:"Manuel Víctor López-González",slug:"manuel-victor-lopez-gonzalez"}]},{id:"64431",type:"chapter",title:"The Hypothalamus in Alzheimer’s Disease",slug:"the-hypothalamus-in-alzheimer-s-disease",totalDownloads:1494,totalCrossrefCites:0,signatures:"Stavros J. Baloyannis, Ioannis Mavroudis, Demetrios Mitilineos,\nIoannis S. Baloyannis and Vassiliki G. Costa",reviewType:"peer-reviewed",authors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",fullName:"Stavros J. Baloyannis",slug:"stavros-j.-baloyannis"}]},{id:"58705",type:"chapter",title:"The Apoptosis Regulation Mechanisms in Hypothalamic Neurons in Physiological and Pathological (Overexpression of Oncogene HER-2/Neu) Aging",slug:"the-apoptosis-regulation-mechanisms-in-hypothalamic-neurons-in-physiological-and-pathological-overex",totalDownloads:1074,totalCrossrefCites:2,signatures:"Elena D. Bazhanova and David L. Teply",reviewType:"peer-reviewed",authors:[null]}]},relatedBooks:[{type:"book",id:"9638",title:"Cerebral and Cerebellar Cortex",subtitle:"Interaction and Dynamics in Health and Disease",isOpenForSubmission:!1,hash:"3770f481b045cb47025fe4f409c3e6c1",slug:"cerebral-and-cerebellar-cortex-interaction-and-dynamics-in-health-and-disease",bookSignature:"Stavros J. Baloyannis",coverURL:"https://cdn.intechopen.com/books/images_new/9638.jpg",editedByType:"Edited by",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"74386",title:"Human Consciousness: The Role of Cerebral and Cerebellar Cortex, Vagal Afferents, and Beyond",slug:"human-consciousness-the-role-of-cerebral-and-cerebellar-cortex-vagal-afferents-and-beyond",signatures:"Abdullah Abdulrhman Al Abdulgader",authors:[{id:"314109",title:"Dr.",name:"Abdullah Abdulrhman",middleName:null,surname:"Al Abdulgader",fullName:"Abdullah Abdulrhman Al Abdulgader",slug:"abdullah-abdulrhman-al-abdulgader"}]},{id:"73565",title:"Dynamics of Praxis Functions in the Context of Maturation of the Parietal and Frontal Brain Regions in the Period 4-6 Years of Age",slug:"dynamics-of-praxis-functions-in-the-context-of-maturation-of-the-parietal-and-frontal-brain-regions-",signatures:"Neli Cvetanova Vasileva and Jivko Dimitrov Jekov",authors:[{id:"243925",title:"Prof.",name:"Neli",middleName:null,surname:"Cvetanova Vasileva",fullName:"Neli Cvetanova Vasileva",slug:"neli-cvetanova-vasileva"},{id:"327818",title:"Prof.",name:"Jivko",middleName:null,surname:"Dimitrov Jekov",fullName:"Jivko Dimitrov Jekov",slug:"jivko-dimitrov-jekov"}]},{id:"74676",title:"Cerebral Damage after Stroke: The Role of Neuroplasticity as Key for Recovery",slug:"cerebral-damage-after-stroke-the-role-of-neuroplasticity-as-key-for-recovery",signatures:"Mubarak Muhammad and Tasneem Muhammad Hassan",authors:[{id:"284676",title:"M.Sc.",name:"Mubarak",middleName:null,surname:"Muhammad",fullName:"Mubarak Muhammad",slug:"mubarak-muhammad"},{id:"331380",title:"Dr.",name:"Tasneem M.",middleName:null,surname:"Hassan",fullName:"Tasneem M. Hassan",slug:"tasneem-m.-hassan"}]},{id:"75314",title:"Movement-Related Cortical Potential Associated with Jaw-Biting Movement in the Patients with Oral Cancer after the Surgery",slug:"movement-related-cortical-potential-associated-with-jaw-biting-movement-in-the-patients-with-oral-ca",signatures:"Ichiro Nakajima, Mitsuyo Shinohara and Hiroiku Ohba",authors:[{id:"70348",title:"Dr.",name:"Ohba",middleName:null,surname:"Hiroiku",fullName:"Ohba Hiroiku",slug:"ohba-hiroiku"},{id:"330581",title:"Prof.",name:"Ichiro",middleName:null,surname:"Nakajima",fullName:"Ichiro Nakajima",slug:"ichiro-nakajima"},{id:"332216",title:"Associate Prof.",name:"Shinohara",middleName:null,surname:"Mitsuyo",fullName:"Shinohara Mitsuyo",slug:"shinohara-mitsuyo"}]},{id:"77538",title:"Mitochondria in the Cerebral and Cerebellar Cortex in Alzheimer’s Disease, Target for a Therapeutic Approach",slug:"mitochondria-in-the-cerebral-and-cerebellar-cortex-in-alzheimer-s-disease-target-for-a-therapeutic-a",signatures:"Stavros J. Baloyannis",authors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",fullName:"Stavros J. Baloyannis",slug:"stavros-j.-baloyannis"}]},{id:"74951",title:"Reversal of Cognitive Aging through Enhancement of Cardiac Output",slug:"reversal-of-cognitive-aging-through-enhancement-of-cardiac-output",signatures:"Kenneth J. McLeod",authors:[{id:"161765",title:"Dr.",name:"Kenneth J.",middleName:null,surname:"McLeod",fullName:"Kenneth J. McLeod",slug:"kenneth-j.-mcleod"}]},{id:"74235",title:"Lipid Rafts and Development of Alzheimer’s Disease",slug:"lipid-rafts-and-development-of-alzheimer-s-disease",signatures:"Mario Díaz and Raquel Marin",authors:[{id:"326897",title:"Prof.",name:"Mario",middleName:null,surname:"Díaz",fullName:"Mario Díaz",slug:"mario-diaz"},{id:"347270",title:"Prof.",name:"Raquel",middleName:null,surname:"Marin",fullName:"Raquel Marin",slug:"raquel-marin"}]}]}],publishedBooks:[{type:"book",id:"6271",title:"Astrocyte",subtitle:"Physiology and Pathology",isOpenForSubmission:!1,hash:"46949616660cfdfa0f4e04e2ca8333e2",slug:"astrocyte-physiology-and-pathology",bookSignature:"Maria Teresa Gentile and Luca Colucci D’Amato",coverURL:"https://cdn.intechopen.com/books/images_new/6271.jpg",editedByType:"Edited by",editors:[{id:"160180",title:"Dr.",name:"Maria Teresa",surname:"Gentile",slug:"maria-teresa-gentile",fullName:"Maria Teresa Gentile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6331",title:"Hypothalamus in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"d8943dda86e7f5eea7bb5afc1ff70cfe",slug:"hypothalamus-in-health-and-diseases",bookSignature:"Stavros J. Baloyannis and Jan Oxholm Gordeladze",coverURL:"https://cdn.intechopen.com/books/images_new/6331.jpg",editedByType:"Edited by",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"72075",title:"Application and Mechanisms of Plant Growth Promoting Fungi (PGPF) for Phytostimulation",doi:"10.5772/intechopen.92338",slug:"application-and-mechanisms-of-plant-growth-promoting-fungi-pgpf-for-phytostimulation",body:'\n
\n
1. Introduction
\n
The world’s population exceeded ~7 billion just after 2010, and still continues to grow fast. Roughly, 83 million people are added to the world’s population every year and with this pace of growth, the global population is projected to reach around 9.7 billion by 2050, ~24% higher than today [1]. In order to feed this large population, crop production must increase by approximately 25–70% above current production levels [2]. Intensification of agriculture is considered a potential solution. By relying on intensive use of fertilizers, pesticides and other inputs, agricultural intensification increases the productivity of existing farmland and delivers more food to the added population. However, the chemical-based crop intensification produces more food in a way that the future production potential of farmland is being undermined and the environment is being affected. An increasingly degraded soil, overwhelming health hazards from soil and water pollution, disturbed natural microbial populations are a few of the direct implications in chemical-intensive agriculture. To avoid these potentially harmful effects of agrochemicals in agriculture, alternative approaches must be persuaded. An ecocentric approach that provides both environmental and economic benefits is increasingly needed. Organic farming is one of many such approaches that promote agroecosystem health, ensuring sustainable intensification in agriculture.
\n
The uniqueness of microorganisms and the dynamic part played by them in sustaining agricultural ecosystems have made them likely candidates for playing a central role in organic-based modern agriculture. Fortunately, plant roots harbor an abundant association of beneficial microorganisms. Root exudates are the largest source of carbon that attracts the microbial populations and allow them to forge an intimate association with host plants [3]. In response, the rhizosphere microbial populations play versatile roles in transforming, mobilizing and solubilizing soil nutrients, which are crucial for plant growth and development. Among the diverse rhizosphere microbial population, fungi known as plant growth promoting fungi (PGPF) are receiving a growing attention in recent days. Over the decades, varieties of PGPF have been studied including those belong to genera Trichoderma, Penicillium, Phoma and Fusarium [4]. Studies have shown that PGPF modulate plant growth and enhance resilience to plant pathogens without environmental contamination [5]. The positive effects of PGPF on plant and environment make them well fitted to organic agriculture.
\n
The course of plant growth promotion by PGPF is a complex process and often cannot be attributed to a single mechanism. A variety of direct and indirect mechanisms, including solubilization of minerals, synthesis of phytohormones, production of volatile organic compounds, exploitation of microbial enzymes, increases in nutrient uptake, amelioration of abiotic stresses and suppression of deleterious phytopathogens are involved. These wide arrays of interconnected mechanisms help PGPF maintaining rhizosphere competence and stability in host performance. Compared to the large number of PGPF identified in the laboratory, only a small fraction of them is in agricultural practice worldwide. Inconsistent performance of the inoculated PGPF under field conditions limits the commercial application of them. Development of appropriate formulation could improve the performance in the field and pave the way for commercialization of the PGPF. An ideal formulation of PGPF should fit with existing application technologies, protect biological actives from stress, ensure viability, remains unaffected after storage under ambient conditions, ensure microbial actives in the field and be cost effective [6].
\n
Considering the aspects discussed above, the need for superior PGPF to supplement inorganic chemical fertilizers as one of the crucial steps of moving toward organic farming practices has been highlighted. Inclusion of new techniques in these processes has been vital to the development of novel PGPF applications. This review will therefore attempt to shed light on the recent findings related to the impact of PGPF on plant growth and yield, duration of their effects, host specificity of the cooperation, root colonization mechanisms, their modes of action and commercial formulation for enhancement of plant growth and yield. The knowledge produced from this review could be very useful to those who are apprehensive about environmental protection and agricultural sustainability.
\n
\n
\n
2. Plant growth promoting fungi (PGPF)
\n
Plants have intricate relationships with an array of microorganisms, particularly rhizosphere fungi and bacteria, which can lead to an increase in plant vigor, growth and development as well as changes in plant metabolism [7]. The group of rhizosphere fungi that colonize plant roots and enhance plant growth is referred to as PGPF [4]. PGPF are heterogeneous group of nonpathogenic saprotroph fungi. They can be separated into endophytic, whereby they live inside roots and exchange metabolites with plants directly, and epiphytic, whereby they live freely on the root surface and free-living PGPF, which live outside plant cells, i.e., in the rhizosphere [5]. PGPF establish a non-obligate mutualism with a broader range of host plants. That is why symbiotic mycorrhizal fungi are not considered as PGPF, although they are known to improve growth of the plants [8]. Moreover, PGPF encompass a diverse taxonomic group in comparison to mycorrhiza. They are often involved in a range of complex interactions with plants and develop distinct strategies to mediate improvements in seed germination, seedling vigor, plant growth, flowering and productivity of host plants (Figure 1). PGPF are not only associated with the root to mediate positive effects on plant growth and development but also have beneficial effects on suppressing phytopathogenic microorganisms [9]. Not every organism identified as PGPF will improve plant growth under all conditions or in association with all plant hosts [10]. Some PGPF biocontrol inoculants usually contain necrotrophic mycoparasites such as Trichoderma spp. [11], while a limited number such as Sphaerodes mycoparasitica is biotrophic mycoparasitic agent [12]. Therefore, PGPF are considered one of the potential active ingredients in both biofertilizer and mycofungicide formulation.
\n
Figure 1.
Beneficial interaction between plant and plant growth promoting fungi (PGPF). PGPF can modulate plant growth and development through the production of phytohormones and volatile compounds. PGPF also influence plant nutrition via solubilization of phosphorus and mineralization of organic substrates. PGPF modify plant functioning against biotic and abiotic stresses by negating their harmful effects.
