Open access peer-reviewed chapter

Terpenes from Natural Products with Potential Anti-Inflammatory Activity

Written By

Roberto José Serrano Vega, Nimsi Campos Xolalpa, Angel Josabad Alonso Castro, Cuauhtémoc Pérez González, Julia Pérez Ramos and Salud Pérez Gutiérrez

Submitted: 03 October 2017 Reviewed: 18 December 2017 Published: 19 December 2018

DOI: 10.5772/intechopen.73215

From the Edited Volume

Terpenes and Terpenoids

Edited by Shagufta Perveen and Areej Al-Taweel

Chapter metrics overview

2,054 Chapter Downloads

View Full Metrics


The development and progression of many diseases is related with an inflammatory process, which could affect different organs or tissues. Currently, many drugs are used to treat inflammation. However, some of these compounds induce severe side effects. For this reason, the search of new therapeutic options for the treatment of inflammation is very desirable. Medicinal plants have been an interesting source for obtaining new active compounds, including several terpenes and terpenoids with anti-inflammatory activity. This book chapter includes 62 sesquiterpenes, 34 diterpenes, and 22 triterpenes with anti-inflammatory activity. The anti-inflammatory effect was evaluated using in vitro, in vivo, and both models. These terpenes were obtained from 44 plant species belonging to 25 botanical families. Eight of theses species belong to the Asteraceae family and four to Lamiaceae family, respectively, and the other species belong to 13 different botanical families, one sesquiterpene was obtained from a sponge and two diterpenes were isolated from corals.


  • Terpenes
  • terpenoids
  • anti-inflammatory activity
  • natural
  • products

1. Inflammation

Inflammation is a response of vascularized tissues to infections and tissue damage, and contributes to the beginning and progression of diseases such as Alzheimer, type 2 diabetes, obesity, stroke, and cancer [1, 2]. The symptomatology of inflammation is characterized by pain, redness, swelling, heat, and loss of function. Depending on the time of duration, inflammation might be categorized into acute and chronic. Acute inflammation is considered as a protective response and occurs within minutes, hours, or few days after exposure to infections and/or tissue damage. Acute inflammation is characterized by the exudation of fluid (edema), elevated blood flow, and migration of neutrophils [3]. Chronic inflammation occurs when the initial response fails to repair tissue damaged or when a noxious stimulus is persistent, and is characterized with more tissue destruction, fibrosis, long presence of lymphocytes [4]. Macrophages, dendritic cells, and mast cells initiate the inflammatory process secreting pro-inflammatory cytokines such as interleukin 6 (IL-6) and interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α), and inducing the production of reactive oxygen species (ROS), which play an important role in the modulation of inflammation [5]. The long-term use of current drugs for the treatment of inflammation, including nonsteroidal anti-inflammatory drugs (NSAIDs), the disease-modifying anti-rheumatic drugs (DMARDs), and steroids display several undesirable side effects such as gastric ulcers, nephrotoxicity, and hepatotoxicity, among others [6]. The search of new anti-inflammatory agents with less side effects is highly desirable. Furthermore, the efficient treatment of inflammation may be an interesting and effective way to prevent chronic diseases like cancer.


2. Terpenes

Natural products are a good source of anti-inflammatory compounds [7]. Terpenes, containing a C5 isoprene unit, are the large group of natural compounds found mostly in higher plants, but also in lower invertebrates. There are approximately more than 50,000 terpenes that have been isolated from different plant species. Terpenes, composed of isoprene units (C5H8), play a variety of vital roles in plant species, including growth and development and defense against herbivores and environmental stress [8]. Terpenes possess a great variety of biological activities as antimicrobial, against cancer, malaria, and anti-inflammatory effects in acute and chronic inflammatory conditions like chronic obstructive pulmonary disease and osteoarthritis [9, 10].

