\r\n\tFrom practice to a mathematical and technological application, scheduling has become another form of art: an algorithmic art, declined in as many OS and hardware constraints, from embedded systems onboard an aircraft or a spacecraft to databases in all financial and Internet servers.
\r\n\tThey have become ubiquitous so that a large part of our civilisational development is supported by their reliability, redundancy, and optimisation capacity. Like all of our civilisational assets, they are benefiting from scientific breakthrough in computational sciences such as evolutionary algorithms, Artificial Intelligence, and quantum computing. If not by using it, by being in need of adapting to the next generation of computing. Space development is also bringing new challenges, especially in redundancy and reliability.
Automobiles use onboard fuels (energy carriers) in order to transport goods and people. The conversion of onboard energy to propulsion energy is performed by the power train. Some parts of this energy may be stored as conservative energy (kinetic or potential energy) in vehicle. Unfortunately, all of these conversion processes cause substantial energy losses and hence high fuel consumption. Nowadays, in order to obtain propulsion energy, most of the vehicles are based on the combustion of hydrocarbon fuels. Theoretically, the complete combustion of chemical fuel generates only heat, which is converted into mechanical energy, and carbon dioxide (CO2) and water (H2O), which are released into the atmosphere. These combustion products do not harm the environment [1]. However, actually combustion of hydrocarbon fuel is never complete, resulting also in a certain amount of nitrogen oxides (NOx) and unburned hydrocarbons, all of these impacting people’s health and the environment. Furthermore, even if CO2 is assimilated by plants and captured by sees and oceans, these natural assimilation processes are saturated, which cause an accumulation of it in the atmosphere. These gases block re-reflected infrared radiation of the Earth, which comes from the Sun, and in this way keep the energy in the atmosphere (greenhouse effect). This energy increases the global temperature and causes climate change. Therefore, over the past decades, research and development activities related to road transport have highlighted the need to develop less polluting and safer transport. Because pollutant emissions and fuel consumption are directly proportional, a cleaner vehicle means a fuel-efficient vehicle. Different methods and tools, which analyze and assess the use of resources and impacts on the environment, are available. These are referred to as environmental system analysis tools. They can be categorized according to their object in focus (policies, plans, products, and functions or substances) and their studied impacts (natural resources and/or environmental impacts) [2]. Energy analysis, one of the methods suited to analyze the use of natural resources, is focused on energy or material flows (with a focus on input flows) in energy or physical units. Another very useful method is represented by the Life Cycle Assessment (LCA) which is based on an environmental assessment and is able to evaluate the impact of materials/products on the environments. LCA usually operates on the energy usage, environmental emissions (kg CO2/kg of material), and the amount of materials used to make the final product. An LCA analyzes the potential environmental impacts of a product or a service along its entire life cycle. The life cycle includes all of phases (from cradle to grave): the raw material extraction, the production, use and any end-of-life treatment including recycling (ISO 14040:2006). For a passenger car, analyzed in use phase, a comprehensive analysis of the energy consumption involves at least three energy conversion steps: well-to-tank (WTT), tank-to-vehicle (TTV), and vehicle-to-miles (VTM) [3]. In a first step, WTT, the primary energy carriers (chemical energy in fossil hydrocarbons, solar radiation used to produce biomass or electric energy, nuclear energy, etc.) are converted into an energy carrier that is suitable for onboard storage, that is, to a “fuel” (examples are gasoline, hydrogen, etc.). Then, in the second step—TTV—this “fuel” is converted by the propulsion system to mechanical energy. The third energy transformation—VTM—is determined by the vehicle parameters and the driving profile. In this step, the mechanical energy produced in the second conversion step is ultimately dissipated to thermal energy that is deposited to the ambient. So, there are essentially three possible approaches to reducing the total energy consumption of passenger cars: improve the WTT efficiency, the TTV efficiency, and the VTM efficiency.
The EV offers the definite advantages of zero roadside emissions and minimum overall emissions (taking into account the emissions due to electricity generation by PPs). Previously, the EV was mainly converted from the ICEV, simply replacing the internal combustion engine IC (diesel of gas) with an electric motor (comparable in terms of power capability), while all the other components are kept the same. It is noticed early that the converted EV has not been a good solution because of the drawback of heavy weight, loss of flexibility, and degradation of performance/reliability. Currently, the modern EV is a dedicated built system. This EV configuration is specifically designed and is based on the original body and frame configurations capable to satisfy the structural requirements which are unique to EVs. An EV or HEV car needs a body and a frame which has to take advantage of the greater flexibility of electric propulsion [1, 5]. Compared with the ICEV, the configuration of the EV is particularly extremely flexible and thus is more capable to sustain body and frame improvements. This flexibility is the effect of several factors which are unique to the EV. The first characteristic element is represented by the fact that the energy/power flow in the EV is done mainly by flexible electrical wires rather than by mechanical couplings or rigid shafts. Thus, the concept of
At this moment, EVs possess some noticeable advantages against conventional ICEVs, such as high-energy efficiency and zero environmental pollution. However, when we compare the actual performance, and we are focusing upon the operation range per battery charge, we can observe that the EV is far less competitive than ICEVs. This fact is generated to the lower energy content of the batteries versus the extremely generous energy content of gasoline. Typically, for a passenger car under urban driving with air-conditioning, an EV using present batteries technology (that are heavy and bulky) can travel about 120 km per charge, whereas an ICEV can offer about 500 km per refuel. With such a short driving range per charge, the EV will suffer from the problem of range anxiety. Furthermore, differing from the ICEV, the EV takes time for battery charging. The short-term solutions are hybrid electric vehicles (HEVs). HEVs provide an opportunity for synergism with both technologies in order to have the advantages of both ICEVs and EVs and to overcome their disadvantages. In this category of synergistic exploitation, HEVs use two power sources—a mechanical power source and an electric one. Compared with the EV, the HEV can offer a comparable driving range of the ICEV and use the existing refueling infrastructure of the ICEV, but sacrificing the merits of zero roadside emissions. Given the nature of both mechanical and electrical powers, two classic layouts were most commonly used for the HEVs—hybrid versions of both series and parallel connections. The first one is regarded as the most common and least complicated type of HEVs. Having a direct connection between the engine and the generator makes it easier to fully convert the output mechanical power into electricity via the generator. The resulted electricity is used for either feeding the electrical motor (which is used to put the driving wheels into motion) or keeping the battery charged, all controlled using the load condition. Increased flexibility is the clear advantage in locating the engine-generator set, mainly due to the electrical wiring. Furthermore, the EV propulsion system’s flexibility is also included in this configuration. The engine capability can easily be enhanced to a maximum because of its feature that allows it to operate within a precise range of speeds. The main difference between the series hybrid and the parallel hybrid is that the latter permits the driving wheels to be propelled by the parallel power delivered by both electric motor and the engine. The wheels have both the engine and motor connected to their driveline, so the propulsion power that is supplied is a result of the engine on its own, the electric motor on its own, or a combination of both. A smaller engine can operate under conditions yielding higher efficiency. Compared to an EV, for the same performance, the battery can also be downsized. Another advantage of a parallel hybrid is the single energy conversion for both electrical and mechanical. The parallel hybrid can respond to the demand for large, near instantaneous changes in either torque or power. In contrast, the series hybrid is slower. The fast response is an advantage in traffic. The detrimental effects of having two systems are partially mitigated by the fact that many components can be downsized. This way, a parallel hybrid, which can offer all hybrid features (electric launch, idle stop-start, regenerative braking, and downsized engine), enables an improvement of 30% in fuel economy. Series-only or parallel-only designs often do not meet performance requirements. As hybrid technology developed, the utility of series or parallel design became less significant. Mixed designs, rather than series or parallel designs, offer more flexibility [6]. The structure for series–parallel hybrid type blends features from both its components, but with an additional element compared to each of them taken on their own: a supplementary generator compared to the parallel hybrid and another mechanical connection compared to the series hybrid. Even if it holds the beneficial elements for both series and parallel hybrids, the combination between the two is more expensive and more complex. Pure electric and hybrid propulsion are additionally mixed into the complex hybrid. Among the disadvantages of parallel arrangement are the various added power train parts such as added clutches and transmissions that increase the weight. On the other hand, weight is a major impediment to performance. Thus, HEVs, by their very nature, are heavier than ICEVs. For HEVs, performance is measured by mileage and distance covered in electric-only mode. Another important factor is reduced emissions. The introduction of a gasoline HEV reduces CO2 emissions by 27% for a lightweight car (900 kg) and 20% for a heavy vehicle (2500 kg). On the other hand, the introduction of a diesel HEV reduces CO2 emissions by 24% for a lightweight car and 18% for a heavy vehicle. HEVs can help reduce CO2 in a greenhouse gas but are not a panacea [10]. Typically for a HEV, a three-shaft transmission is needed: two input shafts and one output shaft (a three-way gearbox). Because of the need to mechanically connect the engine with the drive shaft, choices for the location of the engine are limited. For the ICEV, the engine rpm and torque can be determined by starting at the tire patch on the road and working upstream to the motor through the power train. In contrast to an ICEV, the HEV needs complex energy management system (EMS) involving the HEV information (computers, software, algorithms, etc.) and HEV power (power transistors, cooling system, etc.). The control system is extremely complicated and represents a tremendous challenge. By means of engaging or disengaging different clutch arrangements, the EMS can alter the structure to provide more flexibility for transmission control. The challenge is how to reduce the system complexity that involves both an electric motor and an engine for propulsion and how to coordinate these two propulsion devices to achieve optimal efficiency operation. The nontrivial decision must be made concerning the split between the motor and the engine. Once the hybrid engine torque and power are specified, the gear ratios in the transmission, the three-way gearbox, and the throttle settings must be selected to put the engine on the minimum fuel consumption line. All parts must be engaged and disengaged smoothly without jerks, shudders, shakes, or clanks. Further, perceived mismatches between driver commands and HEV responses are forbidden. Different gear ratios allow matching vehicle and wheel speed with the desired engine speed. The number of speeds in an automatic transmission affects fuel economy favorably. Multiple speed automatic transmissions begin to rival the manual shift transmission in efficiency. Speed automatic transmissions with five speeds, six speeds, and even eight speeds are beginning to appear in new cars. The ICEV engine operates from idle rpm to the maximum design rpm that yields maximum power. On the other hand, for HEVs, engines are designed specifically, having a narrower rpm operating band. Hence, the number of gears in the transmission affects the width of the engine rpm band within which the engine can be operated. The six-speed transmission gives a narrow range of engine rpm. The continuously variable transmission (CVT) has an infinite number of gear ratios between two rpm limits. CVTs are popular for hybrids because of their ability to match input/output rpms. They offer seamless acceleration and fuel economy. Locating engine operation within the rpm band for best fuel economy is only part of the solution for the hybrid control. The motor assist almost always enables operation of engine for best fuel economy by ensuring balance torques in the transmission. The key technology of the full hybrid is the electric variable transmission (EVT) system, also called the electronic-continuously variable transmission (e-CVT) system. Since the introduction of the first EVT system in 1997 by Toyota Prius, there have been many derivatives developed by different automakers. The key is to employ a planetary gear (PG) for power splitting of the engine output power, one via the ring gear to the driveline shaft while one via the sun gear to the generator, then back-to-back converters, motor, and finally the driveline shaft. On the one hand, the most efficient path for engine torque is mechanically and directly to the drive wheels. On the other hand, because of the need to balance torques in the transmission, the path of a portion of the energy is engine-generator-motor- drive wheels, which is less efficient due to the numerous transfers of energy. However, through clever use of a PG set, several components are eliminated. The PG set replaces both the three-way gearbox and the CVT. Since there are no clutches, the system involves only one physical structure that can avoid mechanical disturbances due to mode changes. Hence, under varying road loads, the engine can always operate at its most energy-efficient or optimal operation line, resulting in a considerable reduction in fuel consumption. Yet, this PG-EVT system suffers from the reliance on planetary gearing, which involves transmission loss, gear noise, and regular lubrication. In addition, the overall system is relatively heavy and bulky. Thus, there are continual research and development to solve these shortcomings, such as replacing the mechanical planetary gear by a double-rotor machine or magnetic planetary gear. The double-rotor machine is a newly introduced gearless power-split device. However, it requires brushes and slip-rings, which are less reliable and incur need for a regular maintenance. In order to overcome these drawbacks, a new class of magnetic-geared (MG) electric variable transmission systems has been developed based on contactless magnetic gears, which can offer the definite advantage of brushless and pseudo-gearless power-split operation. By replacing the planetary gearing with magnetic gearing, the resulting MG-EVT system can inherit the distinct advantages of magnetic gearing, namely the high transmission efficiency, silent operation, and no maintenance, while avoiding the use of slip rings and carbon brushes [6]. Mechanical systems are increasingly integrated with actuators, sensors, and electronics. Besides the basic energy flow in the mechanical system, an information flow in the electronic system enables a variety of automatic functions. This leads to
The initial selection of electrical machines for hybrid (HEV) or electric (EV) drives includes a variety of different topologies. According to outcomes of literature survey, induction machines alongside synchronous machines take the major place in HEV or EV power trains. Both of these different families of machines topologies, in sense of operational principle, may be laid out in an axial or a radial plane. Out of radial synchronous machines, surface-mounted, inset and embedded-permanent magnet topologies, and switched reluctance machines are considered as competitive for traction purposes. Among the synchronous permanent magnet, axial-flux machines are subject of ongoing research and therefore recently the need to be included in selection process due to their advantageous axial length. The search for more efficient, cost-effective, and fault-tolerant layouts drives the design of electrical machinery up to its limits. The adoption of new materials and topologies for lightweight vehicle and power trains is extremely investment intensive. This chapter proposes to initiate the development and adoption of a new class of propulsion systems incorporating advanced electrical drives. By advanced electrical drive, it means the use of axial-flux dual mechanical output machines (the electrical machine has two independent rotors) with a single stator winding capable to control the mechanical output independently (Figure 1). Moreover, the requirements of many applications both in the industry and in the field of renewable energy conversion are so tough that traditional layouts are abandoned in favor of new topologies or new light is shed over older ones. We keep in mind the fact that the presence of the permanent magnet in the structure of the propulsion machine is rather a limitation which can be avoided. In order to build highly reliable propulsion systems, the use of a highly permanent magnet-depending generator/motor will limit the lifetime of the electrical machine and drive it.
Lightweight power train solution based on axial-flux dual rotor. (a) Hybrid vehicle and (b) electric vehicle.