\n
\n
\n
3. The nature and composition of PGPF
\n
PGPF are common root-associated and soil-borne fungi from diverse genera. Fungi reported as PGPF include Ascomycetes, Basidiomycetes and Oomycetes [5]. Some strains of hypovirulent binucleate Rhizoctonia (HBNR) are known to be PGPF [13]. PGPF also include isolates of mycelial fungi that do not produce any spores, generally known as sterile black fungus (SBF), sterile dark fungus (SDF) and sterile red fungus (SRF) [14]. The non-sporulating PGPF are often difficult to identify and mostly lack formal taxonomic status. Among the PGPF Aspergillus, Fusarium, Penicillium, Phoma and Trichoderma have a wide distribution and are, by far, the most extensively reported (Table 1). Each of the genera has a variety of species. Aspergillus, Fusarium, Penicillium and Phoma were frequently found in the rhizosphere or in the roots of plants. Instead, Trichoderma were mostly isolated from soil. Among the rhizosphere population, PGPF have a high relative abundance. A total of 619 (44%) out of 1399 fungal isolates collected from rhizosphere of six different plants were PGPF, while frequency of occurrence of PGPF in zoysiagrass, wheat, corn and eggplant rhizosphere were 46, 47, 38 and 10%, respectively [4]. This indicates that abundance of PGPF varies largely according to the host rhizosphere. Similarly, the dominating fungal genus is not necessarily the dominating PGPF in the rhizosphere population. The order of the frequency of the main genera among 1399 fungal isolates was Fusarium > Trichoderma > sterile fungi > Penicillium > Pythium > Rhizoctonia > Mucor, while that of PGPF from each plant genus was: Trichodema (~82%) > Pythium (~75%) > Penicillium (~69%) > Alternaria (~63%) > Fusarium (~44%) > sterile fungi (40%) > Mucor (~38%) [4]. The important characteristics of these fungi are their high rhizosphere competence and ability to promote plant growth.
\n
\n
\n
\n
\n\n
\n
PGPF
\n
Original source of isolation
\n
References
\n
\n\n\n
\n
\nAlternaria sp.
\n
\nZoysia tenuifolia, Rosa rugosa, Camellia japonica, Delonix regia, Dianthus caryophyllus, Rosa hybrid\n
Different fungi reported as plant growth promoting fungi (PGPF) with their original source of isolation.
\n
Initial search for identification of PGPF was concentrated to rhizosphere fungi. Recent studies have demonstrated the potential of phyllosphere fungi as PGPF. The phyllosphere, which consists of the above ground surfaces of plants, is one of the most prevalent microbial habitats on earth. Phyllosphere fungi can act as mutualists promoting plant growth and tolerance of environmental stressors [53]. A few of other fungi isolated from tree bark, decorticated wood and water damaged building functioned as PGPF [43, 49]. More interestingly, the fungal entomopathogens also show potential to be PGPF and promote plant growth [54]. PGPF seem to have a cosmopolitan occurrence.
\n
\n
\n
4. Impact of PGPF on plant growth promotion
\n
PGPF exhibit traits beneficial to plant and as such, their capacity to enhance plant growth and development is well founded. PGPF mediate both short- and long-term effects on germination and subsequent plant performance. Improvement in germination, seedling vigor, shoot growth, root growth, photosynthetic efficiency, flowering, and yield are the most common effects decreed by PGPF. A particular PGPF may condition plant growth by exerting all or one or more of these effects.
\n
\n
4.1 Impact of PGPF on seed germination and seedling vigor
\n
Seed germination and germinant growth are critical developmental periods of the young plantlet until it begins producing its own food by photosynthesis. Treatment with PGPF, particularly of the genus Aspergillus, Alternaria, Trichoderma, Penicillium, Fusarium, Sphaerodes and Phoma has been reported to improve seed germination and seedling vigor in different agronomic and horticultural crops (Table 2). Scarified seeds inoculated with spores from Aspergillus and Alternaria had significant increases in germination of Utah milkvetch (Astragalus utahensis) in vitro, and in greenhouse and fall-seeded plots near Fountain Green and Nephi [55]. The Aspergillus-treated seeds performed out seeds inoculated with Alternaria. An increase of 30% in seedling emergence was observed in cucumber plant raised upon the treatment of T. harzianum [47]. Application of T. harzianum also significantly increased seed germination, emergence index, seedling vigor and successful transplantation percentage in muskmelon compared to the untreated controls [59]. Early seedling emergence and enhanced vigor were observed in bacterial wilt susceptible tomato cultivar treated with T. harzianum, Phoma multirostrata, and Penicillium chrysogenum compared to untreated controls [34]. The culture filtrate of Penicillium was as effective as the living inocula in improving seed germination of tomato [70]. Significantly, higher germination and vigor index were observed in Indian spinach, when seeds were sown in sterilized field soil amended with wheat grain inoculum of Fusarium spp. PPF1 [27]. Sphaerodes mycoparasitica, a biotrophic mycoparasite of Fusarium species, improved wheat seed germination and seedling growth in vitro compared to T. harzianum, while under phytotron conditions, both S. mycoparasitica and T. harzianum had positive impact on wheat seedlings growth in the presence of F. graminearum [12]. These results show the positive impact of PGPF on seed germination and seedlings growth of a wide arrays of hosts.
Effect of different plant growth promoting fungi (PGPF) on seed germination, plant growth and yield in various plants.
\n
\n
\n
4.2 Impact of PGPF on shoot growth
\n
The most common form of growth promotion by PGPF is the augmented shoot in colonized plants. Shoot growth promotion has been shown by a great diversity of PGPF across a large number of plant species. Isolates of Aspergillus, Trichoderma, Penicillium, and Fusarium were capable of enhancing the shoot growth in model plant Arabidopsis [9, 20, 28, 33, 48]. Different species of Aspergillus are known to support shoot growth in chickpea [16], Chinese cabbage [56], cucumber [17], soybean [18, 65] and wheat [76]. Species of nonpathogenic Fusarium were reported to stimulate shoot growth in Indian spinach [27] and banana [29]. Application of barley grain inoculum of Penicillium viridicatum GP15-1 to the potting medium resulted in 26–42% increase in stem length, 37–46% increase in shoot fresh weight and 100–176% increase in shoot dry weight of cucumber plants [35]. Similarly, inoculation of cucumber plants with Pe. menonorum KNU3 increased cucumber shoot dry biomass by as much as 52% [36]. Stimulated shoot growth by Penicillium spp. was also reported in tomato [69], Waito-c rice [37, 38], chili [23, 39] and sesame [74]. Application of T. longipile and T. tomentosum increased shoot dry weight of cabbage seedlings by 91–102% in glasshouse trials [57]. Likewise, cottonseeds pretreated with T. viride showed four-fold increases in shoot length elongation and an almost 40-fold increase in plant dry weight compared to the control [66]. Augmented shoot growth by Trichoderma has also been reported in chickpea [16], wheat [79], maize [78], cucumber [60] and other plant species (Table 2). Isolates of Phoma were found to be an efficient stimulator of plant shoot [15, 41, 62]. A few hypovirulent Rhizoctonia isolates were able to induce significantly higher fresh leaves and stems weights in tomato plants grown in greenhouse [13]. Enhancement of shoot growth was also observed by Talaromyces wortmannii in cabbage [40], Chaetomium globosum in chili [23], Colletotrichum sp. in tobacco and Exophiala sp. in cucumber [26]. The results from these studies are consistent with numerous field and growth chamber experiments that have shown that PGPF inoculants can mediate shoot growth improvement.
\n
\n
\n
4.3 Impact of PGPF on photosynthesis
\n
The plant growth promotion in some plant-PGPF interaction is occasionally associated with improvement in state and function of the photosynthetic apparatus of plants. Treatment with T. longipile and T. tomentosum increased leaf area of cabbage by 58–71% in glasshouse trials [57]. Tomato plants grown with HBNR isolates had significantly higher leaf fresh weight than control plants in greenhouse [13]. Arabidopsis grown in soil amended with Pe. simplicissimum GP17-2 and Pe. janthinellum GP16-2 were more greener and had approximately 1 more leaflet per plant than control plants 4 weeks after treatment [9]. Penicillium spp. also enhanced leaf chlorophyll content in cucumber and chili [36, 39]. Soil amendment with Aspergillus spp. PPA1 and Fusarium spp. PPF1 significantly increased leaf area and leaf chlorophyll content in cucumber and Indian spinach, respectively [27]. Improvement in leaf number, leaf area and leaf chlorophyll levels would contribute to increases in photosynthesis rate and net accumulation of carbohydrate in plants.
\n
\n
\n
4.4 Impact of PGPF on root growth and architecture
\n
Roots are vital plant organs that remain below the surface of the soil. The root system is important for plant fitness because it facilitates the absorption of water and nutrients, provides anchorage of the plant body to the ground and contributes to overall growth of plants. Root functions as the major interface between the plant and the microbes in the soil environment. The bulk of previous studies have evidenced the immense ability of PGPF in enhancement of root growth in different plants (Table 2). Plants forming association with PGPF show faster and larger root growth resulting in a rapid increase in the root biomass [27, 35, 50, 57]. Moreover, root length, root surface area, root diameter and branch number are under direct influence of intimate interaction with PGPF. Application of T. virens ZT05 increased root length, root surface area, average root diameter, root tip number and root branch number of pines by 25.11, 98.19, 5.66, 45.89 and 74.42%, respectively [72]. A. ustus is known to cause alterations in the root system architecture by promoting the formation of secondary roots in Arabidopsis and potato [20]. In maize (Zea mays), Trichoderma inoculation enhanced root biomass production and increased root hair development [78]. The abundance in root hair formation significantly increases root surface area, suggesting that PGPF inoculants could enhance the potential for plant roots to acquire nutrients under nutrient-limited conditions.
\n
\n
\n
4.5 Impact of PGPF on flowering
\n
The application of PGPF may influence the number, size and timing of flower in flowering plants. Tagetes (marigolds) grown with companion of Pe. simplicissimum flowered earlier and had greater flower size and weight [80]. Steamed or raw soil infested with T. harzianum hastened flowering of periwinkle and increased the number of blooms per plant on chrysanthemums [77]. Under greenhouse conditions, T. harzianum TriH_JSB27 and Pe. Chrysogenum PenC_JSB41 accelerated the flowering time in tomato [34]. Similarly, root colonization by the nematophagous fungus Pochonia chlamydosporia hurried flowering in Arabidopsis thaliana [81]. Root colonization by Piriformospora indica also results in early flowering in Coleus forskohlii, bottle gourd and Nicotiana tabacum [82]. Flowering time has commercial significance for crops and ornamental plants by shortening crop duration and improving productivity. A short duration crop would have several advantages over a long duration crop, even with equal total yields such as require less water, expose less to stresses and increase the availability of the land for subsequent cropping. This indicates that PGPF improve the plasticity of complex plant traits.
\n
\n
\n
4.6 Impact of PGPF on yield
\n
PGPF show promising ability to promote growth through extensive improvements and betterment of fundamental processes operating in the plants, all of which directly and indirectly contributes to the crop yield increase. Inoculation of banana (cv. Giant Cavendish and Grand Nain) with F. oxysporum resulted in 20–36% yield increase in the field [29]. Soil treatment with T. harzianum alone or in combination with organic amendment and fungicide significantly improved seed yield in pea [83] and chickpea [58]. Similarly, soil treatment with T. viride produced significantly the highest number of fruits per plant, number of seeds per fruit, fruit weight and dry weight of 100 seeds as compared to untreated control [84]. The beneficial association of plants with nonpathogenic binucleate Rhizoctonia spp. resulted in increase in yield of carrot, lettuce, cucumber, cotton, radish, wheat, tomato, Chinese mustard and potato [13, 45, 46]. These results demonstrate that PGPF hold great promise in the improvement of agriculture yields.
\n
\n
\n
\n
5. Duration of sustained plant growth promotion effect by PGPF
\n
The duration of biofunctional activities of PGPF in plants is a key factor for their effective application in the field. Naturally, a legitimate question may arise whether PGPF isolates that have shown promising effects on early growth stage of plants, could also affect the middle or late ontogenetic stages and ultimately contribute to yield increases at harvest. As for potato, an increase in leaf, shoot, and tuber weight was observed by a nonpathogenic isolate (No. 521, AG-4) of Rh. solani 63–70 days after planting, while it was not expressed in yield at harvest [85]. Conversely, increased growth responses of wheat plants treated with PGPF were observed during seedling (2 weeks after sowing), vegetative (4 weeks), pre-flowering (6 weeks), flowering (10 weeks) and seed maturation stages (14 weeks) [4]. The isolates of Phoma sp. (GS6-1, GS7-4) and non-sporulating fungus (GU23-3), increased plant height, ear-head length and weight, seed number and plant biomass at harvest [79]. Again, isolates of Phoma sp. and non-sporulating fungus significantly increased plant length, dry biomass, leaf number and fruit number of cucumber cv. Jibai until 10 weeks post planting in greenhouse trials [62]. These isolates were equally effective in promoting growth and increasing yield of cucumber at 6 and 10 weeks post planting in the field [62]. There are other PGPF, which as well have shown the ability to confer long-term growth benefits to different plants. Rice and pea plants inoculated with Westerdykella aurantiaca FNBR-3, T. longibrachiatum FNBR-6, Lasiodiplodia sp. FNBR-13 and Rhizopus delemar FNBR-19 showed a stimulatory increase of growth for 8 weeks in the greenhouse [86]. Similarly, a single inoculation with inoculum of Penicillium and Pochonia affected the whole life cycle of tomato and Arabidopsis, respectively, accelerating the growth rate, shortening their vegetative period and enhancing seed maturation [34, 81]. As such, majority of PGPF strains are able to induce sustained beneficial effects on plant growth. The basis of sustained effects of PGPF on plants is not fully understood. One possibility is that the fungus continues to colonize the root system and establishes a life-long colonization with crop roots. The ability of PGPF to confer sustained benefit to plant is of great agriculture importance in terms of improving crop yield.