Cyperus rotundus, a perennial plant, has several pharmacological activities, including antibacterial [11], antimutagenic [12], and anti-inflammatory [13]. Isocyperol, a sesquiterpene isolated from the rhizomes of C. rotundus, inhibited the production of NO and PGE2, decreased the levels pro-inflammatory interleukins (IL-1β and IL-6) and the monocyte chemotactic protein-1 (MCP-1), and suppressed the gene expression of iNOS and COX-2 in RAW-264 murine macrophages stimulated with lipopolysaccharide (LPS). In addition, isocyperol reduced the serum levels of NO, PGE2, and IL-6 in LPS-induced septic shock in mice, via suppression of the NF-кB and STAT3 signaling pathways [14]. Dodonaea viscosa induces gastroprotective [15], antibacterial [16], analgesic, and anti-inflammatory activities [17, 18]. Hawtriwaic acid, an ent-clerodane diterpene, was isolated from D. viscosa and showed anti-inflammatory activity on the murine ear edema induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) by one or multiple applications. In both models, the compound diminished the edema [19]. Hawtriwaic acid at doses of 5, 10, and 20 mg/kg decreased knee inflammation in a murine model of monoarthritis induced with kaolin/carrageenan, by the reduction of serum levels of the pro-inflammatory interleukins Il-1β, IL-6, and TNF-α, and the increase in the serum levels of the anti-inflammatory interleukin IL-10 [20]. Ursolic acid, a pentacyclic triterpene found in many plant species, was identified for the first time in 1920 in the epicuticular waxes of apples. Ursolic acid exerts cytotoxic effects in various cancer cells by the inhibition of the STAT3 signaling pathway [21] and the induction of apoptosis [22]. Ursolic acid has protective effects on lung, kidney, liver, and brain, exerts anabolic effects on skeletal muscle [23], and induces antinociceptive activity in abdominal constriction test induced by acetic acid and the formalin test in mice [24]. Ursolic acid decreased the paw edema induced with carrageenan in rats [25], decreased the ear edema induced with Croton oil in mice [26], reduced the levels of iNOS, COX-2, IL-1β, IL-6, and TNF-α, and increased the level of IL-10 in macrophages stimulated with LPS [27].

The sesquiterpenes, vernomelitensin and onopordopicrin, isolated from Onopordum illyricum and the triterpene, Sootepin F, obtained from Gardenia sootepensis, decreased each NF-κB activity with IC50 values of 3.6, 8.6, and 20.3 μM, respectively [28, 29].

The pro-inflammatory enzymes: (1) inducible the nitric oxide synthase (iNOS), which is involved in the nitric oxide (NO) production, and the cyclooxygenase-2 (COX-2) involved in the prostaglandin production, are estimated in LPS-induced macrophages to evaluate the in vitro anti-inflammatory activity. IL-1 and TNF-α stimulate the production of NO. The inhibitory concentration 50 (IC50) for these two pro-inflammatory enzymes has only been reported in some studies. The sesquiterpenes hydroxycostunolide (IC50 = 0.68 μM), costunolide (IC50 0.3 μM), and artemorin (IC50 = 0.16 μM), obtained from Inula montana, showed similar or higher potency in the inhibition of NO, compared to that reported for the positive control dexamethasone (IC50 = 0.45–4.33 μM) [30]. Further studies are recommended to be performed with theses sesquiterpenes. Toxicological studies to guarantee their safety in long-term studies are also necessary. The in vivo studies evaluate swelling, redness, and pain mainly in rodents.

In the table is show the structure of 62 sesquiterpenes, 34 diterpenes, and 22 triterpenes with anti-inflammatory activity, isolated from 44 plant species, 1 sponge, and 2 corals.


3. Conclusion

This book chapter indicates that there has been an increase in the search of terpenes with anti-inflammatory activity in recent years. This fact indicates that terpenes are a topic of interest. The possible mechanisms involved in the anti-inflammatory effects of the terpenes are pointing out on the inhibition of NF-κB, TNF-α, PGE2, and pro-inflammatory cytokines such as IL-6. NF-κB is one of the current targets for the development of new anti-inflammatory drugs [71]. In addition, the molecular targets of terpenes are highly desirable to find target-specific anti-inflammatory drugs. The mechanism of action of many terpenes remains to be studied. The combination of terpenes with high anti-inflammatory activity and with studied mechanism of action and currently used drugs could be another strategy for further anti-inflammatory therapy.


