Institute of Electrical and Electronics Engineers (IEEE) frequency spectrum.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"7199",leadTitle:null,fullTitle:"Charged Particles",title:"Charged Particles",subtitle:null,reviewType:"peer-reviewed",abstract:"A charged particle is a particle that carries an electric charge and can be discussed in many aspects. This book focuses on cutting-edge and important research topics such as flavor physics to search for new physics via charged particles that appear in different extensions of the standard model, as well as the analysis of ultra-high energy muons using the pair-meter technique. Also included in this book are the idea of the Eloisatron to PeVatron, the important research field of electrostatic waves in magnetized electron/positron plasmas, and the application of charge bodies.",isbn:"978-1-78985-396-4",printIsbn:"978-1-78985-395-7",pdfIsbn:"978-1-83962-035-5",doi:"10.5772/intechopen.73999",price:119,priceEur:129,priceUsd:155,slug:"charged-particles",numberOfPages:104,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"c456f670b68b3512e9e9866f9837fd98",bookSignature:"Malek Maaza and Mahmoud Izerrouken",publishedDate:"February 20th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7199.jpg",numberOfDownloads:5144,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:0,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 9th 2018",dateEndSecondStepPublish:"May 23rd 2018",dateEndThirdStepPublish:"July 22nd 2018",dateEndFourthStepPublish:"October 10th 2018",dateEndFifthStepPublish:"December 9th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"192286",title:"Prof.",name:"Malek",middleName:null,surname:"Maaza",slug:"malek-maaza",fullName:"Malek Maaza",profilePictureURL:"https://mts.intechopen.com/storage/users/192286/images/system/192286.jpg",biography:"Prof. M. Maaza, holds a DESS in Solid State Physics from the University of Oran-Algeria, an MSC in Lasers & Photonics & a PhD in Quantum wave matter Optics from the University of Pierre-Marie Curie& the Commissariat a l’Energie Atomique respectively. He is currently a permanent joint staff member of the\r\nNational Research Foundation of South Africa (NRF) and the University of South Africa\r\n(UNISA). Prof. Maaza is the current UNESCO UNISA Africa Chair in Nanosciences &\r\nNanotechnology via a trilateral partnership between UNESCO, NRF and the University of\r\nSouth Africa (UNISA). Among other positions held, he was the Southern Africa representative\r\nof the International Commission of Optics, He is the chair of the ICTP/AU supported official Nanosciences African Network. \r\nHe is a fellow of the African European Academy of Sciences, Royal Society of Chemistry, New York Academy ofSciences & the Islamic Academy of Sciences.Recently, ProfM. Maaza has been elected as\r\nFellow of the American Association for Advancement of Sciences. His expertise is in the multidisciplinary field of nanosciences, photonics and solar energy. Prof. M. Maaza has published more than 300 ISI International publications and supervised several postgraduates from all over Africa & the South.",institutionString:"University of South Africa",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of South Africa",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"251161",title:"Dr.",name:"Mahmoud",middleName:null,surname:"Izerrouken",slug:"mahmoud-izerrouken",fullName:"Mahmoud Izerrouken",profilePictureURL:"https://mts.intechopen.com/storage/users/251161/images/7175_n.png",biography:"Mahmoud Izerrouken joined Nuclear Research Centre of Draria in 1996 and currently holds the position of the head of the Nuclear Techniques Department, Nuclear Research Center of Draria, Algiers, Algeria. He has co-authored over 30 publications in SCI journals and supervised several Master and PhD students. His research interests are focused on Ion and Neutron induced damage in materials. He obtained his PhD at Ferhat Abbas University, Faculty of Sciences, Setif, Algeria.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"229",title:"Plasma Physics",slug:"plasma-physics"}],chapters:[{id:"64835",title:"Introductory Chapter: Charged Particles",doi:"10.5772/intechopen.82782",slug:"introductory-chapter-charged-particles",totalDownloads:1062,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Mahmoud Izerrouken and Ishaq Ahmad",downloadPdfUrl:"/chapter/pdf-download/64835",previewPdfUrl:"/chapter/pdf-preview/64835",authors:[{id:"204045",title:"Dr.",name:"Ishaq",surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],corrections:null},{id:"64221",title:"Analysis of Ultra-High Energy Muons at INO-ICAL Using Pair Meter Technique",doi:"10.5772/intechopen.81368",slug:"analysis-of-ultra-high-energy-muons-at-ino-ical-using-pair-meter-technique",totalDownloads:776,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The proposed magnetized Iron CALorimeter (ICAL) detector at India-based Neutrino Observatory (INO) is a large-sized underground detector. ICAL is designed to reconstruct muon momentum using magnetic spectrometers as detectors. Muon energy measurements using magnets fail for high energy muons (TeV range), since the angular deflection of the muon in the magnetic field is negligible and the muon tracks become nearly straight. A new technique for measuring the energy of muons in the TeV range, used by the CCFR neutrino detector is known as the pair meter technique. This technique estimates muon energy by measuring the energy deposited by the muon in several layers of an iron calorimeter through e+ and e− pair production. In this work we have performed Geant4-based preliminary analysis for iron plates and have demonstrated the feasibility to detect very high energy muons (1–1000 TeV) at the underground ICAL detector operating as a pair meter. This wide range of energy spectrum will not only be helpful for studying the cosmic rays in the Knee region which is around 5 PeV in the cosmic ray spectra but also useful for understanding the atmospheric neutrino flux for the running and upcoming ultra-high energy atmospheric neutrino experiments.",signatures:"Jaydip Singh, Srishti Nagu and Jyotsna Singh",downloadPdfUrl:"/chapter/pdf-download/64221",previewPdfUrl:"/chapter/pdf-preview/64221",authors:[null],corrections:null},{id:"63295",title:"From the Eloisatron to the Pevatron",doi:"10.5772/intechopen.80579",slug:"from-the-eloisatron-to-the-pevatron",totalDownloads:772,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In the late 1970s the experimental physics community was active in promoting the Large Electron Positron (LEP) collider and its associated experiments to study the Z- and W-bosons, and with the expectation that the tunnel could subsequently house a hadron collider (LHC), providing a center-of-mass energy for discoveries at the frontier of knowledge. At this time, Antonino Zichichi, who had chaired a Working Group in charge of promoting LEP among the community of experimental and accelerator physicists, realized that one should envisage building as large a ring as possible, for which LEP/LHC would be but a scale model, and it was thus the idea of the Eloisatron, or ELN, in a ring of about 300 km in circumference, was born. CERN and IHEP, China, are now engaged in studies for future colliders of 100 km in circumference, aiming to extend center-of-mass energy in hadron collisions to 100 TeV by using very high field magnets. The ELN idea lives on, but it is time to envision an update. A ring of diameter 300 km would make possible the installation of a sequence of increasingly complex accelerators culminating in one eventually capable of providing a center-of-mass energy of 1000 TeV, i.e. a peta-electron-volt or PeV.",signatures:"Thomas Taylor",downloadPdfUrl:"/chapter/pdf-download/63295",previewPdfUrl:"/chapter/pdf-preview/63295",authors:[null],corrections:null},{id:"64112",title:"Flavor Physics and Charged Particle",doi:"10.5772/intechopen.81404",slug:"flavor-physics-and-charged-particle",totalDownloads:847,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"We have new charged particles in many scenarios of physics beyond the Standard Model where these particles are sometimes motivated to explain experimental anomalies. Furthermore, such new charged particles are important target at the collider experiments such as the Large Hadron Collider in searching for a signature of new physics. If these new particles interact with known particles in the Standard Model, they would induce interesting phenomenology of flavor physics in both lepton and quark sectors. Then, we review some candidate of new charged particles and its applications to flavor physics. In particular, vector-like lepton and leptoquarks are discussed for lepton flavor physics and B-meson physics.",signatures:"Takaaki Nomura",downloadPdfUrl:"/chapter/pdf-download/64112",previewPdfUrl:"/chapter/pdf-preview/64112",authors:[null],corrections:null},{id:"63654",title:"Electrostatic Waves in Magnetized Electron-Positron Plasmas",doi:"10.5772/intechopen.80958",slug:"electrostatic-waves-in-magnetized-electron-positron-plasmas",totalDownloads:921,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The behavior of arbitrary amplitude linear and nonlinear electrostatic waves that propagate in a magnetized four component, two-temperature, electron-positron plasma is presented. The characteristics of the dispersive properties of the associated linear modes using both fluid and kinetic theory are examined. The fluid theory analysis of the electrostatic linear waves shows the existence of electron acoustic, upper hybrid, electron plasma and electron cyclotron branches. A kinetic theory analysis is then used to study the acoustic mode, in particular the effect of Landau damping, which for the parameter regime considered is due to the cooler species. Consequently, it is found that a large enough drift velocity is required to produce wave growth. Nonlinear electrostatic solitary waves (ESWs), similar to those found in the broadband electrostatic noise observed in various regions of the earth’s magnetosphere is further investigated. A set of nonlinear differential equations for the ESWs, which propagate obliquely to an external magnetic field is derived and numerically solved. The effect of various plasma parameters on the waves is explored and shows that as the electric driving force is increased, the electric field structure evolves from a sinusoidal wave to a spiky bipolar form. The results are relevant to both astrophysical environments and related laser-induced laboratory experiments.",signatures:"Ian Joseph