FTIR spectrum of Na alginate from
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"7338",leadTitle:null,fullTitle:"Planetology - Future Explorations",title:"Planetology",subtitle:"Future Explorations",reviewType:"peer-reviewed",abstract:"Over the last 80 years, dreamers, engineers, mission planners, and scientists have sought, defined, and created many methods of exploring the solar system. Robotic missions to nearly every type of solar system object have been conducted. The data from these missions has opened new vistas on the riches of the planets and the asteroids. Water and other materials that can help humans survive in space have been found in abundance. Human lunar missions have returned with hundreds of kilograms of rocky and dusty samples. These samples (regolith) has given us hope that humanity will one day colonize the Moon, Mars, and the moons of other planets. Many space agencies around the world have shared their information and created collaborations for the betterment of all. Interplanetary dreams are part of humanity's future, those dreams will create a future where humanity can begin to flourish throughout the planets. This book is a celebration of those dreams.",isbn:"978-1-78985-342-1",printIsbn:"978-1-78985-341-4",pdfIsbn:"978-1-78985-486-2",doi:"10.5772/intechopen.75213",price:119,priceEur:129,priceUsd:155,slug:"planetology-future-explorations",numberOfPages:136,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"d52566a2f61bb3d7021ed630a149e1e6",bookSignature:"Bryan Palaszewski",publishedDate:"March 4th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/7338.jpg",numberOfDownloads:4088,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:1,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:2,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 22nd 2019",dateEndSecondStepPublish:"May 7th 2019",dateEndThirdStepPublish:"July 6th 2019",dateEndFourthStepPublish:"September 24th 2019",dateEndFifthStepPublish:"November 23rd 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"279275",title:"M.Sc.",name:"Bryan",middleName:null,surname:"Palaszewski",slug:"bryan-palaszewski",fullName:"Bryan Palaszewski",profilePictureURL:"https://mts.intechopen.com/storage/users/279275/images/system/279275.jpeg",biography:"Bryan Palaszewski has worked at the NASA Glenn Research Center at Lewis Field since 1989 and is currently directing research on high-performance propellants and atmospheric entry. He has conducted investigations nanometer-scale propellant additives for metalized gelled fuels for space missions. Recently, he led work related to human Mars entry, descent, and landing (EDL) where supersonic retro-propulsion (rocket deceleration) is planned for the Mars landing. He is also investigating the mining of outer planet atmospheres for future ambitious space vehicles. For six years, he led many studies of advanced space systems for orbital and interplanetary travel at the Jet Propulsion Laboratory, Pasadena, CA. He was the lead propulsion subsystem engineer on the Ocean Topography Experiment (TOPEX), as well as being involved in other flight projects such as the Galileo Mission to Jupiter and the Cassini Mission to Saturn. He holds a Master of Science Degree in Mechanical Engineering from the Massachusetts Institute of Technology and a Bachelors Degree in Mechanical Engineering from the City College of New York.",institutionString:"NASA Glenn Research Center",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Glenn Research Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"98",title:"Astronomy and Astrophysics",slug:"astronomy-and-astrophysics"}],chapters:[{id:"70129",title:"Introductory Chapter: Planetology",doi:"10.5772/intechopen.90244",slug:"introductory-chapter-planetology",totalDownloads:701,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Bryan Palaszewski",downloadPdfUrl:"/chapter/pdf-download/70129",previewPdfUrl:"/chapter/pdf-preview/70129",authors:[{id:"279275",title:"M.Sc.",name:"Bryan",surname:"Palaszewski",slug:"bryan-palaszewski",fullName:"Bryan Palaszewski"}],corrections:null},{id:"67533",title:"Technologies for Deviation of Asteroids and Cleaning of Earth Orbit by Space Debris",doi:"10.5772/intechopen.86565",slug:"technologies-for-deviation-of-asteroids-and-cleaning-of-earth-orbit-by-space-debris",totalDownloads:830,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The present chapter presents the advanced design and technology of special equipment (SECSL) which uses concentrated solar light for deviation of asteroids and cleaning the space of debris. The elliptical orbit of any cosmic body as presented in Einstein’s general theory of relativity is rotating around the ellipse center. The trajectory of a cosmic body is permanently affected by the gravity of other moving cosmic bodies. In the case of asteroids (relatively small masses), orbit changes can lead to a collision with the Earth. At this very moment, our civilization has no efficient and reliable mean to destroy or divert a cosmic body heading toward the Earth. This new idea represents a “light canon” which uses concentrated solar light for deviation or vaporization of dangerous asteroids. The equipment is composed out of two parabolic mirrors (one large and one small) with the same focal point and coincident axes. The mirrors reflect the sunlight between them hence the term “concentrated solar light.” Next, a similar idea to the SECSL equipment is presented but applied to space debris caused mostly by humans and a new way of disintegrating satellites, spent rocket boosters, thrust chambers, etc. in the Earth’s atmosphere during reentry.",signatures:"Constantin Sandu, Cristian-Teodor Olariu and Radu-Constantin Sandu",downloadPdfUrl:"/chapter/pdf-download/67533",previewPdfUrl:"/chapter/pdf-preview/67533",authors:[{id:"270781",title:"Dr.",name:"Constantin",surname:"Sandu",slug:"constantin-sandu",fullName:"Constantin Sandu"},{id:"292901",title:"BSc.",name:"Radu-Constantin",surname:"Sandu",slug:"radu-constantin-sandu",fullName:"Radu-Constantin Sandu"},{id:"298114",title:"Dr.",name:"Cristian–Teodor",surname:"Olariu",slug:"cristianteodor-olariu",fullName:"Cristian–Teodor Olariu"}],corrections:null},{id:"68357",title:"Solar System Exploration Augmented by In Situ Resource Utilization: System Analyses, Vehicles, and Moon Bases for Saturn Exploration",doi:"10.5772/intechopen.88067",slug:"solar-system-exploration-augmented-by-in-situ-resource-utilization-system-analyses-vehicles-and-moon",totalDownloads:805,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Human and robotic missions to Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft and astronomy, in situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion is benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high-power nuclear electric and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in situ resource utilization on Saturn’s moons are discussed. At Saturn, the best locations for exploration and the use of the moons as central locations for Saturn moon exploration are assessed. Environmental issues on Titan’s surface may present extreme challenges for some ISRU processes. In-space bases for moon-orbiting propellant processing and ground-based processing will be assessed.",signatures:"Bryan Palaszewski",downloadPdfUrl:"/chapter/pdf-download/68357",previewPdfUrl:"/chapter/pdf-preview/68357",authors:[{id:"279275",title:"M.Sc.",name:"Bryan",surname:"Palaszewski",slug:"bryan-palaszewski",fullName:"Bryan Palaszewski"}],corrections:null},{id:"68512",title:"Space Access for Future Planetary Science Missions",doi:"10.5772/intechopen.88530",slug:"space-access-for-future-planetary-science-missions",totalDownloads:646,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Planetary science demands increasingly elaborate experiments, with the result that mission objectives are often limited by space access capability. The orbital skyhook is a momentum transfer device that has been proposed as an alternate launch system. It is an extended orbital structure that rotates to allow access by a low speed suborbital vehicle. After docking, the vehicle gains momentum from the skyhook and is accelerated to orbital velocity, after which the skyhook energy must be replenished. The construction of an orbital skyhook is shown to be feasible with current materials. It is a fully reusable launch system with very high propellant efficiency and could provide the launch capability needed for future planetary science missions.",signatures:"Colin Sydney Coleman",downloadPdfUrl:"/chapter/pdf-download/68512",previewPdfUrl:"/chapter/pdf-preview/68512",authors:[{id:"302218",title:"Dr.",name:"Colin",surname:"Coleman",slug:"colin-coleman",fullName:"Colin Coleman"}],corrections:null},{id:"70332",title:"Impact Models of Gravitational and Electrostatic Forces",doi:"10.5772/intechopen.86744",slug:"impact-models-of-gravitational-and-electrostatic-forces",totalDownloads:532,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The far-reaching gravitational force is described by a heuristic impact model with hypothetical massless entities propagating at the speed of light in vacuum transferring momentum and energy between massive bodies through interactions on a local basis. In the original publication in 2013, a spherical symmetric emission of secondary entities had been postulated. The potential energy problems in gravitationally and electrostatically bound two-body systems have been studied in the framework of this impact model of gravity and of a proposed impact model of the electrostatic force. These studies have indicated that an antiparallel emission of a secondary entity—now called graviton—with respect to the incoming one is more appropriate. This article is based on the latter choice and presents the modifications resulting from this change. The model has been applied to multiple interactions of gravitons in large mass conglomerations in several publications. They will be summarized here taking the modified interaction process into account. In addition, the speed of photons as a function of the gravitational potential is considered in this context together with the dependence of atomic clocks and the redshift on the gravitational potential.",signatures:"Klaus Wilhelm and Bhola N. Dwivedi",downloadPdfUrl:"/chapter/pdf-download/70332",previewPdfUrl:"/chapter/pdf-preview/70332",authors:[{id:"294585",title:"Prof.",name:"Bhola",surname:"Dwivedi",slug:"bhola-dwivedi",fullName:"Bhola Dwivedi"},{id:"294586",title:"Dr.",name:"Klaus",surname:"Wilhelm",slug:"klaus-wilhelm",fullName:"Klaus Wilhelm"}],corrections:null},{id:"67617",title:"Generic Computing-Assisted Geometric Search for Human Design and Origins",doi:"10.5772/intechopen.86809",slug:"generic-computing-assisted-geometric-search-for-human-design-and-origins",totalDownloads:574,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Scientific space research aims to investigate human origins and provide explanation on how life originated on the earth. This has led to the emergence of theories such as the Panspermia theory. The Panspermia theory opines that life originated from extra-terrestrial sources. However, the Panspermia theory does not consider the influence of cognition and intelligence in microorganisms that are thought to seed life on the earth. However, it is feasible to consider intelligent microorganisms as determining the life-forms that can arise