Due to their high torque density capabilities, favorable aspect ratio, and the possibility to implement a large number of poles [14], axial-flux PM machines (AFPMMs) are used in many up-to-date applications. In fact, AFPMMs are applicable to fans, diesel and wind generation units, elevators, ships, and vehicles [15]. The first-harmonic approximation of the MMF field commonly used for design purposes is sometimes inadequate, for example, with trapezoidal back EMFs or with fractional slot windings. In fact, these windings operate with a high level of MMF harmonics, although they produce sinusoidal EMF. The technical literature offers many machine models, each one addressing specific issues. Some models provide a precise description of the MMF content [16], some focus on skewing [17], some provide guidelines for the use of finite element method (FEM) [18], and others account for saturation, iron losses, and temperature effects [19, 20]. Most models, however, are based on the reduction of the 3D problem to a 2D problem by the use of a cylindrical cutting plane at the main flux region [21, 22, 23, 24, 25]. Moreover, 2D and 3D FEM analyses fail to account for iron losses, especially in fractional winding machines with soft magnetic composite (SMC) core [25, 26]. Some models rely on FEM simulations [27]. The influence of rotor eddy currents on the efficiency of fractional slot AFPMM is significant, as emphasized in [23]. As a result of the fundamental intricacy of the magnetic circuit, extensive papers have been devoted to the design and modeling of AFPMM. Actually, the usual first-harmonic approximation of the MMF wave is not suitable for designing windings with a fractional slot number per pole. These windings present short links, compact poles, and sinusoidal EMF, even if the MMF wave has higher- and lower-order spatial harmonics. The harmonic content does not alter the quasi-sinusoidal terminal EMF, but it alters core loss and machine inductance. The professional data available show specific models addressing certain issues: provides a detailed MMF portrayal even if the analytic model cannot be held responsible for machine curvature and presumes that the coil pitch is detailed at the mean core radius, skewing-focused, aids in using the finite element method (FEM), and others are saturation, iron losses, and thermal effects accountant. However, a fair amount of models cut down the 3D issue to a 2D portrayal of a cylindrical cross section. Thermal models require a detailed analysis of rotor iron losses. Mention is based upon FEM simulations and emphasizes the impact of rotor eddy currents. The thermal transfer in axial-flux machine geometries was explained. Thermal simulations done on a machine with a massive iron rotor core showed that the rotor temperatures are above those measured over the windings surface. Actually, a considerable contribution to losses comes from the rotor and is basically due to the sub-harmonic and high-frequency parts of the stator MMF, including slotting. Recent investigations on the subject demonstrated that the sub-harmonics are, however, the main causes of rotor losses. Axial-flux induction machines are also possible. The Australian company Evans Electric has developed induction axial-flux machines for electric car as in wheel motors. These motors deliver 625 Nm and a peak power of 75 kW in an AFIM (axial-flux induction machines) configuration. This machine has the particularity that the stators cover only a part of the machine and not the complete disc. This enables a better air cooling of the machine but reduces the performance. In-wheel direct-drive motors represent the simplest and lightest method for propelling wheeled vehicles, but due to the reduced suspension performance of vehicles with increased wheel mass, the mass of in-wheel motors is a major concern. The axial-flux switched-reluctance motor (AFSRM) topology for in-wheel drive vehicle applications is presented. For a high-speed automotive generator, the axial-flux reversal machine was proposed. The high-speed AF FRM electrical machines offer great advantages of reduction in size per unit output and improved efficiency [25, 26, 27]. Small-scale generating sets of high power densities, previously used predominately in military and aircraft applications, are attracting growing attention for a wide variety of automotive applications: onboard charger, compact range extender, and turbine-based HEV. One salient feature of these sets is the use of a high-speed generator directly coupled to a small gas turbine, resulting in a significant reduction of weight and size. The path of the magnetic flux distribution in the air gap is in the axial direction. The rotor of the machine has no permanent magnet and field winding. The permanent magnets and armature windings are on the stator cores being very easy to be cooled. For this reason in the future, we start our investigation including the induction machine, the SRM machine, and the flux reversal machine. The building experience will be valuable for industry as well to the scientific community.
In an effort to simplify the design of the two configurations (series and parallel), publications in the latest years released by the authors’ team members, among which an international patent is present, treat a topic belonging to a complex scientific field of significant interest and certain actuality, being oriented toward identifying appropriate solutions regarding some proficient electromechanical converters and control structures of the drive systems based on axial machines excited by permanent magnets with a high number of poles, with applications in electric traction, operating in different modes: engine, generator, the brake, or combinations in between [28, 29, 30, 31, 32, 33, 34, 35]. It proposes
Principle of construction of the proposed solution: (a) parallel planetary mechanism; (b) series version [
It can be used and as a starter for the combustion engine startup. The second rotor, coupled with the differential mechanism and the drive wheels together with the associated stator winding, operates as a motor (in traction) as well as a generator (regenerative braking regime). Fuel economy, which is obtained for the regime of urban movement, can reach 33%. For pure electric vehicles, two solutions have been found for the use of this electric drive system (Figure 3) where R is rotors, S is the stator, Inv. is the inverter, TM is the mechanical transmission, TD is the differential transmission, and RM are wheels.
Using the synchronous machine with a stator and two axial rotors: (a) electric drive system for an electric vehicle with a four-wheel drive; (b) an electric drive system and a differential transmission at the same time.
An important advantage of using the synchronous axial air-gap single stator dual-rotor permanent magnet machine is representing the smaller length, this being able to be introduced in the clutch’s place between the motor and the gearbox. A 3D drawing of the machine is shown in Figure 4.
A three-dimensional exploded view of the proposed machine [
Traditionally, a three-phase three-leg bidirectional power converter is used in an EV. For this topology, the most appropriate power converter is the three-phase four-leg converter. The main feature of a three-phase inverter four-leg inverter, with an additional neutral leg, is its capability to handle load unbalance. In an automotive power system, the main goal of the three-phase four-leg inverter is to maintain the desired sinusoidal output voltage over all the ranges of loading conditions and transients [34]. Typically, the EV electric machine phases have a Y-connected winding. In order to maintain the phase voltage at the same level as in three-leg inverters, one may choose a Δ connection of the two windings. This means will result in the fact that the wire diameter will be smaller, the winding may be built easier and, for an existing machine, no rewinding is needed (Figure 5), and in Figure 6 for serial HEV.
Three-phase four-leg inverter [
The four-leg inverter for serial HEV.
Alternatively, a matrix converter solution can be used to operate the two rotating rotors (Figure 7). The matrix converter is an array of bidirectional switches that can directly connect any input phase to any output phase to create a variable voltage and frequency at the output. However, despite the benefit of very compact construction (no DC capacitors), this type of converter is not very easy to control, and for this reason, we only mention it as an alternative topology to be used.
Parallel HEV based on matrix converter topology.
The proposed configuration of a dual mechanical rotor with a single stator requires a single-phase AC current flow through the capacitors. This is due to the connection of the machine line voltages to the center point of the DC link. However, by connecting a second two-phase inverter and motor to the same DC bus, as shown in Figure 5, it is possible to compensate for the single-phase current in the DC link capacitors. A specially designed vector control is required for this reason. In this way, the compensation current influence on the torque is limited in the case of surface PM machines (with no saliency) [34]. The neutral voltage regulation with different current compensation is based on a simple PI controller since the motor divides the current compensation effort to both motor sides, rotor 1 and rotor 2 (in a direct ratio with their rated current) and at the same time avoids power oscillations (power pulsation occurs when two independent controllers are used). In Figure 8, the proposed vector control strategy is presented.
The proposed vector control strategy [
In order to evaluate the behavior of the combined solution dual-rotor single stator axial-flux PMSM machine powered by a three-phase four-leg converter, a digital simulation was performed. Using the equivalent model of the axial-flux permanent magnet machine, a Matlab Simulink model was implemented. The actual test conditions were represented by a step in the speed reference consisting of a value of 150 (rad/s) which is given for first electric machine M1 at the starting moment (t = 0) and a second step in the speed reference consisting of the value 230 (rad/s) which is given for machine M2 at t = 0.8 s (Figure 9a). In this scenario, the machine M1 reaches the reference speed in 0.175 s at a rated torque as load. In an EV configuration after the thermal engine starts, at t = 0.5 s, the machine M1 switches to a generator mode with 20% load at the same speed (Figure 9b). The speed overshooting during starting process and torque perturbation is around 2 [rad/s] (under 1.5%) which represents a very good feature of the proposed vector control. The second machine M2 is started at t = 0.8 s (Figure 9a), with 10% of the rated torque as load (Figure 9b), and it reaches the reference speed in 1.3 s. A small perturbation on machine M1 speed occurs during the machine M2 starting (Figure 9a, b). The machine M1 is starting with a two-time rated torque, and it runs at a rated torque between 0.2 and 0.5 s and then at 25% of the rated torque as generator. Small torque perturbation could be observed in machine M2 while starting. The machine M2 is starting with electromagnetically rated torque while the load torque is 10% (Figure 9c).
(a) Machine M1 and M2 reference and actual mechanical speeds; (b) achieved torque by machine M1; (c) achieved torque by machine M2 [
In terms of reliability, the presented topology combined with an adequate power converter allows to have the highest reliability in the single inverter configurations for EV.
The use of a very compact electrical drive will have the benefit of considerably reducing the weight and complexity of the power train. As it is known, the mechanical complexity of the power train is responsible for as much of 20% of the weight of the vehicle. The mechanical system of internal combustion engine (ICE) vehicle required a rather complex system of adaptation of speed and torque to the travel conditions. Our chapter is developed around the concept of a reduced number of mechanical elements included in the power train. This is possible by the close integration of electrical drive with the ICE and the use of the electrical differential concept. Special consideration is given to the power electronics required for the drive. Using a new approach, the number of converters is limited to one for each axle, each converter being capable to independently control the motion of the side wheels. Instead of a complex sophisticated gearbox, we propose to use a simplified gearbox or no gearbox in case of the electric differential, much of the function being fulfilled by the dual mechanical output electric machine controlled by a single power converter. A special control based on the dual vector control with operating on dual frequency will be investigated. In order to increase the ruggedness of the system, we investigate special power converters with a high degree of reliability (the four-leg converter and the matrix converter that makes no use of DC capacitors in the DC link), the multilevel inverter concept applied to EV which brings the benefit of a very reliable topology, a reduced harmonic pollution, and easy battery cell balancing. Although this seems to be an unnecessary complication to a rather proven technology, our chapter considers the fact that the existing power train solutions are not considering the problem of extra weight/complexity given by the electrification.
The demand of energy has been increased over the years as the sequence by increasing of the world population [1]. Fossil fuels are exhausting and the emission products of these fuels have been causing some damages to the environment. The scientists in the world are focusing on developing alternative methods of energy production [2]. Bioenergy is an energy obtained from any fuel that is originated from biomass, which includes recently living organisms and their metabolic by-products [3]. Biomass is defined as all animal and plant material on the Earth’s surface. Hence, collecting biomass, such as manure, crops, or trees, and employing it to produce electric power, heat, or motion is bioenergy [4, 5]. If not managed optimally, the large amounts of biomass, livestock’s manure, agro-industrial waste, and slurries produced today as well as the wet organic waste streams represent a constant pollution risk with a potential negative impact on the environment [6]. Biofuels are defined as fuels made from biomass resources, or their processing and conversion derivatives [3, 5]. Biofuels are eco-friendly and renewable resources of energy and hence have been receiving attention as an alternative energy source [2]. The organic part of nearly any form of biomass, involving industrial effluents, sewage sludge, and animal waste, can be decomposed via AD into carbon dioxide and methane mixture called as biogas and is considered an alternative green energy resource. Methane (CH4) is the most important component of biogas because it has the highest energy density among the biogas components. Therefore, the high CH4 content of biogas is desired [7, 8]. Biogas was first identified 600 years ago as originating from decomposing organic matter. More recently, in 1884, Louis Pasteur investigated it sourced from animal waste, suggesting it as an appropriate fuel for the lighting of street lamps. Biogas primarily consists of methane (CH4), in a range of 50–75%, and carbon dioxide (CO2), at 25–50%, with minor amounts of other compounds, such as hydrogen (0–1%), nitrogen (0–10%), which could originate from air saturated in the influent, vapor water (H2O) at concentrations of 5–10%, or higher at thermophilic temperatures, derived from medium evaporation, hydrogen sulfide (0–3%), which is produced from reduction of sulfate contained in some waste-streams, ammonia (NH3) originating from hydrolysis of proteinaceous materials or urine and oxygen (0–2%), which is entering the process from the influent substrate or leakages, hydrocarbons at concentrations of 0–200 mg/m−3, trace carbon monoxide (CO), and siloxanes at concentrations of 0–41 mg m−3, originating for example from effluents from cosmetic medical industries. The relative content of CH4 and CO2 in biogas is mainly dependent on the nature of the substrate and pH of the reactor [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Typical components and impurities influence the quantity and quality of the biogas. CO2 and N2 lowers the calorific value, CO2 also causes corrosion and damages to alkali fuel cells. H2S spoils catalysts, causes excessive corrosion and deterioration of lubrication oil, generates harmful environmental emissions, and corrodes the engines of biogas purification machinery. N2 and NH3 increase the anti-knock properties of engines and NH3 also damages fuel cells. Water vapor causes corrosion of equipment and piping system leading to damage instruments and plants. Siloxanes acts like an abrasive and damages engines. Dust blocks nozzle and fuel cell [18, 19, 20, 21, 22, 23].
\nBiogas is flammable, smokeless, hygienic, colorless, odorless, and has bad eggs odor whether not desulfurized. It has an energy content of 37.3 MJ/m3, explosion limits 6–12% biogas in air, ignition temperature 650–750°C, specific gravity 0.847–1.004, and calorific value 4740–7500 kcal/Nm3 [18, 24, 25, 26, 27, 28]. Biogas is an environmentally friendly, a renewable, clean, cheap, high quality, and versatile fuel which is generated in digesters filled with the feedstock. It is considered an alternative green energy resource. It can be utilized for different energy services like heat, combined heat and power, or a car fuel [7, 8, 29].
\nBiogas technology is used to convert the organic waste into energy. The use of energy and manure can lead to social economic benefits, green environment, and also contributes towards sustainable development [30, 31, 32]. Biogas technology is also a source of nutrient-rich organic fertilizer and the effluent slurry produced as a result of biogas technology is also helpful for algae growth, fish production, and seed germination [24]. Biogas technique is applied to small-scale and large-scale uses involving electric power production. It is a mixture of gases of which the composition relies on substrates and AD process conditions like retention time, temperature, and pH. Biogas is one of the main products of the AD of organic substances.
\nAnaerobic digestion (AD) is considered as a biological process that degrades organic substances by the actions of microbial communities in the absence of oxygen. In fact, AD can be divided into four stages, as seen in Figure 1, which are hydrolysis, acidogenesis and this stage is considered as acid-producing, acetogenesis and this phase is also called acetic acid-producing, and methanogenesis and this final step is known as methane-producing [8]. It is quite important to purify raw biogas and upgrade it to a high-quality fuel standard, in order to increase the calorific value and reduce undesired components, such as H2S and CO2, which are damaging the utilization systems. This process is well known as biogas cleaning and upgrading [33, 34]. Biogas could be simply upgraded into biomethane or renewable natural gas (RNG), which is similar to natural gas that produced from nonrenewable fuel sources. It contains about 90% or greater of methane. RNG could be replaced for natural gas and could be used as fuel for cars that can run on natural gas and to provide gas to natural gas grid. Upgrading of biogas to biomethane is considered as one of the technologies that has got a lot of attention in the bioenergy industry [8, 35]. Biogas could play a key role in the developing market for renewable energy and the utilization of biogas in the world is expected to be doubled in the next years, ranging from 14.5 GW in 2012 to 29.5 GW in 2022 [20, 36, 37].