Lazarus",downloadPdfUrl:"/chapter/pdf-download/63654",previewPdfUrl:"/chapter/pdf-preview/63654",authors:[null],corrections:null},{id:"63057",title:"Biological Effects of Negatively Charged Particle-Dominant Indoor Air Conditions",doi:"10.5772/intechopen.79934",slug:"biological-effects-of-negatively-charged-particle-dominant-indoor-air-conditions",totalDownloads:766,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"To identify health-promoting indoor air conditions, we developed negatively charged particle-dominant indoor air conditions (NCPDIAC). Experiments assessing the biological effects of NCPDIAC comprised (1) 2.5-h stays in NCPDIAC or control rooms, (2) 2-week nightly stays in control followed by NCPDIAC rooms, (3) 3-month OFF to ON and ON to OFF trials in individual living homes equipped with NPCDIAC in their sleeping or living rooms, and (4) in vitro assays comparing the immune effects between negatively charged particle-dominant and control cell culture incubators. The most significant difference examined between NCPDIAC and control rooms in the 2.5-h stays was an increase in interleukin (IL)-2 with occupancy of the NCPDIAC room. For the 2-week nightly stay experiments, natural killer (NK) cell activity increased with occupancy of the NCPDIAC room. The 3-month OFF to ON trial showed an increase in NK cell activity, while the ON to OFF trial yielded a decrease in NK cell activity. Additionally, the in vitro assays also showed an increase in NK cell activity. The use of NCPDIAC resulted in increased NK cell activity, which has the effect of enhancing immune surveillance for the occurrence of cancer and improving symptoms associated with viral infections.",signatures:"Suni Lee, Yasumitsu Nishimura, Naoko Kumagai-Takei, Hidenori Matsuzaki,\nMegumi Maeda, Nagisa Sada, Kei Yoshitome and Takemi Otsuki",downloadPdfUrl:"/chapter/pdf-download/63057",previewPdfUrl:"/chapter/pdf-preview/63057",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6861",title:"Plasmonics",subtitle:null,isOpenForSubmission:!1,hash:"e33a5b5eaffb8edd2de62ce2a21486ea",slug:"plasmonics",bookSignature:"Tatjana Gric",coverURL:"https://cdn.intechopen.com/books/images_new/6861.jpg",editedByType:"Edited by",editors:[{id:"212653",title:"Prof.",name:"Tatjana",surname:"Gric",slug:"tatjana-gric",fullName:"Tatjana Gric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7393",title:"Atmospheric Pressure Plasma",subtitle:"from Diagnostics to Applications",isOpenForSubmission:!1,hash:"1e06b02c1a2008b06370a0ed2f36521c",slug:"atmospheric-pressure-plasma-from-diagnostics-to-applications",bookSignature:"Anton Nikiforov and Zhiqiang Chen",coverURL:"https://cdn.intechopen.com/books/images_new/7393.jpg",editedByType:"Edited by",editors:[{id:"176861",title:"Dr.",name:"Anton",surname:"Nikiforov",slug:"anton-nikiforov",fullName:"Anton Nikiforov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6735",title:"Plasma Science and Technology",subtitle:"Basic Fundamentals and Modern Applications",isOpenForSubmission:!1,hash:"6438c65002222003fa8943fe40ebdb7b",slug:"plasma-science-and-technology-basic-fundamentals-and-modern-applications",bookSignature:"Haikel Jelassi and Djamel Benredjem",coverURL:"https://cdn.intechopen.com/books/images_new/6735.jpg",editedByType:"Edited by",editors:[{id:"233397",title:"Dr.",name:"Haikel",surname:"Jelassi",slug:"haikel-jelassi",fullName:"Haikel Jelassi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8856",title:"Electrostatic Discharge",subtitle:"From Electrical breakdown in Micro-gaps to Nano-generators",isOpenForSubmission:!1,hash:"bc66d347ac7bb73c1ae552a0dcbc976c",slug:"electrostatic-discharge-from-electrical-breakdown-in-micro-gaps-to-nano-generators",bookSignature:"Steven H. Voldman",coverURL:"https://cdn.intechopen.com/books/images_new/8856.jpg",editedByType:"Edited by",editors:[{id:"207997",title:"Dr.",name:"Steven",surname:"Voldman",slug:"steven-voldman",fullName:"Steven Voldman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:"plasma-science-and-technology",bookSignature:"Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8490",title:"Selected Topics in Plasma Physics",subtitle:null,isOpenForSubmission:!1,hash:"0fe936bfad77ae70ad96c46de8b7730d",slug:"selected-topics-in-plasma-physics",bookSignature:"Sukhmander Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8490.jpg",editedByType:"Edited by",editors:[{id:"282807",title:"Dr.",name:"Sukhmander",surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"80612",slug:"corrigendum-to-risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterial",title:"Corrigendum to: Risk Assessment and Health, Safety, and Environmental Management of Carbon Nanomaterials",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/80612.pdf",downloadPdfUrl:"/chapter/pdf-download/80612",previewPdfUrl:"/chapter/pdf-preview/80612",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/80612",risUrl:"/chapter/ris/80612",chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:null},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:null},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:null}]}},chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:null},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:null},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:null}]},book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11783",leadTitle:null,title:"Motivation and Success",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book will aim to be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, psychologists, social workers, mentors, motivational speakers, life coaches, students, and other scientists. The contents of the book are intended to be written by multiple authors and experts from different related fields of psychology, philosophy, education, public health, human resource, and other human social sciences.
\r\n\r\n\tCombining Motivation and Success as a book title demonstrates that these are complementary goods. When two goods are complements, they experience join demand. Meaning that the demand for one good is linked to the demand for another good. Indeed, our esteemed authors will aim to put together their scholarly work to showcase the importance of motivation leading to success and vice versa. Defined as a drive or a need, motivation is a driving force inside an individual to pursue a designated goal. While success is a state of meeting a targeted goal. This simply implies that motivated individuals are most successful and this is the core theme of the book.
",isbn:"978-1-83768-021-4",printIsbn:"978-1-83768-020-7",pdfIsbn:"978-1-83768-022-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"f660b7cd35b9af94bdfc3564df138161",bookSignature:"Dr. Simon George Taukeni",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11783.jpg",keywords:"Inner Motivation, Self-Regulation, Self-Control, Exercise, Sport, External Motivation, Secrets Behind Success, Being Physically Active, Feeling Successful, Theories Behind Success, Adversity, Motivational Speech",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 10th 2022",dateEndSecondStepPublish:"June 7th 2022",dateEndThirdStepPublish:"August 6th 2022",dateEndFourthStepPublish:"October 25th 2022",dateEndFifthStepPublish:"December 24th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"11 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher within the biopsychosocial model and health psychology. He also works as an editor, internal and external examiner, and principal project investigator.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"202046",title:"Dr.",name:"Simon George",middleName:null,surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni",profilePictureURL:"https://mts.intechopen.com/storage/users/202046/images/system/202046.jpg",biography:"Simon George Taukeni is an author, editor, and academic. He has been working at the University of Namibia since 2011. He is also a part-time tutor at Namibia University of Science and Technology (NUST). He is a former post-doctoral research fellow at the University of Fort Hare, South Africa.\n\nDr. Taukeni has a Ph.D., MPH, MEd, and BEd, as well as a specialized postgraduate diploma in Behavioral and Emotional Disorders. \n\nHe has collaborated with many local and international researchers and scholars in his capacity as an editor, internal and external examiner, and principal project investigator.",institutionString:"University of Namibia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Namibia",institutionURL:null,country:{name:"Namibia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde",surname:"Nielsen",slug:"hilde-nielsen",fullName:"Hilde Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58958",title:"Introductory Chapter: RF/Microwave Applications",doi:"10.5772/intechopen.73574",slug:"introductory-chapter-rf-microwave-applications",body:'Owing to the rapid development of microwave technology, the microwave components and devices are increasingly common and relative low price compared to 10 years ago. Nowadays, microwave devices are often used and become an indispensable necessity in our daily routines, such as microwave ovens, mobile phones, and Internet. This introductory chapter reviews the microwave applications in this era based on a detailed literature survey and author’s experience in microwave researches.
Radio waves and microwaves are a form of electromagnetic radiation with operating frequencies ranging from 30 to 300 MHz and 300 MHz to 300 GHz, respectively [1]. Different microwave applications and technologies will use certain frequency band to avoid frequency interference. These frequencies are grouped into several smaller bands. The most commonly used frequency spectrum classification today is created by the Institute of Electrical and Electronics Engineers (IEEE), which is listed in Table 1. Microwave applications for heating and crushing normally use high microwave power which is up to megawatts. In contrast, low microwave power (less than milliwatts) is widely used for domestic wireless communication or high-frequency electronic devices. Microwave applications can be categorized into two groups, namely, communication and noncommunication. Industrial, scientific, and medical (ISM) applications are normally classified as noncommunication group. Several scopes of microwave applications are listed in Table 2. The first three industrial, scientific, and medical (ISM) frequency allocations (at 13.66 MHz, 27.32 MHz, and 40.98 MHz) were designated by US Federal Communications Commission (FCC) in 1945 [2]. Recently, there are two microwave frequencies allocated by the FCC for ISM usage, namely, 915 MHz and 2.45 GHz.
