Dye adsorption, reaction rate constants (k), and change percentage of various TiO2 films.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"10464",leadTitle:null,fullTitle:"Oxytocin and Health",title:"Oxytocin and Health",subtitle:null,reviewType:"peer-reviewed",abstract:"Oxytocin is a nonapeptide hormone with a central role in the regulation of parturition and lactation. Oxytocin receptors can be found in many tissues in humans. Oxytocin exerts a direct as well as an indirect effect on metabolism and energy balance. Considering the positive effects of oxytocin on the brain and the reproductive, immune, and autonomic nervous systems, it shows promise as a future treatment agent for anxiety, autism, personality disorders, and neurodegenerative disorders. This book focuses on oxytocin and health from the aspects of molecular and structure activity, physiological and pathological functions, and clinical applications.",isbn:"978-1-83969-138-6",printIsbn:"978-1-83969-137-9",pdfIsbn:"978-1-83969-139-3",doi:"10.5772/intechopen.92479",price:119,priceEur:129,priceUsd:155,slug:"oxytocin-and-health",numberOfPages:156,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"77ae1cfbfdab58a8d50b657502c9fc11",bookSignature:"Wei Wu and Ifigenia Kostoglou-Athanassiou",publishedDate:"September 1st 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10464.jpg",numberOfDownloads:2951,numberOfWosCitations:1,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:5,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:8,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 19th 2020",dateEndSecondStepPublish:"November 16th 2020",dateEndThirdStepPublish:"January 15th 2021",dateEndFourthStepPublish:"April 5th 2021",dateEndFifthStepPublish:"June 4th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"178661",title:"Dr.",name:"Wei",middleName:null,surname:"Wu",slug:"wei-wu",fullName:"Wei Wu",profilePictureURL:"https://mts.intechopen.com/storage/users/178661/images/system/178661.jpeg",biography:"Dr. Wei Wu is an associate professor and associate department\nchair in the Department of Toxicology, Nanjing Medical University, China, where he received his Ph.D. in Toxicology in 2012.\nHe was a guest researcher at the National Institute of Environmental Health Sciences (NIEHS) between 2017 and 2018. Dr.\nWu is a member of different national and international societies\nin the fields of human reproduction and toxicology and has\nreceived awards from many national societies for the originality and quality of his\nprojects. Dr. Wu has authored seventy-three peer-reviewed papers in international\njournals. He has edited four books and collaborated on ten others as well as seventeen patents and in the organization of three international conferences. He is a\nreviewer for ninety-eight journals.",institutionString:"Nanjing Medical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Nanjing Medical University",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"307495",title:"Dr.",name:"Ifigenia",middleName:null,surname:"Kostoglou-Athanassiou",slug:"ifigenia-kostoglou-athanassiou",fullName:"Ifigenia Kostoglou-Athanassiou",profilePictureURL:"https://mts.intechopen.com/storage/users/307495/images/system/307495.jpg",biography:"Dr. Ifigenia Kostoglou-Athanassiou was born in Thessaloniki, Greece. She is an endocrinologist who graduated from the Medical School, Aristotle University of Thessaloniki, Greece. She obtained an MD from the University of Athens Medical School, and a Ph.D. from the University of London. Her areas of research include breast cancer, neuroendocrinology, melatonin, thyroid cancer, vitamin D, and autoimmune diseases. She has won several awards for her research. Dr. Kostoglou-Athanassiou has published numerous papers and book chapters. Currently, she works as a consultant endocrinologist and head of the Endocrine Department, Asclepeion Hospital, Voula, Athens, Greece.",institutionString:"Department of Endocrinology, Asclepeion Hospital",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"178",title:"Endocrinology",slug:"medicine-endocrinology"}],chapters:[{id:"77863",title:"Oxytocin and Pregnancy",doi:"10.5772/intechopen.98930",slug:"oxytocin-and-pregnancy",totalDownloads:163,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Oxytocin, an important neuropeptide, exerts a wide influence on the central nervous system and the peripheral tissues. In the central nervous system, the oxytocin gene expression is mainly shown to be present in neurons in the hypothalamic paraventricular and supraoptic nuclei. Oxytocin gene also transcribes in the peripheral tissues such as uterus, placenta, and amnion. Oxytocin receptors can be founded in many tissues in humans, like the uterine, ovary, testis, kidney, and so on. And just in the same tissue, due to the variation of physiology factors, the amount of oxytocin changes a lot. Oxytocin secretion is closely linked with pregnancy advancing. During labor, the contractions of uterine smooth muscles and oxytocin secretion are inseparable. Moreover, oxytocin is also responsible for stimulating milk ejection after parturition. Oxytocin is associated with many diseases. Poor regulation of oxytocin may cause postpartum depression and infantile autism. In terms of physiology, fatal heart failure and gestational hypertension are concerned with oxytocin level. In this chapter, we will discuss the oxytocin in pregnancy as well as its clinical applications.",signatures:"Haiwen Yu, Yuting Cheng, Yiwen Lu, Wei Wu and Qiuqin Tang",downloadPdfUrl:"/chapter/pdf-download/77863",previewPdfUrl:"/chapter/pdf-preview/77863",authors:[{id:"178661",title:"Dr.",name:"Wei",surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"},{id:"184798",title:"Ms.",name:"Qiuqin",surname:"Tang",slug:"qiuqin-tang",fullName:"Qiuqin Tang"},{id:"338814",title:"Mrs.",name:"Haiwen",surname:"Yu",slug:"haiwen-yu",fullName:"Haiwen Yu"},{id:"338815",title:"MSc.",name:"Yiwen",surname:"Lu",slug:"yiwen-lu",fullName:"Yiwen Lu"},{id:"346002",title:"Mrs.",name:"Yuting",surname:"Cheng",slug:"yuting-cheng",fullName:"Yuting Cheng"}],corrections:null},{id:"76222",title:"Molecular Aspects and Structure Activity Relationship of Oxytocin Agonists and Antagonist’s Role in Health",doi:"10.5772/intechopen.97265",slug:"molecular-aspects-and-structure-activity-relationship-of-oxytocin-agonists-and-antagonist-s-role-in-",totalDownloads:163,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Oxytocin (OT) and Oxytocin receptor signaling mechanism had emerged as a pathway for treatment of metabolic disorders like obesity, and diabetes. Both agonists and antagonists activity of the oxytocin receptor has beneficial aspects. This chapter will outline the receptor agonists and antagonist’s activity as a function of the features: hydrophobic regions, activity shapes, and positive and negative electrostatics. Also, their phenotype characteristics in various diseases like diabetes, obesity, cardiovascular and immune related diseases will be outlined. Finally, therapeutic development strategies for using various nanomaterials, and other biomaterials, as well as those in present use will be discussed.",signatures:"Veera C.S.R. Chittepu, Poonam Kalhotra, Tzayhri Gallardo Velazquez and Guillermo Osorio Revilla",downloadPdfUrl:"/chapter/pdf-download/76222",previewPdfUrl:"/chapter/pdf-preview/76222",authors:[{id:"233461",title:"Dr.",name:"Guillermo",surname:"Osorio Revilla",slug:"guillermo-osorio-revilla",fullName:"Guillermo Osorio Revilla"},{id:"245164",title:"Prof.",name:"Tzayhri",surname:"Gallardo-Velázquez",slug:"tzayhri-gallardo-velazquez",fullName:"Tzayhri Gallardo-Velázquez"},{id:"253375",title:"Dr.",name:"Poonam",surname:"Kalhotra",slug:"poonam-kalhotra",fullName:"Poonam Kalhotra"},{id:"253376",title:"Dr.",name:"Veera C.S.R",surname:"Chittepu",slug:"veera-c.s.r-chittepu",fullName:"Veera C.S.R Chittepu"}],corrections:null},{id:"76615",title:"Oxytocin as a Metabolic Modulator",doi:"10.5772/intechopen.97630",slug:"oxytocin-as-a-metabolic-modulator",totalDownloads:204,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Oxytocin (9-amino acid peptide) hormone is a member of the G-protein coupled receptor family. It regulates a range of physiologic actions in mammals other than assisting parturition and lactation functions. Evidence indicates that oxytocin alters lipids, protein, and sugar metabolism through various ways including modulation of appetite and satiety, enzyme activity, cellular signals, secretion of metabolic hormones, and energy consumption. Alterations in these processes have the potential to shift developmental trajectories and influence disease processes. Oxytocin can be a potential avenue for the treatment of endocrine disorders such as obesity, diabetes mellitus, and associated disorders. The chapter will include a comprehensive study about oxytocin and its physiological and pathological functions, which makes it a potential target for drug therapy.",signatures:"Neeru Bhatt",downloadPdfUrl:"/chapter/pdf-download/76615",previewPdfUrl:"/chapter/pdf-preview/76615",authors:[{id:"345548",title:"Dr.",name:"Neeru",surname:"Bhatt",slug:"neeru-bhatt",fullName:"Neeru Bhatt"}],corrections:null},{id:"75616",title:"Oxytocin and Neuroprotective Effects",doi:"10.5772/intechopen.96527",slug:"oxytocin-and-neuroprotective-effects",totalDownloads:332,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:1,abstract:"The neurohormone oxytocin (OT), consisting of nine amino acids, is produced in the hypothalamus and secreted from the posterior lobe of the pituitary gland. Recent studies show that OT can affect the course of the disease and is promising in the treatment of neurodegenerative disorders, due to its therapeutic properties and benefits. Histological and biochemical findings of the studies on vincristine-induced neuropathy, cisplatin-induced cytotoxicity, diabetic neuropathy, rotenone-induced Parkinson’s disease, hypoxia, and stroke, which are reviewed in this chapter, revealed that OT significantly prevented neuronal damage with its anti-inflammatory and antioxidant properties. Therefore, the neuroprotective effects of OT and the underlying molecular mechanisms continue to attract the attention of scientists.",signatures:"Oytun Erbaş and İlknur Altuntaş",downloadPdfUrl:"/chapter/pdf-download/75616",previewPdfUrl:"/chapter/pdf-preview/75616",authors:[{id:"338597",title:"Prof.",name:"Oytun",surname:"Erbas",slug:"oytun-erbas",fullName:"Oytun Erbas"},{id:"345970",title:"Dr.",name:"İlknur",surname:"Altuntaş",slug:"ilknur-altuntas",fullName:"İlknur Altuntaş"}],corrections:null},{id:"76208",title:"Priming the Pathway: Combining Oxytocin and Behavioral Intervention to Improve Outcomes in Autism Spectrum Disorder",doi:"10.5772/intechopen.96859",slug:"priming-the-pathway-combining-oxytocin-and-behavioral-intervention-to-improve-outcomes-in-autism-spe",totalDownloads:245,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social-communication deficits and the presence of restricted interests and/or repetitive behaviors. There are currently no psychopharmacological agents approved to treat core symptoms of ASD. As such, behavioral interventions are the most effective method for improving symptoms. In the current chapter, we propose that administering the neuropeptide oxytocin in conjunction with evidence-based behavioral interventions may lead to improved outcomes in social-communication for children with ASD. From a mechanistic perspective, we hypothesize that oxytocin may “prime” social reward circuitry in the brain, thereby allowing behavioral interventions designed to increase social motivation/initiation to be more effective. Extant literature related to theories of ASD, oxytocin administration in children with ASD, and behavioral intervention outcomes are reviewed, and considerations for individual characteristics (e.g., genetics, oxytocin availability, age, behavioral profile, etc.) that may affect efficacy are discussed.",signatures:"Katherine Kuhl Meltzoff Stavropoulos and Elizabeth Baker",downloadPdfUrl:"/chapter/pdf-download/76208",previewPdfUrl:"/chapter/pdf-preview/76208",authors:[{id:"280770",title:"Dr.",name:"Katherine K.M.",surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos"},{id:"347162",title:"MSc.",name:"Elizabeth",surname:"Baker",slug:"elizabeth-baker",fullName:"Elizabeth Baker"}],corrections:null},{id:"76416",title:"Regulation of Morphological and Functional Aspects of Sexual Dimorphism in the Brain",doi:"10.5772/intechopen.97470",slug:"regulation-of-morphological-and-functional-aspects-of-sexual-dimorphism-in-the-brain",totalDownloads:1387,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Sexual dimorphism of the adult brain regulates sex-dependent functions including reproductive and neuroendocrine activities in rodents. It is determined by sex steroid hormones during a critical perinatal period in female and male rodents. Sex steroids act on each nuclear receptor in the brain and control different physiological and neuroendocrine functions and behaviors. Several regions of the brain show evident morphological sex differences that are involved in their physiological functions. This review addresses and focuses largely on the role of sex-dependent differences in the brain, and their crucial functions in animal models. Particularly, recent intriguing data concerning the diversity of neuronal functions and sexual dimorphism are discussed.",signatures:"Chitose Orikasa",downloadPdfUrl:"/chapter/pdf-download/76416",previewPdfUrl:"/chapter/pdf-preview/76416",authors:[{id:"341489",title:"Associate Prof.",name:"Chitose",surname:"Orikasa",slug:"chitose-orikasa",fullName:"Chitose Orikasa"}],corrections:null},{id:"75713",title:"An Analysis of the Implication of Estrogens and Steroid Receptor Coactivators in the Genetic Basis of Gender Incongruence",doi:"10.5772/intechopen.96668",slug:"an-analysis-of-the-implication-of-estrogens-and-steroid-receptor-coactivators-in-the-genetic-basis-o",totalDownloads:218,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"In mammals, sex differences in the adult brain are established very early in development, when the brain is still very immature. In the case of having inherited the SRY gene, during embryogenesis, testosterone secreted by the testes enters the brain and is converted to estradiol by the aromatase. Then the estradiol acts by binding to intracellular estrogen receptors (ERs) located predominantly in neurons, masculinizing specific brain regions. But ERs are also transcription factors that, when they are exposed to their ligand, dimerize and form complexes with coactivator proteins and corepressors, modifying the transcription of multiple target genes in a cascade effect and ultimately neuronal function. Given the intimate relationship between steroids and brain dimorphism, and steroid coactivators and gene transcription, in the present work, we further explore the implication of ERs α and β, and steroid coactivators NCoA-1, NCoA-2, NCoA-3, NCoA-4, NCoA-5 and p300-CREBBP, in the genesis of brain dimorphism. Based on our data, we believe that the coactivators NCOA-1, NCOA-2 and p300-CREBBP could be considered as candidate genes for GI.",signatures:"Rosa Fernández, Karla Ramírez, Enrique Delgado-Zayas, Esther Gómez-Gil, Isabel Esteva, Antonio Guillamon and Eduardo Pásaro",downloadPdfUrl:"/chapter/pdf-download/75713",previewPdfUrl:"/chapter/pdf-preview/75713",authors:[{id:"340805",title:"Prof.",name:"Rosa",surname:"Fernandez",slug:"rosa-fernandez",fullName:"Rosa Fernandez"},{id:"341031",title:"MSc.",name:"Karla",surname:"Ramírez",slug:"karla-ramirez",fullName:"Karla Ramírez"},{id:"341034",title:"MSc.",name:"Enrique",surname:"Delgado Zayas",slug:"enrique-delgado-zayas",fullName:"Enrique Delgado Zayas"},{id:"341035",title:"Dr.",name:"Esther",surname:"Gómez