\n
\n
\n
6. Host specificity of the plant growth-promoting cooperation
\n
Although plants harbor a diverse community of fungi, a preferential interaction exists between certain PGPF and a particular host. Once a particular host mutualizes this fungus, it undergoes host-specific adaptations. The outcome of such adaptations is a highly specialized and finely tuned mutualism, leading to improved responsiveness to each other needs. Evidences show that PGPF that induce growth in one plant species do not necessarily have the same effect in other species [5]. Some PGPF exert general growth promotion effects in several plant species, other fungi only do so in specific host plant. A field study showed that most of eight non-sporulating PGPF isolates enhanced the growth of one wheat variety, whereas a few isolates enhanced the growth of the other variety [87]. Moreover, at least four isolates increased yields of both varieties. Thus, the efficacy of the PGPF isolates depended upon the wheat variety in addition to their inherent growth promoting abilities. Similarly, many of the zoysiagrass PGPF isolates promoted growth of bentgrass [4], in contrast to a few isolates enhanced growth in soybean [88]. Similarly, nine isolates belonging to Phoma sp. and one non-sporulating fungus caused consistent plant length enhancement in cucumber cv. Shogoin fusiharii compared to nine isolates except the non-sporulating fungus in cv. Aodai Kyuri. Again, plant length enhancement in cv. Jibai was shown by eight Phoma sp. and one non-sporulating fungus compared to five Phoma sp. isolates in cv. Ociai fushinari [62]. Identically, Pe. simplicissimum GP17-2 and F. equiseti 19–1 demonstrated sufficient growth-promoting effects on different host plants [4, 9, 60], but did not have effect on Lotus japonicas [89]. The outcome of the plant-PGPF interaction, therefore, depends on the plant and PGPF species. It is likely that the specific interaction develops during long-term co-evolution, as it has been observed for compatible and incompatible interactions of pathogens with plants [90]. Moreover, certain components of root exudates may attract and interact microbe specifically and allow it colonize the roots.
\n
\n
\n
7. Mechanisms of plant growth promotion
\n
The course of plant growth promotion by PGPF is complex and often cannot be attributed to a single mechanism. Various mechanisms that are known to modulate plant growth and development can be either direct or indirect. Direct growth promotion occurs when substances produced by the fungi or nutrient available by them facilitate plant growth. On the other hand, the ability of fungi to suppress plant pathogens and to ameliorate stress are considered major indirect mechanisms of plant growth promotion by PGPF. A particular PGPF may affect growth and development of plants using one or more of these mechanisms (Table 3).
\n
\n
\n
\n
\n
\n\n
\n
Mechanisms
\n
Specific activities
\n
PGPF strain
\n
References
\n
\n\n\n
\n
Phosphate solubilization
\n
Solubilized P by acid phosphatase and alkaline phosphatase
Different mechanisms of plant growth promotion used by various plant growth promoting fungi (PGPF).
\n
\n
7.1 Phosphate solubilization
\n
Phosphorus is the second most important and frequently limiting macronutrient for plant growth and productivity. It is an important component of the key macromolecules in living cells and thereby, required for wide array of functions necessary for the survival and growth of living organisms. Despite the abundance of phosphorus in agricultural soils, the majority occurs in an insoluble form. Phosphorus forms complex compounds by reacting with iron, aluminum or calcium depending on the soil types and becomes insoluble and unavailable to plants [102]. To circumvent this problem, phosphate-solubilizing PGPF can play an important role dissolving insoluble P into the soluble form and making it available for plants. PGPF produce phosphate-solubilizing enzymes such as phytases and phosphatases and organic acids, which liberate P from insoluble phosphates. The most efficient phytase and phosphatase producing PGPF belong to the genera Aspergillus, Trichoderma, and Penicillium [103]. The order in terms of phytate hydrolysis efficacy was Aspergillus > Penicillium > Trichoderma [104]. Fusarium verticillioides RK01 and Humicola sp. KNU01 solubilized phosphate by increasing activities of acid phosphatase and alkaline phosphatase, and promoted soybean growth significantly [30]. The phosphate solubilizing fungi possess greater phosphorus solubilization ability than bacteria, especially under acidic soil conditions [105]. The main reason is most fungi are eosinophilic, and have relatively higher growth in acidic environments than bacteria [106]. The acidity has significant influence on organic acid-mediated phosphate solubilizing activities of Pe. oxalicum NJDL-03 and A. niger NJDL-12 [91]. However, acidification is not always the major mechanism of P solubilization by T. harzianum Rifai 1295-22 (T-22), where pH of cultures never fell below 5.0 and no organic acids were detected [93]. Some of the reported PGPF such as Aspergillus niger has twin abilities of P mineralization and solubilization [104]. The fungus releases P both from organic and inorganic sources. These suggests that specific PGPF may have specific activity in solubilizing phosphate and making it available for crop growth.
\n
\n
\n
7.2 Substrate degradation (mineralization)
\n
Microorganisms primarily mediate soil nutrient pathways. Microbial mineralization of nutrients from organic matter is crucial for plant growth. Some PGPF promote plant growth, but do not produce plant hormones or solubilize fixed phosphate. Among Pe. radicum, Pe. bilaiae (strain RS7B-SD1) and Penicillium sp. strain KC6-W2, the strongest growth promotion in wheat, medic, and lentil was shown by Penicillium sp. KC6-W2, while the only significant P increase (~23% increase) was found in Pe. bilaiae RS7B-SD1-treated plants [92]. Similarly, seven Trichoderma isolates significantly improved the growth of bean seedlings; despite some of them do not possess any of the assessed growth-promoting traits such as soluble P, indole acetic acid (IAA) and siderophores [107]. These PGPF are believed to encourage plant growth by accelerating mineralization in the soil. Fungi have better substrate assimilation efficiency than any other microbes and are able to break down complex polyaromatic compounds such lignin and humic or phenolic acids [108]. A close relationship was found between the cellulose and starch degradation activity of PGPF for decomposing barley grain and their subsequent growth promotion effect in plants [109]. Application of T. harzianum strain Th 37 increased the availability of macro and micronutrients and organic carbonate in the ratoon initiation stage in sugarcane [94]. Colonization of T. harzianum in cucumber roots enhanced the availability and uptake of nutrients by the plants [47]. Cucumber plants grew better and produced more marketable fruits due to an increase in soil nutrients caused by PGPF, and accumulated more inorganic minerals like Ca, Mg, and K in aerial shoots [62]. PGPF are also directly involved the degradation of the nitrogenous organic materials through ammonization and nitrification. Formation of NH4-N and NO2-N in soil was accelerated during soil amendment with PGPF-infested barley grains [109]. More interestingly, the fungal entomopathogen Metarhizium robertsii, when established as a root endophyte, was shown to translocate nitrogen from a dead insect to a common bean plant host, suggesting this PGPF’s potential to acquire mineral nutrients from organic matter and promote plant growth [54]. Nutrient release by mineralization could explain why PGPF other than mycorrhizae improve plant growth when added to soil.
\n
\n
\n
7.3 Phytohormone production
\n
Phytohormones are involved in many forms of plant-microbe interactions and also in the beneficial interactions of plants with PGPF. The commonly recognized classes of phytohormones produced by PGPF are the auxins (IAA) and gibberellins (GAs) (Table 3). IAA, the most studied auxin, regulates many aspects of plant growth, in particular, root morphology by inhibiting root elongation, increasing lateral root production, and inducing adventitious roots [48]. The T. harzianum T-22-mediated root biomass production and root hair development in maize is believed to operate through a classical IAA response pathway [78]. Similarly, a direct correlation exists between increased levels of fungal IAA and lateral root development in Arabidopsis seedlings inoculated with T. virens [48].
\n
GAs are well known for their role in various developmental processes in plants, including stem elongation. Shoot elongation of waito-c rice seedlings by culture filtrates of Pe. citrinum IR-3-3 and A. clavatus Y2H0002 was attributed to the activity of physiologically active GAs existing in the culture filtrates [19, 37]. Biochemical analyses of Penicillium sp. LWL3 and Pe. glomerata LWL2 culture filtrates that enhanced the growth of Dongjiin beyo rice cultivar and in GA-deficient mutant Waito-C revealed the presence of IAA and various GAs [110]. Similarly, production of bioactive GAs correlated with enhanced growth of Waito-C under salinity by Penicillium sp. Sj-2-2 [38]. GA also played key roles during root colonization by P. indica in pea roots [111].
\n
Another phytohormone through which PGPF mediate plant growth is cytokinin, especially the Zeatin. Zeatin production has been documented in Piriformospora indica, T. harzianum and Phoma sp., and the fungi that also produce other phytohormones [95, 112, 113]. P. indica produces low amounts of auxins, but high levels of cytokinins. Trans-Zeatin cytokinin biosynthesis was found crucial for P. indica-mediated growth stimulation in Arabidopsis [112]. This evidence suggests that PGPF often mediate the various growth and developmental processes in plants by influencing the balance of various plant hormones.
\n
\n
\n
7.4 Microbial ACC deaminase
\n
PGPF produces a crucial enzyme ACC (1-aminocyclopropane-1-carboxylic acid) deaminase. ACC deaminase cleaves the ethylene precursor, I-aminocyclopropane-1-carboxylic acid (ACC), into NH3 (ammonia) and α-ketobutyrate [114]. The ACC deaminase regulates the plant growth by cleaving ACC produced by plants and thereby minimizing the ethylene level in the plant, which when present in high concentrations can lead to a reduced plant growth [115]. ACC deaminase is an inducible enzyme encoded by acdS genes of fungi and bacteria [116]. ACC deaminase appears to be central to the functional interactions of some plant-PGPF. T. asperellum T203 produced high levels of ACC deaminase and showed an average 3.5-fold induction of the acds gene [117]. When ACC deaminase expression is impaired in the fungus T. asperellum T203, the plant growth promotion abilities of this organism are also decreased [51]. The root colonizing bacteria T. harzianum T22 no longer promote canola root elongation after its acdS gene is knocked out [64]. Production of ACC deaminase was reported in some other fungi, which include Issatchenkia occidentalis [118], and Penicillium citrinum and a stramnopile, Phytophthora sojae [119, 120]. The ACC deaminase-producing microbes have competitive advantages in the rhizosphere over nonproducing microorganisms because the enzyme acts as a nitrogen source for them [116]. Moreover, bacteria and fungi that express ACC deaminase can lower the impact of a range of different stresses that affect plant growth and development [114]. These show that ACC deaminase is not only related to plant growth promotion abilities of the microbes, but also play additional roles in the rhizosphere.
\n
\n
\n
7.5 Suppression of deleterious microorganisms by PGPF
\n
The key indirect mechanism of PGPF-mediated plant growth promotion is through their activities as biocontrol agents. PGPF protect and empower plants to resist harmful pathogens and ensure their better growth. The mechanisms by which PGPF suppress growth or activity of invading pathogens in crop plants include antibiosis, competition for nutrient and space, mycoparasitism and induced systemic resistance (ISR) [121]. PGPF of diverse genera promoted growth of field-soil grown cucumber by counteracting damping off pathogen Pythium sp. through microbial antagonism [4]. Banana plants inoculated with PGPF F. oxysporum significantly suppressed nematode pathogens Pratylenchus goodeyi and Helicotylenchus multicinctus resulting in up to ~20 to 36% increase in banana yields [29]. The mycoparasite Sphaerodes retispora has been reported to improve the plant dry weight and to decrease plant mortality in the presence of F. oxysporum [122]. Similarly, under phytotron conditions, seed germination, root biomass, total biomass, root length, and total length of F. graminearum-infected wheat were noticeably increased with the treatments of S. mycoparasitica and T. harzianum, as compared to inoculation with F. graminearum alone. Both mycoparasites prevented colonization and reduction in root growth by the pathogen [12]. PGPF compete with the pathogen for colonization niche on roots [79]. Other mechanisms of disease suppression by PGPF are, therefore, likely to include competition with pathogens for infection sites on the root surface. Moreover, there is a long and growing list of PGPF such as Trichoderma, Penicillium, Fusarium, Phoma, and non-sporulating fungi, which can protect crop plants against pathogens by eliciting ISR [14, 31, 123, 124]. Although many fungal strains to act as PGPF and elicit ISR, it is not clear how far both mechanisms are connected. These microbes may use some of the same mechanisms to promote plant growth and control plant pathogens.
\n
\n
\n
7.6 Rhizoremediation and stress control
\n
The microbial association of plants has a major influence on plant adaptation to abiotic stresses such as salinity, drought, heavy metal toxicity, extreme temperatures and oxidative stress. Recent studies indicate that fitness benefits conferred by certain PGPF contribute plant adaption to stresses [125]. There are reports of enhanced plant growth because of the association of PGPF with plants, even when plants are under suboptimal conditions [126]. Root colonization by T. atroviride ID20G increased fresh and dry weight of maize roots under drought stress [99]. Supplementation of T. harzianum to NaCl treated mustard seedlings showed elevation by 13.8, 11.8, and 16.7% in shoot, root length and plant dry weight, respectively as compared to plants treated with NaCl (200 mM) alone [127]. The fungus Pe. funiculosum significantly increased the plant biomass, root physiology and nutrients uptake to soybean under copper stress [98]. These fungi have been known to produce plant growth regulators (like GAs and auxins) and extend plant tolerance to abiotic and biotic stresses [23, 125]. Recurrently, T. harzianum T22 has little effect upon seedling performance in tomato, however, under stress; treated seeds germinate consistently faster and more uniformly than untreated seeds [69]. A few other fungi like Microsphaeropsis, Mucor, Phoma, Alternaria, Peyronellaea, Steganosporium, and Aspergillus are known to grow well in polluted medium and protect plants from adverse effects of metal stress [128]. There are numerous similar examples of PGPF ameliorating abiotic stresses and promoting plant growth. Despite significant differences between different stresses, cellular responses to them share common features. Enhanced resistance of PGPF-treated plants to abiotic stresses is explained partly due to higher capacity to scavenge ROS and recycle oxidized ascorbate and glutathione [99, 127]. The increase in proline content is found to be very useful in providing tolerance to these plants under stress [129]. Both enzymatic (peroxidase, catalase, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, glutathione S-sransferase and gaucol peroxidase), and non-enzymatic (ascorbic acid, reduced glutathione, oxidized glutathione) antioxidants are induced by PGPF further enhance the synthesis of these phytoconstituents and defend the plants from further damage [127].