Electromagnetic wave spectrum | Frequency band | Wavelength |
---|---|---|
P band (230 MHz–1 GHz) | 130–30 cm | |
L band (1–2 GHz) | 30–15 cm | |
S band (2–4 GHz) | 15–7.5 cm | |
S band (2–4 GHz) | 15–7.5 cm | |
C band (4–8 GHz) | 7.5–3.75 cm | |
X band (8–12.5 GHz) | 3.75–2.4 cm | |
Ku band (12.5–18 GHz) | 2.4–1.67 cm | |
K band (18–26.5 GHz) | 1.67–1.13 cm | |
Ka band (26.5–40 GHz) | 1.13–0.75 cm | |
Ka band (26.5–40 GHz) | 1.13–0.75 cm | |
V band (40–75 GHz) | 7.5–4 mm | |
W band (75–110 GHz) | 4–2.73 mm | |
Millimeter band (110–300 GHz) | 2.73–1 mm |
Institute of Electrical and Electronics Engineers (IEEE) frequency spectrum.
Communication [3, 4, 5, 6, 7, 8] | Noncommunication [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] | ||
---|---|---|---|
1 | Communication network systems, such as high-speed home and business networking devices (modem and router), device-to-device communication (D2D) system, massive MIMO technology, cloud technologies, and small cell access points | 1 | Sensors for industrial, agricultural/food, and medical processing, such as moisture measurement, ripeness/storage period determination, fruit sweetness detection, control of milk of lime, monitoring of nitrogen/phosphorus content in fertilizer, medical diagnostic, moisture soil testing, metal crack detector, and storage tank measurement devices |
2 | Communication devices and test instruments, such as spectrum analyzer, RF power meter, frequency counter, signal generator, and vector network analyzer | 2 | Heating/drying or freeze-drying process (sterilization /pasteurization) in food industry to control pathogenic and spoilage microorganisms in packaged foods |
3 | Navigation systems such as maritime navigation, Global Positioning System (GPS), air traffic control, airborne radars, and satellite communication | 3 | Industrial heating applications, such as casting waxes, sintering ceramics/metal powders, melting of glass/rubber, metal coating, brazing, and paper/wood drying |
4 | Wireless remote control for security and healthcare systems such as automatic gate/door, automatic barrier systems, burglar alarms, and industrial automation systems (Industry 4.0) | 4 | Medical applications, such as hyperthermia treatments, bio-impedance instrumentation, and medical diagnostic imaging (to detect a location or movement of objects within a human body or animal body) |
5 | Vehicular radar systems to detect the location and movement of objects near a vehicle, enabling features such as near collision avoidance, improved airbag activation, and suspension systems that better respond to road conditions | 5 | Material characterization fixtures (materials including graphene, metamaterials, carbon nanotube, conductive polymer, high-temperature superconductor, aerogel, ceramics, semiconductor, polymer insulation, fibers, gases, and chemical liquids) |
6 | Entertainment and information communication devices/systems such as television broadcast, FM broadcast, radio beacons, maritime radio, walkie-talkie, coast guard communication, satellite communication, and weather radars | 6 | Image scan systems to detect the images of buried objects, location of objects contained within a wall, location or movement of persons or objects which are located on the other side of a wall, as well as the intrusion of persons |
7 | Domestic communication devices, such as 4G/5G smart phone, computer, Bluetooth, Wi-Fi devices, wireless webcam, and wireless microphones | 7 | Civil engineering applications (rock crushing, tar road comminuting) |
8 | Radiation for agricultural pest control |
Microwave applications for communication and noncommunication technologies.
Currently, most of the applications are devoted to the 2.45 GHz point, since it provides a suitable compromise between power deposition and penetration depth. The ISM bands defined by the International Telecommunication Union (ITU) are listed in Table 3 [1]. However, during recent years, ISM bands have also been shared with license-free error-tolerant communications applications, such as wireless LANs. In addition, now is the era of the fourth industrial revolution, so-called Industry 4.0, which most operation systems in the industry are in cyber based. Hence, the combination between communication (Internet) and noncommunication (microwave things) technologies is increasingly popular in order to produce smart devices, so-called Internet of Things (IoT), in which the devices are embedded with electronics, software, sensors, actuators, and network connectivity that are capable of covering a variety of protocols, domains, and applications, which include the automotive industry, public safety, emergency services, and medical field [3].
Frequency range ( | Bandwidth (Δ | Center frequency ( | |
---|---|---|---|
MHz | *6.765–6.795 MHz | *30 kHz | *6.780 MHz |
13.553–13.567 MHz | 14 kHz | 13.560 MHz | |
26.957–27.283 MHz | 326 kHz | 27.120 MHz | |
40.660–40.700 MHz | 40 kHz | 40.680 MHz | |
**433.050–434.790 MHz | *1.74 MHz | *433.920 MHz | |
***902.000–928.000 MHz | *26 MHz | *915.000 MHz | |
GHz | 2.400–2.500 GHz | 100 MHz | 2.450 GHz |
5.725–5.875 GHz | 150 MHz | 5.800 GHz | |
24.000–24.250 GHz | 250 MHz | 24.125 GHz | |
*26.975–27.283 GHz | *308 MHz | *27.129 GHz | |
*61.000–61.500 GHz | *500 MHz | *61.250 GHz | |
*122.000–123.000 GHz | *1 GHz | *122.500 GHz | |
*244.000–246.000 GHz | *2 GHz | *245.000 GHz |
Industrial, scientific, and medical (ISM) operating frequency band defined by the International Telecommunication Union (ITU).
Subject to local acceptance
Only Europe, Africa, the Middle East/Middle West of the Persian Gulf, the former Soviet Union, and Mongolia
Only Americas, Greenland, and some of the eastern Pacific Islands
Within the past 40 years, microwave technology using frequency operation exceeding 300 GHz to 3 THz also existed, so-called Terahertz technology. In fact, operating frequency of 300 GHz to 3 THz occupies a middle ground between microwaves and infrared light waves. The corresponding range of the wavelength for the Terahertz frequencies is 0.1–1 mm; thus, it is a denominated submillimeter wave [27]. The Terahertz technology is widely utilized in the field of astronomy, medical, and security, such as space-based remote sensing and medical diagnostic imaging [28, 29, 30, 31], due to the submillimeter waves that are nonionizing, and it can penetrate a wide variety of nonconducting materials. Recently, high operating frequency requirements for microwave test instruments are increasing, such as recent commercial vector network analyzer which is capable of achieving 1.1 THz. Hence, in future, these microwave components and devices are expected to be very small and sensitive.
The human small intestine is a part of the gastrointestinal tract which extends from end of the stomach to the inlet of large intestine. They form the visceral organ of our body which helps in processing the food at various levels such as mixing, digestion (mechanical grinding and chemical breakdown), and transport. They are arranged in a complex 3D manner, having numerous folds (convolutions) and flexures. The small intestine is functionally divided into duodenum, jejunum, and ileum; each of which has a specific physiology function to play in the digestion. They enable the digestion of meal in these compartments through coordinative effort. The small intestine elicits a complex series of motility patterns depending on the nature of meal to help (1) mixing with duodeno-biliary-pancreatic (DBP) secretions to facilitate the chemical digestion, (2) homogenization of the luminal contents of intestine, (3) regulation of pH in the duodenum, (4) mechanical disintegration, (5) absorption, and (6) transport. Since the generation of such motility patterns are highly variable and regulated by neurohormonal cues, the process of digestion has been a challenge, hitherto, to explore the mechanisms involved.
\nThe mechanical relevance to digestion dates back to the classical study performed by Cannon on cat’s intestine using X-ray [1]. The observations made by Cannon reports,
In this chapter, we present the current state of art in the area of intestinal biomechanics addressing various aspects of digestion through clinical, mathematical, and computational studies performed so far. This chapter is organized as follows: Section 2 describes the mechanics and physiology of the small intestine. Section 3 provides details as to how the small intestinal motility leads to the development of flows inside the lumen causing mixing and transport. The details of flow resulting from circular contraction are discussed in Section 4. In Section 5, the relevance of the local longitudinal shortening is explored followed by the physiological relevance of motility in Section 6. Since the nature of forces also affect the molecular biology of the cell, the basic principle behind the mechanotransduction is addressed in Section 7. The conclusions are drawn in Section 8 followed by the future scope of the work in Section 9.
\nThe small intestine is the part of the gastrointestinal tract which connects to the stomach at one end through pylorus and the large intestine at the other end through ileocecal valve (Figure 1). The anatomy of the small intestine segments, that includes duodenum, jejunum, and ileum, are discussed in the following.
