Result summary.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"4476",leadTitle:null,fullTitle:"Satellite Positioning - Methods, Models and Applications",title:"Satellite Positioning",subtitle:"Methods, Models and Applications",reviewType:"peer-reviewed",abstract:"Satellite positioning techniques, particularly global navigation satellite systems (GNSS), are capable of measuring small changes of the Earths shape and atmosphere, as well as surface characteristics with an unprecedented accuracy. This book is devoted to presenting recent results and development in satellite positioning technique and applications, including GNSS positioning methods, models, atmospheric sounding, and reflectometry as well their applications in the atmosphere, land, oceans and cryosphere. This book provides a good reference for satellite positioning techniques, engineers, scientists as well as user community.",isbn:null,printIsbn:"978-953-51-1738-4",pdfIsbn:"978-953-51-6372-5",doi:"10.5772/58486",price:119,priceEur:129,priceUsd:155,slug:"satellite-positioning-methods-models-and-applications",numberOfPages:214,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"0f1cb6a7a18e2391d2308b6ac1d423b0",bookSignature:"Shuanggen Jin",publishedDate:"March 11th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4476.jpg",numberOfDownloads:23134,numberOfWosCitations:31,numberOfCrossrefCitations:41,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:59,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:131,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 1st 2014",dateEndSecondStepPublish:"April 22nd 2014",dateEndThirdStepPublish:"July 19th 2014",dateEndFourthStepPublish:"August 18th 2014",dateEndFifthStepPublish:"September 17th 2014",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"113652",title:"Prof.",name:"Shuanggen",middleName:null,surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin",profilePictureURL:"https://mts.intechopen.com/storage/users/113652/images/2106_n.jpg",biography:"Shuanggen Jin is Vice-President and Professor at Henan Polytechnic University, China and Professor at Shanghai Astronomical Observatory, CAS, China. His main research areas include Satellite Navigation, Remote Sensing and Space/Planetary Exploration. He has published over 500 papers in peer-reviewed journals and proceedings, 10 patents/software copyrights and 10 books/monographs with more than 9000 citations and H-index>50. Prof. Jin has been President of International Association of Planetary Sciences (IAPS) (2015-2019), President of the International Association of CPGPS (2016-2017), Chair of IUGG Union Commission on Planetary Sciences (UCPS) (2015-2023), Editor-in-Chief of International Journal of Geosciences, Editor of Geoscience Letters, Associate Editor of IEEE Transactions on Geoscience & Remote Sensing, and Journal of Navigation, Editorial Board member of Remote Sensing, GPS Solutions and Journal of Geodynamics. He has received 100-Talent Program of CAS, Leading Talent of Shanghai, IAG Fellow, IUGG Fellow, Fellow of Electromagnetics Academy, World Class Professor of Ministry of Education and Cultures, Indonesia, Chief Scientist of National Key R&D Program, China, Member of Russian Academy of Natural Sciences, Member of European Academy of Sciences, Member of Turkish Academy of Sciences, and Member of Academia Europaea.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"683",title:"Aeronautics",slug:"aeronautics"}],chapters:[{id:"47339",title:"Calibration of the GNSS Receivers — Methods, Results and Evaluation",doi:"10.5772/58887",slug:"calibration-of-the-gnss-receivers-methods-results-and-evaluation",totalDownloads:3194,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Ta-Kang Yeh",downloadPdfUrl:"/chapter/pdf-download/47339",previewPdfUrl:"/chapter/pdf-preview/47339",authors:[{id:"172208",title:"Dr.",name:"Ta-Kang",surname:"Yeh",slug:"ta-kang-yeh",fullName:"Ta-Kang Yeh"}],corrections:null},{id:"47449",title:"Network Real Time Kinematic (NRTK) Positioning – Description, Architectures and Performances",doi:"10.5772/59083",slug:"network-real-time-kinematic-nrtk-positioning-description-architectures-and-performances",totalDownloads:3448,totalCrossrefCites:13,totalDimensionsCites:17,hasAltmetrics:0,abstract:null,signatures:"Alberto Cina, Paolo Dabove, Ambrogio M. Manzino and Marco\nPiras",downloadPdfUrl:"/chapter/pdf-download/47449",previewPdfUrl:"/chapter/pdf-preview/47449",authors:[{id:"86027",title:"Prof.",name:"Ambrogio",surname:"Manzino",slug:"ambrogio-manzino",fullName:"Ambrogio Manzino"},{id:"86028",title:"Dr.",name:"Paolo",surname:"Dabove",slug:"paolo-dabove",fullName:"Paolo Dabove"},{id:"159903",title:"Dr.",name:"Marco",surname:"Piras",slug:"marco-piras",fullName:"Marco Piras"},{id:"160993",title:"Prof.",name:"Alberto",surname:"Cina",slug:"alberto-cina",fullName:"Alberto Cina"}],corrections:null},{id:"48241",title:"GPS-based Non-Gravitational Accelerations and Accelerometer Calibration",doi:"10.5772/59975",slug:"gps-based-non-gravitational-accelerations-and-accelerometer-calibration",totalDownloads:2224,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Andres Calabia and Shuanggen Jin",downloadPdfUrl:"/chapter/pdf-download/48241",previewPdfUrl:"/chapter/pdf-preview/48241",authors:[{id:"174777",title:"Dr.",name:"Andrés",surname:"Calabia Aibar",slug:"andres-calabia-aibar",fullName:"Andrés Calabia Aibar"}],corrections:null},{id:"47333",title:"High-order Ionospheric Effects on GPS Coordinate Time Series",doi:"10.5772/58897",slug:"high-order-ionospheric-effects-on-gps-coordinate-time-series",totalDownloads:2063,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Weiping Jiang, Liansheng Deng and Zhao Li",downloadPdfUrl:"/chapter/pdf-download/47333",previewPdfUrl:"/chapter/pdf-preview/47333",authors:[{id:"171610",title:"Prof.",name:"Weiping",surname:"Jiang",slug:"weiping-jiang",fullName:"Weiping Jiang"},{id:"171757",title:"Dr.",name:"Liansheng",surname:"Deng",slug:"liansheng-deng",fullName:"Liansheng Deng"},{id:"171758",title:"Dr.",name:"Zhao",surname:"Li",slug:"zhao-li",fullName:"Zhao Li"}],corrections:null},{id:"47432",title:"Sea Level Changes Along Global Coasts from Satellite Altimetry, GPS and Tide Gauge",doi:"10.5772/58972",slug:"sea-level-changes-along-global-coasts-from-satellite-altimetry-gps-and-tide-gauge",totalDownloads:1787,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Guiping Feng and Shuanggen Jin",downloadPdfUrl:"/chapter/pdf-download/47432",previewPdfUrl:"/chapter/pdf-preview/47432",authors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"},{id:"171265",title:"Ph.D.",name:"Guiping",surname:"Feng",slug:"guiping-feng",fullName:"Guiping Feng"}],corrections:null},{id:"48164",title:"Sensing Precipitable Water Vapor (PWV) using GPS in Turkey – Validation and Variations",doi:"10.5772/60025",slug:"sensing-precipitable-water-vapor-pwv-using-gps-in-turkey-validation-and-variations",totalDownloads:1883,totalCrossrefCites:4,totalDimensionsCites:8,hasAltmetrics:0,abstract:null,signatures:"Gokhan Gurbuz, Shuanggen Jin and Cetin Mekik",downloadPdfUrl:"/chapter/pdf-download/48164",previewPdfUrl:"/chapter/pdf-preview/48164",authors:[{id:"174941",title:"Dr.",name:"Gökhan",surname:"Gürbüz",slug:"gokhan-gurbuz",fullName:"Gökhan Gürbüz"}],corrections:null},{id:"48049",title:"Ionospheric W Index Based on GNSS TEC in the Operational Use for Navigation Systems",doi:"10.5772/59902",slug:"ionospheric-w-index-based-on-gnss-tec-in-the-operational-use-for-navigation-systems",totalDownloads:2185,totalCrossrefCites:6,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Iwona Stanislawska and Tamara Gulyaeva",downloadPdfUrl:"/chapter/pdf-download/48049",previewPdfUrl:"/chapter/pdf-preview/48049",authors:[{id:"174452",title:"Dr.",name:"Iwona",surname:"Stanislawska",slug:"iwona-stanislawska",fullName:"Iwona Stanislawska"}],corrections:null},{id:"48097",title:"Ionospheric TEC Variations at low Latitude Indian Region",doi:"10.5772/59988",slug:"ionospheric-tec-variations-at-low-latitude-indian-region",totalDownloads:2594,totalCrossrefCites:12,totalDimensionsCites:15,hasAltmetrics:0,abstract:null,signatures:"Sampad K. Panda, Shirish S. Gedam and Shuanggen Jin",downloadPdfUrl:"/chapter/pdf-download/48097",previewPdfUrl:"/chapter/pdf-preview/48097",authors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"},{id:"174588",title:"Mr.",name:"Sampad Kumar",surname:"Panda",slug:"sampad-kumar-panda",fullName:"Sampad Kumar Panda"},{id:"174943",title:"Prof.",name:"Shirishkumar S.",surname:"Gedam",slug:"shirishkumar-s.-gedam",fullName:"Shirishkumar S. Gedam"}],corrections:null},{id:"47345",title:"Sensing Bare Soil and Vegetation Using GNSS-R— Theoretical Modeling",doi:"10.5772/58922",slug:"sensing-bare-soil-and-vegetation-using-gnss-r-theoretical-modeling",totalDownloads:1571,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Xuerui Wu and Shuanggen Jin",downloadPdfUrl:"/chapter/pdf-download/47345",previewPdfUrl:"/chapter/pdf-preview/47345",authors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"},{id:"171063",title:"Dr.",name:"Xuerui",surname:"Wu",slug:"xuerui-wu",fullName:"Xuerui Wu"}],corrections:null},{id:"47282",title:"Surface Reflectance Characteristics and Snow Surface Variations from GNSS Reflected Signals",doi:"10.5772/58886",slug:"surface-reflectance-characteristics-and-snow-surface-variations-from-gnss-reflected-signals",totalDownloads:2185,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Nasser Najibi and Shuanggen Jin",downloadPdfUrl:"/chapter/pdf-download/47282",previewPdfUrl:"/chapter/pdf-preview/47282",authors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"},{id:"25519",title:"Mr.",name:"Nasser",surname:"Najibi",slug:"nasser-najibi",fullName:"Nasser Najibi"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"623",title:"Global Navigation Satellite Systems",subtitle:"Signal, Theory and Applications",isOpenForSubmission:!1,hash:"cf4b30bc55fec41acdfe8c1203e1de62",slug:"global-navigation-satellite-systems-signal-theory-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/623.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3140",title:"Geodetic Sciences",subtitle:"Observations, Modeling and Applications",isOpenForSubmission:!1,hash:"4eb616406c28fb479f05f897281e894e",slug:"geodetic-sciences-observations-modeling-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/3140.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1992",title:"Recent Advances in Aircraft Technology",subtitle:null,isOpenForSubmission:!1,hash:"67fa903d68a094013f66d01b38882107",slug:"recent-advances-in-aircraft-technology",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/1992.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"215",title:"Aeronautics and Astronautics",subtitle:null,isOpenForSubmission:!1,hash:"311199eb39821f7f12a19ca1efc3fd7f",slug:"aeronautics-and-astronautics",bookSignature:"Max Mulder",coverURL:"https://cdn.intechopen.com/books/images_new/215.jpg",editedByType:"Edited by",editors:[{id:"10586",title:"Prof.",name:"Max",surname:"Mulder",slug:"max-mulder",fullName:"Max Mulder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"54",title:"Advances in Flight Control Systems",subtitle:null,isOpenForSubmission:!1,hash:"186a12a4766d19cae77a730fa648982a",slug:"advances-in-flight-control-systems",bookSignature:"Agneta Balint",coverURL:"https://cdn.intechopen.com/books/images_new/54.jpg",editedByType:"Edited by",editors:[{id:"18768",title:"Dr.",name:"Maria Agneta",surname:"Balint",slug:"maria-agneta-balint",fullName:"Maria Agneta Balint"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1704",title:"Future Aeronautical Communications",subtitle:null,isOpenForSubmission:!1,hash:"0b8e37964820587b229361f22d299b29",slug:"future-aeronautical-communications",bookSignature:"Simon Plass",coverURL:"https://cdn.intechopen.com/books/images_new/1704.jpg",editedByType:"Edited by",editors:[{id:"72892",title:"Dr.",name:"Simon",surname:"Plass",slug:"simon-plass",fullName:"Simon Plass"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"614",title:"Automatic Flight Control Systems",subtitle:"Latest Developments",isOpenForSubmission:!1,hash:"7e37ca326991ca149dd8f812475df8de",slug:"automatic-flight-control-systems-latest-developments",bookSignature:"Thomas Lombaerts",coverURL:"https://cdn.intechopen.com/books/images_new/614.jpg",editedByType:"Edited by",editors:[{id:"19892",title:"Dr.",name:"Thomas",surname:"Lombaerts",slug:"thomas-lombaerts",fullName:"Thomas Lombaerts"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"315",title:"Advances in Satellite