Gil",slug:"esther-gomez-gil",fullName:"Esther Gómez Gil"},{id:"341036",title:"Dr.",name:"Isabel",surname:"Esteva",slug:"isabel-esteva",fullName:"Isabel Esteva"},{id:"341037",title:"Prof.",name:"Antonio",surname:"Guillamon",slug:"antonio-guillamon",fullName:"Antonio Guillamon"},{id:"341038",title:"Prof.",name:"Eduardo",surname:"Pásaro",slug:"eduardo-pasaro",fullName:"Eduardo Pásaro"}],corrections:null},{id:"76550",title:"Consequences of Chronic Stress on the PINE Network",doi:"10.5772/intechopen.97149",slug:"consequences-of-chronic-stress-on-the-pine-network",totalDownloads:239,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Stress is a risk factor for the development and progression of a variety of disorders. At the same time stress is essential to initiate adaptation to the current situation and to promote survival of the fittest. Thus, responses to stress evolved to be fast and efficient. This is implemented by a tight networking of the psycho-immune-neuro-energy (PINE) system. Within the PINE network, glucocorticoids are the universal messengers that regulate overall physiology jointly with cytokines, neurotransmitters and energy status. While the secretion of glucocorticoids in response to stress is itself a rather unspecific reaction to any kind of stressor, complexity of the outcome is encoded by lifetime, recent and present events. Together, these individual experiences modulate the diurnal and ultradian rhythmicity of glucocorticoid levels. Given the time- and dose-dependency of glucocorticoid signaling, this rhythmicity allows for flexibility in the coping with stress. In a chronic stress setting, the interaction of PINE network components is altered. While stress-resilient individuals retain adaptive capacity, vulnerable individuals lose flexibility in their responsiveness. Gene × environment interactions could explain individual differences. To better elucidate the molecular underpinnings of risk and resiliency, models that allow studying the consequences of chronic stress on the PINE network are required.",signatures:"Verena Nold and Kelly Allers",downloadPdfUrl:"/chapter/pdf-download/76550",previewPdfUrl:"/chapter/pdf-preview/76550",authors:[{id:"67779",title:"Dr.",name:"Kelly",surname:"Allers",slug:"kelly-allers",fullName:"Kelly Allers"},{id:"343524",title:"Ph.D. Student",name:"Verena",surname:"Nold",slug:"verena-nold",fullName:"Verena Nold"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6295",title:"Pregnancy and Birth Outcomes",subtitle:null,isOpenForSubmission:!1,hash:"fc1274517f5c0c09b0a923b3027f3d8a",slug:"pregnancy-and-birth-outcomes",bookSignature:"Wei Wu",coverURL:"https://cdn.intechopen.com/books/images_new/6295.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10724",title:"Male Reproductive Anatomy",subtitle:null,isOpenForSubmission:!1,hash:"a3fdda3194735da4287e9ea193beb07e",slug:"male-reproductive-anatomy",bookSignature:"Wei Wu",coverURL:"https://cdn.intechopen.com/books/images_new/10724.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7931",title:"Male Reproductive Health",subtitle:null,isOpenForSubmission:!1,hash:"5754baea5de6a634c66bae12a33d52d9",slug:"male-reproductive-health",bookSignature:"Wei Wu, Francesco Ziglioli and Umberto Maestroni",coverURL:"https://cdn.intechopen.com/books/images_new/7931.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6581",title:"Adipose Tissue",subtitle:null,isOpenForSubmission:!1,hash:"85899eab2d8b01653e1297b168c470d7",slug:"adipose-tissue",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/6581.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6246",title:"Salivary Glands",subtitle:"New Approaches in Diagnostics and Treatment",isOpenForSubmission:!1,hash:"de375ecbd9ac673d6464107a0c416763",slug:"salivary-glands-new-approaches-in-diagnostics-and-treatment",bookSignature:"Işıl Adadan Güvenç",coverURL:"https://cdn.intechopen.com/books/images_new/6246.jpg",editedByType:"Edited by",editors:[{id:"36790",title:"M.D.",name:"Işıl",surname:"Adadan Güvenç",slug:"isil-adadan-guvenc",fullName:"Işıl Adadan Güvenç"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7269",title:"Endocrine Disruptors",subtitle:null,isOpenForSubmission:!1,hash:"571f5c496c8b0e8db9043204fa58be2a",slug:"endocrine-disruptors",bookSignature:"Ahmed R. G.",coverURL:"https://cdn.intechopen.com/books/images_new/7269.jpg",editedByType:"Edited by",editors:[{id:"138555",title:"Prof.",name:"R.G.",surname:"Ahmed",slug:"r.g.-ahmed",fullName:"R.G. Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",isOpenForSubmission:!1,hash:"34880b7b450ef96fa5063c867c028b02",slug:"adipose-tissue-an-update",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7059",title:"Amyloid Diseases",subtitle:null,isOpenForSubmission:!1,hash:"d9a197d34d3d6006af726d577060f928",slug:"amyloid-diseases",bookSignature:"Dmitry Kurouski",coverURL:"https://cdn.intechopen.com/books/images_new/7059.jpg",editedByType:"Edited by",editors:[{id:"264297",title:"Dr.",name:"Dmitry",surname:"Kurouski",slug:"dmitry-kurouski",fullName:"Dmitry Kurouski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6154",title:"Diabetes and Its Complications",subtitle:null,isOpenForSubmission:!1,hash:"79f08a2c1cbbcea2d1df2ad075d2f9fa",slug:"diabetes-and-its-complications",bookSignature:"Ahmed R. G.",coverURL:"https://cdn.intechopen.com/books/images_new/6154.jpg",editedByType:"Edited by",editors:[{id:"138555",title:"Prof.",name:"R.G.",surname:"Ahmed",slug:"r.g.-ahmed",fullName:"R.G. Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",isOpenForSubmission:!1,hash:"bfbc5538173f11acb0f9549a85b70489",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",bookSignature:"Marilena Vlachou",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",editedByType:"Edited by",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73312",slug:"corrigendum-to-the-generalized-weierstrass-system-in-three-dimensional-euclidean-space",title:"Corrigendum to: The Generalized Weierstrass System in Three-Dimensional Euclidean Space",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73312.pdf",downloadPdfUrl:"/chapter/pdf-download/73312",previewPdfUrl:"/chapter/pdf-preview/73312",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73312",risUrl:"/chapter/ris/73312",chapter:{id:"65349",slug:"the-generalized-weierstrass-system-in-three-dimensional-euclidean-space",signatures:"Paul Bracken",dateSubmitted:"July 13th 2018",dateReviewed:"November 21st 2018",datePrePublished:"January 25th 2019",datePublished:"May 22nd 2019",book:{id:"7342",title:"Manifolds II",subtitle:"Theory and Applications",fullTitle:"Manifolds II - Theory and Applications",slug:"manifolds-ii-theory-and-applications",publishedDate:"May 22nd 2019",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7342.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",fullName:"Paul Bracken",slug:"paul-bracken",email:"paul.bracken@utrgv.edu",position:null,institution:{name:"The University of Texas Rio Grande Valley",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"65349",slug:"the-generalized-weierstrass-system-in-three-dimensional-euclidean-space",signatures:"Paul Bracken",dateSubmitted:"July 13th 2018",dateReviewed:"November 21st 2018",datePrePublished:"January 25th 2019",datePublished:"May 22nd 2019",book:{id:"7342",title:"Manifolds II",subtitle:"Theory and Applications",fullTitle:"Manifolds II - Theory and Applications",slug:"manifolds-ii-theory-and-applications",publishedDate:"May 22nd 2019",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7342.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",fullName:"Paul Bracken",slug:"paul-bracken",email:"paul.bracken@utrgv.edu",position:null,institution:{name:"The University of Texas Rio Grande Valley",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"7342",title:"Manifolds II",subtitle:"Theory and Applications",fullTitle:"Manifolds II - Theory and Applications",slug:"manifolds-ii-theory-and-applications",publishedDate:"May 22nd 2019",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7342.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11910",leadTitle:null,title:"Frontiers in Voltammetry",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tIn the past few years, electrochemical sensing interfaces have become substantial, easy, and bonafide techniques to evaluate food quality, neurotransmitters, toxic chemicals, and various bioactive compounds. The present book aims to determine such compounds using various nanomaterials, nanocomposites, surfactants, organic materials, etc. as modifiers using various voltammetric methods like cyclic voltammetry, linear sweep voltammetry, differential pulse voltammetry, and square wave voltammetry (SWV). It also emphasizes the corrosion-resistant properties of various metals and alloys using voltammetric methods. The recent advancements in sensor innovations like miniaturization of electrochemical cells, use of multi-sensor arrangements, an extension of sensor application regarding temperature, pressure, and aggressive media at both experimental and theoretical aspects will also be included. Currently, the electrical and supercapacitor applications of nanomaterials are the focus of material scientists all over the world. The potential applications of hybrid nanostructures in the area of the supercapacitor, dielectric materials, superconductors, transistors, etc. will also be added in the book followed by the challenges in commercializing voltammetric sensors.
",isbn:"978-1-80356-447-0",printIsbn:"978-1-80356-446-3",pdfIsbn:"978-1-80356-448-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"fc53a7599a61ed04a0672a7bca81e9c2",bookSignature:"Dr. Rajendrachari Shashanka, Dr. Kiran Kenchappa Somashekharappa, Dr. Sharath Peramenahalli Chikkegouda and Dr. Shamanth Vasanth",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11910.jpg",keywords:"History of Voltammetry, Electrochemical Impedance Spectroscopy, Differential Pulse Voltammetry, Neurotransmitters, Redox, Corrosion, Oxidation, Differential Pulse Voltammetry, Cyclic Voltammetry, Superconductor, Dielectrics, Selectivity",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 1st 2022",dateEndSecondStepPublish:"May 3rd 2022",dateEndThirdStepPublish:"July 2nd 2022",dateEndFourthStepPublish:"September 20th 2022",dateEndFifthStepPublish:"November 19th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Rajendrachari has a strong interdisciplinary academic and research background (Electrochemical sensors, Nanomaterials, Corrosion, Powder metallurgy) and, his name was listed in the top 2% best scientists of the world for the year 2020 as reported by Stanford University, USA. Dr. Rajendrachari has won numerous awards and is currently serving as guest editor and editorial member of various International Journals.",coeditorOneBiosketch:"Dr. Kiran is currently doing research in photocatalysis, electrochemical sensors, nanomaterials and working as a faculty in the Dept. of Chemistry at Govt. First Grade College, Shivamogga, Karnataka, India. He has published six research articles and one book chapter in various International Journals.",coeditorTwoBiosketch:"Dr. Sharath P.C. has published 18 research articles and 4 book chapters in various International Journals. Dr. Sharath P.C. is currently doing research in metal forming, powder metallurgy, and electrochemical sensors. He has received several research awards in various conferences and currently has one research grant to his credit.",coeditorThreeBiosketch:"Dr. Vasanth has a very good Interdisciplinary academic and research background (Additive Manufacturing, Heat Treatment of Steels, Material Characterization), Electrochemical sensors. He has published 2 book chapters and 17 international research publications. His current research is Synthesis of High Strength and Corrosion Resistant Nanostructured Stainless Steels by Selective Laser Melting, which is financed by the Department of Science and Technology (DST) Government of India.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",middleName:null,surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari",profilePictureURL:"https://mts.intechopen.com/storage/users/246025/images/system/246025.jpg",biography:"Dr. Shashanka Rajendrachari is Assistant Professor at the Department of Metallurgical and Materials Engineering, Bartin University, Turkey. He obtained his Ph.D. from the Department of Metallurgical and Materials Engineering at NIT Rourkela, Odisha, India. Dr. Rajendrachari has a very good Interdisciplinary academic and research background (Electrochemical sensors, Nanomaterials, Corrosion, Powder metallurgy) and, his name was listed in the top 2% best scientists of the world for the year 2020 as reported by Stanford University, USA and published by Elsevier. He completed his M.Sc (Industrial Chemistry) and M.Tech (Nanoscience and Technology) from Kuvempu University, Shimoga, India. He has published 5 book chapters, 4 books, and 41 international research publications. Dr. Rajendrachari was awarded the Grand Powder Metallurgy student of the year-2015 award from the Powder Metallurgy Association of India at IIT Bombay. Recently, he was won the prestigious 'Young Scientist-2020” award at the 4th International Scientist Awards ceremony on Engineering, Science and Medicine held in Chennai, India. He was also awarded the 'Young Achiever of the Year-2020” award by DHS Foundation, New Delhi, India, and CAMPBELL University, North Carolina, USA at PERFICIO AWARDS-2020, New Delhi, India. Dr. Rajendrachari is currently serving as guest editor and editorial member of various International Journals.",institutionString:"Bartin University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Bartin University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"454845",title:"Dr.",name:"Kiran",middleName:null,surname:"Kenchappa Somashekharappa",slug:"kiran-kenchappa-somashekharappa",fullName:"Kiran Kenchappa Somashekharappa",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003OmGjUQAV/Profile_Picture_1644917686826",biography:"Dr. Kiran Kenchappa Somashekharappa, currently working as a faculty in the Department of Chemistry, Government First Grade College, Bapuji Nagar, Shivamogga, Karnataka, India. He pursued Ph.D., from the Department of Applied Sciences (Nanotechnology) at Visvesvaraya Technological University, Center for PG studies-Bangalore Region, Muddenahalli, Chikkaballapura (D), India. He studied B.Sc., (Ic. C. P) from Sahyadri Science College, Shivamogga, and M.Sc., in Chemistry from Govt. Science College, Chitradurga, Kuvempu University, Karnataka, India. He has a good academic career and research knowledge such as Synthesis of Nanomaterials with different morphology, with different methods and their characterizations and application in the field of catalysis, photocatalysis, sensors, and so on. He worked as a Project Assistant for the project entitled “Synthesis, Characterization of Novel Titanate and Niobate Nanotubes/Nanorods and their Applications” sanctioned by Science and Engineering Research Board, Dept. of Science and Technology, Govt. of India, New Delhi. \nHe has published research work in many peer reviewed journals like American Chemical Society, Elsevier, Springer, etc., and also bagged the Best Paper Awards in International Conferences such as International Conference on Nano Engineering Science and Research Advances (NESARA-2019) and International Conference on NANOTECHNOLOGY-2019 “Opportunities and Challenges”. He has presented, participated in many International, National Conferences/Symposiums, and obtained Travel Grant to visit Aryabhatta Knowledge University, Patna, Bihar under Knowledge Exchange Program as a Visiting Scholar visited by Visvesvaraya Technological University. He is a member/ life member of some professional