Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\n
Throughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"4789",leadTitle:null,fullTitle:"Railway Research - Selected Topics on Development, Safety and Technology",title:"Railway Research",subtitle:"Selected Topics on Development, Safety and Technology",reviewType:"peer-reviewed",abstract:"This book focuses on selected research problems of contemporary railways. The first chapter is devoted to the prediction of railways development in the nearest future. The second chapter discusses safety and security problems in general, precisely from the system point of view. In the third chapter, both the general approach and a particular case study of a critical incident with regard to railway safety are presented. In the fourth chapter, the question of railway infrastructure studies is presented, which is devoted to track superstructure. In the fifth chapter, the modern system for the technical condition monitoring of railway tracks is discussed. The compact on-board sensing device is presented. The last chapter focuses on modeling railway vehicle dynamics using numerical simulation, where the dynamical models are exploited.",isbn:null,printIsbn:"978-953-51-2235-7",pdfIsbn:"978-953-51-6648-1",doi:"10.5772/59893",price:119,priceEur:129,priceUsd:155,slug:"railway-research-selected-topics-on-development-safety-and-technology",numberOfPages:206,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"2dc03e93f4357a3a62292097597576ad",bookSignature:"Krzysztof Zboinski",publishedDate:"December 16th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4789.jpg",numberOfDownloads:15798,numberOfWosCitations:6,numberOfCrossrefCitations:11,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:16,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:33,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 18th 2014",dateEndSecondStepPublish:"December 9th 2014",dateEndThirdStepPublish:"March 22nd 2015",dateEndFourthStepPublish:"June 13th 2015",dateEndFifthStepPublish:"July 13th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"174599",title:"Prof.",name:"Krzysztof",middleName:null,surname:"Zboinski",slug:"krzysztof-zboinski",fullName:"Krzysztof Zboinski",profilePictureURL:"https://mts.intechopen.com/storage/users/174599/images/system/174599.jpg",biography:"Krzysztof Zboinski is a Full Professor at the Faculty of Transport, Warsaw University of Technology, Poland. His general areas of interest are mechanical engineering and transport. His specialization is in vehicle dynamics. His specific area of research concerns railway vehicles. He is the author and coauthor of more than 200 publications and research elaborations, among which the most important and internationally known concern modeling rail vehicle dynamics, including multibody systems, computer methods, and curved track motion; stability in a curved track; dynamics in transition curves; and simulations of vehicle dynamics in general. These publications are subject to more than 150 international citations all over the world. He has been a leader of 33 collective and individual research projects and has 32 years of academic experience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"830",title:"Railway Engineering",slug:"railway-engineering"}],chapters:[{id:"49360",title:"Railways in Renaissance — Review of Achievements and Reflection on Prospects",doi:"10.5772/61273",slug:"railways-in-renaissance-review-of-achievements-and-reflection-on-prospects",totalDownloads:2356,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"The authors introduce railway renaissance by considering the rail mode's inherent strengths, energy frugality, and developmental role. They address the research question: Does a new post-renaissance normal now prevail? The research progresses a multivariate design that they developed to a case study approach as proliferation of private railway operators as a consequence of renaissance has constrained access to formerly public information. The study examined four countries, Brazil, Russia, India, and China, and one region, the Gulf Cooperation Council States, whose railways have advanced substantially in recent years through implementation of high speed, heavy haul, heavy intermodal, and urban rail. It also examined the migration of countries from the previously identified Fortuitous and Insecure railways clusters to the Enlightened, Progressive, and Assertive clusters. It found advances in institutional learning with respect to design of interventions to achieve renaissance, ownership and funding, market structure, as well as networking and expanding strategic horizons. It concluded that countries that have embraced the railway renaissance have been able to reposition their railways to play a substantial role in their economies and societies, and that a new normal has emerged, with the rail mode now a formidable contender in high-speed, high-volume, heavy-traffic corridors.",signatures:"Dave van der Meulen and Fienie Möller",downloadPdfUrl:"/chapter/pdf-download/49360",previewPdfUrl:"/chapter/pdf-preview/49360",authors:[{id:"110741",title:"Dr.",name:"Dave",surname:"Van Der Meulen",slug:"dave-van-der-meulen",fullName:"Dave Van Der Meulen"},{id:"175269",title:"Ms.",name:"Fienie",surname:"Möller",slug:"fienie-moller",fullName:"Fienie Möller"}],corrections:null},{id:"49716",title:"A Systems View of Railway Safety and Security",doi:"10.5772/62080",slug:"a-systems-view-of-railway-safety-and-security",totalDownloads:4112,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"This chapter approaches the concerns over safety and security of modern mainline and light railways from a systems perspective. It addresses the two key concerns from the view point of systemic emergence arising from the interaction between all the principal constituents of the railway system, namely infrastructure, rolling stock, energy and human element comprising workers, passengers and the neighbours of the railways.",signatures:"Ali G. Hessami",downloadPdfUrl:"/chapter/pdf-download/49716",previewPdfUrl:"/chapter/pdf-preview/49716",authors:[{id:"108303",title:"Prof.",name:"Ali G.",surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],corrections:null},{id:"49367",title:"Application of Cognitive Systems Engineering Approach to Railway Systems (System for Investigation of Railway Interfaces)",doi:"10.5772/61527",slug:"application-of-cognitive-systems-engineering-approach-to-railway-systems-system-for-investigation-of",totalDownloads:2522,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter presents the results of a cognitive systems engineering approach applied to railway systems. This application is through the methodology of ’System for Investigation of Railway Interfaces – SIRI’. The utility of the chapter lies in highlighting errors in the current approaches to safety risk management.",signatures:"Sanjeev Kumar Appicharla",downloadPdfUrl:"/chapter/pdf-download/49367",previewPdfUrl:"/chapter/pdf-preview/49367",authors:[{id:"110711",title:"Mr.",name:"Sanjeev",surname:"Kumar Appicharla",slug:"sanjeev-kumar-appicharla",fullName:"Sanjeev Kumar Appicharla"}],corrections:null},{id:"49375",title:"Experimental and Simulation Study of the Superstructure and Its Components",doi:"10.5772/61517",slug:"experimental-and-simulation-study-of-the-superstructure-and-its-components",totalDownloads:2557,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The issues discussed in this chapter are of interest of both the manufacturers and the experts responsible for condition of the track superstructure. In general, stress in steel elements may affect the energy state, phase changes, and corrosion. It may reduce fatigue strength and cause damage and cracks of the rails. It is one of the causes of accelerated development of standard railhead defects. Proper selection of, e.g., bending process parameters provides uniform distribution and acceptable level of residual stresses in the bent components. Residual stresses that develop during manufacturing process in the railway turnout steel components can change their strength properties. The first part of this chapter presents ultrasonic measurement method and computer simulation that allowed to develop a method to diagnose state and distribution of residual stresses in steel components of the railway turnout (wing rails and switch blades) in the production process. The second part of this chapter includes experimental and simulation studies of superstructure in operational conditions. A track substructure with a crashed stone composite is a solution of reinforced standard track substructure. The results are used to draw conclusions concerning further development and possible modifications of a proposed solution. A significant number of simulation calculations also allow to determine the duration of guaranteed functionality of a reinforced track substructure.",signatures:"Jacek Kukulski",downloadPdfUrl:"/chapter/pdf-download/49375",previewPdfUrl:"/chapter/pdf-preview/49375",authors:[{id:"175842",title:"Ph.D.",name:"Jacek",surname:"Kukulski",slug:"jacek-kukulski",fullName:"Jacek Kukulski"}],corrections:null},{id:"49390",title:"Development of Track Condition Monitoring System Using Onboard Sensing Device",doi:"10.5772/61077",slug:"development-of-track-condition-monitoring-system-using-onboard-sensing-device",totalDownloads:2294,totalCrossrefCites:5,totalDimensionsCites:8,hasAltmetrics:0,abstract:"Monitoring the conditions of railway tracks is essential for ensuring the railway safety. In-service vehicles equipped with sensors and GPS systems can act as probes to detect and analyse real-time vehicle vibration. Recently, a compact on-board sensing device has been developed. This chapter describes the track condition monitoring system that uses a compact on-board sensing device and diagnosis software. The diagnosis software provides the function of detecting track faults using the root mean square (RMS) of the car-body acceleration. It also allows analysis in the time-frequency domain using wavelet transform. A monitoring experiment in a local railway line showed that the system is effective for practical application.",signatures:"Hitoshi Tsunashima, Hirotaka Mori, Masayuki Ogino and Akira\nAsano",downloadPdfUrl:"/chapter/pdf-download/49390",previewPdfUrl:"/chapter/pdf-preview/49390",authors:[{id:"49517",title:"Prof.",name:"Hitoshi",surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima"}],corrections:null},{id:"49721",title:"Modeling, Simulation, and Results of Their Use in Railway Vehicle Dynamics Studies",doi:"10.5772/62105",slug:"modeling-simulation-and-results-of-their-use-in-railway-vehicle-dynamics-studies",totalDownloads:1957,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter focuses on problems related to building mathematical and numerical models of railway vehicle dynamics and then using these models in the process of vehicle dynamics simulation. Finally, the results of such simulations devoted to selected dynamical problems are presented, highlighting the importance of powerful tools such as both the modeling and the simulation. The dynamical problems selected for the presentation concern railway vehicle stability and importance of kinematics accuracy for the description of the dynamics. These selected problems focus on the vehicle dynamics in a curved track, both in the circular and transition sections. Type of the chapter should be defined as the review paper, however, based on the authors’ own results in the main.",signatures:"Krzysztof Zboinski",downloadPdfUrl:"/chapter/pdf-download/49721",previewPdfUrl:"/chapter/pdf-preview/49721",authors:[{id:"174599",title:"Prof.",name:"Krzysztof",surname:"Zboinski",slug:"krzysztof-zboinski",fullName:"Krzysztof Zboinski"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6065",title:"Modern Railway Engineering",subtitle:null,isOpenForSubmission:!1,hash:"77a5fae5e9451d4e52e9f7cd8f39bdcb",slug:"modern-railway-engineering",bookSignature:"Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/6065.jpg",editedByType:"Edited by",editors:[{id:"108303",title:"Prof.",name:"Ali G.",surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67322",slug:"corrigendum-to-sexual-dysfunction-in-patients-with-systemic-sclerosis",title:"Corrigendum to: Sexual Dysfunction in Patients with Systemic Sclerosis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67322.pdf",downloadPdfUrl:"/chapter/pdf-download/67322",previewPdfUrl:"/chapter/pdf-preview/67322",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67322",risUrl:"/chapter/ris/67322",chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:"September 18th 2019",book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:"September 18th 2019",book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12137",leadTitle:null,title:"Teacher Education",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"f9bbb35473f1020bba800955b5a5b9f8",bookSignature:"",publishedDate:null,coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 4th 2022",dateEndSecondStepPublish:"March 25th 2022",dateEndThirdStepPublish:"May 24th 2022",dateEndFourthStepPublish:"August 12th 2022",dateEndFifthStepPublish:"October 11th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6926",title:"Biological Anthropology",subtitle:"Applications and Case Studies",isOpenForSubmission:!1,hash:"5bbb192dffd37a257febf4acfde73bb8",slug:"biological-anthropology-applications-and-case-studies",bookSignature:"Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:"Edited by",editors:[{id:"313084",title:"Dr.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58504",title:"Management of Intracranial Pressure in Traumatic Brain Injury",doi:"10.5772/intechopen.72829",slug:"management-of-intracranial-pressure-in-traumatic-brain-injury",body:'\n
\n
1. Introduction
\n
The onset of increased intracranial pressure is often attributed to many pathologies such as large artery acute ischemic stroke, intracranial neoplasms, or disorders such as meningitis. The most common reason for which the onset of intracranial pressure is observed is due to traumatic brain injuries, such as colliding one’s head into a hard object as a result of an accident. By definition, an intracranial pressure that exceeds 20 mm Hg is considered high and indicative for the need of immediate treatment [1]. Through the advancement of medicine and technology, the variety of treatment options available to relieve patients of increased intracranial pressure has grown tremendously. In practice today, there exists a multitude of treatment options ranging from nonsurgical interventions to surgical interventions [2, 3]. In this chapter, we will discuss the primary pathology of patients presenting with increased intracranial pressure (ICP) as a result of traumatic brain injuries (TBIs), and we will take a generalized perspective on this pathology by discussing a multitude of topics we find crucial to your understanding of the management of ICP in TBI patients.
\n
\n
\n
2. Intracranial pressure management of traumatic brain injury
\n
\n
2.1. The occurrence of traumatic brain injury
\n
Traumatic brain injury (TBI) is composed of an external mechanical force, whether it be a change in acceleration or impact by projectile that causes a temporary or at times a permanent brain function impairment as well as physical damage to the human brain anatomy. It is important that we establish a clear understanding of the term TBI and its partnering term non-TBI. A traumatic brain injury is brought on by the impact generated by an external force, while a nontraumatic brain injury is brought on by internal forces such as a stroke or infection. A traumatic brain injury, which we have now learned arises from external forces, can come in two pathological forms: penetrating and nonpenetrating. This classification presents as simply as it is defined. A penetrating TBI results in several lesions starting from one’s head down to the cerebral level, and these often occur in severe accidents or injuries. A clear and prime example of a penetrating TBI is one that occurs all too often to members of our military, a foreign projectile being discharged from an external high-force machine, which then strikes a human head [4]. A nonpenetrating TBI is the form that we will cover more in depth within this chapter and results from an external force acting upon the head, but it does not penetrate any layer of human anatomy. Within the clinic, the formal classification of TBIs may be reduced to open-head injury for patients presenting with traumatic brain injuries of the penetrating type, and for patients presenting with a traumatic brain injury of the nonpenetrating type, the term closed head-injury may be assigned [5]. The simplification made to these terms adds an element of simplicity for when medical professionals present cases to patient’s families and loved ones.
\n
\n
\n
2.2. Anatomical description of the brain, relevant to penetrating traumatic brain injuries
\n
To aid in our understanding of traumatic brain injuries and later on the rise of intracranial pressure, it is imperative we touch upon the anatomy of the human brain such that successive sections of this chapter can be understood with a greater degree of clarity. The human brain, the core of the central nervous system, controls a vast majority of bodily processes and functions. The center of knowledge and core processing is perhaps the most important regulator of human life, yet only weighs between three to five pounds. The first line of defense for the brain is called the cranium, often referred to as the skull, and this shields the brain with a tough bone structure [6]. The brain covering itself contains three layers: the dura, arachnoid and pia. Interestingly enough, there also exists a space between the pia and arachnoid referred to as the subarachnoid complex. This area houses a vast network of veins, arteries, and nerves, which channels both blood and electrochemical potential to the heart and back to the brain. This subarachnoid complex is prone to trauma as well as constriction or full blockage. Any trauma that may cause constriction or blockage will also pose a greater threat to the tissue of the brain. Thus far, we have discussed the cranium and the brain that it encloses; however, the brain does not fill the entire volume of the cranium, and the volume remaining is filled by cerebrospinal fluid (CSF), serving as a nutrient-rich cushion around the brain, and blood-vessels. It is important to note that the volume of the cranium is fixed, and the brain fills a fixed volume of the cranium and the cerebrospinal fluid (CSF); therefore, any trauma that may alter the volume of the cranial region can be devastating, a concept referred to as increased intracranial pressure (ICP), which we will discuss in immense detail throughout this chapter [7].
\n
A common misconception we wish to clear up is the designation of the upper and lower brain, and it is often misunderstood that the brain is a term used only for the upper brain, the ovular shaped region; however, the lower brain that houses vital components such as the brainstem is also indeed part of the human brain. At the lowest point of the brain (brainstem), there exists a small circular opening for which the skull and the spinal cord merge to form the complete central nervous system. As we mentioned above, the brainstem in fact is one of the most important parts of the lower brain as it houses a plethora of intricate nerve fibers, which pass information from the brain to the spinal cord and to the body as a whole. Another crucial component of the lower brain is the cerebellum, a small mass of neuronal tissue that is responsible for the regulation and coordination of motor skills and balance. Without this region of the brain, the miracle of the human touch, whether it be the detailed touch of an artist or the intricate lifesaving work done at the microscopic level by a neurosurgeon, will not be possible. The ovular region of the human brain, known as the upper brain, is a large mass of neuronal tissue divided into white and gray matter. Gray matter houses neuronal cell bodies, axons, and dendrites, while white matter is entirely made up of axons, which connect other gray matter components together [8]. The upper brain is composed of the cerebral cortex, which is the largest component of the human brain, and this region is divided into two hemispheres: left and right. Uniquely enough, the right side of the brain will control left side of the body and vice versa. Despite the left and right hemisphere designations of the cerebral cortex, there are also various other designations called regional designations, and these include the frontal lobes, temporal lobe, parietal lobe, and occipital lobe. The frontal lobes are comprised of the left and right lobes, which are located directly behind the forehead, and these control one’s intellectual abilities, decision making, behavior, and emotions. The temporal lobe is behind the ear and extends to the center of the head; from a bird’s eye view of the brain, it is directly behind the frontal lobe and extends outward from both ears. This lobe controls speech, understanding, memory, and information retention [9]. Our ability to read, write, and understand spatial relationships is due to the efforts made by the parietal lobe, which is located at the rear of the head, specifically the upper section of the convex ovular protrusion site. Also at the rear of the head, but significantly lower, is the occipital lobe, which controls sight. While we have covered the brain as a whole, it is important to note that throughout the cerebral cortex there are also several sites that are denoted by specific names, which we will discuss when the pathology becomes relevant to those particular areas, and these sites are rich in nerves and also house nerve centers. These are called diencephalons; a more notable diencephalon is the hypothalamus, which regulates homeostasis of the body. These include control over body temperature, hunger, thirst, and arousal. Why discuss the anatomy of the brain to this extent? We hope that since we have discussed anatomy to this extent, the discussion of traumatic brain injury to regions of the brain can be better understood. Damage to any area of the brain can result in both impairment to the functions they regulate and permanent damage to the physical anatomy leading to cognitive deficiencies as well [10, 11].