Communications",subtitle:null,isOpenForSubmission:!1,hash:"97497fa8021416773088969c2c9219cb",slug:"advances-in-satellite-communications",bookSignature:"Masoumeh Karimi and Yuri Labrador",coverURL:"https://cdn.intechopen.com/books/images_new/315.jpg",editedByType:"Edited by",editors:[{id:"13481",title:"Dr.",name:"Masoumeh",surname:"Karimi",slug:"masoumeh-karimi",fullName:"Masoumeh Karimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1994",title:"Advances in Spacecraft Systems and Orbit Determination",subtitle:null,isOpenForSubmission:!1,hash:"005b6f7fa0ad6e582e7b37bee4ce88be",slug:"advances-in-spacecraft-systems-and-orbit-determination",bookSignature:"Rushi Ghadawala",coverURL:"https://cdn.intechopen.com/books/images_new/1994.jpg",editedByType:"Edited by",editors:[{id:"103175",title:"Dr.",name:"Rushi",surname:"Ghadawala",slug:"rushi-ghadawala",fullName:"Rushi Ghadawala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6150",title:"Flight Physics",subtitle:"Models, Techniques and Technologies",isOpenForSubmission:!1,hash:"fa5828a4ee518adf719c68c1e533f3b7",slug:"flight-physics-models-techniques-and-technologies",bookSignature:"Konstantin Volkov",coverURL:"https://cdn.intechopen.com/books/images_new/6150.jpg",editedByType:"Edited by",editors:[{id:"118184",title:"Dr.",name:"Konstantin",surname:"Volkov",slug:"konstantin-volkov",fullName:"Konstantin Volkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72959",slug:"erratum-driving-control-technologies-of-new-high-efficient-motors",title:"Erratum - Driving Control Technologies of New High-Efficient Motors",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72959.pdf",downloadPdfUrl:"/chapter/pdf-download/72959",previewPdfUrl:"/chapter/pdf-preview/72959",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72959",risUrl:"/chapter/ris/72959",chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]}},chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]},book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11273",leadTitle:null,title:"Ankylosing Spondylitis",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tDuring the last years, there was intense research on Ankylosing Spondylitis (AS) and related disorders, which were found to have a strong association with the HLA-B27 allele. Further studies showed that 92% of the population variance is due to genetic factors, and only a fraction of AS genetics can be explained by the influence of HLA-B27. Updated information on the genomic and auto-immune knowledge on AS is an important component of this book, calling attention to markers of disease activity, possible pathways, and the interaction with the gut microbiome, which are a step forward in the knowledge of the pathophysiology of AS, providing markers which are targets for the more recent biologic therapies.
\r\n\tAn update on clinical manifestations, their assessment, monitoring, and imagiology, including peripheral arthritis, enthesopathy, and extra-articular findings, and, the differential diagnosis with other diseases which evolves with axial and peripheral calcifications will be provided.
\r\n\t
\r\n\tAn important component of this book must be dedicated to the more recent treatments namely with biologic therapies but focusing also on new small molecule inhibitors and experimental therapies.
Sedimentation and erosion patterns and rates in estuaries rely on the interaction of multiple conditions and so are generally complex. However, in a brief and simplified overview, when a system is in equilibrium, there is neither sedimentation nor erosion; when, at local conditions, the flow velocity is not strong enough, there will be accretion; and, if the flow velocity is too strong, there will be erosion. In the case of an environment alteration (e.g. due to natural causes, as a heavy storm, or due to human intervention, as the construction of a dock), a change in hydrodynamics and, consequently, in the sediment-erosion pattern will occur [1].
Sediment transport processes are subject to the influence of site conditions as the geological and geotechnical characteristics of the estuary basin bed and of the existing suspended sediments. So a good knowledge on sediment geotechnical properties (i.e. granulometry, mineralogy, resistance to erosion,) is important as they define the hydrodynamic velocity for which sedimentation occurs [2] due to the distinct dynamics of transport, and even interactions, between cohesive sediments (mud) and of non-cohesive sediments (sand) [1].
Depending on harbor emplacement, sediment movement is also controlled by the river flow and tidal and wave conditions [3]. When considering harbors located in estuarine areas, particularly in the terminal section where the tide occurs, the tide plays a more important role in solid transport patterns than the river flow itself. Nevertheless, a major factor in this situation is the estuary’s tidal prism, which is the volume of water exchanged between mean high tide and mean low tide or the volume of water leaving an estuary at ebb tide. The available tidal prism is so dependent on the geometry of the basin in terms of surface area and mean water depth and also the tidal range, the frictional forces and, to a lesser extent, freshwater inflow. Therefore, the larger the tidal prism related to the river flow, the more determinant for the sedimentation and erosion processes, in the estuary, is the tide and tide flow.
Hence, to better understand estuarine sediment dynamics, it is relevant to study the existing topography, through reliable surveys performed, at adequate detail and scale, for each case location. The obtained data allows hydrographic modeling in order to relate hydrography with hydrodynamics and thus attain the referred knowledge.
Estuarine locations, although provide natural safety and protection conditions to the establishment of harbors and other facilities, are prone to natural filling caused by the settlement of sediments. Consequently, periodic dredging is required to maintain navigation channels and harbors in a safe and usable way. Moreover, given the natural trend of harbor activities expansion, dredging works are also needed to improve the design depth for larger vessels access, to build new wharfs and piers, or to improve existing harbors or other facilities [1]. As stated above, changes to harbor layout entail changes in estuarine hydrodynamics; hence the dredging need rates are subject to alteration, namely, tending to increase. So, it is important, when planning harbor new layout design, to include methods to minimize hydrodynamics changes and to reduce dredging volumes.
Although dredging operations are essential, these have a significant economic impact, not only during the construction phase but also along the operation phase, due to maintenance works. In fact, in small harbors, it corresponds to almost 75% of all maintenance costs [4]. Moreover, dredging activities can also have adverse environmental impacts, either within the dredge area or the deposition site, as fine-grained fraction of sediment resuspension (increasing the turbidity of water), nutrients and pollutants dispersion, water column contamination, or ecosystem degradation (e.g. by burying the biological habitats). So, potential environmental effects and risks are imperative to ascertain and well manage through the implementation of adjusted containing or remedial measures.
The referred economic and environmental impacts of dredging works highlight the importance of an accurate knowledge of sediment transport patterns, namely, the identification of sediment deposition and erosion areas and also of the areas in which there is a balance. Regular hydrographical surveys can allow the determination of the sedimentation rate [4] and are considered as a key procedure for dredging design optimization.
Taking into account the referred goals of efficiency improvement, cost reduction and environment protection, the use of management models is considered a valuable method to support harbor management and design (or new design) decisions. This approach allows to adequately manage the dredged material, in operation phase, with its use (e.g. beach nourishment) or its safe disposal. As well, in design phase, the hydrodynamic modeling enables to achieve a better balance in erosion and sedimentation rates, throughout optimized technical choices. The aimed performance improvement intends to minimize the dredging volumes, keeping the sediments within the system but, at the same time, keeping the waterways of the harbor in a safe mode for the vessels that use it.
This chapter presents a planning and management model of dredging using the geo-processing automatic GIS environment developed by the Portuguese harbor authority, which is intended to be an accessible and efficient tool to support technical options in dredging design. Additionally, the particular case of harbor of Portimão, where the referred methodology was implemented, is discussed. The present hydrodynamic situation of the estuary is characterized, using a tidal model and considering average flows of the river. Then, taking into account the plans for the harbor expansion, the hydrodynamic modeling of the new layout is presented. Using as a reference the current situation, a method to analyze the influence that the planned works will introduce into the estuarine hydrodynamics and, consequently, in the pattern of sediment deposition and erosion is also summarized.
In estuarine locations, dredging activities are a required procedure both in harbor design and, during operation stage, in harbor management. However, from economic and environmental standpoints, dredging can also cause adverse effects related to the sediment removal from the basin bottom and also related to the management of the dredged material that are important to control. The referred impacts result from changes in local hydrodynamics and as consequence in the existing sedimentation-erosion patterns and rates.
An adequate management system that keeps the harbor in a safe and usable way, but also that controls the dredging impacts, reducing to a minimum the dredged volumes and disposing them, if possible and useful, within the system is so aimed.
In order to achieve those goals, it is essential to have a comprehensive knowledge of the present situation (reference situation) in terms of accretion and erosion areas and the typology (grain size) of the sediments within those areas. This data is attained through the combined analysis of local hydrography and hydrodynamics, as well as local geology and geotechnical characteristics. As a result, predictive models can be established, and better technical choices concerning harbor design or management are then possible.
Therefore, a set of procedures were established to aid and simplify both the planning of harbor dredging and of the disposal of the dredged materials. Some guidelines are then proposed to be followed [3, 4, 5]:
Analysis of the granulometry of sediments in the harbor area of the estuary
Analysis of the maximum velocities of tidal flow and its comparison with average tide and living waters flow velocities
Comparison of the sediment size with the maximum velocities of tide
The use of automatic geo-processing
The use of this information in harbor dredging planning, including the definition for dredged material
Aiming an optimized dredging project management tool, the Portuguese harbor authority has developed and implemented a model of planning and management of dredging using the geo-processing automatic GIS environment which is next presented. Taking into account geo-referenced detailed hydrographical surveys and physicochemical analyses of the sediment, the referred model:
Identifies the spatial distribution of zones where erosion and sedimentation occur
Relates them with the existing types and concentrations of contaminants (if any)
The developed analysis system is based on a conceptual model of morph-dynamic and multi-temporal sediment distribution in port areas, automating the production of maps [6].
Through the conversion of different data formats, the proposed model is able to:
Generate surfaces of different particle sizes by using interpolation methods.
Zone the dredging area.
Assess the areas and volumes of eroded and deposited sediments considering four distinct particle classes: pebble, sand, silt and clay [4].
This system was implemented by applying Model Builder software ArcGIS ® (ESRI), and it consists of a set of tools that operate sequentially in the calculation of the various components of the model.