from different cell aggregations. This chapter considers that the pre-determination of the geometry of this feasible life-forms that takes place in Mars’s meteorites. The discussion in this chapter proposes the Mars geometric Panspermia theory which is hinged on this perspective. The chapter presents the conceptual perspective for the Mars geometric Panspermia theory. It also presents network architecture and a data acquisition strategy suitable for capital constrained organizations. The capital constrained organizations are space organizations in developing countries. The low cost acquisition strategy proposes the use of open source software and hardware for components used in Mars exploration missions. In addition, the chapter proposes rover data sharing to enable capital constrained space organizations to execute their science objectives in Mars’s space missions.",signatures:"Ayodele Abiola Periola",downloadPdfUrl:"/chapter/pdf-download/67617",previewPdfUrl:"/chapter/pdf-preview/67617",authors:[{id:"278676",title:"Dr.",name:"Periola",surname:"Ayodele",slug:"periola-ayodele",fullName:"Periola Ayodele"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64729",slug:"erratum-toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to",title:"Erratum - Toward the Development of a Monitoring and Feedback System for Predicting Poor Adjustment to Grief",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64729.pdf",downloadPdfUrl:"/chapter/pdf-download/64729",previewPdfUrl:"/chapter/pdf-preview/64729",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64729",risUrl:"/chapter/ris/64729",chapter:{id:"57127",slug:"toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to-grief",signatures:"Wan Jou She, Laurie Burke, Robert A. Neimyer, Kailey Roberts,\nWendy Lichtenthal, Jun Hu and Matthias Rauterberg",dateSubmitted:"September 5th 2017",dateReviewed:null,datePrePublished:null,datePublished:"October 18th 2017",book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"2",title:"Proceeding",chapterContentType:"conference paper",authoredCaption:"Edited by"}},authors:[{id:"221149",title:"Dr.",name:"Wan Jou",middleName:null,surname:"She",fullName:"Wan Jou She",slug:"wan-jou-she",email:"lave@lavendershe.com",position:null,institution:null}]}},chapter:{id:"57127",slug:"toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to-grief",signatures:"Wan Jou She, Laurie Burke, Robert A. Neimyer, Kailey Roberts,\nWendy Lichtenthal, Jun Hu and Matthias Rauterberg",dateSubmitted:"September 5th 2017",dateReviewed:null,datePrePublished:null,datePublished:"October 18th 2017",book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"2",title:"Proceeding",chapterContentType:"conference paper",authoredCaption:"Edited by"}},authors:[{id:"221149",title:"Dr.",name:"Wan Jou",middleName:null,surname:"She",fullName:"Wan Jou She",slug:"wan-jou-she",email:"lave@lavendershe.com",position:null,institution:null}]},book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"2",title:"Proceeding",chapterContentType:"conference paper",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11479",leadTitle:null,title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe book Social Aspects of Ageing - Contemporary Challenges, Analyses, and Solutions, will focus on the key challenges underlined by the United Nations during the Decade of Healthy Ageing (2020-2030). The authors will introduce the studies combined with four fields crucial for older people, their families, and communities: combatting ageism, age-friendly environments, integrated care, and long-term care. The volume also intends to cover issues linked to the global, national, regional, and local implementation of age-specific and intergenerational solutions, initiatives, and programs towards achieving the Sustainable Development Goals (SDGs). The collection will contain papers representing research and practical recommendations from various disciplines such as demography, critical studies, the economics of ageing, educational gerontology, geropsychology, gerontechnology, geographical gerontology, longevity studies, public health, social work, and sociology.
\r\n\r\n\tThis volume will be an asset to academic and professional communities interested in theories of ageing as well as public services and ageing policies. In addition, the book aims to help students, practitioners, and people working in government, business, and nonprofit organizations.
",isbn:"978-1-80356-507-1",printIsbn:"978-1-80356-506-4",pdfIsbn:"978-1-80356-508-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"dbf515446deb32a56696801cd224984d",bookSignature:"Ph.D. Andrzej Klimczuk",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",keywords:"Abuse and Neglect, Active Ageing, Age Bias, Age Discrimination, Age Inclusivity, Age Norms, Age Segregation, Age Stereotypes, Digital Divide, Human Rights, Intergenerational Programs, Labour Market",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 8th 2022",dateEndSecondStepPublish:"April 5th 2022",dateEndThirdStepPublish:"June 4th 2022",dateEndFourthStepPublish:"August 23rd 2022",dateEndFifthStepPublish:"October 22nd 2022",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A sociologist and public policy expert with over 200 publications in the field of gerontology, labor economics, public management, and social policy. Dr. Klimczuk is a member of the Human Development and Capability Association, European Citizen Science Association, International Political Science Association, and European School of Social Innovation.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"320017",title:"Ph.D.",name:"Andrzej",middleName:null,surname:"Klimczuk",slug:"andrzej-klimczuk",fullName:"Andrzej Klimczuk",profilePictureURL:"https://mts.intechopen.com/storage/users/320017/images/system/320017.jpg",biography:"Andrzej Klimczuk, Ph.D., is a sociologist, public policy expert, and assistant professor in the Department of Public Policy of the Collegium of Socio-Economics, SGH Warsaw School of Economics, Poland. He worked as an external expert for institutions such as the European Commission, Interreg CENTRAL EUROPE Programme, and Fondazione Cariplo. Dr. Klimczuk has authored many scientific papers in the fields of gerontology, labor economics, public management, and social policy. His recent monographs include Economic Foundations for Creative Ageing Policy, Generations, Intergenerational Relationships, Generational Policy, and Perspectives and Theories of Social Innovation for Ageing Population.",institutionString:"Warsaw School of Economics",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Warsaw School of Economics",institutionURL:null,country:{name:"Poland"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9538",title:"Demographic Analysis",subtitle:"Selected Concepts, Tools, and Applications",isOpenForSubmission:!1,hash:"f335c5d0a39e8631d8627546e14ce61f",slug:"demographic-analysis-selected-concepts-tools-and-applications",bookSignature:"Andrzej Klimczuk",coverURL:"https://cdn.intechopen.com/books/images_new/9538.jpg",editedByType:"Edited by",editors:[{id:"320017",title:"Ph.D.",name:"Andrzej",surname:"Klimczuk",slug:"andrzej-klimczuk",fullName:"Andrzej Klimczuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6926",title:"Biological Anthropology",subtitle:"Applications and Case Studies",isOpenForSubmission:!1,hash:"5bbb192dffd37a257febf4acfde73bb8",slug:"biological-anthropology-applications-and-case-studies",bookSignature:"Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:"Edited by",editors:[{id:"313084",title:"Ph.D.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60885",title:"Therapeutic Potential of Seaweed Polysaccharides for Diabetes Mellitus",doi:"10.5772/intechopen.76570",slug:"therapeutic-potential-of-seaweed-polysaccharides-for-diabetes-mellitus",body:'\nDiabetes mellitus (DM) is a disease caused by hyperglycemia due to a relative or absolute insulin insufficiency. Chronic hyperglycemia can cause complications such as neuropathy, retinopathy, nephropathy, and cardiovascular disease [1]. Hyperglycemia can also cause impaired balance metabolism of carbohydrates, fats, and proteins [2]. International Diabetes Federation (IDF) estimates that in 2013 there were 382 × 106 people with diabetes and 316 × 106 people suffer from impaired glucose tolerance and increased risk of diabetes. These results are expected to increase to 471 × 106 in 2035 and predicted less than 25 years; there would be 592 × 106 people have diabetes without quick and precise prevention [3].
\nSeaweeds are the most abundant resources in the ocean. Seaweeds contain polysaccharides, proteins, amino acids, lipids, peptides, minerals, and some vitamins. Polyphenols of seaweed was used as cosmetics and pharmacological as antioxidants, protection from radiation, antibiotics, anti-inflammatory, hypoallergenic, antibacterial, and antidiabetic [4]. Polyphenol extracts from seaweed, for example,
Na alginate from
FTIR spectroscopy was used to identify the polysaccharide structures. A pellet of sodium alginate was prepared with KBr. FTIR spectrum was recorded on Shimadzu-FTIR Prestige 21 with a resolution of 4 cm−1 in the 4000–400 cm−1 region, with a scan speed of 0.20 cm s−1. The FTIR spectrum of sodium Na alginate of
Infrared spectra of Na alginate standard (red) and Na alginate of
Wave number (cm−1) | \nAssignments | \n|
---|---|---|
Na alginate standard [8] | \nNa alginate of | \n|
3425.58 | \n3464.15 | \nνO–H a | \n
2931.80 | \n2931.80 | \nνC–H a | \n
1620.21 | \n1627.92 | \nν asym COO- b | \n
1419.61 | \n1427.32 | \nδ C–O–H, νsym COO− (carboxylate ion)1,3 | \n
1095.57 | \n1087.85 | \nν C-O, ν C-C (pyranose ring)1,2,3 | \n
1033.85 | \n1033.85 | \nν C-O1 | \n
948.98 | \n948.98 | \nν C-O (uronic acid residues)1,3 | \n
894.97 | \n871.82 | \nδ C1-H (β-mannuronic residues)1,3 | \n
The peak infrared spectrum of standard alginate and
Wavelength (cm−1) | \nType of vibration | \n||
---|---|---|---|
Na alginate standard [9] | \nNa alginate of | \nReference | \n|
— | \n779.24 | \n778.201 | \nGuluronic acid residues | \n
948.98 | \n948.98 | \n950–8102 | \nC-O stretching | \n
1033.85 | \n1026.13 | \n1023.401 | \nC-O stretching | \n
1095.57 | \n1087.85 | \n1100–10503 | \nOCO ring (shoulder) | \n
1303.88 | \n— | \n1320–12102 | \nC-O stretching | \n
1419.61 | \n— | \n1460–14002 | \nC-O asymmetric stretching | \n
2931.80 | \n2931.80 | \n~29252 | \nC-H stretching | \n
3425.58 | \n3471.87 | \n3600–32003 | \nO-H stretching | \n
Infrared spectra of Na alginate standard (red) and Na alginate of
Alloxan-induced diabetic rats did not show a significant decrease in body weight after the injection of alloxan. Five groups of diabetic rats had decreased in body weight on 15 days treatment, and there were significant differences between the groups of rats. There was no significant difference between diabetic control (negative control) compared to positive control, and the positive control was not significantly different compared to alloxan diabetic rats treated with Na alginate 200 mg/kg. Alloxan-induced diabetic rats treated with Na alginate(s) (200, 400, 600 mg/kg) did not show significant difference between each other. Administration of Na alginate(s) (400, 600 mg/kg) showed a significant difference compared to negative control. The body weight of alloxan-induced diabetic rats treated with Na alginate 600 mg/kg was not significantly different compared to normal control.