bodies such as Associate Member of Institute of Chemists India, Kolkata, Indian Science Congress Association (ISCA), Kolkata, Society for Materials Chemistry, BARC, Mumbai, Materials Research Society, Warrendale, USA, and American Chemical Society Community Member, Washington, USA.",institutionString:"Govt. First Grade College, Shivamogga",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"299842",title:"Dr.",name:"Sharath",middleName:null,surname:"Peramenahalli Chikkegouda",slug:"sharath-peramenahalli-chikkegouda",fullName:"Sharath Peramenahalli Chikkegouda",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002ktfgxQAA/Profile_Picture_1644917887295",biography:"Dr. Sharath P.C. is currently working as an Assistant Professor in the Dept. of Metallurgical and materials engineering, School of Mechanical Engineering, Jain University, Bengaluru, India. He obtained his Ph.D. in Metallurgical and Materials Engineering and M.Tech in Process Metallurgy from the National Institute of Technology Karnataka (NITK), Surathkal, India. He has published 18 research articles and 4 book chapters in various International Journals. Dr. Sharath P.C. is currently doing research in metal forming, powder metallurgy, and electrochemical sensors. He has received several research awards in various conferences and currently has one research grant to his credit.",institutionString:"Jain University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Jain University",institutionURL:null,country:{name:"India"}}},coeditorThree:{id:"257201",title:"Dr.",name:"Shamanth",middleName:null,surname:"Vasanth",slug:"shamanth-vasanth",fullName:"Shamanth Vasanth",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX3jQAG/Profile_Picture_1644917948582",biography:"Dr. Shamanth Vasanth is currently working as an Associate Professor at the School of Mechanical Engineering, REVA University, Bangalore, India. He obtained his Ph.D. from the Department of Metallurgical and Materials Engineering at NITK Surathkal, Karnataka, India. Dr. Vasanth has a very good Interdisciplinary academic and research background (Additive Manufacturing, Heat Treatment of Steels, Material Characterization), Electrochemical sensors. He completed his BE (Mechanical Engineering) and M.Tech (Manufacturing Science and Engineering) from Visvesvaraya Technological University, Belagavi, Karnataka, India. So far, he has published 2 book chapters and 17 international research publications. His current research is Synthesis of High Strength and Corrosion Resistant Nanostructured Stainless Steels by Selective Laser Melting, which is financed by the Department of Science and Technology (DST) Government of India.",institutionString:"REVA University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"REVA University",institutionURL:null,country:{name:"India"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"455410",firstName:"Dajana",lastName:"Jusic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/455410/images/20500_n.jpeg",email:"dajana.j@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61485",title:"Recent Advances in TiO2 Nanotube-Based Materials for Photocatalytic Applications Designed by Anodic Oxidation",doi:"10.5772/intechopen.77063",slug:"recent-advances-in-tio2-nanotube-based-materials-for-photocatalytic-applications-designed-by-anodic-",body:'\nTitanium dioxide (TiO2) is the most widely used one for applications in photocatalysis, dye-sensitized solar cells, and biomedical devices owing to some outstanding properties [1, 2, 3, 4, 5, 6, 7, 8]. The fascinating properties like strong oxidizing abilities, chemical stability, nontoxicity, ease of preparation, favorable band-edge positions, water insolubility, multifaceted electronic properties, and super hydrophilicity. TiO2 has three metastable phases of rutile, brookite, and anatase, in which rutile (Eg = 3.0 eV) and anatase (Eg = 3.2 eV) are the most commonly synthesized and used phases for applications. Rutile is the most stable phase for bulk TiO2, while it is anatase phase for nanoscale size crystallite TiO2 due to surface energy effect [9]. Anatase can transfer into rutile by annealing temperatures in range of 500–700°C. Compared to rutile phase of TiO2, anatase generally possesses better photocatalytic activity owing to its wider bandgap (~3.2 eV), lower electron–hole recombination rate, and higher charge carrier mobility.
\nFor many applications of TiO2, it is crucial to maximize the specific surface area to enhance catalytic reactions and achieve a maximum overall efficiency. Therefore, nanoparticulated forms of TiO2 are widely used [1]. Though providing high surface area, the charge carrier transport of nanoparticulated forms is limited due to the structural disorders. Instead, 1D TiO2 nanostructures such as TiO2 nanotube arrays (TNAs) and TiO2 nanowires on nanotube arrays (NTWs/TNAs) are of great interests because of the higher control of the chemical or physical behavior. By diminishing dimensions to the nanoscale, TNAs and TNWs/TNAs not only provide large surface-to-volume ratio and unidirectional electrical channel but also may change the electronic properties owing to quantum size effects’ strong contribution of surface reconstruction or surface curvature. Complex hybrid nanostructures such as TNWs/TNAs [10], brush-type nanostructure [11], and bamboo-type TiO2 nanotube [12] have been fabricated successfully by anodic oxidation, which have a great potential to simultaneously provide high surface area, good charge transport, and usually have better performance than simple nanostructures. It is worthy to mention that the form of nanostructured TiO2 film on Ti substrate offers a great advantage that it is able to retrieve after usage in photocatalytic applications. TiO2 nanotubes were readily fabricated by template-assisted processes, hydrothermal method, and electrochemical anodic oxidation [1, 3, 6, 13]. Among these methods, TNAs prepared by electrochemical anodization are simple, cost-effective, recyclable, suitable for rapid production, and notable to yield uniform TNAs with vertical alignment and diverse morphology [1, 6, 10, 14, 15].
\nThis book chapter provides some of the spectacular and surprising 1D nanostructures of TiO2 prepared by anodic oxidation method for photocatalytic applications. The first section will focus exclusively on the growths of self-organized TNAs and TNWs/TNAs using conventional one-step anodic oxidation as well as their photocatalytic performances. The second section will review some novel modified TNA structures fabricated by two-step anodic oxidation, including highly ordered TNAs, the modified TNAs, and their photoelectrochemical water splitting performance.
\nIn 1999, Zwilling and coworkers reported the first self-organized anodic oxides on titanium in chromic acid electrolytes containing hydrofluoric acid [16]. In this work, an organized nanotube layer with thickness up to approximately 500 nm was grown on a Ti sheet at low voltage. However, the tube structure was not highly organized, and the tubes showed considerable sidewall inhomogeneity [16]. Moreover, the thickness of TNA layer did not increase with anodizing time, and the limited thickness was ascribed to an oxide growth/chemical dissolution equilibrium (steady state).
\nFigure 1 illustrates the setup of an anodic anodization process in our experiments that is also a typical process in the literature. Titanium foils (99.9% purity, 0.5 mm thickness) are used as the substrate for growing 1D nanostructures of TiO2. Prior to anodization, Ti foil was ultrasonically cleaned in acetone, methanol, and deionized water (each solvent 10 min) and then dried by a purging N2 gas. The TNA film area on Ti foil is 1 × 1.5 cm. The anodization is carried out at room temperature using a two-electrode system with the Ti foil as an anode and a stainless steel foil (SS304 or platinum plate for researches) as a cathode. The electrolytes consisted of 0.5 wt% NH4F in solution of ethylene glycol and water (99:1 in wt.%). The applied voltage of 30–60 V and anodizing time of 0.5–6 hrs are usually used.
\nA schematic of an electrochemical anodization process.
TNA growth is driven by two simultaneously occurring reactions in the anodization process: (1) the electric field-driven anodic oxidation of Ti to form TiO2 and (2) the electric field-assisted chemical dissolution of the TiO2 layer [8, 14]. The reactions are given below:
\nIn the anodic oxidation process, the current density (j) changes with anodizing time (t). Figure 2(a) illustrates the current transient curve recorded during the anodization of titanium foil. Initially, the current density rapidly decreases, then slightly increases, and finally remains a constant [1]. According to the variations of current density with reaction time, three stages of the TNA growth process were defined as shown in Figure 2(a). In the early stages (I), the current density rapidly decreases because of the formation of the non-conductive thin oxide layer (see also Figure 2(b)). Next, there is a slight increase in the current density owing to the local growth of pits. Finally, the current density remains a constant due to reaching the balance between field-assisted anodic oxidation and chemical−/field-assisted dissolution current, and the initial pits will grow and develop into nanotube arrays. Notably, the diameter and length of the nanotubes gradually increase when the dissolution rate of the wall of the nanopores is slower than that of the growth rate of nanopores. And, the diameter and length of NTs no longer change when the growth rate is equal to the dissolution rate [17].
\n(a) Typical current–time
A selected optimal TiO2 nanotube was prepared at 30 V for 16 h in ethylene glycol solution containing 0.20 mol L−1 NH4F and 0.50 mol L−1 HAc. Figure 3(a) shows structure-morphology of the TNAs through the FESEM and HRTEM images. Clearly, perfect NTAs are obtained with average inner diameter approximately 70 nm length of about 7.5 μm. TNAs have anatase phase which is confirmed by the selected area electron diffraction pattern recorded from the circled area. In addition, the lattice fringes spacing of 0.352 nm corresponds to {101} planes of anatase TiO2. To evaluate the photocatalytic activity of the TNA photoanodes, the authors performed experiments using a model compound of pharmaceutical, acyclovir (20 mg L−1), in a three-electrode thin layer photoelectrochemical reactor with a reaction volume of 100 μL under UVA irradiation [17]. An aqueous solution containing 0.2 mol −1 NaNO3 and 20 mgL−1 acyclovir was injected into the reactor under different constant speeds to adjust the reaction time. An applied potential of +1 V constant and illumination of 10 mWcm−2 from UV-LED array were used for the PEC experiment. Photocatalysis (PC) and electrolysis (EC) degradation experiments were conducted under identical experimental conditions as photoelectrocatalysis (PEC) experiments, except the electrochemical system was disconnected and the light switched off, respectively [17].
\nTiO2 nanotubes prepared at 30 V for 16 h in ethylene glycol solution containing 0.50 Mol L−1 HAc and 0.20 Mol L−1 NH4F: (a) FESEM image and a HRTEM image of nanotube wall (inset), (b) degradation of acyclovir under different processes including electrolysis (EC), photocatalysis (PC), and photoelectrocatalysis (PEC) using the TiO2 nanotube photoanode [
Figure 3(b) presents the degradation of acyclovir under EC, PC, and PEC processes using the TNA photoanode. There was no measurable change in acyclovir concentration within residence time up to 370 s for the EC process. The degradation efficiencies of acyclovir in the PC process were 62.0 and 69.0% at residence times of 180 and 370 s, respectively. In comparison, the PEC degradation efficiencies increased remarkably to 83.0% at 180 s and 96.2% at 370 s. The significantly faster degradation of acyclovir for PEC process than those of PC and EC is attributed to two reasons: First, under an appropriate applied potential bias to the photoanode, it is enable to remove the photogenerated electrons and prolong the lifetime of photoholes for direct photohole reactions, and the oxidation power of the photoholes (3.1 V) is greater than that of photogenerated radicals such •OH (2.8 V) [17]. Second, the light adsorption capability and charge transfer is enhanced owing to the tubular structure of the TNA photoanode. Thus, the separation of photogenerated electrons and holes assisted by the application of a potential bias is accelerated, which in turn enhances the concentration of photoholes and promotes effectively the degradation of acyclovir.
\nTiO2 films with morphology of TNWs/TNAs were grown on Ti foils by anodic oxidation. The electrolyte consists of ethylene glycol and water (99:1 in wt%) and 0.5 wt% NH4F. First, the anodizing voltage was varied from 20 to 80 V at a fixed processing time of 1 h. Then, the anodizing time varied from 30 to 120 min at a fixed voltage of 40 V. After fabrication of the TNWs/TNAs, thermal annealing was performed in the air at 450°C for 2 h, at a heating rate of 2°C/min.
\nFigure 4 shows the surface morphology of the TiO2 films prepared at different anodizing voltages from 20 to 80 V, in a 0.5 wt% NH4F solution, and at a constant anodizing time of 1 h. At 20 V, it exhibits highly ordered TNAs with a tube inner wall diameter of 40 nm and a wall thickness of 20 nm. Meanwhile, as increasing the voltage to 40 V, TNWs with a wire width ∼50 nm appears on the top of TNAs which has tube diameters of 60 nm in diameter and ∼10 nm in wall thickness. When the voltage increases to 60 V, TNWs with a width of ∼20 nm fully covered on the TNAs with a tube diameter of 80 nm and a wall thickness of ∼10 nm. Strikingly, TNW-free TNAs with a tube diameter of ∼110 nm are obtained at a high voltage of 80 V [10].
\nAnodizing voltage dependence of surface morphology for the TiO2 films prepared by anodic oxidation at a constant anodizing time of 1 h [
In order to explore the formation mechanism of TNWs/TNAs, we observe the morphology evolution of TiO2 film as a function of anodizing time from 30 to 120 min at a fixed anodizing voltage of 40 V (Figure 5). At 30 min, a highly ordered TNA structure is obtained, and it has a tube length of 12.2 μm, diameter of 60 nm, and wall thickness of 18 nm. The steady-state growth rate of the TNA length at up to 30 min is ~0.4 μm/min. As further increasing the anodizing time to 35, 38, and 40 min, the surface morphology near the top of the TNA exhibits a gradual change. Indeed, the wall thickness decreases from 18 nm at 30 min to 12 nm at 35 min near the top of the TNAs due to the increased electrochemical etching with anodizing time. Noticeably, the wall thickness of the 35-min TNAs almost remains the same value of ∼18 nm in the middle section of nanotubes (see the inset), implying that enhanced electrochemical etching occurs near the top of the nanotube mouths, with respect to the middle section. It is a transitional stage at 38 and 40 min, where the wall thicknesses are even thinner and especially the tubes start disintegrating. After 45 min, TNAs near the top surface are broken up, along with thinning of wall thickness down to ~10 nm. At 60 min, TNWs with a width of ∼50 nm is covered on surface. The nanowires fell down on the top of the TNAs as its length is over ∼2 μm. At longer anodizing time of 90 and 120 min, TNWs are completely covered on the top of TNAs. Due to chemical etching, the width of TNWs decreased from 50 nm (at 60 min) down to ∼30 nm (at 90 min) and then to ∼20 nm (at 120 min). Moreover, as the time increase from 90 to 120 min, the nanowire structure emerges upon further etching, while the length of the TNAs is slightly increased from 11 μm (90 min) to 12 μm (120 min) [10].