  1. 1. Shafi O. Inverse relationship between Alzheimer’s disease and cancer, and other factors contributing to Alzheimer’s disease: A systematic review. BMC Neurology. 2016;16(1):236. DOI: 10.1186/s12883-016-0765-2
  2. 2. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-[kappa] B as the matchmaker. Nature Immunology. 2011;12:715-723. DOI: 10.1038/ni.2060
  3. 3. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. The American Journal of Pathology. 2007;171(3):227-240. DOI: 10.2353/ajpath.2007.070166
  4. 4. Yang HZ, Wang JP, Mi S, Liu HZ, Cui B, Yan HM, Lu W. TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury. The American Journal of Pathology. 2012;180:275-292. DOI: 10.1016/j.ajpath.2011.09.019
  5. 5. Gordon S. Alternative activation of macrophages. Nature Reviews Immunology. 2016;3(1):23-36. DOI: 10.1038/nri978
  6. 6. Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal anti-inflammatory therapy: A journey toward safety. Medicinal Research Reviews. 2016;37:802-859. DOI: 10.1002/med.21424
  7. 7. Javadi B, Sahebkar A. Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacological Research. 2017;124:34-42. DOI: 10.1016/j.phrs.2017.07.022
  8. 8. Mewalal R, Rai DK, Kainer D, Chen F, Külheim C, Peter GF, Tuskan GA. Plant-derived terpenes: A feedstock for specialty biofuels. Trends in Biotechnology. 2017;35(3):227-240. DOI: 10.1016/j.tibtech. 2016-08.003
  9. 9. Rufino A, Ribeiro M, Judas F, Salgueiro L, Lopes M, Cavaleiro C, Mendes A. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. Journal of Natural Products. 2014;77(2):264-269. DOI: 10.1021/np400828x
  10. 10. Ma J, Xu H, Wu J, Qu C, Sun F, Xu S. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. International Immunopharmacology. 2015;29(2):708-713. DOI: 10.1016/j.intimp.2015.09.005
  11. 11. Kilani S, Sghaier M, Limem I, Bouhlel I, Boubaker J, Bhouri W, Skandrani I, Neffatti A, Ben-Ammar R, Dijoux-Franca M, Ghedira K, Chekir-Ghedira L. In vitro evaluation of antibacterial, antioxidant, cytotoxic and apoptotic activities of the tubers infusion and extracts of Cyperus rotundus. Bioresource Technology. 2008;99(18):9004-9008. DOI: 10.1016/j.biortech.2008.04.066
  12. 12. Kilani S, Ammar R, Bouhlel I, Abdelwahed A, Hayder N, Ben-Chibani J, Mahmoud A, Ben-Chibani L, Chekir-Ghedira K. Investigation of extracts from (Tunisian) Cyperus rotundus as antimutagens and radical scavengers. Environmental Toxicology and Pharmacology. 2005;20(3):478-484. DOI: 10.1016/j.etap.2005.05.012
  13. 13. Dang G, Parekar R, Kamat S, Scindia A, Rege N. Antiinflammatory activity of Phyllanthus emblica, Plumbago zeylanica and Cyperus rotundus in acute models of inflammation. Phytotherapy Research;25(6):904-908. DOI: 10.1016/S0014-5793(01)03293-8
  14. 14. Seo Y, Jeong M, Lee K, Jang DS, Choi J. Isocyperol, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced inflammatory responses via suppression of the NF-κB and STAT3 pathways and ROS stress in LPS-stimulated RAW 264.7 cells. International Immunopharmacology. 2016;38:61-69. DOI: 10.1016/j.intimp.2016.05.017
  15. 15. Arun M, Asha V. Gastroprotective effect of Dodonaea viscosa on various experimental ulcer models. Journal of Ethnopharmacology. 2008;118(3):460-465. DOI: 10.1016/j.jep.2008.05.026
  16. 16. Khurram M, Khan M, Hameed A, Abbas N, Qayum A, Inayat H. Antibacterial activities of Dodonaea viscosa using contact bioautography technique. Molecules. 2009;14(3):1332-1341. DOI: 10.3390/molecules14031332