\nThe lowering of rats’ body weight treated with alginate from
Diabetic mice showed weight loss in all treatment groups except the normal control group. Normal control group gained weight of 24.1 g. The negative control group had a very significant weight loss of 51.6 g. The positive control group had a weight loss of 47.2 g. The treatment group of extract 200 mg/kg had a weight loss of 58.8 g. The treatment group of 400 mg/kg extract had a weight loss of 45.3 g. Meanwhile, the treatment group giving 600 mg/kg extract experienced a decrease in body weight by 43.1 g. Streptozotocin (STZ)-induced diabetic rats are one of the animal models of type 1 diabetes mellitus. It is well known for its selective pancreatic islet beta-cell cytotoxicity and has been extensively used to induce type 1 diabetes in an experimental rat model. Glibenclamide is often used as a standard antidiabetic drug in STZ-induced diabetes to compare the efficacy of a variety of hypoglycemic drugs [18].
\nThroughout the experiments, all the rats were monitored daily and/or weekly for the symptoms of type 1 diabetes mellitus, including polydipsia, polyuria, polyphagia, hyperglycemia, and muscle wasting leading to weight loss and insulin deficiency. Figure 1 shows the observations of body weight of treated rats during the whole period of experiments. The body weight was continuously increased in the normal group and decreased in all diabetes groups. A severe loss of body weight characterizes STZ-induced diabetes. Due to absolute or relative deficiency of insulin and decrease of the production of ATP, protein synthesis decreases in all tissues.
\nAlloxan is a urea derivative which causes selective necrosis of the pancreatic islet β-cells [19]. Alloxan and its reduction product dialuric acid establish a redox cycle with the formation of superoxide radicals [20]. Preprandial blood glucose levels were determined as fasting blood glucose. Fasting is defined as no calorie intake for at least 8 h [1]. Diabetes is diagnosed when the fasting plasma glucose concentration is consistently ≥7 mmol/L (126 mg/dL) or when the 2 h plasma glucose concentration (after drinking a 75 g glucose load) is consistently ≥11.1 mmol/L (200 mg/dL) [21].
\nAdministration of alloxan led to a significant increase of preprandial blood glucose levels in rats after 3 days. Administration of Na alginate(s) (200, 400, 400 mg/kg) significantly reduced the blood glucose level compared to diabetic control. The dose of 200 and 400 mg/kg of Na alginate did not show a significant difference compared to normal control and positive control (Table 3). The result was supported by previous studies using fiber to decrease preprandial blood glucose. Nelson et al. [22] used high indigestible fiber and low indigestible fiber diet to decrease preprandial blood glucose in diabetic dogs for 8 months which resulted in high indigestible fiber significantly that reduces preprandial blood glucose better than low indigestible fiber. Nelson et al. [23] used similar treatment in diabetic cats for 24 weeks and showed high indigestible fiber which gave a better effect on decreasing preprandial blood glucose than low indigestible fiber. Chandalia et al. [12] compared the amount of fiber that was given to diabetic patients according to the American Diet Association (8 g digestible fiber and 16 indigestible fiber) and fiber-rich diet (25 g digestible fiber and 25 indigestible fiber) for 6 weeks. Fiber-rich diet decreased 13% preprandial blood glucose lower than ADA diet.
\nGroup | \nPreprandial blood glucose (mg/dL)* | \n|
---|---|---|
Normal control | \n106.06 ± 11.33b,c | \n126.30 ± 0.50a | \n
Negative control | \n208.57 ± 70.60a | \n568.82 ± 46.40c | \n
Positive control | \n86.29 ± 13.83b | \n316.35 ± 20.90b | \n
Alginate (200 mg/kg) | \n108.50 ± 11.28c | \n279.45 ± 92.50b | \n
Alginate (400 mg/kg) | \n96.55 ± 15.65b,c | \n336.63 ± 66.32b | \n
Alginate (600 mg/kg) | \n99.03 ± 14.26b,c | \n257.66 ± 34.61b | \n
Effect of Na alginate of
Values are means ± SD. Values followed by the different superscript symbol(s) in each column were significantly different (
Normal postprandial blood glucose level is <180 mg/dL [1]. In the normal state, the postprandial blood glucose level increases less than 50 mg/dL from the preprandial blood glucose level after carbohydrate intake [24]. Alloxan-induced diabetic rats’ postprandial blood glucose level surpassed 200 mg/dL after 3 days of injection. After 15 days of treatment, the result was the administration of Na alginate(s) (200, 400, 600 mg/kg) which significantly reduces postprandial blood glucose levels on rats compared to diabetic control (P < 0.05). However, it failed to restore the level to that of normal control group and positive control group (P < 0.05). The positive control group could restore the postprandial blood glucose level at the same level as a normal control group (Table 4).
\nGroup | \nPostprandial blood glucose (mg/dL)* | \n|
---|---|---|
Normal control | \n133.05 ± 15.81b | \n150.416 ± 5.1a | \n
Negative control | \n360.48 ± 40.80a | \n633.470 ± 27.8c | \n
Positive control | \n140.75 ± 9.16b | \n333.814 ± 64.5ab | \n
Alginate (200 mg/kg) | \n257.08 ± 34.20c | \n421.652 ± 21.4bc | \n
Alginate (400 mg/kg) | \n238.61 ± 21.48c | \n433.333 ± 21.8bc | \n
Alginate (600 mg/kg) | \n196.05 ± 18.22d | \n381.250 ± 11.4ab | \n
Effect of Na alginate of
Values are means ± SD. Values followed by the different superscript symbol(s) in each column were significantly different (
Wolf et al. [25] used 1.5 g sodium alginate to show its effect on postprandial glucose peak and glucose uptake reduction after 3 h which resulted in line 32.80 ± 3.40 and 1429 ± 276 mg/dL. Sodium alginate had a reduction effect better than 1.2 g gum arabic and 0.3 g gum guar with postprandial glucose peak 40.40 ± 3.30 mg/dL and glucose uptake 1717 ± 433 mg/dL. A study on the effect of a meal containing alginate compared to testing a meal without alginate by Torsdottir et al. [26] showed that postprandial blood glucose levels by meal containing alginate decrease 31% lower than a meal without alginate.
\nPreprandial glucose levels for all treatment groups of alginate from
All treatment groups of extracts of
In general, the viscosity of dietary fiber can reduce the rise in blood glucose levels and reduce food intake by slowing the empty stomach and slowing the absorption of nutrients in the small intestine. Based on these two mechanisms, it is still not clear what mechanisms apply to sodium alginate, perhaps one or both [30]. Different doses of alginate will affect the viscosity of the given test preparation. So, it will lead to differences in the viscosity of the fluid in the gastrointestinal tract and ultimately result in differences in the rate of glucose absorption from the gastrointestinal tract into the blood vessels [31].
\nDiabetes is associated with major abnormalities in fatty acid metabolism. The resulting disturbance results in an abnormal lipoprotein cascade from the large chylomicron through to the small HDL particle [31, 32]. Total cholesterol in the serum of negative control was not significantly different compared to positive control, Na alginate 200 and 400 mg/kg treatment, and normal control. Na alginate 600 mg/kg of
Group | \nTotal cholesterol (mg/dL)* | \n|
---|---|---|
Normal control | \n70.40 ± 7.12b | \n41.55 ± 0.20a | \n
Negative control | \n67.75 ± 16.02b | \n68.41 ± 12.50b | \n
Positive control | \n72.40 ± 15.24b | \n45.79 ± 9.80a | \n
Alginate (200 mg/kg) | \n55.80 ± 3.42a,b | \n49.05 ± 20.00ab | \n
Alginate (400 mg/kg) | \n65.60 ± 14.47b | \n54.46 ± 11.00ab | \n
Alginate (600 mg/kg) | \n47.80 ± 5.40a | \n34.20 ± 7.50a | \n
Effect of Na alginate of
Values are means ± SD. Values followed by the different superscript symbol(s) in each column were significantly different (
Several previous studies supported the result. Suzuki et al. [33] evaluated the effect of alginate-rich guluronic and mannuronic on cholesterol levels in rats fed with diets containing both alginates and cholesterol which resulted from reductions in liver cholesterol in rats fed with each alginate and significantly low cholesterol accumulation in mannuronic acid-rich alginate. Ren et al. [34] screened 26 species of seaweeds and six polysaccharides from algae to study their effect on lipid in rats fed with basal diet for 28 days of treatment. The six polysaccharides were sulfated glucuronoxylomannan (0.5%), fucoidin (1%), sodium alginate (1%), funorin (2.5%), porphyrin (2.5%), and agar (2.5%). Reduction effect of each polysaccharide was 64, 65, 68, 77, 88, and 95%, respectively, compared to control group. At the end of the study, the polysaccharides could restore the cholesterol level to the same level as the control group.
\nTotal cholesterol levels of the normal control group, positive control, and alginate 600 mg/kg of
Wikanta et al. [35] reported that sodium alginate could lower total cholesterol in mice with hypercholesterolemia. Administration of sodium alginate with a viscosity of 450 cps significantly reduced total cholesterol levels compared to sodium alginate with lower viscosity. Because, sodium alginate is a water-soluble fiber compound, forming a viscous solution. The stomach fluid cannot digest this compound in the gastrointestinal tract. When dissolved in water, the sodium alginate fibers form a mesh-like grid that strongly binds many water molecules in a well-defended solute. Its properties as emulgator increasingly enhance the binding ability. A similar mechanism occurs against lipid molecules in bile acids in the gastrointestinal tract. The binding or bonding of lipids by the alginate makes lipid and cholesterol unable to absorb the body through the small intestine so that it eventually comes out with the stool. Suzuki et al. [33] also reported that alginate with various mannuronic acid and guluronic acid compositions can decrease total blood cholesterol levels.