\nAnodizing time dependence of surface morphology of the TiO2 films prepared by anodic oxidation under at a constant anodizing voltage of 40 V [
The formation of TNWs/TNAs is governed by two key factors of (1) the strength of the electric field and (2) the processing time. In fact, Figure 6(a) summarizes the required conditions for forming TNWs/TNAs as functions of anodizing voltage and processing time in a fixed electrolyte solution. For example, TNWs/TNAs are obtained for 120 min at 30 V; meanwhile, it takes only 30 min for anodizing voltage of 50–60 V. The influence of the electric field strength on the formation of TNWs/TNAs is elucidated by considering the ion migration under electric field in the electrolyte. In principle, the flux of ions in the presence of electric field can be expressed as [10]
\nwhere
(a) Conditions of required anodizing voltage and processing time (shaded zone) for forming TNWs/TNAs. (b) The pore diameter and wall thickness of TNA’s top section prior to the emergence of nanowires, as a function of voltage.
At some proper conditions of anodic oxidation, TNW’s cover on TNAs can be fabricated. J. H. Lim et al. proposed the “bamboo-splitting” model for the TNW formation mechanism [19]. In addition, the formation TNWs can also be clearly explained “strings of through holes” model by M.Y. Hsu et al., as illustrated in Figure 7 [10]. It follows four stages. First, the ordered TNAs are formed as processing the anodization, accompanying with field-enhanced chemical drilling by a high H+ concentration at the pore bottom of nanotubes, in conjunction with a protective environment maintained along the pore walls by the highly viscous EG solution. At this stage, field-enhanced further dissolution in the tube bottom is still occurring during anodization process (Figure 7(a)). Second, the migration of F− ions toward the electric field to the bottom of anode is inhibited by the highly viscous solution, which results in the much higher F− concentration at the tube than at the tube bottom. Notably, in the electrolyte with water content, the chemical dissolution reaction of TNAs is further enhanced by hydrogen ions (reaction (3) above). Consequently, the tube mouth part is thinner than the lower sections, as shown in Figure 7(a). The inner tube is found to be nonuniform and rough (Figure 7(b) inset), and thus when the tube mouth is thin enough (< 10 nm), it can be etched through under high dissolution reaction with high concentration of F− ions (Figure 7(b)). By increasing processing time, strings of through holes are formed on the tube wall, and they would initiate and propagate downward from the top to bottom of TNAs (or along the F− migration direction), while the holes near the top expand and connect to split into nanowires (Figure 7(c)) as the anodizing time increases. With further increasing anodizing time, the nanowires exhibit smooth at the edges and narrower wire width due to the sufficient chemical etching. When the wire length is too long (i.e., over ∼5 μm), the nanowires would collapse onto TNAs, as illustrated in Figure 7d. Briefly, the proposed formation mechanism of TNWs/TNAs by one-step anodic oxidation follows four stages: (a) thinning the tube wall thickness with high roughness near the TNA’s mouths, (b) forming strings through holes in the top section of the TNAs, (c) splitting into nanowires, and (d) collapsing and further thinning of nanowires [10].
\nSchematic diagrams and corresponding SEM images of four stages in the TNW/TNA formation mechanism: (a) thinning the tube wall thickness with high roughness near the TNA’s mouths, (b) forming strings through holes in the top section of TNAs, (c) splitting into nanowires, and (d) collapsing and further thinning of nanowires [
The photocatalytic performance of TNW/TNA nanostructure in comparison with other morphologies of TNAs and TiO2 nanoparticles is presented in this part. The TiO2 P25 nanoparticle films were fabricated by the doctor-blade method. For making a reliable comparison, the film thickness of TiO2 nanoparticles was controlled to be comparable to that of TNW/TNA films (~11 μm) by controlling the height of the blade above the Ti substrate and/or the concentration of TiO2 paste. The effect of various TiO2 morphologies on the photocatalytic degradation of methylene blue (MB) was examined under the 360 nm wavelength irradiation of an 8 W HeCd lamp. To make a reliable comparison, diameters of nanotubes (40–100 nm) and film thickness (~11 μm) are kept almost the same between TNAs and TNWs/TNAs by adjusting processing conditions. Figure 8 shows the photocatalytic activity of TNAs and TNW/TNA films and TiO2, Ct/C0 as a function of UV irradiation time, in a MB solution with C0 = 2.5 × 10−5 M. We used the pseudo first-order kinetics as described by the Langmuir-Hinshelwood model [20]. Thus, the photodegradation rate of MB could be expressed by the following Eqs. (5) and (6):
\nwhere
Photocatalytic degradation of methylene blue of various TNAs, TNWs/TNAs, and TiO2 nanoparticle films, C/C0 vs. reaction time under UV light irradiation (8 W, 360 nm wavelength) [
Table 1 summarizes the calculated dye adsorption and the
TiO2 film | \nDye adsorption (×10−8 mol/cm2) | \nChange (%) relative to nanoparticles | \nReaction rate constants (k (×10−2 h−1)) | \nChange (%) relative to nanoparticles | \n
---|---|---|---|---|
100 nm TNAs | \n1.22 | \n29% | \n5.49 | \n38% | \n
80 nm TNAs | \n1.65 | \n39% | \n6.73 | \n47% | \n
60 nm TNAs | \n2.33 | \n55% | \n8.48 | \n59% | \n
40 nm TNAs | \n2.72 | \n64% | \n9.80 | \n68% | \n
60 nm TNAs/20 nm TNWs | \n3.21 | \n76% | \n12.54 | \n87% | \n
40 nm TNAs/20 nm TNWs | \n3.58 | \n85% | \n13.05 | \n91% | \n
TiO2 nanoparticles | \n4.22 | \n100% | \n14.38 | \n100% | \n
Dye adsorption, reaction rate constants (k), and change percentage of various TiO2 films.
Using one-step anodization, the produced TNAs usually present disparity in tube lengths and relatively rough surfaces. It has been recently demonstrated that a two-step anodization is possible for preparation of highly ordered and uniform TNAs [14, 15] or unique hierarchical top layer/TNAs with significantly better performances in dye-sensitized solar cells [21] and in photoelectrochemical (PEC) water splitting [6]. A typical process of two-step anodization includes (1) the one-step anodization for growth TiO2 nanotubes, (2) subsequent removal of the as-grown TNAs by ultrasonication, and (3) the two-step anodization to grow TiO2 NTs from the same substrate [14, 15].
\nThe SEM images of the highly ordered nanotubes, bamboo-type nanotubes, and lotus root-shaped nanostructure of TiO2 are shown in Figure 9. These nanostructures are prepared by two-step anodization method, in which electrolyte contained ethylene glycol (C2H6O2), 0.25% (in mass) NH4F and 1% (in volume) H2O. Noticeably, prior to performing the anodization, the electrolyte was aged under a voltage of 60 V for 60 h. In the first step, a Ti foil was anodized at 60 V for 24 h to grow a layer of TiO2 nanotubes, and then the layer was removed ultrasonically in deionized water. Figure 9(a) and (c) shows the top view and side view of the TNAs prepared under an anodizing voltage of 60 V in the two-step anodization, which is much more uniform in alignment and length than the TNAs fabricated by the corresponding one-step anodization [15]. Figure 9b presents the imprint pattern left on the Ti surface after peeling off from the Ti foil ultrasonically. Clearly, each nanotube is surrounded by six nearest neighbors, and each nanotube has six protrusions with hexagonal pattern at the fringe of its top end, suggesting that the nanotubes in the two-step anodization directly developed from the imprint pattern left on the Ti surface. It is found that the aging the electrolyte is necessary for improving the quality of the imprint patterns or avoiding the initial random patterns of TNAs. The ordered imprints play the role of template for the nanotube growth. Owing to the regular distribution across the surface of the pretreated Ti foil at the very beginning, the uniformity and orderliness of the nanotube arrays were developed during the two-step anodization [15]. Intriguingly, a thin porous film is covered on the top of the nanotube layer as taking a closer look at Figure 9a. It is well known that the length of a nanotube does not increase when the rate of oxidation at the Ti/oxide interface at the bottom equals the rate of dissolution at the oxide/electrolyte interface at the top. Hence, the porous film on the top of the TNA plays a role as the protecting layer from dissolution, and consequently the preparation of long nanotubes is possible.
\nNanotube array generated in the two-step anodization under a 60 V voltage: (a) top view and (b) the exposed Ti surface after the removal of the nanotube layer. Side view of the TiO2 nanotubes generated in the two-step anodization: (c) the side view of the nanotubes and (d) zoom-in view of the nanotubes with the ripple features [
The side walls of the TNAs have obvious thickness variation, which often refers to ripples, as shown in Figure 9d. So far, the ripples are formed due to the periodic oscillations of the current in anodization [12]. Indeed, the bamboo-shaped nanotube, a nanostructure with more drastic ripples along the side walls, has been successfully fabricated by using anodic oxidation with ac voltage [12, 15]. Figure 9e shows bamboo-shaped tubes which were synthesized in EG electrolytes containing 0.3 wt % NH4F and 5 vol % H2O under different anodization sequences of 60 V for 2 min and 10 V for 2 min. The inset illustrates the anodization sequence for the formation of bamboo-type TNAs. The anodic oxidation growth of bamboo-type TiO2 nanotubes is illustrated by the schematic in Figure 9e, where ridge formation between the second section and third section of nanotubes is at the third high-voltage step [12]. The formation mechanism is that the low-voltage step reduces pH and ion diffusion gradient inside TiO2 nanotubes and induces formation of bamboo ridges on outer tube walls when a second high-voltage step is conducted [12]. Length and ridge spacing of bamboo-type nanotubes can be easily tuned by adjusting electrolyte composition and time of high-voltage step [12].
\nFigure 9(g) and (h) presents the morphology of a lotus root-shaped nanostructure, which was obtained using anodizing voltage of 30 V in the second step and 60 V in the first step. The nanostructure exhibits two levels, and it resembles as a lotus root in shape. The first level consists of cells with size of approximately 0.2 μm, as highlighted by a hexagon in the inset of Figure 9g [15]. The second-level structure is constituted by the pores with smaller diameters inside the cells (one of them highlighted by a circle in the inset of Figure 9g). Noticeably, the nanopores all evolved in the interior of the cells or such nanopores did not extend across any neighboring cells. By comparing the size and shape, it is found that the first-level structure corresponds to the imprints of Ti surface after the removal of the nanotube layer in the one-step anodization. In addition, this lotus root-shaped nanostructure was only obtained when the second-step voltage was low enough [15]. When the second-step voltage is lower than the first-step voltage, for example, 30 vs. 60 V, the generated nanotubes in the second-step anodization will be thinner than those generated in the first-step anodization. Therefore, several nanotubes simultaneously developed inside one imprint to result in the lotus root-shaped nanostructure, as shown in Figure 9(g) and (h) [15].
\nFigure 10(a) presents the two-step anodization process and morphological characteristics under three different voltage regimes of the one-step anodization. Fascinating hierarchical top layer/TNAs has been successfully fabricated by using two-step anodization with controlled anodizing voltages [6]. The electrolytes consisted of 0.5 wt% NH4F in EG solution with 2 vol% water. The one-step anodization was conducted at anodizing voltages of 60, 80, or 100 V for 60 min to grow TNAs on Ti sheet, and then the as-grown TNAs were ultrasonically removed in DI water. The Ti sheet surface has a regular hexagonally packed round concave morphology (see Figure 10a). Next, the second-step anodization was performed using the same Ti sheet at various potentials of 20–100 V and tunable processing time to control the thickness of TNAs. Finally, samples were cleaned with DI water, dried with nitrogen gas, and annealed at 450°C for 1 h in the air.
\n(a) Two-step anodization synthesis of the hierarchical TiO2 nanotubes. (b–f) Plan-view and cross-sectional scanning electron microscopy (SEM) images of the hierarchical TiO2 nanotubes prepared at a fixed one-step voltage of 60 V and various two-step voltages from 20 to 100 V. (g) the TNAs prepared at 100 V for the first step and 80 V for the second step [
The hierarchical top layer/TNAs are an outcome of the competition between the electric field-driven anodic oxidation [reaction (1) above,
Figure 10(b)–(f) shows SEM images of the modified TNAs prepared at a fixed voltage of 60 V for the one-step anodization and at different voltages from 20 to 100 V for the two-step anodization. Figure 10(g) is the TNAs prepared at 100 V for the first step and 80 V for the second step. When the density of applied electric field increases,
The photocurrent densities of different samples were determined by linear sweep photovoltammetry measurements using a three-electrode electrochemical system in a 1 M KOH electrolyte under AM 1.5 G (100 mW/cm2) illumination. Three major conclusions can be drawn from the results in Figure 11(a). (1) The photocurrent densities of all samples prepared by two-step anodization are consistently higher than the ones prepared by the conventional one-step method under the same conditions. This implies that the hierarchical TiO2 nanostructures favor better PEC performances. Indeed, the one-step prepared TNAs only obtained a photocurrent density of 0.345 mAcm−2 at 0.23 V vs. Ag/AgCl or 1.23 V vs. RHE, which is the potential often chosen as a metric to evaluate the performance of photoanodes as it corresponds to the water oxidation potential. Among all samples, S-60-80 achieved the highest photocurrent density of 1.59 mAcm−2 at the same potential [6]. (2) The photocurrent densities (I) of different nanostructured TNAs presented a general order of Inanopore/TNA > Inanoring/TNA > Inanohole-nanocave/TNA. The photocurrent density of the nanohole-nanocave/TNA sample (i.e., S-100-80) possesses a low value of 0.480 mAcm−2 that should be due to the closed nanocave structures on its surface, and thus it effectively blocks the light absorption and solution infiltration. Moreover, the nanopore/TNA samples (i.e., S-60-60, S-60-80, and S-60-100) exhibited higher photocurrent densities than the nanoring/TNA samples (i.e., S-60-20 and S-60-40) because the formers have better degree of crystallinity and higher optical absorption (to be discussed in the later section). (3) Among all of the nanopore/TNA samples, S-60-80 achieved the highest photocurrent density, which attributed to its better optical absorption and its uniform morphology for reducing structural defects that serve as photoelectron/hole recombination centers (Figure 10e) and thus favor high PEC performance.