\n
\n
\n
7.7 Production of volatile organic compounds (VOCs)
\n
Microorganisms produce various mixtures of gas-phase, carbon-based compounds called volatile organic compounds (VOCs) as part of their normal metabolism. The comparative analysis of experimental data has shown that volatile metabolites make a much greater contribution to the microbial interactions than non-volatile ones [130]. Recent studies reveal that VOC emission is indeed a common property of a wide variety of soil fungi, including PGPF. Some of these VOCs produced by PGPF exert stimulatory effects on plants. A PGPF, Talaromyces wortmannii emits a terpenoid-like volatile, β-caryophyllene, which significantly promoted plant growth and induced resistance in turnip [40]. The identified VOCs emitted by Phoma sp. GS8-3 belonged to C4-C8 hydrocarbons, where 2-methyl-propanol and 3-methyl-butanol formed the main components and promoted the growth of tobacco seedlings [100]. These two components were also extracted from PGPR [131]. On the other hand, 3-methyl-butanal has been reported from T. viride [101]. The other most abundant VOCs from T. viride were isobutyl alcohol, isopentyl alcohol, farnesene and geranylacetone. Arabidopsis cultured in petri plates in a shared atmosphere with T. viride, without direct physical contact was taller with more lateral roots, bigger with augmented total biomass (~45%) and earlier flowered with higher chlorophyll concentration (~58%) [101]. Moreover, volatile blends showed better growth promotion than individual compounds [132]. Volatile compounds produced by PGPF are also heavily involved in induce systemic resistance toward pathogens [100].
\n
\n
\n
\n
8. Pattern and process of root colonization by PGPF
\n
Root colonization is considered as an important strategy of PGPF for plant growth promotion. Root colonization is the ability of a fungus to survive and proliferate along growing roots in the presence of the indigenous microflora over a considerable period [35]. The fungus that colonizes plant root effectively is more rhizosphere competent than others [107]. Rhizosphere competence is a necessary condition for a fungus to be an efficient PGPF. Re-isolation frequency of the fungus from the colonized roots is an indirect measure of its root colonizing ability and thereby, its rhizosphere competence. In such studies, Pe. simplicissimum GP17-2 and Pe. viridicatum GP15-1 were re-isolated from Arabidopsis Col-0 roots 3 weeks after planting at high frequencies which were found to be >90% (Figure 2). Similarly, the re-isolation frequency of Pe. janthinellum GP16-2 from the roots of Col-0 plants was recorded to be, on average, 85% [33]. Aspergillus spp. PPA1 was re-isolated from the roots of cucumber plants at a frequency of 95–100% 3 weeks after planting [17], indicating a rapid and efficient root colonization by the PGPF. However, a slow root colonization by PGPF was also reported, as it was the case with Phoma sp. GS8-2, which achieved maximum colonization on cucumber roots at 10 weeks [62]. The relative growth rate of the fungi and roots seems to determine the length of time required for maximum root colonization.
\n
Figure 2.
Re-isolation of Penicillium simplicissimum GP17-2 and Penicillium viridicatum GP15-1 at higher frequencies from colonized roots of Arabidopsis thaliana ecotype Col-0 3 weeks after sowing.
\n
Some PGPF selectively colonize host roots and promote growth. Isolates of Phoma and sterile fungi showed poor ability to colonize the soybean roots and were unable to enhance the growth of soybean [79]. Similarly, T. koningi colonized roots and enhanced growth of Lotus japonicas, but Pe. simplicissimum and F. equiseti did not [89]. It was observed that T. koningi induced a transient and decreased level of defense gene expression in L. japonicas during its entry into the roots, while a stimulated expression of these genes was induced by Pe. simplicissimum and F. equiseti [89]. T. koningi resembles symbiotic fungi, while Pe. simplicissimum and F. equiseti act similar to fungal pathogens in activating host defense. This shows that legumes selectively avoid some PGPF and thus allow only specific PGPF to interfere.
\n
There are also PGPF, in particular, the non-sporulating sterile fungi that lack root colonization ability, but they are able to promote growth and yield of plants [62, 133]. This indicates that root colonization is not an indispensable condition for growth promotion by all PGPF. Some chemical factor(s) produced by them might be responsible for growth promotion.
\n
The colonization of the root system of by PGPF is not always homogenous; the density of PGPF varies in different parts of the root system. The colonization of roots by the majority of PGPF appears to be higher in the upper than in the middle and lower root parts of roots, [35, 133]. The lower part was always less colonized by PGPF, especially during first 2 weeks of colonization. This is probably due to the faster growth of the roots than of the hyphae. Moreover, the main zone of root exudation is located behind the apex [134]. However, some PGPF can keep up with root growth and colonize the entire root system [35]. Only fungi with large nutrient reserves can move to the root and along the root over larger distances [135].
\n
Anatomical data show that PGPF may colonize root tissues internally and establish a mutualistic relationship with host. F. equiseti GF19-1 produced abundant hyphal growth on the root surface, formed appressoria-like structures and grew in the intercellular space, not inside the cell [31]. T. harzianum CECT 2413 exhibited profuse adhesion of hyphae to the tomato roots and colonized the epidermis and cortex. Intercellular hyphal growth and the formation of plant-induced papilla-like hyphal tips were also observed [136]. Hyphae of T. koningi penetrated the epidermis and entered the intercellular inner cortex tissues [89]. Sterile red fungus has been also demonstrated to invade the inner root regions that helped plants derive nutrients from the soil and protected roots from pathogens [137].
\n
\n
\n
9. Formulation of PGPF
\n
PGPF, especially Trichoderma, have many success stores as plant growth promoting agents and appear to have much potential as a commercial formulation. Different organic and inorganic carrier materials have been studied for effective delivery of bioinoculants. A talc-based formulation was developed for T. harzianum to supply concentrated conidial biomass of the fungus with high colony forming units (CFU) and long shelf life [138]. The concentrated formulation provided an extra advantage of smaller packaging for storage and transportation, and low product cost as compared to other carriers such as charcoal, vermiculite, sawdust and cow dung. Seed application of the formulation recorded significant increase in growth promotion in chickpea [138]. Corn and sugarcane bagasse were used as potential carriers for Trichoderma sp. SL2 inoculants. The corn formulation of SL2 significantly enhanced rice seedlings root length, wet weight and biomass compared to inoculum mixed with sugarcane bagasse and control [139]. A spray-dried flowable powder formulation was developed for biostimulant Trichoderma strains using a CO2 generating dispersant system, based on polyacrylic acid, citric acid and sodium bicarbonate, polyvinyl alcohol as adhesives and lecithin as wetting agent [140]. Hydrolytic amino acids derived from pig corpses were used in the preparation of T. harzianum T-E5-containing bioorganic fertilizer. The resulting bioorganic fertilizer supported higher densities of T. harzianum T-E5 and substantially enhanced plant growth when applied as a soil amendment [141]. A composted cattle manure-based Trichoderma biofertilizer was developed and tested in the field. Plots fertilized with biofertilizer had the greatest aboveground biomass of any treatment and were significantly more productive than non-amended plots and plots fertilized with any rate of organic fertilizer [142]. Effective formulation of P. indica was prepared in talcum powder or vermiculite with 20% moisture. The talcum-based formulations performed significantly better as bioinoculant over vermiculite-based formulations in glasshouse experiments [143]. These show the feasibility of commercial level production and applicability of different PGPF formulations for plant growth promotion in the field.
\n
\n
\n
10. Conclusions
\n
Because of current concerns over the adverse effects of agrochemicals, there is a growing interest in improving our understanding of the role and application of beneficial microbes in agriculture. The plant-associated growth promoting fungi show excellent potential for wider use in sustainable agriculture as they improve plant growth and yield in an ecofriendly and cost-effective manner. However, the PGPF continue to be greatly underutilized, primarily due to some practical problems such as the inconsistency in field performance, which appears to be the greatest challenge in the development of microbial inoculants for plant growth until now and well into the future. If our understanding of complex rhizosphere environment, of the mechanisms of action of PGPF and of the practical aspects of mass production, inoculant formulation and delivery increase, more PGPF products will become available. Knowledge of multiple microbial interaction with different or complementary mode of actions is also of extreme value for development of bio-formulation.
\n
Recent advances in biotechnological tools and reliable transformation system could be useful in engineering of the PGPF to confer improved benefits to the crop. Genetic transformation and overexpression of one or more of the plant growth promoting traits that act synergistically may lead to enhanced performance by the inoculant. Research may be required periodically in order to evaluate the genetic stability and ecological persistence of the genetically modified strain. Efforts should be strengthened to foster linkage between investigators and entrepreneurs in facilitating technology transfer, promotion and acceptance by end users.
\n
\n\n',keywords:"seed germination, seedling vigor, root morphogenesis, yield, root colonization, formulation",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/72075.pdf",chapterXML:"https://mts.intechopen.com/source/xml/72075.xml",downloadPdfUrl:"/chapter/pdf-download/72075",previewPdfUrl:"/chapter/pdf-preview/72075",totalDownloads:1328,totalViews:0,totalCrossrefCites:6,dateSubmitted:"February 5th 2020",dateReviewed:"March 31st 2020",datePrePublished:"July 14th 2020",datePublished:"December 2nd 2020",dateFinished:"May 8th 2020",readingETA:"0",abstract:"Plant growth-promoting fungi (PGPF) constitute diverse genera of nonpathogenic fungi that provide a variety of benefits to their host plants. PGPF show an effective role in sustainable agriculture. Meeting increasing demand for crop production without damage to the environment is the biggest challenge nowadays. The use of PGPF has been recognized as an environmentally friendly way of increasing crop production. These fungi have proven to increase crop yields by improving germination, seedling vigor, plant growth, root morphogenesis, photosynthesis, and flowering through either a direct or indirect mechanism. The mechanisms of PGPF involve solubilizing and mineralizing nutrients for easy uptake by plants, regulating hormonal balance, producing volatile organic compounds and microbial enzyme, suppressing plant pathogens and ameliorating abiotic stresses. Successful colonization is an intrinsic factor for most PGPF to exert their beneficial effects on plants. A certain level of specificity exists in the interactions between plant species and PGPF for root colonization and growth promoting effects. There is a gap between the number of reported efficacious PGPF and the number of PGPF as biofertilizer. Efforts should be strengthened to improve the efficacy and commercialization of PGPF. Hence, this chapter summarizes valuable information regarding the application and mechanisms of PGPF in sustainable agriculture.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/72075",risUrl:"/chapter/ris/72075",signatures:"Md. Motaher Hossain and Farjana Sultana",book:{id:"10134",type:"book",title:"Organic Agriculture",subtitle:null,fullTitle:"Organic Agriculture",slug:"organic-agriculture",publishedDate:"December 2nd 2020",bookSignature:"Shaon Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/10134.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-669-0",printIsbn:"978-1-78984-668-3",pdfIsbn:"978-1-78984-720-8",isAvailableForWebshopOrdering:!0,editors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",middleName:null,surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"318381",title:"Dr.",name:"Md. Motaher",middleName:null,surname:"Hossain",fullName:"Md. Motaher Hossain",slug:"md.-motaher-hossain",email:"hossainmm@bsmrau.edu.bd",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"318383",title:"Dr.",name:"Farjana",middleName:null,surname:"Sultana",fullName:"Farjana Sultana",slug:"farjana-sultana",email:"farjana1s@iubat.