\nAdministration of Na alginate to alloxan-induced diabetic rats for 200 mg/kg alginate of
Group | \nHDL-c (mg/dL)* | \n|
---|---|---|
Normal control | \n108.00 ± 6.59c | \n70.549 ± 1.50a | \n
Negative control | \n59.75 ± 9.39a | \n75.549 ± 11.10a | \n
Positive control | \n58.00 ± 7.78a | \n96.843 ± 14.10a | \n
Alginate (200 mg/kg) | \n61.80 ± 5.57a | \n97.617 ± 11.50a | \n
Alginate (400 mg/kg) | \n74.80 ± 10.08b | \n84.03 ± 28.20a | \n
Alginate (600 mg/kg) | \n78.60 ± 10.60b | \n75.98 ± 17.70a | \n
Effect of Na alginate of
Values are means ± SD. Values followed by the different superscript symbol(s) in each column were significantly different (
According to Rohman [36] HDL is a protective lipoprotein, in addition to functioning to bring fat to the liver; HDL proved to inhibit the oxidation of LDL and adhesion molecules. HDL-c levels throughout the treatment group did not have a significant difference. The same is also shown in the study of Suzuki et al. [33] that there was no statistically significant difference in HDL-c levels in mice suffering from hypercholesterolemia treated with sodium alginate in comparison with different glucuronic acid and mannuronic acids.
\nLDL-c after administration of alginate(s) from
Group | \nLDL-c (mg/dL)* | \n|
---|---|---|
Normal control | \n58.80 ± 7.19a | \n34.07 ± 0.90a | \n
Negative control | \n60.75 ± 16.52a | \n55.34 ± 8.30b | \n
Positive control | \n65.00 ± 14.05a | \n27.51 ± 10.00a | \n
Alginate (200 mg/kg) | \n49.60 ± 3.13a,b | \n31.81 ± 11.80a | \n
Alginate (400 mg/kg) | \n55.60 ± 13.13a,b | \n33.91 ± 5.30a | \n
Alginate (600 mg/kg) | \n41.00 ± 5.83b | \n28.78 ± 5.30a | \n
Effect of Na alginate of
Values are means ± SD. Values followed by the different superscript symbol(s) in each column were significantly different (
Administration of sodium alginate from
Triglyceride management on type 2 diabetes is targeting for <150 mg/dL [1]. When the glucose levels excess in the blood, glucose will be converted to triglycerides in which triacylglycerol synthesis process is known as lipogenesis. Carbohydrate-rich meal can lead to increase the process of lipogenesis in the liver and adipose tissue. However, the occurrence of insulin resistance inhibits lipogenesis process making glucose and free fatty acid levels in blood plasma increased. In the liver, triglyceride accumulation can cause malfunctioning of the liver (fatty liver) or liver cirrhosis in the long term [39]. Triglyceride of alloxan-induced diabetic rats did not show a significant difference between the groups of treatment using alginate of
Group | \nTriglyceride (mg/dL)* | \n|
---|---|---|
Normal control | \n75.80 ± 10.33a | \n28.73 ± 12.20a | \n
Negative control | \n77.75 ± 20.90a | \n77.73 ± 14.10b | \n
Positive control | \n80.40 ± 13.14a | \n24.31 ± 9.60a | \n
Alginate (200 mg/kg) | \n63.40 ± 25.41a | \n24.12 ± 17.70a | \n
Alginate (400 mg/kg) | \n60.80 ± 13.80a | \n31.73 ± 2.90a | \n
Alginate (600 mg/kg) | \n54.80 ± 10.91a | \n37.67 ± 8.50a | \n
Effect of Na alginate of
Values are means ± SD. Values followed by the different superscript symbol(s) in each column were significantly different (
Paxman et al. [40] reported that a drink containing alginate in the obese patient had no effect on tryglyceride level. Triglyceride levels did not show a significant difference between alginate treatment group and control group. Ren et al. [34] used six polysaccharides from algal species as a treatment for rats given with basal diet for 28 days. All of the polysaccharides used in this research could reduce triglyceride levels as good as their ability reducing LDL-c in blood serum. Funoran and sulfated glucuronoxylorhamman reduced triglyceride levels between 46 and 64% compared to the control group. Sodium alginate could decrease the triglyceride level to 29% compared to the control group. Fucoidan can reduce the triglyceride levels to 12–20% [34].
\nThe levels of triglycerides during the experiment using alginate of
All groups treated with DM except for the normal control group showed elevated triglyceride levels. Levels of triglycerides increased up to 574.867 mg/dL. The condition of hypertriglyceridemia can be diagnosed if the triglyceride level >150 mg/dL [41]. According to Pujar et al. [42], this can be due to direct damage from the pancreatic tissue by high free fatty acids. The concentration of high free fatty acid will decrease the pH and may activate trypsinogen. Also, high triglyceride levels can also be caused by the destruction of chylomicron which is a triglyceride carrier. This changes the acinar function and opens the pancreatic tissue to triglycerides.
\nNecrosis is defined as the type of cell death caused by changing the morphology of the nucleus, including chromatin condensation and fragmentation, minor changes in cytoplasmic organelles, and overall causes of cell shrinkage (apoptosis) and autophagic accumulation of two vacuole membranes in the cytoplasm [43]. In type I diabetes mellitus, patients found changes in the pancreas in the form of the reduced size of the pancreas, atrophy in the exocrine pancreas, and atrophy of the acinar cells around the degenerated Langerhans island. On the other hand, in type II diabetes mellitus, an imbalance of exocrine secretion of the pancreas and impaired control of blood glucose occur [44].
\nNormal controls show normal cell conditions (Figure 3). Negative controls show some damage to the cell. The positive control treatment group also shows the same. The treatment group of sodium alginate extract is entirely damaged in cells (necrosis). The treatment group of
Histological studies of STZ diabetic rat pancreas. Normal control: pancreatic section showed the normal size of islets, and destruction was absent (Grade -). Negative control: pancreatic section showed (green arrow) occasional islets, and (orange arrow) destruction was severe (Grade ++++). Positive control (diabetic rats +5 mg glibenclamide/kg b.w.): pancreatic section showed moderate islet architecture (green arrow), and destruction (orange arrow) was moderate (Grade +++). Diabetic rats +200 mg alginate/kg b.w., and diabetic rats 400 mg alginate/kg b.w.: pancreatic section showed (green arrow) occasional islets, and (orange arrow) destruction was severe (Grade ++++). Diabetic rats +600 mg alginate/kg b.w.: pancreatic section showed (green arrow) additive improvement in the mass of islets as compared to other alginate treatments, and (orange arrow) destructions was mild (Grade ++). Grade −, normal; Grade ++++, severe destruction; Grade +++, moderate destruction; Grade ++, mild injury.
Administration of alginate from
Research Grants Flagship Universitas Gadjah Mada supported this research through DIPA UGM 2014 number LPPM-UGM/478/LIT/2014.
\nThe authors declare no conflict of interest.
In order to get the most benefits from a process and maximize its efficiency, optimization of the process is needed. Optimization refers to picking the ideal factor from a collection of potential solutions (independent variables). In certain applications, the value of the variable is enough to achieve the optimal output or best possible outcome. The common practice used to assess optimum design parameters is to evaluate the effect of each variable independently on the response [1, 2]. In this process, interactive effects among parameters are not regarded. Consequently, this approach does not display the full impact of these variables on the outcome. Another primary disadvantage of this method is the increase in the overall number of tests needed for the investigation, leading to an increase in costs and materials, and time [3, 4]. Owing to these drawbacks, researchers have been exploring alternative approaches. For the past decades, response surface methodology (RSM) is among the most effective approaches used for modeling and optimization. Myers, et al. [5] defined response surface methodology (RSM) as a statistical method that is commonly used to optimize engineering design and operations. The majority of RSM applications require multiple response variables. In a typical RSM analysis, the experimenter will create an empirical model like the second-order model to every response using these models to evaluate the configuration of the design variables that generate optimum or at least appropriate response values [2, 6]. RSM has great relevance in the design, development, and introduction of new material and the enhancement of material designs. RSM describes the influence of independent variables, either alone or in synergetic effect, during the process. It also helps in evaluating the influence of independent variables, this experimental approach produces a statistical model that explains the mechanism and processes [2, 5, 7]. While RSM has several benefits, it can be concluded that it applies to all modeling and optimization analyses of various aspect of engineering, RSM has now been commonly and successfully used to optimize asphalt binder and asphaltic concrete mixtures to maximize their performances and promote sustainability. The current research examined the application of RSM for modeling and optimization in asphalt pavement studies. In this chapter, several recently published RSM studies have been examined to have an overview and access the application of RSM in the pavement industry.
Design-Expert is a software for experimental design, statistical analysis, modeling, and optimization. It provides a variety of programs such as fractional factorial design, surface response, full factorial, mixing, and D-optimal designs [1, 2, 8]. RSM experimental designs are developed using the Design-Expert program. The program is also utilized to analyze the data obtained. Regression is applied to data obtained where the measured variable (response) is estimated based on a functional relationship between the predicted input variables. Experimental values that can be altered independently of one another are referred to as factors or independent variables [2, 9]. Variable levels are the various stages of the factors at which the experiments are to be performed. After conducting the experiment, the data obtained are called responses or dependent variables. While residual is the discrepancy between the experimental and predicted values for the determined range of experimental criteria also model with low residual values indicates a strong fitting of the experimental data [8, 9].
Box and Wilson [10] introduced RSM in 1951 and they proposed using a second-degree polynomial model. RSM has recently been used for process parameter optimization. RSM can be considered as a systematic calculation technique for the optimization problem. This method provides an appropriate experimental method that incorporates all the independent variables and utilizes the experiment’s input data to subsequently create a set of equations that can offer an output’s theoretical value [11]. The findings are achieved from a well-designed regression analysis that examines the relationship between independent variables’-controlled values. Based on the new values of independent variables, the dependent variable can then be forecast [11]. RSM is an effective statistical tool for both the modeling and optimization of multiple variables with a minimum number of experiments to forecast the optimum performance parameters [7, 12]. By employing the RSM technique in the optimization process, the testing of all the variables relating to the product assessment requires just a short time, making the laboratory test stage more efficient [11]. Furthermore, the estimation of parameters that profoundly influence the model can determine which allows researchers to concentrate on those specific variables to improve the performance of the process [11]. In a set of experimental designs, one factor or process variable can depend strongly on or be dependent on another variable. In an attempt to discover the output–input relationship, understanding the interaction between the variables is critical, that is why taking a single factor at a time approach is seldom used to evaluate interrelationships between parameters. RSM can determine the relationship as well as interactions between the multiple parameters using quantitative data by creating a model equation. In RSM implementation, there are three steps; (i) experiment design, i.e., Box Behnken (BBD) and Central Composite Design (CCD); (ii) statistical and regression analysis to build model equations that describe the modeling of the response surface; and (iii) optimization of parameters/variables carried out via model Equation [13]. A statistical experimental design is presented in RSM. Different experimental designs could be carried out based on the special criteria and the choice of experimental points and numbers. In addition to randomizing the experimental error to every experimental point, operating with a statistical experimental design often implies the distributions of experimental points in the examined set of independent variables. These improve the reliability of the model Equation [5].