\n
\n
\n
2.3. Classifying traumatic brain injuries using GSC
\n
The immediate identification of traumatic brain injuries is crucial for the positive-outlook prognosis of a patient, and injuries of this nature present in a spectrum of severities each consisting of unique clinical presentations. To simplify the spectra of severity, a classification system has been established that rates injuries in three categories: mild, moderate, and severe. This classification system is called the Glasgow Coma Scale (GSC), a system readily utilized for the classification of thousands of traumatic brain injury cases per year [12]. The Glasgow Coma Scale is used in evaluating a patient’s level of consciousness based on a sum of several categories ranging between 3 and 15. Evaluation of patient consciousness is based upon his or her responsiveness to general verbal, visual, and motor stimuli [13]. The numerical score of this assessment will classify the severity of a patient’s brain injury; a score closer to 15 demonstrates near-full neurological ability and consciousness, while a score closer to 3 demonstrates a case in which severe brain injury has occurred and the patient is in a deep coma. A Glasgow Coma Scale score of 13–15 indicates a mild brain injury, while a score of 9–12 indicates a moderate brain injury, and any patient scoring 8 or below is said to have incurred a severe brain injury [12, 14]. Table 1 demonstrates the rating categories medical staff use to generate a Glasgow Coma Scale score.
\n
\n
\n
\n
\n
\n
\n
\n
\n\n
\n
\n
1
\n
2
\n
3
\n
4
\n
5
\n
6
\n
\n\n\n
\n
Visual
\n
Eyes closed
\n
Eyes open to sharp stimuli
\n
Eyes open to sounds
\n
Eyes open without induced stimuli
\n
\n
\n
\n
\n
Motor
\n
No movement
\n
Movement to sharp stimuli
\n
Muscle flexion to sharp stimuli
\n
Muscle flexion and bodily movement
\n
Able to localize touch
\n
Appears to have normal movement
\n
\n
\n
Verbal
\n
No sounds
\n
Slow intensity sounds
\n
Incoherent words
\n
Understandable words spoken
\n
Normal conversation
\n
\n
\n\n
Table 1.
The Glasgow Coma Scale (GSC) rating score sheet.
\n
To generate the Glasgow Coma Scale (GSC) score, a score will be determined for each category, followed by the summation of all three categories to generate a score between 3 and 15.
\n
\n
\n
2.4. Introduction to intracranial pressure
\n
An accumulation of pressure above the normal standard within the skull is denoted as elevated intracranial pressure (ICP), a severe condition that requires immediate remediation. While the initial cause for the onset of ICP may vary greatly from patient to patient, the anatomical factors that play a role in intracranial pressure are simply the cranium, the brain, and the cerebrospinal fluid that fills the volume in between the cranium and the brain. Within medicine, the standard unit to measure pressure is “mm Hg,” which stands for millimeters of mercury, the distance mercury travels in a closed system to indicate pressure. For a normal adult, at rest, and in good health, the intracranial pressure should remain between 6 and 16 mm Hg [15]. A unique high-order organismal advantage humans possess is the ability to maintain homeostasis, much like many functions of the body, and homeostasis is crucial to the long-term survival of the human. Within the brain, there are also many hemostatic mechanisms in place to maintain a healthy and acceptable pressure within the cranium. The management of intracranial pressure is in fact done through the regulation of the metabolism and production of cerebrospinal fluid (CSF). Since CSF is the only liquid occupying the volume between the cranium and brain, there is no other regulation factor that the body can maintain. The size of the brain and skull only grows slightly after birth and cannot be altered freely to reduce pressure; thus, the regulation of CSF metabolism and production are crucial in maintaining a healthy and acceptable intracranial pressure [16]. In the event that intracranial pressure rises to the limits of the normal and healthy range, immediate remediation is necessary. When the ICP reaches 17–18 mmHg, concern should be raised, and when ICP ranges between 19 and 25 mmHg, immediate relief of pressure is required to prevent damage to regions of the brain [17].
\n
\n
\n
2.5. Monro-Kellie hypothesis
\n
The Monro-Kellie hypothesis was proposed by Doctors Alexander Monro and George Kellie in correspondence to the impact cerebrospinal fluid (CSF) has on the pressure-volume relationship within the cranium. This particular hypothesis describes the intracranial volume-pressure relationship, which we briefly mentioned above. According to the Monro-Kellie hypothesis, the fixed volume of the cranium is comprised of the brain, cerebrospinal fluid, blood, and the pressure of blood flowing to the brain called cerebral perfusion pressure (CPP). Within the fixed volume, the cranium and all components within come to form a state of equilibrium, which we discussed as homeostasis. This hypothesis states that an increase in volume of any one of the cranial constituents results in an increase of pressure within the cranium unless there is an equal or greater reduction of volume in another cranial constituent [18]. Buffers within the cranium respond to increases in cranial constituent volume in hopes to reduce pressure to avoid brain damage. In the event that cranial pressure rises, typically due to an increase in lesion volume, a decrease in blood and cerebrospinal fluid is observed in hopes to reduce intracranial pressure [19].
\n
\n
\n
2.6. Rise of intracranial pressure resulting from brain injury
\n
The most common cause of increased intracranial pressure, also known as intracranial hypertension, is traumatic brain injuries. The neurological complication that is accompanied by a traumatic brain injury is the loss of pathophysiologic regulators of the brain that results in deregulation of intracranial pressure management [20]. The volume of an average adult’s skull is approximately 1500 mL, in which over 85% is occupied by the brain, 10% by arterial blood, and 5% by cerebrospinal fluid [21]. Cerebral profusion pressure (CPP), which we briefly mentioned above as the pressure created by cerebral blood flow, is dependent on two factors: both mean systemic arterial pressure (MAP) and ICP. Mean systemic arterial pressure (MAP) and intracranial pressure (ICP) are related to cerebral perfusion pressure (CPP) based on the relationship that: CPP = MAP – ICP. Mean systematic arterial pressure (MAP) is calculated by the summation of one-third systolic blood pressure (SBP) and two-thirds diastolic blood pressure (DBP), in abbreviated form as: MAP = 1/3 SBP + 2/3DBP [22]. In line with the Monro-Kellie hypothesis, an increase in intracranial pressure (ICP) is remediated physiologically by a decrease in cerebral perfusion pressure (CPP) [23]. Through the relationship we described above, a decrease in CPP dictates that there is a decrease in blood pressure and therefore autoregulation of intracranial pressure. While a decrease in CPP regulates ICP, it is also vital that a minimum CPP be maintained such that the brain can receive adequate amounts of blood. Normal CPP ranges between 50 and 165 mmHg, and in the event that CPP drops below 50 mmHg, the brain will not receive adequate amounts of blood, thus creating further complications with maintaining normal cerebral blood flow [24]. When the brain is subjected to injury, the physiological homeostatic functions of the brain may be deregulated or not functional at all. A normal pathology will maintain the normal CPP of 50–165 mmHg while regulating an appropriate ICP level as well. In the event that the intracranial pressure (ICP) rises past 16 mmHg, blood vessels within the brain will constrict to reduce the blood to flow to cranium thus lowering the intracranial pressure. Thus, when a traumatic brain injury occurs, to the extend where the brain’s homeostatic functions are lost, intracranial pressure (ICP) increases and physiological regulatory functions are nonoperable [25].
\n
\n
\n
2.7. Negative outlook of untreated increased intracranial pressure
\n
The management of an increased intracranial pressure is vital for the successful outcome of the patient. In the event that an elevated intracranial pressure goes untreated, two major complications arise. The first is the temporary or permanent loss of vision (depending on severity) and the second is development of a severe headache that lasts for more than 48 hours [26]. Additionally, patients will also begin to exhibit irritability, lethargy, slow cognitive processes, as well as abnormal behavior. Untreated elevated intracranial pressure may subject the patient to enter a state of near-unconsciousness, coma, or even death [27]. Another concern for patients presenting with elevated intracranial pressure is the possibility for damage incurred through brain herniation. Brain herniation is a deadly condition that arises when the ICP is extremely high, and this condition presses the brain tissue against the hard cranium causing compression damage to the brain. This extreme pressure may also cause the brain to shift across vital structures that connect the brain to the spinal cord, such as the falx cerebri [28]. While brain herniation may also occur in the absence of an elevated ICP, it is more frequently seen in patients that do in fact present with a severely elevated ICP. High pressure within the cranium induces brain herniation and that can constrict or block arterial blood flow to various parts of the brain, proving to be fatal. In Figure 1, the CT scan of a patient presenting with left-side brain herniation of the parahippocampal gyrus, a structure of the brain that is paramount in memory encoding and memory retrieval, is shown, and damage to this area may result in memory disturbances and schizophrenia [29].
\n
Figure 1.
CT scan demonstrating brain herniation on left side due to temporal lobe hemorrhage [29].
\n
\n
\n
2.8. Clinical presentation of patients with ICP resulting from TBI
\n
Patients presenting with elevated intracranial pressure (ICP) resulting from traumatic brain injury (TBI) exhibit symptoms very much similar to patients presenting solely with elevated ICP due to other factors. Traumatic brain injury patients, depending on severity, will present with a series of symptoms that are generally along the lines of unconsciousness/coma, headache, vomiting, nausea, compromised motor function, blurred vision, headache, perception of noise that is not present (ringing sounds), as well as difficulty keeping balance. The one symptom we did not mentioned above that we will discuss in depth now is elevated intracranial pressure resulting from traumatic brain injury. Alongside all the symptoms a TBI patient will exhibit, ICP will also cause several symptoms to be present much similar to those already seen in TBI patients [30]. Typical elevated ICP patients present clinically with headache, vomiting, nausea, reduced state of consciousness, and vision blurriness. Figure 3 demonstrates the overlap of the symptoms a TBI patient will exhibit versus symptoms an elevated ICP patient will exhibit. But do note that a common symptom of a TBI patient is in fact also elevated ICP, but elevated ICP in not only brought on my a TBI, and other factors may contribute to elevated ICP such as hydrocephalus and intracranial hemorrhage [33].
\n
Now that we understand the clinical features of traumatic brain injury (TBI) patients as well as elevated intracranial pressure (ICP) patients, let us combine the two as one pathology, elevated intracranial pressure due to a traumatic brain injury. Referring back to Table 2, we know how similar the presenting symptoms may be; thus, let us briefly discuss how a diagnosis may be made. First and foremost, if the history of the patient prior to clinical presentation involves any form of trauma to the head, a TBI can be easily diagnosed. The next step will be to conduct a neurological evaluation, often using the Glasgow Coma Scale (GCS). A symptom of a TBI may be elevated intracranial pressure (ICP), which can be diagnosed primarily through a neurological exam conducted by a neurologist or neurological surgeon. Additionally, radiological imaging via computed topography (CT) scan and magnetic resonance imaging (MRI) can be utilized to determine the presence of the cause as well as the severity of the elevated intracranial pressure [34].
\n
\n
\n
\n
\n\n
\n
Clinical presentation
\n
TBI patient
\n
ICP patient
\n
\n\n\n
\n
Coma—unconsciousness
\n
Present
\n
Present
\n
\n
\n
Headache
\n
Present
\n
Present
\n
\n
\n
Vomiting—nausea
\n
Present
\n
Present
\n
\n
\n
Reduced motor function—balance
\n
Present
\n
Present
\n
\n
\n
Vision deficits—blurriness
\n
Present
\n
Present
\n
\n
\n
Ringing of ear
\n
Present
\n
Not Present
\n
\n
\n
Elevated intracranial pressure (ICP)
\n
Present
\n
←Symptom of TBI
\n
\n\n
Table 2.
Comparison of TBI and ICP symptoms.
\n
\n
\n
2.9. Radiology of intracranial pressure caused by TBI
\n
Radiographic imaging to determine the presence of a traumatic brain injury that results in the onset of elevated intracranial pressure is crucial for the high-certainty diagnosis medical professionals seek to provide. Radiographic methods utilized in the diagnostic process are CT scans and MRI, and over the years, a series of common trends have been documented in regard to radiological findings, which we will discuss in this section. In Table 3, we highlight the core radiological findings that we will discuss in this section.
\n
\n
\n\n
\n
Regions of common trends in radiological findings
\n
\n\n\n
\n
Optic nerves
\n
\n
\n
Bilateral venous sinus stenosis
\n
\n
\n
Lesioned ventricles
\n
\n
\n
Enlarged arachnoid
\n
\n
\n
Cerebellar tonsil
\n
\n
\n
Subdermal adipose tissue accumulation
\n
\n\n
Table 3.
CT and MRI radiological findings for ICP resultant of TBI.
\n
The second cranial nerve, also known as the optic nerve, transmits visual information from the retina through a complex nervous network to the brain. This cranial nerve develops from optic stalks during early embryonic development and is supported by nonneuronal glial cells [35]. In patients presenting with elevated intracranial pressure, the optic nerve region of the CT and MRI scan shows a clear area of prominence. Within this region, approximately 40% of elevated ICP patients present with optic nerve tortuosity, a condition in which optic nerve is twisted or alerted slightly from physiologically normal conditions [36, 37]. In approximately 45% of patients, the subarachnoid space surrounding the optic nerve is highly prominent and protrudes the space of the optic nerve [38]. This region is comprised of delicate connective tissue as well as channels that contain cerebrospinal fluid (CSF), and this region plays a role is creating channels for intercommunication between the arachnoid, the pia mater, and the CSF. The optic disk, also referred to as the optic nerve head, is the terminal point for ganglion cells leaving the eye. The region is a physiologically normal blind spot each eye possesses due to the lack of photoreceptors, rods, and cones in that region [39]. A condition involving the swelling of optic disk is called papilledema, and in patients that present with elevated ICP, this is a common occurrence [40]. Due to the fact that the optic disk is continuous with the subarachnoid space, swelling of this region contributes greatly to elevated intracranial pressure. This swelling can manifest itself into two forms: either as an intraocular protrusion of the optic nerve or as seen in a vast majority of papilledema patients, a flattening of the posterior white of the eye, sclera [41]. InFigure 2, the nodular enhancement of the optic nerves is seen, from a case study on irregular papilloedema [42]. The last pathology we will discuss in relevance to the optic nerve is the MRI enhancement of the intraocular optic nerve, which is anterior to the sclera’s lamina cribrosa. This pathology is seen in approximately 50% of elevated ICP due to TBI and adds to the intracranial pressure via degeneration of optic nerves, causing damage to axonal components leading to increased ICP and irreversible blindness in a vast majority of glaucoma patients [43].
\n
Figure 2.
Papilledema, enhancement of optic nerve leading to increased ICP [42].
\n
Another pathology consistent with the increase in intracranial pressure is bilateral venous sinus stenosis, which may be prevalent in segments of the transverse sinus. Stenosis involves the constriction of a venous tract, in this case of the sinus [44].
\n
Pseudotumor cerebri (PTC) is a clinically relevant pathology that presents with increased intracranial pressure, but the etiology is not entirely understood. This syndrome tends to target women over men, and specifically obese women. PTC, as mentioned above, results from increased ICP and presents clinically with headaches, nausea, as well as changes in vision. Through radiographic efforts, this pathology is linked with elevated CSF, a connection that was dismissed in the earlier years of medicine. Interestingly enough, patients with elevated ICP who also present with PTC have the following pathologies: an empty sella, an enhancement of the optic nerve head, and a tortuosity of the optic nerve [45]. An empty sella, otherwise known as empty sella syndrome (ESS), is where the pituitary gland is physically altered, and thus the sella turcica becomes filled with CSF [46]; see Figure 3. ESS is usually highly indicative of an increased intracranial pressure.
\n
Figure 3.
Sagittal T2-weighted image of ESS in an elevated ICP patient [31, 32]. (Left) Pathological findings of “empty sella syndrome” where the arrow points at a completely empty sella. (Right) Anatomically and pathologically healthy individual, for comparison.