\nThe steps involved in anaerobic digestion.
The term energy can be generally defined as the amount of force or power when applied can move one object from one position to another, or it defines the capacity of a system to do the work. The most important characteristic of energy is the possibility to convert one of its forms to another. Generally, the energy technologies are the man-made devices, equipment, and systems used to capture, convert, store, and transport energy from the energy resources [38]. Energy is an important demand in our daily life as a way of enhancing human development leading to productivity and economic growth. Energy is a key driver for agriculture, industries, and service sectors that influence economic development [39]. The term energy sources refer to the output forms of energy from the man-made energy technologies, while the energy resources refer to the naturally available forms of energy [38]. The resources of energy are divided into three groups: nuclear resources, renewable resources, and fossil fuels [40]. Renewable energy is called “renewable” because the sources harnessed to create the energy renew and replenish themselves constantly and within a reasonably short period of time (i.e., months or years, not centuries) [41]. Thus, renewable energy sources renew themselves naturally without being drained in the earth [39, 41]. Renewable energy techniques give a great opportunity for reduction of greenhouse gas emission and decreasing global warming via replacing traditional energy sources [6]. Various types of renewable resources such as hydrothermal, geothermal, solar, wind, ocean (tide and wave), heat from the Earth’s interior, and biogenic (biomass) energies are available and they give the possibility to produce consistent power [38]. These renewable energy sources are also often called alternative sources of energy [42]. Alternative or renewable energy sources include traditional renewable energy technologies (such as wind turbines) as well as innovative new technologies, such as hydrogen internal combustion engines, and hydrogen-based fuel cells [38].
\nThere is a direct relationship between renewable energy and sustainable development via its effect on human development and sustainable economic growth [43]. Renewable energy sources supply a lot of opportunities in reduction of environmental and health impacts, energy access, energy security, climate change mitigation, social, and economic development [6, 38, 44, 45, 46]. Renewable energy resources will play an important role in the world’s future [6, 40]. The technologies developed to exploit renewable energies are known as renewable energy technologies (RET) or clean technologies or green energy. Sustainable economic and industrial growth also requires safe and sustainable energy resources [47, 48, 49]. Maximizing resource (material and energy) recovery and minimizing environmental impacts such as contribution to the global warming are important objectives in the solid waste management (SWM) sector, which is considerably developed over the past century [50, 51].
\nThere are a variety of wastes that can be used as sources, or feedstocks, that are fed into the digester to produce biogas. Most of biodegradable organic compounds could be transformed into biogas by anaerobic digestion, and biodegradability is the characteristic indicating to what extent this is possible. Raw materials for producing biogas by anaerobic digestion are biomass feedstocks which include; municipal solid waste (MSW), industrial solid wastes and industrial wastewaters, food waste, livestock manure, sewage sludge, agricultural manures, catch crops, energy crops, and microalgae [12, 52, 53, 54, 55, 56, 57]. The largest resource is represented by animal manure and slurries from cattle and pig production units as well as from poultry, fish, fur, etc. [58, 59, 60, 61]. Manure of animal is considered as a main carbon source for biogas and involves pig manure, cattle, and poultry. The total solids present in animal manures consist of 90% moisture content and volatile solids. It performs as perfect substrate because of its great buffering capacity [62, 63, 64]. In most countries, sewage sludge and agricultural manures have been the principal sources for some time, complemented by slaughterhouse, dairy, and restaurant waste. More recently, biogas plants are increasingly using municipal solid waste (MSW), industrial solid wastes, and industrial wastewaters as feedstocks [12].
\nNowadays, sludge from municipal wastewater treatment plants is considered as major source of organic matter for biogas generation in Sweden. Other familiar substrates for biogas generation in co-digestion plants involve source-sorted food waste and manure, slaughterhouse waste, and waste from the feed and food industries [65]. Sewage sludge is usually used as a feedstock to provide energy to power sewage treatment works. For many years, sewage sludge and agricultural manures was the principal inputs, making up over 80% of the total.
\nHowever, more lately, the manufacturers have been testing with biogas particular agricultural crops, involving maize and rapeseed. Both the crop itself and the generated fodder (silage) are utilized. Animal waste is increasingly used as a feedstock throughout the world. In the EU, there are now over 750 biogas plants processing animal waste, many of them on a large scale. Organic waste from households and municipal authorities is also an important source of biogas [12].
\nThe urban solid waste production, or municipal waste, increases with population growth, high economic activity, and goods production. Biogas has the potential to be produced from widely available, abundant raw materials, including agricultural residues (e.g., animal manure), landfill and food waste, and aquatic biomass and lignocellulosic raw materials [66, 67]. Wood, agricultural residues, and dung of animal are the sources of energy for biogas technique [24, 68]. The use of wastewater from inorganic sources, such as chromium, has also been studied as an alternative for energy production, a more environmentally sustainable approach that avoids landfill disposal of these wastes [69, 70]. Industrial waste and wastewater have potential uses in biogas production due to their characteristics, such as high organic load [66, 71]. Algae are considered as a potential biomass feedstock for decreasing our dependence on nonrenewable energy sources for electric power, transportation, and heat production [53].
\nLivestock manure, i.e., dung of cow is an efficient feedstock for biogas production getting high cumulative biogas yield with steady performance, with a continuous process. Therefore, cow dung is more favorable in the biogas process [72, 73]. In general, there are different kinds of biomass resources to produce biogas, including animal manures, municipal solid wastes, food wastes, industrial wastes, agricultural residues, poultry wastes, forestry wastes, microalgae, and some dedicated energy crops [54, 55, 56, 57].
\nGeneration of biogas gives a multiuse carrier of renewable energy, as methane can be utilized for substituting of nonrenewable source of fuels in both heat and electricity production and as a car fuel. AD of wastes, energy crops, and residues is of growing interest in order to decrease the greenhouse gas emissions and to promote a sustainable development of energy supply [74]. Anaerobic digestion is a technology with proven efficiency, being widely used in the stabilization of industrial wastewater, urban solid waste, animal manure, and sewage sludge [66]. There are many benefits associated with anaerobic digestion technology, which include mass reduction, odor removal, pathogen reduction, less energy use, and more significantly, the energy recovery in the form of methane [75, 76]. The aim of anaerobic digestion process is the production of a methane-rich biogas through biological decomposition of organic matter, in an oxygen-free environment. An aerobic digestion is considered as a low-cost an eco-friendly waste management process, thus it reduces the emission of greenhouse gases. In the meantime, it stabilizes and reduces the wastes. One of the major advantages of an aerobic digestion is its adaptability to deal with a wide range of organic substrates. The produced biogas can be used for power and heat production, or can be upgraded and used as vehicle fuel in the transport sector. In addition, the by-product of AD, the “digestate residue,” can be further utilized as a fertilizer on the agricultural land [50]. There are different process types which can be applied for biogas generation, which are classified in dry and wet fermentation systems [21, 77, 78]. Wet digester systems are constantly applied using vertical stirred-tank digester with various stirrer kinds dependent on the source of the feedstock.
\nBiomass is utilized as substrates for biogas generation as long as it consists of hemicelluloses, cellulose, carbohydrates, proteins, and fats as major constituents. Only powerful lignified organic materials, e.g., wood, are not suitable due to the slowly anaerobic decomposition. The composition of biogas and the methane yield depends on the feedstock type, the digestion system, and the retention time [78]. Maximal gas yields and theoretical methane contents of substrates for biogas production are carbohydrates 790–800 biogas (Nm3/t TS), 50% CH4 and 50% CO2, carbohydrates only in the form polymers from hexoses, not inulins and single hexoses, raw protein 700 biogas (Nm3/t TS), (70–71)% CH4 and (29–30)% CO2, and finally raw fat 1200–1250 biogas (Nm3/t TS), (67–68)% CH4 and (32–33)% CO2 [79].
\nAnaerobic digestion involves bacterial fermentation of organic wastes in the absence of free oxygen. Methane fermentation is a complex process, the fermentation leads to the breakdown of complex biodegradable organics in a four-stage process: hydrolysis, acidogenesis, acetogenesis, and methanogenesis [50, 74, 80].
\nFirst stage (hydrolysis process): large protein macromolecules, fats, and carbohydrate polymers (such as cellulose and starch) are broken down through hydrolysis to amino acids, long-chain fatty acids, and sugars.
\nSecond stage (acidogenesis process): the products obtained in first step are then fermented via acidogenesis to form volatile fatty acids, valeric acid, propionic, principally lactic, and butyric. Third stage (acetogenesis): bacteria devour these fermentation products and produce acetic acid, hydrogen, and carbon dioxide. Fourth stage (methanogenic): organisms feed on the hydrogen, acetate, and a few of the carbon dioxide to generate methane [81]. Three biochemical pathways are used by methanogens to achieve this:
\nBiogas is a multipurpose renewable green energy source, which can be simply used to substitute nonrenewable energy source, in heat and power generation, and as gaseous car fuel. Biomethane can also substitute natural gas as a feedstock for producing chemical materials. The biogas generation during AD provides vital benefits over other bioenergy generation technologies. It is admitted as one of the most energy-efficient and environmentally beneficial technology for generation of bioenergy [82, 83]. Anaerobic digestion is a broadly used technology that provides some benefits over other biofuels generation ways, such as, sustainable biogas production, option for using wastewater and sea water, lower operational costs, maximum biomass utilization, minimum sludge production, lesser energy consumption, and feasibility to recycle nutrients [54, 84, 85].
\nAD of animal manure provides some socio-economic, environmental, and agricultural benefits via inactivation of pathogens, improved fertilizer quality of manure, and considerable reduction of odors, and last but not least production of biogas generation, as green renewable fuel, for multiple utilizations [58]. The slurry or digestate from the reactor is affluent in ammonium and other nutrients utilized as an organic fertilizer [86, 87]. The European renewable energy directive has set a target to substitute 27–30% of the total energy consumption with renewable energy sources by 2030. It is expected that 14–26% of this renewable energy target could be achieved by biogas from farming and forestry residues [61, 88]. Biogas is presently produced and utilized in Europe. In 2007, Germany was the largest biogas producer in Europe mainly from energy crops, while the UK was the second producer of biogas mainly from landfill sources [50].
\nThere are three common technologies used (in Figure 2) to convert biomass to green sustainable products. Thermal approaches that are commonly used to convert biomass into an alternative fuel are: gasification, liquefaction, pyrolysis, and charcoal, while there are two biological approaches that are commonly used to convert biomass into bioenergy: fermentation and anaerobic digestion, as shown in Figure 2. This research is going to focus on an anaerobic digestion to produce biogas.
\nA schematic of various biomass conversion technologies [
The anaerobic co-digestion is a choice to settle the drawbacks of single substrate digestion system, being the properties of the substrates and chemical composition, the operating parameters (pH, charge rate, temperature, etc.), the bioavailability, biodegradability, and bioaccessibility, significant parameters to be optimized.
\nSome of raw materials need to be treated to improve the biogas production. In the past, AD was mostly referred to a single substrate/single output process but recently, co-digestion has become a standard technology in agricultural biogas production in many countries [50, 66]. The anaerobic co-digestion is the simultaneous digestion of more than one substrate with complementary characteristics and has become popular as the digestion of several materials can give higher methane yields than those expected when single materials are treated individually [91, 92, 93]. Several of the reasons related with the improvement are associated to the combinations of substrates that result in a positive interaction within the system, reducing negative influences of toxic or inhibitory compounds, affecting C/N ratio and reactor stability, supplementing nutrients, and balancing buffer capacity. Additional benefits of using co-digestion techniques including improved balance nutrients, synergistic effect of microorganism, increased load of biodegradable organic matter, and higher biogas yield [50, 82, 94, 95].
\nProduction of biogas involves a series of four complex biochemical processes (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) depending upon different factors such as type of substrates, substrate particle size, temperature range, pH, carbon/nitrogen (C/N) ratio, and inoculums concentration [62, 96, 97, 98, 99]. There are various factors affecting biogas production from anaerobic digestion. Some of the key factors have been elaborated in detail below.
\nThe hydrogen-ion (pH) concentration in the digesting material affects the anaerobic digestion process. The hydrogen-ion concentration of the culture medium has an immediate effect on microbial growth due to the digestion is prevented by surplus acidity [100, 101]. Methanogens grow better under neutral and a bit alkaline environments. They are died by acidic conditions. Upon stabilization of the aerobic digestion process, the optimum values of pH in the system will be in the range of 7–8.5 with values near to 7 for optimal activity [21, 96, 102, 103, 104, 105].
\nThe temperature of MSW influences the success of the digestion process, as the activities of the anaerobes causing waste decomposition are temperature dependent. Optimum performance of an aerobic digestion system is affected largely by the operating temperatures of the reactor. There are three general ranges of temperature each favoring a specific type of microorganisms including; psychrophilic: about 10–20°C, or less than (<30°C), mesophilic: about (30–40°C), and thermophilic: about (50–55°C), or may reach 60°C [50, 106]. Previous studies have shown that anaerobic bacteria exhibit the highest activity within the mesophilic and thermophilic ranges [107]. Extreme cases of either very high or very low temperatures kill the anaerobes, hence inhibiting the whole AD process [96]. The rate of decomposition and gas production is sensitive to temperature, and, in general, the process becomes more rapid at high temperatures [3, 102]. The optimum temperature is 35°C [101, 108]. There are a couple of factors, which contribute to heat generation or transfer in a digester including process reaction, mixing (impellers), as well as heat exchangers (hot water or steam) [50].
\nA variety of digester kinds exists for the anaerobic treatment of organic wastes.
\nSome diversity of biomass feedstocks could be used by anaerobic digestion techniques such as biowaste, agricultural crops, human waste, municipal sewerage and animal manure among others. The quality and quantity of the biogas yield is determined via nature of the feedstock used. Furthermore to the biogas yield, biomass generates vital nutrients and carbon that promote the sustainable growth of the microbes [96, 107, 109]. The selected kind rely on operational factors, involving the nature of the waste to be treated, e.g., its solid content. The Oregon Department of Energy [110], in its classification of kinds of digester, elucidates that “a plug-flow digesters are appropriate for ruminant animal dung having solid concentrations of 11–13%”; “a complete-mix digester is appropriate for manure that is 2–10% solids”; and “a covered lagoon digester” is used for liquid manure of less than 2% solids. The amount and kind of solid contents of the waste they considered were such that the wastes are able to flow on their own or forming slurries with water and finally flowing, and thus can be used in a continuous operation [102].