\nPhotoelectrochemical properties of hierarchical TiO2 nanotube electrodes: (a) linear-sweep voltammograms collected with a scan rate of 5 mVs—1 In the dark and under illumination and (b) amperometric
A photocatalyst material with a better optical absorption and higher crystallinity will subsequently result in a better PEC performance.
It is demonstrated that various spectacular and interesting 1D nanostructures of TiO2 have been grown and designed by anodic oxidation. TiO2 nanotube arrays and TiO2 nanowires/nanotubes are generally obtained by conventional one-step anodic oxidation with suitable conditions. The effects of anodizing voltage, processing time, and electrolytes on the morphologies of anodic oxidation TiO2 nanomaterials are reported. Meanwhile, two-step anodic oxidation allows growing some spectacular TiO2 nanostructures such as highly ordered TNAs, bamboo-type TNAs, and lotus root-shaped TNAs. In addition, the formation mechanisms and photocatalytic activities of some TNA-based nanomaterials prepared by anodic oxidation are presented and discussed.
\nFinancial support from the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.99-2016.75 (P.H. Le) and the Ministry of Science and Technology, Taiwan, under grant number, 106-2221-E-009-157 (J. Leu), is gratefully acknowledged.
\nIn this chapter, we describe an observationally and psychoanalytically informed, non-intensive parent-toddler intervention for children at risk of ASD; we discuss a preliminary audited case series, and we point out convergences with interventions conducted by organicist workers. An autism diagnosis is usually impressively stable [1, 2], but recent randomized controlled trials suggest that the trajectory of infants and young children may be more modifiable than has long been thought (see French and Kennedy 2017 [3] for a systematic review). As Ozonoff (2013) [4] has written, “By demonstrating that there is solid science behind hope, we can add fuel to the urgency for very early diagnosis and intensive treatment of ASD.”
Kanner (1971) [5] emphasized how widely the later fate of his original cohort of children varied, although they had earlier been so similar as to warrant the idea of an identifiable syndrome. Of 11 children, two (and a third to some extent) were employed as adults and respected by the community; most of the others were permanently institutionalized. Kanner was clear that autism stemmed from inborn difficulties in relating, but he also described the “wisdom” of a foster couple who helped the child to channel his obsessions in socially productive ways. He stressed however how little was known, and that no one intervention worked for all children.
Much more recently, Fein et al. (2013) [6] identified a group of so-called “optimal responders” whose performance on various measures came to be indistinguishable from that of controls in spite of a previous reliable autism diagnosis. Again, no shared characteristics could be identified. Moulton et al. (2016) [2] reported that 9% of 200 diagnosed two year olds were “optimal responders” at 4, while some 83% retained the diagnosis. Ozonoff et al. (2015) [1] have similarly found the stability of a diagnosis to be 82% at 24 months (93% at 18 months), while Lord et al. (2012) [7] have identified differing trajectories within a group of at-risk children who were repeatedly assessed between 18 and 36 months. These findings point up both the usual impressive stability of the diagnosis and the fact that a surprising degree of improvement may sometimes be possible: Even suboptimal improvement can make an incalculable difference to the lives of the children and their families [4].
At the same time, the traditional dichotomy between biological and interactional approaches to autism is beginning to narrow. Singletary [8] has proposed an integrated model of autism that brings together findings on brain structure and function, on the effects of hormones and stress, and on social and emotional interaction in attempting to trace how autistic behaviors may be established and perpetuated; he links these formulations with those derived from psychodynamic treatment approaches. Like the overwhelming majority of contemporary workers from all disciplines, Singletary subscribes to Kanner’s view that autism stems from congenital factors, but adds that atypical experiences arising from these may lead the child to construct unrealistic pictures of significant adults (see also [9]). For example, the child’s atypical sensory endowment may lead it to experience the shared world as a frightening place and to misattribute this to its carers.
Conversely, intensive early intervention of various kinds, including the Early Start Denver Model [10, 11] and pivotal response therapy [12], leads to demonstrable brain changes that can be demonstrated at 2-year follow-up [13]. After a parent-delivered intervention, infant siblings of diagnosed children, who therefore had a heightened risk of ASD, showed measures related to brain systems concerned with social attention that came closer to those in controls [14]. Equally, levels of oxytocin, the “bonding” hormone, which are significantly lower in young children with autism, normalize following 20 minutes of satisfying social interaction with caregivers, but quickly fall off again [15]. These findings illustrate on a biological level that at least one characteristic atypicality in ASD can temporarily be corrected through satisfying experiences of relatedness. They also suggest that ongoing, repeated input will be necessary for consolidation.
In a particularly interesting study, Wan et al. (2013) [16] compared infant siblings of children diagnosed with ASD to a control cohort. The AOSI (a screen for behavioral precursors of autism) was administered at 6–10 months and again at 12–15 months; films of infants playing with their mothers were rated on the Manchester Assessment of Infant-Caregiver Interaction (MACI). Parental non-directiveness and sensitive responsiveness were lower in the high-risk infants at both ages: the authors suggested that the parents might have adopted a more directive style as a consequence of atypical interactions with their older, diagnosed child (a suggestion that agrees with our clinical experience). Another, compatible, explanation was that the parents were responding to the at–risk babies’ lower levels of vitality and engagement.
Most interestingly in relation to the possibility of early intervention, an ASD diagnosis at 3 years was not predicted by the siblings’ characteristically autistic behaviors as shown on the AOSI (though other studies had suggested that AOSI scores were stable over time). What did predict a diagnosis at 3 years was the at-risk siblings’ interactional style with their caregivers as assessed on the MACI, more particularly the caregivers’ scores for directiveness and sensitivity (see also [17]). At 12 months, though not earlier, dyadic mutuality, infant positive affect and infant attentiveness to the caregiver predicted an ASD diagnosis at 3 years. It seemed that features suggestive of autism, as assessed on the AOSI, might be modified by helpful infant-caregiver relationship patterns. Importantly, however, most of this group of at-risk siblings, who were not given a diagnosis in spite of difficulties picked up by the AOSI, did show problems when compared to the low-risk siblings: the authors called them the “other concerns” group. The findings were conceptualized on the basis of a transactional model, in which problems in the infants contributed to their carers’ sub-optimal interactional style (see also [18]); this in turn reduced the infants’ opportunities for social learning. The authors concluded [16] that “intervention efforts to optimize social functioning may need to start early in infancy before interaction patterns become embedded in emerging social atypicality.”
In a case series of 8 at-risk infant siblings [19], Green reported definite improvements on a number of measures in comparison with controls after the parents had been offered video interaction feedback, while Bradshaw et al. (2015) [20] and French & Kennedy (2017) [3] have reviewed RCTs of early intervention for infants and young children at risk of ASD. Until 2015, the Early Start Denver Model [10, 11], which provides intensive input over 2 years, was the only intervention after which social communication was significantly better than for Treatment As Usual, though interventions of fewer than 2 hours per week did achieve some improvements. However, Green et al. [21] in 2017 published the follow-up of an RCT of low-intensity video-feedback intervention to promote positive parenting (Modified iBASIS VIPP), conducted with 9–14 month-old at-risk siblings and their parents and first reported in 2015 [22]. Statistically significant improvements were obtained in ‘autism prodromal symptoms’ over the course of the follow-up, while at the end of the intervention itself the improvements had merely been suggestive (a sleeper effect implying that more rewarding interaction patterns had been internalized). Parental directiveness also decreased significantly, alongside increases in attentiveness to the parent and initiation of interaction by the child. However, no difference could be seen in the rate at which children were given a diagnosis.
The present Child & Adolescent Mental Health (CAMHS) intervention was informed by work in France, where Houzel [23] had developed outreach provision for infants and toddlers suffering from various serious problems. Families were offered a modified version of infant observation (originally introduced by Bick [24] as a training module for child psychotherapists and soon adopted in other mental health trainings). Trainee observers learn to position themselves so as to be receptive to whatever is happening without presenting themselves as experts. Fortuitously, mothers who were distressed by the lack of adult company often felt supported by the presence of an interested, non-judgmental person who was there to learn rather than to instruct. Reports began to be published of “participant”, or “therapeutic”, infant observations where observers took a more active role but where the main emphasis was still on their sensitive, receptive function (for an overview, see [25]). “Therapeutic” observation now forms part of the clinical repertoire of child psychotherapists in many different settings, and has become part of child psychiatry services in a number of French regions; an increasing number of publications report encouraging outcomes of single case studies [26, 27, 28, 29].
Houzel stresses that many new mothers can doubt their own competence compared to professionals: the observer’s receptive stance can go a long way towards supporting mothers’ confidence and self-respect. This emphasis on the observer’s sensitive receptivity converges with the later research findings already mentioned [16, 21] on the central role of parental sensitivity and non-directiveness: the observer’s modeling of these qualities may support the parents in developing them.
The present case series was originally framed as a pilot research project 1 to investigate the practicality of offering weekly outreach participant observation with parent support for a year to families with toddlers who had been screened with the Checklist for Autism in Toddlers (CHAT) for the risk of a later ASD diagnosis. The CHAT [30, 31, 32] is designed for use in primary care and is administered twice, at a week’s interval, when the child is between 18 and 24 months. It includes parent reports and direct observation, and addresses the child’s capacity for symbolic play and joint attention. Based on standardization on some 16,000 toddlers [31], children who fail in all areas fall in the High Risk category, with an 83% likelihood of an ASD diagnosis at 3 ½. All parents in the pilot gave written informed consent for publication2. The two children who could be recruited were later assessed for ASD by clinicians (a child psychiatrist and a multidisciplinary specialist team respectively) who were independent of and blind to the intervention; in the first case, when the child was 3 ½ and the observation had been completed, and, in the second, when the child was just over 2 and had had 4 months of a 1-year observation. The first child was not given an autism diagnosis, while the second was.
This pilot proved impractical due to problems with recruitment and with the geographical matching of observers and families. Fortuitously and over a long period, appropriately-aged at-risk toddlers were referred to the clinic, where one of us (MR) offered participant observation to them and their mothers (and fathers where possible). The only instrument now used was the CHAT at baseline, administered independently of the clinician except in 2 cases (where the issue of bias is not relevant as these children subsequently received a diagnosis). Parents welcomed the CHAT within a clinical context, as they were all concerned about the possibility of autism: it was emphasized that this was a screen, not a diagnosis. Parents knew that their child was part of a case series that would be audited, and subsequently gave consent for the publication of anonymised data. The later diagnostic assessment (by a psychiatrist, a pediatrician, or an interdisciplinary team) was independent of the clinical intervention. In 3 of the 4 cases who did not receive a diagnosis, the assessors were blind to the treatment; the fourth child was not assessed, as he was obviously not autistic. In all, 2 appropriately-aged children completed the pilot project, while the intervention was delivered at the clinic to a further 6; in each group, the same proportion (50%) received a diagnosis.
The intervention was distinct from child psychotherapy3 (though 2 children made the transition to psychotherapy after a year, when the parents had become concerned about emotional issues). Clinicians inevitably saw the process through an emotional lens, but comments were not insight-based and did not address the parents’ past unless they raised such issues themselves. Any problems between parents and clinicians were dealt with on a realistic basis in the present rather than in terms of past relationships. The main aims initially were to try to engage the child, to make links between family members, to draw the parents’ attention to capacities of the child that they might not have noticed, and to think together about what seemed to trigger the child’s engagement or to work against it. This was in fact not unlike the aim of VIPP, though no video was involved and the clinician pointed out events to the parents in real time rather than retrospectively. The observational focus, and the emphasis on supporting the parents in observing their child and thinking about him, are features shared with “Watch, Wait and Wonder” [33], though the clinician was more active: toddlers at risk of ASD generally need help to be able to engage, and prolonged “waiting” could be counterproductive. Sharing the emotional experience of all members of the family is central to this approach: this follows naturally from the clinician’s receptive attitude. Many parents particularly valued the opportunity to process their own feelings about their child’s possible autism and about the many assessments and interventions being offered.
In general terms, the clinician aimed to
Help the child to engage (for instance, by mirroring their actions or affects, a strategy used in many different autism interventions)
Respond to parents’ anxieties and concerns, and provide a place to process their experience
Describe the child’s actions, and consider possible meanings, so as to encourage communication between parents and child
Remind the parents of their importance to the child, and foster their sense of competence
Validate and support the parents’ own observational capacities
Validate satisfying interactions and reflect on the possible meaning of difficulties; accept negative feelings
Some parents responded skeptically to the idea that their child’s behavior might be meaningful or communicative: parents of toddlers with autistic features have had to endure their profoundly invalidating lack of response. Some say that they do not exist for their child except perhaps as a source of food. Observation may convince the clinician of just how essential the parents are for the child; but any worker who has experienced the impact of a toddler who completely ignores them is well placed to empathize with the parents’ experience. This means that parents and child may both wish for contact, but that mistiming and the expectation of not being responded to can block this.
For example, an 18-month-old girl (not part of the case series as she was at Medium Risk only) unusually tried to make eye contact with her parents, who happened not to be looking at her at that moment. She turned away and remained impossible to engage for the rest of the hour. The worker shared her observations with the parents, who then realized that the child’s behavior was a meaningful example of (unrealistic) disappointment rather than yet another instance of lack of interest or incapacity to respond. They began to hope that there could be a point to paying careful attention to the details of their child’s behavior. Over time, this can lead to a virtuous circle of mutual encouragement instead of the vicious circle of discouragement between parents and child [25] in which repeated experiences of invalidation lead the parents to expect nothing else and not to notice the often faint indications that the child might be more open to contact. Again, clinicians are familiar with the experience of suddenly realizing that a child has just done something subtly different that has nearly gone unnoticed. This has potentially far-reaching consequences: what does not get noticed cannot get built on.