\n
Thus far, we have discussed three of the most common radiological findings, in a nonspecific order. The next pathology we will discuss is the enlargement of the arachnoid resulting from an increase of ICP due to TBI. ESS, or empty sella syndrome, we just discussed also plays a major role in the enlargement of the arachnoid. Actually, approximately 70% of enlarged arachnoid cases due to increased ICP are because of empty sella syndrome, replacing the void volume of the pituitary gland with CSF [47, 48]. Some cases of arachnoid enlargement are attributable to an enlarged Meckel cave [49]. The Meckel cave, previously known as the trigeminal cave, is a CSF-filled arachnoid pouch, which protrudes from the posterior cranial fossa, the most posterior segment of the cranium base where the cerebellum and brainstem reside. In the event of a TBI, cerebrospinal fluid (CSF) fills into this cavity, expanding the volume of this cavity, resulting in an increase of intracranial pressure due to the narrow and space-limited anatomy of this brain region [50, 51].
\n
The next pathology that we will discuss that is commonly observed in radiological investigations of increased ICP in TBI patients is tonsillar ectopia, synonymous to cerebellar tonsils, a disorder of the papa-axial mesoderm. In this pathology, the cerebellar tonsils elongate due to pressure, leading the cerebellum to be pushed through the foramen magnum of the cranium resulting in additional increased intracranial pressure as well as tonsillar herniation [52]. This condition is life threatening, as cranial pressure is heavily diverted onto the medulla oblongata, a vital sector of the brain that controls cardiac and respiratory functions [53, 55].
\n
As we have now discussed the most common radiological presentation for patients presenting with increased intracranial pressure due to a traumatic brain injury, we will begin our discussion on the treatment pathways to remediate these issues. Management and treatment for increased intracranial pressure can utilize both a nonsurgical and surgical intervention, and in the sections to follow, we will discuss both management options.
\n
\n
\n
2.10. Nonsurgical care of increased intracranial pressure
\n
Nonsurgical management of increased intracranial pressure can take on a multitude of forms. In this section, we will discuss the many medicinal options available to patients presenting with increased intracranial pressure resulting from a traumatic brain injury. The quickest and least invasive method to reduce a patient’s ICP to a normal range is by elevating the patients head to 30° with respect to the horizontal plane [56]. The elevation of a patient’s head does not directly act toward lowering the ICP; in fact, an elevated head aims to reduce CPP, which in turn reduces ICP by increasing venous drainage (based on the relationship we discussed in an earlier section of this chapter) [57]. A common practice typically conducted by first responders to patients that show clear signs of a traumatic brain injury and increased intracranial pressure in the field is to medically induce a state of minimal hyperventilation. In 1970, hyperventilation of a patient with an increased ICP was a common practice and used readily, and it was not until a study came out stating the adverse outcomes of a prolonged state of hyperventilation; in fact, it was shown to have caused cerebral ischemia, a condition where an insufficient amount of blood is delivered to the brain. Today, hyperventilation is still used in the treatment of an increased ICP but only to a pCO2 level of 25 mmHg. Immediate initial treatment may call for the hyperventilation of a patient to pCO2 levels of 30–40 mmHg but for no greater than 2–5 min, before returning back to 25 mmHg. More often than not, hyperventilation is not necessary for the treatment of an increased ICP, and there are better methods that were developed compared to the hyperventilation that was introduced in the 1970s [58, 59]. An organic biological medication, mannitol, which is a sugar alcohol typically administered intravenously is used to decrease high blood pressure in the eyes as well as to decrease intracranial pressure [60]. With effects seen 10–20 min after administration and lasting up to 8–10 h, mannitol is metabolized by the liver and excreted mostly by the kidney. Mannitol has a biological half-life of 100 min and is mostly a synthetic drug, with only a 7% bioavailability [61]. The biochemical mechanism by which mannitol acts on human physiology is bimodal, meaning the drug can mechanistically act in two ways. The first pathway is to lower osmotic diuresis through the reduction of swelling within the cerebral parenchyma. The second pathway is to lower the viscosity of the blood, therefore allowing for more laminar blood flow through veins and arteries eventually causing a state of vasoconstriction, which decreases the intracranial volume of blood and thus a lowered intracranial pressure [62, 63]. The mechanistic bimodal action by mannitol makes the drug a popular choice among patients presenting with an increased ICP due to TBI [64]. A class of drugs known as barbiturates has been widely debated in its effects on lowering intracranial pressure, while this class of drugs can successfully complete the task at hand, the use of barbiturates often causes a state of decreased myocardial function and decreased CPP, which can cause higher rates of morbidity and mortality if left unmonitored. Thus, we do not advocate the use of barbiturates as a drug for the treatment of elevated ICP, unless as a last resort option. For your understanding, a barbiturate is a synthetic chemical drug that acts as a depressant of the central nervous system capable of producing a wide spectrum of effects [65]. While barbiturates are not a recommended class of drugs to utilize in the treatment of elevated ICP due to TBI, it in fact can and has been utilized as a last resort option for a procedure called “barbiturate-induced coma,” which aims to immediately reduce intracranial pressure in patients that are unresponsive to any other form of nonsurgical medical treatment. The barbiturate of choice for this procedure is pentobarbital, which requires electroencephalogram (EEG) monitor during intravenous use. While using this drug, it is of key importance to monitor the blood pressure of the patient such that the patient does not slip into a hypotensive state. Hypotension resulting from the use of a barbiturate dramatically increases the rate of mortality two-fold, from 25 to 50% mortality [66]. In addition to the intravenous medication administered to patients presenting with increased ICP due to TBI, the administration of a hypertonic solution to maintain a state of euvolemia, a condition in which bodily liquid volume, viscosity, and circulation are all normal, is also imperative. These hypertonic solutions depend on the results of a complete blood diagnostic panel and differ from patient to patient, and the most common intravenous hypertonic solution administered is a 0.8–8% NaCl solution [67]. In patients where intravenous euvolemia cannot be established and maintained, remediation of coagulopathy must be placed as a medical team’s highest priority [68]. Coagulopathy is a state in which the blood’s ability to coagulate is diminished or impaired, resulting in a variable viscosity of the blood and therefore further complications in the treatment of elevated intracranial pressure. Normal human physiology tightly regulates the viscosity of blood and its coagulating ability, and in patients that have suffered a traumatic brain injury, the release of biochemical pathway intermediate, thromboplastin, causes abnormal blood clotting. These abnormal clotting factors can be fatal if not remediated quickly; therefore, blood transfusions for these patients is the quickest and most preferred method in correcting blood coagulating abilities and eliminating coagulopathy. Patients on anticoagulating mediations due to high cholesterol, such as heparin or warfarin, who sustain a traumatic brain injury that results in elevated intracranial pressure are typically at risk and thus require immediate blood transfusion [69]. Approximately 1 in 10 TBI patients that present with elevated ICP also demonstrates a fever 24–48 hours after the initial injury, and this elevation in temperature is in fact part of the body’s inflammatory response [70]. Often in patients where the hypothalamus has been damaged, elevated body temperature is noticed due to an underlying infection of the region. While the biochemical mechanism of this observation is not understood, what is understood is that immediate elimination of the infection is required for a successful recovery. This unexplained fever is often called “neurological fever,” and unlike a fever caused by a cold or viral infection, neurological fever tremendously increases metabolic demand [71]. In patients with GCS scores less than or equal to 8 with imaging that demonstrates signs of cerebral edema, placement of external ventricular drain in a sterile fashion is recommended to allow CSF drainage. This procedure can be completed at bedside or in the operating room with the overall goal of decreasing cerebral edema by CSF drainage. In cases where intracranial pressure remains at or above 22 mmHg, despite all strategies discussed above, surgical intervention will need to be considered. In this section, we have discussed the nonsurgical and medicinal approach in resolving an elevated intracranial pressure; however, in any remedy for the management of ICP, it is important to remember that the overall goal is to reduce and prevent any agitation of the intracranial region. In the section to follow, we will discuss the surgical option for the management of intracranial pressure in the event that nonsurgical interventions do not remediate the issue.
\n
\n
\n
2.11. Surgical care of increased intracranial pressure
\n
Immediate and rapid surgical care of patients presenting with elevated intracranial pressure due to a traumatic brain injury is vital for the positive prognosis of the patient, especially if nonsurgical routes did not suffice in the remediation of intracranial pressure. Intracranial lesions resulting in an increased ICP typically present in patients as a state of reduced consciousness, and this pathology requires a surgical procedure called “rapid decompression.” This surgery is self-explanatory at the elementary level, as the surgical efforts aim to reduce intracranial pressure (“decompress”) and do so as soon as possible. Prior to operation, a complete patient profile must be reobtained, meaning that radiological evidence alone is not enough to proceed with decompression surgery; a neurological examination coupled with radiological evidence that is convincing without any doubt is what surgical staff must aim to achieve. Similar to many forms of surgery, patient age plays a major role. For decompression surgeries, patients that are young (12 years old or younger) or elder (70 years old or older) pose a greater risk to surgical harm, and this harm is referred to as intracranial hemorrhage, excessive bleeding from tissue and venous tract within the intracranial region [72]. The first form of decompression surgery that we will discuss is decompressive craniotomy, a procedure in which a segment of the cranium is removed to relieve intracranial pressure and to create additional room for the brain swelling. This decompressive surgery evolved from a primitive form of surgery called trephining. Today, this surgical practice is a last resort option and has been more successful in younger patients rather than in older patients, another surgical option is craniotomy for evacuation of focal hemorrhage which can be subdural, epidural or intraparenchymal in nature [73]. The next surgical practice we will discuss that is used in the treatment of elevated intracranial pressure due to a TBI, which causes an over production of CSF, is a ventriculoperitoneal (VP) shunt. A VP shunt is a medical device that relieves pressure from the brain due to fluid accumulation, and this shunt drains the excess fluid and allows it to be metabolized and reabsorbed. Normally, CSF will coat the brain and spinal cord and be reabsorbed into the blood, and in a disrupted flow, the CSF can build up and create pressure on the brain causing damage. A common source for deregulation for CSF production and reabsorption is traumatic brain injury, and in these cases, it is common for CSF to cause damage to the brain [74]. Prior to surgery, a patient will be instructed to halt any consumption of food and water by mouth (PO) at least 8–12 h before surgery. Then a surgical nurse will prepare the area behind the ear for surgical incision. The shunt is a catheter, a thin flexible but heavy-duty tube that is used to drain excess liquid. A neurological surgeon will then make a small incision behind the ear and using a burr-drill will create a small hole within the patient’s scalp [75]. With the hole in the cranium, surgical staff will insert one catheter into the brain and another subdermal catheter will be placed behind the ear. A thin tube will travel down the patient’s torso and into the abdominal cavity. The excess CSF will drain into the abdominal cavity relieving intracranial pressure [76]. In patients that present with intracranial pressure regularly, a pump may be placed to activate this channel when ICP rises. For the context in which we have been discussing, this shunt will be used to relieve patients of increased ICP following a TBI.
\n
\n
\n
2.12. Medication utilization
\n
Management of elevated intracranial pressure due to a traumatic brain injury requires the utilization of many forms of medication. Thus far, we have discussed a few drugs that directly target elevated intracranial pressure, but often these pathologies require surgical intervention. For that to occur, a wide variety of drugs must be utilized to stabilize the patient from common complications that arise. In this section, we will touch upon the class of drugs utilized prior to neurological surgery. The most prevalent presurgical complication presenting in medical centers today is intracranial hemorrhages; see Figure 4. Intracranial hemorrhages denote bleeding of the brain; medical personnel often utilize prophylactic anticonvulsants, and the term prophylactic refers to the act of committing an action before hand and the term anticonvulsants refers to a set of pharmacological drugs that block sodium channels or enhance GABA (gamma-aminobutyric acid) function [78, 79]. Physiologically, these drugs can save a life in the event of a seizure as well as reduce bleeding in the brain prior to surgery [80]. There are many drugs that can be used that are considered in this pharmacological class, and the first of its kind was discovered in 1882 (paraldehyde); today, the drug of choice is phenytoin or fosphenytoin [81]. In adults, a loading dose of phenytoin or fosphenytoin is administered, typically in adults 18 mg anticonvulsant per kilogram (kg) of patient body weight. Then, therapeutic levels of 20 milligram (mg) per deciliter (dL) are maintained until intracranial hemorrhage subsides [82]. Prolonged use of anticonvulsant drugs may result in gingival hyperplasia, an enlargement of one’s gingiva (commonly known as gums) as well as randomized hair growth in men and unwanted male-hair growth in women, known as hirsutism [83–85]. In the unfortunate case where a pediatric patient is subjected to elevated intracranial pressure due to a traumatic brain injury that is accompanied by intracranial hemorrhage, the drug of choice changes to phenobarbital, where a 20 mg/1 kg body weight loading dose is given, followed by a therapeutic dose of 10–50 mg/dL.
\n
Figure 4.
CT scan of subdural in a TBI patient presenting for surgical intervention [77]. Presentation of severe intracranial pressure buildup resulting from TBI. Images depict transverse CT images from ventral (left) to dorsal views (right), respectively, 5 h after injury with a Glasgow Coma Scale (GSC) score of 3 (an extremely severe form). This imaging depicts right focal subdural hematoma.
\n
\n
\n
2.13. Patient follow-up and future care
\n
Many patients that present to medical centers for treatment of mild to severe traumatic brain injury and are subjected to an elevated intracranial pressure will tremendously benefit from numerous outpatient care options. As traumatic brain injury patients typically have difficulty with daily tasks, physical and occupation therapy is highly recommended as patients try to regain a normal lifestyle. Additionally, times following a traumatic incident can be hard emotionally and spiritually, and thus it is also beneficial for patients to receive counseling care from professional as well as from family and loved ones. The initial efforts to reestablish the life the patient once had is difficult and both mentally and physically taxing, and support and counseling are of key essence.
\n
\n
\n
\n
3. Conclusion
\n
Throughout this chapter, we have discussed the many applications and forms of medical care pertaining to the presence of elevated intracranial pressure resulting from traumatic brain injury. Throughout this chapter, we hope that you have learned the key diagnostic characteristics, medical treatment, and future outcomes for patients experiencing this traumatic pathology. While we hope no patient has to suffer from TBI, we wish all medical staff best of luck in their efforts to remediate these conditions and for continual excellence in patient care.
\n
\n
\n
Disclosure
\n
All figures displayed within this manuscript were obtained through the Open Access Biomedical Image Search Engine, with the image owners receiving appropriate citation for the contributions. In accordance to the terms of the Creative Commons Attribution License, the reproduction and distribution of each figure used in this manuscript are accompanied by the citation of the original author(s) or licensors. Original publication within their respected journals is also cited. Our intended uses of these figures are in good and accepted academic practice.