\nAnatomical details of the stomach and duodenum showing three layers of muscles—oblique muscle layer (OM), circular muscle layer (CM), and longitudinal muscle layer (LM).
The antrum is a distal part of the stomach which is highly muscular having a thickness of 5.1 ± 1.6 mm (depends on degree of distention of antrum [3]), which is higher than proximal stomach [4]. Its musculature helps the antral segment to undergo rigorous peristalsis to perform the grinding of the food. They also help regulating the gastric emptying and duodenogastric reflux (DGR).
\nThe pylorus (at L1 level or Lumber region 1) is a muscular tissue that connects the stomach at one end to the small intestine or more specifically the duodenum at the other end. Due to its musculature they contract radially to close or open the valve to cause the flow across the stomach and duodenum. It functions like a valve whereby it can regulate the flow of gastric content into the duodenum.
\nThe small intestine is a muscular and convoluted tube that extends from pyloric region to the ileocecal valve that connects to the large intestine. It is approximately 7 m long and 2–4 cm in diameters and divided into the duodenum, jejunum, and ileum.
\nDuodenum is the shortest segment of them all and is approximately 20–25 cm long and 2.5 cm in diameter. They are responsible to mix the chyme with DBP secretions, cause homogenization and pH transition from acidic to slightly alkaline. The process occurs inside the segment that is divided into four parts as follows: (1) the first part or par superior or duodenal bulb is about 5 cm long which begins its journey somewhere at the pylorus region and ends at the neck region of the gall bladder. Pars superior is the most movable region of the duodenum. (2) The second part or pars descendens is about 7–10 cm long and extends from the neck region of the gall bladder or L1 (lumbar region 1) to the upper border of L4 region. The common bile duct and the pancreatic duct together join and open at the major duodenal papilla into the medial side of this segment at approximately 7–10 cm distance from the pylorus. The minor duodenal papilla, if present, lies above the major duodenal papilla. (3) The third part or pars horizontalis is about 5–7.5 cm long and travels across the inferior vena cava and aorta above the upper border of the fourth lumbar region with the superior mesenteric vessels (the vein on the right and the artery on the left) on its front. (4) The fourth part or pars ascendens is about 2.5 cm long and continues to ascend toward the left side of the aorta. At its terminus, it abruptly transforms to a jejuna-like feature, where it forms the duodeno-jejunal flexure. The duodeno-jejunal flexure is connected to the superior mesenteric artery and celiac artery by suspensory muscles of the duodenum also known as the ligament of Treitz (a connective tissue), which marks the anatomical distinction between the duodenum and the jejunum.
\nIt forms second part of the small intestine that is roughly 1.5–3.5 m (two-fifth of the small intestine) in length. They are attached to the posterior wall of the abdomen by the mesentery. The interior wall of the segment contains of numerous microscopic finger-like structures known as villi that help increase the surface area of absorption for the jejunum. Most of the nutrients are absorbed in this part of the small intestine. By the time the intestinal contents are emptied into the next segment (ileum), around 90% of all the available nutrients in the food has been absorbed. It also helps to shape the rheology of the digesta by absorbing about 90% of the secreted water, 6–8 l day−1.
\nIt forms the last segment of the intestine that is roughly 2.5–3.5 m (three-fifth of the small intestine) in length and ends at the intraperitoneal pouch known as cecum (where undigested food settle down). The remaining parts of the nutrients that have passed through the jejunum are absorbed here (also absorbs vitamin B12 and bile acids). The segment contains numerous lymphoid follicles (forming Payer’s patch; mainly function to survey and respond to pathogens). They are attached to the posterior wall of the abdomen by mesentery (giving flexibility to the bowels to adjust in the abdominal cavity during act of peristalsis and intestinal transit).
\nThe valve is a muscular tissue that separates the contents of the small intestine from those of the large intestine. They help in controlling the volume of flow occurring from the large intestine into the ileum and as a consequence of this, help in regulating the bacterial growth (involved in causing small intestinal bacterial overgrowth; SIBO) in the small intestine in conjunction with the small intestinal motility. It also helps in vitamin B12 absorption and collecting most of bile acid (terminal ileum) to replenish for the secreted bile for reuse (via entero hepatic circulation) [5]. They play a key role in preventing reflux of the bacteria-rich content from the large intestine into the small intestine; thus forming a barrier separating the two bowels.
\nThe intestinal musculature comprises of the smooth muscle fibers arranged in intertwined bundles; interconnected to the neighboring smooth muscle fibers through gap junctions. This enables two neighboring muscles to be electrical coupled. The gap junctions provide a way to propagate the electric potential (a wave of depolarization) from one fiber to the other, thereby spreading across adjacent segment of the intestine resulting in a muscular contraction (initiated as a consequence of depolarization above threshold) to traverse the segment. In physiology, the membrane of the small intestinal smooth muscle (especially the myogenic cells) cell shows rhythmic changes in their electric potential which is referred to as the slow waves (resting membrane potential of −50 to −60 mV). Slow waves are the waves of partial depolarization of the membrane having the transmembrane potential of 5–15 mV. They help in nominal depolarization of the membrane, but do not initiate a muscle contraction. It is only during the condition when the membrane potential of smooth muscle cell cross the threshold level, an action potential is triggered causing contraction of the smooth muscle fiber. The event of spiking is known to occur at the crests of slow waves. To initiate the spike potential, it is necessary that smooth muscles of the segment are in the charged condition; having the neurotransmitters released in the vicinity by neurons. The neurotransmitters are released in response to a variety of stimuli such as neural signaling form higher center of the brain (mediated through vagus nerve), and distention-induced signaling (locally mediated through intramural reflex).
\nBefore we discuss the factors affecting APD motility, it is worth considering the sensory-motor integration of the intestinal segments (Figure 2). Generation of motility patterns is in some way hardwired to the sensors present and it is because of this reason that the APD segment can show a wide variation in its motility patterns. Little is known about the neurohormonal control, chemical control (pH [6], osmolarity [6, 7], lipid (also ileum) [8, 9], carbohydrates, and proteins), and other factors like size of bolus [10] and allergic responses through jejunal dysmotility [11]. They control muscles in the APD segment (also present in jejunal and ileal segments), which help in regulation of motor patterns mediated by some kind of sensor mechanism. To support the relevance of sensory-motor integrity, let us consider the report by Peter Holzer who suggested that prevention of acid damage to the mucosal tissues are carried out by an
A cartoon representing mechanophysiology of the APD segment; indicating (1) the bolus undergoes disintegration due to grinding activity of the stomach, (2) smaller pieces of food, (3) food in its finely disintegrated form and yet to be mixed with DBP secretions, and (4 and 5) homogeneous mixture.
The APD contractions are very much time synchronized and work in coordination. These neurally activated contractions push the luminal contents by transferring their momentum, which helps to facilitate mixing, grinding, and transporting of the food. Two kinds of pumping action take place here, one at the antral side and the other in duodenum which tries to push their contents to the other side. It is not well understood on how these two motor actions play their part in causing the transport, i.e., either gastric emptying or reflux of duodenal content back into the stomach. However, from a mechanics point of view, we know that the flow would result in emptying when the pressure at the antral side is higher than duodenal side (Figure 3). However, a reverse situation can exist, i.e., reflux when duodenal pressure becomes higher than antral pressure leading to a disease condition known as the duodenogastric reflux (DGR). The mechanism by which the transport across the pylorus occurs is not clear; however, it is known that the transport occurs by developing two kinds of pressure waves via pressure pump (common cavity pressure wave) and peristaltic activity [15]. Multiple studies have been performed for estimating gastric emptying in relation to the generation of intragastric pressures using manometric studies. Though little is known about the relationship between the pump mechanism (gastric pumping) and the coordinative muscle contractions, few researchers have reported that the process of gastric emptying is observed only during those occasions when the antral pressure (Pa) is higher than the duodenal pressure (Pd). Study also indicates that the base line pressure or the common cavity pressure is the major determinant of gastric emptying (GE) rather than the antral contraction-induced emptying [15]. This idea is supported by literature which demonstrates that alternations in pressure inside the proximal stomach correlate well with the varying rates of gastric emptying of different liquid meals [16]. The local generation of high pressure and appearance of anterograde and retrograde flow patterns suggest that the geometry is closely linked to the way emptying proceeds. In addition to the complexity present in gastric emptying predictions, the gut works by intelligently sensing the food content and accordingly modulating the contraction patterns.
\nA cartoon diagram depicting the antrum, pylorus, and the duodenal (APD) segments, respectively. The dashed line represents the APD axis, while the blue colored plot shows pressure profile along the axial direction indicating higher antral pressure (Pa) in comparison to lower duodenal pressure (Pd).
The coordination is established through neural feedback means; e.g., enterogastric, ileogastric, intestino-intestinal reflex, and vago-vagal reflexes. One of the well-known reflexes is the ileal brake. The ileal brake refers to the ability of the ileal segments to modulate the motility patterns upon exposure to the nutrients such as lipid through enteric reflex [17]. The intestinal segments communicate with each other through such reflex in process to regulate the digestive process such as regulating the flow at which the gastric contents enter into the duodenum by suppressing pyloric channel.