\nThe concentrations of carbon and nitrogen determine the anaerobic digestion performance. Anaerobic digestion ideally occurs at C/N ratio ranges between 20:1 and 30:1. For the optimal operation, the ratio of the carbon, to, nitrogen should be about 30:1 in the raw material. Methanogenic bacteria use nitrogen to meet their protein requirements. Whereas, carbon constitutes the energy source for the microorganisms, nitrogen serves to enhance microbial growth. If the amount of nitrogen is limiting, microbial populations will remain small and it will take longer to decompose the available carbon [102]. Consequently, in cases of high C/N ratios higher than the optimum ranges, the nitrogen will be promptly consumed by the bacteria and thus will not react on the excess carbon in the feedstock, hence decreasing the biogas yield. For cases of lower ratios than the limited range, the excess nitrogen will result into ammonia (a strong base) formation, thereby increasing the working pH over the required 8.5 inhibiting the microbes and finally dropping gas generation rates [96, 107]. It has been found that the bacteria in the digestion process use up the carbon present 30–35 times faster than the rate at which they convert nitrogen [102]. The high amount of nitrogen content in animal manures reduces its utilization in anaerobic digestion for biogas generation because of its C/N ratio [62, 111]. To solve this problem, nitrogen-free raw material or carbohydrate-rich source is used to raise the carbon content in the animal manure before the AD process proceedings [62].
\nPretreatment of biomass should be processed to reduce the particle size and then followed co-digestion to increase the biogas production [62, 112]. The substrate for anaerobic digestion has to be composed of digestible particle sizes. Smaller particles raise surface area for the microbial action of the methanogens as a result growing the biodegradability of the feedstock, hence raising the rate of biogas generation and vice versa for great particles which may clog the digester [96, 113, 114].
\nA number of various treatment processes presently exist for the organic waste management; some more technologically modernized than the others, and some more founded in some countries where the legislation and policy promotes for certain environmental goals. The four alternative systems are currently applied worldwide, i.e., Landfilling, Aerobic Composting, Incineration and Anaerobic Digestion (AD). Anaerobic digestion of organic waste is the most desirable management method and this research is going to discuss it in detail [50, 115, 116].
\nOrganic waste is considered extremely heterogeneous, whereas its moisture content as well as level of impurities differs significantly. Hence, pretreatment before an aerobic digestion is a main process. Diverse types of pretreatment technologies have developed and are successfully installed in many anaerobic digestion plants in the worldwide. The organic waste pretreatment is considered as the major process step in biogas generation plants ensuring flexibility to treat different types of organic waste, efficient extraction of contaminants, high availability of AD plants, substrate homogenization, wear resistance, high biogas yields, energy efficiency, and production of high-quality fertilizers. Organic waste almost includes contaminations, such as glass, metals, stones, and sand; additional systems are also required to deal with such heavy contaminants of the waste. Thus, pretreatment techniques, may be mechanical (e.g., milling), chemical (e.g., acid or alkali treatment), or thermal methods (e.g., steam explosion), are usually applied. Novel pretreatment methods are emerging, which focus on ionic liquid or supercritical CO2 to solubilize and collect lignin, both increasing biogas production, while also providing additional revenue through lignin collection. Regardless of the pretreatment technique used, this step is an essential consideration for improved biogas production from lignocellulosic feedstocks [50]. In any AD application treating organic waste, a mechanical pretreatment is installed.
\nA critical unit in industrial biogas plants is mechanical pretreatment; it possibly contains pulpers and shredders. These apparatus are utilized to improve the surface area of tough solid substrates [such as municipal solid wastes (MSW), cardboard, mixed industrial wastes, bulky refuse, waste tires, waste wood and waste papers, etc.] via crushing and breaking down, leading to their more efficient digestion and improved AD process. Different pretreatment technologies are available to reduce the size of the organic waste and to separate the plastic and packaging material from the biodegradable fraction of the waste. Thereby, plants are generally highly flexible to treat all kinds of organic waste without any quality restrictions. Sewage sludge or agricultural biomass, e.g., straw are difficult to degrade an aerobically due to their rigid structure. Therefore, organic waste thermal treatment at high pressure and temperature values is more familiar when treating such types of organic biomass. In contrast, food waste can be efficiently converted in anaerobic digestion systems to biogas by mechanical processing. An efficient pretreatment of organic waste also ensures the production of high-quality fertilizers and hence, the recycling of valuable nutrients back into the natural cycle is achieved and additional, expensive digestate processing after AD can be avoided. High biogas yields in anaerobic digesters are achieved, whether the biodegradable organic material is well crushed in the pretreatment and a large surface are for microbial degradation is achieved [50].
\nThe composition of organic waste come from different areas (commercial, municipal, industrial) differs significantly. The most critical criteria for the selection of an appropriate pretreatment technology are waste composition. Moreover, for the selection of the most appropriate pretreatment system, it is significant to know which kind of AD, i.e., dry or wet digestion systems, should be used to treat the organic waste. Wet anaerobic systems use pretreatment technology to take out the undesirable pollutants before the anaerobic digestion process and are operated at a lower solid concentration. The digestate after anaerobic digestion may be used immediately as high-quality fertilizer and no further digestate treatment (compost refining, post-composting, etc.) is usually required. Amount of biogas generation is high due to the efficient organic waste pretreatment. The preferred technologies to treat wet organic waste such as food leftovers, food waste, packaged food, and organic fraction of MSW are Wet anaerobic digestion systems. Dry anaerobic systems use simpler pretreatment technology before the anaerobic digestion process and are operated at higher solid concentrations. As the efficiency of impurity separation is not enough to utilize the digestate immediately as high-quality fertilizer, further digestate treatment (i.e., compost refining, post-composting) is normally necessary to know whether the input substances are polluted.
\nDry anaerobic technology are mostly utilized to know whether the organic waste involves a high percentage of garden waste and also after a mechanical extraction process can be used to treat the organic fraction of MSW [50]. Dry anaerobic digesters are higher solids loading and biomass retention, controlled feeding and spatial niches, pretreatment is simpler, but it has complex and expensive transport and handling of waste, material handling and mixing is difficult, and only structured material can be used [117]. For processing dilute organic slurry with a total solid content of maximum 10–15%, the wet systems are designed. Substrates consist of total solid higher than 15% will be co-digested with co-substrates of lower total solid content, or usually diluted with recirculated or fresh process water. Various ranges of low solid substances have been successfully treated by wet AD technology, involving food industrial effluents and sewage sludge. In contrast, in solid-state fermentation processes, also called dry digestion, the substrates used have high solid content (25–40% TS), thus an essentially different technical approach regarding the waste handling and treatment is needed [50, 118]. Due to the high viscosity in the dry digestion systems, heat and nutrient transfer is not as efficient as it is in wet processes, therefore mixing is very important to prevent local overloading and acidification [119]. In spite of that, conventional mechanical mixers are not appropriate for solid-state processes; instead, recirculation of the waste or re-injection of the produced biogas is often used in these types of reactors to solve the mixing problems [50, 120]. The main benefits of wet anaerobic digesters is dilution of inhibitors with fresh water, but it has some drawbacks including scum formation during crop digestion, high consumption of water and energy, short-circuiting, and sensitive to shock loads [117].
\nDigesters established in worldwide differ in their costs, construction materials, and design complexity [121, 122]. In order to design any anaerobic digester, we need to solve three principal requirements such as: to produce a high volume of high-quality biogas; able to continuously handle a high organic loading rate; and to have a short hydraulic retention time in order to have smaller reactor volume. There are various types of digesters, which are mostly used in the industry involving multistage systems, batch, continuous one-stage system, or continuous two-stage. Further configurations, such as the plug-flow systems, anaerobic sequencing batch reactor (ASBR), tubular reactor, baffled digesters (ABR), upflow anaerobic sludge blanket (UASB) reactor, and anaerobic filters, are also present [50, 104, 123]. Normally, the selection of suitable digester kind is relying on the properties of the main feedstock used, specifically total solid. Feedstocks with high amount of total solid and slurry are generally treated in CSTRs; whereas, soluble organic wastes are mainly digested in upflow anaerobic sludge blanket (UASB) reactors, anaerobic filters, and fluidized bed reactors [124]. Co-digestion is principally implemented in wet single step processes (e.g., CSTR). Continuous systems are fed continuously, while the digestate residue is discharged at the same rate, allowing a steady state to occur, leading to a constant gas production rate. In spite of that, this kind of operation is only possible for substrates, which can be pumped for continuous feeding. Otherwise, a semi-continuous process is applied with a discrete amount of feed several times a day [50]. The main advantages of continuous systems are simplicity in design, operation, and have low capital costs, but they have disadvantages including rapid acidification and larger volatile fatty acids (VFA) production [117].
\nContinuous flow stirred-tank reactors (CSTRs) are one of high rate digesters and probably the most generally used reactor configurations in biogas generation. They are interesting because of the simplicity of their design compared to other types of biogas digesters. Normally, CSTRs are usually utilized to process slurries with total solids content of 5–10% [50, 125]. Slurries of animal manure and organic industrial wastes are treated using CSTRs. As a disadvantage, CSTRs have long retention times [126] and may be more energy intensive than some of the other types of reactors. Performance of CSTRs is improved by recycling microbial solids, or enhancing retention of the active biomass [50].
\nAnaerobic plug-flow reactors (APFRs) are generally long rectangular channels, with the flow entering one end and leaving at the distant end. There is roughly seldom mixing in the flow direction. The channels, or tanks, are mostly placed above ground. Both thermophilic and mesophilic operations are utilized [50, 127]. APFRs are considered one of high rate digester and commercially used for treating different types of organic wastes involving slurries of animal manure, distillery wastewater, and the organic fraction of municipal solid waste [128, 129]. Compared to a single-stage CSTR, plug-flow reactors are mostly more efficient in converting the substrate to biogas and are more stable to operate [50, 130].
\nThe two generally utilized reactor kinds are: continuous stirred-tank reactors (CSTR, using biogas recirculation for mixing or mechanical agitation or effluent), and plug-flow reactors (PFR, where the reactor content is shoved along a horizontal reactor). In dry digestion processes, PFRs are usually utilized to treat substrates with high solid content [131], whereas CSTRs are applied in wet digestion systems. The choice of wet or dry digestion technology relies on the total solid content (TS) of the material treated [50]. Recovery of biogas from manure is widely applied with CSTR and PFR systems in developed countries, likewise covered lagoons, and other kinds of anaerobic reactors are also used [74].
\nAnaerobic contact reactor (ACR) is consistently a fully mixed mechanically stirred tank with recycle of sludge. The effluent from the tank flows into some kind of a solid-liquid separator (e.g., gravity sedimentation tank, sludge flotation device, lamella clarifier) and the recovered solids are returned to the anaerobic digester. ACRs are efficient of treating high-strength waste with a high concentration of digestible solids due to high concentration of active microbial biomass [132, 133, 134]. Hydraulic retention times are short and fluctuations in organic loading are well tolerated. The ACRs are relatively less affected to souring and other inhibitors [128, 135, 136]. Stirred digesters coupled to some type of membrane-based cell retention have proved highly effective in biogas production [50, 137, 138].
\nBiofilms are microbial consortia attached to a support material. The support surface is usually inert and may be fixed or suspended. Anaerobic microbial biofilms can effectively digest organic material to produce biogas [139]. A huge mass of immobilized biofilm and mass-transfer upgrading motion of liquid around the film let biofilm reactors to hold high organics loading and bear well any fluctuations in hydraulic or organics loads. Once the biofilm has produced, start-up periods are short compared to the other traditional anaerobic treatment systems [139, 140]. The support material nature affects the improvement of the biofilm and its intensity of attachment, or mechanical steadiness [50, 141].
\nBatch reactors are quick, require inexpensive equipment, and are the simplest to operate since they are fed with feedstock and left for a longer period before being emptied. No mixing, stirring, and pumping required, low input in terms of process and mechanical demands, and low capital cost, but they are channeling and clogging and these types of reactors have larger volume and lower biogas yield. The methane production is commonly the highest at the beginning and decreases toward the end of the process as the substrate is being utilized [117, 140, 142].
\nAnaerobic baffled reactor (ABR) is a modification of Upper-flow Anaerobic Sludge-Bed Reactor. Anaerobic baffled reactor (ABR) initially gets the organic fraction of municipal solid waste (OFMSW) accompanied by decomposition process of the materials and eventually generates biogas by microorganisms’ activities. This kind of reactor can possibly treat wastes with high solid content, and thus, it may be a viable alternative in some situations observed in developing countries. The raising contact time with the sludge (active biomass) results in treatment improvement. ABRs are powerful and able to treat a broad range of wastewater, but both remaining effluents and sludge still require additional treatment in order to be discharged or reused correctly [121, 143].
\nHybrid bioreactor represents the modern production of reactor with possibility to incorporate the benefits of both suspended solid and biofilm reactors. These types of reactors provide the benefits of the UASB concept related to the ones of the anaerobic filters, and nowadays can be considered more appropriate for the treatment of a sequence of soluble or partially soluble wastewater than other reactor systems. Hybrid reactor (combination of the basic types) and anaerobic baffled reactor (ABR) fall under this category [143, 144, 145].
\nAnaerobic digestion may consist of a single-stage operation, or a two-stage process. Single-stage operation is less efficient, but most commonly used because of its simplicity. Traditional single-stage digester is generally larger, and hence takes more energy to mix and heat compared to a two-stage digester; while, a two-stage digestion is more efficient overall compared to a single-stage process [50, 146, 147, 148, 149, 150]. Many different configurations and operational systems have been developed for anaerobic digesters for use in different applications. The goals normally are to shorten the start-up period, reduce operational instabilities, decrease washout of active biomass, and attempt to better accommodate the inevitable variations in feed composition. Operation, maintenance, and installation cost are other factors that substantially impact the economics of biogas generation.
\nSingle-stage digesters are most typically utilized on account of their simplicity, but overall two-stage digesters are more effective. There is no specific digester kind can be recommended as being internationally appropriate. The selection in a given scenario has to consider a lot of factors involving the following: the prospects for disposal of the digestate and the effluent; nature and strength of the waste stream; the availability and skills level of the local workforce; local climatic conditions, infrastructural support and cost of energy; and the expense of construction and operation. Generation of biogas by AD is a helpful method to recover energy from organic waste, whereas considerably reducing the environmental effect of the waste [50]. In addition, the CSTR design is normally performed in single-stage systems, there the reactor operates, favoring both methanogenic and acidogenic microorganisms. These types of systems have lower capital and operating costs and are simple to operate, making them attractive for a broad range of applications through the last decades [151, 152]. Furthermore, the conversion of organic material to biogas is implemented during a series of biochemical reactions, which do not inevitably have the identical optimal environmental conditions. Single-stage digesters have simple design with less technical failure. In the other hand, it has higher retention time, and form foam and scum leading to potential failure [50, 117, 153]. In order to get higher reaction rates and hence a higher biogas yield, two- and multistage systems have developed to give optimal conditions for the various groups of microorganisms included in the degradation process [50, 153]. Four processes (hydrolysis, acidification, acetogenesis, and methanogenesis) in AD are separated in two-stage reactors. Thus, the first stage can be operated at lower pH, which is more favored for the growth of acidogenic and hydrolytic microorganisms; whereas, the second phase is operated to prefer the growth of methane forming microorganisms [154]. In the second step, the rate of limiting factor is normally the rate of microbial growth [155] since longer generation times for methane-producing archaea, and thus longer biomass retention times are required in this second stage, which in turn improves the biogas yield [118]. These kinds of digesters usually have a more steady performance than single-stage digesters, since they do not bear from the process disturbances caused by ammonia accumulation and the changes in the pH [155, 156]. Best phase extraction option can be given in multistage reactors, which can provide optimization and process control for each conversion point, leading to raised methane generation [50, 157]. Two-stage reactors increase in biomass digestion due to recirculation, it has constant feeding rate to methanogenic stage, and it is more robust and less susceptible to failure. In contrast, it has complex design and expensive to build and maintain, and solid particles need to be removed from the feedstock in the second stage [117].