\n
\n\n',keywords:"intracranial, ICP, trauma, head injury, brain herniation, cerebral edema, hydrocephalus, shunt, skull, blood, cerebral fluid, pressure, relief",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/58504.pdf",chapterXML:"https://mts.intechopen.com/source/xml/58504.xml",downloadPdfUrl:"/chapter/pdf-download/58504",previewPdfUrl:"/chapter/pdf-preview/58504",totalDownloads:2162,totalViews:861,totalCrossrefCites:1,totalDimensionsCites:1,totalAltmetricsMentions:0,impactScore:1,impactScorePercentile:64,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"April 20th 2017",dateReviewed:"November 29th 2017",datePrePublished:null,datePublished:"May 9th 2018",dateFinished:"December 29th 2017",readingETA:"0",abstract:"Traumatic brain injury (TBI) is the result of an external force acting upon the head, causing damage to the brain. The severity of injury, mechanism by which the injury occurs, and the frequency of the high-force impact all play a role in the determination of a TBI. TBI describes a wide range of traumatic pathologies which is comprised of damage done to a multitude of cranial central nervous system components. TBI patients typically present with a series of symptoms are correlated with the presence of an intracranial injury, such as physical/cognitive difficulties. A major concern associated with intracranial injuries is the management of intracranial pressure (ICP), a resulting factor of a TBI which facilitates into intracranial hematoma and/or cerebral edema. These conditions have adverse effects on one’s brain, and the immediate management and relief of intracranial pressure are crucial in avoiding hydrocephalus and brain herniation, conditions which lead to sensory loss and even death. In this chapter, we will begin by thoroughly understanding what a TBI is, its clinical presentation, and the first-tier examination to determine severity. Then, we will progress into the anatomy of the brain, followed by a thorough investigation into intracranial pressure management strategies and prognosis.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/58504",risUrl:"/chapter/ris/58504",book:{id:"6207",slug:"traumatic-brain-injury-pathobiology-advanced-diagnostics-and-acute-management"},signatures:"Christ Ordookhanian, Meena Nagappan, Dina Elias and Paul E.\nKaloostian",authors:[{id:"209339",title:"Dr.",name:"Paul",middleName:null,surname:"Kaloostian",fullName:"Paul Kaloostian",slug:"paul-kaloostian",email:"paulkaloostian@hotmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Intracranial pressure management of traumatic brain injury",level:"1"},{id:"sec_2_2",title:"2.1. The occurrence of traumatic brain injury",level:"2"},{id:"sec_3_2",title:"2.2. Anatomical description of the brain, relevant to penetrating traumatic brain injuries",level:"2"},{id:"sec_4_2",title:"2.3. Classifying traumatic brain injuries using GSC",level:"2"},{id:"sec_5_2",title:"2.4. Introduction to intracranial pressure",level:"2"},{id:"sec_6_2",title:"2.5. Monro-Kellie hypothesis",level:"2"},{id:"sec_7_2",title:"2.6. Rise of intracranial pressure resulting from brain injury",level:"2"},{id:"sec_8_2",title:"2.7. Negative outlook of untreated increased intracranial pressure",level:"2"},{id:"sec_9_2",title:"2.8. Clinical presentation of patients with ICP resulting from TBI",level:"2"},{id:"sec_10_2",title:"2.9. Radiology of intracranial pressure caused by TBI",level:"2"},{id:"sec_11_2",title:"2.10. Nonsurgical care of increased intracranial pressure",level:"2"},{id:"sec_12_2",title:"2.11. Surgical care of increased intracranial pressure",level:"2"},{id:"sec_13_2",title:"2.12. Medication utilization",level:"2"},{id:"sec_14_2",title:"2.13. Patient follow-up and future care",level:"2"},{id:"sec_16",title:"3. Conclusion",level:"1"},{id:"sec_17",title:"Disclosure",level:"1"}],chapterReferences:[{id:"B1",body:'Freeman WD. Management of intracranial pressure. Continuum (Minneap Minn). 2015;21(5 Neurocritical Care):1299-1323\n'},{id:"B2",body:'Stocchetti N, Zoerle T, Carbonara M. Intracranial pressure management in patients with traumatic brain injury: An update. Current Opinion in Critical Care. 2017;23(2):110-114\n'},{id:"B3",body:'Smith M. Monitoring intracranial pressure in traumatic brain injury. Anesthesia and Analgesia. 2008;106(1):240-248\n'},{id:"B4",body:'Jennett B. Epidemiology of head injury. Archives of Disease in Childhood. 1998;78(5):403-406\n'},{id:"B5",body:'Blissitt PA. Care of the critically ill patient with penetrating head injury. Critical Care Nursing Clinics of North America. 2006;18(3):321-332\n'},{id:"B6",body:'Kalia M. Brain development: Anatomy, connectivity, adaptive plasticity, and toxicity. Metabolism. 2008;57(Suppl 2):S2-S5\n'},{id:"B7",body:'Andreasen NC et al. Intelligence and brain structure in normal individuals. The American Journal of Psychiatry. 1993;150(1):130-134\n'},{id:"B8",body:'O\'Muircheartaigh J, Jbabdi S. Concurrent white matter bundles and grey matter networks using independent component analysis. NeuroImage. 2017\n'},{id:"B9",body:'Burruss JW et al. Functional neuroanatomy of the frontal lobe circuits. Radiology. 2000;214(1):227-230\n'},{id:"B10",body:'Grand W. The anatomy of the brain, by Thomas Willis. Neurosurgery. 1999;45(5):1234-1236 (discussion 1236-1237)\n'},{id:"B11",body:'Buckner RL, Andrews-Hanna JR, Schacter DL. The brain\'s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences. 2008;1124:1-38\n'},{id:"B12",body:'Saatman KE et al. Classification of traumatic brain injury for targeted therapies. Journal of Neurotrauma. 2008;25(7):719-738\n'},{id:"B13",body:'Sternbach GL. The Glasgow coma scale. The Journal of Emergency Medicine. 2000;19(1):67-71\n'},{id:"B14",body:'McNarry AF, Goldhill DR. Simple bedside assessment of level of consciousness: Comparison of two simple assessment scales with the Glasgow coma scale. Anaesthesia. 2004;59(1):34-37\n'},{id:"B15",body:'Steiner LA, Andrews PJ. Monitoring the injured brain: ICP and CBF. British Journal of Anaesthesia. 2006;97(1):26-38\n'},{id:"B16",body:'Berdahl JP, Allingham RR. Intracranial pressure and glaucoma. Current Opinion in Ophthalmology. 2010;21(2):106-111\n'},{id:"B17",body:'Ghajar J. Traumatic brain injury. Lancet. 2000;356(9233):923-929\n'},{id:"B18",body:'Mokri B. The Monro-Kellie hypothesis: Applications in CSF volume depletion. Neurology. 2001;56(12):1746-1748\n'},{id:"B19",body:'Neff S, Subramaniam RP. Monro-Kellie doctrine. Journal of Neurosurgery. 1996;85(6):1195\n'},{id:"B20",body:'Dawes AJ et al. Intracranial pressure monitoring and inpatient mortality in severe traumatic brain injury: A propensity score-matched analysis. Journal of Trauma and Acute Care Surgery. 2015;78(3):492-501 discussion 501-2\n'},{id:"B21",body:'Rangel-Castillo L, Robertson CS. Management of intracranial hypertension. Critical Care Clinics. 2006;22(4):713-732 (abstract ix)\n'},{id:"B22",body:'Rosner MJ, Coley IB. Cerebral perfusion pressure, intracranial pressure, and head elevation. Journal of Neurosurgery. 1986;65(5):636-641\n'},{id:"B23",body:'Lang EW, Chesnut RM. Intracranial pressure and cerebral perfusion pressure in severe head injury. New Horizons. 1995;3(3):400-409\n'},{id:"B24",body:'Peterson EC, Wang Z, Britz G. Regulation of cerebral blood flow. International Journal of Vascular Medicine. 2011;2011:823525\n'},{id:"B25",body:'Nakagawa K, Smith WS. Evaluation and management of increased intracranial pressure. Continuum (Minneap Minn). 2011;17(5 Neurologic Consultation in the Hospital):1077-1093\n'},{id:"B26",body:'Friedman DI, Rausch EA. Headache diagnoses in patients with treated idiopathic intracranial hypertension. Neurology. 2002;58(10):1551-1553\n'},{id:"B27",body:'Dunn LT. Raised intracranial pressure. Journal of Neurology, Neurosurgery, and Psychiatry. 2002;73(Suppl 1):i23-i27\n'},{id:"B28",body:'Rehman T et al. Rapid progression of traumatic bifrontal contusions to transtentorial herniation: A case report. Cases Journal. 2008;1(1):203\n'},{id:"B29",body:'Dahlqvist MB et al. Brain herniation in a patient with apparently normal intracranial pressure: A case report. Journal of Medical Case Reports. 2010;4:297\n'},{id:"B30",body:'McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues in Clinical Neuroscience. 2011;13(3):287-300\n'},{id:"B31",body:'Saifudheen K et al. Idiopathic intracranial hypertension presenting as CSF rhinorrhea. Annals of Indian Academy of Neurology. 2010;13(1):72-73\n'},{id:"B32",body:'Manousaki D et al. A 15-year-old adolescent with a rare pituitary lesion. Endocrinology, Diabetes & Metabolism Case Reports. 2014;2014:140010\n'},{id:"B33",body:'Round R, Keane JR. The minor symptoms of increased intracranial pressure: 101 patients with benign intracranial hypertension. Neurology. 1988;38(9):1461-1464\n'},{id:"B34",body:'Stocchetti N, Maas AI. Traumatic intracranial hypertension. The New England Journal of Medicine. 2014;370(22):2121-2130\n'},{id:"B35",body:'Selhorst JB, Chen Y. The optic nerve. Seminars in Neurology. 2009;29(1):29-35\n'},{id:"B36",body:'Armstrong GT et al. Defining optic nerve tortuosity. American Journal of Neuroradiology. 2007;28(4):666-671\n'},{id:"B37",body:'Han HC. Twisted blood vessels: Symptoms, etiology and biomechanical mechanisms. Journal of Vascular Research. 2012;49(3):185-197\n'},{id:"B38",body:'Killer HE, Mironov A, Flammer J. Optic neuritis with marked distension of the optic nerve sheath due to local fluid congestion. The British Journal of Ophthalmology. 2003;87(2):249\n'},{id:"B39",body:'Sadun AA, Wang MY. Abnormalities of the optic disc. Handbook of Clinical Neurology. 2011;102:117-157\n'},{id:"B40",body:'Passi N, Degnan AJ, Levy LM. MR imaging of papilledema and visual pathways: Effects of increased intracranial pressure and pathophysiologic mechanisms. American Journal of Neuroradiology. 2013;34(5):919-924\n'},{id:"B41",body:'Jinkins JR. “Papilledema”: Neuroradiologic evaluation of optic disk protrusion with dynamic orbital CT. American Journal of Roentgenology. 1987;149(4):793-802\n'},{id:"B42",body:'Nguyen HS, Haider KM, Ackerman LL. Unusual causes of papilledema: Two illustrative cases. Surgical Neurology International. 2013;4:60\n'},{id:"B43",body:'Roy Chowdhury U, Fautsch MP. Intracranial pressure and its relationship to glaucoma: Current understanding and future directions. Medical Hypothesis, Discovery & Innovation Ophthalmology Journal. 2015;4(3):71-80\n'},{id:"B44",body:'Kelly LP et al. Does bilateral transverse cerebral venous sinus stenosis exist in patients without increased intracranial pressure? Clinical Neurology and Neurosurgery. 2013;115(8):1215-1219\n'},{id:"B45",body:'Degnan AJ, Levy LM. Pseudotumor cerebri: Brief review of clinical syndrome and imaging findings. American Journal of Neuroradiology. 2011;32(11):1986-1993\n'},{id:"B46",body:'Gonzalez-Tortosa J. Primary empty sella: symptoms, physiopathology, diagnosis and treatment. Neurocirugia (Astur). 2009;20(2):132-151\n'},{id:"B47",body:'Haughton VM et al. Recognizing the empty sella by CT: The infundibulum sign. American Journal of Roentgenology. 1981;136(2):293-295\n'},{id:"B48",body:'Zagardo MT et al. Reversible empty sella in idiopathic intracranial hypertension: An indicator of successful therapy? American Journal of Neuroradiology. 1996;17(10):1953-1956\n'},{id:"B49",body:'Bialer OY et al. Meningoceles in idiopathic intracranial hypertension. American Journal of Roentgenology. 2014;202(3):608-613\n'},{id:"B50",body:'Kamel HA, Toland J. Trigeminal nerve anatomy: Illustrated using examples of abnormalities. American Journal of Roentgenology. 2001;176(1):247-251\n'},{id:"B51",body:'San Millan D, Kohler R. Enlarged CSF spaces in pseudotumor cerebri. American Journal of Roentgenology. 2014;203(4):W457-W458\n'},{id:"B52",body:'Freeman MD et al. A case-control study of cerebellar tonsillar ectopia (Chiari) and head/neck trauma (whiplash). Brain Injury. 2010;24(7-8):988-994\n'},{id:"B53",body:'Aiken AH et al. Incidence of cerebellar tonsillar ectopia in idiopathic intracranial hypertension: A mimic of the Chiari I malformation. American Journal of Neuroradiology. 2012;33(10):1901-1906\n'},{id:"B54",body:'Lunge SB et al. Rhinocerebrocutaneous mucormycosis caused by Mucor species: A rare causation. Indian Dermatology Online Journal. 2015;6(3):189-192\n'},{id:"B55",body:'Sivasankar R et al. Imaging and interventions in idiopathic intracranial hypertension: A pictorial essay. Indian Journal of Radiology and Imaging. 2015;25(4):439-444\n'},{id:"B56",body:'Miller JD et al. Early insults to the injured brain. JAMA. 1978;240(5):439-442\n'},{id:"B57",body:'Rosner MJ, Daughton S. Cerebral perfusion pressure management in head injury. The Journal of Trauma. 1990;30(8):933-940 discussion 940-1\n'},{id:"B58",body:'Stein SC, Ross SE. Moderate head injury: A guide to initial management. Journal of Neurosurgery. 1992;77(4):562-564\n'},{id:"B59",body:'Muizelaar JP et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: A randomized clinical trial. Journal of Neurosurgery. 1991;75(5):731-739\n'},{id:"B60",body:'Wakai A et al. Mannitol for acute traumatic brain injury. Cochrane Database of Systematic Reviews. 2013;8:CD001049\n'},{id:"B61",body:'Song SH, Vieille C. Recent advances in the biological production of mannitol. Applied Microbiology and Biotechnology. 2009;84(1):55-62\n'},{id:"B62",body:'Muizelaar JP et al. Mannitol causes compensatory cerebral vasoconstriction and vasodilation in response to blood viscosity changes. Journal of Neurosurgery. 1983;59(5):822-828\n'},{id:"B63",body:'Sakowitz OW et al. Effects of mannitol bolus administration on intracranial pressure, cerebral extracellular metabolites, and tissue oxygenation in severely head-injured patients. The Journal of Trauma. 2007;62(2):292-298\n'},{id:"B64",body:'Muizelaar JP, Lutz HA 3rd, Becker DP. Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head-injured patients. Journal of Neurosurgery. 1984;61(4):700-706\n'},{id:"B65",body:'Roberts I, Sydenham E. Barbiturates for acute traumatic brain injury. Cochrane Database of Systematic Reviews. 2012;12:CD000033\n'},{id:"B66",body:'Gopinath SP et al. Jugular venous desaturation and outcome after head injury. Journal of Neurology, Neurosurgery, and Psychiatry. 1994;57(6):717-723\n'},{id:"B67",body:'Wang H et al. The effect of hypertonic saline and mannitol on coagulation in moderate traumatic brain injury patients. The American Journal of Emergency Medicine. 2017\n'},{id:"B68",body:'Vassar MJ et al. 7.5% sodium chloride/dextran for resuscitation of trauma patients undergoing helicopter transport. Archives of Surgery. 1991;126(9):1065-1072\n'},{id:"B69",body:'Winter JP et al. Early fresh frozen plasma prophylaxis of abnormal coagulation parameters in the severely head-injured patient is not effective. Annals of Emergency Medicine. 1989;18(5):553-555\n'},{id:"B70",body:'Clinchot DM, Otis S, Colachis SC 3rd. Incidence of fever in the rehabilitation phase following brain injury. American Journal of Physical Medicine & Rehabilitation. 1997;76(4):323-327\n'},{id:"B71",body:'Cariou A et al. Targeted temperature management in the ICU: Guidelines from a French expert panel. Anaesthesia, Critical Care & Pain Medicine. 2017\n'},{id:"B72",body:'Alali AS et al. Intracranial pressure monitoring in severe traumatic brain injury: Results from the American College of Surgeons trauma quality improvement program. Journal of Neurotrauma. 2013;30(20):1737-1746\n'},{id:"B73",body:'Taylor A et al. A randomized trial of very early decompressive craniectomy in children with traumatic brain injury and sustained intracranial hypertension. Child\'s Nervous System. 2001;17(3):154-162\n'},{id:"B74",body:'Tribl G, Oder W. Outcome after shunt implantation in severe head injury with post-traumatic hydrocephalus. Brain Injury. 2000;14(4):345-354\n'},{id:"B75",body:'Reddy GK, Bollam P, Caldito G. Ventriculoperitoneal shunt surgery and the risk of shunt infection in patients with hydrocephalus: Long-term single institution experience. World Neurosurgery. 2012;78(1-2):155-163\n'},{id:"B76",body:'Nigim F et al. Ventriculoperitoneal shunting: Laparoscopically assisted versus conventional open surgical approaches. Asian Journal of Neurosurgery. 2014;9(2):72-81\n'},{id:"B77",body:'Chung P, Khan F. Mild traumatic brain injury presenting with delayed intracranial hemorrhage in warfarin therapy: A case report. Journal of Medical Case Reports. 2015;9:173\n'},{id:"B78",body:'Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. Nature Reviews. Neuroscience. 2004;5(7):553-564\n'},{id:"B79",body:'Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics. 2007;4(1):18-61\n'},{id:"B80",body:'Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics. 2014;11(2):385-400\n'},{id:"B81",body:'French JA et al. Efficacy and tolerability of the new antiepileptic drugs, I: Treatment of new-onset epilepsy: Report of the TTA and QSS subcommittees of the American Academy of Neurology and the American Epilepsy Society. Epilepsia. 2004;45(5):401-409\n'},{id:"B82",body:'Troupin AS. Dose-related adverse effects of anticonvulsants. Drug Safety. 1996;14(5):299-328\n'},{id:"B83",body:'Nakazawa Y, Ohkawa T. Study of the side effects of long-term anticonvulsant treatment. Folia Psychiatrica et Neurologica Japonica. 1980;34(3):271-275\n'},{id:"B84",body:'Gaitatzis A, Sander JW. The long-term safety of antiepileptic drugs. CNS Drugs. 2013;27(6):435-455\n'},{id:"B85",body:'Conomy JP. Long-term use of the major anticonvulsant drugs. American Family Physician. 1978;18(4):107-116\n'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Christ Ordookhanian",address:null,affiliation:'