Firstly, Figure 1, five modules (defined as M1–M5) were implemented, each with specific processes to build automatic digital maps with the relevant information allowing [4, 5, 6, 7]:
M1—conversion of CAD entities into vector entities (GIS shapefile).
M2—development of digital terrain models from bathymetry (DTM), tin and raster.
M3—interpolation of particle sizes, deterministic method IDW.
M4—preliminary zoning of sediments of harbor areas.
M5—calculation of areas and volumes of erosion and deposition for subsequent dredging planning.
Flow chart of the developed procedure of physicochemical characterization for sediment dredging management in harbors.
So, the integration of the flow field pattern and tides, using finite element method (FEM), with size distributions in estuarine sediments (determined with MAZD), identifying their source, allows then to divide the harbor area in main areas, according to the same sediment typology, for dredging purposes.
Following the physicochemical characterization and analysis of the sediments and taking into account the obtained results, the proposed methodology aims the identification of areas of erosion and deposition of materials.
In the reference situation for the case study, the identification was made using tools of geographic information systems, namely, 3D Analyst and ArcGIS Spatial Analyst. The zoning of the estuary area according to the grain size of the sediments was then established.
According to the applied methodology, the determination of the maximum velocities of the ebb tide in each of the study zones must be performed, for the reference situation. Later, the determination of the maximum velocities of ebb tide, for the new layout, must also be carried out.
The following step of the stated method is comprised by the identification of the areas where sedimentation and erosion occur and also where a balance between both states takes place, using the different digital terrain modules obtained from bathymetry in different years.
For each study area, the maximum velocities of the ebb tide are related with the erosion or sedimentation status verified.
By the integration of the gathered results from the reference situation and the new layout, it is aimed in this stage to foresee the changes in erosion and sedimentation patterns, comparing the flow changes in both situations. So, the areas in which erosion and sedimentation are likely to increase, or to maintain a probable balance, are then identified, estimating the variation in yearly volume dredging.
Finally, according to the results, an eventual consideration of alternative solutions to dredging can be studied.
In this chapter, the hydrodynamics of the Arade estuary is analyzed considering the area of port interest (Port of Portimão), studying the present situation of deposition and erosion of sediments, relating them, based on the detailed information about the model [8].
The port of Portimão presents the best natural conditions on the southern coast of Portugal. The area under port jurisdiction runs from the mouth of the River Arade to the Roman bridge in Silves, 13 km upstream. At present, the port area only encompasses the frontier stretch of the city of Portimão, and it can be seen that, upstream of the first Arade Bridge, the river can only be used by small tourist boats and in certain places only at high tide. Two breakwaters protect the entrance to the port, with a minimum of 200 m wide, followed by a 150 m wide navigation channel, which extends to the commercial wharf and the fishing port [9]. The W and E quays have lengths of 820 m and 680 m, respectively. In the wide front, there is a circular and maneuvering basin. On the right bank, from the inlet upstream, first there is Portimão Marina; then the Navy Pier, with a length of about 200 m; and the Terminal of Passengers and General Cargo, about 340 m long; further upstream, in a lower depth zone, there are other docks and berths for recreational craft. The fishing port is located on the left bank, with mooring wharves, a shipyard and a supply pier. The port of Portimão is used for trade, cruising, fishing and recreation. There is a weekly ferry link to Madeira and the Canary Islands.
The modeling of the estuary of the River Arade includes the west coastal zone up to Ponta da Piedade, west of Lagos and the east coastal zone till near Vilamoura. Given the referred coast extension, it was intended to ensure that the tide conditions that were taken into account at the entrance of the bar would be free of undesired influences from the boundary conditions.
Regarding the study area towards the inland, the river Arade was considered as far as the Roman bridge of Silves, in an extension of 13 km, and the Odelouca stream to a section about 14 km upstream from the mouth of the Arade. This way, it was intended to obtain, in the area under study—Arade estuary between the Portimão road bridge and the bar—the most representative situation possible.
It was considered that hydrodynamic conditions are determined almost exclusively by the effect of the tide, since the influence of the river flow is very small, given the regularization imposed by the built dam upstream; it was assumed for the river flow the value of 10 m3/s. Upstream of the model limit, the roman bridge of Silves, the volume of the tide prism is very small, due to both the small widths of the channels of the water lines and the high levels of the bottoms.
For the hydrodynamic modeling, the RMA2 model, with the SMS interface, was used. The mesh of finite elements used for the reference situation is presented in Figures 2 and 3. For the future layout, the mesh and the boundary conditions were modified considering the future hydrography, according to what each work planned, the respective geometry and the limit of analysis.
Finite element mesh of the case study and the harbor location.
Details of the mesh in the estuary of the Arade River: the estuary and the zone that comprises the Dock of San Francisco, the fishing port, the commercial wharf and the Navy Pier and the maneuvering basin.
To calibrate the model in the reference situation, three points were taken into account, respectively, upstream of the railway bridge in Mexilhoeira Grande, at the junction of the Odelouca River with the Arade River, and downstream of the Roman Bridge in Silves, as referenced in Figure 4. The observations available for the calibration of the model, considering the free surface of the flow, took place during a tide cycle. Besides the points used for the calibration of the model, Figure 4 shows the points used for the overall analysis of the results and also for the detailed analyses.
Calibration points and observation points, for comparison of results.
The variables obtained in the calibration of the model were used in the future layout model, with minor adjustments to eliminate instabilities of convergence of the iterations.
The flow rate considered for both situations (reference situation and future layout) was 5 m3/s in the Arade River and 5 m3/s in the Odelouca stream. In fact, the average current flow rate at the Portimão road bridge is estimated at about 10 m3/s. For the calibration, and taking into account the flow rates verified on the day of the field readings, a flow rate of 0.5 m3/s was used for each of the streams.
In Figure 5, the topo-hydrography regarded in the hydrodynamic analysis is presented in a very schematic way, and it was based on the surveys carried out in 2003. For the future layout simulation, this hydrography was modified according to the various reviewed works. This way, the velocity and the water heights at each point were obtained. The interventions planned for the port will not have a significant influence on the hydrodynamics upstream the Portimão road bridge, as there will be no changes in that reach.
(a) Topo-hydrography considered for the reference situation and (b) detail of the estuary.
Consequently, the “overall” analysis of the results to be achieved will focus only on the section between the Portimão road bridge and the inlet, and so four areas were analyzed in detail: commercial quay and maneuvering basin, Ferragudo channel and Ferragudo bank, the first section of the navigation channel and the inlet. Some considerations are also done about the sandbank channel, upstream the commercial quay. Several zones were considered in the modeling, corresponding to different “materials” and their corresponding roughness, in the RMA2 model, which are represented in Figure 6. In fact, the hydrodynamic conditions within the several docks are substantially different from those observed, for example, along the navigation channel.
Materials (different roughness) considered in the analysis, in the section between the road bridge and immediately downstream of the bar.
Considering the sampling and grain size analysis performed, and considering the fine alternations of thinner and coarser sediments, typical in this type of environment, as well as the various strata, it was decided to divide the estuary into three zones (Figure 7):
Upstream, between the road bridge and the downstream part of the maneuvering basin, as a zone of fine sediments
Downstream of the former and to the southern end of the Portimão Marina, as an area of medium sediments
To the south of the previous one, and to the bar, as a zone of coarse sediments
(a) Sampling points and grain size distribution; (b) simplified zoning of the estuary.
It is considered that the occurrence of erosion and sedimentation in the mooring area, and the coarser sediments, is more related to the swell of SW, than to the currents caused by the tide.
In this zoning, “fine sediments” include materials ranging from fine sand to mud, including silts; in “medium sediments” fine to medium sand, with some silt, are included; the “coarse sediments” include coarse to medium sand.
Figure 7 shows the proposed zoning for sediments, which will serve as a basis for the subsequent analysis of the possible acceleration of erosion or sedimentation trends.
The reference situation corresponds to the current situation of the port of Portimão, as in 2010; however, the hydrography of the survey of 2003 was used since it is still representative.
For performed modeling, and for all subsequent modeling, the tide of 27 February 2002 (Figure 8) was considered for representing a tidal wave, as it corresponds to the obtention of the field values for the calibration of the model. The tide used has a flood level of 3.69 m ZH and a low sea level of 0.30 m ZH.
Tide used in the modeling, including the 27th of February (calibration data) and the period used in the analysis.
All the modeling was carried out for a period of 65 hours, i.e. more than five complete cycles of flood and ebb tide. In this way, the aim was to stabilize the obtained results, since, in general, and in the application of the RMA2 model, the two or three first cycles show variations before reaching stabilization. The period considered for analysis, both in this modeling and in the following models, was the between 48 and 62.3 hours of simulation.
Figures 9–11 show some of the results that are considered more relevant for the reference situation. As expected, in this case, there is a delay of almost 1 hour between the peak velocity in the bar and the channel in front of the central zone of Portimão, near the sandbank. There is also a substantial reduction in flow velocity in front of the S. Francisco dock, due to the widening of the flow channel due to the entrance to the fishing port, the S. Francisco dock, and the maneuvering basin. There is also a significant reduction in velocity on the initial section of the channel and in the mooring area, due to the widening of the flow section in that area.
Reference situation. Results obtained during ebb flow: (a) 50, (b) 51, (c) 53 and (d) 55 hours.
Reference situation. Flow at (a) 53 and (b) 54 hours; (c) delay between the peak of velocity in the ebb tide in the bar and in the channel near the sandbank.
Reference situation. Results obtained during flood flow: (a) 58, (b) 59, (c) 60 and (d) 61 hours.
The determination of the areas currently subject to sediment deposition or erosion was done following the methodology explained in Section 2, using the 3D Analyst and the Spatial Analyst tools of ESRI geographic information software. The 2000 and 2003 surveys of the entire port of Portimão were used. These two surveys allow a good understanding of the erosion sedimentation procedure, as there were no full dredging works in the meantime, only local dredging works.
The application of this model, simple to apply on geo-referenced surveys, allows to determine the locations where the depth has lowered (deposition of material), or risen (erosion of sediments), and to assess the value of these variations, by analyzing the difference on the assessed depths of two hydrographic surveys separated by a certain time interval.
With the application of 3D Analyst and Spatial Analyst to the two surveys of 2000 and 2003, the results, represented graphically in Figure 12, were obtained.
Results of the application of modules M1 to M5 to the surveys of 2000 and 2003: (a) overall results, (b) erosion and (c) sedimentation areas.
The two situations of erosion and sediment deposition will be analyzed separately.
Firstly the areas where erosion occurs (which are presented in Figure 12b) will be analyzed. In particular, eight distinct locations deserve careful consideration, as follows.
Starting in zone 1, which corresponds to the fishing port, it is important to notice that a maintenance dredging was carried out in 2001, since this zone, and especially the port entrance and the area next to the haul ramp of the shipyards, was very much silted. Therefore, erosion did really not occur here but rather maintenance dredging. In the remaining areas of this fishing port, the alternation between eroded and silted areas, always of very small values, corresponds to the mooring area of the boats, and to the areas under the piers, and indicates that there was practically no sediment erosion or sedimentation.
The zone 2, which appears in this analysis as strongly eroded, was in fact subject to a local dredging, so, contrary to the obtained results, this is a zone of strong deposition of sediments; on the other hand, the section upstream of this zone, also at the mouth of the Ferragudo River, is, in fact, an area of high erosion. This is, moreover, an area which is important to analyze with particular attention, since it is probable that the planned works will have there an important influence.
In zone 3, the regional departments of environment undertook beach nourishment activities, by placing sands as a coastal reinforcement. According to the empirical experience, confirmed in the present case, the sand that was deposited in this beach was dragged to the mooring area by the effect of the SW waves, so, throughout the tidal range in this zone, there was an erosion of all the material deposited there. Above the level of variation of the tide, there was deposition of sand.