In some cases (including that of the little girl in this vignette), it may take a long time for parents to risk believing that their child’s behavior could be meaningful. These particular parents told the clinician repeatedly that she must be mad to suggest such a thing. Over time, however, they began to take turns to notice and report what their child had done between sessions, though they might add that this did not mean anything. At length, both parents began to risk being hopeful at the same time, to share pleasure at their little girl’s development and to encourage each other when there was a temporary plateau.
We will conclude this section with some further examples of how the clinician might approach specific issues.
We have already stated that a central aim is to strengthen the links between parents and child. Sometimes the clinician will engage the child first and then point out to the parents what the child has been able to do, or else comment in a way that emphasizes the child’s meaningful approach to the parent. For instance, a little boy of 20 months was described as being preoccupied with moving toy cars back and forth repetitiously. He drove a car repeatedly up the arm of the sofa his mother was sitting on, and immediately let it fall to the ground. The therapist commented, “Oh dear, falling down!” (said with a falling vocal inflection). “The car went to see mummy, and then it fell down!” This mother was surprised and delighted to think that her child’s play might not be merely repetitious and meangingless, and soon began to engage with him by saying “hello” to the car; while the little boy regularly made eye contact with the therapist whenever he repeated this play, which was the first instance of social referencing that anyone had seen from him. A vital implication of this interaction was that the mother mattered to the child and that he wanted to connect with her.
Other parents may be actively engaged with their toddler: sometimes directively, but often scaffolding his or her activity very sensitively. The clinician may spend considerable time as a benign witness, sometimes putting into words what is happening but often without a clear role. (Again, the implicit message is that it is the parents who matter). The clinician might comment: “yes, I see,“or “Mummy saw [what you did]” when the child engages in social referencing. When there has been an instance of satisfying communication between mother and toddler, the therapist might say, “Mummy understood what you wanted/what you were showing her”; or, if the parent has reported an example of progress, “Mummy was very happy when you pointed to the picture/showed her what you wanted/liked playing with the other children.” In an intervention that is going well, mother and child may end up playing together for long stretches while the therapist shares and validates the mother’s pleasure. In psychoanalytic terms, this could be conceptualized as what Stern calls the “good grandmother transference” [34].
Imitation is central in establishing contact with toddlers at risk of autism. The clinician may mirror the child’s actions and gestures, sometimes in a different mode, as in the first example, where the therapists’s falling vocal inflection mirrored the falling of the toy car (see Stern, 1985 [35], on cross-modal attunement). The little boy in that example often banged on the radiator to make a sound: the therapist similarly banged on a metal rubbish bin, and this turned into a “conversation” that could be varied by introducing different rhythms.
Where a child’s actions become repetitive and meaningless, the therapist will need to intervene. This may be by removing a toy car whose wheels the child is spinning, while explaining that it is stopping the therapist and child from being together. The therapist may also introduce a more meaningful context, for instance by placing a doll in the car or by using another car to approach the first and pretending to speak to it.
For example, the same little boy already mentioned, like many children with autistic features, was preoccupied with opening and closing doors, and on one occasion hunched himself over the dolls’ house, repetitiously opening and shutting its door in such a way as to exclude the adults. After commenting that she could not see what he was doing, the therapist approached the dolls’ house with a toy animal, who popped his head out of different windows, saying “hello” to the boy as though teasing him by appearing in a different place each time. He smiled, returned to contact and produced a stream of lively babbling.
The therapist may model ways of overcoming negative patterns of interaction, or remind the parents of times when they had themselves been able to do this. For example, when a child climbed onto the therapist’s lap and repeatedly tugged at her hair, she said that she could see that he was cross, but hair-pulling was not allowed as it hurt her, and she removed his hand from her hair while maintaining eye contact and keeping him on her lap. He focused on looking at her and began to babble, which she mirrored. Later in that hour, he pinched his mother, and she too said that she could see that he was cross; she picked him up and rocked him, and he settled down. In a later session he persistently pinched and strangled his mother in a way that was very difficult to tolerate, and she became increasingly upset. The therapist reminded the mother of how well she had previously managed by rocking him when he had pinched her: the mother tried picking him up and rocking him, and again this was successful in helping him to settle.
The children were a heterogeneous group, recruited largely by word of mouth in the absence of pathways for this age [36]. While most research studies we have mentioned concern infants whose older siblings have an autism diagnosis, this was true of only 2 of our 8 toddlers. Factors well-known to be associated with autism - extreme prematurity; a metabolic abnormality; and a congenital condition together with a neonatal infection – each with a 20% risk of autism – were present in 3 of the children; the other 5 children showed autistic features without these associated factors. Of the 2 children with older diagnosed siblings, one received a diagnosis while the other did not.
Table 1 summarizes the information on the 8 children in the High Risk category of the CHAT with regard to gender, to their later diagnostic status, and to whether or not they had regressed, were born prematurely, or were the younger sibling of a child diagnosed with autism. The small number of children means that no associations can be identified between any of these factors and a subsequent diagnosis.
3 | 4 | 1 | ||
3 | 4 | 1 | ||
1 | ||||
2 | 4 | 1 | ||
3 | 3 | |||
1 | 1 | |||
2 | 3 | 1 | ||
1 | 1 | |||
2 | 4 | 1 | ||
1 |
Some characteristics of the 8 children.
Table 2 concerns age at referral, at the beginning of treatment4 and at diagnostic assessment, as well as prematurity status and the presence of an older diagnosed sibling. Of 8 children in the High Risk category, 4 (or 50%) received an autism diagnosis at a range of ages. According to the CHAT, this figure might have been expected to be 83% (p = 0.033, Fisher Exact Test [37]).
Sibling? | Prem? | Mean | N | Minimum | Maximum | Range | |
---|---|---|---|---|---|---|---|
No | No | Referral age in months | 18.60 | 5 | 13 | 23 | 10 |
began Rx age m months | 21.20 | 5 | 16 | 24 | 8 | ||
Age at assessment in months | 30.60 | 5 | 22 | 42 | 20 | ||
Yes | Referral age in months | 24.00 | 1 | 24 | 24 | 0 | |
began Rx age m months | 28.00 | 1 | 28 | 28 | 0 | ||
Age at assessment in months | 55.00 | 1 | 55 | 55 | 0 | ||
Yes | NO | Referral age in months | 15.00 | 2 | 12 | 18 | 6 |
began Rx age m months | 19.50 | 2 | 15 | 24 | 9 | ||
Age at assessment in months | 34.50 | 2 | 27 | 42 | 15 |
Age of children at referral, beginning of treatment and diagnostic assessment.
These were routinely collected in line with clinical practice, but are not available for the child who was seen before they were introduced at the clinic or for the two children seen in their homes. The two measures collected, as shown in Table 3, were the PIR-GAS, (where the clinician rates the parent–child relationship) and the Goal Based Measure, where the parent rates how far the child has progressed towards 3 desired goals on a scale of 0 to 10. (Child G moved away before any measures except GAS-1 could be obtained). As is usual, the parents appeared to rate progress more highly than the clinician; the big jump in the GAS score for Child A coincided with his beginning to call his parents Mummy and Daddy, which made an enormous difference to their relationship with him. It will be seen that all parents judged their child to have improved on the agreed goals, whether or not they later attracted a diagnosis.
CHILD | Goal-based measure T1 | Goal-based measure T2 | GAS-1 | GAS-2 |
---|---|---|---|---|
4;6;4 | 6;7;6 | 21 | 53 | |
2;1;2 | 7;5;8 | 50 | 50 | |
2;1;0 | 3;5;2 | 32 | 40 | |
1;1;2 | 2;6;8 | 55 | 58 | |
21 | ||||
1;1;0 | 2;8;4 | 32 | 44 |
Children’s scores on routine CAMHS outcome measures (Goal-Based Measure and PIR-GAS).
Table 4 shows some of the children’s developmental achievements. Reliable patterns would not be expected with so few children, though some tendencies were unexpected. The children’s characteristics at the beginning of the intervention did not predict their diagnosis [16]. All but 2 of the children had sleeping problems. Perhaps unsurprisingly, only 1 made eye contact, and was subsequently not diagnosed; on the other hand, the one child who initially showed social referencing later was.
Diagnosis | ||||
---|---|---|---|---|
No | Yes | (‘Pending’) | ||
Sleeping problems | Y (mild) | 1 | ||
Y | 3 | 3 | ||
N | 1 | 1 | ||
Eye Contact (initial) | Y | 1 | ||
N | 3 | 4 | 1 | |
Social Referencing (initial) | Y | 1 | ||
N | 4 | 3 | 1 | |
Turn taking | Y (variable) | 2 | ||
Y | 4 | 1 | 1 | |
N | 1 | |||
Reciprocity | Y (variable) | 1 | ||
Y | 4 | 2 | 1 | |
N | 1 | |||
Play: responds | Y (variable) | 1 | ||
Y | 4 | 3 | 1 | |
Play: initiates | Y (variable) | 1 | ||
Y | 4 | 1 | 1 | |
N | 2 | |||
Play: symbolic | Y (fleeting) | 1 | ||
Y | 4 | 1 | 1 | |
N | 2 |
Developmental achievements.
In the course of the intervention, all but 1 of the children developed turn taking and reciprocity: the one who did not received a diagnosis. All (4) of the children who were later undiagnosed developed play, whether in response to an adult, initiated by themselves, or symbolic; of the diagnosed children, 3 played in response to an adult, but only 1 initiated play themselves or played symbolically. This underlines the importance of the adult taking the initiative where necessary.
Table 5 concerns the use of words and of two-word and three-word sentences, as well as of capacities such as playing peek-a-boo games, which clinically is often a promising sign, and engaging in joint attention and following and producing a point, all of which are targeted by the CHAT. Participating in triadic situations is also encouraging clinically, as is the display of a sense of humor. Again, the small number of children rules out meaningful distinctions between those with and those without a subsequent diagnosis. However, there appear to be some trends that are at least suggestive in respect of initiating play (Table 4), producing symbolic play (Table 4), producing sentences of 2 words or more (Table 5), showing the capacity for humor (Table 5), and (not surprisingly as this is a component of the CHAT) producing or following a point (Table 5).
Diagnosis | ||||
---|---|---|---|---|
No | Yes | (‘Pending’) | ||
Words: produces | Y | 4 | 3 | 1 |
proto-words | 1 | |||
Sentences | Y | 3 | ||
N | 4 | 1 | ||
3-w | 1 | |||
Peek-a-boo: moves Mother’s hands | Y | 3 | 3 | 1 |
N | 1 | 1 | ||
Peek-a-boo by child | Y | 4 | 4 | 1 |
N | ||||
Joint attention | Y (fleeting) | 1 | ||
Y | 4 | 3 | 1 | |
Humor | Y++ | 1 | ||
Y | 3 | 1 | 1 | |
N | 3 | |||
Follows a point | Y (fleeting) | 1 | ||
Y | 4 | 2 | 1 | |
N | 1 | |||
Uses a point | Y (fleeting) | 1 | ||
Y | 4 | 1 | ||
N | 3 | |||
Participates in triadic situations | Y | 4 | 2 | 1 |
Y (fleeting) | 0 | 1 | 0 |
Further developmental capacities.
Of the 4 children who were diagnosed, 1 was assessed at just under 27 months and one at 23 months. In both cases, the diagnoses relied on the presence of typically autistic behaviors, even though the children were well under 3 (see [16]), and did not involve observation of the child playing with the mother (or even with a clinician as in the ADOS). This point seems important in view of the studies by Wan et al. [16] and by Moulton et al. [2] and we will return to it in the discussion.
The trajectory of the child whose diagnosis is described as “pending” was particularly interesting. At 31 months, he received a diagnosis based on his withdrawn and sensory-seeking behavior after a pediatric appointment in which his mother described his difficulties while he remained withdrawn. At 34 months, his atypical behaviors were confirmed by professionals in a different country (with a high prevailing standard of expertise in autism); but they thought that a diagnosis would be premature in view of his high degree of reciprocal engagement and mutual enjoyment during play with his mother. Both of these positions seemed to us to be understandable in view of this child’s behavior in the clinical context. He came to be highly engaged with his mother and responsive to her; showed evidence of Theory of Mind in everyday interactions with his parents; engaged in triadic situations; produced words and two-word sentences, and imitated animal sounds on request; followed and produced a point; and sustained humorous ‘proto-conversations’ with the therapist as well as with his parents. However, if his mother and therapist spoke together and he was receiving no adult attention, his gaze went blank and he reverted to spinning the wheels on a truck that he had previously been playing with appropriately. It was not until some months after the original diagnosis that he became able to remain present and engaged even when adults did not focus on him for a brief time.
Finally, a possibly suggestive trend concerns the presence or absence of “associated factors”. As we have stated, these were having an older diagnosed sibling; extreme prematurity; a metabolic abnormality; and a congenital condition and neonatal infection (each with a 20% risk of autism). In each of the diagnosed and undiagnosed groups, one child was a younger sibling. Otherwise, the undiagnosed group contained 3 instances of the “other factors”, while none were present in the diagnosed group. It is conceivable that autistic behaviors may be more persistent where they are not associated with such other risk factors.
Like iVIPP-Auti, this intervention involves the parents in identifying interactions that promote or inhibit the toddlers’ engagement. In addition, the therapist models receptivity, and aims to empower the parents and support their capacity to observe. Perhaps the most significant distinguishing characteristic of this psychoanalytically-informed kind of therapeutic observation is that the main focus of the clinician’s thinking concerns the possible meaning of what is taking place – indeed, the belief that the child’s behavior is meaningful – even though the meaning is not necessarily articulated (see Britton, [38]). It remains mysterious how receptive attention promotes development (see [39] for a psychoanalytic perspective) or grows the social brain (to think biologically). In any case, findings such as those of Wan et al. [16] attest that it does so, as does the association, repeatedly documented from Ainsworth et al. [40] onwards, between maternal sensitivity and secure attachment (see [41]).
The parents involved in this pilot all valued the opportunity to focus on their child and to discuss their own feelings about the process the family was going through. To some extent they were a self-selected group, as they were largely referred by word of mouth in the absence of established pathways. The intervention does not suit all families: One couple, for instance, felt unable to take time off work to attend, and instead wanted very intensive input for their son. Matching interventions to families is an important issue for future exploration. So is the issue of even earlier intervention, concerning which promising case reports exist [42, 43] and for which neurological markers at 6 months could serve as a baseline [44, 45].