University of California, Riverside School of Medicine, United States
University of California, Riverside School of Medicine, United States
'},{corresp:"yes",contributorFullName:"Paul E. Kaloostian",address:"paulkaloostian@hotmail.com",affiliation:'
University of California, Riverside School of Medicine, United States
'}],corrections:null},book:{id:"6207",type:"book",title:"Traumatic Brain Injury",subtitle:"Pathobiology, Advanced Diagnostics and Acute Management",fullTitle:"Traumatic Brain Injury - Pathobiology, Advanced Diagnostics and Acute Management",slug:"traumatic-brain-injury-pathobiology-advanced-diagnostics-and-acute-management",publishedDate:"May 9th 2018",bookSignature:"Nikolai V. Gorbunov and Joseph B. Long",coverURL:"https://cdn.intechopen.com/books/images_new/6207.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78923-117-5",printIsbn:"978-1-78923-116-8",pdfIsbn:"978-1-83881-337-6",reviewType:"peer-reviewed",numberOfWosCitations:26,isAvailableForWebshopOrdering:!0,editors:[{id:"180960",title:"Dr.",name:"Nikolai",middleName:null,surname:"Gorbunov",slug:"nikolai-gorbunov",fullName:"Nikolai Gorbunov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"210361",title:"Dr.",name:"Joseph",middleName:"B.",surname:"Long",slug:"joseph-long",fullName:"Joseph Long"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1056"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"60719",type:"chapter",title:"Introduction: Biomedical Challenges and Socioeconomic Burden",slug:"introduction-biomedical-challenges-and-socioeconomic-burden",totalDownloads:980,totalCrossrefCites:0,signatures:"Nikolai V. Gorbunov and Joseph B. Long",reviewType:"peer-reviewed",authors:[{id:"180960",title:"Dr.",name:"Nikolai",middleName:null,surname:"Gorbunov",fullName:"Nikolai Gorbunov",slug:"nikolai-gorbunov"},{id:"210361",title:"Dr.",name:"Joseph",middleName:"B.",surname:"Long",fullName:"Joseph Long",slug:"joseph-long"}]},{id:"60364",type:"chapter",title:"Head Injury Mechanisms",slug:"head-injury-mechanisms",totalDownloads:1353,totalCrossrefCites:0,signatures:"Esmaeil Fakharian, Saeed Banaee, Hamed Yazdanpanah and\nMahmood Momeny",reviewType:"peer-reviewed",authors:[{id:"209467",title:"Prof.",name:"Esmaeil",middleName:null,surname:"Fakharian",fullName:"Esmaeil Fakharian",slug:"esmaeil-fakharian"}]},{id:"57622",type:"chapter",title:"Age-Dependent Responses Following Traumatic Brain Injury",slug:"age-dependent-responses-following-traumatic-brain-injury",totalDownloads:1436,totalCrossrefCites:0,signatures:"Thomas Brickler, Paul Morton, Amanda Hazy and Michelle H. Theus",reviewType:"peer-reviewed",authors:[{id:"209386",title:"Dr.",name:"Michelle",middleName:null,surname:"Theus",fullName:"Michelle Theus",slug:"michelle-theus"},{id:"209387",title:"Dr.",name:"Thomas",middleName:null,surname:"Brickler",fullName:"Thomas Brickler",slug:"thomas-brickler"},{id:"221914",title:"Dr.",name:"Paul",middleName:null,surname:"Morton",fullName:"Paul Morton",slug:"paul-morton"},{id:"221915",title:"Ms.",name:"Amanda",middleName:null,surname:"Hazy",fullName:"Amanda Hazy",slug:"amanda-hazy"}]},{id:"59592",type:"chapter",title:"Explosive Blast Mild Traumatic Brain Injury",slug:"explosive-blast-mild-traumatic-brain-injury",totalDownloads:1308,totalCrossrefCites:2,signatures:"John Magnuson and Geoffrey Ling",reviewType:"peer-reviewed",authors:[{id:"209433",title:"Prof.",name:"Geoffrey",middleName:null,surname:"Ling",fullName:"Geoffrey Ling",slug:"geoffrey-ling"}]},{id:"58061",type:"chapter",title:"Traumatic Penumbra: Opportunities for Neuroprotective and Neurorestorative Processes",slug:"traumatic-penumbra-opportunities-for-neuroprotective-and-neurorestorative-processes",totalDownloads:1279,totalCrossrefCites:2,signatures:"Andrea Regner, Lindolfo da Silva Meirelles and Daniel Simon",reviewType:"peer-reviewed",authors:[{id:"71226",title:"Dr.",name:"Andrea",middleName:null,surname:"Regner",fullName:"Andrea Regner",slug:"andrea-regner"},{id:"209507",title:"Prof.",name:"Daniel",middleName:null,surname:"Simon",fullName:"Daniel Simon",slug:"daniel-simon"},{id:"209508",title:"Dr.",name:"Lindolfo",middleName:null,surname:"Da Silva Meirelles",fullName:"Lindolfo Da Silva Meirelles",slug:"lindolfo-da-silva-meirelles"}]},{id:"58454",type:"chapter",title:"Diffuse Axonal Injury: A Devastating Pathology",slug:"diffuse-axonal-injury-a-devastating-pathology",totalDownloads:1760,totalCrossrefCites:0,signatures:"Christ Ordookhanian, Katherine Tsai, Sean W. Kaloostian and Paul\nE. Kaloostian",reviewType:"peer-reviewed",authors:[{id:"209339",title:"Dr.",name:"Paul",middleName:null,surname:"Kaloostian",fullName:"Paul Kaloostian",slug:"paul-kaloostian"}]},{id:"58255",type:"chapter",title:"Role of Fibrinogen in Vascular Cognitive Impairment in Traumatic Brain Injury",slug:"role-of-fibrinogen-in-vascular-cognitive-impairment-in-traumatic-brain-injury",totalDownloads:1221,totalCrossrefCites:2,signatures:"Nino Muradashvili, Suresh C. Tyagi and David Lominadze",reviewType:"peer-reviewed",authors:[{id:"209718",title:"Prof.",name:"David",middleName:null,surname:"Lominadze",fullName:"David Lominadze",slug:"david-lominadze"},{id:"220228",title:"Dr.",name:"Nino",middleName:null,surname:"Muradashvili",fullName:"Nino Muradashvili",slug:"nino-muradashvili"},{id:"221938",title:"Prof.",name:"Suresh C.",middleName:null,surname:"Tyagi",fullName:"Suresh C. Tyagi",slug:"suresh-c.-tyagi"}]},{id:"58648",type:"chapter",title:"Perfusion Computed Tomography in Traumatic Brain Injury",slug:"perfusion-computed-tomography-in-traumatic-brain-injury",totalDownloads:1125,totalCrossrefCites:0,signatures:"Cino Bendinelli, Shannon Cooper, Christian Abel, Andrew Bivard\nand Zsolt J. Balogh",reviewType:"peer-reviewed",authors:[{id:"26682",title:"Prof.",name:"Zsolt",middleName:null,surname:"Balogh",fullName:"Zsolt Balogh",slug:"zsolt-balogh"},{id:"26684",title:"Dr.",name:"Cino",middleName:null,surname:"Bendinelli",fullName:"Cino Bendinelli",slug:"cino-bendinelli"}]},{id:"57012",type:"chapter",title:"Traumatic Axonal Injury in Patients with Mild Traumatic Brain Injury",slug:"traumatic-axonal-injury-in-patients-with-mild-traumatic-brain-injury",totalDownloads:1655,totalCrossrefCites:6,signatures:"Sung Ho Jang",reviewType:"peer-reviewed",authors:[{id:"219787",title:"Dr.",name:"Sung Ho",middleName:null,surname:"Jang",fullName:"Sung Ho Jang",slug:"sung-ho-jang"}]},{id:"60782",type:"chapter",title:"Metabolic Responses and Profiling of Bioorganic Phosphates and Phosphate Metabolites in Traumatic Brain Injury",slug:"metabolic-responses-and-profiling-of-bioorganic-phosphates-and-phosphate-metabolites-in-traumatic-br",totalDownloads:1200,totalCrossrefCites:0,signatures:"Noam Naphatali Tal, Tesla Yudhistira, Woo Hyun Lee, Youngsam\nKim and David G. Churchill",reviewType:"peer-reviewed",authors:[{id:"219335",title:"Dr.",name:"David",middleName:"G.",surname:"Churchill",fullName:"David Churchill",slug:"david-churchill"},{id:"222931",title:"Dr.",name:"Youngsam",middleName:null,surname:"Kim",fullName:"Youngsam Kim",slug:"youngsam-kim"},{id:"222932",title:"Mr.",name:"Tesla",middleName:null,surname:"Yudhistira",fullName:"Tesla Yudhistira",slug:"tesla-yudhistira"},{id:"222934",title:"BSc.",name:"Woo Hyun",middleName:null,surname:"Lee",fullName:"Woo Hyun Lee",slug:"woo-hyun-lee"}]},{id:"58504",type:"chapter",title:"Management of Intracranial Pressure in Traumatic Brain Injury",slug:"management-of-intracranial-pressure-in-traumatic-brain-injury",totalDownloads:2162,totalCrossrefCites:1,signatures:"Christ Ordookhanian, Meena Nagappan, Dina Elias and Paul E.\nKaloostian",reviewType:"peer-reviewed",authors:[{id:"209339",title:"Dr.",name:"Paul",middleName:null,surname:"Kaloostian",fullName:"Paul Kaloostian",slug:"paul-kaloostian"}]},{id:"56812",type:"chapter",title:"Targeted Temperature Management in Traumatic Brain Injury",slug:"targeted-temperature-management-in-traumatic-brain-injury",totalDownloads:1412,totalCrossrefCites:0,signatures:"Sombat Muengtaweepongsa and Pornchai Yodwisithsak",reviewType:"peer-reviewed",authors:[{id:"64867",title:"Dr.",name:"Sombat",middleName:null,surname:"Muengtaweepongsa",fullName:"Sombat Muengtaweepongsa",slug:"sombat-muengtaweepongsa"}]},{id:"57826",type:"chapter",title:"Complementary Traditional Chinese Medicine Therapy for Traumatic Brain Injury",slug:"complementary-traditional-chinese-medicine-therapy-for-traumatic-brain-injury",totalDownloads:1245,totalCrossrefCites:1,signatures:"Ching-Chih Chen, Yu-Chiang Hung and Wen-Long Hu",reviewType:"peer-reviewed",authors:[{id:"49804",title:"Dr.",name:"Yu-Chiang",middleName:null,surname:"Hung",fullName:"Yu-Chiang Hung",slug:"yu-chiang-hung"},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",fullName:"Wen-Long Hu",slug:"wen-long-hu"},{id:"220768",title:"Dr.",name:"Ching-Chih",middleName:null,surname:"Chen",fullName:"Ching-Chih Chen",slug:"ching-chih-chen"}]}]},relatedBooks:[{type:"book",id:"5295",title:"Autophagy in Current Trends in Cellular Physiology and Pathology",subtitle:null,isOpenForSubmission:!1,hash:"e16382542f283b73017bdb366aff66ad",slug:"autophagy-in-current-trends-in-cellular-physiology-and-pathology",bookSignature:"Nikolai V. Gorbunov and Marion Schneider",coverURL:"https://cdn.intechopen.com/books/images_new/5295.jpg",editedByType:"Edited by",editors:[{id:"180960",title:"Dr.",name:"Nikolai",surname:"Gorbunov",slug:"nikolai-gorbunov",fullName:"Nikolai Gorbunov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"52485",title:"Introductory Chapter: Overview on Autophagy in Burden of Functions",slug:"introductory-chapter-overview-on-autophagy-in-burden-of-functions",signatures:"Nikolai V. Gorbunov and E. Marion Schneider",authors:[{id:"180960",title:"Dr.",name:"Nikolai",middleName:null,surname:"Gorbunov",fullName:"Nikolai Gorbunov",slug:"nikolai-gorbunov"}]},{id:"52233",title:"Aging-Related Diseases and Autophagy",slug:"aging-related-diseases-and-autophagy",signatures:"Elif Damla Arisan, Pinar Obakan-Yerlikaya, Ajda Coker-Gurkan and\nNarçin Palavan Unsal",authors:[{id:"183217",title:"Dr.",name:"Damla",middleName:null,surname:"Arisan",fullName:"Damla Arisan",slug:"damla-arisan"},{id:"183665",title:"Dr.",name:"Ajda",middleName:null,surname:"Coker-Gurkan",fullName:"Ajda Coker-Gurkan",slug:"ajda-coker-gurkan"},{id:"183666",title:"Prof.",name:"Pinar",middleName:null,surname:"Obakan-Yerlikaya",fullName:"Pinar Obakan-Yerlikaya",slug:"pinar-obakan-yerlikaya"},{id:"183669",title:"Prof.",name:"Narcin",middleName:null,surname:"Palavan-Unsal",fullName:"Narcin Palavan-Unsal",slug:"narcin-palavan-unsal"}]},{id:"50814",title:"Cell Cycle Analysis of ER Stress and Autophagy",slug:"cell-cycle-analysis-of-er-stress-and-autophagy",signatures:"Ashik Asvin Patel and Gary Warnes",authors:[{id:"108846",title:"Dr.",name:"Gary",middleName:null,surname:"Warnes",fullName:"Gary Warnes",slug:"gary-warnes"}]},{id:"50661",title:"High-Mobility Group Box 1 and Autophagy",slug:"high-mobility-group-box-1-and-autophagy",signatures:"Daolin Tang and Rui Kang",authors:[{id:"174854",title:"Dr.",name:"Daolin",middleName:null,surname:"Tang",fullName:"Daolin Tang",slug:"daolin-tang"},{id:"175785",title:"Dr.",name:"Rui",middleName:null,surname:"Kang",fullName:"Rui Kang",slug:"rui-kang"}]},{id:"51458",title:"Role of Autophagy in Mediating the Anticancer Effects of Tocotrienols",slug:"role-of-autophagy-in-mediating-the-anticancer-effects-of-tocotrienols",signatures:"Paul W. Sylvester and Roshan V. Tiwari",authors:[{id:"182827",title:"Prof.",name:"Paul",middleName:null,surname:"W. Sylvester",fullName:"Paul W. Sylvester",slug:"paul-w.