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"International University of Business Agriculture and Technology",institutionURL:null,country:{name:"Bangladesh"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Plant growth promoting fungi (PGPF)",level:"1"},{id:"sec_3",title:"3. The nature and composition of PGPF",level:"1"},{id:"sec_4",title:"4. Impact of PGPF on plant growth promotion",level:"1"},{id:"sec_4_2",title:"4.1 Impact of PGPF on seed germination and seedling vigor",level:"2"},{id:"sec_5_2",title:"4.2 Impact of PGPF on shoot growth",level:"2"},{id:"sec_6_2",title:"4.3 Impact of PGPF on photosynthesis",level:"2"},{id:"sec_7_2",title:"4.4 Impact of PGPF on root growth and architecture",level:"2"},{id:"sec_8_2",title:"4.5 Impact of PGPF on flowering",level:"2"},{id:"sec_9_2",title:"4.6 Impact of PGPF on yield",level:"2"},{id:"sec_11",title:"5. Duration of sustained plant growth promotion effect by PGPF",level:"1"},{id:"sec_12",title:"6. Host specificity of the plant growth-promoting cooperation",level:"1"},{id:"sec_13",title:"7. Mechanisms of plant growth promotion",level:"1"},{id:"sec_13_2",title:"7.1 Phosphate solubilization",level:"2"},{id:"sec_14_2",title:"7.2 Substrate degradation (mineralization)",level:"2"},{id:"sec_15_2",title:"7.3 Phytohormone production",level:"2"},{id:"sec_16_2",title:"7.4 Microbial ACC deaminase",level:"2"},{id:"sec_17_2",title:"7.5 Suppression of deleterious microorganisms by PGPF",level:"2"},{id:"sec_18_2",title:"7.6 Rhizoremediation and stress control",level:"2"},{id:"sec_19_2",title:"7.7 Production of volatile organic compounds (VOCs)",level:"2"},{id:"sec_21",title:"8. Pattern and process of root colonization by PGPF",level:"1"},{id:"sec_22",title:"9. Formulation of PGPF",level:"1"},{id:"sec_23",title:"10. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'\nWPP. World Population Prospect: 2019. New York: Population Division, Department of Economic and Social Affairs, United Nations; 2019. p. 2\n'},{id:"B2",body:'\nHunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA. Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience. 2017;67(4):386-391\n'},{id:"B3",body:'\nVacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, et al. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science. 2013;4:356\n'},{id:"B4",body:'\nHyakumachi M. Plant-growth-promoting fungi from turf grass rhizosphere with potential for disease suppression. Soil Microorganisms. 1994;44:53-68\n'},{id:"B5",body:'\nHossain MM, Sultana F, Islam S. Plant growth-promoting fungi (PGPF): Phytostimulation and induced systemic resistance. In: Singh D, Singh H, Prabha R, editors. Plant-Microbe Interactions in Agro-Ecological Perspectives, Volume 2: Microbial Interactions and Agro-Ecological Impacts. Singapore: Springer; 2017. pp. 135-191. DOI: 10.1007/978-981-10-6593-4\n'},{id:"B6",body:'\nLyn ME, Burnett D, Garcia AR, Gray R. Interaction of water with three granular biopesticide formulations. Journal of Agricultural and Food Chemistry. 2010;58:1804-1814\n'},{id:"B7",body:'\nAly AH, Debbab A, Proksch P. Fungal endophytes: Unique plant inhabitants with great promises. Applied Microbiology and Biotechnology. 2011;90:1829-1845\n'},{id:"B8",body:'\nBent E. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E, editors. Multigenic and Induced Systemic Resistance in Plants. New York: Springer; 2006. pp. 225-258\n'},{id:"B9",body:'\nHossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant & Cell Physiology. 2007;48(12):1724-1736\n'},{id:"B10",body:'\nHyakumachi M, Kubota M. Fungi as plant growth promoter and disease suppressor. In: Arora DK, editor. Mycology Series. Vol. 21. Fungal Biotechnology in Agricultural, Food, and Environmental Applications. New York: Marcel Dekker; 2004. pp. 101-110\n'},{id:"B11",body:'\nKaewchai S, Soytong K, Hyde KD. Mycofungicides and fungal biofertilizers. Fungal Diversity. 2009;38:25-50\n'},{id:"B12",body:'\nVujanovic V, Goh YK. qPCR quantification of Sphaerodes mycoparasitica biotrophic mycoparasite interaction with Fusarium graminearum: in vitro and in planta assays. Archives of Microbiology. 2012;194(8):707-717\n'},{id:"B13",body:'\nMuslim A, Horinouchi H, Hyakumachi M. Biological control of Fusarium wilt of tomato with hypovirulent binucleate Rhizoctonia in greenhouse conditions. Mycoscience. 2003;44:77-84\n'},{id:"B14",body:'\nSultana F, Hossain MM, Kubota M, Hyakumachi M. Elicitation of systemic resistance against the bacterial speck pathogen in Arabidopsis thaliana by culture filtrates of plant growth-promoting fungi. Canadian Journal of Plant Pathology. 2008;30(2):196-205\n'},{id:"B15",body:'\nZhou Z, Zhang C, Zhou W, Li W, Chu L, Yan J, et al. Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. Journal of Plant Interactions. 2014;9(1):585-591\n'},{id:"B16",body:'\nYadav J, Verma JP, Tiwari KN. Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian Journal of Biological Sciences. 2011;4:291-299\n'},{id:"B17",body:'\nIslam S, Akanda AM, Sultana F, Hossain MM. Chilli rhizosphere fungus Aspergillus spp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Archives of Phytopathology and Plant Protection. 2014;47:1231-1238\n'},{id:"B18",body:'\nKhan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ. Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, plant growth and isoflavone biosynthesis in soybean under salt stress. Process Biochemistry. 2011;46:440-447\n'},{id:"B19",body:'\nYou YH, Kwak TW, Kang SM, Lee MC, Kim JG. Aspergillus clavatus Y2H0002 as a new endophytic fungal strain producing gibberellins isolated from Nymphoides peltata in fresh water. Mycobiology. 2015;43:87-91\n'},{id:"B20",body:'\nSalas-Marina MA, Silva-Flores MA, Cervantes-Badillo MG, Rosales-Saavedra MT, Islas-Osuna MA, Casas-Flores S. The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. Journal of Microbiology and Biotechnology. 2011;21(7):686-696\n'},{id:"B21",body:'\nWaqas M, Khan AL, Hamayun M, Shahzad R, Kim YH, Choi KS, et al. Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. European Journal of Plant Pathology. 2015;141:803-824\n'},{id:"B22",body:'\nIgnatova LV, Brazhnikova YV, Berzhanova RZ, Mukasheva TD. Plant growth-promoting and antifungal activity of yeasts from dark chestnut soil. Microbiological Research. 2015;175:78-83\n'},{id:"B23",body:'\nKhan AL, Shinwari ZK, Kim YH, Waqas M, Hamayun M, Kamran M, et al. Role of endophyte Chaetomium globosum LK4 in growth of Capsicum annum by production of gibberellins and indole acetic acid. Pakistan Journal of Botany. 2012;44:1601-1607\n'},{id:"B24",body:'\nHamayun M, Khan SA, Khan AL, Rehman G, Kim YH, Iqbal I, et al. Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia. 2010;102:989-995\n'},{id:"B25",body:'\nHamayun M, Khan SA, Ahmad N, Tang D-S, Kang S-M, et al. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World Journal of Microbiology and Biotechnology. 2009;25(4):627-632\n'},{id:"B26",body:'\nKhan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, et al. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiologia Plantarum. 2011;143(4):329-343\n'},{id:"B27",body:'\nIslam S, Akanda AM, Prova A, Sultana F, Hossain MM. Growth promotion effect of Fusarium spp. PPF1 from Bermuda grass (Cynodon dactylon) rhizosphere on Indian spinach (Basella alba) seedlings are linked to root colonization. Archives of Phytopathology and Plant Protection. 2014;47:2319-2331\n'},{id:"B28",body:'\nBitas V, McCartney N, Li N, Demers J, Kim JE, Kim HS, et al. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Frontiers in Microbiology. 2015;6:1248\n'},{id:"B29",body:'\nWaweru B, Turoop L, Kahangi E, Coyne D, Dubois T. Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biological Control. 2014;74:82-88\n'},{id:"B30",body:'\nRadhakrishnan R, Khan AL, Kang SM, Lee IJ. A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress. Annales de Microbiologie. 2015;65(1):585-593\n'},{id:"B31",body:'\nKojima H, Hossain MM, Kubota M, Hyakumachi M. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1. Journal of Oleo Science. 2013;62(6):415-426\n'},{id:"B32",body:'\nMaciá-Vicente JG, Jansson HB, Talbot NJ, Lopez-Llorca LV. Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytologist. 2009;182:213-228\n'},{id:"B33",body:'\nHossain MM, Sultana F, Kubota M, Hyakumachi M. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant and Soil. 2008;304:227-239\n'},{id:"B34",body:'\nJogaiah S, Abdelrahman M, Tran LSP, Shin-ichi I. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany. 2013;64:3829-3842\n'},{id:"B35",body:'\nHossain MM, Sultana F, Miyazawa M, Hyakumachi M. The plant growth promoting fungi Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. Journal of Oleo Science. 2014;63(4):391-400\n'},{id:"B36",body:'\nBabu AG, Kim SW, Yadav DJ, Hyum U, Adhikari M, Lee YS. Penicillium menonorum: A novel fungus to promote growth and nutrient management in cucumber plants. Mycobiology. 2015;43:49-56\n'},{id:"B37",body:'\nKhan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, et al. Plant growth promotion and Penicillium citrinum. BMC Microbiology. 2008;8:231. DOI: 10.1186/1471-2180-8-231\n'},{id:"B38",body:'\nYou YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ, et al. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. Journal of Microbiology and Biotechnology. 2012;22:1549-1556\n'},{id:"B39",body:'\nKhan AL, Waqas M, Lee IJ. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. Journal of Plant Research. 2015;128(2):259-268\n'},{id:"B40",body:'\nYamagiwa Y, Toyoda K, Inagaki Y, Ichinose Y, Hyakumachi M, Shiraishi T. Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistance. Journal of General Plant Pathology. 2011;77:336-341\n'},{id:"B41",body:'\nHamayun M, Khan SA, Khan AL, Rehman G, Sohn EY, Shah AA, et al. Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. Journal of Microbiology and Biotechnology. 2009;19:1244-1249. DOI: 10.4014/jmb.0901.030\n'},{id:"B42",body:'\nHamayun M, Khan SA, Khan AL, Tang DS, Hussain J, Ahmad N, et al. Growth promotion of cucumber by pure cultures of gibberellin-producing Phoma sp. GAH7. World Journal of Microbiology and Biotechnology. 2010;26:889-894\n'},{id:"B43",body:'\nSiddikee MA, Zereen MI, Li CF, Dai CC. Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice. Scientific Reports. 2016;6:32270\n'},{id:"B44",body:'\nCavello IA, Crespo JM, García SS, Zapiola JM, Luna MF, Cavalitto SF. Plant growth promotion activity of keratinolytic fungi growing on a recalcitrant waste known as “Hair Waste”. Biotechnology Research International. 2015;2015:952921. DOI: 10.1155/2015/952921\n'},{id:"B45",body:'\nPascual CB, Raymundo AD, Hayakumachi M. Efficacy of hypovirulent binucleate Rhizoctonia sp. to control banded leaf and sheath blight in corn. Journal of General Plant Pathology. 2000;66:95-102\n'},{id:"B46",body:'\nJiang J, Tam S, Toda T, Chen L. Controlling Rhizoctonia damping-off of Chinese mustard by using endomycorrhizal Rhizoctonia spp. isolated from orchid mycorrhizae. Plant Disease. 2015;100:85-91\n'},{id:"B47",body:'\nYedidia I, Srivastva AK, Kapulnik Y, Chet I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil. 2001;235:235-242\n'},{id:"B48",body:'\nContreras-Cornejo HA, Macías-Rodríguez LI, Cortés-Penagos C, López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology. 2009;149:1579-1592\n'},{id:"B49",body:'\nLee S, Yap M, Behringer G, Hung R, Bennett JW. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biology and Biotechnology. 2016;3:7\n'},{id:"B50",body:'\nZhang S, Gan Y, Xu B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum t6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Frontiers in Plant Science. 2016;7:1405\n'},{id:"B51",body:'\nBrotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, et al. Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens. 2013;9(3):e1003221\n'},{id:"B52",body:'\nStudholme DJ, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, et al. Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture—Insights from genomics. Frontiers in Plant Science. 2013;4:258\n'},{id:"B53",body:'\nStone BWG, Weingarten EA, Jackson CR. The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews. 2018;1:1-24. DOI: 10.1002/9781119312994.apr0614\n'},{id:"B54",body:'\nBehie SW, Zelisko PM, Bidochka MJ. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science. 2012;336:1576-1577\n'},{id:"B55",body:'\nEldredge SD, Geary B, Jensen SL. Seed isolates of Alternaria and Aspergillus fungi increase germination of Astragalus utahensis. Native Plants. 2016;17(2):89-94\n'},{id:"B56",body:'\nChuang CC, Kuo YL, Chao CC, Chao WL. Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biology and Fertility of Soils. 2007;43:575-584\n'},{id:"B57",body:'\nRabeendran N, Moot DJ, Jones EE, et al. Inconsistent growth promotion of cabbage and lettuce from Trichoderma isolates. New Zealand Plant Protection. 2000;53:143-146\n'},{id:"B58",body:'\nHossain MM, Hossain N, Sultana F, Islam SMN, Islam S, Bhuiyan MKA. Integrated management of Fusarium wilt of chickpea (Cicer arietinum L.) caused by Fusarium oxysporum f.sp. ciceris with microbial antagonist, botanical extract and fungicide. African Journal of Biotechnology. 2013;12(29):4699-4706\n'},{id:"B59",body:'\nKaveh H, Vatandoost S, Aroiee H, Mazhabi M. Would Trichoderma affect seed germination and seedling quality of two muskmelon cultivars, Khatooni and Qasri and increase their transplanting success? Journal of Biological and Environmental Sciences. 2011;5:169-175\n'},{id:"B60",body:'\nChandanie WA, Kubota M, Hyakumachi M. Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Applied Soil Ecology. 2009;41:336-341\n'},{id:"B61",body:'\nSaldajeno MGB, Hyakumachi M. The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. The Annals of Applied Biology. 2011;159:28-40\n'},{id:"B62",body:'\nShivanna MB, Meera MS, Kubota M, Hyakumachi M. Promotion of growth and yield in cucumber by zoysiagrass rhizosphere fungi. Microbes and Environments. 2005;20(1):34-40\n'},{id:"B63",body:'\nChandanie WA, Kubota M, Hyakumachi M. Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and growth promotion of cucumber (Cucumis sativus L.). Mycoscience. 2005;46:201-204\n'},{id:"B64",body:'\nSofo A, Tataranni G, Xiloyannis C, Dichio B, Scopa A. Direct effects of Trichoderma harzianum strain T-22 on micropropagated shoots of GiSeLa6® (Prunus cerasus\n\n\n×\n\n\nPrunus canescens) rootstock. Environmental and Experimental Botany. 