\nA fluid is a substance which continually deforms under the application of a shear force. When an external force is applied to a solid object it undergoes whole body translation; whereas, fluid undergoes both translation and deformation. Transport of fluid can be better appreciated by considering an example of the flow through a cylindrical pipe, also referred to as the Hagen-Poiseuille flow (flow in a cylindrical pipe). Applying a relatively higher pressure force at left end of the tube, in comparison to right end, sets up a pressure gradient along the length of the tube. As a result of this, the fluid tends to move down the pressure gradient only if it has overcome the viscous resistance. In the case of viscous flow the fluid eventually gains inertia and reaches a steady state when the axial velocity profile becomes parabolic. In a similar fashion, we can draw some parallels between the Hagen-Poiseuille flows to those of intestinal flows. In physiological scenario, as the contraction (i.e., the circular constriction that appear around the periphery) propagate thorough the small intestinal segment, it imparts a part of the momentum to the fluid underneath, which as a consequence of having gained the momentum can now hit the neighboring fluid particle and transmits a part of its momentum; eventually developing the flow.
\nWe discuss the basic principles of mechanics as applied to the small intestine. The small intestine, as we know, is a muscular conduit having two types of muscle layers—circular and longitudinal muscles. When muscles undergo contraction (reduction in the length of the muscles) they happen to either close the lumen (circular contraction) or shorten the segment (longitudinal contraction). From mechanics point of view, such contraction develops forces by virtue of muscular activity. By applying basic principles of mechanics, we can deduce as to how the muscular contraction results in the generation of pressure forces and flows inside the lumen. In general, whenever the tissue undergoes contraction, we explain the principle that the reduction is caused by generation of forces per unit area or stress. Parameters of interest are the percentage reduction in the length or strain that is caused by the stress. So, there exists some relation between the stress and the strain of the material under consideration. This leads us to assess the elasticity of the material or modulus of elasticity that measures the ability of the material to resistance deformation when a stress is applied to it. The nature of resistance or wall stiffness can be visualized by referring to the stress vs. strain plots obtained by allowing the material to deform under various strains and measuring the stress. The stress-strain plot provides details relevant to the mechanical properties of the tissue.
\nFor simple geometry such as intestine approximated as a uniform and circular cylinder, the relation between the stress and luminal pressure under the assumption of thin wall is given by Laplace’s law. It says that, under equilibrium condition, the tensile stress developed in wall is proportional to the intraluminal pressure and the radius of the intestinal tube. Suggesting that if the pressure inside the intestine is increased by gas formation (fermentation), for a non-significant change in the radius to wall thickness, then there would be a corresponding increase in the tensile force of the wall.
\nTransport of fluid across narrow constriction can be better appreciated by considering a familiar example of flow through a cylindrical pipe, also referred to as the Hagen-Poiseuille flow. Applying a relatively higher pressure force at left end of the tube, in comparison to the right end, causes the fluid to move down the pressure gradient only if it has overcome the viscous resistance. In case of viscous flow, the fluid eventually gains inertia and reaches a steady state when the axial velocity profile is parabolic. Let us assume a straight channel that is static (i.e., no contractions), with occlusion at the center and applied pressure at the ends as if they were generated by the APD contractions. In steady state, the flow rate can be derived as \n
Using high-frequency ultrasound, Nicosia et al. were able to calculate the percentage reduction in the length of the longitudinal muscles [18]. As discussed in the later section, using the principle of mass conservation, the authors were able to quantify local longitudinal shortening as the ratio of longitudinal length after contraction relative to the initial length as inversely related to the ratio of cross-sectional area of the muscle after contraction relative to the initial area; L/L* = 1/(A/A*).
\nUnlike the gastric contractions, the small intestine motility patterns are not regular. In preprandial state, the small intestine enter into the interdigestive phase showing distinct patterns of activity every 90–120 min−1 (also known as Migrating motor complex or MMC) which include (1) a period of quiescence with no contractions (Phase I), (2) a long period of unsynchronized contractions (Phase II), and (3) a burst of strong and regular contractions (Phase III) [19]. Of these, phase III plays an important role in sweeping the undigested food particles (left over debris) and bacteria out of the small intestine and into the large intestine. However, after meal ingestion (postprandial), the small intestine switches to a more synchronized motility patterns.
\nPylorus plays a key role in mediating the flow across the stomach and the duodenum. It does by developing higher resistance to flow through closing of the lumen. They typically open and close the lumen at intervals of 20 s [20]. Flow through the channel is driven by generating a pressure gradient across the two ends of the channel and depends on luminal diameter, degree of opening, length of canal; thus, regulating gastric emptying (GE) or duodenogastric reflux (DGR) [21, 22, 23, 24, 25, 26]. Both antegrade and retrograde flow have been reported in the literature to be normal; however, when the quantity of flow in the reverse direction leads to increased volume of reflux, then it leads to DGR disease. The flow is found to be pulsatile in nature [27, 28, 29, 30, 31, 32, 33, 34]. The pylorus exhibits both tonic and phasic contractions [35, 36, 37, 38], which develops a pressure of 10.8 ± 4.5 mmHg at 1–4 min−1 rates of phasic contraction [35]. In postprandial state, pylorus opens and closes with mean diameter 5.4 ± 1.0 mm [21]. Out of 193 pyloric closure events, 133 occurred in 2 s of the antral and duodenal contraction in a study carried out in patients. The pylorus was reported to be in closed position for 55.5% of 154 isolated duodenal contractions recorded. In porcine flow, pulses happen at 11.2 ± 0.4 min−1 frequency and occur between subsequent pyloric pressure events with each flow lasting for 3.5 ± 0.1 s with volumes of 0.3 ± 0.01 ml being release during the stroke. They occur 2.8 ± 0.7 s before pyloric pressure event, and 2.3 ± 0.5 s before antral wall motion [39]. Meal-dependent effects of pyloric motility using clinical trials of intravenous injection of 20% dextrose solution indicated causation of pyloric contraction, suppression of antral contraction, and duodenal phase-3-like motility [40]. The duration and intensity of phasic and tonic contraction of the pylorus showed direct correlation with caloric content of dextrose solution been infused into duodenum. Increase in caloric content caused increase in isolated pyloric pressure waves and basal pyloric pressure [41]. Duodenal infusion of saline shows no change in motility patterns of APD; whereas, triglyceride and fatty acid infusion suppresses antral contractions, but enhances pyloric phasic and tonic activity and delays gastric emptying [42, 43].
\nContractions of the intestine are a mix of elementary contractions such as stationary (SW), antegrade (APW), or retrograde propagating wave (RPW). A literature survey of the motility patterns indicate frequency of 15–18 wave min−1, velocity of propagation of 0.1–0.4 cm s−1, and higher propensity to develop propagating contraction in the intestine in comparison to stationary contraction [44]. Retroperistalsis have been linked to the reflux of duodenal contents and trigger the development of DGR diseases. Standing contractions are the non-propagating contractions they are confined over a particular segment (12 waves min−1). They are known to be involved in the mixing process. Contractions appearing on one side of the channel are known as sleeve contractions. It involves longitudinal muscle for generating contraction [45] and help in mixing and churning of luminal contents [46]. Pendular movements are the longitudinal contraction of the muscles, which develops motility patterns involving to-and-fro motions of segmental shortening and extension. In physiology, the contractions occur as a mixture of the basic contractions, as discussed above. It is a well-known fact that upon nutrient infusion of duodenum, the duodenal motility patterns changes from propulsive to a segmental contraction that traveled only for a short span. Such contractions form segmental contractions or cluster contractions, which can be stationary or non-stationary [47].
\nFlow due to circular contraction were investigated by the author by approximating the flow for a Newtonian liquid meal with viscosity 1000 cP and density 1000 g cc−1 inside the APD segment [44]. The rationale for choosing such an assumption was—(1) for a liquid meal intake the meal mixes with gastric and duodeno-biliary-pancreatic secretions giving a mixture that is also a liquid; (2) the rheology of the contents present inside the duodenum is not yet known; therefore, a Newtonian approximation was made; (3) modeling a semi-solid meal increases the complexity, therefore, a liquid meal was considered to simplify the development of the APD segment. Further, the APD segment was assumed to be a rigid wall to simplify the flow model.
\nThere is a formation of recirculation eddies near the occlusion zone (with velocities reaching its peak at its center) and occurrence of a local transport at the pyloric region (arising due to the pressure difference across it) (Figure 4). Results indicate that a retrograde moving wave cause pressurization at the head region of the wave in comparison to the tail region. As a result of this behavior, a steep pressure rise is developed to cause flow in the direction that is downward the steep. It was also found that this wave generates a pressure difference across the pylorus, that is, higher pressure on the antrum side in comparison to a lower pressure on proximal duodenum thereby causing reflux.
\nFlow due retrograde wave traveling toward the pylorus. Arrows indicate velocity vector over the local region and colors indicate the magnitude.