-sylvester"},{id:"187294",title:"Dr.",name:"Roshan",middleName:null,surname:"Tiwari",fullName:"Roshan Tiwari",slug:"roshan-tiwari"}]},{id:"51402",title:"TRAIL Induces Apoptosis and Autophagy",slug:"trail-induces-apoptosis-and-autophagy",signatures:"Zhenyu Yao and Dexian Zheng",authors:[{id:"182863",title:"Dr.",name:"Dexian",middleName:null,surname:"Zheng",fullName:"Dexian Zheng",slug:"dexian-zheng"},{id:"187267",title:"Dr.",name:"Zhenyu",middleName:null,surname:"Yao",fullName:"Zhenyu Yao",slug:"zhenyu-yao"}]},{id:"51888",title:"The Role of Ubiquitin System in Autophagy",slug:"the-role-of-ubiquitin-system-in-autophagy",signatures:"Yi-Ting Wang and Guang-Chao Chen",authors:[{id:"175285",title:"Dr.",name:"Guang-Chao",middleName:null,surname:"Chen",fullName:"Guang-Chao Chen",slug:"guang-chao-chen"},{id:"183670",title:"MSc.",name:"Yi-Ting",middleName:null,surname:"Wang",fullName:"Yi-Ting Wang",slug:"yi-ting-wang"}]},{id:"50874",title:"HIV‐1, Drug Addiction, and Autophagy",slug:"hiv-1-drug-addiction-and-autophagy",signatures:"Ming‐Lei Guo, Palsamy Periyasamy and Shilpa Buch",authors:[{id:"183248",title:"Prof.",name:"Shilpa",middleName:null,surname:"Buch",fullName:"Shilpa Buch",slug:"shilpa-buch"},{id:"188831",title:"Dr.",name:"Palsamy",middleName:null,surname:"Periyasamy",fullName:"Palsamy Periyasamy",slug:"palsamy-periyasamy"},{id:"188832",title:"Dr.",name:"Ming-Lei",middleName:null,surname:"Guo",fullName:"Ming-Lei Guo",slug:"ming-lei-guo"}]},{id:"51324",title:"Autophagic Flux Failure in Neurodegeneration: Identifying the Defect and Compensating Flux Offset",slug:"autophagic-flux-failure-in-neurodegeneration-identifying-the-defect-and-compensating-flux-offset",signatures:"Claudia Ntsapi, Chrisna Swart, Dumisile Lumkwana and Ben Loos",authors:[{id:"148642",title:"Dr.",name:"Ben",middleName:null,surname:"Loos",fullName:"Ben Loos",slug:"ben-loos"},{id:"187297",title:"Mrs.",name:"Claudia",middleName:null,surname:"Ntsapi",fullName:"Claudia Ntsapi",slug:"claudia-ntsapi"},{id:"187298",title:"Dr.",name:"Chrisna",middleName:null,surname:"Swart",fullName:"Chrisna Swart",slug:"chrisna-swart"},{id:"187299",title:"Ms.",name:"Dumisile",middleName:null,surname:"Lumkwana",fullName:"Dumisile Lumkwana",slug:"dumisile-lumkwana"}]},{id:"50816",title:"Role of Autophagy in Burn Wound Progression and Wound Healing",slug:"role-of-autophagy-in-burn-wound-progression-and-wound-healing",signatures:"Ligen Li and Mengjing Xiao",authors:[{id:"182983",title:"Prof.",name:"Ligen",middleName:null,surname:"Li",fullName:"Ligen Li",slug:"ligen-li"},{id:"183761",title:"Dr.",name:"Mengjing",middleName:null,surname:"Xiao",fullName:"Mengjing Xiao",slug:"mengjing-xiao"}]},{id:"51887",title:"Autophagy in Model Organisms: Insights into Cancer",slug:"autophagy-in-model-organisms-insights-into-cancer",signatures:"Elite Possik and Arnim Pause",authors:[{id:"183125",title:"Prof.",name:"Arnim",middleName:null,surname:"Pause",fullName:"Arnim Pause",slug:"arnim-pause"},{id:"183285",title:"Dr.",name:"Elite",middleName:null,surname:"Possik",fullName:"Elite Possik",slug:"elite-possik"}]},{id:"51728",title:"Autophagy in Plant Pathogenic Fungi",slug:"autophagy-in-plant-pathogenic-fungi",signatures:"Huan-Bin Shi, Shuang Liang, Lu-Yao Huang, Xiao-Hong Liu, Xue-\nMing Zhu, Ya-Hui Zhao and Fu-Cheng Lin",authors:[{id:"183623",title:"Prof.",name:"Fu-Cheng",middleName:null,surname:"Lin",fullName:"Fu-Cheng Lin",slug:"fu-cheng-lin"}]},{id:"51976",title:"Autophagy in Cystic Fibrosis Pathogenesis and Treatment",slug:"autophagy-in-cystic-fibrosis-pathogenesis-and-treatment",signatures:"Estelle Cormet-Boyaka, Kyle Caution and Amal O. Amer",authors:[{id:"117138",title:"Dr.",name:"Amal",middleName:null,surname:"Amer",fullName:"Amal Amer",slug:"amal-amer"},{id:"183735",title:"Dr.",name:"Estelle",middleName:null,surname:"Cormet-Boyaka",fullName:"Estelle Cormet-Boyaka",slug:"estelle-cormet-boyaka"}]},{id:"51508",title:"The Role of Autophagy in Lung Disease",slug:"the-role-of-autophagy-in-lung-disease",signatures:"Michael P.A. Davies and Cornelia M. Wilson",authors:[{id:"183707",title:"Dr.",name:"Cornelia",middleName:null,surname:"Wilson",fullName:"Cornelia Wilson",slug:"cornelia-wilson"},{id:"187125",title:"Dr.",name:"Michael P. A.",middleName:null,surname:"Davies",fullName:"Michael P. A. Davies",slug:"michael-p.-a.-davies"}]},{id:"51901",title:"Autophagy in Ocular Pathophysiology",slug:"autophagy-in-ocular-pathophysiology",signatures:"S.K. Mitter and M.E. Boulton",authors:[{id:"183730",title:"Prof.",name:"Michael",middleName:null,surname:"Boulton",fullName:"Michael Boulton",slug:"michael-boulton"},{id:"188239",title:"Dr.",name:"Sayak",middleName:null,surname:"Mitter",fullName:"Sayak Mitter",slug:"sayak-mitter"}]},{id:"50768",title:"The Role of Autophagy in Maintaining Pregnancy",slug:"the-role-of-autophagy-in-maintaining-pregnancy",signatures:"Akitoshi Nakashima, Aiko Aoki and Shigeru Saito",authors:[{id:"177873",title:"Dr.",name:"Shigeru",middleName:null,surname:"Saito",fullName:"Shigeru Saito",slug:"shigeru-saito"},{id:"186058",title:"Dr.",name:"Akitoshi",middleName:null,surname:"Nakashima",fullName:"Akitoshi Nakashima",slug:"akitoshi-nakashima"},{id:"186446",title:"Dr.",name:"Aiko",middleName:null,surname:"Aoki",fullName:"Aiko Aoki",slug:"aiko-aoki"}]},{id:"51740",title:"Autophagy Modulation for Organelle-Targeting Therapy",slug:"autophagy-modulation-for-organelle-targeting-therapy",signatures:"Waleska K. Martins and Mauricio S. Baptista",authors:[{id:"85863",title:"Prof.",name:"Mauricio S.",middleName:null,surname:"Baptista",fullName:"Mauricio S. Baptista",slug:"mauricio-s.-baptista"},{id:"187402",title:"Prof.",name:"Waleska K.",middleName:null,surname:"Martins",fullName:"Waleska K. Martins",slug:"waleska-k.-martins"}]},{id:"51333",title:"Choosing Lunch: The Role of Selective Autophagy Adaptor Proteins",slug:"choosing-lunch-the-role-of-selective-autophagy-adaptor-proteins",signatures:"Kahiry Leyva-Paredes, Nayeli Shantal Castrejón-Jiménez, Hugo Iván\nArrieta-Oliva, Shantal Lizbeth Baltierra-Uribe and Blanca Estela\nGarcía-Pérez",authors:[{id:"82060",title:"Dr.",name:"Blanca-Estela",middleName:null,surname:"García-Pérez",fullName:"Blanca-Estela García-Pérez",slug:"blanca-estela-garcia-perez"},{id:"90078",title:"MSc.",name:"Nayeli Shantal",middleName:null,surname:"Castrejon-Jimenez",fullName:"Nayeli Shantal Castrejon-Jimenez",slug:"nayeli-shantal-castrejon-jimenez"},{id:"187941",title:"Dr.",name:"Kahiry",middleName:null,surname:"Leyva-Paredes",fullName:"Kahiry Leyva-Paredes",slug:"kahiry-leyva-paredes"},{id:"187942",title:"MSc.",name:"Hugo Ivan",middleName:null,surname:"Arrieta-Oliva",fullName:"Hugo Ivan Arrieta-Oliva",slug:"hugo-ivan-arrieta-oliva"},{id:"187943",title:"Dr.",name:"Shantal Lizbeth",middleName:null,surname:"Baltierra-Uribe",fullName:"Shantal Lizbeth Baltierra-Uribe",slug:"shantal-lizbeth-baltierra-uribe"}]},{id:"50722",title:"Targeting Mitophagy in Combined Therapies of Haematological Malignancies",slug:"targeting-mitophagy-in-combined-therapies-of-haematological-malignancies",signatures:"Laura I. Kornblihtt, María C. Carreras and Guillermo A. Blanco",authors:[{id:"116056",title:"Dr.",name:"Guillermo",middleName:null,surname:"Blanco",fullName:"Guillermo Blanco",slug:"guillermo-blanco"},{id:"138193",title:"Dr.",name:"Laura",middleName:null,surname:"Kornblihtt",fullName:"Laura Kornblihtt",slug:"laura-kornblihtt"},{id:"186901",title:"Dr.",name:"María",middleName:null,surname:"Carreras",fullName:"María Carreras",slug:"maria-carreras"}]},{id:"51545",title:"Autophagy in Multidrug-Resistant Cancers",slug:"autophagy-in-multidrug-resistant-cancers",signatures:"Betty Law Yuen Kwan and Vincent Wong Kam Wai",authors:[{id:"183149",title:"Dr.",name:"Vincent Kam Wai",middleName:null,surname:"Wong",fullName:"Vincent Kam Wai Wong",slug:"vincent-kam-wai-wong"},{id:"187274",title:"Dr.",name:"Betty Yuen Kwan",middleName:null,surname:"Law",fullName:"Betty Yuen Kwan Law",slug:"betty-yuen-kwan-law"}]},{id:"51882",title:"Autophagy in Non-Alcoholic Fatty Liver Disease (NAFLD)",slug:"autophagy-in-non-alcoholic-fatty-liver-disease-nafld-",signatures:"Wilhelmus J. Kwanten, Wim Martinet and Sven M. Francque",authors:[{id:"183642",title:"M.D.",name:"Wilhelmus",middleName:null,surname:"Kwanten",fullName:"Wilhelmus Kwanten",slug:"wilhelmus-kwanten"},{id:"183643",title:"Prof.",name:"Wim",middleName:null,surname:"Martinet",fullName:"Wim Martinet",slug:"wim-martinet"},{id:"183644",title:"Prof.",name:"Sven",middleName:null,surname:"Francque",fullName:"Sven Francque",slug:"sven-francque"}]},{id:"51817",title:"Autophagy and Coagulation in Liver Cancer and Disorders",slug:"autophagy-and-coagulation-in-liver-cancer-and-disorders",signatures:"Chih-Che Lin, Chih-Wen Lin, Ming-Chao Tsai, Kuang-Tzu Huang,\nChao-Long Chen and Kuang-Den Chen",authors:[{id:"183754",title:"Ph.D.",name:"Kuang-Den",middleName:null,surname:"Chen",fullName:"Kuang-Den Chen",slug:"kuang-den-chen"},{id:"187285",title:"Dr.",name:"Chih-Che",middleName:null,surname:"Lin",fullName:"Chih-Che Lin",slug:"chih-che-lin"},{id:"187286",title:"Dr.",name:"Chih-Wen",middleName:null,surname:"Lin",fullName:"Chih-Wen Lin",slug:"chih-wen-lin"},{id:"187287",title:"Dr.",name:"Ming-Chao",middleName:null,surname:"Tsai",fullName:"Ming-Chao Tsai",slug:"ming-chao-tsai"},{id:"187288",title:"Dr.",name:"Kuang-Tzu",middleName:null,surname:"Huang",fullName:"Kuang-Tzu Huang",slug:"kuang-tzu-huang"},{id:"187289",title:"Prof.",name:"Chao-Long",middleName:null,surname:"Chen",fullName:"Chao-Long Chen",slug:"chao-long-chen"}]},{id:"51320",title:"Role of Autophagy in Cancer Metabolism",slug:"role-of-autophagy-in-cancer-metabolism",signatures:"Heesun Cheong",authors:[{id:"184397",title:"Ph.D.",name:"Heesun",middleName:null,surname:"Cheong",fullName:"Heesun Cheong",slug:"heesun-cheong"}]}]}],publishedBooks:[{type:"book",id:"197",title:"The Clinical Spectrum of Alzheimer's Disease",subtitle:"The Charge Toward Comprehensive Diagnostic and Therapeutic Strategies",isOpenForSubmission:!1,hash:"968eec9d1d7cad83f7a8ca81d5aeee2d",slug:"the-clinical-spectrum-of-alzheimer-s-disease-the-charge-toward-comprehensive-diagnostic-and-therapeutic-strategies",bookSignature:"Suzanne De La Monte",coverURL:"https://cdn.intechopen.com/books/images_new/197.jpg",editedByType:"Edited by",editors:[{id:"29111",title:"Dr.",name:"Suzanne",surname:"De La Monte",slug:"suzanne-de-la-monte",fullName:"Suzanne De La Monte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3296",title:"Understanding Alzheimer's Disease",subtitle:null,isOpenForSubmission:!1,hash:"b040d696d429a2a6dc90cd236f160778",slug:"understanding-alzheimer-s-disease",bookSignature:"Inga Zerr",coverURL:"https://cdn.intechopen.com/books/images_new/3296.jpg",editedByType:"Edited by",editors:[{id:"26013",title:"Prof.",name:"Inga",surname:"Zerr",slug:"inga-zerr",fullName:"Inga Zerr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7070",title:"Novel Aspects on Motor Neuron Disease",subtitle:null,isOpenForSubmission:!1,hash:"3ea8aa08fd9d45d806411a8c60b7adab",slug:"novel-aspects-on-motor-neuron-disease",bookSignature:"Humberto Foyaca Sibat and Lourdes de Fátima Ibañez-Valdés",coverURL:"https://cdn.intechopen.com/books/images_new/7070.jpg",editedByType:"Edited by",editors:[{id:"142346",title:"Prof.",name:"Humberto",surname:"Foyaca Sibat",slug:"humberto-foyaca-sibat",fullName:"Humberto Foyaca Sibat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9778",title:"Migraine",subtitle:null,isOpenForSubmission:!1,hash:"ba52761e098431d3113b538e9f6427f6",slug:"migraine",bookSignature:"Wojciech Kozubski",coverURL:"https://cdn.intechopen.com/books/images_new/9778.jpg",editedByType:"Edited by",editors:[{id:"83372",title:"Prof.",name:"Wojciech",surname:"Kozubski",slug:"wojciech-kozubski",fullName:"Wojciech Kozubski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"210",title:"Novel Treatment of Epilepsy",subtitle:null,isOpenForSubmission:!1,hash:"f53f29b4c0d2dfbe5607e03e04344316",slug:"novel-treatment-of-epilepsy",bookSignature:"Humberto Foyaca-Sibat",coverURL:"https://cdn.intechopen.com/books/images_new/210.jpg",editedByType:"Edited by",editors:[{id:"142346",title:"Prof.",name:"Humberto",surname:"Foyaca Sibat",slug:"humberto-foyaca-sibat",fullName:"Humberto Foyaca Sibat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"6207",title:"Traumatic Brain Injury",subtitle:"Pathobiology, Advanced Diagnostics and Acute Management",isOpenForSubmission:!1,hash:"b39555959a8969f3d06634703afd3231",slug:"traumatic-brain-injury-pathobiology-advanced-diagnostics-and-acute-management",bookSignature:"Nikolai V. Gorbunov and Joseph B. Long",coverURL:"https://cdn.intechopen.com/books/images_new/6207.jpg",editedByType:"Edited by",editors:[{id:"180960",title:"Dr.",name:"Nikolai",surname:"Gorbunov",slug:"nikolai-gorbunov",fullName:"Nikolai Gorbunov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"58086",title:"Plasma Polymerization for Tissue Engineering Purposes",doi:"10.5772/intechopen.72293",slug:"plasma-polymerization-for-tissue-engineering-purposes",body:'\n
\n
1. Introduction
\n
\n
1.1. Tissue engineering
\n
Tissue engineering (TE) was first expressed at the NSF “National Science Foundation” workshop in 1987 by Dr. Fung. TE was later described as the application of engineering and life sciences to better understand the correlations between the structure and the function of tissues as well as the development of replacements for the restoration, preservation and/or enhancement of tissue functions [1].
\n
But it was not until 1993 that Langer and Vacanti gave TE the classical definition of: “an interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve the tissue function [2].” Various, more or less similar TE definitions can be found in the literature. Moreover, since this is a relatively new field, specific definitions are not always given and may stretch from decellularized matrices to cellular implants.
\n
In tissue engineering, biomaterials must possess appropriate surface properties for better cell-material interactions. In addition, biomaterials should possess appropriate bulk properties to function properly in a bio-environment. Therefore, a suitable approach is to select a biomaterial having good bulk properties and enhance its surface properties using a preferential surface treatment [3, 4]. In this way, one can obtain an “ideal” biomaterial with selective surface properties that are decoupled from its bulk properties and avert the need to develop completely new materials which is quite costly and time-consuming.
\n
In the past few decades, tailoring materials surface properties has been extensively performed using various modification techniques such as chemical treatments and etching, ozone treatment, UV radiation, and plasma treatments [5–10].
\n
Plasma surface treatments are most promising due to the speed and uniformity of modification, their chemical flexibility and positive environmental impact [11, 12]. Various types of plasma surface modification technologies have been used to modify materials by incorporating a variety of functional groups on their surfaces; this is done to improve the surface energy, wettability, adhesion, and bioactive response [13, 14].
\n
\n
\n
1.2. Plasma: a brief introduction and historical background
\n
Plasma is defined as the fourth state of matter in the sequence: solid, liquid, gas, and plasma. The transition between these different respective states can occur by increasing the temperature of the material under consideration.
\n
This state of matter was first described in 1879 by Crookes as “a world where matter may exist in a fourth state.” Later, in 1928, this state of ionized gas was eventually given its name “plasma” by Irving Langmuir, when he introduced it in his studies of electrified gases in vacuum tubes [15]. Plasmas can be natural such as lightning, polar light and the stars or man-made. Therefore, without being aware, every person has faced various forms of plasma. Man-made plasma can be generated in laboratories by combustion, flames, lasers or controlled nuclear reactions. But, in the field of plasma polymerization, most plasma are generated and sustained using an electrical discharge.
\n
Plasma is generally formed when gas atoms are subjected to a high enough thermal or electrical energy. Subjected to energy, gas atoms become ions by releasing some of their electrons. Radicals are then created by electron-molecule collisions and bond breaks in molecules. Some excited species will also be created by energy adsorption which will generate photons. This unique mixture of electrons, ions, radicals, photons and neutrals constitute the so-called plasma [16, 17].
\n
Plasmas are classified as thermal “equilibrium” and non-thermal “non-equilibrium” based on the relative temperatures of electrons, ions and neutrals.
\n
In a non-thermal or cold plasma, the electron temperature (≈ 10,000°C) is much higher than the gas temperature (< 200°C), whereas, in a thermal or hot plasma, the electron temperature is very close to that of the heavy particles.
\n
Plasmas used in the field of plasma polymerization are usually cold plasmas since it involves heat-sensitive materials [18, 19].