The most widely and frequently employed and effective design technique is central composite design (CCD). A minimum of two numerical inputs is required and varied in the CCD approach at a range of alpha (α) over three (−1, 0, +1) or five (−α, −1, 0, +1, +α) stages. Three features are contained in the CCD model: (i) a complete factorial or fractional factor design; (ii) an additional design, mainly a star design with experimental points from the centre at alpha; and (iii) a central point. There are various ways to CCD depending on the alpha (α)-value, such as face-centred central composite (FCCD), rotational, spherical, orthogonal quadratic, and practical. Five levels are utilized for the rotational and spherical approaches depending on the number of variables. The value of alpha (a) for the FCCD is always unity. This means that the axial points are not positioned on the spheres, but rather on the centre of the faces, so only three variants of each parameter are involved [2]. Figure 1(a and b) illustrate the full factorial central composite model for two and three parameters optimization.
Optimization of two and three parameters using CCD (a) two parameters (X1 and X2) where alpha (α) = 1.41 (b) three parameters (X1, X2, and X3) where alpha (α) = 1.68 [
Box–Behnken Design (BBD) suggested how to select points from a three-level parameter model to permit the first- and second-level coefficients of the statistical model to be effectively assessed. In this way, these designs, especially for many variables, are more efficient and cost-effective than their respective 3k design models. A minimum of three numerical factors are required in BBD and vary across three levels. In Box–Behnken models, the experimental points are situated on a hypersphere spaced uniformly from the central point. BBD’s key characteristics are: (1) it requires an experimental number depending on the Eq. N = 2 k (k − 1) + cp, where k is the number of variables and (cp) the number of central points; (2) it is appropriate to change all factor levels at three levels only (−1, 0, + 1) with intervals spaced equally. BBD has been used successfully as a physical and chemical technique for different optimization processes. Other RSM design techniques, such as one factor, optimal design, miscellaneous design, user-defined, and historical data designs, are available [2].
Due to the challenges facing the conventional pavement materials such as asphalt binder and mixtures and the paradigm shifts towards green and sustainable construction. The application of RSM is one of the promising ways used by pavements engineers as it has shown to be of great importance in the design, development, and incorporation of alternative green materials for the improvement of the pavement material design. Modeling and optimization of the synergetic impact of different parameters that affect the engineering properties and performance output of the asphalt binder and mixtures utilization help to provide more insight into the influences of the various variables. This experimental method generates a numerical method that helps elaborate on the mechanism and procedures that involve a lesser number of experimental runs. Thus, the utilization of RSM is of pivotal use for pavement engineers.
RSM is an effective instrument for engineering new bituminous blends. By forecasting the response of the materials on the basis of experimental plans drawn up with a scientific and statistical method [14]. Also, another RSM’s key goal is to evaluate the optimal settings for control variables that lead to the maximum or minimum output over a certain area of study. The generated equations can be used for interpolation to obtain the maximum (or minimum) predictable results within the levels of the analyzed variables [14, 15, 16].
The general design flow chart of the RSM statistical technique framework is presented in Figure 2.
General RSM design flow chart.
Three methods are employed to incorporate new sustainable materials into asphalt binders and mixtures for optimization. These methods are selected based on the type and properties of the new material to be incorporated. These methods are wet process, dry process, and modified dry process.
The wet method comprises blending the newly added material with the heated asphalt binder to form the modified asphalt binder, The optimization is commonly done on the mixing parameters or the conventional properties of the mixes and the mixture is formed by blending hot aggregates with the modified asphalt binder. This method is suitable for materials having low melting points such as low-density polyethylene (LDPE), and polypropylene (PP). This method requires a high-shear mixer and sufficient time for blending the newly added material and asphalt binder [15].
In the dry method, before adding asphalt binder to the mixture, the new sustainable green material is initially incorporated into the heated aggregates and mixed [16]. In this technique, some of the filler is lost as dust when blending the new material with the aggregates, which is not suitable [15]. This method is suitable for materials with a higher melting point above the asphalt mixture mixing temperatures such as polyethylene terephthalate (PET) and high-density polyethylene (HDPE). The optimization process using involves the mixing process and mechanical properties of the asphalt mixtures.
In the modified dry method, new added sustainable green materials are incorporated while the heated asphalt binder and aggregates are thoroughly mixed [17]. The added new materials particles are ensured to be well coated by the asphalt binder. It is hypothesized that minor changes in the shape and properties of added waste materials during mixing will result from the modified dry process [15, 18]. Some experts modified the blending techniques to obtain a good distribution of the waste materials particles in the modified blends. The optimization process using involves the mixing process and mechanical properties of the asphalt mixtures.
RSM has been utilized in the modification of asphalt binder and optimization of the modification mixing parameters to enhance sustainability and improve performance of various bitumen modifiers using different dependent and independent variables associated with the bitumen, modification process, and performance of the bitumen. Assessment and investigation of the interactive effects on the response of process variables can thus be studied and analyzed using RSM. The model equation also quickly clarifies the effects with the various combination of the independent parameters. In this section the application of RSM for the modification of asphalt binder utilizing several types of alternative materials. Most of the prior study includes studies of the mixing conditions of asphalt binder and its conventional properties are discussed below.
A study conducted by Liu, et al. [19] evaluated the effects of mixing variables parameters such as mixing speed, time, temperature, and the modifier (diatomite and crumb rubber) on modified asphalt binder properties (penetration, softening point, penetration index, viscosity, elastic recovery, and ductility) were examined and optimization using RSM. The findings showed that with the increase in crumb rubber concentration, softening points, viscosity, elastic recovery, and penetration index increased, while penetration and ductility decreased. With the rise in diatomite concentration, the softening points, viscosity, and penetration index increase, while penetration and ductility decrease, which has little effect on elastic binder recovery. The shear temperature has had major impacts on penetration, ductility, softening point, and viscosity. Because of its similar mechanism of action, shear velocity, shear duration, and storage time have similar influences on binder properties. The optimum speed, time, and temperature of mixing were achieved at 55 min and 5300 rpm, 55 minutes, and 183 °C, respectively, based on the optimization. The effects of the various mixing parameters on the convention properties of the diatomite and crumb rubber modified bitumen is illustrated in the 3D surface plots in Figures 3–5.
Response surface plots for the preparation parameters on penetration values (a) shear time and diatomite (b) shear temperature and crumb rubber and for softening point. (c) shear time and diatomite content, (d) shear speed and crumb rubber content [
Response surface plots for the preparation parameters on Ductility. (a) Shear time and diatomite (b) shear speed and Crumb rubber content and Viscosity values on (c) shear temperature and diatomite (d) shear time and crumb rubber [
Response surface plots for the preparation parameters on Elastic recovery. (a) Diatomite and crumb rubber (b) storing time and shearing speed and PI values of (c) Shearing time and diatomite content (d) shear temperature and crumb rubber content [
Recently, the effects of various crumb rubber (CR) contents and their interactions with high-temperature ranges on the rheological activity of asphalt binder were also studied by Badri, et al. [20] At temperatures ranging from 46 °C to 82 °C, a temperature sweep test was performed using a dynamic shear rheometer (DSR) on modified binders with 5, 7, 10, 12 and 15% crumb rubber content. Based on central composite design (CCD) and considering the rheological parameters complex modulus (G*) and phase angle (δ) as response variables, RSM statistical analysis was performed. The outcome of the ANOVA test showed that rheological parameters were significantly affected by temperature and rubber content with p less than 0.05. Independent effects of temperature and rubber content were analyzed, and the results showed that both responses were affected by the interaction of both independent variables but were more impacted by rubber content than temperature as depicted in the synergetic effect of the variables on the CR modified bitumen are shown in the 2D and 3D contour diagrams in Figures 6 and 7. It can therefore be inferred that RSM is an efficient tool for investigating rheological characteristics. For all responses, a percentage error of <5% was achieved, suggesting that the optimization process by RSM is a very efficient and effective technique.
Effects of input factors on phase angle (a) 2D contour for the synergistic influence of rubber content and temperature (b) 3D surface diagram for the synergistic influence of rubber content and temperature.
Simultaneous effect of input parameters on complex modulus (a) Plot of 2D contour on the synergistic influence of rubber content and temperature (b) 3D plot for the synergistic influence of rubber content and temperature.
Also, the RSM was used to evaluate both the volumetric and mechanical properties of asphalt mixtures after modifying the mix variables. A study conducted by Nassar, et al. [21] optimize the design mix variables, namely bitumen emulsion content (BEC), pre-wetting water content (PWC), and curing temperature (CT), the Response Surface Methodology (RSM) was used. The purpose of this work was to evaluate the relationship influence on the mechanical and volumetric properties of cold bitumen emulsion (CBEMs) between these parameters. To determine the mechanical response, indirect tensile strength (ITS) and indirect tensile stiffness modulus (ITSM) tests were performed while air voids and dry density were calculated to obtain volumetric responses. Besides, the total fluid content was used in the typical mix design technique, the individual effects of BEC and PWC are significant. The findings show a lower CBEM strength/stiffness at the same overall fluid content and with varying ratios of BEC/PWC. The stiffness modulus assessment of the CBEM after 10 days is anticipated to provide the designer with sufficient information to optimize the CBEM mix model in a reasonable period. The overall 3D surface plots showing the interaction between the three autonomous factors on the output parameters.