2012;76:33-38\n'},{id:"B65",body:'\nHamayun M, Khan SA, Khan MA, Khan AL, Kang SM, Kim SK, et al. Gibberellin production by pure cultures of a new strain of Aspergillus fumigates. World Journal of Microbiology and Biotechnology. 2009;25:1785-1792\n'},{id:"B66",body:'\nShanmugaiah V, Mathivanan N, Varghese B. Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. Journal of Applied Microbiology. 2010;108:703-711. DOI: 10.1111/j.1365-2672.2009.04466.x\n'},{id:"B67",body:'\nNagaraju A, Murali M, Sudisha J, Amruthesh KN, Murthy SM. Beneficial microbes promote plant growth and induce systemic resistance in sunflower against downy mildew disease caused by Plasmopara halstedii. Current Botany. 2012;3(5):12-18\n'},{id:"B68",body:'\nMinerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiology Ecology. 2011;76:342-351\n'},{id:"B69",body:'\nMastouri F, Björkman T, Harman GE. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology. 2010;100:1213-1221\n'},{id:"B70",body:'\nMushtaq S, Nasim G, Khokhar I, Mukhtar I. Effects of Penicillium extracts on germination vigour in subsequent seedling growth of tomato (Solanum lycopersicum L.). Archives of Phytopathology and Plant Protection. 2012;45(8):932-937\n'},{id:"B71",body:'\nHorinouchi H, Katsuyama N, Taguchi Y, Hyakumachi M. Control of Fusarium crown and root rot of tomato in a soil system by combination of a plant growth-promoting fungus, Fusarium equiseti, and biodegradable pots. Crop Protection. 2008;27:859-864\n'},{id:"B72",body:'\nHalifu S, Deng X, Song X, Song R. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests. 2019;10(9):758\n'},{id:"B73",body:'\nYadav RL, Shukla SK, Suman A, Singh PN. Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions. Biology and Fertility of Soils. 2009;45:461-468\n'},{id:"B74",body:'\nRadhakrishnan R, Kang S, Baek I, Lee I. Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. Journal of Plant Interactions. 2014;9(1):754-762\n'},{id:"B75",body:'\nHorinouchi H, Muslim A, Hyakumachi M. Biocontrol of Fusarium wilt of spinach by the plant growth promoting fungus Fusarium equiseti GF183. Journal of Plant Pathology. 2010;92(1):249-254\n'},{id:"B76",body:'\nGujar PD, Bhavsar KP, Khire JM. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment. Journal of the Science of Food and Agriculture. 2013;93:2242-2247\n'},{id:"B77",body:'\nChang YC, Baker R, Kleifeld O, Chet I. Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Disease. 1986;70:145-148\n'},{id:"B78",body:'\nHarman GE, Petzoldt R, Comis A, Chen J. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of this interaction on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology. 2004;94:147-153\n'},{id:"B79",body:'\nShivanna MB, Meera MS, Hyakumachi M. Role of root colonization ability of plant growth promoting fungi in the suppression of take-all and common root rot of wheat. Crop Protection. 1996;15(6):497-504\n'},{id:"B80",body:'\nHameed K, Couch HB. Effects of Penicillium simplicissimum on growth, chemical composition, and root exudation of axenically grown marigolds. Phytopathology. 1971;62:669\n'},{id:"B81",body:'\nZavala-Gonzalez EA, Rodríguez-Cazorla E, Escudero N, Aranda-Martinez A, Martínez-Laborda A, Ramírez-Lepe M, et al. Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signaling and leads to accelerated flowering and improved yield. The New Phytologist. 2016;213(1):351-364. DOI: 10.1111/nph.14106\n'},{id:"B82",body:'\nVarma A, Bakshi M, Lou B, et al. Piriformospora indica: A novel plant growth-promoting Mycorrhizal fungus. Agricultural Research. 2012;1:117-131\n'},{id:"B83",body:'\nAkhter W, Bhuiyan MKA, Sultana F, Hossain MM. Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.). Comptes Rendus Biologies. 2015;338:21-28\n'},{id:"B84",body:'\nHammad R, Elbagory M. Using plant growth-promoting fungi (PGPF), as a biofertilizer and biocontrol agents against Tetranychus cucurbitacearum on Nubian watermelon (Citrullus lanatus L.). Journal of Advances in Microbiology. 2019;16(2):1-15\n'},{id:"B85",body:'\nSneh B, Ichielevich-Auster M, Barash I, Koltin Y. Increased growth response induced by a nonpathogenic Rhizoctonia solani. Canadian Journal of Botany. 1986;64:2372-2378\n'},{id:"B86",body:'\nSrivastava PK, Shenoy BD, Gupta M, Vaish A, Mannan S, Singh N, et al. Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties. Microbes and Environments. 2012;27(4):477-482\n'},{id:"B87",body:'\nShivanna MB, Meera MS, Hyakumachi M. Sterile fungi from zoysiagrass rhizosphere as plant growth promoters in spring wheat. Canadian Journal of Microbiology. 1994;40:637-644\n'},{id:"B88",body:'\nShivanna MB, Meera MS, Kageyama K, Hyakumachi M. Influence of zoysiagrass rhizosphere fungal isolates on growth and yield of soybean plants. Mycoscience. 1995;36:25-30\n'},{id:"B89",body:'\nMasunaka A, Hyakumachi M, Takenaka S. Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes and Environments. 2011;26(2):128-134\n'},{id:"B90",body:'\nDesender S, Andrivon D, Val F. Activation of defence reactions in Solanaceae: Where is the specificity? Cellular Microbiology. 2007;9:21-30\n'},{id:"B91",body:'\nLi Z, Bai T, Dai L, Wang F, Tao J, Meng S, et al. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Scientific Reports. 2016;6:25313\n'},{id:"B92",body:'\nWakelin SA, Gupta VVSR, Harvey PR, Ryder MH. The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Canadian Journal of Microbiology. 2007;53:106-115\n'},{id:"B93",body:'\nAltomare C, Norvell WA, Björkman T, Harman GE. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology. 1999;65:2926-2933\n'},{id:"B94",body:'\nSingh V, Singh PN, Yadav RL, Awasthi SK, Joshi BB, Singh RK, et al. Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. Journal of Horticulture and Forestry. 2010;2(4):66-71\n'},{id:"B95",body:'\nMartïnez-Medina A, Roldán A, Albacete A, Pascual JA. The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry. 2011;72:223-229\n'},{id:"B96",body:'\nBjörkman T, Blanchard LM, Harman GE. Growth enhancement of shrunken-2 sweet corn with Trichoderma harzianum 1295-22: Effect of environmental stress. Journal of the American Society for Horticultural Science. 1998;123:35-40\n'},{id:"B97",body:'\nAlhamed MFA, Shebany YM. Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance. Plant Biology. 2012;14:859-863\n'},{id:"B98",body:'\nKhan AL, Lee IJ. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biology. 2013;13:86\n'},{id:"B99",body:'\nGuler NS, Pehlivan N, Karaoglu SA, Guzel S, Bozdeveci A. Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiologiae Plantarum. 2016;38:132. DOI: 10.1007/s11738-016-2153-3\n'},{id:"B100",body:'\nNaznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One. 2014;9(1):e86882\n'},{id:"B101",body:'\nHung R, Lee S, Bennett JW. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecology. 2013;6:19-26\n'},{id:"B102",body:'\nIslam MT, Hossain MM. Plant probiotics in phosphorus nutrition in crops with special reference to rice. In: Maheshwari DK, editor. Bacteria in Agrobiology: Plant Probiotics. Berlin, Heidelberg: Springer; 2012. pp. 325-363\n'},{id:"B103",body:'\nRajankar PN, Tambekar DH, Wate SR. Study of phosphate solubilization efficiencies of fungi and bacteria isolated from saline belt of Purna river basin. Research Journal of Agriculture and Biological Sciences. 2007;3(6):701-703\n'},{id:"B104",body:'\nGaind S, Nain L. Soil-phosphorus mobilization potential of phytate mineralizing fungi. Journal of Plant Nutrition. 2015;38(14):2159-2175. DOI: 10.1080/01904167.2015.1014561\n'},{id:"B105",body:'\nNahas E. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology. 1996;12:567-572\n'},{id:"B106",body:'\nRousk J, Brookes PC, Bååth E. Contrasting soil pH effects on fungal and bacterial growth suggests functional redundancy in carbon mineralisation. Applied and Environmental Microbiology. 2009;75:1589-1596\n'},{id:"B107",body:'\nHoyos-Carvajal L, Orduz S, Bissett J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control. 2009;51:409-416\n'},{id:"B108",body:'\nRuess L, Ferris H. Decomposition pathways and successional changes. In: Proceeding of the Fourth International Congress of Nematology. Vol. 2. 2004. pp. 547-556\n'},{id:"B109",body:'\nHyakumachi M. Microorganism Resources: Its Characteristics and Utilization. Tokyo: Soft Science Inc.; 2000. pp. 81-92\n'},{id:"B110",body:'\nWaqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, et al. Endophytic fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules. 2012;17:10754-10773\n'},{id:"B111",body:'\nFoo E, Ross JJ, Jones WT, Reid JB. Plant hormones in arbuscular mycorrhizal symbioses: An emerging role for gibberellins. Annals of Botany. 2013;111:769-779\n'},{id:"B112",body:'\nVadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, et al. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant-Microbe Interactions. 2008;21:1371-1383\n'},{id:"B113",body:'\nSaxena S. Applied Microbiology. India: Springer Pvt. Ltd; 2015. p. 190\n'},{id:"B114",body:'\nNascimento FX, Rossi MJ, Soares CRFS, McConkey BJ, Glick BR. New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One. 2014;9(6):e99168\n'},{id:"B115",body:'\nGlick BR, Cheng Z, Czarny J, Duan J. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology. 2007;119:329-339\n'},{id:"B116",body:'\nGlick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research. 2014;169:30-39\n'},{id:"B117",body:'\nViterbo A, Landau U, Kim S, Chernin L, Chet I. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiology Letters. 2010;305:42-48\n'},{id:"B118",body:'\nPalmer C, Golden K, Danniels L, Ahmad H. ACC deaminase from Issatchenkia occidentalis. Journal of Biological Sciences. 2007;7:188-193\n'},{id:"B119",body:'\nJia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, et al. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Bioscience, Biotechnology, and Biochemistry. 1999;63:542-549\n'},{id:"B120",body:'\nSingh N, Kashyap S. In-silico identification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from Phytophthora sojae. Journal of Molecular Modeling. 2012;18:4101-4111\n'},{id:"B121",body:'\nWhipps JM. Microbial interactions and biocontrol in rhizosphere. Journal of Experimental Botany. 2001;52:487-511\n'},{id:"B122",body:'\nHarveson RM, Kimbrough JW, Hopkins DL. Novel use of a Pyrenomycetous mycoparasite for management of Fusarium wilt of watermelon. Plant Disease. 2002;86(9):1025-1030\n'},{id:"B123",body:'\nKoike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: Lignification and superoxide generation. European Journal of Plant Pathology. 2001;107:523-533\n'},{id:"B124",body:'\nHossain MM, Sultana F. Genetic variation for induced and basal resistance against leaf pathogen Pseudomonas syringae pv. tomato DC3000 among Arabidopsis thaliana accessions. Springerplus. 2015;4:296. DOI: 10.1186/s40064-015-1070-z\n'},{id:"B125",body:'\nKhan AL, Hamayun M, Kim YH, Kang SM, Lee IJ. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of glycine max L. Plant Physiology and Biochemistry. 2011;49:852-862\n'},{id:"B126",body:'\nBae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, et al. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany. 2009;60:3279-3295\n'},{id:"B127",body:'\nAhmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, et al. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science. 2015;6:868\n'},{id:"B128",body:'\nLi B, Li Q , Xiong L, Kronzucker HJ, Krämer U, Shi W. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress. Plant Physiology. 2012;160:2040-2051\n'},{id:"B129",body:'\nRasool S, Ahmad A, Siddiqi TO, Ahmad P. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum. 2013;35:1039-1050\n'},{id:"B130",body:'\nKanchiswamy CN, Malnoy M, Maffei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science. 2015;6:151. DOI: 10.3389/fpls.2015.00151\n'},{id:"B131",body:'\nFarag MA, Ryu CM, Sumner LW, Pare PW. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry. 2006;67:2262-2268\n'},{id:"B132",body:'\nNaznin HA, Kimura M, Miyazawa M, Hyakumachi M. Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes and Environments. 2013;28(1):42-49\n'},{id:"B133",body:'\nMeera MS, Shivanna MB, Kageyama K, Hyakumachi M. Plant growth promoting fungi from zoysiagrass rhizosphere as potential inducers of systemic resistance in cucumbers. Phytopathology. 1994;84:1399-1406\n'},{id:"B134",body:'\nRovira AD, Newman EI, Bowen HJ, Campbell R. Quantitative assessment of the rhizoplane microflora by direct microscopy. Soil Biology and Biochemistry. 1974;6:211-216\n'},{id:"B135",body:'\nBowen GD. Microbial dynamics in the rhizosphere: Possible strategies in managing rhizosphere populations. In: Keister DL, Cregan PB, editors. The Rhizosphere and Plant Growth. Dordrecht: Kluwer; 1991. pp. 25-32\n'},{id:"B136",body:'\nChacón MR, Rodríguez-Galán O, Benítez T, Sousa S, et al. Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. International Microbiology. 2007;10(1):19-27\n'},{id:"B137",body:'\nDewan MM, Sivasithamparam K. Effect of colonization by a sterile fungus on viability of seed and growth and anatomy of roots. Mycological Research. 1990;94:553-557\n'},{id:"B138",body:'\nSingh PC, Nautiyal CS. A novel method to prepare concentrated conidial biomass formulation of Trichoderma harzianum for seed application. Journal of Applied Microbiology. 2012;113:1142-1450. DOI: 10.1111/j.1365-2672.2012.05426.x\n'},{id:"B139",body:'\nDoni F, Isahak A, Zain CRCM, Ariffin SM, Mohamad WNW, Yusoff WMW. Formulation of Trichoderma sp. SL2 inoculants using different carriers for soil treatment in rice seedling growth. Springerplus. 2014;3:532. DOI: 10.1186/2193-1801-3-532\n'},{id:"B140",body:'\nOancea F, Raut J, Şesan TE, Cornea PC. Dry flowable formulation of biostimulants Trichoderma strains. Agriculture and Agricultural Science Procedia. 2016;10:494-502\n'},{id:"B141",body:'\nZhang FG, Meng XH, Feng CL, Ran W, Yu GH, Zhang YJ, et al. Hydrolytic amino acids employed as a novel organic nitrogen source for the preparation of PGPF-containing bio-organic fertilizer for plant growth promotion and characterization of substance transformation during BOF production. PLOS One. 2016;11:e0149447\n'},{id:"B142",body:'\nZhang FG, Huo YQ , Cobb AB, Luo GW, Zhou JQ , Yang GW, et al. Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities, and improved grassland biomass. Frontiers in Microbiology. 2018;9:848\n'},{id:"B143",body:'\nSarma MVRK, Kumar V, Saharan K, Srivastava R, Sharma AK, Prakash A, et al. Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. Journal of Applied Microbiology. 2011;111:456-466\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Md. Motaher Hossain",address:"hossainmm@bsmrau.edu.bd",affiliation:'
Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
College of Agricultural Sciences, International University of Business Agriculture and Technology, Bangladesh
'}],corrections:null},book:{id:"10134",type:"book",title:"Organic Agriculture",subtitle:null,fullTitle:"Organic Agriculture",slug:"organic-agriculture",publishedDate:"December 2nd 2020",bookSignature:"Shaon Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/10134.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-669-0",printIsbn:"978-1-78984-668-3",pdfIsbn:"978-1-78984-720-8",isAvailableForWebshopOrdering:!0,editors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",middleName:null,surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"41744",title:"Prof.",name:"yukihiro",middleName:null,surname:"MASUDA",email:"yukihiro@toki.waseda.jp",fullName:"yukihiro MASUDA",slug:"yukihiro-masuda",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"16927",title:'Enhancement of the Resilience of Building Continuity -Development of "Independently Secured and Highly Protected Business District"',slug:"enhancement-of-the-resilience-of-building-continuity-development-of-independently-secured-and-highly",abstract:null,signatures:"Yukihiro Masuda",authors:[{id:"41744",title:"Prof.",name:"yukihiro",surname:"MASUDA",fullName:"yukihiro MASUDA",slug:"yukihiro-masuda",email:"yukihiro@toki.waseda.jp"}],book:{id:"471",title:"The Economic Geography of Globalization",slug:"the-economic-geography-of-globalization",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"27535",title:"Dr.",name:"Claudia",surname:"Ogrean",slug:"claudia-ogrean",fullName:"Claudia Ogrean",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"27688",title:"Dr.",name:"Tony",surname:"Carter",slug:"tony-carter",fullName:"Tony Carter",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"30981",title:"Prof.",name:"Mohamed",surname:"Amal",slug:"mohamed-amal",fullName:"Mohamed Amal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"43429",title:"Dr.",name:"Sandra",surname:"Šokčević",slug:"sandra-sokcevic",fullName:"Sandra Šokčević",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"45667",title:"Dr.",name:"Mihaela",surname:"Herciu",slug:"mihaela-herciu",fullName:"Mihaela Herciu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Associate Professor, Ph.D in Management (since 2003); place of employ: “Lucian Blaga†University of Sibiu, The Faculty of Economic Sciences (since 1999); member of the organizing committee & editorial board for the International Economic Conference organized annually by the Faculty of Economic Sciences in Sibiu, Romania; participation with scientific paper at more than 30 conferences – inside the country and abroad; approx. 25 articles published into national and international economic journals; member of the team in 12 national and international research grants; author of the books Financial Management of the Firm of the Future, Comparative Management; current research interests: competitiveness, knowledge society, management, comparative management, economic-financial analyze; member of the American Management Association, the European Academy of Management, the Academy of Management and the American Finance Association.",institutionString:null,institution:{name:"Lucian Blaga University of Sibiu",institutionURL:null,country:{name:"Romania"}}},{id:"48819",title:"Prof.",name:"Cali",surname:"Nuur",slug:"cali-nuur",fullName:"Cali Nuur",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"89888",title:"Prof.",name:"Damir",surname:"Štokovac",slug:"damir-stokovac",fullName:"Damir Štokovac",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"95422",title:"Dr.",name:"Demissew",surname:"Ejara",slug:"demissew-ejara",fullName:"Demissew Ejara",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of New Haven",institutionURL:null,country:{name:"United States of America"}}},{id:"95424",title:"Dr.",name:"Christina",surname:"Reis",slug:"christina-reis",fullName:"Christina Reis",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of New Haven",institutionURL:null,country:{name:"United States of America"}}},{id:"95425",title:"MSc.",name:"Walter",surname:"Carter",slug:"walter-carter",fullName:"Walter Carter",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of New Haven",institutionURL:null,country:{name:"United States of America"}}}]},generic:{page:{slug:"why-publish-with-intechopen",title:"Why publish with IntechOpen?",intro:"
IntechOpen offers several publishing options to researchers and research groups looking for a professional partner with a wide, international reach. Our publishing options cover the breadth of scientific publications and ensure an appropriate outlet for your research.
",metaTitle:"Why publish with IntechOpen?",metaDescription:"IntechOpen offers publishing options to researchers and research groups looking for a professional partner with a wide, international reach. Our publishing options cover the breadth of scientific publications and ensure an appropriate outlet for your research.",metaKeywords:null,canonicalURL:"/page/why-publish-with-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"
What makes IntechOpen such a good choice?
\\n\\n
\\n\\t
Proven world leader in Open Access book publishing with over 10 years experience
\\n\\t
Over 5,700 OA books published
\\n\\t
Most competitive prices in the market
\\n\\t
Compliant with OA funding requirements
\\n\\t
Optimized process enables publication in 8–12 months
\\n\\t
Personal support each step of the way
\\n\\t
+184,650 citations in Web of Science databases
\\n\\t
Strongest OA platform with over 180 million downloads
Proven world leader in Open Access book publishing with over 10 years experience
\n\t
Over 5,700 OA books published
\n\t
Most competitive prices in the market
\n\t
Compliant with OA funding requirements
\n\t
Optimized process enables publication in 8–12 months
\n\t
Personal support each step of the way
\n\t
+184,650 citations in Web of Science databases
\n\t
Strongest OA platform with over 180 million downloads
\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2460},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17721}],offset:12,limit:12,total:134178},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12113",title:"Tendons - Trauma, Inflammation, Degeneration, and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"2387a4e0d2a76883b16dcccd452281ab",slug:null,bookSignature:"Dr. Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/12113.jpg",editedByType:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:63},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:112},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:404},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"580",title:"Information System",slug:"information-and-knowledge-engineering-information-system",parent:{id:"92",title:"Information and Knowledge Engineering",slug:"information-and-knowledge-engineering"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:127,numberOfWosCitations:64,numberOfCrossrefCitations:51,numberOfDimensionsCitations:94,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"580",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9885",title:"Information Systems",subtitle:"Intelligent Information Processing Systems, Natural Language Processing, Affective Computing and Artificial Intelligence, and an Attempt to Build a Conversational Nursing Robot",isOpenForSubmission:!1,hash:"793751ee53f02ca84c8fe298a66208c9",slug:"information-systems-intelligent-information-processing-systems-natural-language-processing-affective-computing-and-artificial-intelligence-and-an-attempt-to-build-a-conversational-nursing-robot",bookSignature:"Kazuyuki Matsumoto",coverURL:"https://cdn.intechopen.com/books/images_new/9885.jpg",editedByType:"Edited by",editors:[{id:"195756",title:"Dr.",name:"Kazuyuki",middleName:null,surname:"Matsumoto",slug:"kazuyuki-matsumoto",fullName:"Kazuyuki Matsumoto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2203",title:"Data Acquisition Applications",subtitle:null,isOpenForSubmission:!1,hash:"370ab36f6990188147fc3c2c758a9307",slug:"data-acquisition-applications",bookSignature:"Zdravko Karakehayov",coverURL:"https://cdn.intechopen.com/books/images_new/2203.jpg",editedByType:"Edited by",editors:[{id:"140529",title:"Prof.",name:"Zdravko",middleName:null,surname:"Karakehayov",slug:"zdravko-karakehayov",fullName:"Zdravko Karakehayov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2506",title:"Modern Information Systems",subtitle:null,isOpenForSubmission:!1,hash:"3e0a4cfa7da4c373806375837fac00f7",slug:"modern-information-systems",bookSignature:"Christos Kalloniatis",coverURL:"https://cdn.intechopen.com/books/images_new/2506.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1923",title:"Security Enhanced Applications for Information Systems",subtitle:null,isOpenForSubmission:!1,hash:"f65768a1b9a07b41f17747d9c77def66",slug:"security-enhanced-applications-for-information-systems",bookSignature:"Christos Kalloniatis",coverURL:"https://cdn.intechopen.com/books/images_new/1923.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2505",title:"Innovative Information Systems Modelling Techniques",subtitle:null,isOpenForSubmission:!1,hash:"6a88e4e4e63736e2bc6c4ba010a27883",slug:"innovative-information-systems-modelling-techniques",bookSignature:"Christos Kalloniatis",coverURL:"https://cdn.intechopen.com/books/images_new/2505.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"37320",doi:"10.5772/38212",title:"Health Care Information Systems: Architectural Models and Governance",slug:"health-care-information-systems-architectural-models-and-governance",totalDownloads:5494,totalCrossrefCites:10,totalDimensionsCites:18,abstract:null,book:{id:"2505",slug:"innovative-information-systems-modelling-techniques",title:"Innovative Information Systems Modelling Techniques",fullTitle:"Innovative Information Systems Modelling Techniques"},signatures:"Paolo Locatelli, Nicola Restifo, Luca Gastaldi and Mariano Corso",authors:[{id:"102101",title:"Dr.",name:"Luca",middleName:null,surname:"Gastaldi",slug:"luca-gastaldi",fullName:"Luca Gastaldi"},{id:"116049",title:"Dr.",name:"Nicola",middleName:null,surname:"Restifo",slug:"nicola-restifo",fullName:"Nicola Restifo"},{id:"116050",title:"Dr.",name:"Paolo",middleName:null,surname:"Locatelli",slug:"paolo-locatelli",fullName:"Paolo Locatelli"},{id:"116052",title:"Prof.",name:"Mariano",middleName:null,surname:"Corso",slug:"mariano-corso",fullName:"Mariano Corso"}]},{id:"38452",doi:"10.5772/48535",title:"Making Use of the Landsat 7 SLC-off ETM+ Image Through Different Recovering Approaches",slug:"making-use-of-the-landsat-7-slc-off-etm-image-through-different-recovering-approaches",totalDownloads:3844,totalCrossrefCites:11,totalDimensionsCites:17,abstract:null,book:{id:"2203",slug:"data-acquisition-applications",title:"Data Acquisition Applications",fullTitle:"Data Acquisition Applications"},signatures:"Feng Chen, Xiaofeng Zhao and Hong Ye",authors:[{id:"145476",title:"Mr.",name:"Feng",middleName:null,surname:"Chen",slug:"feng-chen",fullName:"Feng Chen"}]},{id:"37323",doi:"10.5772/38190",title:"World Modeling for Autonomous Systems",slug:"world-modelling-for-autonomous-systems",totalDownloads:2771,totalCrossrefCites:9,totalDimensionsCites:12,abstract:null,book:{id:"2505",slug:"innovative-information-systems-modelling-techniques",title:"Innovative Information Systems Modelling Techniques",fullTitle:"Innovative Information Systems Modelling Techniques"},signatures:"Andrey Belkin, Achim Kuwertz, Yvonne Fischer and Jürgen Beyerer",authors:[{id:"67336",title:"Prof.",name:"Jürgen",middleName:null,surname:"Beyerer",slug:"jurgen-beyerer",fullName:"Jürgen Beyerer"},{id:"115937",title:"MSc.",name:"Andrey",middleName:null,surname:"Belkin",slug:"andrey-belkin",fullName:"Andrey Belkin"},{id:"118881",title:"MSc.",name:"Achim",middleName:null,surname:"Kuwertz",slug:"achim-kuwertz",fullName:"Achim Kuwertz"},{id:"119041",title:"Ms.",name:"Yvonne",middleName:null,surname:"Fischer",slug:"yvonne-fischer",fullName:"Yvonne Fischer"}]},{id:"37308",doi:"10.5772/37429",title:"Development of an e-Learning Recommender System Using Discrete Choice Models and Bayesian Theory: A Pilot Case in the Shipping Industry",slug:"development-of-an-e-learning-recommender-system-using-discrete-choice-models-and-bayesian-theory",totalDownloads:2751,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"1923",slug:"security-enhanced-applications-for-information-systems",title:"Security Enhanced Applications for Information Systems",fullTitle:"Security Enhanced Applications for Information Systems"},signatures:"Amalia Polydoropoulou and Maria A. Lambrou",authors:[{id:"6714",title:"Dr.",name:"Maria",middleName:null,surname:"Lambrou",slug:"maria-lambrou",fullName:"Maria Lambrou"},{id:"112733",title:"Prof.",name:"Amalia",middleName:null,surname:"Polydoropoulou",slug:"amalia-polydoropoulou",fullName:"Amalia Polydoropoulou"}]},{id:"38454",doi:"10.5772/49959",title:"Subsampling Receivers with Applications to Software Defined Radio Systems",slug:"subsampling-receivers-with-applications-to-software-defined-radio-systems",totalDownloads:5239,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"2203",slug:"data-acquisition-applications",title:"Data Acquisition Applications",fullTitle:"Data Acquisition Applications"},signatures:"José R. García Oya, Andrew Kwan, Fernando Muñoz Chavero, Fadhel M. Ghannouchi, Mohamed Helaoui, Fernando Márquez Lasso, Enrique López-Morillo and Antonio Torralba Silgado",authors:[{id:"116822",title:"MSc.",name:"Enrique",middleName:null,surname:"Lopez-Morillo",slug:"enrique-lopez-morillo",fullName:"Enrique Lopez-Morillo"},{id:"146189",title:"Mr.",name:"Jose R.",middleName:null,surname:"Garcia Oya",slug:"jose-r.