  17. 17. Khalil N, Sperotto J, Manfron M. Antiinflammatory activity and acute toxicity of Dodonaea viscosa. Fitoterapia. 2006;77(6):478-480. DOI: 10.1016/j.fitote.2006.06.002
  18. 18. Getie M, Gebre-Mariam T, Rietz R, Höhne C, Huschka C, Schmidtke M, Neubert RHH. Evaluation of the anti-microbial and anti-inflammatory activities of the medicinal plants Dodonaea viscosa, Rumex nervosus and Rumex abyssinicus. Fitoterapia. 2003;74(1):139-143. DOI: 10.1016/S0367-326X(02)00315-5
  19. 19. Salinas-Sánchez D, Herrera-Ruiz M, Pérez S, Jiménez-Ferrer E, Zamilpa A. Anti-inflammatory activity of hautriwaic acid isolated from Dodonaea viscosa leaves. Molecules. 2012;17(4):4292-4299. DOI: 10.3390/molecules17044292
  20. 20. Salinas-Sánchez D, Zamilpa A, Pérez S, Herrera-Ruiz M, Tortoriello J, González-Cortazar M, Jiménez-Ferrer E. Effect of hautriwaic acid isolated from Dodonaea viscosa in a model of kaolin/carrageenan-induced monoarthritis. Planta Medica. 2015;81(14):1240-1247. DOI: 10.1055/s-0035-1546197
  21. 21. Pathak A, Bhutani M, Nair A, Ahn K, Chakraborty A, Kadara H, Aggarwal B. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Molecular Cancer Research. 2007;5(9):943-955. DOI: 10.1158/1541-7786.MCR-06-0348
  22. 22. Wand X, Zhang F, Yang L, Mei Y, Long H, Zhang X. Ursolic acid inhibits proliferation and induces apoptosis of cancer cells in vitro and in vivo. Journal of Biomedicine and Biotechnology. 2011;2011:1-8. DOI: 10.1155/2011/419343
  23. 23. Woźniak Ł, Skąpska S, Marszałek K. Ursolic acid-a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules. 2015;20(11):20614-20641. DOI: 10.3390/molecules201119721
  24. 24. Vasconcelos M, Royo V, Ferreira D, Crotti A, Silva M, Carvalho J, Bastos JK, Cunha WR. In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconia albicans (Melastomataceae). Zeitschrift für Naturforschung. 2006;61(7–8):477-482. DOI: 0939-5075/2006/0700-0477
  25. 25. Baricevic D, Sosa S, Della-Loggia R, Tubaro A, Simonovska B, Krasna A, Zupancic A. Topical anti-inflammatory activity of Salvia officinalis L. leaves: The relevance of ursolic acid. Journal of Ethnopharmacology. 2001;75(2):125-132. DOI: 10.1016/S0378-8741(00)00396-2
  26. 26. González-Chávez M, Ramos-Velázquez C, Serrano-Vega R, Pérez-González C, Sánchez-Mendoza E, Pérez-Gutiérrez S. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS. Pharmaceutical Biology. 2017;55(1):1467-1472. DOI: 10.1080/13880209.2017.1305423
  27. 27. Zerin T, Lee M, Jang W, Nam K, Song H. Anti-inflammatory potential of ursolic acid in mycobacterium tuberculosis-sensitized and Concanavalin A-stimulated cells. Molecular Medicine Reports. 2016;13(3):2736-2744. DOI: 10.3892/mmr.2016.4840
  28. 28. Formisano C, Sanna C, Ballero M, Chianese G, Sirignano C, Rigano D, Taglialatela-Scafati O. Anti-inflammatory sesquiterpene lactones from Onopordum illyricum L.(Asteraceae), an Italian medicinal plant. Fitoterapia. 2017;116:61-65. DOI: 10.1016/j.fitote.2016.11.006
  29. 29. Youn UJ, Park EJ, Kondratyuk TP, Sripisut T, Laphookhieo S, Pezzuto JM, Chang LC. Anti-inflammatory triterpenes from the apical bud of Gardenia sootepensis. Fitoterapia. 2016;114:92-97. DOI: 10.1016/j.fitote.2016.08.012
  30. 30. Garayev E, Herbette G, Di Giorgio C, Chiffolleau P, Roux D, Sallanon H, Baghdikian B. New sesquiterpene acid and inositol derivatives from Inula montana L. Fitoterapia. 2017;120:79-84. DOI: 10.1016/j.fitote.2017.05.011