To understand the impact of variations in the intestinal peristalsis, the author performed a parametric study by varying the geometry and wave parameters of the contraction. Based on literature, a hypothetical range was considered for these parameters presuming that this range falls within the physiological regime.
\nThe study demonstrated that higher degrees of occlusion and higher velocity for the propagatory contractions have a profound effect on the flow rate across the channel (Table 1). Although, for APWs, the emptying rate increases with occurrence of multiple waves, they also induce reflux when occurring in four numbers spread across the duodenum and centered at 8 cm away from pylorus. The effect of multiplicity in the RPW shows an increasing trend in reflux. In general, it can be interpreted that the APW type contractions lead to emptying while RPW lead to reflux.
\nContraction type | \nDistance (↑) | \nWavelength (↑) | \n% Occlusion (↑) | \nVelocity (cm s−1) or frequency (↑) | \nMultiple waves (↑) | \n
---|---|---|---|---|---|
APW | \nNegligible | \nNegligible | \n↑ | \n↑ | \n↑ | \n
RPW | \nNegligible | \nNegligible | \n↑ | \n↑ | \n↑ | \n
SW* | \n↓ | \n↑ | \n↑ | \n↑ | \n↑ | \n
Effects of duodenal pumping on transpyloric flow rate (GE or DGR) studied for various parameters of APW, RPW, and SW type of contractions.
For SW, frequency is considered. APW, antegrade propagating wave; RPW, retrograde propagating wave; and SW, standing wave.
Standing contractions (SW type) of closing type were found to be reflux inducing. However, they occur at less than one-tenth of a magnitude for variations in distance, wavelength, and degree of occlusion in comparison to the APW and the RPW contractions. They also show an increasing level of reflux with increasing values of parameters except for distance. When multiple standing waves occur they result in significant increase in the reflux.
\nOn overall comparison of the reflux levels caused by the elementary contractions, it is clear that the SW of higher frequency and the RPW of higher occlusion (70%), higher velocity and occurring in multiple numbers dominate the list of reflux inducing contractions of the duodenum.
\nThe APW and RPW contraction show mixing at higher intensity that is typically of the order of hundreds that is ten times those of SW. Variations in distance and wavelengths of the APW and RPW type contractions show similar levels of mixing (Table 2). Contractions cause higher degree of mixing with increasing occlusions and are highly sensitive to the velocity, wherein a change from 1 to 4 cm s−1 can lead to a ten-fold increase in Imixing. Further, it was seen that multiple waves can cause significant rise in mixing. However, the standing contractions show negligible mixing that are typically of the order of tens and are highly sensitive to frequency and multiple waves. While Imixing shows extent of mixing in the whole duodenum, we also wanted to quantify the region over which the mixing or the volume of mixing is significant (computed as the volume of duodenum that has mixing index above 1.005). Changes in distance and wavelength of the peristaltic waves showed no major change in volume of mixing; however, it was sensitive to occlusion to some extent and highly sensitive to velocity and multiple waves. Standing contractions, on the other hand, showed zero or negligible volumes of mixing, except for a frequency of 6 Hz where they showed some mixing (Table 3).
\nContraction type | \nDistance (↑) | \nWavelength (↑) | \n% Occlusion (↑) | \nVelocity (cm s−1) or frequency (↑) | \nMultiple waves (↑) | \n
---|---|---|---|---|---|
APW | \n↑ or ↓ | \n↓ | \n↑ | \n↑ | \n↑ or ↓ | \n
RPW | \nNegligible | \n↑ | \n↑ | \n↑ | \n↑ | \n
SW | \n↓ | \n↑ | \n↑ | \n↑ | \n↑ | \n
Effect of APD contractions on intensity of mixing.
Contraction type | \nDistance (↑) | \nWavelength (↑) | \n% occlusion (↑) | \nVelocity (cm s−1) or frequency (↑) | \nMultiple waves (↑) | \n
---|---|---|---|---|---|
APW | \nNegligible | \nNegligible | \n↑ | \n↑ | \n↑ | \n
RPW | \nNegligible | \nNegligible | \n↑ | \n↑ | \n↑ | \n
SW | \nNegligible | \nNegligible | \nNegligible | \n↑ | \nNegligible | \n
Effect of APD contractions on volume of mixing.
Contractions of the longitudinal muscles, when occurring over short range of the gut segment, are referred to as the local longitudinal shortening. In literature, longitudinal shortening have been investigated as if they are advancing with the contraction, which we define as the advancing LLS and those that are stationary or stationary LLS are rarely considered. During LLS, the longitudinal muscles contract to shorten the segment along the axial direction only.
\nLLS studies of the intestinal segments have been rarely considered. In order to understand the mechanophysiology of the LLS in intestine, we resort to the LLS studies of the esophageal segment.
\nOne of the classical studies of LLS was the study of esophageal peristalsis during feline. By using a widely spaced metal clips clamped to the esophageal mucosa (four tantalum wires that were imbedded in the outer esophageal wall), Dodds et al. [48] captured the longitudinal shortening of the esophageal segment which varies with their relative position. The study demonstrated the existence of a wave of local longitudinal shortening that moves in conjunction with the bolus. They also found that the relative displacements of the markers vary from one location to the other location suggesting that the LLS is effective over a given segment of the esophagus (especially the distal most esophagus). Subsequent studies, using widely spaced metal clips attached to the esophageal mucosa, support the contractive nature of the longitudinal muscles in the local regions of the esophageal wall during peristalsis [49, 50, 51]. Measuring local longitudinal shortening was, however, a challenge using the mucosal clip studies; given the large spacing of 3–10 cm. Nicosia et al. provided a more accurate method of determining the LLS and their coordination with CC using the high-frequency ultrasound transducer [18]. By employing the principle of law of mass conservation, the changes in the cross-sectional area with the temporal variation in local longitudinal shortening was made; which were compared with the luminal pressure measured using high resolution manometry. Following relation was derived: cross-sectional area during rest phase/cross-sectional area during contraction = length of the segment during contracted state/length during rest. Key observations were as follows: (1) during luminal filling (with bolus entry), the esophagus distends reducing the effective thickness of the muscles, (2) the wave of longitudinal shortening was followed by the circular contraction, (3) contraction of the longitudinal muscles were found to nearly coincide with the peak luminal pressure, (4) longitudinal shortening overlaps the CC and occur prior to CC and ended after CC, and (5) lastly, the strength of LLS directly relates to the generation of higher luminal pressure. Further clinical studies by the investigators also indicate the prior contraction of the longitudinal muscle during onset of distal esophageal peristalasis [18, 49, 50]. Such fine coordination the contraction of two muscles fibers provides for a mechanical advantage of gathering the neighboring circular muscle fiber closer to ensure that the circular contraction occurs at ease [52]. The coordination of CC and LLS is managed by the enteric and central nervous system. The delay in the onset of contraction is due to the existence of a gradient of latency of contraction along the length of the esophagus [53].
\nLike the peristalsis waves (which are modeling as trains of periodic sinusoidal waves traversing the muscular tube at certain velocity), the LLS is modeled as a sinusoidal wave whose amplitude relates to the local shortening (
A cartoon diagram illustrating the circular (CC) and longitudinal contractions (LLS) in the intestinal wall.
As the LLS traverse the intestine with CC, the intestinal wall undergoes deformation. Such change in the wall generates wall momentum which acts as a source of energy to push the fluid and develop flows. The details of the wall motions are provided in the form of a local wall velocity in Figure 5. Circular contractions are wall motions that appear as ripples traveling over the surface of water. As the circular muscles contract, the wall moves radially inward; however, as the wave moves at certain velocity they appear to close the head region of the wave leaving behind the tail end to relax or open (outward velocity vector; first panel in Figure 5). For advancing LLS, a wave of localized shortening occurs which travels at certain speed. During such activity, the surface of the intestinal wall appear to move forward but recoils back to its original position after the disturbance has traverse the segment. This generates a net forward velocity, as shown in second panel of Figure 5. Superimposing both the waves result in a summation of the two velocity vectors (third panel in Figure 5). We may summarize that the introduction of LLS results in an axial displacement of the wall and CC in radial displacement. Considering no-slip condition (fluid particle at wall moves with the same velocity with which the wall moves), we also learn that there is an effective axial displacement of the fluid adjacent to wall and helps to drag the peripheral part of the food along with it (Figure 6).
\nA snapshot of a simulation study indicating the wall velocity (blue line) along the radial direction (CC) and no shortening (LLS, red line) (first panel). Study involving LLS (approximated by sinusoidal waveform) without CC; the wall is pulled toward the point of peak LLS (second panel). Effect of CC and LLS on wall velocity.
Rheology plays an essential role in regulating the transport of the digesta from stomach to duodenum (gastric emptying) and duodenum (duodenogastric reflux). For a meal that is highly viscous, the mixing and transport can be a difficult task to be performed by the enteric system when compared to low viscous digesta. Since the mechanical processes taking part in intestine correlates to the rate at which absorption takes place and determines the serum glucose levels, the subject matter is of high relevance to satiety, indigestion, and other digestive disorders of the gut.