Zone 4 corresponds to São Francisco Dock. In this zone, in the period between the two general surveys, the works of establishment of the referred dock were concluded. Thus, there was no erosion here—it is likely that relatively high silting will occur—but rather a dredging for the establishment of the referred port infrastructure.
The section upstream of the San Francisco Dock and the fishing port and downstream from the road bridge defines the zone 5. Within this area, the erosion is very small, and there is also a small sedimentation under the quay bridges and at the downstream end of the sandbank.
Zone 6 is a muddy, sandy-muddy zone, with a general elevation between low tide and full tide, and is thus under water and out of water in all tide cycles. This zone toggles between erosion and deposition of sediments but always with a very low value, being almost in balance in the current situation.
Zone 7 is usually a zone of erosion, a tendency that was increased after the construction of the Marina of Portimão, on the right bank of the Arade River, with the consequent narrowing of the channel. The sediments eroded in this Zone will generally be deposited in the mooring area.
Zone 8 corresponds to the inlet, and the erosion observed there, of the order of 10 cm, is not significant and may be linked to periodic phenomena of storms and, consequently, higher flow speeds in the inlet. It can be considered that this area is almost in equilibrium.
Regarding some of the areas where apparently sedimentation occurs, such as the fishing port, the sediment deposition trend has already been discussed above and related to the observed erosions.
As for the four areas where sedimentation occurs, referred as zones A–D and referenced in Figure 12c, these have the greatest interest for port management.
Zone A corresponds to the downstream end of the existing sandbank in front of the central zone of Portimão and is located where the channel widens, with consequent slowing of the flow velocity which results in a reduction of the capacity of solid transport of the river. One of the planned works in the new layout is the dredging of the referred sandbank. There will be an increase of the tide prism, but as the flow section increases, it is not sure if the flow velocity will decrease; as it is possible that there will be a reduction in erosion in the area of the current sandbank, it is important to analyze this area regarding the eventual hydrodynamic change. So, a careful analysis of foreseeable speed variations will be carried out.
Zone B, corresponding to the commercial wharf and the maneuvering basin, is the widest zone in this section of the estuary, where, therefore, the flow velocities decrease, as well as the transportation capacity of the flow, with significant rate of sedimentation.
Zone C is a particularly sensitive zone. In fact, the alternation of the erosion and deposition zones, which are always of small thickness, suggests that the system is close to equilibrium in the navigation channel within this Zone. However, there is a marked deposition both at the entrance to Portimão’s marina, on the right bank, and along the left bank of sand, which will be dredged to carry out the planned arrangement of the Ferragudo marginal. Thus, the width of the channel in this section will increase, and it is necessary to carefully analyze what will happen with the flow velocities, especially in the area of the navigation channel.
The zone D, corresponding to the first section of the navigation channel, and the mooring area, is subject to heavy siltation since it is the widest area of the estuary, and that is downstream of areas of substantial erosion, namely, zones 3 and 7.
The histogram (Figure 13) shows the distribution of erosion and sedimentation from 2000 to 2003, using ArcGis Space Analyst. Almost all of the values are between −1 m (erosion) and +1 m (sedimentation). Values outside this range correspond, in fact, to one-off dredging interventions or landfill works. Even in the −1 to +1 m interval, part of the values was caused either by dredging or by land filling.
Distribution histogram for the thickness of erosion and sedimentation.
A more detailed analysis of the results is shown in Figures 14 and 15. Figure 14 presents the same results of Figure 15b and c but superimposed on the hydrography of 2003.
(a) Sedimentation areas on the 2003 hydrography and (b) Erosion.
(a) Total erosions and sedimentations, 1 m intervals, (b) erosions from 0 to −0.5 m and sedimentations from 0 to +0.5 m, (c) erosions from 0 to −0.20 m and sedimentations from 0 to +0.20 m.
The direct comparison of the two situations, on the section of the navigation channel between the commercial dock and the Marina de Portimão, shows a mixing of the deposition and sedimentation areas. Considering Figure 14, where the section in reference is presented in more detail, both the erosions and the settlements have an absolute value inferior to 0.5 m throughout the zone. The analysis of the right-hand side of this same figure suggests that, in general, this absolute value for erosions and sedimentation is, in fact, less than 0.20 m. It also suggests that an interchange occurs at short distance (distances of the order of the metre) between erosion and sedimentation, with the exception of the river bank areas, where, in fact, only sedimentation is observed, with a value between 0.20 and 0.50 m. Thus in this section of the channel, a relative stability is observed, and the described sedimentation and erosion pattern is due to sediment drift in the bottom of the canal, caused by the tide, as well as the propellers of the vessels.
Another area that deserves a careful analysis is the one that constitutes the section, limited upstream by the road bridge and downstream by the south end of the maneuvering basin. The observation of Figure 14 shows that there is a high erosion rate in the channel, but not in the sandbank, probably due to the small channel width between the shallows in front of the shipyards and the central zone of Portimão, where higher flow speeds are verified.
Downstream, with the widening of the flow section, the velocities decrease, and a strong sedimentation of 0.50 m in the canal and in the maneuver basin is observed. That is to say, the sandbank is moving downstream, which is a serious problem for the management of the port. It is necessary to consider the complete removal of this sandbank or at least a dredging intervention that would establish a balance, without sedimentation or erosion, in the sandbank section.
As can be seen from Figure 15, in the navigation channel and the anchoring area at the southern end of the estuary, most of the erosions and sedimentations are of the order of 0.20 m; however, in some localized areas, higher values are observed. But in the navigation channel, throughout this section, the sedimentation is always on the order of 0.50 m.
In the bar itself, erosions reach, for this same period of 3 years, values of 0.50 m.
After the calibration of the model for the reference situation, it was applied to the new layout, changing accordingly the topography and hydrography of the harbor. The new layout includes a new marina, the reshaping of the river bank downstream Ferragudo and the deepening of the navigation channel in order to allow larger ships.
Regarding the sandbank area, a dredging level of −1 m ZH was considered. However this value is not yet final. In the analysis of the obtained results, it will be discussed which would be the most advantageous level for dredging, from the hydrodynamic point of view. Figures 16–18 present some relevant results obtained for the whole harbor.
Modeling with the new layout. Results for ebb tide: (a) 50, (b) 51, (c) 53 and (d) 55 hours (see
Modeling with the new layout. The delay of the peak velocity in ebb tide (c), between the harbor inlet and the sandbank (a) 53 and (b) 54 hours.
Modeling with the new layout. Results for the flood tide: (a) 58, (b) 59, (c) 60 and (d) 61 hours.
According to the mineralogy and grain size of sediments, the longshore transport of sediments only affects this estuary near the inlet, more precisely in the mooring area, due to SW waves. In this particular case study, the longshore transport and the waves have no significant effect in the main part of the estuary, and so the referred influences were not considered in this analysis. However, taking into account the new layout, Figure 19, it can be observed that the construction of the new marina affects the main flow in the channel leading it to the right bank, downstream of the commercial wharf.
The estuary, in the peak of ebb tide (53 hours), (a) for the reference situation and (b) for the new layout simulation.
The new shape for the Ferragudo river bank will increase the flow velocity near the left margin. Also the flow, as being diverted by the promontory of the castle of S. João towards the right bank, will increase the velocity near the entrance of the Marina of Portimão; moreover, there is an flow velocity increase, upstream of the São Francisco dock, in the area of the sandbank, due to its dredging to −1 m. The planned dredging will have a significant influence on the flow in the sandbank area, where the flow will be more evenly distributed over the whole width, with a significant reduction of the maximum speed that occurred in the reference situation in the channel near the right bank of the river (Figure 20).
Upstream of the study area, in the sandbank in front of the town, the dredging of that sandbank will reduce significantly the velocities (velocity in absolute value).
In front of the commercial wharf, and the new marina, is located the maneuvering basin of the harbor; as a consequence of the increase in the ships draft that is aimed, and also due to the construction of the new marina, this area will be dredged, and so it will present a larger water section. As it can be seen from the velocity variation from the reference situation, there will be a still significant decrease in the velocity in this area.
As for the maneuvering basin, Figure 21, there is also a clear reduction of the velocity; the peak velocity values obtained for the ebb tide were 0.076 m/s and for the flood tide 0.063 m/s.
It can be seen from the velocity variation that there will be a still significant decrease in the velocity in this area (velocity in absolute value) and so an increased sedimentation.
The navigation channel, in front of Ferragudo, Figure 22, presents almost no velocity variation from the reference situation to the final layout situation. This is due to contrary effects of the various interventions planned for the harbor: on one hand, the dredging of the channel will increase the section flow and, so, decrease the velocity, and on the other hand, the works upstream, marina, sandbank, by example, will increase the tide prism upstream this analysis point and so increase the velocity. The referred effects, opposite to each other, cause almost no variation in velocity.
In front of Ferragudo, the velocity is almost unchanged (velocity in absolute value).
After the planned work completion, the predicted peak velocity of the ebb in the inlet is 0.36 m/s. In the flood, the peak velocity, which in the reference situation was 0.36 m/s, will then change, with the three interventions performed, to 0.32 m/s (Figure 23). So, at the inlet the velocity will decrease slightly, and so an increase in sedimentation and consequently of dredging should be expected.
At the inlet the velocity will decrease slightly (velocity in absolute value).
Table 1 presents, for the four reference sections above mentioned, the ebb maximum velocity in the reference situation and in the simulation considering the new layout. It presents also, for the reference situation, if each zone presents erosion and sedimentation or is in equilibrium.
Result summary.
Notes:
As stated, harbors are, whenever possible, established in estuaries to take advantage of the existing natural safety and protection conditions. But to keep harbors in a safe and usable way, periodic dredging works are carried out. The expansion of harbor’s activities and the growth of maritime traffic may lead to changes in the harbor’s layout or to improvements of navigation channels and basins depths. Such adjustments entail changes in estuarine hydrodynamics, and therefore the usual dredging rates are subject to alteration, namely, tending to increase. It is then important to assess the influence of a harbor’s new layout on the solid transport pattern and how its effects can be minimized, aiming the reduction of economic and environmental impacts. Within this context, in this chapter estuary hydrodynamics and sedimentation-erosion patterns were summarized. Also, the modeling methodology for planning and management of dredging works which uses geo-processing automatic GIS environment, developed by the Portuguese harbor authority, was presented. Finally, the case study of harbor of Portimão was also described showing the implementation of the referred methodology.
The method presented to estimate erosion and deposition ratings, and so allowing to plan dredging works, has proven its usefulness and proved to be of easy implementation. In the case study presented, it allowed to identify the areas where the hydrodynamic changes will likely increase sedimentation and also where no change or an increase of erosion should be expected. Lower velocities will mean higher depositions and, accordingly, a greater volume to dredge. Anyway its application must be careful, as it is important, besides the use of adequate topographic surveys, to know where, in the time period of those topographic surveys, dredging works were carried on, as well as the volumes dredged.
Also the hydrodynamic pattern of the harbor is of the uttermost importance, mainly when a changing in the harbor layout is planned, in order to forecast the changing in the erosion deposition rates in the different harbor zones.
Numerical simulation is increasingly used for studying overland flows. Since runoff drives soil erosion and landscape evolution, the runoff models provide a foundation for modeling soil erosion, rill erosion, and related processes at the watershed scale [1, 2]. Models involving different levels of abstraction have been proposed [3, 4, 5]. Two commonly used models are the diffusion wave (DW) and kinematic wave (KW) models [6, 7, 8, 9]. The KW models set the friction slope to be equal to the bed slope and ignore the inertial terms [10]. The method has been successfully used to describe overland flows [11, 12, 13, 14]. The governing equations are highly nonlinear and do not have general analytical solutions, so one has to solve them numerically for practical cases [15]. The models based on full Saint-Venant (SV) equations have also been applied and produced better results.