Another research by Varanda, et al. [22] utilized RSM in the formulation of bitumen mixtures from the refining process of base oils utilizing asphaltic residue, vacuum residue, and three aromatic extracts (by-products). The asphaltic residue (A), vacuum residue (B), and the three different aromatic extracts (hereafter denoted by Extract-1 (C), Extract-2 (D) and Extract-3 (E)) from base oil refining, all derived from the same crude oil source (Arabian Light), To control bitumen formulation, a constrained mixture methodology was employed. The projected and calculated responses show that both models are reliable with average deviations of just 4.67% and 1.53% respectively for the penetration and the softening stage. Mixture design has been shown to be an effective and important instrument for bitumen formulation in general especially if a significant number of components are included in the blends. In general, in contrast to aromatic extracts, both asphaltic and vacuum residues impart greater stability to bitumen, which ensures that the softening point increases while penetration reduces. The asphaltic residue, however, transmits more difficult properties to bitumen n vacuum residue.
Wang and Fan [23] utilize Box–Behnken model RSM was to obtain the optimum values of process parameters for calcium sulphate whisker (CSW) modified bitumen. To access the mechanism of modification, three input variables, stirring time, stirring temperature, and production temperature was chosen. Three performances were evaluated as reactions by testing in the, including high-temperature efficiency, low-temperature efficiency, and deformation resistance related to the bitumen properties. The study found that mixing time of 32 min, mixing temperature of 175 °C, and production temperature of 175 °C were the optimum process parameters within the range of this analysis, with accurate precision compared to actual experimental results. In contrast, the influence of three process parameters on bitumen properties was also investigated, and stirring time was found to have a more important impact on the softening point, penetration, and ductility. CSW has a reasonable dispersion in the bitumen matrix under the optimization process parameters and has been shown to increase the physical performance of the bitumen.
del Barco Carrión, et al. [14] use RSM to develop a modified bitumen with a mixture of Liquid Rubber (LR), a uniform mix of 50–70% pre-processed Recycled Tyre Rubber (RTR) in conjunction with wax and heavy oils blend. To forecast the response of different combinations of LR and Ethylene Bis Stearamide (EBS) in terms of temperature (high and low) properties and expenses, the RSM was used to optimize both conventional and rheological properties of Polymer Modified Bitumen (PMBs) commonly utilized in bitumen blends and roofing membranes. Both two modifiers show improve bitumen elasticity and stiffness, thus complementing each other. In general, the LR oils decrease the stiffness of the neat bitumen whereas the EBS has been shown to increase the stiffness and elasticity of the blends significantly, thus enabling the use of higher LR quality to comply with disadvantages. LR contents in the range of 30–40% by weight of neat bitumen are the optimum composition of blends, thus reducing the need for virgin bitumen in terms of overall modification for both pavement and roofing.
Recently, Memon, et al. [24] utilizes RSM for modeling and optimizing the bitumen physical characterization, the mixing conditions of petroleum sludge modified bitumen (PSMB) using the penetration, softening point, penetration index, and storage stability. The findings show that the stiffness of PSMB was strengthened by the synergistic effects of mixing temperature and speed, whereas the mixing time initially reduces and then increases the stiffness of PSMB. The PSMB met the storage stability and the penetration index requirements for bitumen modification under optimum mixing conditions. This enhancement in stiffness at higher mixing conditions is due to the increased ratio of maltenes to asphaltenes in PSMB. While at high mixing conditions, the softening point influences were reduced, whereas it was noted that the lightweight oil component of the PS was also responsible for the softening point decline of the PSMB. The mixing time, speed, and temperature for PSMB were evaluated to be 53 min, 1292 rpm, and 149 °C, respectively, based on the RSM optimization. The overview of prior works on the optimization of various autonomous parameters on bitumen conventional properties is displayed in Table 1.
Authors | Autonomous factors | Responses |
---|---|---|
Bala, et al. [25] | Nanosilica content, and temperature | Complex modulus, Phase angle, Complex viscosity |
Phan, et al. [26] | Hydrated lime content and asphalt binder concentration | Bitumen Linear viscoelastic properties and Fatigue resistance |
Bala, et al. [25] | LDPE and binder content | Complex modulus, Phase angle, and Viscosity |
Chen, et al. [27] | Test temperature, polystyrene dosage, and polystyrene molecular weight | G*/sin (δ) for unaged blends, G*/sin (δ) for short-term aged blends, and stiffness, m-value |
Varanda, et al. [22] | Aromatic extracts vacuum residue and asphalt residue | Softening point and penetration, |
Al-Sabaeei, et al. [28] | Crude palm oil (CPO) and temperature | Complex modulus (kPa), and phase angle (δ) for both aged and unaged bitumen |
Jamshidi, et al. [29] | Solution temperature, sasobit, and test temperature | Unaged viscosity, STA viscosity, LTA viscosity |
Mohammed, et al. [30] | Bitumen and rice husk warm mix asphalt | Penetration and softening point |
Yıldırım, et al. [31] | Number of blows, temperature, additive rate, and bitumen content | Optimum bitumen content (OBC) |
Khairuddin, et al. [32] | Polyurethane (PU) and bitumen | Penetration, softening point, and viscosity |
Solatifar, et al. [33] | Mixing temperature, mixing time, mixing speed, and crumb rubber content percentage | Rutting parameter. |
Summary of previous works of literature on the utilization of RSM for asphalt binder optimization.
Several RSM studies have been published, this study emphasizes the utilization of RSM for optimizing virgin or waste materials as alternative asphaltic mixtures materials for sustainability. In this section, the application of RSM for the optimization of the virgin as well as waste secondary materials will be discussed depending on the work of existing literature.
The application of Response Surface Methodology (RSM) for the prediction of Marshal volumetric properties is being explored by Bala, et al. [34] Polyethylene and nanosilica were used as the independent factors in the analysis, while the air void, flow, and Marshall stability were the responses. Findings show that RSM-based statistical analysis confirms that it is possible to use a quadratic model built with a high degree of correlation and predictive capacity to predict the Marshal volumetric properties of the mixture. Figure 8(a) and (b) demonstrates that the binder content has more impact on the air void than the nanosilica content, whereas Figure 8(c) and (d) illustrates that both independent factors have an influential effect on the Marshall stability of the asphalt mixture. On the Marshall flow values for the nanosilica modified asphalt blend, a combined effect of both variables was noted but the binder content has a more pronounced impact on the flow values as presented in Figure 8(e) and (f).
2D and 3D RSM contour plots for the optimization of nanosilica and binder content (a-b) Air void (c-d) Stability (e-f) Flow [
Recently, Usman, et al. [35] optimize irradiated waste PET fiber and binder contents utilizing RSM on the volumetric and strength properties of fiber-reinforced asphalt mixes. Figure 9(a-e) illustrates the interactive impacts of the mixture design parameters on the dependent variables. It was hinted that both independent factors have a significant positive effect on the bulk specific density (BSD), Marshall stability, and the Marshall flow values for the fiber-reinforced asphalt mixes. However, on the air void (AV) and voids filled with bitumen (VFB), the asphalt binder content has a more pronounced influence compared to the irradiated waste PET fiber content. The investigation concluded that the use of fibers in asphalt mixture production improves the strength and performance characteristics of asphalt mixes and based on multi-objective optimization analysis, 5.25% and 0.53% as the optimized contents for binder and irradiated waste PET, respectively.
RSM 3D contour for the optimization of irradiated PET fiber and binder content (a) Density (b) Air void (c) VFB (d) Stability (e) Marshall flow [
Likewise, in 2020, Omranian, et al. [36] investigate the effects of short-term aging on asphalt concrete mixture compactibility and volumetric characteristics. Three independent parameters, including aging temperature, aging period, and duration in humidity and ultraviolent chambers, were considered in this analysis, while the compaction energy index (CEI) and volumetric characteristics, were considered as responses. Significant impacts of aging temperature and duration on compactibility, air voids (AV), mineral aggregate voids (WMA), and asphalt filled voids (WFA) are revealed in the research findings. However, duration in the environment chamber did not exhibit any significant effect on responses, as shown in Figure 10(a-d). Finally, the analysis shows the ability of the RSM to predict changes from mathematical equation responses that correlate with the empirical findings with good precision. This finding concluded that to achieve the desired requirements, pavement designers should use RSM statistical technique to predict the pavement density and adjust pressure as well as the number of rolling passes.
Graphical representation of RSM 3D contour (a) CEI (b) Va (c) VMA (d) WFA [
Khan, et al. [37] explore the applicability of utilizing RSM to investigate the relationship between autonomous and dependent parameters for the formulation of cementitious grout. In the study, regular and irradiated waste PET and fly ash contents were optimized. A high coefficient of determination (R2) with an adequate precision (AP) of greater than 4 from the analysis of variance was reported. It was further revealed that gamma irradiation exposure of waste PET resulted in the usage of a higher percentage of the waste PET in comparison to the regular waste PET without compromising the properties considered in the study. Moreover, the investigation concluded that waste PET treatment with gamma rays could be an innovative and effective way to recycle waste PET in the formulation of cementitious grout for semi-flexible pavement application as cement replacement material and can be an important advancement to attaining the zero-waste plastic goal of the united nation sustainable development.
The permanent deformation property of asphalt concrete incorporating various concentrations of recycled asphalt pavement (RAP) and quantities of the waste engine and cooking oil was evaluated by Taherkhani and Noorian [38] using response surface methodology. The study substituted 25, 50, and 75% of total aggregates with RAP and rejuvenated each with 5, 10, and 15 percent (by total binder weight) of waste engine oil (WEO) and waste cooking oil (waste cooking oil) (WCO). A polynomial quadratic model was reported to be accurate to predict the permanent strain employing RSM in the Design-Expert software. RAP and oil content, squared oil content, and oil types were significant terms for the prediction of permanent strain. Results show that with increasing RAP content, permanent strain decreases, but for each RAP content, the lowest permanent strain is reached at a specific oil content amount. The finding concluded that through RSM optimization, the concentration of oils was obtained to achieve asphalt mixture with a comparable control mix deformation property.
Bala, et al. [39] employed RSM to optimize two independent parameters, namely nanosilica and binder content effects on the response factors VMA, Marshall stability, flow, fatigue life, and indirect tensile strength (ITS). It was observed that VMA decreases substantially for binder content from 4–5%, beyond that it experiences a decreasing trend for mixtures fabricated with binder content between 5–6%. The findings also reported that nanosilica content has less influence on the VMA compared to the binder content. Also, the contour plot revealed that on the Marshall stability, the nanosilica particles have a marginal effect than the binder content. For the flow, fatigue life, and ITS, both nanosilica and binder contents have significant impacts on the nanocomposite modified asphalt mixes. The finding concluded that 2.67% and 4.65% as the optimized nanosilica and binder contents for an improved mixture performance property.