-garcia-oya",fullName:"Jose R. Garcia Oya"},{id:"148796",title:"Dr.",name:"Fernando",middleName:null,surname:"Muñoz Chavero",slug:"fernando-munoz-chavero",fullName:"Fernando Muñoz Chavero"},{id:"148797",title:"Mr.",name:"Fernando",middleName:null,surname:"Márquez Lasso",slug:"fernando-marquez-lasso",fullName:"Fernando Márquez Lasso"},{id:"156557",title:"MSc.",name:"Andrew",middleName:null,surname:"Kwan",slug:"andrew-kwan",fullName:"Andrew Kwan"},{id:"156558",title:"Dr.",name:"Fadhel M.",middleName:null,surname:"Ghannouchi",slug:"fadhel-m.-ghannouchi",fullName:"Fadhel M. Ghannouchi"},{id:"156561",title:"Dr.",name:"Antonio",middleName:null,surname:"Torralba Silgado",slug:"antonio-torralba-silgado",fullName:"Antonio Torralba Silgado"},{id:"160570",title:"Dr.",name:"Mohamed",middleName:null,surname:"Helaoui",slug:"mohamed-helaoui",fullName:"Mohamed Helaoui"}]}],mostDownloadedChaptersLast30Days:[{id:"37307",title:"Cyber Security",slug:"cybersecurity-in-the-real-world-implications-and-applications",totalDownloads:4005,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1923",slug:"security-enhanced-applications-for-information-systems",title:"Security Enhanced Applications for Information Systems",fullTitle:"Security Enhanced Applications for Information Systems"},signatures:"Barry Lunt, Dale Rowe and Joseph Ekstrom",authors:[{id:"110690",title:"Prof.",name:"Barry",middleName:null,surname:"Lunt",slug:"barry-lunt",fullName:"Barry Lunt"},{id:"124554",title:"Prof.",name:"Joseph",middleName:null,surname:"Ekstrom",slug:"joseph-ekstrom",fullName:"Joseph Ekstrom"},{id:"124555",title:"Prof.",name:"Dale",middleName:null,surname:"Rowe",slug:"dale-rowe",fullName:"Dale Rowe"}]},{id:"37322",title:"Mobile System Applied to Species Distribution Modelling",slug:"mobile-system-applied-to-species-distribution-modelling",totalDownloads:2019,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2505",slug:"innovative-information-systems-modelling-techniques",title:"Innovative Information Systems Modelling Techniques",fullTitle:"Innovative Information Systems Modelling Techniques"},signatures:"Álvaro Silva, Pedro Corrêa and Carlos Valêncio",authors:[{id:"116016",title:"MSc.",name:"Alvaro",middleName:"Fagner Rodrigues Da",surname:"Silva",slug:"alvaro-silva",fullName:"Alvaro Silva"},{id:"116660",title:"Dr.",name:"Pedro Luiz",middleName:null,surname:"Pizzigatti Correa",slug:"pedro-luiz-pizzigatti-correa",fullName:"Pedro Luiz Pizzigatti Correa"},{id:"140676",title:"Dr.",name:"Carlos Roberto",middleName:null,surname:"Valêncio",slug:"carlos-roberto-valencio",fullName:"Carlos Roberto Valêncio"}]},{id:"38450",title:"Microwave Antenna Performance Metrics",slug:"microwave-antenna-performance-metrics",totalDownloads:15089,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2203",slug:"data-acquisition-applications",title:"Data Acquisition Applications",fullTitle:"Data Acquisition Applications"},signatures:"Paul Osaretin Otasowie",authors:[{id:"145221",title:"Dr.",name:"Paul",middleName:"Osaretin",surname:"Otasowie",slug:"paul-otasowie",fullName:"Paul Otasowie"}]},{id:"37321",title:"Globalization and Socio-Technical Aspects of Information Systems Development",slug:"globalization-and-social-technical-aspects-of-information-systems-development",totalDownloads:5035,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"2505",slug:"innovative-information-systems-modelling-techniques",title:"Innovative Information Systems Modelling Techniques",fullTitle:"Innovative Information Systems Modelling Techniques"},signatures:"Gislaine Camila L. Leal, Elisa H. M. Huzita and Tania Fatima Calvi Tait",authors:[{id:"110176",title:"MSc.",name:"Gislaine Camila",middleName:"Lapasini",surname:"Leal",slug:"gislaine-camila-leal",fullName:"Gislaine Camila Leal"},{id:"116429",title:"Dr.",name:"Elisa Hatsue",middleName:null,surname:"Moriya Huzita",slug:"elisa-hatsue-moriya-huzita",fullName:"Elisa Hatsue Moriya Huzita"},{id:"116430",title:"Dr.",name:"Tania Fatima",middleName:null,surname:"Calvi Tait",slug:"tania-fatima-calvi-tait",fullName:"Tania Fatima Calvi Tait"}]},{id:"37315",title:"Developing a Theoretical Framework for the Adoption of Biometrics in M-Government Applications Using Grounded Theory",slug:"developing-a-theoretical-framework-for-the-adoption-of-biometrics-in-m-government-applications-u",totalDownloads:4793,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"1923",slug:"security-enhanced-applications-for-information-systems",title:"Security Enhanced Applications for Information Systems",fullTitle:"Security Enhanced Applications for Information Systems"},signatures:"Thamer Alhussain and Steve Drew",authors:[{id:"110265",title:"Dr.",name:"Thamer",middleName:null,surname:"Alhussain",slug:"thamer-alhussain",fullName:"Thamer Alhussain"},{id:"113395",title:"Dr.",name:"Steve",middleName:null,surname:"Drew",slug:"steve-drew",fullName:"Steve Drew"}]}],onlineFirstChaptersFilter:{topicId:"580",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218",scope:"
\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"June 30th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:8,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"1",title:"Oral Health",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",isOpenForSubmission:!0,annualVolume:11397,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"2",title:"Prosthodontics and Implant Dentistry",coverUrl:"https://cdn.intechopen.com/series_topics/covers/2.jpg",isOpenForSubmission:!0,annualVolume:11398,editor:{id:"179568",title:"Associate Prof.",name:"Wen Lin",middleName:null,surname:"Chai",slug:"wen-lin-chai",fullName:"Wen Lin Chai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHGAQA4/Profile_Picture_2022-05-23T14:31:12.png",biography:"Professor Dr. Chai Wen Lin is currently a lecturer at the Department of Restorative Dentistry, Faculty of Dentistry of the University of Malaya. She obtained a Master of Dental Science in 2006 and a Ph.D. in 2011. Her Ph.D. research work on the soft tissue-implant interface at the University of Sheffield has yielded several important publications in the key implant journals. She was awarded an Excellent Exchange Award by the University of Sheffield which gave her the opportunity to work at the famous Faculty of Dentistry of the University of Gothenburg, Sweden, under the tutelage of Prof. Peter Thomsen. In 2016, she was appointed as a visiting scholar at UCLA, USA, with attachment in Hospital Dentistry, and involvement in research work related to zirconia implant. In 2016, her contribution to dentistry was recognized by the Royal College of Surgeon of Edinburgh with her being awarded a Fellowship in Dental Surgery. She has authored numerous papers published both in local and international journals. She was the Editor of the Malaysian Dental Journal for several years. Her main research interests are implant-soft tissue interface, zirconia implant, photofunctionalization, 3D-oral mucosal model and pulpal regeneration.",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},editorTwo:{id:"479686",title:"Dr.",name:"Ghee Seong",middleName:null,surname:"Lim",slug:"ghee-seong-lim",fullName:"Ghee Seong Lim",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003ScjLZQAZ/Profile_Picture_2022-06-08T14:17:06.png",biography:"Assoc. Prof Dr. Lim Ghee Seong graduated with a Bachelor of Dental Surgery from University of Malaya, Kuala Lumpur in 2008. He then pursued his Master in Clinical Dentistry, specializing in Restorative Dentistry at Newcastle University, Newcastle, UK, where he graduated with distinction. He has also been awarded the International Training Fellowship (Restorative Dentistry) from the Royal College of Surgeons. His passion for teaching then led him to join the faculty of dentistry at University Malaya and he has since became a valuable lecturer and clinical specialist in the Department of Restorative Dentistry. He is currently the removable prosthodontic undergraduate year 3 coordinator, head of the undergraduate module on occlusion and a member of the multidisciplinary team for the TMD clinic. He has previous membership in the British Society for Restorative Dentistry, the Malaysian Association of Aesthetic Dentistry and he is currently a lifetime member of the Malaysian Association for Prosthodontics. Currently, he is also the examiner for the Restorative Specialty Membership Examinations, Royal College of Surgeons, England. He has authored and co-authored handful of both local and international journal articles. His main interest is in prosthodontics, dental material, TMD and regenerative dentistry.",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:3,paginationItems:[{id:"82362",title:"Studies on the Short-Term Effects of the Cease of Pesticides Use on Vineyard Microbiome",doi:"10.5772/intechopen.105706",signatures:"Simona Ghiță, Mihaela Hnatiuc, Aurora Ranca, Victoria Artem and Mădălina-Andreea Ciocan",slug:"studies-on-the-short-term-effects-of-the-cease-of-pesticides-use-on-vineyard-microbiome",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82297",title:"The Climate Change-Agriculture Nexus in Drylands of Ethiopia",doi:"10.5772/intechopen.103905",signatures:"Zenebe Mekonnen",slug:"the-climate-change-agriculture-nexus-in-drylands-of-ethiopia",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"81999",title:"Climate Change, Rural Livelihoods, and Human Well-Being: Experiences from Kenya",doi:"10.5772/intechopen.104965",signatures:"André J. Pelser and Rujeko Samanthia Chimukuche",slug:"climate-change-rural-livelihoods-and-human-well-being-experiences-from-kenya",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",biography:"Prof. Mohamed Nageeb Rashed is Professor of Analytical and Environmental Chemistry and former vice-dean for environmental affairs, Faculty of Science, Aswan University, Egypt. He received his Ph.D. in Environmental Analytical Chemistry from Assiut University, Egypt, in 1989. His research interest is in analytical and environmental chemistry with special emphasis on: (1) monitoring and assessing biological trace elements and toxic metals in human blood, urine, water, crops, vegetables, and medicinal plants; (2) relationships between environmental heavy metals and human diseases; (3) uses of biological indicators for monitoring water pollution; (4) environmental chemistry of lakes, rivers, and well water; (5) water and wastewater treatment by adsorption and photocatalysis techniques; (6) soil and water pollution monitoring, control, and treatment; and (7) advanced oxidation treatment. Prof. Rashed has supervised several MSc and Ph.D. theses in the field of analytical and environmental chemistry. He served as an examiner for several Ph.D. theses in analytical chemistry in India, Kazakhstan, and Botswana. He has published about ninety scientific papers in peer-reviewed international journals and several papers in national and international conferences. He participated as an invited speaker at thirty international conferences. Prof. Rashed is the editor-in-chief and an editorial board member for several international journals in the fields of chemistry and environment. He is a member of several national and international societies. He received the Egyptian State Award for Environmental Research in 2001 and the Aswan University Merit Award for Basic Science in 2020. Prof. Rashed was recognized in Stanford University’s list of the World’s Top 2% Scientists in 2020 and 2021.",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11566",title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",hash:"75ef2eae3087ec0c7f2076cc64e2cfc3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:229,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",country:{name:"Spain"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}}]}},subseries:{item:{id:"6",type:"subseries",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11402,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",slug:"lynn-zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",slug:"samuel-ikwaras-okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]},onlineFirstChapters:{paginationCount:15,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:28,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:198,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:219,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:199,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"74615",title:"Diet-Epigenome Interactions: Epi-Drugs Modulating the Epigenetic Machinery During Cancer Prevention",doi:"10.5772/intechopen.95374",signatures:"Fadime Eryılmaz Pehlivan",slug:"diet-epigenome-interactions-epi-drugs-modulating-the-epigenetic-machinery-during-cancer-prevention",totalDownloads:379,totalCrossrefCites:0,totalDimensionsCites:1,authors:[{name:"Fadime",surname:"Eryılmaz Pehlivan"}],book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{title:"Infectious Diseases",id:"6"},selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/63141",hash:"",query:{},params:{id:"63141"},fullPath:"/chapters/63141",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()