Two-dimension models are generally used for cases with irregular domains. A distributed rainfall-runoff model using the KW approximation solved by an implicit finite difference scheme was developed [16], but channel flows are computed using a separate KW model. Fully two-dimensional shallow water equations are being utilized for modeling overland flows in late 1980s [17]. A two-dimensional finite difference (FD) runoff model was developed by solving 2D SV equations [18]. Shallow water equation-based 2D models [19] were used for runoff over an irregular topography of experimental scale with infiltration processes considered and in rural semiarid watersheds for overland flows generated by storms [20].
In addition to finite difference method (FDM), the two-dimensional finite element (FEM) and finite volume methods (FVM) have been used for overland flow simulations. A FEM KW model was developed by Liu et al. [21] for simulating runoff generation and concentration over an irregular bed and reproduced experimental results. Tests [15] indicated that the FVM-based 2D SV model performed better than that of FDM. Costabile et al. [22] solved the shallow water equations using the FVM and applied the resulting model to simulate a real event on a watershed of 40 km2. Nunoz-Carpena et al. [23] solved the KW equation using the Petrov-Galerkin method. Venkata et al. [24] developed a Galerkin DW FEM and applied it to a small watershed. Singh et al. [25] simulated runoff processes by solving the 2D shallow water equations with a shock-capturing scheme and the FVM. Shirmeen et al. [26] showed results of a validated, FEM 2D model in predicting runoff from a flat agricultural watershed.
In order to check numerical models’ mathematical correctness and physical applicability, the developed computational models have been tested with analytical solutions, experimental, and field data. Iwagaki [27] studied runoff using analytical methods and experimental data; several specific solutions were developed based on the characteristic method. Govindaraju et al. [28] developed analytical solutions using KW and DW approximations. Comparisons of analytical solutions, numerical solutions, and experimental data were discussed. Singh [29] detailed the KW model’s analytical and numerical solutions and their wide applications. Cea [30] tested FVM using an experimental watershed with a complex shape. These overland flow models use simplified equations and need to specify pre-existing channel networks, which make it difficult to simulate soil erosion cases with hill-slope evaluation and mixed sheet-channel flow conditions.
CCHE2D is a physically based model, which treats the entire watershed including the channels and ditches as one continuous domain. One does not need to differentiate overland sheet flow and channel flow calculation areas using grid cells and 1D channel networks as is done in GSSHA [31], WASH123D [32], NIKE-SHE [33], and SHETRAN [34]. It is also not necessary to employ arbitrarily shaped sub-watersheds and 1D channel networks as is done in the CCHE1D model [35]. In these models, 2D DW equations or KW equations are solved for the overland flow using finite difference methods, and the 1D SV equation is solved in the prescribed channel networks. In contrast to these models, in CCHE2D, hydrodynamics over the entire watershed is simulated using only 2D equations discretized on an irregular quadrilateral finite element mesh, which is generated using digital elevation model (DEM) data. The simulated overland sheet flow and channel flow are seamlessly connected everywhere in the domain and the channel network is formed automatically. This method may be more applicable when sediment transport, rill erosion, or gully erosion processes in watersheds are considered.
In this study, the CCHE2D model is modified and applied to simulate watershed hydrological processes. CCHE2D is a general hydrodynamic model for unsteady, turbulent free flows, sediment transport, and pollutant transport. It has been validated and applied widely to simulations of channel flow, flooding, coastal flow, bed topographic change, and chemical contamination in aquatic environments [36, 37, 38, 39, 40].
The major objectives of the present paper are to assess the accuracy and the effectiveness of this FEM in predicting overland runoff processes, and its applicability to practical agricultural watersheds with ditches and natural stream channels. The approach of the study followed the recommendations of [41] for quality assurance that numerical models have to be verified and validated using analytical solutions, physical experimental data, and field data. The validated numerical model was used to simulate and characterize the hydrological processes of an agricultural watershed in the Mississippi River alluvial plain where farm fields are drained and separated by ditches and stream channels. A limitation was found in the interpolation method when it is applied to the water surface elevation of the sheet runoff. A numerical scheme was developed and implemented for improving the bilinear interpolation. The present study focused on watershed surface flow processes over bare soils; interception, evapotranspiration, and infiltration were not considered.
Surface runoff due to precipitation is typically quite shallow and can be aptly represented by the 2D shallow water equations within the CCHE2D model [36, 38]. The water surface elevation of the runoff flow,
in which
in which
The full Eqs. (1)–(3) are applicable for general flow conditions. In realistic cases where runoff and channel flow conditions coexist, a general flow model is necessary. Under the sheet flow condition, the advection and turbulence stress terms in the momentum equations vanish because the dominant forcing for the overland flow is the gravity and bed shear stress. The water depth is very small, and water surface slope and bed slope become almost the same:
in which
in which
CCHE2D uses a partially staggered method: the velocities are solved at collocation points and the pressure (water surface) is solved at cell centers [36]. A bilinear interpolation method is used to interpolate the water surface elevation solution to the collocation nodes where the momentum equations are solved. The bilinear interpolation works well for general channel flow simulations because the water depth is large in comparison with the variation of bed surface and the mesh size. When overland sheet runoff is simulated; however, the water depth is very small; it is often less than the microelevation variation of bed topography represented in an element. In this case, the interpolated water surface elevation may be lower than the bed if the bed is concave down and vice versa. This is a limitation of the interpolation method. In the concave down case, dry nodes are created artificially; in the concave up case, artificial masses of water could be erroneously created. Figure 1 illustrates this problem in one dimension. The problem occurs whenever irregular bed topographies are encountered. A correction is therefore necessary to the interpolation over the surface runoff area.
The error of underestimation and overestimation caused by linear interpolation of water surface elevation from cell centers to collocation nodes.
A numerical scheme has been developed and implemented in CCHE2D to correct the interpolation error [43]. Figure 2 illustrates how the scheme is formulated in one dimension with an exaggerated vertical scale. Eq. (7) is the formulation to compute the correction value
Definition sketch for the formulation of the correction (
where
Two analytical solutions were obtained by solving a one-dimensional kinematic equation analytically for rain-generated runoff by [44, 45]. The solution of sustained rains for the runoff to reach a steady state [44] and the solution for rainfall that stops before the runoff becomes steady [45], including the tailing stage solution after rainfall stops, were provided. The governing one-dimensional kinematic equation for deriving these solutions is:
in which
Figure 3 shows the comparisons of the simulated runoff and the analytical solutions for the sustained rain collected at the four cross sections. Hydrographs at each cross section indicate that equilibrium runoff (steady state) is reached before the rain stops at
Comparisons of the simulated runoff hydrographs and analytical solutions. The sustained rain stopped at
Figure 4 shows a case in which the rainfall stops before runoff reaches steady state (
Comparisons of the simulated runoff hydrographs and analytical solutions. The rain stopped at
CCHE2D model was validated using experimental data sets collected from the literature. All of these cases were carried out on impervious overland flow planes. The only quantity measured in these experiments was the downstream runoff discharge.
Morgali and Linsley [46] obtained two sets of experimental runoff data. Their tests were carried out over a straight turf surface of 21.95 m long with a constant slope (0.04) and width. The Manning’s coefficient,
Comparisons of measured data with analytical solution, results of CCHE2D, and other numerical models.
Figure 5 also compares the simulation results of CCHE2D and the model results by Govindaraju et al. [28]; the two numerical solutions agree well for the case with the higher rain (1A), but the fit of their solutions based on the SV equations does not correspond well for the case with the smaller rainfall (1B). The results of CCHE2D also outperform the analytical solution of the DW approximation [28].
Cea et al. [30] conducted three runoff experiments of complex topography and simulated these cases using a 2D unstructured FVM. The experimental watershed was a rectangle (2 × 2.5 m) made by three planes of stainless steel, each of them with a slope of 0.05 (Figure 6). Two dikes (1.86 and 1.01 m in length) were placed in the watershed to vary the topography. Rainfall intensity, duration, and runoff hydrographs were measured. As a result, the runoff direction, distribution, and pattern of the hydrograph were affected. The runoff was accumulated and became channel flows along intercepting lines of slopes and dikes. Since both overland flow and channel flow are involved, faithful simulation requires solving full governing Eqs. (1)–(3). The rainfall applied to each test case was different. In the first test (2A), the rainfall intensity was 317 mm/h for 45 s. In the second test (2B), the rainfall intensity was 320 mm/h for 25 s; then it was stopped for 4 s and restarted for an additional 25 s with the same intensity. In the third test (2C), rainfall intensity was 328 mm/h. The rainfall was applied for 25 s; then it was stopped for 7 s and then restarted for another 25 s.
Topography of the experimental watershed [
In this study, CCHE2D was applied and the numerical results were compared with experimental data. The watershed was modeled using an irregular structured mesh with the cell size ranging from 0.034 to 0.009 m; the mesh was refined near the main channel and the outlet for improving results. The Manning’s roughness coefficient was set equal to 0.009 m−1/3s. The simulation time was 120 s for each case. The channel flow and runoff sheet flow coexisted: the runoff from the watershed surface was accumulated in the bottom of the watershed channel with a triangle-shaped cross section formed by the side slopes. Results of cases 2A and 2C are shown in Figures 7 and 8, respectively.
Comparison of measured and simulated hydrographs using rainfall with one peak (Case 2A).
Comparison of measured and simulated hydrographs using rainfall with two peaks (Case 2C).
Figure 7 shows the comparison between the numerical solution and experimentally observed runoff hydrograph of Case 2A. The solution of the CCHE2D model agrees very well with the experimental results. The flow discharge increased continuously once the rain started. The peak discharge occurred at the time the rainfall stopped (at 45 s). Although the rising and the falling limbs of the hydrograph were slightly overestimated, the shape of the hydrograph and the peak discharge were aptly predicted.
Figure 8 shows the comparison between the numerical and experimental runoff hydrographs of Case 2C. The shape of the hydrograph was successfully predicted. The interval between the two rainfall peaks was 7 s. The first runoff peak discharge occurred at the time the rainfall stopped, at 25 s. The runoff discharge decreased for approximately 10 s and then increased. The second runoff peak discharge occurred at approximately 57 s. The simulated processes and the observed physical processes showed a good general agreement; it also matched well with the model results of [30].
Figure 9 shows the simulation results at t = 54 s (the peak of the second rainfall) for Case 2C: (a) simulated water depth contour distribution, (b) simulated flow unit discharge pattern and (c) velocity vector distribution in the watershed. The distributions indicate how the overland sheet flow, under the influence of dikes and topography, concentrates into channels and flows out of the watershed. The flows over the slopes are sheet runoff, but complex recirculations are developed in the main channel. The water surface is no longer parallel to the bed surface. These flows cannot be represented by KW, DW, and SV models.
Distributions of simulated (a) water depth contours (b) flow (unit discharge) distribution and (c) velocity vectors at
This section presents the application of CCHE2D to a sub-watershed of the Howden Lake watershed, an 18 km2 agricultural watershed in the Mississippi River alluvial plain (Figure 10). In this region of low relief, watersheds are configured by farm fields drained by culverts, ditches, and intermittently flowing streams called bayous. During periods between runoff events, the channels contain standing water. The studied sub-watershed was upstream of a gaging station on an intermittently flowing bayou. The average annual precipitation in this region is about 1440 mm. Precipitation occurs as intense thunderstorms or low-intensity rains associated with major frontal movements. The latter type of events may stretch over several days of drizzle and sporadic showers. During growing seasons, channels experience some flow and stage fluctuation due to irrigation withdrawals and return flows.