The trajectory of one particular High Risk toddler illustrates the degree to which improvement can be mediated by the parents. Initially this boy made no contact with the parents, screamed uninterruptedly to the point of making himself sick, and often had to be taken out of the room. The parents’ lives were seriously restricted by his fear of other children and by his other major difficulties. After some 5 meetings, the therapist went on sick leave for 3 months: She returned to find that the child had begun to speak. Clearly, this was not the consequence of any direct input from her; but the parents had felt listened to and were able to maintain a different mind-set while interacting with their child. This boy remains somewhat delayed, but is doing well with support at a mainstream school. He enjoys a wide range of activities and friendships, though his behavior could have justified an autism diagnosis for some 18 months after work began: an example of how much change can take place between 2 and 4 years, a period during which a diagnosis is usually stable [1, 2].
The case of the child whose diagnosis is “pending” (p. 11) illustrates how important it is that a diagnosis should take account of how the child plays with the mother, not just the presence of autistic features which, as Wan et al. have shown, do not predict a diagnosis at the age of 3 [16]. Two of our children who were given a diagnosis received it very early (at 23 months and before 27 months respectively), on the basis of a checklist of symptoms. These families did not continue with the intervention: in one case, because they moved away and, in the other, because the diagnosis gave them access to excellent local services.
All 8 of the present children, whether or not they received a diagnosis, improved considerably in terms of pleasurable engagement with their parents and other markers of relatedness, as summarized earlier (the fact that this is a preliminary audit rather than a research study means that unfortunately there is no control group to compare them with in this respect). However, unlike “optimal responders”, all showed residual difficulties to a greater or lesser degree; some of these appeared to be emotional, and, with 2 children, were subsequently addressed in psychotherapy. This links with Wan et al.’s [16] description of their “Other Concerns” group: High-Risk siblings who showed early autistic features on the AOSI but whose parents demonstrated high receptivity and low directiveness, and who, at 3 years of age, did not receive a diagnosis, but still had problems compared to low-risk siblings.
Despite all the recent research demonstrating that autistic features in early childhood are far from immutable and can be ameliorated through parent-mediated interventions, professionals (as well as parents) still often think of “having autism” as though it were something concrete and fixed. This can understandably make them reluctant to intervene early for fear of prematurely labelling a child. Many parents tell a painful story of being advised that their child “will grow out of it”, which can leave them feeling unheard and invalidated. If the findings of studies such as those of Dawson [10, 11] and Green [21] were fully taken on board, professionals might feel more able to act early and with a realistic degree of hopefulness.
A diagnosis is often needed to access essential services, but it should be emphasized to parents that children are heterogeneous in respect of their trajectory [7, 46] and that, with intervention, there may be considerable scope for review between the ages of 2 and 4. Such uncertainty can be difficult for parents – and professionals – to sustain [47], but doing so may be central to being able to remain receptive and non-directive – the factors that predict a diagnosis at 3 years in the way that early autistic features do not [16]. The present intervention could help parents to manage the wait for a definite diagnosis as well as to foster receptivity, non-directiveness and the capacity to trust their own feelings and observations. The intervention is low-key, and could potentially be delivered by well-supported mental health workers at a far lower intensity than an effective intervention such as ESDM, as it is in France; it could also work well in conjunction with iVIPP-Auti. As the American Academy of Pediatrics has stated [48], listening to parents and early screening are both essential.
The rate of diagnosis of the toddlers in this case series, unlike the rate in many studies of other interventions, was markedly lower than might be expected on the basis of the CHAT (p = 0.033), suggesting that a larger study is warranted. The results illustrate the heterogeneity of a clinical sample and the changes that can take place in very young children with autistic behaviors, as documented in recent research. The key features of the present intervention are parental involvement; the clinician’s sharing of the family’s emotional experience, privileging of meaning, and support of the parents; and the promotion of receptive behavior.
We wish to thank the children’s families; the colleagues involved in the original pilot project; colleagues at the Tavistock Lifespan Team and at Camden MOSAIC; and the Winnicott Trust (for financial support).
The authors declare there is no conflict of interest.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11566",title:"Periodontology - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"75ef2eae3087ec0c7f2076cc64e2cfc3",slug:null,bookSignature:"Dr. Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",editedByType:null,editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"92c881664d1921c7f2d0fee34b78cd08",slug:null,bookSignature:"Dr. Jaime Bustos-Martínez and Dr. Juan José Valdez-Alarcón",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",editedByType:null,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",subtitle:null,isOpenForSubmission:!0,hash:"069d6142ecb0d46d14920102d48c0e9d",slug:null,bookSignature:"Dr. Mihaela Laura Vica",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",editedByType:null,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11570",title:"Influenza - New Approaches",subtitle:null,isOpenForSubmission:!0,hash:"157b379b9d7a4bf5e2cc7a742f155a44",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11583",title:"Parkinson’s Disease - Animal Models, Current Therapies and Clinical Trials",subtitle:null,isOpenForSubmission:!0,hash:"99788a4a7f9ee0b4de55de293a2ed3d0",slug:null,bookSignature:"Prof. Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/11583.jpg",editedByType:null,editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11584",title:"Recent Advances in Distinctive Migraine Syndromes",subtitle:null,isOpenForSubmission:!0,hash:"44a6090845f971a215ddf013f1dc2027",slug:null,bookSignature:"Dr. Theodoros Mavridis, Dr. Georgios Vavougios and Associate Prof. Dimos-Dimitrios Mitsikostas",coverURL:"https://cdn.intechopen.com/books/images_new/11584.jpg",editedByType:null,editors:[{id:"320230",title:"Dr.",name:"Theodoros",surname:"Mavridis",slug:"theodoros-mavridis",fullName:"Theodoros Mavridis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11587",title:"Updates on ADHD - New Approaches to Assessment and Intervention",subtitle:null,isOpenForSubmission:!0,hash:"e0718a84e5fda7ed4287095c3ef27dae",slug:null,bookSignature:"Dr. Celestino Rodríguez Pérez and Mrs. Debora Areces",coverURL:"https://cdn.intechopen.com/books/images_new/11587.jpg",editedByType:null,editors:[{id:"85114",title:"Dr.",name:"Celestino",surname:"Rodríguez Pérez",slug:"celestino-rodriguez-perez",fullName:"Celestino Rodríguez Pérez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism Spectrum Disorders - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"934f063be3eacb5dd0902ae8bc622392",slug:null,bookSignature:"Associate Prof. Marco Carotenuto",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:[{id:"305627",title:"Associate Prof.",name:"Marco",surname:"Carotenuto",slug:"marco-carotenuto",fullName:"Marco Carotenuto"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11590",title:"Updates in Anorexia and Bulimia Nervosa",subtitle:null,isOpenForSubmission:!0,hash:"c8f5d69fff84a3687e5511bade9cc261",slug:null,bookSignature:"Prof. Ignacio Jáuregui-Lobera and Dr. José V Martínez Quiñones",coverURL:"https://cdn.intechopen.com/books/images_new/11590.jpg",editedByType:null,editors:[{id:"323887",title:"Prof.",name:"Ignacio",surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:199},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"307",title:"Agroecology",slug:"agroecology",parent:{id:"29",title:"Agronomy",slug:"agronomy"},numberOfBooks:9,numberOfSeries:0,numberOfAuthorsAndEditors:234,numberOfWosCitations:116,numberOfCrossrefCitations:171,numberOfDimensionsCitations:350,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"307",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10499",title:"Next-Generation Greenhouses for Food Security",subtitle:null,isOpenForSubmission:!1,hash:"456f82c97eafad5734cd36c48e167781",slug:"next-generation-greenhouses-for-food-security",bookSignature:"Redmond R. Shamshiri",coverURL:"https://cdn.intechopen.com/books/images_new/10499.jpg",editedByType:"Edited by",editors:[{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10134",title:"Organic Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"a9866f9df52191cc505b27fb2abdc687",slug:"organic-agriculture",bookSignature:"Shaon Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/10134.jpg",editedByType:"Edited by",editors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",middleName:null,surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9345",title:"Sustainable Crop Production",subtitle:null,isOpenForSubmission:!1,hash:"5135c48a58f18229b288f2c690257bcb",slug:"sustainable-crop-production",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6952",title:"Irrigation in Agroecosystems",subtitle:null,isOpenForSubmission:!1,hash:"1afe3f365612ea9b4f35942c69792f63",slug:"irrigation-in-agroecosystems",bookSignature:"Gabrijel Ondrašek",coverURL:"https://cdn.intechopen.com/books/images_new/6952.jpg",editedByType:"Edited by",editors:[{id:"46939",title:"Prof.",name:"Gabrijel",middleName:null,surname:"Ondrasek",slug:"gabrijel-ondrasek",fullName:"Gabrijel Ondrasek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6560",title:"Plant Competition in Cropping Systems",subtitle:null,isOpenForSubmission:!1,hash:"664e0a97f4494932f6c0461f9a6e7bd6",slug:"plant-competition-in-cropping-systems",bookSignature:"Daniel Dunea",coverURL:"https://cdn.intechopen.com/books/images_new/6560.jpg",editedByType:"Edited by",editors:[{id:"180202",title:"Associate Prof.",name:"Daniel",middleName:null,surname:"Dunea",slug:"daniel-dunea",fullName:"Daniel Dunea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6485",title:"Sustainability of Agroecosystems",subtitle:null,isOpenForSubmission:!1,hash:"4ed7b8c6bce44bfaddb83c0365793742",slug:"sustainability-of-agroecosystems",bookSignature:"Alexandre Bosco de Oliveira",coverURL:"https://cdn.intechopen.com/books/images_new/6485.jpg",editedByType:"Edited by",editors:[{id:"77880",title:"Dr.",name:"Alexandre",middleName:"Bosco",surname:"De Oliveira",slug:"alexandre-de-oliveira",fullName:"Alexandre De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6301",title:"Vegetation",subtitle:null,isOpenForSubmission:!1,hash:"5c1b7f22f2f926f8d59ea56f2fe84c6f",slug:"vegetation",bookSignature:"Allan Sebata",coverURL:"https://cdn.intechopen.com/books/images_new/6301.jpg",editedByType:"Edited by",editors:[{id:"143409",title:"Dr.",name:"Allan",middleName:null,surname:"Sebata",slug:"allan-sebata",fullName:"Allan Sebata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4566",title:"Agroecology",subtitle:null,isOpenForSubmission:!1,hash:"9e35a4ff7bee4ab82eab2c6b3f441789",slug:"agroecology",bookSignature:"Vytautas Pilipavičius",coverURL:"https://cdn.intechopen.com/books/images_new/4566.jpg",editedByType:"Edited by",editors:[{id:"169359",title:"Dr.",name:"Vytautas",middleName:null,surname:"Pilipavicius",slug:"vytautas-pilipavicius",fullName:"Vytautas Pilipavicius"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:9,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"68945",doi:"10.5772/intechopen.88434",title:"Effect of Abiotic Stress on Crops",slug:"effect-of-abiotic-stress-on-crops",totalDownloads:1496,totalCrossrefCites:28,totalDimensionsCites:46,abstract:"Crop yield is mainly influenced by climatic factors, agronomic factors, pests and nutrient availability in the soil. Stress is any adverse environmental condition that hampers proper growth of plant. Abiotic stress creates adverse effect on multiple procedures of morphology, biochemistry and physiology that are directly connected with growth and yield of plant. Abiotic stress are quantitative trait hence genes linked to these traits can be identified and used to select desirable alleles responsible for tolerance in plant. Plants can initiate a number of molecular, cellular and physiological modifications to react to and adapt to abiotic stress. Crop productivity is significantly affected by drought, salinity and cold. Abiotic stress reduce water availability to plant roots by increasing water soluble salts in soil and plants suffer from increased osmotic pressure outside the root. Physiological changes include lowering of leaf osmotic potential, water potential and relative water content, creation of nutritional imbalance, enhancing relative stress injury or one or more combination of these factors. Morphological and biochemical changes include changes in root and shoot length, number of leaves, secondary metabolite (glycine betaine, proline, MDA, abscisic acid) accumulation in plant, source and sink ratio. Proposed chapter will concentrate on enhancing plant response to abiotic stress and contemporary breeding application to increasing stress tolerance.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Summy Yadav, Payal Modi, Akanksha Dave, Akdasbanu Vijapura, Disha Patel and Mohini Patel",authors:[{id:"186963",title:"Dr.",name:"Summy",middleName:null,surname:"Yadav",slug:"summy-yadav",fullName:"Summy Yadav"},{id:"308004",title:"Ms.",name:"Payal",middleName:null,surname:"Modi",slug:"payal-modi",fullName:"Payal Modi"},{id:"308005",title:"Ms.",name:"Akanksha",middleName:null,surname:"Dave",slug:"akanksha-dave",fullName:"Akanksha Dave"},{id:"308006",title:"Ms.",name:"Akdasbanu",middleName:null,surname:"Vijapara",slug:"akdasbanu-vijapara",fullName:"Akdasbanu Vijapara"},{id:"308007",title:"Ms.",name:"Disha",middleName:null,surname:"Patel",slug:"disha-patel",fullName:"Disha Patel"},{id:"308008",title:"Ms.",name:"Mohini",middleName:null,surname:"Patel",slug:"mohini-patel",fullName:"Mohini Patel"}]},{id:"68927",doi:"10.5772/intechopen.89089",title:"Nano-Fertilizers for Sustainable Crop Production under Changing Climate: A Global Perspective",slug:"nano-fertilizers-for-sustainable-crop-production-under-changing-climate-a-global-perspective",totalDownloads:2088,totalCrossrefCites:9,totalDimensionsCites:33,abstract:"Since green revolution, chemical fertilizers are deemed an indispensable input of modern crop production systems, but these have associated environmental and ecological consequences. Loss of nutrients from agricultural fields in the form of leaching and gaseous emissions has been the leading cause of environmental pollution and climate change. Ensuring the sustainability of crop production necessitates exploring other sources of nutrients and modifying prevalent nutrient sources. Nanotechnology, which utilizes nanomaterials of less than 100 nm size, may offer an unprecedented opportunity to develop concentrated sources of plant nutrients having higher-absorption rate, utilization efficacy, and minimum losses. Nanofertilizers are being prepared by encapsulating plant nutrients into nanomaterials, employing thin coating of nanomaterials on plant nutrients, and delivering in the form of nano-sized emulsions. Nano-pores and stomatal openings in plant leaves facilitate nanomaterial uptake and their penetration deep inside leaves leading to higher nutrient use efficiency (NUE). Nanofertilizers have higher transport and delivery of nutrients through plasmodesmata, which are nanosized (50–60 nm) channels between cells. The higher NUE and significantly lesser nutrient losses of nanofertilizers lead to higher productivity (6–17%) and nutritional quality of field crops. However, production and availability, their sufficient effective legislation, and associated risk management are the prime limiting factors in their general adoption as plant nutrient sources.