\nThere are undesired compounds and other gases contained in biogas are unwanted and are considered as biogas pollutants [11]. The concentrations of these impurities are dependent on the composition of the substrate from which the gas was produced [158]. The removal of these harmful components and other non-combustible gases makes biogas a more viable and economical alternative renewable energy source [96, 159]. The energy content of methane described by the Lower Calorific Value (LCV) is 50.4 MJ/kg CH4 or 36 MJ/m3 CH4 (at STP conditions). Therefore, the higher the CO2 or N2 content is, the lower the LCV in biogas [11, 160]. Developing the quantity and quality of biogas often needs pretreatment to maximize methane yields and/or post-treatment to take out H2S, which includes higher costs and considerable energy consumption. Therefore, scientific research has performed to develop a low-cost desulfurization process and improve AD conversion. Appealingly, there are a lot of techniques that have been approved to enhance the anaerobic digestion process, like pretreatment procedures using acidic/alkaline, ultrasonic, thermal methods [161, 162, 163]. Lately, there are various treatments targeting at get rid of the trace contaminants and undesired components from the biogas expanding its range of applications [11]. Biomethane involves two major treatment processes; cleaning and CH4 enrichment (biogas upgrading). The cleaning of the biogas contains elimination of impurities and acidic gases; whereas, the enrichment process is for extraction of CO2 from biogas [11, 96]. There are three major reasons for gas cleaning; fulfill the requirements of gas appliances (gas engines, boilers, fuel cells, vehicles, etc.), increase the heating value of the gas, and standardization of the gas [58]. Biogas cleaning treatment process includes removal of undesired materials (such as, NH3, siloxanes, H2S, volatile organic compounds (VOCs), and CO) to increase the quality of biogas. However, it is practically only H2S which is mainly targeted and many current biogas plants have H2S elimination units normally rely on biological H2S oxidation by aerobic sulfate oxidizing bacteria [11]. Biogas must be desulfurizated and also dried before usage to stop destroys the use of gas units. The concentration of H2S between 100 and 3000 ppm in biogas generated by cofermentation of manure with harvesting debris or energy crops, in order to prevent an expensive deterioration of lubrication oil and excessive corrosion [21, 22]. CHPs are used for the utilization of biogas need generally levels of H2S below 250 ppm. The existence of H2S not only affects the quality and quantity of the biogas generated which can restrict its application, but also produces dangerous environmental emissions and corrodes the motors of biogas purification machinery [20, 23]. Nowadays, biological desulfurization process mainly used to remove of H2S [21, 22]. Recent study conducted by Register Mrosso [164] reported that red rock (RR) is an available material for biogas purification which used to remove hydrogen sulfide from biogas [164]. The quality of raw biogas can be further improved via various upgrading techniques to remove the non-combustible components and as a result increasing the methane content to approximate natural gas quality (75–98% methane) [96]. Biogas has been upgraded to natural gas composition via methanation using renewable hydrogen [165]. The higher the methane content, the richer the biogas is in energy [12]. Biogas upgrading aims to increase the low calorific value of the biogas, and convert it to higher fuel standard [35]. In case the upgraded biogas is purified to specifications similar to natural gas, the final gas product is called biomethane [11, 166]. Biomethane is a gaseous fuel with physicochemical properties similar to those of natural gas, which makes it possible to inject it into the gas grid [96]. Currently, the specifications of the natural gas composition are depending on national regulations and in some countries >95% methane content is required [11].
\nTechnological development plays an important role in biogas upgradation and purification processes in large-scale commercialization of biogas. There are various cleaning and upgrading techniques to improve the quality of raw biogas which can be categorized into physiochemical and biological technologies. Some of these techniques are conventional methods, including physical absorption, chemical absorption, membrane infiltration and biological methods, and others are considered as new technologies including cryogenic upgradation, membrane enrichment, multistage-, and high-pressurized AD [62, 96, 167, 168].
\nPhysiochemical technologies for cleaning of biogas and its subsequent CH4 enrichment can be grouped as follows: absorption process (physical and chemical absorption), Hybrid solution (mixed physical and chemical solvent), and physical separation (adsorption on solid surface; membrane; cryogenic) [96]. Novel technologies, such as cryogenic separation, in-situ upgrading, hydrate separation, and biological methods, represent the recent developments in biogas upgrading technologies. Biogas can be used as fuel for domestic stoves, boilers, internal engines, gas turbines, cars, and fuel cells, or injected into natural gas grids to replace gaseous fuel [35]. These techniques have been reported to yield biomethane typically containing 95–99% CH4 and 1–3% CO2. At this quality, the spectrum of applications for biogas widens, it can be used to serve the same applications as natural gas [96]. Gas upgrading and utilization as renewable vehicle fuel or injection into the natural gas grid is of increasing interest because the gas can be used in a more efficient way [21]. Types of upgrading plants are available in Sweden, and shows that around 70% of the biogas purification plants apply water-washing technologies [169].
\nPhysical absorption method uses water scrubbing system. Water scrubbing is the most commonly used technology for biogas cleaning and upgrading [170].
\nThis process depends on the extraction of H2S and CO2 from the biogas because of their raised solubility in water compared to CH4 (i.e., according to Henry’s law, the solubility of CO2 in water at 25°C is roughly 26 times higher compared to methane); whereas, physical absorption method is using organic solvents. This method relies on the same principle as water scrubbing; however, the absorption of CO2 and H2S is accomplished by the use of organic solvent instead of water.
\nVarious methods are used to bind the CO2 molecules contained in the biogas, such as chemical scrubbers, utilize aqueous amine solutions (i.e., mono-, di-, or tri-ethanolamine); chemical absorption method; and using amine solutions. One of the benefits of this technology is that H2S can be totally absorbed in the amine scrubber. Amine scrubbing systems mostly contain a stripper and an absorber unit.
\nPressure swing adsorption (PSA), which extracts the various gasses from biogas, relies on their molecular properties and the compatibility of the adsorbent matters. The adsorbents can be zeolites (Zeolite 13X, Zeolite 5A), carbon molecular sieve, activated carbon, and other substances with high surface area [171]. The major principle of PSA system depends on the properties of pressurized gasses to be appealed to solid surfaces. Thus, under high pressure, huge quantities of gas will be adsorbed, whereas, a decline of pressure will result in gas discharge. The PSA technology follows four different or equal duration stages, namely pressurization, adsorption, blow-down, and purge [171].
\nMembrane technology is considered as an alternative to the traditional absorption-based biogas upgrading technology. The major principle of the membrane technology depends on the selective permeability characteristics of membranes allowing the biogas components to separate [172].
\nThe bases of this technology are the different liquefaction temperatures for biogas compounds [173]. It is conducted through a gradual decrease of biogas temperature allows the selective separation of CH4 from both CO2 and rest components. Thus, a high-purity biomethane is obtained in agreement with the quality standards for Liquefied Natural Gas (LNG). The easiest path to remove the impurities contained in biogas by means of cryogenic methods employs a constant pressure of 10 bar [9, 174, 175, 176]. The liquefaction is carried out by declining the temperature successively in order to get rid of each pollutant or mitigate them in different steps. The first step is often set up at −25°C, where mostly siloxanes, H2O, and H2S are obtained. A second set step is assigned at −55°C to partially liquefied CO2, accompanied by a new decline until −85°C to totally get rid of the remaining CO2 by a solidification step [177]. The liquefied CO2 gained in the second temperature stage can be sold as high-purity by-products to improve the whole economic process performance. Another more normally used option contains a preparatory dry of the gas accompanied by a multistep compression up to 80 bar. This permits preserving a higher operational temperature of between −45 and −55°C, containing as major drawback a needful intermediate cooling in the multistep compression [178]. Cryogenic techniques represent a good option to be optimized because these techniques yield high-purity products, ranging between 95 and 99% [13, 179].
\nThe reduction of CO2 with H2 can be either conducted biologically or chemically, based on Sabatier reaction. Regarding the chemical hydrogenation process, various catalysts, with Nickel and Ruthenium to be the most commonly used in industrial applications have already been tested under elevated temperature (e.g., 300°C) and pressure levels (e.g., 5–20 MPa) [180, 181]. Due to high selectivity, complete conversion of CO2 and H2 can be practically achieved [182]. Nevertheless, despite the high process efficiency, specific drawbacks still remain. For instance, the sustainability is affected by the presence of trace gasses in the biogas, which degenerate the catalysts leading to increased need for periodical replacement [183]. The high cost of energy to preserve the operational conditions, the lack of elements to synthesize effective catalysts, and the need for pure gasses are further technical challenges of the system [11].
\nThe biological biogas upgrading technologies are classified into chemoautotrophic and photosynthetic. Most of these configurations have been practically proven and are at an initial step of pilot or full scale application. The main benefit of such techniques is associated to the fact that the CO2 is transformed into other energy containing or valuable added products at mild operational conditions (i.e., moderate temperature levels, atmospheric pressure) contributing extremely to a circular economy and sustainable bio-based.
\nThe chemoautotrophic biogas upgrading techniques rely on the action of hydrogenotrophic methanogens that can use H2 to transform CO2 to CH4 depending on the following equation:
\nBut, in order to make the biological upgrading technology renewable, the necessary H2 in the reaction has to be extracted from renewable source. Thus, the using renewable electricity concept for generation of H2 by hydrolyzing water has attracted great attention, particularly in cases that residual electricity from solar panels or wind mills is exploited. Whereas, in the concept of in-situ biological biogas upgrading, H2 is injected into a biogas digester in order to be connected with the endogenous CO2, which is generated in the anaerobic reactor and be transformed into CH4 by the action of autochthonous methanogenic archaea [11, 166].
\nThe photosynthetic biogas upgrading is an alternative technology to isolate the CO2 in order to produce a CH4-rich gas. By performing these techniques, H2S elimination is further achieved; whereas, >54% of CO2 is devoured. The methane recovery of photoautotrophic methods can reach up to roughly 97% relying on the reactor kinds and the selection of algal species.
\nPhysicochemical methods are in general at high technology readiness levels, while biological methods are still new and not commercial yet. However, they offer huge potential in respect to feasibility, technological easiness, and potential. Biological upgrading opens new horizons for integrating different forms of renewable energy and besides upgrading can offer electricity storage advances and decoupling bioenergy production from biomass availability [11].
\nBiogas generation serves three important functions: waste removal, environmental management, and energy production [12]. The first and most direct use of biogas is for heating and domestic purposes [184]. Biogas is an excellent fuel with a numerous application [62]. Biogas that is purified and enriched in methane can be used for household applications, automobile fuel (liquefied), or electricity generation [185, 186]. The biogas is mostly utilized as a combined heat and power (CHP) application in the overall world; and apart from it, it can be used in three sides such as fuels for cars, steam generation, and electric power. Biogas obtained from renewable organic waste is counted as an alternative energy for nonrenewable fuels due to its broad applications in fuel and transportation sector [62, 104, 187].
\nIn general, Waste-to-Energy (WtE) technologies can be defined as any waste treatment processes that create energy from a waste source in any forms of energy carrier, i.e., electricity, heat, or transportation fuels [188]. Depending on a statement by World Energy Council, restricted landfilling capacities, rise in the quantity of produced waste, high costs of energy, and rising concerns of environmental issues are the summarized major factors for the growth in WtE market in the past decades. In 2013, the international WtE market encountered a growth of 5.5% and reached a value of 25.32 billion USD with respect to its previous year [50, 188]. Biogas is a flexible energy transporter, appropriate for various applications. One of the simplest applications of biogas is the immediate utilization for lighting, and cooking, but in a lot of countries biogas is currently utilized for combining heat and power generation (CHP) or it is upgraded and fed into natural gas grids, utilized in fuel cells or as car fuel [189]. Biogas is appropriate for production of electricity in combination with heat recovery. Normally, the gas is combusted in motors with internal combustion connected to turbine. The discharged heat (being about 60% of the used energy) is utilized for heating purposes for household requirements or maintenance of the anaerobic reactor. This method is broadly used for the treatment of activated sludge, debris generated from municipal wastewater treatment plants [184, 190, 191]. Electric power generation by gas turbines can be used by biogas as a fuel, hence substituting the natural gas for small-scale applications [184]. There is a large demand to make biogas transportable. This can be simply done only after taking out impurities such as CO2, H2S, and water vapor by compressing and filling the cylinders in it after scrubbing and drying processes [185]. Elimination of carbon dioxide from the flue gas assists to get fuel of higher calorific value as well as to remove the GHG [185, 192]. Biogas is an encouraging renewable source of energy. It can be immediately transformed into electricity, e.g., in a fuel cell, or burnt, discharging heat at high temperature, or burnt in a CHP for the simultaneous generation of heat and power, or fed into the natural gas network for energy rescuing purposes or it can used as fuel for cars, being sold by gas stations. Mostly, the biogas should be transported over long distances and must be purified before further utilization [18]. Biogas systems turn the cost of waste management into a revenue opportunity for farms, dairies, and industries. Converting waste into electricity, heat, or car fuel provides a renewable source of energy that can reduce dependence on foreign oil imports [189]. Biogas is mostly used in factory boilers and in engine generator sets to produce electricity and heat. In those cases, where an internal combustion engine is fuelled with biogas to produce electricity, the electricity can either be used by the facility itself or transferred to a local or national power grid [12]. The most profitable way to use biogas may be to convert it into natural gas. In reality, biogas can be utilized in all applications created for natural gas. The major difference between the two fuels is that, further to methane, natural gas consists of a variety of other hydrocarbons, like propane, butane, and ethane, which provide it a higher calorific value than pure methane. Biogas is normally burned in internal combustion motors to produce electric power. An electrical conversion efficiency of up to 25% can be obtained via small-scale internal combustion motors, with a rated capacity of less than 200 W as well as much higher electrical conversion efficiencies, of 30–35% can be provided through larger internal combustion motors (up to 1.5 MW). When biogas is utilized to generate electric power, there is the extra potential for heating water from the engine’s exhaust and cooling systems. Combining hot water generation with electric power production can provide total conversion efficiency as high as 65–85%. An encouraging near-future application for electric power production is the utilization of gas turbines. Combined-cycle power stations are made up of waste heat recovery boilers, gas turbines, and steam turbines that function together to generate electric power in the larger-scale systems. Advanced gas turbine plants tend to be small, environment friendly, greatly efficient, and visually unobtrusive. Units as small as 200 kW are not uncommon, but only those greater than 800 kW have electrical conversion efficiencies that equal or surpass an internal combustion engine-based system. Gas turbines allow a greater fraction of waste heat to be recovered as steam, a critical commodity for many industries, so overall efficiency levels for gas turbines can be up to 75%. Recently, biogas applications are employed as fuel in fuel cells and as fuel for micro-CHP (combined heat and power). When connected with an organic Rankine cycle (ORC) turbine, a biogas-powered CHP can raise electrical efficiency by 8–10%, making total efficiency rate of 45–48% more than reasonable [12, 184]. Another very attractive application of biogas for electricity production is its use in fuel cells. The specialized cells for these purposes are described briefly by [193]. Identical efficiency rates are obviously being accomplished with biogas fuel cell technique. Sweden-based Acumentrics Corporation, for instance, has registered improved performances with its 5000 W fuel cells, known as solid oxide fuel cell (SOFC) systems, which work on biogas rather than hydrogen, which is difficult to handle, high cost, and difficult to store [12]. The utilization of biogas as a fuel for civil transport and road cars in place of natural gas is already widen in United States and Western Europe [194]. There are a lot of automobiles in Sweden turning on biogas in the urban public transport [184, 195]. Biogas is currently used in many developing countries as an alternative and renewable source of energy for wide spread range of applications. In contemporary times, biogas has been used most extensively in India and China. The Biogas Association in Germany, the world’s largest producer country, included the three functions in its recent summary of what it called the national benefits of biogas production: 650 MW of installed electrical capacity comes from biogas, a reduction of 4 million tons per year of CO2 emissions, revenues of $500 million for biogas farmers from electricity sales annually, and use by the AD process of biomass material that would otherwise end up in landfills. Economic production of biogas can be economically achieved for both large- and small-scale applications. Hence, it can be designed to fit into rural, urban, as well as regional and nationwide energy needs making it a versatile source of energy [12, 96, 107]. All over the world, Europe has registered the highest growth of biogas utilization with a notable 18% raise registered between 2006 and 2007. Sweden and Germany have registered the highest growth levels with Germany leading to brag over 4000 biogas plants, most of them are established on farms for electric power and heat co-generation [21, 96].