Several studies have been performed on the effect of different alternative materials on asphalt concrete mixtures [19, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Table 2 presents the summary of some selected work done utilizing RSM for different independent factors on several mechanical performance properties of asphalt concrete mixes.
Authors | Autonomous factors | Responses |
---|---|---|
Hamzah, et al. [49] | Mixing temperature and test temperature | Direct tensile strength (DTS), adhesion, broken aggregate, and fracture energy |
Bala, et al. [50] | Polyethylene, polypropylene, and nanosilica | Fatigue life |
Usman, et al. [51] | PET fiber and temperature | Resilient modulus |
Moghaddam, et al. [52] | PET and binder contents | VIM, VMA, BSG, stability, and flow |
Yıldırım and Karacasu [53] | Temperature, waste rubber content, glass fiber content, and bitumen content | PSG, voids, VFA, Marshall stability |
Soltani, et al. [54] | PET, stress level, and temperature | Fatigue cycles |
Moghaddam, et al. [55] | PET, stress level, and temperature | Stiffness |
Haghshenas, et al. [56] | Grading, bitumen content, and lime content | Indirect tensile strength (dry and saturated), TSR |
Khodaii, et al. [57] | Grading and lime content | Indirect tensile strength (dry and saturated), TSR |
Hamzah, et al. [58] | Compaction temperature, binder content, and recycled asphalt content | VFA, air void, Gmb, resilient modulus, stability, and flow |
Nassar, et al. [21] | Curing time, Pre-wetting water and Bitumen emulsion content | Air void, indirect tensile, strength (wet and dry), and indirect tensile stiffness modulus |
Golchin and Mansourian [59] | RAP content, asphalt binder type, and Loading strain | 50% of initial stiffness, fatigue life (Number of cycles), and final stiffness |
Santos, et al. [60] | Temperature, plastic percentage, and size of particles | Bulk Specific Gravity |
Summary of previous works of literature on the utilization of RSM for asphalt mixtures optimization.
RSM has effectively been utilized for various applications in the pavement industry. The current book chapter provides an overview of RSM applications for bitumen, asphaltic mixture modification, and performance properties. From the review, it was observed that RSM has many benefits in improving the knowledge about the synergetic effect of various modification variables on the bitumen performance. RSM technique provides an in-depth understanding of the influence of other responses with the variability each mix design factor would have on the asphalt mixture performance. RSM also has shown the benefit of analyzing various autonomous variables concurrently. For several optimization research, the implementation of RSM to achieve optimum dependent variable outcome leads to considerably reduced costs of running experiments while at the same time optimizing the performance properties of both the bitumen and asphaltic mixtures. Thus, with the need to optimized mix design, RSM plays a crucial role in the pavement industry to establish a performance-based mix design about the above criteria. Generally, RSM can also be regarded as an effective alternative to optimize and understand the pavement mix design parameters effectively to produce optimal mixtures with less cost and sample runs. It was shown in this chapter that the RSM exhibits the great ability to determine the compactness and mechanical efficiency properties of asphalt binder and mixtures under different conditions quickly and accurately. With appropriate precision, the model developed by the RSM always fits into the experimental observations. This means that in predicting the effects of the autonomous parameters on the response variables, these models are accurate and realistic. RSM’s proposed models can be used by the highway industry as a valuable and effective way to controlling and preparing the construction method to achieve the best pavement performance characteristics, which can significantly increase pavement performance and longevity.
The authors would like to appreciate the support provided by Universiti Teknologi PETRONAS for carrying out this review.
The authors declare no conflict of interest.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"7,10,15,24,5,6,8,9,11,23,14,16,17,12,18,19,20,21,22,13,25"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism",subtitle:null,isOpenForSubmission:!0,hash:"0c5043c6174db167599cb3f762e8bba8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11612",title:"Landraces",subtitle:null,isOpenForSubmission:!0,hash:"06316c41a6f6317ad2bee244dc98c6a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11612.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:8},{group:"topic",caption:"Chemistry",value:8,count:19},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:47},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:7},{group:"topic",caption:"Medicine",value:16,count:109},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:385},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"263",title:"Archaeology",slug:"archaeology",parent:{id:"23",title:"Social Sciences",slug:"social-sciences"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:62,numberOfWosCitations:40,numberOfCrossrefCitations:30,numberOfDimensionsCitations:69,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"263",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9251",title:"Pleistocene Archaeology",subtitle:"Migration, Technology, and Adaptation",isOpenForSubmission:!1,hash:"65e1040ad23f0385a56f2d0472b4aee5",slug:"pleistocene-archaeology-migration-technology-and-adaptation",bookSignature:"Rintaro Ono and Alfred Pawlik",coverURL:"https://cdn.intechopen.com/books/images_new/9251.jpg",editedByType:"Edited by",editors:[{id:"177123",title:"Dr.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7699",title:"Advanced Methods and New Materials for Cultural Heritage Preservation",subtitle:null,isOpenForSubmission:!1,hash:"4e4bd9a9b8cef15b9739f45ef05927c8",slug:"advanced-methods-and-new-materials-for-cultural-heritage-preservation",bookSignature:"Daniela Turcanu-Carutiu and Rodica-Mariana Ion",coverURL:"https://cdn.intechopen.com/books/images_new/7699.jpg",editedByType:"Edited by",editors:[{id:"176482",title:"Prof.",name:"Daniela",middleName:null,surname:"Turcanu-Carutiu",slug:"daniela-turcanu-carutiu",fullName:"Daniela Turcanu-Carutiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1999",title:"Archaeology",subtitle:"New Approaches in Theory and Techniques",isOpenForSubmission:!1,hash:"ec63f4de8c846ec578d2bca6cbf35ac2",slug:"archaeology-new-approaches-in-theory-and-techniques",bookSignature:"Imma Ollich-Castanyer",coverURL:"https://cdn.intechopen.com/books/images_new/1999.jpg",editedByType:"Edited by",editors:[{id:"118972",title:"Dr.",name:"Imma",middleName:null,surname:"Ollich-Castanyer",slug:"imma-ollich-castanyer",fullName:"Imma Ollich-Castanyer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"36571",doi:"10.5772/38066",title:"Archaeometallurgical Investigation of Iron Artifacts from Shipwrecks - A Review",slug:"archaeometallurgical-investigation-of-iron-artifacts-from-shipwrecks-a-review",totalDownloads:5209,totalCrossrefCites:3,totalDimensionsCites:13,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"D. Ashkenazi, E. Mentovich, D. Cvikel, O. Barkai, A. Aronson and Y. Kahanov",authors:[{id:"115412",title:"Dr.",name:"Dana",middleName:null,surname:"Ashkenazi",slug:"dana-ashkenazi",fullName:"Dana Ashkenazi"},{id:"115414",title:"Dr.",name:"Elad",middleName:null,surname:"Mentovich",slug:"elad-mentovich",fullName:"Elad Mentovich"},{id:"115415",title:"Dr.",name:"Yaacov",middleName:null,surname:"Kahanov",slug:"yaacov-kahanov",fullName:"Yaacov Kahanov"},{id:"115416",title:"Dr.",name:"Deborah",middleName:null,surname:"Cvikel",slug:"deborah-cvikel",fullName:"Deborah Cvikel"},{id:"115419",title:"MSc.",name:"Ofra",middleName:null,surname:"Barkai",slug:"ofra-barkai",fullName:"Ofra Barkai"},{id:"115420",title:"BSc.",name:"Ayal",middleName:null,surname:"Aronson",slug:"ayal-aronson",fullName:"Ayal Aronson"}]},{id:"63772",doi:"10.5772/intechopen.80975",title:"Cultural Heritage in Marker-Less Augmented Reality: A Survey",slug:"cultural-heritage-in-marker-less-augmented-reality-a-survey",totalDownloads:1627,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"Augmented reality (AR) is considered as one of the most significant technologies in the field of computer graphics and is utilised in many applications. In this chapter, we have presented a brief comprehensive survey of cultural heritage using augmented reality systems. This survey describes the main objectives and characteristics of marker-less augmented reality systems through presenting up-to-date research results in this area. We describe the marker-less technologies in the area of AR, indoor marker-less AR, outdoor marker-less AR, real-time solutions to the tracking problem, real-time registration, cultural heritage in AR, 3D remonstration techniques, as well as presenting the problems in each research.",book:{id:"7699",slug:"advanced-methods-and-new-materials-for-cultural-heritage-preservation",title:"Advanced Methods and New Materials for Cultural Heritage Preservation",fullTitle:"Advanced Methods and New Materials for Cultural Heritage Preservation"},signatures:"Hoshang Kolivand, Abdennour El Rhalibi, Mostafa Tajdini, Sarmad Abdulazeez\nand Pisit Praiwattana",authors:[{id:"151219",title:"Prof.",name:"Abdennour",middleName:null,surname:"El Rhalibi",slug:"abdennour-el-rhalibi",fullName:"Abdennour El Rhalibi"},{id:"225824",title:"Dr.",name:"Hoshang",middleName:null,surname:"Kolivand",slug:"hoshang-kolivand",fullName:"Hoshang Kolivand"},{id:"256916",title:"Dr.",name:"Sarmad",middleName:null,surname:"Abdulazeez",slug:"sarmad-abdulazeez",fullName:"Sarmad Abdulazeez"},{id:"256917",title:"Dr.",name:"Pisit",middleName:null,surname:"Praiwattana",slug:"pisit-praiwattana",fullName:"Pisit Praiwattana"},{id:"289071",title:"Dr.",name:"Mostafa",middleName:null,surname:"Tajdini",slug:"mostafa-tajdini",fullName:"Mostafa Tajdini"}]},{id:"36570",doi:"10.5772/45619",title:"Archaeological Geophysics - From Basics to New Perspectives",slug:"archaeological-geophysics-from-basics-to-new-perspectives",totalDownloads:6548,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Roger Sala, Ekhine Garcia and Robert Tamba",authors:[{id:"131865",title:"Dr.",name:"Roger",middleName:null,surname:"Sala",slug:"roger-sala",fullName:"Roger Sala"}]},{id:"36574",doi:"10.5772/37679",title:"The Study of Shell Object Manufacturing Techniques from the Perspective of Experimental Archaeology and Work Traces",slug:"the-study-of-shell-object-manufacturing-techniques-from-the-perspective-of-experimental-archaeology-",totalDownloads:3116,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Adrián Velázquez-Castro",authors:[{id:"113840",title:"Dr.",name:"Adrian",middleName:null,surname:"Velazquez",slug:"adrian-velazquez",fullName:"Adrian