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Muhammad Aamir Iqbal",authors:[{id:"249866",title:"Dr.",name:"Muhammad Aamir",middleName:null,surname:"Iqbal",slug:"muhammad-aamir-iqbal",fullName:"Muhammad Aamir Iqbal"}]},{id:"67546",doi:"10.5772/intechopen.86339",title:"Application Potentials of Plant Growth Promoting Rhizobacteria and Fungi as an Alternative to Conventional Weed Control Methods",slug:"application-potentials-of-plant-growth-promoting-rhizobacteria-and-fungi-as-an-alternative-to-conven",totalDownloads:1116,totalCrossrefCites:8,totalDimensionsCites:23,abstract:"Weeds are the plants usually grown on unwanted places and are notorious for causing interruptions in agricultural settings. Remarkable yield losses have been reported in fields infested with weeds worldwide. So far, these weeds cause about 34% of losses to yields of major agricultural crops and pose threats to economic condition of the farmers. Conventionally, weed control was achieved by the use of chemical herbicides and traditional agronomic practices. But these methods are no more sustainable as the magnitude of threats imposed by these conventionally outdated methods such as chemical herbicides is greater than the benefits achieved and their continuous use has disturbed biodiversity and weed ecology along with herbicide resistance in some weeds. Herbicide residues are held responsible for human health hazards as well. Therefore the future of weed control is to rely on alternative approaches which may be biological agents such as bacteria and fungi. This chapter highlights the potentials of using bacterial and fungal biocontrol agents against weeds in farmer fields. Moreover, detailed review on merits and demerits of conventional weed control methods is discussed in this chapter.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Adnan Mustafa, Muhammad Naveed, Qudsia Saeed, Muhammad Nadeem Ashraf, Azhar Hussain, Tanveer Abbas, Muhammad Kamran, Nan-Sun and Xu Minggang",authors:[{id:"276041",title:"Dr.",name:"Azhar",middleName:null,surname:"Hussain",slug:"azhar-hussain",fullName:"Azhar Hussain"},{id:"299110",title:"Dr.",name:"Adnan",middleName:null,surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"},{id:"300582",title:"Dr.",name:"Muhammad",middleName:null,surname:"Naveed",slug:"muhammad-naveed",fullName:"Muhammad Naveed"},{id:"300583",title:"Ms.",name:"Qudsia",middleName:null,surname:"Saeed",slug:"qudsia-saeed",fullName:"Qudsia Saeed"},{id:"300584",title:"Dr.",name:"Tanveer",middleName:null,surname:"Abbas",slug:"tanveer-abbas",fullName:"Tanveer Abbas"},{id:"300585",title:"Mr.",name:"Muhammad",middleName:null,surname:"Nadeem Ashraf",slug:"muhammad-nadeem-ashraf",fullName:"Muhammad Nadeem Ashraf"},{id:"300586",title:"Prof.",name:"Xu",middleName:null,surname:"Minggang",slug:"xu-minggang",fullName:"Xu Minggang"},{id:"301223",title:"Mr.",name:"Muhammad",middleName:null,surname:"Kamran",slug:"muhammad-kamran",fullName:"Muhammad Kamran"}]},{id:"48142",doi:"10.5772/59933",title:"Wastes in Building Materials Industry",slug:"wastes-in-building-materials-industry",totalDownloads:4064,totalCrossrefCites:14,totalDimensionsCites:21,abstract:null,book:{id:"4566",slug:"agroecology",title:"Agroecology",fullTitle:"Agroecology"},signatures:"Marinela Barbuta, Roxana Dana Bucur, Sorin Mihai Cimpeanu, Gigel Paraschiv and Daniel Bucur",authors:[{id:"50794",title:"Prof.",name:"Daniel",middleName:"G",surname:"Bucur",slug:"daniel-bucur",fullName:"Daniel Bucur"}]},{id:"64340",doi:"10.5772/intechopen.80365",title:"Deficit Irrigation in Mediterranean Fruit Trees and Grapevines: Water Stress Indicators and Crop Responses",slug:"deficit-irrigation-in-mediterranean-fruit-trees-and-grapevines-water-stress-indicators-and-crop-resp",totalDownloads:1429,totalCrossrefCites:10,totalDimensionsCites:14,abstract:"In regions with Mediterranean climate, water is the major environmental resource that limits growth and production of plants, experiencing a long period of water scarcity during summer. Despite the fact that most plants developed morphological, anatomical, physiological, and biochemical mechanisms that allow to cope with such environments, these harsh summer conditions reduce growth, yield, and fruit quality. Irrigation is implemented to overcome such effects. Conditions of mild water deficit imposed by deficit irrigation strategies, with minimal effects on yield, are particularly suitable for such regions. Efficient irrigation strategies and scheduling techniques require the quantification of crop water requirements but also the identification of pertinent water stress indicators and their threshold. This chapter reviews the scientific information about deficit irrigation recommendations and thresholds concerning water stress indicators on peach trees, olive trees, and grapevines, as case studies.",book:{id:"6952",slug:"irrigation-in-agroecosystems",title:"Irrigation in Agroecosystems",fullTitle:"Irrigation in Agroecosystems"},signatures:"Anabela Fernandes-Silva, Manuel Oliveira, Teresa A. Paço and Isabel\nFerreira",authors:[{id:"81075",title:"Prof.",name:"Anabela",middleName:"Afonso",surname:"Fernandes-Silva",slug:"anabela-fernandes-silva",fullName:"Anabela Fernandes-Silva"},{id:"181227",title:"Dr.",name:"Manuel",middleName:"T.",surname:"Oliveira",slug:"manuel-oliveira",fullName:"Manuel Oliveira"},{id:"245447",title:"Prof.",name:"Teresa",middleName:null,surname:"Paço",slug:"teresa-paco",fullName:"Teresa Paço"},{id:"245449",title:"Prof.",name:"Isabel",middleName:null,surname:"Ferreira",slug:"isabel-ferreira",fullName:"Isabel Ferreira"}]}],mostDownloadedChaptersLast30Days:[{id:"58509",title:"Activity and Variety of Soil Microorganisms Depending on the Diversity of the Soil Tillage System",slug:"activity-and-variety-of-soil-microorganisms-depending-on-the-diversity-of-the-soil-tillage-system",totalDownloads:2175,totalCrossrefCites:8,totalDimensionsCites:11,abstract:"Soil is an ecosystem capable of producing the resources necessary for the development of the living organisms. Soil microorganisms (bacteria and fungi) are responsible for biomass decomposition, biogenic element circulation, which makes nutrients available to plants, biodegradation of impurities, and maintenance of soil structure. The presence of microorganisms in soil depends on their chemical composition, moisture, pH, and structure. Human activity has an indispensable influence on the formation of ecosystems. Soil tillage has an impact on the chemical and physical parameters of the soil, and thus on its biological properties. The use of inappropriate agro-technology can lead to degradation of the soil environment. Changes in soil properties may cause changes in soil abundance, activity, and diversity. Cultivation can affect microorganisms, causing their mortality and reducing the availability of nourishment in the soil. Therefore, it is extremely important to assess the diversity and microbiological activity of soil in relation to soil-tillage technology.",book:{id:"6485",slug:"sustainability-of-agroecosystems",title:"Sustainability of Agroecosystems",fullTitle:"Sustainability of Agroecosystems"},signatures:"Karolina Furtak and Anna Maria Gajda",authors:[{id:"225887",title:"Dr.Ing.",name:"Anna",middleName:null,surname:"Gajda",slug:"anna-gajda",fullName:"Anna Gajda"},{id:"225889",title:"M.Sc.",name:"Karolina",middleName:null,surname:"Furtak",slug:"karolina-furtak",fullName:"Karolina Furtak"}]},{id:"72075",title:"Application and Mechanisms of Plant Growth Promoting Fungi (PGPF) for Phytostimulation",slug:"application-and-mechanisms-of-plant-growth-promoting-fungi-pgpf-for-phytostimulation",totalDownloads:1323,totalCrossrefCites:6,totalDimensionsCites:13,abstract:"Plant growth-promoting fungi (PGPF) constitute diverse genera of nonpathogenic fungi that provide a variety of benefits to their host plants. PGPF show an effective role in sustainable agriculture. Meeting increasing demand for crop production without damage to the environment is the biggest challenge nowadays. The use of PGPF has been recognized as an environmentally friendly way of increasing crop production. These fungi have proven to increase crop yields by improving germination, seedling vigor, plant growth, root morphogenesis, photosynthesis, and flowering through either a direct or indirect mechanism. The mechanisms of PGPF involve solubilizing and mineralizing nutrients for easy uptake by plants, regulating hormonal balance, producing volatile organic compounds and microbial enzyme, suppressing plant pathogens and ameliorating abiotic stresses. Successful colonization is an intrinsic factor for most PGPF to exert their beneficial effects on plants. A certain level of specificity exists in the interactions between plant species and PGPF for root colonization and growth promoting effects. There is a gap between the number of reported efficacious PGPF and the number of PGPF as biofertilizer. Efforts should be strengthened to improve the efficacy and commercialization of PGPF. Hence, this chapter summarizes valuable information regarding the application and mechanisms of PGPF in sustainable agriculture.",book:{id:"10134",slug:"organic-agriculture",title:"Organic Agriculture",fullTitle:"Organic Agriculture"},signatures:"Md. Motaher Hossain and Farjana Sultana",authors:[{id:"318381",title:"Dr.",name:"Md. Motaher",middleName:null,surname:"Hossain",slug:"md.-motaher-hossain",fullName:"Md. Motaher Hossain"},{id:"318383",title:"Dr.",name:"Farjana",middleName:null,surname:"Sultana",slug:"farjana-sultana",fullName:"Farjana Sultana"}]},{id:"72566",title:"Formulations of BGA for Paddy Crop",slug:"formulations-of-bga-for-paddy-crop",totalDownloads:618,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Blue green algae (BGA) are prokaryotic phototrophic organisms that can fix the atmospheric nitrogen biologically, and were directly applied as a biofertilizers in agricultural fields specifically Paddy field. Since they are having the ability to fix nitrogen, they are formulated with various adsorbents for the purpose of enhancing the crop growth along with maintaining the soil fertility and other soil factors responsible for productivity. The present study revealed that the formulations of blue green algae isolated from paddy fields of southern districts with different adsorbents like alluvial soil, sand, charcoal, and powdered paddy straw. All the adsorbents mixed with blue green algae showed significant growth when compared to the control plant. This determined that the adsorbent formulated mixed blue green algae enhanced the paddy plant growth under greenhouse condition.",book:{id:"9685",slug:"agroecosystems-very-complex-environmental-systems",title:"Agroecosystems",fullTitle:"Agroecosystems – Very Complex Environmental Systems"},signatures:"Bagampriyal Selvaraj and Sadhana Balasubramanian",authors:[{id:"316222",title:"Dr.",name:"Sadhana",middleName:null,surname:"Balasubramanian",slug:"sadhana-balasubramanian",fullName:"Sadhana Balasubramanian"},{id:"316448",title:"Mrs.",name:"Bagampriyal",middleName:null,surname:"Selvaraj",slug:"bagampriyal-selvaraj",fullName:"Bagampriyal Selvaraj"}]},{id:"63233",title:"Paddy Fields as Artificial and Temporal Wetland",slug:"paddy-fields-as-artificial-and-temporal-wetland",totalDownloads:1368,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Paddy cultivation plays a significant and vital role on rice production. Most of the global population depends on the 480 million tons of rice produced each year as the basis for their lives. While about 90% of the world’s 160 million hectares of paddy fields are in Asian countries, mainly in monsoon regions, paddies are also seen in North America and Africa, even in dry regions. Most of the paddy fields are flooded naturally or artificially during rice production period. In the case that paddy fields are kept submerged artificially, hydraulic structures are required. Irrigated paddy fields produce traditionally much rice, taking befits of stable water supply and continuous ponding. Paddy fields are simultaneously performing other functions for local environment, including climate mitigation, flood control, groundwater recharge, biodiversity, and ecosystem development. On the other hand, since paddy fields require much water and modify the original and natural hydrological regime, they might cause adverse effect on local environment. Much water supply by irrigation sometimes requires drainage system, which also might alter local water balance. In this chapter, implication of paddy fields as artificial and temporal wetland is reviewed comprehensively with various aspects, focusing mainly on their role for local hydrological environment.",book:{id:"6952",slug:"irrigation-in-agroecosystems",title:"Irrigation in Agroecosystems",fullTitle:"Irrigation in Agroecosystems"},signatures:"Tsugihiro Watanabe",authors:[{id:"243864",title:"Prof.",name:"Tsugihiro",middleName:null,surname:"Watanabe",slug:"tsugihiro-watanabe",fullName:"Tsugihiro Watanabe"}]},{id:"69405",title:"Plant Nutrition and Sustainable Crop Production in Nigeria",slug:"plant-nutrition-and-sustainable-crop-production-in-nigeria",totalDownloads:909,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The aim of this study is to examine the determining factors of plant nutrition and sustainable crop production in Nigeria. The study applied an in-depth review of literature and observed that different biotic and abiotic factors interact together to determine the outcome of plant nutrition and sustainable crop production in Nigeria. These factors include; types of fertilizers applied, atmospheric emissions, level of technological development, infrastructural facilities, climatic conditions, irrigation method, and level of skilled labour force. The study recommended that there should be increased and equal access to credit facilities, social protection incentives, and more innovation and technological involvement in the agricultural sector in order to increase productivity and efficiency.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Romanus Osabohien and Toun Ogunbiyi",authors:[{id:"290879",title:"Mr.",name:"Romanus",middleName:null,surname:"Osabohien",slug:"romanus-osabohien",fullName:"Romanus Osabohien"},{id:"310108",title:"Ms.",name:"Toun",middleName:null,surname:"Ogunbiyi",slug:"toun-ogunbiyi",fullName:"Toun Ogunbiyi"}]}],onlineFirstChaptersFilter:{topicId:"307",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:397,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/61485",hash:"",query:{},params:{id:"61485"},fullPath:"/chapters/61485",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()