\nIn Sweden, there is currently great interest in the biogas process, since it can stabilize and reduce various types of organic waste while producing renewable and environmentally friendly energy in the form of biogas. There is also increasing interest in both the production of biogas from municipal sewage treatment plants and on-farm biogas production within agriculture [196]. Biogas is also burned in boilers to produce hot water and steam in a variety of settings, including hotels, warehouses, factories, schools, prisons, and other public buildings. The forest-product segment is perhaps the largest user of biomass (combustion) energy in the industrial sector. In addition, in many countries, biogas is viewed as an environmentally attractive alternative to diesel and petrol for operating busses and other local transport vehicles [12]. The food and drinks industries are the largest users of AD for wastewater pretreatment. In 2006, 3400 GW of biogas power was generated in Germany, equivalent to 0.6% of the country’s total energy consumption, reducing carbon dioxide emissions by 2.5 million tons. Countries such as Sweden is considered pioneered in the utilization of upgrading biogas as a light duty car fuel, and the use of biogas in the country has already exceeded natural gas [12, 197]. Identical attempts are also being made in Germany which presently turns on roughly 5000 anaerobic reactors for generation of bioenergy [198]. In the UK, fears over the utilization of biogas as fuel stem from an insufficiency of quality standards and infrastructure, as well as contest with other utilizes of biogas [199, 200]. At the moment, close to 50 biogas plants, mainly small, farm-scale ones, are in operation in Austria, Currently, around 25 biogas plants operate in Denmark, with capacities ranging from 50 to 500 tons of biomass feedstock per day. The resulting biogas is mainly used in heat and power generation applications, while the digested biomass is redistributed to farms as fertilizer. Swedish company Svensk Biogas has developed a passenger train that runs exclusively on biogas. The train has a range of 600 km and can attain speeds of 130 kph. There are also up to 100 municipal busses running on biogas. The Swedish agricultural sector is also increasingly using the residues from the anaerobic digestion of crops and clean organic waste in order to return nutrients to the soil and reduce its dependence on mineral fertilizers. Biogas can also be used to generate electricity alone or with heat (co-generation). Biogas can also be used, like pure methane, as a fuel for motor vehicles [12, 201]. Biogas can be considered as alternative green energy carrier for harnessing electricity, heat, and as a transport fuel [62, 202]. Biogas is a renewable source of energy that can be used as a substitute for natural gas or liquefied petroleum gas. Biogas is a clean, efficient, and renewable green source of energy, which can be used as a substitute for other fuels in order to save energy in rural areas [86, 203, 204]. A series of zero-waste technologies are presented. They are similar to the “five zeros” of the Olympic logo which are zero waste in the product life cycle, zero emissions, zero waste in activities, zero use of toxics, and zero resource waste. This design, firstly invented by Lakhal and H’Mida [205] was titled the Olympic Green Chain model. Lately, Khan and Islam [206] suggested a method for zero-waste (mass) utilization for an ideal urban setting, involving processing and regeneration of gas, liquid, and solid. In this process, kitchen sewage waste and waste are used for diverse purposes, involving generation of biogas, water heating from flue gas, good fertilizer for agricultural production and desalination. The carbon dioxide produced from biogas burning is used for the desalination plant. This process gets zero-waste in mass utilization. The technology development in this line has no negative impact on global warming. It is estimated that biogas usage in the world will be doubled in the coming years, increasing from 14.5 GW in 2012 to 29.5 GW in 2022 [37, 189, 207].
\nBiofuels are produced from biomass for a wide range of applications, such as cooking, heating, cooling, and transport. Biofuels can be solid (e.g., fuel-wood), liquid (e.g., bioethanol, biodiesel) or gaseous (e.g., biogas) [208, 209]. Biogas technology utilizes organic wastes for energy production, followed by recycling of the digested substrate as fertilizer [189]. Biogas can be used to generate heat or electricity, or as fuel for manufacturing or transport [210]. Electrical energy and heat generation from biogas is a source of green, environmentally friendly energy. At the same time, there is a reduction in methane emission from the decomposition of unmanaged biomass (especially animal droppings) [211, 212, 213]. Main benefits of biogas technology are to transform waste material into a valuable resource thus reducing waste, and providing valuable green energy [86, 189].
\nThe production of biogas through anaerobic digestion (AD) offers significant advantages over other technologies of bioenergy production. It has been acknowledged as one of the most energy-efficient and green technology for bioenergy production [82]. For many reasons, it is a versatile renewable energy source [158], it can be produced when needed and can easily be stored [61], biogas can be easily upgraded to remove undesired components thus producing a higher fuel standard (Biomethane) with high specific caloric value [189]; it combines energy (gas) storage with generation [214]; the feedstock source is often a waste or problem product, and hence its use for energetic utilization resolves waste management problems [214]; biogas technology provides an excellent opportunity for mitigation of greenhouse gas emission, improving air quality, and reducing global warming [6, 215, 216, 217]. Biogas technology also has potential to mitigate climate change and eutrophication [218]; it can be used as an alternative to fossil fuels [158]; it can easily co-digest a range of feedstocks, thus providing an integrated waste management service; it provides valuable co-products such as nutrient-rich bioslurry [214]; biogas production is a treatment technology that generates renewable energy and recycles organic waste into a digested biomass, which can be used as fertilizer and soil amendment [82, 189]; Methane-rich biogas (biomethane) can also replace natural gas as a feedstock for producing chemical materials [82]; biogas is considered to be the future of renewable and sustainable energy [219]; noise levels generated by methane-powered engines are considerably lower than those of diesel engines, a plus in congested urban environments [12]; biogas technology has an important role to play in the waste management, renewable energy, water, and nutrient (food security) sectors [214]. The development of a national biogas sector contributes to increase the income in rural areas and creates new jobs [189].
\nThe benefits of using co-digestion techniques for optimizing biogas production yields which including dilution of potential toxic compounds, improved balance nutrients, synergistic effect of microorganism, increased load of biodegradable organic matter, and higher biogas yield [82, 220, 221]. In small-scale installations, worldwide, the gas is primarily utilized for lighting and cooking. In larger units, the gas can be used for co-generation (generation of heat and electricity), as vehicle fuel or as fuel in industrial processes [58].
\nBiogas production from anaerobic digestion (AD) suffers from several technical limitations. The social acceptance of biogas is usually hampered by health and environmental concerns. There are undesired and harmful substances contained in biogas which considered as biogas pollutants (such as H2S, Si, volatile organic compounds (VOCs), siloxanes, CO, and NH3). H2S and NH3 are toxic and extremely corrosive, damaging the combined heat and power (CHP) unit and metal parts via emission of SO2 from combustion [11, 160, 215]. The existence of H2S not only influences the quantity and quality of the biogas produced which can limit its application, but also generates harmful environmental emissions and corrodes the engines of biogas purification machinery [23, 163]. It also causes excessive corrosion and expensive deterioration of lubrication oil [21]. Moreover, the presence of siloxanes in biogas, even in minor concentrations, is associated with problems. It is well known that during combustion silicone oxides generate sticky residues, which deposit in biogas combustion engines and valves causing malfunction [11, 160]. Biogas produced by AD still contains impurities. Therefore, the systems used in the production of biogas are not efficient [189]. The quality and quantity of biogas usually requires pretreatment to maximize methane yields and post-treatment to remove H2S, which involves considerable energy consumption and higher costs [163]. There are no new technologies yet to simplify the process and make it abundant and low cost. Similar to other renewable energy sources (e.g., solar, wind) production of biogas is also influenced by the climate. The optimal temperature required for bacteria to digest waste is about 37°C. In cold weather, digesters need heat energy to preserve a fixed biogas supply [189]. The greatest challenge encountering the utilization of biogas as a truck and bus fuel has been the restricted driving range that it provides, meaning that drivers must refuel much more often than they would in petrol- or diesel-powered cars [12].
\nMost countries are in the process of instituting legislation to regulate the biogas industry [12]. Mostly, all parts of the plant must be checked out and licensed by the authorities. This involves installations such as tanks for liquid manure, bioreactors, gasholders, ignition oil tanks, stores, and combined heat and power stations (CHP). In biogas plants, the formation of explosive gas mixtures can happen. Thus, a system for plant security has to be present relating to installation and operation of electrical instruments in regions with high risk of explosions [18].
\nIn Africa and the Middle East, the alternative energy market is new, so there are few government regulations and formal incentives. With inexpensive and abundant energy sources—coal in South Africa and oil in the Middle East—interest on the part of the state sector in renewable energy has been minimal. Although there are few laws or regulations pertaining to the biogas sector—reflecting the undeveloped state of the industry, due primarily to abundant and inexpensive sources of traditional fossil fuels, which gives little or no incentive to look for alternative energy sources, South Africa is leading the way in the region.
\nThe South African Minerals and Energy Department, for instance, published its energy efficiency and renewable strategy statement in 2006, which involved statements and targets on biogas. These involved a “target requirement” to generate 4% nearly 10,000 GWh of the country’s electric power from renewable sources in 2013. In some of African countries, involving Egypt, South Africa, and Morocco, there are disagreement of interest over who has the lawful right to utilize municipal and common, specially maize (corn), or tribal, land to cultivate biogas crops [12].
\nIn Europe, legislation is well developed, reflecting the relatively high level of biogas production in many EU markets, such as Germany and the UK, where biogas is the fastest-growing segment of the renewable fuels industry [12]. Europe is the most advanced biogas market in the world and legislation is much more developed than in other regions, with laws and regulations that not only relate to requirements to treat organic waste in certain ways, but also reach an unusual level of detail regarding machine, plant, and process specifications [18]. The European Commission is proposing an increase in the use worldwide of renewable energy sources to 20% of the total demand, which would limit global temperature changes to no more than 2°C above pre-industrial levels. The Commission has stated, rather vaguely, that it seeks, via both voluntary and legal means, to improve the EU’s energy efficiency by 20%, in order to “make the EU the most energy-efficient region in the world” [12].
\nIn Germany, there are a lot of state laws, regulations, norms, and guidelines of branch institutions were released in order to preserve a secure and smooth biogas plants operation. These cover their waste management, installation, operation, and supply. A lot of offices are included in managerial decision for the a plant construction, e.g., the office for noise control-traffic-energy-climatic protection, the planning department and building control office, the water regulatory authority, the natural conservation authority, food control, the authority for nutrition, the authority of agriculture, the office for veterinary matters, the office for technology and plant safety, the public order office, etc. [18]. In Germany, for instance, biogas is the fastest-growing segment in the alternative energy industry. Thus, both local and national governments are beginning to oversee the sector at a much more detailed level than before. Laws requiring more cooperation between biogas producers and public utility companies, to avoid electrocution of workers who may shut down power to an electric cable but the farm-based generator continues to feed energy into it, have come into force in most states since 2006. Most states now have laws requiring electricity utilities to buy excess biogas production, either via established gas distribution networks or directly through national pipelines. EU energy vision includes a cut in carbon dioxide emissions by at least 20% by 2020 [12]. The German law of biowaste biomass specifies the biomasses and the technical processes supported. Approved biomass consists of pure herbaceous products. Not approved are fossil fuels, mixed wastes, mud, sewage sludge, and port sludge.
\nDebris from biogas plants are undergo to the German law of fertilizers, involving when domestic waste water undergo fermentation or when it is blended with agricultural substrates. The German law of fertilizers control single guidelines like temporary permissions to use fertilizer, the determination of fertilizing requirements, the maximum limits for the utilized amount of fertilizer, methods to use, and much more. The given name of these regulations is the “principles of the good and professional execution of fertilizing.” In Germany, no liquid secondary raw material fertilizer or liquid manure are permitted to be utilized from November 15th to January 15th. This is due to the soil is chilled and the product of fermentation cannot go through the soil. The distribution of debris from biogas plants is also managed. Maximum amount of total nitrogen from industrial fertilizer are allowed on pasture land is not more than 210 kg/ha.a and on ground used agriculturally is not more than 170 kg/ha.a. For phosphates, 120 kg/ha.a as maximum limits for both on pasture as well as on ground used agriculturally, for calcium the limit is regulated to 360 kg/ha.a. Farms with greater than 10 ha of ground utilized agriculturally are compelled to make a written fertilizer balance to keep track of their utilization [18].
\nIn biogas plants, substances able to contaminate water are treated. In most countries, it is banned by law to contaminate water. Best available measures have to be taken in biogas plants to preserve water from pollution. The distribution of debris in agriculture should be done as stated in specified techniques [18].