\n
\n
\n
\n
2. Plasma modification of surfaces
\n
The ability of non-thermal plasmas to dramatically modify surfaces properties has been known for over 25 years. Plasma treatments allow surface modification of polymeric materials without altering their bulk properties [20, 21, 22]. These plasma processes can be categorized into 3 major types of reaction: plasma activation, post-irradiation grafting (briefly discussed in the next sections), and plasma polymerization (the focus of this chapter).
\n
\n
2.1. Plasma activation
\n
In plasma activation, surface modification is done by exposure to non-polymer forming plasmas. The active species in the plasma can bombard the polymeric surface and break covalent bonds thus leading to radical formation. These radicals can subsequently react with other species in the plasma to form functional groups. In this way depending on the selected plasma gas, different functional groups such as carbonyl, carboxylic acid, hydroxyl, and amine functional groups can be added on the surface thus making it more hydrophilic [23, 24, 25]. It is believed that radical species rather than ions or electrons are most important in this type of modification [26].
\n
\n
\n
2.2. Plasma polymerization
\n
Observations of organic compounds formed in a hydrocarbon based plasma discharge dates back to 1874 [27]. These deposits were considered to be undesirable by-products. However, in the 1960s [28, 29, 30], studies of plasma polymerization started and were completed by considerable advances in polymer science [31]. Plasma polymerization was defined as “the formation of polymeric materials under the influence of plasma” [31]. Nevertheless, the real potential of plasma polymerization was not uncovered until only the past two decades. Nowadays, plasma polymerization is known as a very valuable surface modification technique.
\n
During the process of plasma polymerization, high energy electrons as well as UV will ionize the precursor molecules [32, 33, 34]; this leads to radicals which are highly unstable and reactive species that will interact and bond with one another and deposit on the substrate thus forming a coating on its surface. Plasma will also lead to bond breaks on the substrate surface thus creating radicals. These will interact with the precursor’s radicals acting as anchor sites which enhances the plasma polymerized coating stability.
\n
During plasma polymerization, two processes occur simultaneously: - ablation (removal of surface molecules) and – polymerization (surface monomer deposition). These two processes are in competition and their interaction and co-existence in plasma is well known [35].
\n
Plasma polymerization is very complex and versatile since various parameters such as discharge power, treatment time, precursor type and concentration can affect the physic-chemical characteristics of the deposited coating. Moreover, different reactive species can be formed in the plasma depending on the used dilution gas (e.g., helium, argon, air or nitrogen), which also affects the characteristics of the coating [25, 36, 37, 38].
\n
Advantages of plasma polymerization include the following:
Ultra-thin film formation
Good adhesion to the substrate material and deposition is independent on the structure or type of the substrate
Relatively good chemical stability and physical durability of the coatings
Various precursors can be chosen which leads to a vast array of surface functionalization (monomers used do not have to contain a double bond for the polymerization to proceed)
Many process parameters can be used thus providing great diversity of surface modifications
The obtained coatings are more or less uniform
\n
Nevertheless, plasma polymerization also presents several disadvantages:
System dependency
Scaling up and converting it into a continuous process could present some technical challenges
The specific roles of each plasma component are difficult to separate and analyze
It is hard to predict the exact surface characteristics of the deposited plasma polymer especially when complex molecules are used
Coating multi-functionality can also be an issue
Everything in the coating range of the plasma can become part of the coating
\n
However, despite its disadvantages and focusing on its numerous advantages, plasma polymerization has rapidly developed during the past decades and is now used for various applications.
\n
\n
Plasma polymers
\n
Plasma polymers are markedly different from conventional polymers. Conventional polymers have a well-defined structure of repeating units that corresponds to the used monomer. Whereas, plasma polymers are crosslinked, randomly structured deposits obtained from the fragmentation and recombination of monomers within an electric discharge.
\n
During plasma polymerization, the active species fragments the organic precursor (monomer), thus creating radicals that can recombine both in the plasma and on the substrate surface forming a crosslinked so-called plasma polymer coating/film on the substrate surface.
\n
As to the film chemical structure, during this process, partial loss of functional groups occurs (fragmentation) in a system/process dependent way. Moreover, not all radicals will react and some will be trapped in the plasma polymer network [41]. As a consequence, the elemental composition of plasma polymers differs from that of conventional polymers prepared from the same monomer. For example, the elemental composition of conventionally polymerized polyethylene (C2H4)n is equal to that of the monomer (C2H4); however, in plasma polymerized ethylene the hydrogen concentration is lower (radical formation by -H bond scission) and oxygen is incorporated in the plasma polymer (by reaction with the formed radicals).
\n
Hence, the material obtained from plasma polymerization is very different than that obtained by conventional polymerization of the same monomer [39].
\n
\n
\n
\n
2.3. Post-irradiation grafting
\n
Surface modification via polymer coatings is also frequently done by surface grafting methods which are often referred to as “plasma-induced graft (co)polymerization.” This is a two-step process. In the first step, the surface is exposed to air plasma or subjected to an ozone treatment which creates peroxide groups at the surface. Other non-oxygen containing plasma can also be used (e.g., Ar or He plasma) followed by atmosphere or O2 exposition; created radicals will then form peroxides and hydroperoxides. In the second step, the formed functionalities are used to initiate a polymerization reaction by contact with the monomer molecules. Each functionality being a potential initiating site, the number of created (hydro)peroxides has a significant effect on the surface grafting density.
\n
\n
\n
\n
3. Cellular response to surfaces
\n
For the cells, the surface is the most important part of the material. Cell-biomaterial interactions depend on the surface energy, chemical composition and surface morphology [40, 41]. Moreover, cell growth, spreading and viability were shown to be closely linked to their adhesion on the surface [42]. Consequently, suitable surface properties contribute to better cell adhesion and subsequent proliferation. It is well established that for numerous cell types surface wettability is a paramount factor that influences cell adhesion, with this being more favorable on hydrophilic surfaces compared to hydrophobic surfaces. Figure 1 shows micrographs of fibroblast cells cultured on untreated (hydrophobic) and argon plasma treated (hydrophilic) UHMWPE substrate. As seen in this Figure 1, cells are significantly more spread on the hydrophilic treated surface compared to the hydrophobic untreated one [43]. Additionally, surface charge has also been shown to have a significant influence on cell adhesion [44, 45].
\n
Figure 1.
Overall cell morphology of fibroblasts cultured on (a) untreated and (b) argon plasma-treated UHMWPE.
\n
A promising way to achieve optimal surface attributes (e.g., surface wettability and charge) is plasma polymerization which has already been used successfully to enhance cell adhesion on various substrates.
\n
In this section, previous works on the bio-application of plasma polymers and their interactions with cells will be reviewed.
\n
\n
Biological applications of plasma polymers
\n
Plasma polymerization is a convenient way to introduce desired functional groups on a surface. Plasma polymers are frequently used to immobilize biomolecules and enhance cell adhesion. NH2 and COOH based plasma polymers are most commonly used since these groups are known for their good chemical reactivity. Moreover, in aqueous solution at physiological pH value, amino/carboxyl groups can introduce a positive/negative charge to the surface thus increasing its affinity for biological components [46, 47, 48]. For example, DNA [49, 50], heparin [46], glucose oxidase [51], and collagen [52] have been immobilized on amine or carboxyl based plasma polymers. Hydroxyl and aldehyde groups have also been used to bind heparin [53] and collagen/albumin [54], respectively. However, plasma polymers with these groups are less extensively investigated due to their lower reactivity.
\n
For the effect of plasma polymers on cell attachment and proliferation, various studies on different substrates using numerous plasma media and cell types have been performed. A summary of some of these studies is presented in Table 1.
Summary of some of the studies on plasma surface modification of materials and their effect on cell adhesion and growth.
\n
Furthermore, plasma polymer films were used for bacterial adhesion and biofilm prevention by coating the surface with a suitable antibacterial agent (e.g., silver nanoparticle).
\n
Xiaolong et al. [55] produced PET fabrics with antibacterial properties by depositing a plasma polymer organosilicon film where silver nanoparticles were incorporated. A similar study was also conducted on PET meshes by plasma polymerization of acrylic acid followed by incorporation of Ag nanoparticles [56]. Results showed excellent mesh antibacterial properties with a decrease of more than 99.7% in bacterial concentration compared to an untreated mesh. In another study, Degoutin et al. [57] used plasma to graft acrylic acid onto nonwoven polypropylene and the carboxyl groups were used to immobilize an antibiotic “gentamicin.” Results showed a 99% efficacy against E. coli bacteria.
\n
These results and discussions strongly support the idea that polymer coatings represent a very promising way to modify a biomaterial surface in order to adapt it to a specific biomedical application.
\n
\n
\n
\n
4. Effect of aqueous environments on plasma polymers
\n
For biomedical applications, the effect of water on the plasma polymer films is of particular importance.
\n
Immersed in a solvent, plasma polymers can be subject to numerous processes such as:
delamination from the substrate
detachment of oligomers
swelling
reaction with the solvent
\n
However, not many studies focus on the physic-chemical changes that happen to the plasma polymer films after exposure to aqueous environments.
\n
Plasma polymer stability behavior depends on the type of the polymer. Muir et al. [72] studied the penetration of water into the films and characterized the swelling of allylamine (Aam) and heptylamine (HA) plasma polymers. When immersed in water, the plasma polymerized Aam film (ppAam) was found to swell by 5% and to contain 3% water whereas the ppHA film did not appear to swell but contained 5% water. The swelling characteristics of other plasma polymers have also been reported [73, 74, 75].
\n
Moreover, the degree of swelling strongly depends on the plasma process parameters. Zhang et al. [73], demonstrated that ppAam deposited at 20 W only shows a small degree of swelling while ppAam deposited at 5 W shows a large degree of swelling. This is due to the fact that at low powers the plasma polymer contains a large number of oligomers which are not covalently bound to the film; these oligomers can thus be readily extracted in the solvent. In fact, when studying the morphology of ppHA, Vasilev et al. [76] found that pores of several nanometers in diameter were formed after ppHA has been immersed in water for 24 h (see Figure 2). And the dimension of the pores was found to depend on the deposition conditions with larger pores obtained at lower powers (see Figure 3). This was attributed to oligomer water extraction after low molecular weight fragments were detected in the water. This results in the formation of gaps in the film and leads to ruptures of the polymer chains thus forming the observed porosity.
\n
Figure 2.
AFM topographic images of HA plasma polymer films deposited with a power of 20 W: (a) as deposited, (b) after immersion in water for 24 h.
\n
Figure 3.
AFM images of HA plasma polymer films deposited with a power of 50 W: (a) as deposited or (b) after immersion in water for 24 h.
\n
Förch et al. [77] found that for ppAam, the roughness of the polymer film increased from 0.85 to 1.26 nm after soaking in water which was attributed to the swelling of the film in water; whereas, Tarasova et al. [78] used XPS to study the changes in surface chemistry of ppAam and ppHA after immersion in water for up to 24 h. Results were similar to the ones obtained after these plasma polymers were stored in air, both undergoing rapid oxidation; amine and imine groups were converted to amides with an increase of C─O and C═O groups.
\n
In order to improve plasma polymers stability, studies on the interaction of plasma polymer with the aqueous environment as a function of plasma deposition parameters have been conducted. Optimizing these parameters was shown to be very important in reducing the induced changes [77, 79]. Moreover, substrate pretreatment for cleaning or activation was also shown to prevent the delamination of the polymer film [77].
\n
However, enhancement of plasma polymer stability is still insufficiently studied and more effort is still needed for a precise stability evaluation and quantification.
\n
\n
\n
5. Surface aging
\n
It is widely known that the enhancement in surface wettability obtained after plasma activation processes changes with storage time. This phenomenon is referred to as aging or hydrophobic recovery and is due to the tendency of a surface to minimize its surface energy by reverting to its original structure. This leads to a loss of surface polar functional groups that re-orientate to the bulk [18]. Therefore, in the case of plasma activation, in order to avoid the adverse effect of aging, it is advisable to only use freshly prepared samples.
\n
On the other hand, plasma surface grafted polymers and plasma polymerized films show much less modifications after storage in ambient air and are thus considered comparatively stable in time. However, research on plasma polymers show that they are susceptible to oxidation upon storage in air [31]. Since these coatings have shown great potential for many applications including biomedical ones, several studies have been done to better understand this so-called aging process and therefore further evaluate the relevancy of plasma polymers. And since most products are usually stored for a certain period before they are used, the film properties at the time of use are usually considered more important than immediately after treatment.
\n
Major advancements in the understanding of oxidative reaction mechanisms that occur during plasma polymer aging have been made by Gengenbach et al. [80, 81, 82, 83].
\n
This was done using XPS, FTIR spectroscopy and contact angle goniometry characterization techniques which allowed significant perception of the eventual surface compositional changes.
\n
Their studies included detailed oxidation investigations of hydrocarbon based plasma polymers [80], fluorocarbon coatings [81], nitrogen coatings [82] and other plasma deposited films [83]. Results showed that the aging process was due to the reaction of ambient oxygen with the residual radicals present in plasma polymers; ESR spectroscopy showed that the free radicals detected in freshly deposited plasma films slowly disappear upon storage in air. Results also showed that, the kinetics, mechanisms and formed oxidative products during aging depend on many factors, such as the structure of the film, the type of functional groups and the mobility of the surface.
\n
\n
\n
6. Plasma polymer gradients
\n
After accomplishing significant advancements in the biofunctionalization of surfaces by different chemical and physical homogeneous modifications, a growing research interest is being shifted toward the development of gradient surfaces presenting graded wettability, chemistry, biomolecule density and nanoparticle distribution [84]. This interest stems from the fact that many essential and poorly understood biological activities are driven by such gradients. For instance, chemotaxis mediate a number of physiological processes such as leukocyte recruitment to the infection site, guiding of neuronal and glial cells during nervous system development or regeneration and cancer metastasis. Moreover well-ordered gradient distribution of specific functional groups, extracellular matrix components, signaling biomolecules and even topographical cues induce particular cell type proliferation, migration and differentiation [85, 86, 87]. Besides their biological importance, gradients are also powerful for high throughput screening in several applications such as biomaterial development, tissue engineering and sensors, in the sense that a single sample designed with a gradient surface is used to procure multiple data points. This reduces dramatically the number of samples and cells, eliminates inaccuracies triggered by sample reproducibility and speeds up the analysis [84, 88, 89].
\n
Different approaches are commonly adopted to create surface gradients such as self-assembled monolayers (SAMs), grafting on hydrogels and Boyden chambers and filters. Several limitations are associated with these traditional methods including the substrate dependency (e.g., gold-coated surface is required for SAMs), the short term gradient “shelf-life,” the restricted chemistries that can be obtained and the long experimental timing [46, 90, 91]. As an alternative, applying high energy source plasmas that are associated with many advantages such as the absence of solvent, the specificity and the substrate independency has shown great successes in the generation of gradient surfaces. In 1989, Witt el al. were one of the first groups if not the first, to generate wettability gradients on polyethylene, polystyrene, polydimethylsiloxane, and polytetrafluoroethylene by a radio frequency (RF) plasma activation operating in oxygen, ammonia and sulfur dioxide atmospheres. A special gradient apparatus consisting of an aluminum box with a translating cover and two aluminum plates serving as electrodes, was designed for this purpose. During the treatment, the cover is retracted with a constant velocity automatically controlled by a microprocessor driving the stepping motor. This movement linearly increases the plasma exposure time over the sample length. As a result, water contact angles (WCA) increased along the length of the sample thus ensuring the presence of a wettability gradient. Moreover, a wide range of wettability gradients is obtained by varying the gas, the radio frequency power, the cover retraction velocity and the plasma exposure time. This study highlighted the high flexibility of the plasma treatment to generate gradients with defined length and magnitude and pointed out, by using several substrates, that the process is substrate independent [92]. Therefore, a steep rise in literature focusing on the generation of gradients by plasma activation followed. However, the different plasma activation methods that were described are mainly limited to the production of wettability gradients with a relatively restricted control over the chemical group specific incorporation. Other concerns include the aging effect of the treated surfaces due to the reorientation of the incorporated groups away from the surface when the environment is thermodynamically unfavorable and the roughening of the surface due to the plasma etching effect [92, 93]. Consequently, the interest was shifted toward the generation of polymer gradients via plasma polymerization to be able to control more precisely the functional group nature and densities, the gradient stability and the gradient shape. Nevertheless, it was until 2003 that the first method enabling the deposition of controllable horizontal plasma chemical gradients was described by Whittle et al. [93] and was subsequently adopted as it is or with some amendments by several other groups [91, 94]. In their study, Whittle et al. created hydrocarbon/carboxyl and amine/carboxyl functionality gradients on glass substrates over a distance of 11 mm. Instead of using the traditional cylindrical plasma reactor, a RF glow discharge T-shaped reactor presenting a drawer as sample holder was used [93, 95]. As a first step, an amine coating was deposited on the whole glass substrate by performing a plasma polymerization using allylamine (Aam) monomers as precursors and a continuous power of 10 W while the drawer was fully extended. An underlayer presenting a good adhesion was thus formed for the subsequent gradient deposition. In the second step, the power was decreased to 5 W and a plasma polymerization was performed while the drawer was slowly closed at a constant velocity of 1 mm/min along with a controlled change in the plasma composition over time. This was performed by introducing acrylic acid (Aac) as the second monomer while decreasing instantaneously the flow rate of Aam by 4 cm3 stp/min. For the deposition of hydrocarbon/carboxyl gradients, the same procedure was followed but with the use of octa-1,7-diene instead of Aam precursors. The obtained plasma polymerized surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and chemical derivatization of acid functionalities using trifluoroethanol. A gradual increase in the concentration of acid functionalities was observed in the case of hydrocarbon/carboxyl gradients and an increase of acid and amine functionalities was attained in opposite directions in the case of the amine/carboxyl gradients. These findings demonstrated the power of this first-hand methodology to successfully generate plasma polymer gradients that can subsequently allow the grafting of a broad range of biochemical entities in a spatially structured manner [93]. Surface engineers waited around 3 years after the study of Whittle to begin their investigations regarding the grafting of biomolecules and the cell-biomaterial interactions when a plasma polymer gradient is implicated. Moreover, several other methods generating plasma polymer gradients were described with a distinctive focus on amine and carboxylic acid being the most 2 extensively considered functionalities in the subsequent literature of gradient plasma polymerization. In what follows, an overview on the achievements of these carboxylic acid and amine plasma gradients in several tissue engineering and biomedical applications will be given.