\nLet us estimate the flow regime of water, juice, and honey. We consider an intestinal geometry with diameter 2.5 cm (2.5–3 cm), and wave traveling at a characteristic velocity of 2.5 cm s−1 (2.5–5 cm s−1) for short and long wavelength of one and ten times the diameter. Assuming a fluid density of 1 g cc−1 and fluid viscosities of 1 cP (water), 0.65P (juice), and 33P (honey) and substituting into the formula (
Flow details of the intestinal peristalsis have been recently reported in the literature [56]. When a wave of contraction propagates along the intestinal wall, they develop peripheral forces that can be directed radially inward, axially oriented, or inclined depending on the nature of contraction (CC and/or LLS) (Figure 7). As a result, the head region develops a higher pressure relative to the tail end. While at the tail end, development of low pressure field results from the retraction of the wall as if they were to open the channel. As a result the development of differential pressure forces across the segment, a pressure gradient which acts as a driving force to propel the luminal contents from a region of higher pressure to the lower pressure (retrograde flow). Flow due to advancing LLS is less prominent due to generation of low fluid velocity and low shear stress. Since they develop axial velocity at the wall, the advancing LLS, through viscous behavior, drags the neighboring fluid to move along with the wall creating a whirlpool-like motion in the region of contraction.
\nEffect of simultaneous circular and longitudinal contractions on flow.
The advancing LLS and CC lead to the generation of pressure field and shear stress of similar trend. Local variations in the pressure along the axis indicate a linear variation in the non-contraction region and a nonlinear variation in the contraction region; zero at the center and boundaries—inlet and outlet of the intestinal segment. The pressure peaks at an offset from the center and shows symmetry about the axis for a contraction wave at the mid-segment. The wall shear stress shows a peak at the center of the contraction region and reduces to lower value at the either end of the wave and remains constant throughout the non-contraction region. Axial variations in the pressure and wall shear stress are similar for fluid of pseudo-plastic, Newtonian, and dilatants type. The study also reports that the pressure developed is higher for shear thickening fluids in comparison to shear-thinning fluid (Table 4). In a similar manner, wall shearing is highest for the dilatants. Shear stress in the lumen is highest at the wall and reduces linearly to the lowest value at the center. At region where the shearing is higher there is a more stirring of the fluid. CC and LLS coordination is found to affect the luminal pressure, shearing of the contents, flow rate, and peak velocity significantly.
\nParameter (↑) | \nPressure | \nShear stress | \nFlow rate | \nPeak luminal velocity | \nPhysiological relevance | \n
---|---|---|---|---|---|
Viscosity | \n↑ | \n↑ | \nNo change | \nNo change | \nExtent of viscous behavior | \n
Flow behavior index | \n↑ | \n↑ | \n↓ | \n↓ | \nCaptures the rheology of diverse fluids | \n
LLS spacing (about optimal) | \n↓ | \n↑ or ↓ | \n↑ or ↓ | \nCC and LLS coordination | \n|
Wavelength | \n↑ or ↓ | \n↓ | \n↑ | \n↑ | \nEffect of motility | \n
Occlusion | \n↑ | \n↑ | \n↑ | \n↑ | \nEffect of motility | \n
Effect of contractility and rheology (normalized values) on flow; based on semi-analytical method.
Using imaginary tracers, the author was able to determine particle trajectories due to the peristalsis—CC and LLS [56]. Two kinds of flows were observed; one resulting in axial displacement of the fluid and other causing circulation of the fluids (eddies). The radial displacement brought the fluid from the core region to the periphery and vice versa; thus allowing for flushing of the fluid proximal to the mucosa. However, the particles were displaced when the wave traverses the segment. Particle motion is highly dependent on the type of intestinal motility. Positioning of the tracers at various depths of the lumen showed different trajectory and followed the wall; particles close to the wall tend to follow the wall, while those near the axis exhibited near circulation. The authors report that the radial dimension of the whorls is found to be higher when the particles were positioned close to the wall and least at the center. Suggesting that, the contractions are more effective near the wall since the particles experience most of the wall momentum and least at the center of the lumen. Such a behavior is indicative of the mixing of the contents; given that the shearing is effective near the wall with formation of eddies.
\nWhen contraction traverses at 50% occlusion, there is a higher tendency for the particles to undergo circulation; favoring mixing [56]. However, at 80% occlusion, the particles tend to under more of axial displacement and less of a radial displacement with no circulation; favoring transport. Particles positioned near the center were found to travel a longer distance in comparison to those near the wall. Such behavior reminds us the parabolic velocity profile in case of pressure driven flows in pipe. Previous studies corroborates with the understanding that the flows in occlusion regions tend to show a parabolic profile [44]. Rheological effects of the particle displacement suggest that the eccentricity of the particle trajectory for Newtonian fluid is more and undergoes a near complete circulation. Particle trajectory for dilatants showed formation of a complete circulation. For fluid having flow behavior index less than 1.0, following observations were made (1) particles tend to travel with higher velocity over longer distance and (2) particles showed more of a radial predominance. There were no significant changes in the flow developed by introducing the LLS; however, due to additional momentum along the axial direction they tend to suppress the radial displacement of the tracer leading to a more translocation. The transport has been linked to malabsorption of the nutrients and electrolyte concentration. Alternations in the intestinal transit can disturb the equilibrium of osmolality and intestinal absorption leading to diarrhea or constipation [57]. Knowledge of the intestinal transit of bolus is essential when design the drug. Orally administered drugs have to be tuned to the environmental conditions of the small intestine so that drug bioavailability can be maximized. Since the physical properties of the meal, such as viscosity can greatly influence the transport behavior, clinical preparation of the food can be administered to help manage the patient suffering from motility disorders.
\nFrictional effects of the intestinal wall have been attributed to a disadvantage when considering transport. By estimating the flow resistance, the author was able to assess the importance of the slowing down of the fluid flow and increase in the retention time of the fluid near the mucosa; providing more time to undergo chemical digestion and absorption [56]. The extent of friction offered by the intestine to fluid of different flow behavior index (n = 0.6, 1.0, and 1.4) suggests that the friction is highest for pseudo-plastics and decreases with increase in flow behavior index [56]. In addition to this, friction is found to be dependent on pressure gradient; showing increasing trend with increase in pressure. They are linearly related to the Reynolds number; higher the
Friction is more at the occlusion center and drops significantly as one recedes away from occlusion center to the wave end. The friction due to mucosal layer of the intestine is a subject matter of interest to intestinal digestion. We may consider the problem similar to the flooding of the terrain occupied by numerous trees. At the flood end, where the fluid velocity is very high, the fluid particles tend to slow down upon interacting with the tree. Since the surface area of the tree is more, the effectiveness to slow the fluid particle is much higher. In physiology, such resistance to flow is provided by the intestinal folds of mucosa known as the plicae circulares or the valves of kerckring. The author speculates that these structures help in reducing the luminal transport and increase the time of retention of the fluid near the mucosa so as to allow for increased absorption of the nutrients. Depending on the flow regime, the flow may be highly agitated to flush the contents and allow for replenishment of the nutrient-rich contents. Such a behavior prevents the formation of trapped fluids and cause continuous flushing of the mucosa without stagnation. Such understanding is necessary to know the dynamics of nutrient transport near the intestinal mucosa and equilibration. While, stagnation of the acidic contents near the duodenum can have drastic impact on the mucosal layer leading to duodena ulceration.
\nContraction leading to flow is majorly determined by the muscular contractions of the circular and longitudinal muscle layers of the intestine. Although extramural pressure forces may contribute in the modulating the flow patterns, much of the mechanics is initiated and driven by the muscles. Efficiency to pump is defined as the ratio of energy due to pressure force to the energy spent by intestine through muscular contraction. The circular contractions are majorly known to cause the positive displacement of the fluid, and hence primarily responsible to transport. However, the LLS results in the developed for axial forces that are small in comparison to circular contraction and have minor contribution to efficiency at lower occlusions. LLS is advantageous at higher occlusion, where they primarily help to forcefully shrink the intestinal wall along the axial direction to concentrate more circular fibers. The energy spent on contraction can be reduce dramatically from 26.5 (CC along) to 22.5 units (CC with 0.65% LLS) approximately; a 15% reduction in energy spent by the intestinal motility to drive shear thickening fluid. However, in contrast to the above, we also identify that power advantage of LLS negatively correlates for shear-thinning fluid driven by CC with 0.65% LLS. Suggesting that rheology of the luminal contents shares some relation with the nature of LLS. This emphasizes an important observation as to whether such a correlation exists, and if so, how does the intestine senses the fluid rheology? Although there are no direct sensors to detect the rheology or viscosity of the contents, we speculate that the gut may use an indirect mechanism to serve the purpose of assessing the rheology through stretch sensors. Since this sensor respond to distension, we also speculate that the difficulty to pump highly viscous fluid are reflected in the form of stretch. The concept of mechanical sensing of the stretch in the intestinal wall was observed by infusing a larger bolus of isotonic saline directly into the intestinal lumen [58]. The study reported that a controlled distension of the intestine activates a subset of vagal sensory neurons. Perhaps, the sensors data are relayed to the higher centers of the brain or through the local reflex to trigger certain feedback controls. Somehow, the intestine is aware of the trade-offs between the power demands of peristalsis at a certain occlusion against the percentage LLS. It may not prefer to contract at higher LLS for circular contraction of lower occlusion; since it would be non-economical. However, on the contrary, it is economical to contract at higher LLS for circular contraction of higher occlusion; an optimal strategy in conserving the amount of energy it spends to perform the peristalsis.