\nIn North America, the main US biogas legislation is the Biogas Production Incentives Act of 2007. A widespread unwillingness on the part of electricity companies in both the US and Canada to cooperate with biogas farm-scale producers has discouraged the development of the biogas sector. In response, many states are introducing legislation to oblige electricity providers to work with biogas producers and to buy any excess electricity. Electricity utilities, though, are generally unhappy with the arrangement, as the electricity produced by the biogas plant to run the farm is considered by them to be lost revenue. In Canada, the electric power prices provided to farmers generating biogas are still not enough to make production feasible. The Standard Offer Contract (SOC) program lately launched in Ontario, though, whereas not providing immediate financial inducements, is a first stage in the direction of promoting biogas generation though the utilization of energy crops and anaerobic reactors [12].
\nIn Latin America, laws on quality standards for agricultural and organic waste are now being introduced, although in most cases these have not yet been clearly defined. Governments are only now beginning to make use of tax and investment incentives to encourage production. Latin America Argentina, Brazil and Colombia have the most developed legislative frameworks for the biofuels industry overall, each having set minimum requirement levels for the percentage of renewable fuels in petrol, diesel oil, and fuel oil. In Argentina, for example, the Biofuels Act of May 2006 was the first law to grant tax incentives to alternative fuel producers. The law will initially be in effect for 15 years. It stipulates that biogas can be produced from raw materials in the agricultural, agro-industrial or organic waste sectors provided they meet the government’s quality standards which have yet to be clearly identified [12].
\nIn Asia, Asian governments are beginning to encourage the biogas sector, basically by providing financial and legal incentives to produce energy from organic waste sources in large municipal waste dumps, the existence of which is coming under heavy local opposition in many cities. In India and Mongolia, household and industrial waste laws were legislated in early 2007, requiring the separation and treatment of both kinds of waste at an early processing stage, with a view to using organic and biodegradable waste for energy production. Recently, the Indonesian government issued a statute requiring minimum levels of biogas production from new waste disposal sites that are under construction. The way in which the gas is produced, whether it be by composting, landfill, or anaerobic digestion, can be selected by the producer [12].
\nMost of industrial and chemical processes produce wastes. Raw materials for producing biogas by anaerobic digestion are biomass feedstocks which include; municipal solid waste (MSW), industrial solid wastes and industrial wastewaters, food waste, livestock manure, sewage sludge, agricultural manures, catch crops, energy crops, and microalgae. Biogas production serves three important functions: waste removal, environmental management, and energy production. Biogas is a versatile renewable green energy source, which can be used for replacement of fossil fuels in power and heat production, and as gaseous vehicle fuel. Biogas technology is considered an alternative green energy resource. The use of energy and manure can lead to social economic benefits, green environment, and also contributes toward sustainable development. Renewable energy technologies provide an excellent opportunity for mitigation of greenhouse gas emission and reducing global warming through substituting conventional energy sources. Anaerobic digestion of organic waste is the most desirable management method, and this research discussed it in detail. There are undesired compounds and other gases contained in biogas which are considered as biogas pollutants. Improving the quality and quantity of biogas usually requires pretreatment to maximize methane yields and/or post-treatment to remove H2S. The pretreatment of organic waste is the key process step in biogas production plants. Biomethane involves two major treatment processes; cleaning and CH4 enrichment (biogas upgrading). The cleaning of the biogas consists of removal of acidic gases and impurities, while the enrichment process is for separation of CO2 from biogas. It is noted that, there are different kinds of digesters, typically digester type is to be selected depending on the characteristics of the major feedstock used, particularly total solid. The study also concluded that, there are various cleaning and upgrading techniques to improve the quality of raw biogas which can be categorized into physiochemical and biological technologies. Some of these techniques are conventional methods, including physical absorption, chemical absorption, membrane infiltration, and biological methods, and others are considered new technologies, including cryogenic upgradation, membrane enrichment, multistage-, and high-pressurized AD. Novel technologies, such as cryogenic separation, in-situ upgrading, hydrate separation, and biological methods, represent the recent developments in biogas upgrading technologies. The biological biogas upgrading technologies can be classified into chemoautotrophic and photosynthetic. Physicochemical methods are in general at high technology readiness levels, while biological methods are still new and not commercial yet. It is reported that, most countries are in the process of instituting legislation to regulate the biogas industry. Europe is the most advanced biogas market in the world and legislation is much more developed than in other regions. Biogas is considered to be the future of renewable and sustainable energy.
\nIntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"16"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11871",title:"Aortic Surgery",subtitle:null,isOpenForSubmission:!0,hash:"6559d38b53bc671745ac8bf9ef2bd1f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11871.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12089",title:"Advances in Research on Bipolar Disorder",subtitle:null,isOpenForSubmission:!0,hash:"cad499685041c605784198bafb7382b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12089.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12090",title:"Body Image",subtitle:null,isOpenForSubmission:!0,hash:"b53dbeb860ba5d91744cc7ac953c2bfc",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12090.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12110",title:"Rapid Antigen Testing",subtitle:null,isOpenForSubmission:!0,hash:"baefe25f634ceccf0b817457bf8b5685",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12110.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:197},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"33",title:"Bromatology",slug:"agricultural-and-biological-sciences-bromatology",parent:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:75,numberOfSeries:0,numberOfAuthorsAndEditors:2463,numberOfWosCitations:3574,numberOfCrossrefCitations:2179,numberOfDimensionsCitations:5540,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"33",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11354",title:"Pseudocereals",subtitle:null,isOpenForSubmission:!1,hash:"3cc4fe8120cec1dd33a3cbf656231b96",slug:"pseudocereals",bookSignature:"Viduranga Y. Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/11354.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11360",title:"Milk Protein",subtitle:"New Research Approaches",isOpenForSubmission:!1,hash:"f40a6194bc1f209dff3846fe6e34f45b",slug:"milk-protein-new-research-approaches",bookSignature:"Narongsak Chaiyabutr",coverURL:"https://cdn.intechopen.com/books/images_new/11360.jpg",editedByType:"Edited by",editors:[{id:"76047",title:"Prof.",name:"Narongsak",middleName:null,surname:"Chaiyabutr",slug:"narongsak-chaiyabutr",fullName:"Narongsak Chaiyabutr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9710",title:"Olive Oil",subtitle:"New Perspectives and Applications",isOpenForSubmission:!1,hash:"2f673efc0d0213f2d937fc89e65a24df",slug:"olive-oil-new-perspectives-and-applications",bookSignature:"Muhammad Akram",coverURL:"https://cdn.intechopen.com/books/images_new/9710.jpg",editedByType:"Edited by",editors:[{id:"215436",title:"Dr.",name:"Muhammad",middleName:null,surname:"Akram",slug:"muhammad-akram",fullName:"Muhammad Akram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10888",title:"Dietary Fibers",subtitle:null,isOpenForSubmission:!1,hash:"341227ed81a866eb05390bc26f2e5ad7",slug:"dietary-fibers",bookSignature:"Viduranga Y. Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/10888.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9651",title:"Cereal Grains",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"918540a77975243ee748770aea1f4af2",slug:"cereal-grains-volume-1",bookSignature:"Aakash Kumar Goyal",coverURL:"https://cdn.intechopen.com/books/images_new/9651.jpg",editedByType:"Edited by",editors:[{id:"97604",title:"Dr.",name:"Aakash K.",middleName:null,surname:"Goyal",slug:"aakash-k.-goyal",fullName:"Aakash K. Goyal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10440",title:"Nuts and Nut Products in Human Health and Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"4a103c51832749a8c5e73020dcc46194",slug:"nuts-and-nut-products-in-human-health-and-nutrition",bookSignature:"Venketeshwer Rao, Leticia Rao, Md Ahiduzzaman and A. K. M. Aminul Islam",coverURL:"https://cdn.intechopen.com/books/images_new/10440.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",middleName:null,surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10637",title:"Functional Foods",subtitle:"Phytochemicals and Health Promoting Potential",isOpenForSubmission:!1,hash:"a4aa0abf066e78deed1f65312ff24b22",slug:"functional-foods-phytochemicals-and-health-promoting-potential",bookSignature:"Muhammad Sajid Arshad and Muhammad Haseeb Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10637.jpg",editedByType:"Edited by",editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",middleName:null,surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8493",title:"Meat and Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"fa7ad96f9b9e63093c9091fb0b93a5f4",slug:"meat-and-nutrition",bookSignature:"Chhabi Lal Ranabhat",coverURL:"https://cdn.intechopen.com/books/images_new/8493.jpg",editedByType:"Edited by",editors:[{id:"230681",title:"Dr.",name:"Chhabi Lal",middleName:null,surname:"Ranabhat",slug:"chhabi-lal-ranabhat",fullName:"Chhabi Lal Ranabhat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8935",title:"Mineral Deficiencies",subtitle:"Electrolyte Disturbances, Genes, Diet and Disease Interface",isOpenForSubmission:!1,hash:"8bc7bd085801296d26c5ea58a7154de3",slug:"mineral-deficiencies-electrolyte-disturbances-genes-diet-and-disease-interface",bookSignature:"Gyula Mózsik and Gonzalo Díaz-Soto",coverURL:"https://cdn.intechopen.com/books/images_new/8935.jpg",editedByType:"Edited by",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9699",title:"Grain and Seed Proteins Functionality",subtitle:null,isOpenForSubmission:!1,hash:"9268519d1e294c5edf8e964a122e4c91",slug:"grain-and-seed-proteins-functionality",bookSignature:"Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/9699.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:75,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"42000",doi:"10.5772/53159",title:"Valorisation of Cheese Whey, a By-Product from the Dairy Industry",slug:"valorisation-of-cheese-whey-a-by-product-from-the-dairy-industry",totalDownloads:7019,totalCrossrefCites:57,totalDimensionsCites:121,abstract:null,book:{id:"3424",slug:"food-industry",title:"Food Industry",fullTitle:"Food Industry"},signatures:"Chiara Mollea, Luca Marmo and Francesca Bosco",authors:[{id:"93865",title:"Dr.",name:"Francesca",middleName:null,surname:"Bosco",slug:"francesca-bosco",fullName:"Francesca Bosco"},{id:"96159",title:"Dr.",name:"Chiara",middleName:null,surname:"Mollea",slug:"chiara-mollea",fullName:"Chiara Mollea"},{id:"166295",title:"Prof.",name:"Luca",middleName:null,surname:"Marmo",slug:"luca-marmo",fullName:"Luca Marmo"}]},{id:"29151",doi:"10.5772/32358",title:"Hydrocolloids in Food Industry",slug:"hydrocolloids-in-food-industry",totalDownloads:30615,totalCrossrefCites:31,totalDimensionsCites:113,abstract:null,book:{id:"2082",slug:"food-industrial-processes-methods-and-equipment",title:"Food Industrial Processes",fullTitle:"Food Industrial Processes - Methods and Equipment"},signatures:"Jafar Milani and Gisoo Maleki",authors:[{id:"91158",title:"Associate Prof.",name:"Jafar",middleName:"Mohammadzadeh",surname:"Milani",slug:"jafar-milani",fullName:"Jafar Milani"},{id:"124058",title:"Ph.D. Student",name:"Gisoo",middleName:null,surname:"Maleki",slug:"gisoo-maleki",fullName:"Gisoo Maleki"}]},{id:"41694",doi:"10.5772/53172",title:"Seaweeds for Food and Industrial Applications",slug:"seaweeds-for-food-and-industrial-applications",totalDownloads:8297,totalCrossrefCites:31,totalDimensionsCites:98,abstract:null,book:{id:"3424",slug:"food-industry",title:"Food Industry",fullTitle:"Food Industry"},signatures:"Berna Kılınç, Semra Cirik, Gamze Turan, Hatice Tekogul and Edis Koru",authors:[{id:"88972",title:"Dr.",name:"Edis",middleName:null,surname:"Koru",slug:"edis-koru",fullName:"Edis Koru"},{id:"161688",title:"Dr.",name:"Berna",middleName:null,surname:"Kılınç",slug:"berna-kilinc",fullName:"Berna Kılınç"}]},{id:"40180",doi:"10.5772/50568",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:66470,totalCrossrefCites:43,totalDimensionsCites:90,abstract:null,book:{id:"3568",slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"53601",doi:"10.5772/66840",title:"Chitosan in Agriculture: A New Challenge for Managing Plant Disease",slug:"chitosan-in-agriculture-a-new-challenge-for-managing-plant-disease",totalDownloads:5680,totalCrossrefCites:31,totalDimensionsCites:67,abstract:"In recent years, environmental-friendly measures have been developed for managing crop diseases as alternative to chemical pesticides, including the use of natural compounds such as chitosan. In this chapter, the common uses of this natural product in agriculture and its potential uses in plant disease control are reviewed. The last advanced researches as seed coating, plant resistance elicitation and soil amendment applications are also described. Chitosan is a deacetylated derivative of chitin that is naturally present in the fungal cell wall and in crustacean shells from which it can be easily extracted. Chitosan has been reported to possess antifungal and antibacterial activity and it showed to be effective against seedborne pathogens when applied as seed treatment. It can form physical barriers (film) around the seed surface, and it can vehicular other antimicrobial compounds that could be added to the seed treatments. Chitosan behaves as a resistance elicitor inducing both local and systemic plant defence responses even when applied to the seeds. The chitosan used as soil amendment was shown to give many benefits to different plant species by reducing the pathogen attack and infection. Concluding, the chitosan is an active molecule that finds many possibilities for application in agriculture, including plant disease control.",book:{id:"5412",slug:"biological-activities-and-application-of-marine-polysaccharides",title:"Biological Activities and Application of Marine Polysaccharides",fullTitle:"Biological Activities and Application of Marine Polysaccharides"},signatures:"Laura Orzali, Beatrice Corsi, Cinzia Forni and Luca Riccioni",authors:[{id:"189361",title:"Ph.D.",name:"Laura",middleName:null,surname:"Orzali",slug:"laura-orzali",fullName:"Laura Orzali"},{id:"189612",title:"Dr.",name:"Luca",middleName:null,surname:"Riccioni",slug:"luca-riccioni",fullName:"Luca Riccioni"},{id:"189614",title:"Dr.",name:"Beatrice",middleName:null,surname:"Corsi",slug:"beatrice-corsi",fullName:"Beatrice Corsi"},{id:"189615",title:"Prof.",name:"Cinzia",middleName:null,surname:"Forni",slug:"cinzia-forni",fullName:"Cinzia Forni"}]}],mostDownloadedChaptersLast30Days:[{id:"64570",title:"Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications",slug:"banana-pseudo-stem-fiber-preparation-characteristics-and-applications",totalDownloads:9428,totalCrossrefCites:15,totalDimensionsCites:18,abstract:"Banana is one of the most well-known and useful plants in the world. Almost all the parts of this plant, that are, fruit, leaves, flower bud, trunk, and pseudo-stem, can be utilized. This chapter deals with the fiber extracted from the pseudo-stem of the banana plant. It discusses the production of banana pseudo-stem fiber, which includes plantation and harvesting; extraction of banana pseudo-stem fiber; retting; and degumming of the fiber. It also deals with the characteristics of the banana pseudo-stem