  31. 31. Mai NT, Cuc NT, Anh HLT, Nhiem NX, Tai BH, Yen PH, Oh H. Two new guaiane sesquiterpenes from Datura metel L. with anti-inflammatory activity. Phytochemistry Letters. 2017;19:231-236. DOI: 10.1016/j.phytol.2017.01.011
  32. 32. Shen XY, Yu Y, Chen GD, Zhou H, Luo JF, Zuo YH, Dai Y. Six new sesquiterpenoids from Nardostachys chinensis Batal. Fitoterapia. 2017;119:75-82. DOI: 10.1016/j.fitote.2017.04.004
  33. 33. Pan LL, Xu P, Luo XL, Wang LJ, Liu SY, Zhu YZ, Liu XH. Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells. Biomedicine & Pharmacotherapy. 2017;88:878-884. DOI: 10.1016/j.biopha.2017.01.152
  34. 34. Wu ZN, Zhang YB, Chen NH, Li MJ, Li MM, Tang W, Wang GC. Sesquiterpene lactones from Elephantopus mollis and their anti-inflammatory activities. Phytochemistry. 2017;137:81-86. DOI: 10.1016/j.phytochem.2017.01.020
  35. 35. Shen CP, Luo JG, Yang MH, Kong LY. Sesquiterpene dimers from the roots of Chloranthus holostegius with moderate anti-inflammatory activity. Phytochemistry. 2017;137:117-122. DOI: 10.1016/j.phytochem.2017.02.016
  36. 36. Van Kiem P, Hang DT, Nhiem NX, Tai BH, Anh HLT, Van Cuong P, Subedi L. Sesquiterpene derivatives from marine sponge Smenospongia cerebriformis and their anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters. 2017;27(7):1525-1529. DOI: 10.1016/j.bmcl.2017.02.040
  37. 37. Fang X, Xu XK, Wang GW, Zeng RT, Tian XH, Shi ZR, Zhang WD. Guaianolide sesquiterpenoids from Ainsliaea yunnanensis. Phytochemistry. 2017;139:47-55. DOI: 10.1016/j.phytochem.2017.04.001
  38. 38. Zhuo ZG, Wu GZ, Fang X, Tian XH, Dong HY, Xu XK, Shen YH. Chlorajaponols A–F, sesquiterpenoids from Chloranthus japonicus and their in vitro anti-inflammatory and anti-tumor activities. Fitoterapia. 2017;119:90-99. DOI: 10.1016/j.fitote.2017.04.009
  39. 39. Walshe-Roussel B, Choueiri C, Saleem A, Asim M, Caal F, Cal V, Arnason JT. Potent anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass., a Q’eqchi’Maya traditional medicine. Phytochemistry. 2013;92:122-127. DOI: 10.1016/j.phytochem.2013.05.004
  40. 40. de Albuquerque Ugoline BC, de Souza J, Ferrari FC, Ferraz-Filha ZS, Coelho GB, Saúde-Guimarães DA. The influence of seasonality on the content of goyazensolide and on anti-inflammatory and anti-hyperuricemic effects of the ethanolic extract of Lychnophora passerina (Brazilian arnica). Journal of Ethnopharmacology. 2017;198:444-450. DOI: 10.1016/j.jep.2017.01.017
  41. 41. Liu Q, Jo YH, Kim SB, Jin Q, Hwang BY, Lee MK. Sesquiterpenes from the roots of Lindera strychnifolia with inhibitory effects on nitric oxide production in RAW 264.7 cells. Bioorganic & Medicinal Chemistry Letters. 2016;26(20):4950-4954. DOI: 10.1016/j.bmcl.2016.09.012
  42. 42. Chi J, Li BC, Dai WF, Liu L, Zhang M. Highly oxidized sesquiterpenes from Artemisia austro-yunnanensis. Fitoterapia. 2016;115:182-188. DOI: 10.1016/j.fitote.2016.10.013
  43. 43. Xia G, Zhou L, Ma J, Wang Y, Ding L, Zhao F, Qiu F. Sesquiterpenes from the essential oil of Curcuma wenyujin and their inhibitory effects on nitric oxide production. Fitoterapia. 2015;103:143-148. DOI: 10.1016/j.fitote.2015.03.021
  44. 44. Hegazy MEF, Nakamura S, Tawfik WA, Abdel-Azim NS, Abdel-Lateff A, Matsuda H, Paré PW. Rare hydroperoxyl guaianolide sesquiterpenes from Pulicaria undulata. Phytochemistry Letters. 2015;12:177-181. DOI: 10.1016/j.phytol.2015.03.019