Location and topography of the Howden Lake watershed. Dashed curve encloses the runoff simulation area, and the dark closed curve is the gaged watershed.
Watershed topography was surveyed by airborne LiDAR with a 1.5 m horizontal resolution. The vertical accuracy was 15.0 cm RMSE or better. The watershed elevation ranges from approximately 43.89–48.99 m. A nearly uniform fine mesh (mesh spacing = 3.76–4.98 m) was generated for the simulation with the ditches and small streams between the plots further refined locally. Cultivated fields are connected to the streams and ditches with drainage culverts, which often convey water from one sub-watershed to another. The locations of culverts in the study watershed were identified in a field survey and incorporated in the numerical mesh.
Soil data were obtained from the Soil Survey Geographic (SSURGO) database [47]. The watershed is covered mostly by soils with high clay content, which is typical of the region [48]. Infiltration is, therefore, negligible and was not considered in the simulation. Precipitation and flow stage data were measured by field instrumentation. Because the stream instrumented with the gage station has complex conditions, it was difficult to collect reliable velocity data during a rain event. Only stage data were available. As a result, the gage station does not have a discharge-stage rating curve. Development of a rating curve using simulations and measured data for this site would be helpful for understanding the hydrologic processes in these watersheds.
Because the Howden Lake watershed is of low-relief, it was often difficult to determine the boundaries between sub-watersheds in field surveys or on topographic contour maps. For example, the runoff from a piece of field may flow in two directions into two sub-watersheds, and the location of the divide line might be identified only from the runoff flow distribution during a simulation. Normally, the outline of a watershed is a given condition for a hydrology study. In this study, the exact boundary outline was not firmly established even after field surveys. A larger area containing the studied watershed was simulated, and the watershed boundary and area were finally defined by the simulated runoff and channel flow patterns. The boundary outline of the studied watershed (Figure 11) contributing to the gage was identified by visually checking the simulated overland flow directions of CCHE2D.
Numerical simulation identified watershed for the gage station. Simulation results in the dashed rectangle area are shown in
In the simulations, the streams and ditches between farming plots were represented using DEM elevations like flat surface areas. No channel networks were prescribed, but the simulated surface runoff flowed logically to the ditches and to the stream channel. No other watershed analysis tools were needed. Although the study results presented later are for this identified watershed, the spatial domain of numerical simulations was several times larger (Figure 10). The northern side of the stream channel had been blocked by farmers, so the overland flow from the watershed entered the stream in the middle and flowed in a southwesterly direction (Figure 11). The water from this identified watershed pasted the gage, while runoff from the region outside this watershed was discharged from the simulation domain via other ditches and streams. The area of this watershed, including cultivated land, drainage ditches and a stream segment, was found to be 973,700 m2. In this area, the topographic elevation ranges from approximately 46.77–47.49 m in one plot and from 47.27 to 48.09 m in another. The mean slope of the fields is 0.0097 and 0.0098, respectively.
Several observed storm events were selected for the model application. To reduce minor losses of water due to evaporation, soil wetting and infiltration, etc., only large rain events were considered. The rainfall event in April 2011 (Table 1) was first used for simulation. Figure 12a shows the detailed ground elevation contour of a small simulation area (dashed rectangle area in Figure 11). The elevation of this area ranges from about 46.8 to about 47.4 m. Figure 12b shows the direction vectors of the runoff near the end of the simulation. Because the water is very shallow, the flow direction is highly affected by the ground topography. Figure 12c and d shows the direction vectors and water depth distribution at the peak time of the rainfall.
Event | Measured rainfall (mm) | Runoff volume* (m3) | |||
---|---|---|---|---|---|
4/27–4/28/2011 | 88.39 | 85,817 | 2.4 | 1.223 | 0.45 |
10/30–11/4/2013 | 53.59 | 52,182 | 1.9 | 4.24 | 0.78 |
11/21–25/2011 | 62.99 | 61,333 | 1.4 | 1.613 | 0.45 |
5/20–24/2013 | 48.77 | 47,483 | 1.0 | 1.436 | 0.59 |
9/25–27/2011 | 52.32 | 50,946 | 1.8 | 5.211 | 0.48 |
Parameters of selected runoff events for numerical simulations.
Computed from the main bulk of the rain event.
Information and simulation results in an area indicated in
Although the variation of the bed surface topography is very small, the simulation shows how the runoff is controlled by microtopography (Figure 12a). At the peak time of the rainfall, the overall water depth in this area (Figure 12d) is much deeper, and the flow directions (Figure 12c) are less affected by the local microtopographic features. The flow on the right side of the domain is still sheet runoff under the KW condition; while on the left side, the water depth is more than 0.2 m, and the flow is no longer governed by the KW condition. This model provides the outflow hydrograph as well as the temporal and spatial distribution of the water depth and flow velocity, which can be used for studying soil erosion, agro-pollutant transport, and water quality.
The gage station (Figure 11) recorded the channel water surface elevation at regular time intervals, but velocities were generally too low for accurate measurement, and therefore, water discharge was not measured. In order to better understand the watershed hydrology, a rating curve of the form:
was developed using simulated discharge, in which
in which
Attempts were made to fit all simulated curves using a single set of values for
Manning’s roughness coefficient (
Sensitivity of simulated hydrograph to Manning’s coefficient.
The total observed rainfall volume for the April 27–28, 2011 event (Figure 13) was approximately 86,000 m3 (88.32 mm). The total simulated runoff volume is about 80,600 m3 (83.78 mm), which is reasonable because the hydrograph recession limb extended past the simulation termination at 47 h. There were several small rain events that occurred before the event shown in Figure 13, so the runoff volume based on the observed water surface elevation may include recession of the earlier events.
Figure 14 compares the discharge hydrographs of several additional runoff events computed using Eq. (12) and that of the numerical simulations. The identified parameters for these events,
Comparisons of simulated runoff and
As noted above, the watershed has multiple field ditches that convey runoff into the channel (Figures 10 and 11). Ditch and channel flow were simulated together with the overland sheet runoff. Figure 15 shows the simulated flows in the channel network of the watershed. The contours represent the distribution of the unit flow discharge. The vectors in the ditches and in the stream formed a channel network indicated by the large velocity vectors; those in the runoff area are too small to be seen. The flows in the stream are turbulent when the rainfalls are large. Because no velocity data were acquired, the simulated velocity results in the channel were not validated.
Simulated flow in the network of drainage ditches and the stream in the watershed.
The numerical model CCHE2D was used to model sheet runoff from watersheds, large and complex enough to include both overland and channel flow processes. The model was systematically verified and validated using analytical solutions and experimental data due to steady and unsteady rainfall intensity, and applied to a real world watershed. Good agreement between the analytical solutions, experimental data, and numerical simulations were obtained. For the experimental cases involving complex watershed shapes, the numerical model has the ability to simulate runoff over the slope surfaces and the channel flows.
A numerical scheme was developed to correct the bilinear interpolation of the water surface elevation from its solutions at the staggered cell centers to the collocation nodes. The scheme was necessary and effective for obtaining good sheet runoff simulation results in watersheds with irregular topography. One would have to smooth the ground topography if a model requires the interpolation of water surface solution under this condition.
The model was applied to an agricultural watershed in the Mississippi River alluvial plain. It was useful to identify the boundary of the monitored watershed and develop the rating curve at the gage station of the watershed. Several significant runoff events were selected for simulation. Each of the simulated runoff hydrographs and the rating curves agreed well with those observed in the field. The sensitivity of the model to overland sheet flow friction was studied. An increase in the bed surface friction coefficient significantly diminishes the peak of runoff discharge, delaying its time of arrival. Values of
This work is supported in part by USDA Agriculture Research Service under the Research Project No. 6060-13000-025-00D (NCCHE) monitored by the USDA-ARS National Sedimentation Laboratory (NSL). Support is also in part by the Southeast Region Research Initiative (SERRI) project and the University of Mississippi (UM).
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"14"},books:[{type:"book",id:"11988",title:"Magnesium Alloys",subtitle:null,isOpenForSubmission:!0,hash:"4da7079fb57ccc6aa9f8323d8d42bda6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11988.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11990",title:"Iron Ores and Iron Oxide",subtitle:null,isOpenForSubmission:!0,hash:"20cbec723d56ff06096e08d93750ad58",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11990.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11991",title:"Trace Metals in the Environment",subtitle:null,isOpenForSubmission:!0,hash:"668c7f042fb58587e82ac90c32a22447",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11991.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11993",title:"Reinforced Concrete",subtitle:null,isOpenForSubmission:!0,hash:"74188d8583c4569b6cf7755128a311be",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11993.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11995",title:"Elastomers",subtitle:null,isOpenForSubmission:!0,hash:"e37c2de13a51e358b06c9cf637b55d33",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11995.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11996",title:"Granite",subtitle:null,isOpenForSubmission:!0,hash:"03b9e834fd0abe7ffef7ef85e7c02426",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11996.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites",subtitle:null,isOpenForSubmission:!0,hash:"31d8afbb8256b34918ddc7ce910cc6e5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12261",title:"Sol-gel Method",subtitle:null,isOpenForSubmission:!0,hash:"5d96c89299217a36052ad1b8031be001",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12261.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12263",title:"Geosynthetic Materials and Products",subtitle:null,isOpenForSubmission:!0,hash:"9f1b26209b356040678d896248f51215",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12263.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12264",title:"Polyaniline",subtitle:null,isOpenForSubmission:!0,hash:"2e0710de2d17485e9d56a87461a2b0b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12264.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12265",title:"Silk-based Materials",subtitle:null,isOpenForSubmission:!0,hash:"7f580af2140c873052c6e12f9318ee95",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12265.