fiber, such as morphological, physical and mechanical, durability, degradability, thermal, chemical, and antibacterial properties. Several potential applications of this fiber are also mentioned, such as the use of this fiber to fabricate rope, place mats, paper cardboard, string thread, tea bags, high-quality textile materials, absorbent, polymer/fiber composites, etc.",book:{id:"7544",slug:"banana-nutrition-function-and-processing-kinetics",title:"Banana Nutrition",fullTitle:"Banana Nutrition - Function and Processing Kinetics"},signatures:"Asmanto Subagyo and Achmad Chafidz",authors:[{id:"257742",title:"M.Sc.",name:"Achmad",middleName:null,surname:"Chafidz",slug:"achmad-chafidz",fullName:"Achmad Chafidz"},{id:"268400",title:"Mr.",name:"Asmanto",middleName:null,surname:"Subagyo",slug:"asmanto-subagyo",fullName:"Asmanto Subagyo"}]},{id:"40180",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:66453,totalCrossrefCites:43,totalDimensionsCites:89,abstract:null,book:{id:"3568",slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"68437",title:"Chemical Properties of Starch and Its Application in the Food Industry",slug:"chemical-properties-of-starch-and-its-application-in-the-food-industry",totalDownloads:4743,totalCrossrefCites:19,totalDimensionsCites:48,abstract:"Starch is an important food product and a versatile biomaterial used world-wide for different purposes in many industrial sectors including foods, health, textile, chemical and engineering sector. Starch versatility in industrial applications is largely defined by its physicochemical properties and functionality. Starch in its native form has limited functionality and application. But advancements in biotechnology and chemical technological have led to wide-range modification of starch for different purposes. The objective of this chapter is to examine the different chemical reactions of starch and expose the food applications of the modification products. Several literatures on starch and reaction chemistry including online journals and books were analyzed, harmonized and rationalized. The reactions and mechanisms presented are explained based on the principles of reaction chemistry. Chemical modification of starch is based on the chemical reactivity of the constituent glucose monomers which are polyhydroxyl and can undergo several reactions. Starch can undergo reactions such as hydrolysis, esterification, etherification and oxidation. These reactions give modified starches which can be used in baked foods, confectionaries, soups and salad dressings. This chapter discusses the different chemical reactions of starch, the associated changes in functionality, as well as the applications of chemically modified starches in the food industry.",book:{id:"8170",slug:"chemical-properties-of-starch",title:"Chemical Properties of Starch",fullTitle:"Chemical Properties of Starch"},signatures:"Henry Omoregie Egharevba",authors:[{id:"300976",title:"Associate Prof.",name:"Henry",middleName:"Omoregie",surname:"O. Egharevba",slug:"henry-o.-egharevba",fullName:"Henry O. Egharevba"}]},{id:"63169",title:"The Dairy Industry: Process, Monitoring, Standards, and Quality",slug:"the-dairy-industry-process-monitoring-standards-and-quality",totalDownloads:9068,totalCrossrefCites:12,totalDimensionsCites:27,abstract:"Sampling and analysis occur along the milk processing train: from collection at farm level, to intake at the diary plant, the processing steps, and the end products. Milk has a short shelf life; however, products such as milk powders have allowed a global industry to be developed. Quality control tests are vital to support activities for hygiene and food standards to meet regulatory and customer demands. Multiples of chemical and microbiological contamination tests are undertaken. Hazard analysis testing strategies are necessary, but some tests may be redundant; it is therefore vital to identify product optimization quality control strategies. The time taken to undergo testing and turnaround time are rarely measured. The dairy industry is a traditional industry with a low margin commodity. Industry 4.0 vision for dairy manufacturing is to introduce the aspects of operational excellence and implementation of information and communications technologies. The dairy industries’ reply to Industry 4.0 is represented predominantly by proactive maintenance and optimization of production and logistical chains, such as robotic milking machines and processing and packaging line automation reinforced by sensors for rapid chemical and microbial analysis with improved and real-time data management. This chapter reviews the processing trains with suggestions for improved optimization.",book:{id:"6817",slug:"descriptive-food-science",title:"Descriptive Food Science",fullTitle:"Descriptive Food Science"},signatures:"Niamh Burke, Krzysztof A. Zacharski, Mark Southern, Paul Hogan,\nMichael P. Ryan and Catherine C. Adley",authors:[{id:"243276",title:"Dr.",name:"Michael P",middleName:null,surname:"Ryan",slug:"michael-p-ryan",fullName:"Michael P Ryan"},{id:"246153",title:"Prof.",name:"Catherine",middleName:null,surname:"Adley",slug:"catherine-adley",fullName:"Catherine Adley"},{id:"264302",title:"Ms.",name:"Niamh",middleName:null,surname:"Burke",slug:"niamh-burke",fullName:"Niamh Burke"},{id:"264304",title:"Mr.",name:"Krzysztof A",middleName:null,surname:"Zacharski",slug:"krzysztof-a-zacharski",fullName:"Krzysztof A Zacharski"},{id:"264305",title:"Mr.",name:"Paul",middleName:null,surname:"Hogan",slug:"paul-hogan",fullName:"Paul Hogan"},{id:"264306",title:"Dr.",name:"Mark",middleName:null,surname:"Southern",slug:"mark-southern",fullName:"Mark Southern"}]},{id:"40181",title:"Plant Tissue Culture Media",slug:"plant-tissue-culture-media",totalDownloads:105011,totalCrossrefCites:9,totalDimensionsCites:32,abstract:null,book:{id:"3568",slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Abobkar I.M. Saad and Ahmed M. Elshahed",authors:[{id:"144204",title:"Prof.",name:"Abobkar",middleName:null,surname:"Mohamed",slug:"abobkar-mohamed",fullName:"Abobkar Mohamed"}]}],onlineFirstChaptersFilter:{topicId:"33",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82066",title:"Chocolate: Health, Processing, and Food Safety",slug:"chocolate-health-processing-and-food-safety",totalDownloads:22,totalDimensionsCites:0,doi:"10.5772/intechopen.104819",abstract:"Chocolate is a popular food product internationally, and it is consumed daily. Consuming chocolate has been linked to many human health benefits such as lower cholesterol levels, but there are some negative impacts such as weight gain because of its sugar content. Moreover, food safety issues related to chocolate have existed, and it can be contaminated by any biological, chemical, or physical hazards, which lead to many health issues. Regarding that, this chapter will discuss the benefits and negative impacts of consuming chocolate and provide the process of manufacturing the product.",book:{id:"11025",title:"A Glance at Food Processing Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11025.jpg"},signatures:"Ahmed Albandary, Fatemah Albandary and Amit K. Jaiswal"},{id:"78140",title:"Thoughts for Foods: Imaging Technology Opportunities for Monitoring and Measuring Food Quality",slug:"thoughts-for-foods-imaging-technology-opportunities-for-monitoring-and-measuring-food-quality",totalDownloads:216,totalDimensionsCites:1,doi:"10.5772/intechopen.99532",abstract:"In recent decades, the quality and safety of fruits, vegetables, cereals, meats, milk, and their derivatives from processed foods have become a serious issue for consumers in developed as well as developing countries. Undoubtedly, the traditional methods of inspecting and ensuring quality that depends on the human factor, some mechanical and chemical methods, have proven beyond any doubt their inability to achieve food quality and safety, and thus a failure to achieve food security. With growing attention on human health, the standards of food safety and quality are continuously being improved through advanced technology applications that depend on artificial intelligence tools to monitor the quality and safety of food. One of the most important of these applications is imaging technology. A brief discussion in this chapter on the utilize of multiple imaging systems based on all different bands of the electromagnetic spectrum as a principal source of various imaging systems. As well as methods of analyzing and reading images to build intelligence and non-destructive systems for monitoring and measuring the quality of foods.",book:{id:"11025",title:"A Glance at Food Processing Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11025.jpg"},signatures:"Ayman Eissa, Lajos Helyes, Elio Romano, Ahmed Albandary and Ayman Ibrahim"},{id:"78268",title:"Utilization of Agro-Industrial Wastes as Edible Coating and Films for Food Packaging Materials",slug:"utilization-of-agro-industrial-wastes-as-edible-coating-and-films-for-food-packaging-materials",totalDownloads:205,totalDimensionsCites:0,doi:"10.5772/intechopen.99786",abstract:"Mostly, food packaging employs synthetic materials obtained from nonrenewable sources. These packaging materials are based on petrochemicals and cause substantial environmental problems by producing massive amounts of non-biodegradable solid wastes. Edible coatings and films are considered as the potential solution to these problems of non-biodegradable packaging solid wastes for maintaining food-environment interactions, retaining food quality, and extending shelf life. In addition, edible coatings and films offer prevention from microbial spoilage of packed foods by controlling moisture and gas barrier characteristics. Increasing environmental concerns and consumer demands for high-quality eco-friendly packaging have fueled the advancement of innovative packaging technologies, for instance, the development of biodegradable films from renewable agricultural and food processing industry wastes. Therefore, the current chapter presents the application of edible coatings and films as an alternative to conventional packaging, emphasizing the fundamental characterization that these biodegradable packaging should hold for specific applications such as food preservation and shelf life enhancement. The primary employed components (e.g., biopolymers, bioactive, and additives components), manufacturing processes (for edible films or coatings), and their application to specific foods have all been given special consideration in this chapter. Besides, a future vision for the use of edible films and coatings as quality indicators for perishable foods is presented.",book:{id:"11025",title:"A Glance at Food Processing Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11025.jpg"},signatures:"Urmila Choudhary, Basant Kumar Bhinchhar, Vinod Kumar Paswan, Sheela Kharkwal, Satya Prakash Yadav and Prity Singh"},{id:"78863",title:"Effects of the Incorporation of Arabinoxylans Derived from Selected Cereals (Rice Bran and Corn Fibre) and Sugarcane Bagasse on the Quality of Baked Foods: A Systematic Review",slug:"effects-of-the-incorporation-of-arabinoxylans-derived-from-selected-cereals-rice-bran-and-corn-fibre",totalDownloads:97,totalDimensionsCites:0,doi:"10.5772/intechopen.99488",abstract:"The supplementation of baked foods, namely cookie/biscuits, bread and cakes with agricultural by-products from cereal based fibres (rice bran and corn fibre) and sugarcane bagasse at rates of 0% - 15%; 0% - 30% and 0% - 10% respectively can significantly improve its nutritive value and enhanced its physical and sensorial qualities. This chapter aims to review the role of dietary fibres derived from selected cereals (rice bran and corn fibre) and sugarcane bagasse in baked foods, namely cookies/biscuits, bread and cakes; evaluate their effects on the physical and sensory qualities of these baked food products and to critically assess their beneficial impacts in baked foods. These enriched food products can potentially be utilised in shaping health policies, contribute to the dietary fibre needs of consumers and facilitate the development of functional foods. Fibre enriched foods potentially can assist in improving various physiological functions of the human body. A Keyword-based search strategy was utilised to conduct a comprehensive search for articles catalogued in ScienceDirect, Web of Science, PubMed, Medline, CINAHL and Google Scholar that were published between January 1, 2010 and August 1, 2020. Applicable aspects of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines provided the framework of this review. Fourteen (14) studies met the inclusion/extraction criteria and was placed into sub-groups by food types and fibre used in supplementation. Only eleven (11) studies were suitable for statistical data analysis. The supplementation of sugarcane bagasse at both 5% and 10% and rice bran up to 15% into cookies/biscuits significantly undesirable acceptance (p < 0.05). Corn fibre enriched cookies/biscuits up to 20% showed a significantly (p < 0.05) favourable impact on the sensory qualities of the food product. The physical qualities of sugarcane bagasse supplemented cookies/biscuits were negatively affected. The incremental addition of sugarcane bagasse resulted in at 50% rise in the firmness of 10% enriched cookies/biscuits, from 5.7 ± 5.4 (Kg Force) to 13.0 ± 3.9 (Kg Force). Corn fibre cookies supplementation did not significantly affect its physical qualities. Rice bran incorporation of 15% in bread showed a significant (p < 0.05) undesirable effect on its sensory qualities. However, the was no significant adverse effect on its physical quality. Corn bran enriched cakes up to 20% fibre incorporation displayed a significant (p < 0.05) favourable effect on the sensory properties of cakes.",book:{id:"11025",title:"A Glance at Food Processing Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11025.jpg"},signatures:"Roy Orain Porter"},{id:"77920",title:"Honey Production Process",slug:"honey-production-process",totalDownloads:176,totalDimensionsCites:0,doi:"10.5772/intechopen.99439",abstract:"Honey has been considered as a very important and superior nutrient in human nutrition since ancient times due to its ability to be consumed by humans without processing, easy digestibility, nutritional properties and biological benefits. Although honey contains many desired bioactive and antibacterial substances, which may be sufficient for antimicrobial activity, it cannot be produced in sufficient quantities due to low water activity under normal conditions. This causes various food and bee-borne spores/non-spores pathogens going viral. Hence, it may cause the risk of parasitological and fungal agents to be found. In honey production, “Hazard Analysis Critical Control Point (HACCP)” must be applied meticulously and completely. Current technologies in honey production will be explained in this section.",book:{id:"11025",title:"A Glance at Food Processing Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11025.jpg"},signatures:"Emek Dümen, Nadide Gizem Tarakçı and Gözde Ekici"},{id:"78007",title:"Retracted: Applications of Phage-Based Biosensors in the Diagnosis of Infectious Diseases, Food Safety, and Environmental Monitoring",slug:"retracted-applications-of-phage-based-biosensors-in-the-diagnosis-of-infectious-diseases-food-safety",totalDownloads:73,totalDimensionsCites:0,doi:"10.5772/intechopen.99537",abstract:"Bacteriophages are interesting entities that parasite bacteria. After infection, they gain new properties such as selectively binding proteins, thanks to genetic manipulation capability. Owing to this, they may be applied as recognition elements in different types of biosensors. Combining bacteriophages with various transducers can then result in the construction of innovative sensor designs that could improve the quality of food safety and environmental monitoring services. Contamination of foods by bacterial pathogens, such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium, results in human infection that can severely affect the immunocompromised, the elderly, and pregnant women. Therefore, this chapter discusses the use of bacteriophages, or their derived peptides, as new sensing elements for the recognition of biomarkers, and the development of highly effective diagnostics tools for early prevention of food-borne infections.",book:{id:"11025",title:"A Glance at Food Processing Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11025.jpg"},signatures:"Asmaa Missoum"}],onlineFirstChaptersTotal:7},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:15,paginationItems:[{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81975",title:"Self-Sustained Communities: Food Security in Times of Crisis",doi:"10.5772/intechopen.104425",signatures:"Kriengsak Chareonwongsak",slug:"self-sustained-communities-food-security-in-times-of-crisis",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"