  45. 45. Kim TH, Li H, Wu Q, Lee HJ, Ryu JH. A new labdane diterpenoid with anti-inflammatory activity from Thuja orientalis. Journal of Ethnopharmacology. 2013;146(3):760-767. DOI: 10.1016/j.jep.2013.02.001
  46. 46. González Y, Doens D, Santamaría R, Ramos M, Restrepo CM, de Arruda LB, Fernández PL. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-alpha in macrophages. PloS One. 2013;8(12):e84107. DOI: 10.1371/journal.pone.0084107.g003
  47. 47. Wangchuk P, Navarro S, Shepherd C, Keller PA, Pyne SG, Loukas A. Diterpenoid alkaloids of Aconitum laciniatum and mitigation of inflammation by 14-O-acetylneoline in a murine model of ulcerative colitis. Scientific Reports. 2015;5:12845. DOI: 10.1038/srep12845
  48. 48. Través PG, Pimentel-Santillana M, Rico D, Rodriguez N, Miethke T, Castrillo A, Boscá L. Anti-inflammatory actions of acanthoic acid-related diterpenes involve activation of the PI3K p110γ/δ subunits and inhibition of NF-κB. Chemistry & Biology. 2014;21(8):955-966. DOI: 10.1016/j.chembiol.2014.06.005
  49. 49. Chen JJ, Ting CW, Wu YC, Hwang TL, Cheng MJ, Sung PJ, Chen JF. New labdane-type diterpenoids and anti-inflammatory constituents from Hedychium coronarium. International Journal of Molecular Sciences. 2013;14(7):13063-13077. DOI: 10.3390/ijms140713063
  50. 50. Sun CP, Yuan T, Wang L, Kang N, Zhao F, Chen LX, Qiu F. Anti-inflammatory labdane-type diterpenoids from Physalis angulate. RSC Advances. 2016;6(80):76838-76847. DOI: 10.1039/c6ra16424b
  51. 51. Premprasert C, Tewtrakul S, Plubrukarn A, Wungsintaweekul J. Anti-inflammatory activity of diterpenes from Croton stellatopilosus on LPS-induced RAW264. 7 cells. Journal of Natural Medicines. 2013;67(1):174-181. DOI: 10.1007/s11418-012-0668-5
  52. 52. Cheng HH, Cheng YB, Hwang TL, Kuo YH, Chen CH, Shen YC. Randainins A–D, based on unique diterpenoid architectures, from Callicarpa randaiensis. Journal of Natural Products. 2015;78(8):1823-1828. DOI: 10.1021/acs.jnatprod.5b00012
  53. 53. Lee M, Kim SH, Lee HK, Cho Y, Kang J, Sung SH. ent-kaurane and ent-pimarane diterpenes from Siegesbeckia pubescens inhibit lipopolysaccharide-induced nitric oxide production in BV2 microglia. Biological & Pharmaceutical Bulletin. 2013;37(1):152-157. DOI: 10.1248/bpb.b13-00233
  54. 54. Qin J, Li HM, Gao LH, Liu D, Li RT, Lee KH. New labdane diterpenoids from Leonurus japonicus and their anti-inflammatory activity. Phytochemistry Letters. 2014;10:313-317. DOI: 10.1016/j.phytol.2014.10.027
  55. 55. He YR, Shen YH, Shan L, Yang X, Wen B, Ye J, Zhang WD. Diterpenoid lanceolatins A–G from Cephalotaxus lanceolata and their anti-inflammatory and anti-tumor activities. RSC Advances. 2015;5(6):4126-4134. DOI: 10.1039/c4ra10665b
  56. 56. Kapewangolo P, Omolo JJ, Bruwer R, Fonteh P, Meyer D. Antioxidant and anti-inflammatory activity of Ocimum labiatum extract and isolated labdane diterpenoid. Journal of Inflammation. 2015;12(1):4. DOI: 10.1186/s12950-015-0049-4
  57. 57. Chen YC, Li YC, You BJ, Chang WT, Chao LK, Lo LC, Kuo YH. Diterpenoids with anti-inflammatory activity from the wood of Cunninghamia konishii. Molecules. 2013;18(1):682-689. DOI: 10.3390/molecules18010682
  58. 58. Erharuyi O, Adhikari A, Falodun A, Jabeen A, Imad R, Ammad M, Gören N. Cytotoxic, anti-inflammatory, and leishmanicidal activities of diterpenes isolated from the roots of Caesalpinia pulcherrima. Planta Medica. 2016;83(01/02):104-110. DOI: 10.1016/j.bjp.2016.12.008