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:37},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:98},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4379},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"151",title:"Pure Microbiology",slug:"pure-microbiology",parent:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"},numberOfBooks:18,numberOfSeries:0,numberOfAuthorsAndEditors:497,numberOfWosCitations:317,numberOfCrossrefCitations:231,numberOfDimensionsCitations:533,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"151",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10442",title:"Cyanobacteria",subtitle:"Recent Advances in Taxonomy and Applications",isOpenForSubmission:!1,hash:"2fec78743d3f973c80881957ce3e6d79",slug:"cyanobacteria-recent-advances-in-taxonomy-and-applications",bookSignature:"Wael N. Hozzein",coverURL:"https://cdn.intechopen.com/books/images_new/10442.jpg",editedByType:"Edited by",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9665",title:"Pseudomonas aeruginosa",subtitle:"Biofilm Formation, Infections and Treatments",isOpenForSubmission:!1,hash:"00e9f0f41cf8cd97ff33fac3bcea14cb",slug:"pseudomonas-aeruginosa-biofilm-formation-infections-and-treatments",bookSignature:"Theerthankar Das",coverURL:"https://cdn.intechopen.com/books/images_new/9665.jpg",editedByType:"Edited by",editors:[{id:"179493",title:"Dr.",name:"Theerthankar",middleName:null,surname:"Das",slug:"theerthankar-das",fullName:"Theerthankar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8997",title:"Microorganisms",subtitle:null,isOpenForSubmission:!1,hash:"d4bb9c77b89f8baf2716d1fb84c5bd9f",slug:"microorganisms",bookSignature:"Miroslav Blumenberg, Mona Shaaban, Abdelaziz Elgaml",coverURL:"https://cdn.intechopen.com/books/images_new/8997.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9025",title:"Parasitology and Microbiology Research",subtitle:null,isOpenForSubmission:!1,hash:"d9a211396d44f07d2748e147786a2c8b",slug:"parasitology-and-microbiology-research",bookSignature:"Gilberto Antonio Bastidas Pacheco and Asghar Ali Kamboh",coverURL:"https://cdn.intechopen.com/books/images_new/9025.jpg",editedByType:"Edited by",editors:[{id:"238219",title:"Dr.",name:"Gilberto Antonio",middleName:null,surname:"Bastidas Pacheco",slug:"gilberto-antonio-bastidas-pacheco",fullName:"Gilberto Antonio Bastidas Pacheco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8806",title:"Biology of Trypanosoma cruzi",subtitle:null,isOpenForSubmission:!1,hash:"514ab85661e01a47575e845792ef5bdc",slug:"biology-of-em-trypanosoma-cruzi-em-",bookSignature:"Wanderley De Souza",coverURL:"https://cdn.intechopen.com/books/images_new/8806.jpg",editedByType:"Edited by",editors:[{id:"161922",title:"Dr.",name:"Wanderley",middleName:null,surname:"De Souza",slug:"wanderley-de-souza",fullName:"Wanderley De Souza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6979",title:"Parasites and Parasitic Diseases",subtitle:null,isOpenForSubmission:!1,hash:"f55304c8bd1d92268e33689c368f9e33",slug:"parasites-and-parasitic-diseases",bookSignature:"Gilberto Bastidas",coverURL:"https://cdn.intechopen.com/books/images_new/6979.jpg",editedByType:"Edited by",editors:[{id:"238219",title:"Dr.",name:"Gilberto Antonio",middleName:null,surname:"Bastidas Pacheco",slug:"gilberto-antonio-bastidas-pacheco",fullName:"Gilberto Antonio Bastidas Pacheco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8122",title:"Vectors and Vector-Borne Zoonotic Diseases",subtitle:null,isOpenForSubmission:!1,hash:"5a088c3ab82e499c8d5d2f8ceec6a601",slug:"vectors-and-vector-borne-zoonotic-diseases",bookSignature:"Sara Savić",coverURL:"https://cdn.intechopen.com/books/images_new/8122.jpg",editedByType:"Edited by",editors:[{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",isOpenForSubmission:!1,hash:"105e347b2d5dbbe6b593aceffa051efa",slug:"influenza-therapeutics-and-challenges",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5831",title:"Clostridium Difficile",subtitle:"A Comprehensive Overview",isOpenForSubmission:!1,hash:"fabbec5ed99960d2fb904f16790e8b97",slug:"clostridium-difficile-a-comprehensive-overview",bookSignature:"Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/5831.jpg",editedByType:"Edited by",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5527",title:"Natural Remedies in the Fight Against Parasites",subtitle:null,isOpenForSubmission:!1,hash:"d705be119e74a50305952521b2b5ece0",slug:"natural-remedies-in-the-fight-against-parasites",bookSignature:"Hanem Khater, M. Govindarajan and Giovanni Benelli",coverURL:"https://cdn.intechopen.com/books/images_new/5527.jpg",editedByType:"Edited by",editors:[{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:18,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"31812",doi:"10.5772/32521",title:"Soft Ticks as Pathogen Vectors: Distribution, Surveillance and Control",slug:"soft-ticks-as-pathogen-vectors-distribution-surveillance-and-control-",totalDownloads:6426,totalCrossrefCites:15,totalDimensionsCites:40,abstract:null,book:{id:"1692",slug:"parasitology",title:"Parasitology",fullTitle:"Parasitology"},signatures:"Raúl Manzano-Román, Verónica Díaz-Martín, José de la Fuente and Ricardo Pérez-Sánchez",authors:[{id:"91813",title:"Dr.",name:"Ricardo",middleName:null,surname:"Pérez-Sánchez",slug:"ricardo-perez-sanchez",fullName:"Ricardo Pérez-Sánchez"},{id:"120373",title:"Dr.",name:"Raúl",middleName:null,surname:"Manzano-Román",slug:"raul-manzano-roman",fullName:"Raúl Manzano-Román"},{id:"120375",title:"Ms.",name:"Verónica",middleName:null,surname:"Díaz-Martín",slug:"veronica-diaz-martin",fullName:"Verónica Díaz-Martín"},{id:"120378",title:"Dr.",name:"José",middleName:null,surname:"De La Fuente",slug:"jose-de-la-fuente",fullName:"José De La Fuente"}]},{id:"54154",doi:"10.5772/67338",title:"Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach",slug:"staphylococcus-aureus-overview-of-bacteriology-clinical-diseases-epidemiology-antibiotic-resistance-",totalDownloads:7096,totalCrossrefCites:14,totalDimensionsCites:25,abstract:"Staphylococcus aureus is an important human pathogen that causes wide range of infectious conditions both in nosocomial and community settings. The Gram-positive pathogen is armed with battery of virulence factors that facilitate to establish infections in the hosts. The organism is well known for its ability to acquire resistance to various antibiotic classes. The emergence and spread of methicillin-resistant S. aureus (MRSA) strains which are often multi-drug resistant in hospitals and subsequently in community resulted in significant mortality and morbidity. The epidemiology of MRSA has been evolving since its initial outbreak which necessitates a comprehensive medical approach to tackle this pathogen. Vancomycin has been the drug of choice for years but its utility was challenged by the emergence of resistance. In the last 10 years or so, newer anti-MRSA antibiotics were approved for clinical use. However, being notorious for developing antibiotic resistance, there is a continuous need for exploring novel anti-MRSA agents from various sources including plants and evaluation of non-antibiotic approaches.",book:{id:"5471",slug:"frontiers-in-i-staphylococcus-aureus-i-",title:"Frontiers in Staphylococcus aureus",fullTitle:"Frontiers in Staphylococcus aureus"},signatures:"Arumugam Gnanamani, Periasamy Hariharan and Maneesh Paul-\nSatyaseela",authors:[{id:"192829",title:"Dr.",name:"Arumugam",middleName:null,surname:"Gnanamani",slug:"arumugam-gnanamani",fullName:"Arumugam Gnanamani"},{id:"204388",title:"Dr.",name:"Periasamy",middleName:null,surname:"Hariharan",slug:"periasamy-hariharan",fullName:"Periasamy Hariharan"},{id:"204389",title:"Dr.",name:"Maneesh",middleName:null,surname:"Paul-Satyaseela",slug:"maneesh-paul-satyaseela",fullName:"Maneesh Paul-Satyaseela"}]},{id:"32282",doi:"10.5772/33983",title:"Bacteriophages of Ralstonia solanacearum: Their Diversity and Utilization as Biocontrol Agents in Agriculture",slug:"bacteriophages-of-ralstonia-solanacearum-their-diversity-and-utilization-as-biocontrol-agents-in-agr",totalDownloads:3730,totalCrossrefCites:7,totalDimensionsCites:23,abstract:null,book:{id:"555",slug:"bacteriophages",title:"Bacteriophages",fullTitle:"Bacteriophages"},signatures:"Takashi Yamada",authors:[{id:"98151",title:"Dr.",name:"Takashi",middleName:null,surname:"Yamada",slug:"takashi-yamada",fullName:"Takashi Yamada"}]},{id:"32276",doi:"10.5772/34642",title:"Bacteriophages and Their Structural Organisation",slug:"bacteriophages-and-their-structural-organisation-",totalDownloads:12391,totalCrossrefCites:9,totalDimensionsCites:17,abstract:null,book:{id:"555",slug:"bacteriophages",title:"Bacteriophages",fullTitle:"Bacteriophages"},signatures:"E.V. Orlova",authors:[{id:"101052",title:"Prof.",name:"Elena",middleName:null,surname:"Orlova",slug:"elena-orlova",fullName:"Elena Orlova"}]},{id:"53782",doi:"10.5772/66645",title:"Methicillin-Resistant Staphylococcus aureus (MRSA) in Food- Producing and Companion Animals and Food Products",slug:"methicillin-resistant-staphylococcus-aureus-mrsa-in-food-producing-and-companion-animals-and-food-pr",totalDownloads:2728,totalCrossrefCites:8,totalDimensionsCites:16,abstract:"Methicillin-resistant Staphylococcus aureus (MRSA) has become a growing concern in companion and food-producing animals. The presence of multidrug-resistance with a wide range of extracellular enterotoxin genes, virulence factors, and Panton-Valentine leukocidin (pvl) cytotoxin genes confer life-threatening traits on MRSA and makes them highly pathogenic and difficult to treat. Clonal complex 398 (CC398), a predominant clonal lineage of livestock-associated-MRSA in domestic animals and retail meat, is capable of infecting humans. In order to monitor and prevent MRSA contamination, it is critical to understand its source and transmission dynamics. In this review, we describe MRSA in food-producing animals (pig, cattle, chicken), horses, pet animals (dogs, cats), and food products (pork, beef, chicken, milk, and fish).",book:{id:"5471",slug:"frontiers-in-i-staphylococcus-aureus-i-",title:"Frontiers in Staphylococcus aureus",fullTitle:"Frontiers in Staphylococcus aureus"},signatures:"Jungwhan Chon, Kidon Sung and Saeed Khan",authors:[{id:"189634",title:"Dr.",name:"Kidon",middleName:null,surname:"Sung",slug:"kidon-sung",fullName:"Kidon Sung"},{id:"190400",title:"Dr.",name:"Jungwhan",middleName:null,surname:"Chon",slug:"jungwhan-chon",fullName:"Jungwhan Chon"},{id:"190401",title:"Dr.",name:"Saeed",middleName:null,surname:"Khan",slug:"saeed-khan",fullName:"Saeed Khan"}]}],mostDownloadedChaptersLast30Days:[{id:"69731",title:"Isolation and Purification of Sulfate-Reducing Bacteria",slug:"isolation-and-purification-of-sulfate-reducing-bacteria",totalDownloads:1501,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"Sulfate-reducing bacteria (SRB) are a widespread group of microorganisms that are often isolated from the anoxygenic environments (lake depths, soil, or swamps), and they are also present in the human and animal intestines. This group is often detected in patients with inflammatory bowel disease, including ulcerative colitis. That is why new rapid methods for their isolation, purification, and identification are important and necessary. In this chapter, the methods of mesophilic SRB isolation from various environments are described. Particular attention is paid to the purification of mesophilic SRB since they can be in close interaction with other microorganisms (Clostridium, Bacteroides, Pseudomonas, etc.), which are their frequent satellites. Moreover, the main methods of mesophilic SRB identification based on their morphological, physiological, biochemical, and genetical characteristics are presented.",book:{id:"8997",slug:"microorganisms",title:"Microorganisms",fullTitle:"Microorganisms"},signatures:"Ivan Kushkevych",authors:[{id:"252191",title:"Associate Prof.",name:"Ivan",middleName:null,surname:"Kushkevych",slug:"ivan-kushkevych",fullName:"Ivan Kushkevych"}]},{id:"65773",title:"Life Cycle of Trypanosoma cruzi in the Invertebrate and the Vertebrate Hosts",slug:"life-cycle-of-em-trypanosoma-cruzi-em-in-the-invertebrate-and-the-vertebrate-hosts",totalDownloads:1393,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"Trypanosoma cruzi (T. cruzi) is a protozoan parasite that causes Chagas disease, a zoonotic disease that can be transmitted to humans by blood-sucking triatomine bugs. T. cruzi is a single-celled eukaryote with a complex life cycle alternating between reduviid bug invertebrate vectors and vertebrate hosts. This article will look at the developmental stages of T. cruzi in the invertebrate vector and the vertebrate hosts, the different surface membrane proteins involved in different life cycle stages of T. cruzi, roles of different amino acids in the life cycle, carbon and energy sources and gene expression in the life cycle of T. cruzi. The author will also look at extracellular vesicles (EV) and its role in the dissemination and survival of T. cruzi in mammalian host.",book:{id:"8806",slug:"biology-of-em-trypanosoma-cruzi-em-",title:"Biology of Trypanosoma cruzi",fullTitle:"Biology of Trypanosoma cruzi"},signatures:"Kenechukwu C. Onyekwelu",authors:[{id:"245368",title:"Dr.",name:"Kenechukwu C.",middleName:null,surname:"Onyekwelu",slug:"kenechukwu-c.