Velazquez"}]},{id:"70612",doi:"10.5772/intechopen.89154",title:"The Technological Diversity of Lithic Industries in Eastern South America during the Late Pleistocene-Holocene Transition",slug:"the-technological-diversity-of-lithic-industries-in-eastern-south-america-during-the-late-pleistocen",totalDownloads:683,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Brazilian archaeological literature has insisted for decades upon associating hunter-gatherer sites dated to the Pleistocene–Holocene transition either to the Itaparica tradition, if located in central or northeastern Brazil, or to the Umbu tradition and Humaitá tradition, if located in southern Brazil, Uruguay, or any other adjacent part of Paraguay and Argentina. These associations have been based almost entirely on the presence or absence of lesmas and “projectile points,” regardless of their morphological and technological features. In the Uruguayan archaeological literature, three other cultures are recognised: Fell industry, Catalanense industry, and Tigre tradition, all in the Uruguayan region. However, the last 10 years of systematic studies on the lithic assemblages from these sites have shown that Paleoindian societies from Eastern South America are more culturally diverse than expected and that previously defined archaeological cultures present several issues in their definition, suggesting that many of these “traditions” are not valid and should no longer be used. Instead, new lithic industries and archaeological cultures should be defined only when cultural patterns are observable through systematic analyses.",book:{id:"9251",slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"João Carlos Moreno De Sousa",authors:[{id:"303361",title:"Dr.",name:"João Carlos",middleName:null,surname:"Moreno De Sousa",slug:"joao-carlos-moreno-de-sousa",fullName:"João Carlos Moreno De Sousa"}]}],mostDownloadedChaptersLast30Days:[{id:"36570",title:"Archaeological Geophysics - From Basics to New Perspectives",slug:"archaeological-geophysics-from-basics-to-new-perspectives",totalDownloads:6552,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Roger Sala, Ekhine Garcia and Robert Tamba",authors:[{id:"131865",title:"Dr.",name:"Roger",middleName:null,surname:"Sala",slug:"roger-sala",fullName:"Roger Sala"}]},{id:"36576",title:"Homage to Marcel Proust - Aspects of Dissemination and Didactic in a Museum and a Science Centre: Science Communication Visions for the Third Generation Museums",slug:"generations-of-ancient-history-dissemination-towards-the-public-at-the-university-museum-in-trondhei",totalDownloads:2644,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Kistian Overskaug",authors:[{id:"117119",title:"Dr.",name:"Kristian",middleName:null,surname:"Overskaug",slug:"kristian-overskaug",fullName:"Kristian Overskaug"}]},{id:"63772",title:"Cultural Heritage in Marker-Less Augmented Reality: A Survey",slug:"cultural-heritage-in-marker-less-augmented-reality-a-survey",totalDownloads:1628,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"Augmented reality (AR) is considered as one of the most significant technologies in the field of computer graphics and is utilised in many applications. In this chapter, we have presented a brief comprehensive survey of cultural heritage using augmented reality systems. This survey describes the main objectives and characteristics of marker-less augmented reality systems through presenting up-to-date research results in this area. We describe the marker-less technologies in the area of AR, indoor marker-less AR, outdoor marker-less AR, real-time solutions to the tracking problem, real-time registration, cultural heritage in AR, 3D remonstration techniques, as well as presenting the problems in each research.",book:{id:"7699",slug:"advanced-methods-and-new-materials-for-cultural-heritage-preservation",title:"Advanced Methods and New Materials for Cultural Heritage Preservation",fullTitle:"Advanced Methods and New Materials for Cultural Heritage Preservation"},signatures:"Hoshang Kolivand, Abdennour El Rhalibi, Mostafa Tajdini, Sarmad Abdulazeez\nand Pisit Praiwattana",authors:[{id:"151219",title:"Prof.",name:"Abdennour",middleName:null,surname:"El Rhalibi",slug:"abdennour-el-rhalibi",fullName:"Abdennour El Rhalibi"},{id:"225824",title:"Dr.",name:"Hoshang",middleName:null,surname:"Kolivand",slug:"hoshang-kolivand",fullName:"Hoshang Kolivand"},{id:"256916",title:"Dr.",name:"Sarmad",middleName:null,surname:"Abdulazeez",slug:"sarmad-abdulazeez",fullName:"Sarmad Abdulazeez"},{id:"256917",title:"Dr.",name:"Pisit",middleName:null,surname:"Praiwattana",slug:"pisit-praiwattana",fullName:"Pisit Praiwattana"},{id:"289071",title:"Dr.",name:"Mostafa",middleName:null,surname:"Tajdini",slug:"mostafa-tajdini",fullName:"Mostafa Tajdini"}]},{id:"73769",title:"Human Evolution in the Center of the Old World: An Updated Review of the South Asian Paleolithic",slug:"human-evolution-in-the-center-of-the-old-world-an-updated-review-of-the-south-asian-paleolithic",totalDownloads:847,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The Indian Subcontinent was an important geographic region for faunal and hominin evolution in Asia. While the Oldowan as the earliest technocomplex continues to be elusive, the oldest Acheulean is dated to ~1.5 Ma and the early Middle Paleolithic is ~385 ka (from the same site). New Late Pleistocene dates have been reported for the Middle Paleolithic which continues up to 38 Ka in southern India. The Upper Paleolithic remains ambiguous and requires critically multidisciplinary investigations. The microlithic evidence appears to spread rapidly across the subcontinent soon after its emergence at ~48 Ka (though its origin is debated) and continues into the Iron Age. The timeline of the initial arrival of Homo sapiens continues to be debated based on the archaeology (advanced Middle Paleolithic vs. microlithic) and genetic studies on indigenous groups. Other issues that need consideration are: interactions between archaics and arriving moderns, the marginal occurrence of symbolic behavior, the absolute dating of rock art and the potential role of hominins in specific animal extinctions and ecological marginalization. The region does not appear to have been a corridor for dispersals towards Southeast Asia (although gene flow may have occurred). Instead, once various prehistoric technologies appeared in the Subcontinent, they possibly followed complex trajectories within relative isolation.",book:{id:"9251",slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Parth R. Chauhan",authors:[{id:"307040",title:"Dr.",name:"Parth",middleName:null,surname:"Chauhan",slug:"parth-chauhan",fullName:"Parth Chauhan"}]},{id:"73386",title:"Island Migration, Resource Use, and Lithic Technology by Anatomically Modern Humans in Wallacea",slug:"island-migration-resource-use-and-lithic-technology-by-anatomically-modern-humans-in-wallacea",totalDownloads:725,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Island migration and adaptation including both marine and terrestrial resource use and technological development by anatomically modern humans (AMH) are among the most significant issues for Pleistocene archaeology in Southeast Asia and Oceania, and directly related to the behavioral and technological advancements by AMH. This paper discusses such cases in the Wallacean islands, located between the past Sundaland and the Sahul continent during the Pleistocene. The Pleistocene open sea gaps between the Wallacean islands and both landmasses are very likely the major factor for the relative scarcity of animal species originating from Asia and Oceania and the high diversity of endemic species in Wallacea. They were also a barrier for hominin migration into the Wallacean islands and Sahul continent. We summarize three recent excavation results on the Talaud Islands, Sulawesi Island and Mindoro Island in Wallacea region and discuss the evidence and timeline for migrations of early modern humans into the Wallacean islands and their adaptation to island environments during the Pleistocene.",book:{id:"9251",slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Rintaro Ono, Alfred Pawlik and Riczar Fuentes",authors:[{id:"177123",title:"Dr.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"},{id:"300616",title:"Dr.",name:"Alfred",middleName:null,surname:"Pawlik",slug:"alfred-pawlik",fullName:"Alfred Pawlik"},{id:"330591",title:"Dr.",name:"Riczar",middleName:null,surname:"Fuentes",slug:"riczar-fuentes",fullName:"Riczar Fuentes"}]}],onlineFirstChaptersFilter:{topicId:"263",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"22",type:"subseries",title:"Applied Intelligence",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80484",title:"The Use of Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) to Study Ivermectin-Mediated Molecular Pathway Changes in Human Ovarian Cancer Cells",doi:"10.5772/intechopen.102092",signatures:"Na Li and Xianquan Zhan",slug:"the-use-of-stable-isotope-labeling-with-amino-acids-in-cell-culture-silac-to-study-ivermectin-mediat",totalDownloads:78,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:86,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79031",title:"Isolation and Expansion of Mesenchymal Stem/Stromal Cells, Functional Assays and Long-Term Culture Associated Alterations of Cellular Properties",doi:"10.5772/intechopen.100286",signatures:"Chenghai Li",slug:"isolation-and-expansion-of-mesenchymal-stem-stromal-cells-functional-assays-and-long-term-culture-as",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78960",title:"Two-Dimensional and Three-Dimensional Cell Culture and Their Applications",doi:"10.5772/intechopen.100382",signatures:"Sangeeta Ballav, Ankita Jaywant Deshmukh, Shafina Siddiqui, Jyotirmoi Aich and Soumya Basu",slug:"two-dimensional-and-three-dimensional-cell-culture-and-their-applications",totalDownloads:249,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78812",title:"Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture",doi:"10.5772/intechopen.99146",signatures:"Harikrishnareddy Rachamalla, Anubhab Mukherjee and Manash K. Paul",slug:"nanotechnology-application-and-intellectual-property-right-prospects-of-mammalian-cell-culture",totalDownloads:119,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78274",title:"A Brief Concept of Cell Culture: Challenges, Prospects and Applications",doi:"10.5772/intechopen.99387",signatures:"Md. Salauddin",slug:"a-brief-concept-of-cell-culture-challenges-prospects-and-applications",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:135,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:170,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:197,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:190,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/60885",hash:"",query:{},params:{id:"60885"},fullPath:"/chapters/60885",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()