  59. 59. Thao NP, Luyen BTT, Ngan NTT, Song SB, Cuong NX, Nam NH, Van Minh C. New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crissum. Bioorganic & Medicinal Chemistry Letters. 2014;24(1):228-232. DOI: 10.1016/j.bmcl.2013.11.033
  60. 60. Chen H, Wang H, Yang B, Jin DQ, Yang S, Wang M, Guo Y. Diterpenes inhibiting NO production from Euphorbia helioscopia. Fitoterapia. 2014;95:133-138. DOI: 10.1016/j.fitote.2014.03.010
  61. 61. Armah FA, Annan K, Mensah AY, Amponsah IK, Tocher DA, Habtemariam S. Erythroivorensin: A novel anti-inflammatory diterpene from the root-bark of Erythrophleum ivorense (a Chev.). Fitoterapia. 2015;105:37-42. DOI: 10.1016/j.fitote.2015.06.001
  62. 62. Rohr M, Oleinikov K, Jung M, Sandjo LP, Opatz T, Erkel G. Anti-inflammatory tetraquinane diterpenoids from a Crinipellis species. Bioorganic & Medicinal Chemistry. 2017;25(2):514-522. DOI: 10.1016/j.bmc.2016.11.016
  63. 63. Rossi A, Pace S, Tedesco F, Pagano E, Guerra G, Troisi F, Izzo AA. The hallucinogenic diterpene salvinorin A inhibits leukotriene synthesis in experimental models of inflammation. Pharmacological Research. 2016;106:64-71. DOI: 10.1016/j.phrs.2016.01.032
  64. 64. Pierri EG, Castro RC, Vizioli EO, Ferreira CM, Cavalheiro AJ, Tininis AG, Santos AG. Anti-inflammatory action of ethanolic extract and clerodane diterpenes from Casearia sylvestris. Revista Brasileira de Farmacognosia. 2017;27:495-501. DOI: 10.1016/j.bjp.2016.12.008
  65. 65. Mireku EA, Kusari S, Eckelmann D, Mensah AY, Tolantsi FM, Spteller M. Anti-inflammatory tirucallane triterpenes from Anopyxis kaineana Pierre (Engl.), (Rhizophoraceae). Fitoterapia. 2015;106:84-91. DOI: 10.1016/j.fitote.2015.08.007
  66. 66. Romero-Estrada A, Maldonado-Magaña A, González-Christen J, Bahena SM, Garduño-Ramírez ML, Rodríguez-López V, Alvarez L. Anti-inflammatory and antioxidative effects of six pentacyclic triterpenes isolated from the Mexican copal resin of Bursera copallifera. BMC Complementary and Alternative Medicine. 2016;16(1):422-432. DOI: 10.1186/s12906 016-1397-1
  67. 67. Zhou J, Wei XH, Chen FY, Li CJ, Yang JZ, Ma J, Zhang DM. Anti-inflammatory pentacyclic triterpenes from the stems of Euonymus carnosus. Fitoterapia. 2017;118:21-26. DOI: 10.1016/j.fitote.2017.01.015
  68. 68. Chun SK, Lalita S, Joonseok O, Sun YK, Sang UC, Kang R. Bioactive triterpenoids from the twigs of Chaenomeles sinensis. Journal of Natural Products. 2017;80:1134-1140. DOI: 10.1021/acs.jnatprod.7b00111
  69. 69. de Almeida PDO, Boleti APA, Rüdiger AL, Lourenço GA, da Veiga Junior VF, Lima ES. Anti-inflammatory activity of triterpenes isolated from Protium paniculatum oil-resins. Evidence-Based Complementary and Alternative Medicine. 2015, Article ID: 293768. DOI: 10.1155/2015/293768
  70. 70. Huang J, Wang Y, Li C, Wang X, He X. Triterpenes isolated from acorns of Quercus serrata Var. Brevipetiolata exert anti-inflammatory activity. Industrial Crops and Products. 2016;91:302-309. DOI: 10.1016/j.indcrop.2016.07.033
  71. 71. Killeen MJ, Linder M, Pontoniere P, Crea R. NF-κβ signaling and chronic inflammatory diseases: Exploring the potential of natural products to drive new therapeutic opportunities. Drug Discovery Today. 2014;19(4):373-378. DOI: 10.1016/j.drudis.2013.11.002

Written By

Roberto José Serrano Vega, Nimsi Campos Xolalpa, Angel Josabad Alonso Castro, Cuauhtémoc Pérez González, Julia Pérez Ramos and Salud Pérez Gutiérrez

Submitted: 03 October 2017 Reviewed: 18 December 2017 Published: 19 December 2018