-onyekwelu",fullName:"Kenechukwu C. Onyekwelu"}]},{id:"54154",title:"Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach",slug:"staphylococcus-aureus-overview-of-bacteriology-clinical-diseases-epidemiology-antibiotic-resistance-",totalDownloads:7096,totalCrossrefCites:14,totalDimensionsCites:25,abstract:"Staphylococcus aureus is an important human pathogen that causes wide range of infectious conditions both in nosocomial and community settings. The Gram-positive pathogen is armed with battery of virulence factors that facilitate to establish infections in the hosts. The organism is well known for its ability to acquire resistance to various antibiotic classes. The emergence and spread of methicillin-resistant S. aureus (MRSA) strains which are often multi-drug resistant in hospitals and subsequently in community resulted in significant mortality and morbidity. The epidemiology of MRSA has been evolving since its initial outbreak which necessitates a comprehensive medical approach to tackle this pathogen. Vancomycin has been the drug of choice for years but its utility was challenged by the emergence of resistance. In the last 10 years or so, newer anti-MRSA antibiotics were approved for clinical use. However, being notorious for developing antibiotic resistance, there is a continuous need for exploring novel anti-MRSA agents from various sources including plants and evaluation of non-antibiotic approaches.",book:{id:"5471",slug:"frontiers-in-i-staphylococcus-aureus-i-",title:"Frontiers in Staphylococcus aureus",fullTitle:"Frontiers in Staphylococcus aureus"},signatures:"Arumugam Gnanamani, Periasamy Hariharan and Maneesh Paul-\nSatyaseela",authors:[{id:"192829",title:"Dr.",name:"Arumugam",middleName:null,surname:"Gnanamani",slug:"arumugam-gnanamani",fullName:"Arumugam Gnanamani"},{id:"204388",title:"Dr.",name:"Periasamy",middleName:null,surname:"Hariharan",slug:"periasamy-hariharan",fullName:"Periasamy Hariharan"},{id:"204389",title:"Dr.",name:"Maneesh",middleName:null,surname:"Paul-Satyaseela",slug:"maneesh-paul-satyaseela",fullName:"Maneesh Paul-Satyaseela"}]},{id:"55437",title:"Biological Control of Parasites",slug:"biological-control-of-parasites-2017-07",totalDownloads:4229,totalCrossrefCites:7,totalDimensionsCites:7,abstract:"Parasites (ectoparasites or endoparasites) are a major cause of diseases in man, his livestock and crops, leading to poor yield and great economic loss. To overcome some of the major limitations of chemical control methods such as rising resistance, environmental and health risks, and the adverse effect on non‐target organisms, biological control (biocontrol) is now at the forefront of parasite (pests) control. Biocontrol is now a core component of the integrated pest management. Biocontrol is defined as “the study and uses of parasites, predators and pathogens for the regulation of host (pest) densities”. Considerable successes have been achieved in the implementation of biocontrol strategies in the past. This chapter presents a review of the history of biocontrol, its advantages and disadvantages; the different types of biological control agents (BCAs) including predators, parasites (parasitoids) and pathogens (fungi, bacteria, viruses and virus‐like particles, protozoa and nematodes); the effect of biocontrol on native biodiversity; a few case studies of the successful implementation of biocontrol methods and the challenges encountered with the implementation of biocontrol and future perspectives.",book:{id:"5527",slug:"natural-remedies-in-the-fight-against-parasites",title:"Natural Remedies in the Fight Against Parasites",fullTitle:"Natural Remedies in the Fight Against Parasites"},signatures:"Tebit Emmanuel Kwenti",authors:[{id:"191763",title:"Dr.",name:"Tebit Emmanuel",middleName:null,surname:"Kwenti",slug:"tebit-emmanuel-kwenti",fullName:"Tebit Emmanuel Kwenti"}]},{id:"70336",title:"Plastics Polymers Degradation by Fungi",slug:"plastics-polymers-degradation-by-fungi",totalDownloads:1383,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"The studies on plastic degradation are very important for the development of biodegradable plastics, and for reduction of pollution, since plastic waste can remain in the environment for decades or centuries. We have showed the degradation of oxo-biodegradable plastic bags and green polyethylene by Pleurotus ostreatus. This fungus can also produce mushrooms using these plastics. The plastic degradation was possibly by three reasons: (a) presence of pro-oxidant ions or plant polymer, (b) low specificity of the lignocellulolytic enzymes, and (c) the presence of endomycotic nitrogen-fixing microorganisms. In this chapter, the plastic bags’ degradation by abiotic and microbial process using the exposure to sunlight and the use of a white-rot fungus will described. The physical, chemical, and biological alterations of plastic were analyzed after each process of degradation. The degradation of plastic bags was more effective when the abiotic and biotic degradations were combined.",book:{id:"8997",slug:"microorganisms",title:"Microorganisms",fullTitle:"Microorganisms"},signatures:"José Maria Rodrigues da Luz, Marliane de Cássia Soares da Silva, Leonardo Ferreira dos Santos and Maria Catarina Megumi Kasuya",authors:[{id:"217699",title:"Dr.",name:"Jose Maria",middleName:null,surname:"Da Luz",slug:"jose-maria-da-luz",fullName:"Jose Maria Da Luz"}]}],onlineFirstChaptersFilter:{topicId:"151",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"79935",title:"Salmonellosis and Campylobacteriosis, Emerging Zoonosis in the World and Current Situation in Mexico",slug:"salmonellosis-and-campylobacteriosis-emerging-zoonosis-in-the-world-and-current-situation-in-mexico",totalDownloads:13,totalDimensionsCites:0,doi:"10.5772/intechopen.101875",abstract:"Salmonellosis and campylobacteriosis are the furthermost common zoonotic infections around the world that are transferred. The spread of Salmonella enterica serotypes Enteritidis (SE) and Typhimurium (ST) has increased dramatically in the last 50 years due to the consumption of food contaminated and the emergence of SE and ST infections with multiple antibiotic resistance. Retrospective investigations imply an epidemiological link between people and poultry. It has been argued that farm modernization and global exports of progenitor birds have had a vital role in spreading SE and ST. On the other hand, campylobacteriosis is more common than salmonellosis in affluent countries. Campylobacter jejuni has been identified as the primary cause of acute diarrheal illnesses, frequently associated with animal-derived foods, particularly poultry meat. The current review examines immunological and molecular biological techniques that allow for the quick detection of asymptomatic animal carriers, as well as recent characterizations of relevant taxonomic and pathogenic characteristics of these organisms. We further urge epidemiological research to evaluate the incidence of human diseases arising from poultry eating, based on preliminary non-publisher findings implying a prevalence of salmonellosis and campylobacteriosis in Mexican poultry farms comparable to other nations.",book:{id:"10536",title:"Campylobacter",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg"},signatures:"Adriana del Carmen Gutiérrez-Castillo, Leopoldo Henri Paasch-Martínez and Norma Leticia Calderón-Apodaca"},{id:"76534",title:"Health Care Associated Infections (HCAIs) a New Threat for World; U-Turn from Recovery to Death",slug:"health-care-associated-infections-hcais-a-new-threat-for-world-u-turn-from-recovery-to-death",totalDownloads:224,totalDimensionsCites:0,doi:"10.5772/intechopen.97193",abstract:"Health care associated infections also termed as nosocomial infections are notable cause of morbidity and mortality especially in resource limited countries like Pakistan. Newborns and aged people have more probability of being infected by Health care associated infections because of immunosuppressant. Central line associated blood stream infections (CLABSI) are considered as one of the promising negotiator associated with Health Care associated infections. Improper health care setting and unaware medical staff play a championship protagonist in prevalence of health care associated infections. Standard hygienic measures should be adopted to reduce risk of Health care associated infections. So, there is a pressing need to take on control policies by Government to handle this dilemma. This chapter gives new intuition to healthcare associated microbes, infections and provides comprehensive detailed on ironic precaution to scientific community.",book:{id:"10536",title:"Campylobacter",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg"},signatures:"Ayesha Noor, Ali Raza Ishaq, Laila Jafri, Faiza Jabeen, Rehana Rani, Bushra Hafeez Kiani, Nosheen Akhtar, Zeeshan Javed, Tahira Younis and Fatima Jalal"},{id:"75880",title:"Conventional and Molecular Detection Methods of the Opportunistic Bacterial Pathogen Campylobacter concisus",slug:"conventional-and-molecular-detection-methods-of-the-opportunistic-bacterial-pathogen-campylobacter-c",totalDownloads:148,totalDimensionsCites:0,doi:"10.5772/intechopen.97004",abstract:"Campylobacter concisus is an emerging pathogen that causes gastroenteritis and is a suspected cause of inflammatory bowel diseases. Its importance is enhanced by the chronic sequela that results from acute infection. This bacterium has been under-diagnosed in intestinal infectious diseases, and its clinical importance has not been determined yet. In order to establish the implication of this emerging bacterial species in human gastroenteritis and other infections, different approaches and procedure have been performed, where molecular typing methods have played a central role. The chapter provides a comprehensive past and recent updates on the detection of C. concisus by biochemical and molecular methods.",book:{id:"10536",title:"Campylobacter",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg"},signatures:"Mohsina Huq and Taghrid Istivan"},{id:"75751",title:"The Role of Immune Response and Microbiota on Campylobacteriosis",slug:"the-role-of-immune-response-and-microbiota-on-campylobacteriosis",totalDownloads:229,totalDimensionsCites:1,doi:"10.5772/intechopen.96755",abstract:"Million cases of campylobacteriosis and complications of post-Campylobacter jejuni infection occur every year around the world with huge life losses and economic burdens of billions of dollars. Few therapy options, such as antibiotics, are available to relieve severe cases of the enteritis. The slow progression on new intervention discovery and application is partially resulted from limited mechanistic understanding on campylobacteriosis pathogenesis. As a type of intestinal disorders, campylobacteriosis shares many common features with other intestinal diseases such as inflammatory bowel diseases (IBD) and Clostridium difficile infection. In pace with the advancement of the gastroenterology field, a large body of knowledge is accumulating on the factors influencing campylobacteriosis onset, development, and outcomes, including host immune response, intestinal microbiota, and its metabolites. In this chapter, we review the intestinal immune system, intestinal microbiome, and microbiome modulation of inflammation in the development of campylobacteriosis. The interplay between immunity, microbiota, and its metabolites may play essential roles on campylobacteriosis pathogenesis and the finding on the interaction may lead to new prevention and treatment options. The purpose of this chapter is to provide updated knowledge on the role of host–microbe interaction and the therapeutic potential on campylobacteriosis.",book:{id:"10536",title:"Campylobacter",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg"},signatures:"Ying Fu, Tahrir Alenezi, Ayidh Almansour, Hong Wang, Zhenquan Jia and Xiaolun Sun"}],onlineFirstChaptersTotal:4},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:11,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:139,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:314,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:193,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:135,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:168,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:249,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:383,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:288,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/59554",hash:"",query:{},params:{id:"59554"},fullPath:"/chapters/59554",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()