\nThe intestine has its own ability to perform muscular contraction to an extent that can be mapped onto a phase space (multidimensional space in which each state variable represented by an axis is constructed to specify the state of a physical system at a given point of time). To derive such plots for intestine, we resorted to literature reports related to the clinical observations of the intestinal motility during fed and fasted state, and, normal and pathology condition [22]. The parameters of interest are: incidence of propagatory versus stationary contractions per min, percentage incidence of antegrade and retrograde propagating waves, frequency of the wave, wave velocity in mm/s, and duration of MMC (interdigestive contractions) cycle. The ability of the intestine to perform digestion optimally depends on how well it coordinates with neurohormonal system. Eliciting segmental contraction on duodenal infusion of fat or hydrochloric acid requires that the contents are mixed well with the biliopancreatic secretions to cause buffering and emulsification. Such motility patterns are known to transform the fat into droplets which help providing more surface area for lipase binding to take place and perform the digestion [59]. Previous study by the author shows intestinal preference to digestion especially extent of mixing, and volume of mixing, and to-and-fro motion of contents [44]. Since the peristalsis provides sufficient shearing forces to help cause the droplet formation, we learn that some correlation exist between the motility and emulsification. Similarly, transport of the contents requires forceful expulsion of the contents by through muscular contraction of the intestinal wall; which demands generation of sufficient forces or right motility patterns. Studies indicate that the intestine utilizes the LLS at its advantage to perform forceful contractions; with peak LLS not exceeding 65% [18, 52]. The optimal choice of wavelength at which the shearing attains its maximum value is equal to the intestinal diameter (1 unit); higher wavelength (1.5 units) is inefficient [56]. Similarly occlusive contractions show two functions—mixing at lower occlusion and transport at higher occlusion. The choice of occlusion is dependent on whether the meal needs further processing or not.
\nAs a result of the mechanical forces arising from muscular contraction (CC, LLS, due to muscularis mucosa) or due to luminal contents (distension during gasification), the intestinal tissues are remodeled in accordance to the nature of forces. The epithelial and non-epithelial cells undergo various types of mechanical forces during the physiology function. Contractions of the circular muscle leads to generation of a tangential force along the periphery (shear) and contraction of longitudinal muscle layer leads to axial force (shear). In reality, such contractions are highly irregular and occur in conjunction that varies in wave geometry and kinetics (velocity). Shear forces at the mucosal layer affect the villi structure which modulates the adsorptive function of the organ and strain in the intramural structure affect the tissue (intestinal wall) and its compliance. The responsive nature of the intestine comes from the fact that the intestinal walls have several mechanosensitive cell types that respond to various types of mechanical stimuli such as—epithelial enterochromaffin cells (ECL), enteric neuronal cells (intrinsic and extrinsic), smooth muscle cells, and interstitial cells of Cajal (ICC). These cells contain ion channels (stretch-activated ion channel) that respond to mechanical forces and in response to stimuli they generate ionic currents in the channel thereby affecting mechanotransduction process. In mechanotransduction, the mechanical forces such as shear, stretch, and pressure trigger a biochemical pathway (through conformation change) initiating the chain reaction (involving second messengers) to affect the gene expression, and protein synthesis.
The digestive process of the intestine is complex and depends on multiple parameters such as rheology of food, chemical composition, motility pattern, and neurohormonal signaling. In this chapter, we have addressed the question as to how the mechanics play a key role in performing the disintegration of the partially digested food through shearing action of the peristalsis. Both circular and longitudinal contraction participate in the process in a way to optimally perform the digestion at ease; which otherwise would be uneconomical. LLS is advantageous when driving contents having shear thickening behavior, where the longitudinal shortening brings the circular muscles closer to reduce the tension in the individual fibers during peristalsis. LLS have no significant contribution in the development of the flows. In conclusion, biomechanical studies indicate that the flow is highly sensitive to the motility patterns (geometry and wave parameters), and in order to perform the digestion, the intestine elicits the right kinds of contraction to perform the physiological functions (such as preventing duodenal ulceration through segmental contraction, buffering of chyme in the duodenum, preventing duodenogastric reflux, and digestion of meal).
\nPrevious study involving the 3D computer simulations of the flow provided details of relevance to physiology. Contraction types analyzed so far include: (1) stationary contractions (contractions that close and open at a given location) (a) closure type, (b) Opening type*, (c) multiple contractions, (d) cluster/repetitive contractions; (2) propulsive contractions (contractions moving in either direction) (a) antegrade type, (b) retrograde type, (c) multiple contractions, (d) short distance traveling contractions*, (e) long distance traveling contractions*; and (3) mixed (mixture of both stationary and propulsive contractions)*. The contractions marked with * could not be analyzed due to computational limitations. This gives us a huge opportunity to the biomechanical engineers to explore the mechanism as to how the motility leads to digestion. Literature suggests a compartmental model to describe the physiological relevance of antrum, pylorus and the duodenum (Figure 8). The jejunal and ileal segments still remain a mystery as to how they coordinate with each other and how they contribute to digestion.
\nCompartment model of the APD segment showing various segments (1) stomach, (2) pylorus, (3) duodenal bulb, and (4) distal duodenum.
There are no conflicts of interest.
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11649",title:"Carnivora",subtitle:null,isOpenForSubmission:!0,hash:"cfe96fa2ecf64b22057163f9896dc476",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11649.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:15},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:96},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:321},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:728,numberOfDimensionsCitations:1700,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5886,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2564,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9671,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7157,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1439,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192666,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4558,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3478,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3601,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1331,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:15,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:23,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81488",title:"Aggression and Sexual Behavior: Overlapping or Distinct Roles of 5-HT1A and 5-HT1B Receptors",slug:"aggression-and-sexual-behavior-overlapping-or-distinct-roles-of-5-ht1a-and-5-ht1b-receptors",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.104872",abstract:"Distinct brain mechanisms for male aggressive and sexual behavior are present in mammalian species, including man. However, recent evidence suggests a strong connection and even overlap in the central nervous system (CNS) circuitry involved in aggressive and sexual behavior. The serotonergic system in the CNS is strongly involved in male aggressive and sexual behavior. In particular, 5-HT1A and 5-HT1B receptors seem to play a critical role in the modulation of these behaviors. The present chapter focuses on the effects of 5-HT1A- and 5-HT1B-receptor ligands in male rodent aggression and sexual behavior. Results indicate that 5-HT1B-heteroreceptors play a critical role in the modulation of male offensive behavior, although a definite role of 5-HT1A-auto- or heteroreceptors cannot be ruled out. 5-HT1A receptors are clearly involved in male sexual behavior, although it has to be yet unraveled whether 5-HT1A-auto- or heteroreceptors are important. Although several key nodes in the complex circuitry of aggression and sexual behavior are known, in particular in the medial hypothalamus, a clear link or connection to these critical structures and the serotonergic key receptors is yet to be determined. This information is urgently needed to detect and develop new selective anti-aggressive (serenic) and pro-sexual drugs for human applications.",book:{id:"10195",title:"Serotonin and the CNS - New Developments in Pharmacology and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg"},signatures:"Berend Olivier and Jocelien D.A. Olivier"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"},{id:"80821",title:"Neuroimmunology and Neurological Manifestations of COVID-19",slug:"neuroimmunology-and-neurological-manifestations-of-covid-19",totalDownloads:41,totalDimensionsCites:0,doi:"10.5772/intechopen.103026",abstract:"Infection with SARS-CoV-2 is causing coronavirus disease in 2019 (COVID-19). Besides respiratory symptoms due to an attack on the broncho-alveolar system, COVID-19, among others, can be accompanied by neurological symptoms because of the affection of the nervous system. These can be caused by intrusion by SARS-CoV-2 of the central nervous system (CNS) and peripheral nervous system (PNS) and direct infection of local cells. In addition, neurological deterioration mediated by molecular mimicry to virus antigens or bystander activation in the context of immunological anti-virus defense can lead to tissue damage in the CNS and PNS. In addition, cytokine storm caused by SARS-CoV-2 infection in COVID-19 can lead to nervous system related symptoms. Endotheliitis of CNS vessels can lead to vessel occlusion and stroke. COVID-19 can also result in cerebral hemorrhage and sinus thrombosis possibly related to changes in clotting behavior. Vaccination is most important to prevent COVID-19 in the nervous system. There are symptomatic or/and curative therapeutic approaches to combat COVID-19 related nervous system damage that are partly still under study.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Robert Weissert"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:289,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:0,paginationItems:[]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:42,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:0,paginationItems:[]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/58958",hash:"",query:{},params:{id:"58958"},fullPath:"/chapters/58958",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()