\n
\n
6.1. Surface plasma polymer gradient of carboxylic acid functionalities
\n
In 2006, Parry et al. [91] performed a plasma copolymerization of Aac and octadiene (OD) based on the mechanism described by Whittle et al. [93] but with a modification of the setup in a way allowing the production of 20 similar gradients at a time. Up to 20 substrates could thus be placed in the redesigned RF plasma reactor and moved under a slot by an automated stepper motor in 250 μm paces at a rate of 750 μm/min. Simultaneously, a controlled composition of the monomer mixture is sent to the chamber via two computer-regulated valves. A thorough characterization of the surface gradient was executed by angle resolved x-ray photoelectron spectroscopy (ARXPS) that showed in great details how acid functionalities changed on different positions of the gradient and highlighted the presence of vertical changes especially when it comes to the plasma polymer thickness. An assay investigating the passive adsorption of immunoglobulin G (IgG) as a function of the acid surface density was supplemented to the study to be, to the best of our knowledge, the first reported biological assay done on plasma polymer gradients. ARXPS measurements showed that IgG was by far more absorbed on the OD gradient end and that IgG amount decreased gradually as the concentration of Aac increased thus creating an IgG gradient [91]. In 2009, Walker et al. [96] also deposited a gradient of OD/Aac on coverslips using the plasma deposition/masking method of Whittle but this time with a renovated protocol permitting the generation of submillimeter-scale gradients instead of millimeter scale length. In the updated method, OD was constantly fed to the reactor as the slot moves across the substrate surface, then it was brusquely turned off and a pulse of Aac was launched. The scale length and density of the carboxylic groups were thus tailored by varying the pulse width of Aac. The obtained gradient surface was used to immobilize the intercellular signaling molecule delta-like-1 Dll 1, a factor enhancing stem cells self-renewal and preventing cell differentiation which is an issue to be considered when developing cell therapy technologies. Since tiny changes in surface properties can considerably affect the stem cell behavior either by enhancing the commitment path toward their differentiation to particular cell types or by maintaining and stabilizing the stem cell pluripotent phenotype, concentration-based factor and chemical group gradients are highly expedient to study stem cells. Instead of directly grafting Dll 1 factor on the generated gradient, a mouse monoclonal antimyc-tag (9E10) antibody is covalently coupled, then Dll 1 is immobilized on the antibodies thus avoiding the alteration of its biological activity by separating it from the solid surface. A visualization of the Dll 1 gradients was performed by binding a rabbit anti-Dll-1 antibody and then introducing a colloidal gold-conjugated secondary antibodies. Several Dll 1 gradients with different slopes and end points were obtained depending on the plasma Aac pulse width adopted during the plasma polymerization (Figure 4). During the same year, the first cell tests on plasma gradients were performed by Wells et al. using mouse embryonic stem (ESC) cell lines E14 and R1 in order to examine their pluripotency [97]. OD/Aac gradients were deposited on coverslips using the same setup described by Parry et al. [91]. The degree of cell spreading was studied in function of COOH concentration. Alkaline phosphatase staining showed that cell capacity of self-renewal is preserved when the cell spreading is still below 120 μm2 [97]. In 2012, in an attempt aiming to make a sweeping statement about this result, Harding et al. [98] used polyethylene oxide (PEO) that is well-known in the biomaterials field to limit protein adsorption and thus cell adhesion and spreading, together with Aac to produce two counter gradients. A RF apparatus consisting of a cylindrical glass chamber was used for the plasma copolymerization. As a first step, an OD layer then an Aac layer were deposited on the substrate since a unique Aac deposition resulted in the coating dissolution in water. Then a mask 12 ̊titled in respect to the surface was employed to deposit a PEO-like gradient by using the monomer diethylene glycol dimethyl ether (DG) as a precursor. A successful fabrication of AA-DG plasma polymer gradient was revealed by XPS, profilometry and infrared microscopy mapping. The gradient could be easily altered by changing the plasma process parameters. Mouse ESC were cultured on the gradient surfaces, then immunocytochemical stainings of the stem cell markers Oct4 and alkaline phosphatase were performed. Results showed a low cell adhesion and colony formation on the DG rich end and an increased colony size and decreased stem cell marker expression on the COOH rich end, thus supporting the hypothesis stating that cellular spreading influences the fate toward cell differentiation or self-renewal. The same method using a tilted mask was then applied by Wang et al. [99] in 2014 to create the same Aac-DG gradients but also Aac-OD gradients by firstly depositing OD uniformly then using the tilted mask to deposit Aac. Attachment and differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) into adipogenic and osteogenic lineages were investigated on both gradients. After 24 h of cell culture, a gradient in cell density was observed on the substrate with a decreased cell adhesion on DG and OD rich ends. The obtained cell density gradient vanished on Aac-OD gradient after 6 days but not on Aac-Dg gradient, thus suggesting the long-term efficacy of the later gradient. Cell colonies containing bone nodules were detected on this gradient especially on the Aac rich ends but not on the DG rich end. Moreover, proteins and calcium were not secreted on the DG end implying that osteogenic differentiation is influenced by local cell densities. However, the induction of the cells toward an adipogenic lineage showed that this differentiation is cell density insensitive.
\n
Figure 4.
(a) Densitometry results of 9E10 antibodies immobilized on the gradient surface (3 different Aac pulse durations) and visualized by FITC-conjugated secondary antibodies. Horizontal lines show the results of homogeneous surface treatments (b) false color heat maps of the 9E10 antibody gradients. Homogeneous surfaces are presented for comparison. Scale bars: 100 μm.
\n
\n
\n
6.2. Surface plasma polymer gradient of amine functionalities
\n
In addition to COOH functionalities, NH2 groups were also shown to be very powerful in influencing a wide range of particular cell type performances such as adhesion, proliferation, migration and differentiation. Therefore, when the research community started investigating surface gradients, a distinctive focus was directed toward the production of amine gradients and their use in several biomaterial and tissue engineering applications [100]. To the best of our knowledge, all COOH plasma polymer gradients described so far were only deposited on flat substrates, however some amine plasma polymer gradients were deposited on 3D scaffolds. For instance, in 2006 Barry et al. [101] thought of generating an amine gradient on poly(D,L-lactic acid) 3D porous scaffolds in order to solve the common problem of the highly disproportionate cell colonization on the scaffold periphery in comparison to the hardly accessible scaffold center that remains poorly colonized and supplied by nutrients. This issue was solved by plasma polymerizing hexane, known to be resistant to cellular adhesion, on the periphery of the scaffold while generating an amine plasma polymer coating on the central surface. To do so, a first plasma polymerization step using Aam monomers as precursors was performed, then a second polymerization using the cell-repellent hexane was achieved at lower deposition rate. XPS measurements throughout the whole scaffold showed that when the second hexane polymerization step is absent, a decrease in amine functionalities is observed toward the center. However, when hexane polymerization is introduced, the nitrogen concentration is reduced by 1 to 2% in the periphery thus creating a reversed gradient. After seeding 3 T3 fibroblasts on the treated scaffolds, X-ray micro-computed tomography and scanning electron microscopy revealed a uniform cell distribution throughout the whole scaffold with well spread cells in the center associated with a high production of extracellular matrix (ECM) components. The use of hexane and Aam to create amine gradients was also considered by Zelzer et al. [102] in the subsequent year, but this time on flat glass coverslips. The idea behind the study was to compare between mammalian cell interactions on gradient and on uniformly treated surfaces. A T-shaped borosilicate RF reactor was used to plasma polymerize uniformly an amine coating on glass coverslip using Aam as precursors. Afterward, a poly-hexane was deposited on the poly-Aam coated surface after placing a mask either directly or making use of a spacer clamping the mask at a distance of 0.04 mm from the surface. The direct positioning of the mask resulted in steep gradients while the use of a spacer gave more shallow gradients. Wettability gradients were detected by WCA measurements showing a gradual decrease from 93̊ to 66 ̊, thus correlating with the gradual increase of N/C ratio. NIH 3 T3 fibroblasts cultured on the gradients surfaces were preferentially adhered and proliferated on the N-rich end with a gradual cell density decrease toward the poly-hexane rich end. Surprisingly, experiments performed on uniform surfaces revealed significant differences in cellular behavior compared to the gradient surfaces, leaving question marks on the use of gradients for high throughput screening. The cell signaling and the protein synthesis might be different between gradient and uniform surfaces since the cell neighboring environment differs. Several subsequent studies involving amine plasma polymer gradients and their general results are summarized in Table 2.
Moving slot with a simultaneous change in the monomer mixture composition
\n
Gradual increase in N/C ratio over a distance of 14 mm
\n
Adsorption of heparin that mimics the heparan sulfate proteoglycans found in all tissue types
\n
-Gradual increase in heparin adsorption parallel to the increase in N/C ratio. -Heparin functionality not correlated with the continuous increase in heparin adsorption
Moving slot with a simultaneous change in the monomer mixture composition
\n
Gradual increase in N/C ratio over a distance of 12 mm
\n
D3 murine embryonic stem cell line culture
\n
-Maximum cell adhesion on the N-rich end -Inverse increase in stem cell marker expression toward the lower N/C ratio. -Correlation between the presence of stem cell markers and the formation of more multilayered and compact cell colonies.
Use of a mask with a 1 mm gap on a polypropylene substrate
\n
-Wettability gradient with WCA varying from 15 ̊ to 90 ̊. - Gradient over 1 cm of nitrogen content from 5.8 to 16.0% and amine content from 1.98 to 4.03 per 100 carbons.
\n
L-929 fibroblast culture
\n
Continuous increase in the cellular density with more than 2-fold density on N-rich end
Moving slot with a simultaneous change in the monomer mixture composition
\n
Gradient over 12 mm of nitrogen content from 0 to 12.0%
\n
Mouse embryoid body cell culture
\n
-Highest cell adhesion on the gradient central regions -Increased cell proliferation toward the Aam end. -Cell differentiation toward mesodermic and ectodermic lineages on high nitrogen content regions -No correlation between amine content and endodermal differentiation
Moving slot with a simultaneous change in the monomer mixture composition
\n
-Wettability gradient with WCAs varying from 90 ̊ to 70 ̊ -Gradual increase in N/C ratio over a distance of 12 mm - Unchanged surface topography
\n
-Adsorption of fluorescein isothiocyanate-labeled bovine serum albumin (BSA) and rhodamine-labeled fibronectin (FN) -Human adipose- derived stem cell culture
\n
-Gradual decrease in the amount of adsorbed BSA from OD toward Aam sides. -Gradual increase in the amount of adsorbed FN from the OD toward the Aam sides. -Increased cell adhesion and spreading toward the Aam side -No difference in cell performances in the absence of serum -Increased osteogenic cell differentiation toward the Aam side -Decreased adipogenic differentiation toward the Aam side.
\n
\n\n
Table 2.
Overview of literature on amine gradient obtained by plasma polymerization and not discussed in the text.
\n
Since the biological systems in vivo are much more complex than in vitro assays, some authors considered a closer mimicking of the real systems by designing, instead of one dimensional or single protein gradients, 2 protein and 2 dimensional gradients. For instance, in 2009 Vasilev et al. [94] created an Aam-OD gradients on SPRchips or on silicon wafers based on the method described by Whittle et al. [93]. Afterwards, polyethylene glycol (PG), known to be resistant to protein adsorption, was grafted on the amine gradient thus generating a PEG density gradient. The obtained density gradient was then benefited to control the deposition of 2 proteins, namely the large protein fibrinogen and the small protein lysozyme, by differential passive adsorption. A first incubation with the larger protein led to its adsorption on low PEG density regions, then a second incubation with the small lysozyme led to its adsorption only where there is still a “room” for it to adsorb since the previous fibrinogen adsorption passivated gradually the surface. As a result, 2 reversed gradients of 2 proteins could be designed and the method could be generalized to other pairs of small and large proteins (Figure 5). In 2013, Mangindaan et al. [90] designed a 2 dimensional amine gradient by performing firstly a plasma polymerization of Aam on a propylene membrane while a mask is placed on top with a gap distance of 1 mm. Subsequently, the same procedure is repeated but after rotating the sample by 90 ̊. WCA measurements showed that both gradients were well controlled by varying the plasma treatment exposure time in each step. L-929 fibroblasts seeded on the treated surfaces adhered and grew proportionally with the amine content on the 2 dimensional gradient with a predominant effect of the gradient created during the initial plasma deposition.
\n
Figure 5.
Schematic representation of the creation of two-protein gradient. Step 1. PEG grafting on the amine plasma polymer gradient to generate a PEG density gradient. Step 2. Large proteins adsorption. Step 3. Small protein adsorption.
\n
\n
\n
\n
7. Conclusions
\n
From the work presented in this chapter it is clear that plasma polymer coatings are very useful tools for biomaterial surface modification. However, despite the numerous advantages of these coatings for biomaterial advancements, their aging and stability remain an issue that requires further investigations and considerations. More attention and focus on these aspects can make plasma polymerization become one of the most used and important surface modification techniques. Plasma polymer gradients are also very promising for biological applications and many advances in the area of plasma uses can be made by developing such coatings.
\n
\n
Acknowledgments
\n
This research has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement n. 335929 (PLASMATS).
\n
\n',keywords:"biomaterial, plasma polymer, surface gradient, stability, aging",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/58086.pdf",chapterXML:"https://mts.intechopen.com/source/xml/58086.xml",downloadPdfUrl:"/chapter/pdf-download/58086",previewPdfUrl:"/chapter/pdf-preview/58086",totalDownloads:1416,totalViews:428,totalCrossrefCites:1,dateSubmitted:"April 18th 2017",dateReviewed:"November 8th 2017",datePrePublished:"December 20th 2017",datePublished:"January 17th 2018",dateFinished:"December 9th 2017",readingETA:"0",abstract:"The ability of non-equilibrium plasmas to modify surfaces has been known for many years. And a promising way to perform surface modifications without altering the bulk properties is plasma polymerization since this technique is versatile and can be applied to a wide range of materials. Plasma polymer films usually show good biocompatibility when compared to classical biomaterials. The possible biomedical use of plasma polymers motivates the study of their behavior during storage and in aqueous environment. Therefore, it is of major importance to understand the change of properties of these plasma polymers over time and when in contact with certain fluids. Recently, plasma polymer gradients (surfaces that display a change in at least one physicochemical property over distance) have attracted significant attention from the biomedical filed where the interaction of cells with a material surface is of major interest. This chapter discusses biomaterial functionalization via plasma polymerization focusing on their use in the biomedical field as well as their aging and stability behaviors. Plasma polymer gradients as valuable tools to investigate cell-surface interactions will also be reviewed.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/58086",risUrl:"/chapter/ris/58086",signatures:"Gaelle Aziz, Rouba Ghobeira, Rino Morent and Nathalie De Geyter",book:{id:"6141",type:"book",title:"Polymerization",subtitle:null,fullTitle:"Recent Research in Polymerization",slug:"recent-research-in-polymerization",publishedDate:"January 17th 2018",bookSignature:"Nevin Cankaya",coverURL:"https://cdn.intechopen.com/books/images_new/6141.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-953-51-3747-4",printIsbn:"978-953-51-3746-7",pdfIsbn:"978-953-51-4044-3",isAvailableForWebshopOrdering:!0,editors:[{id:"175645",title:"Associate Prof.",name:"Nevin",middleName:null,surname:"Çankaya",slug:"nevin-cankaya",fullName:"Nevin Çankaya"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"31411",title:"Prof.",name:"Nathalie",middleName:null,surname:"De Geyter",fullName:"Nathalie De Geyter",slug:"nathalie-de-geyter",email:"nathalie.degeyter@ugent.be",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"32004",title:"Prof.",name:"Rino",middleName:null,surname:"Morent",fullName:"Rino Morent",slug:"rino-morent",email:"Rino.Morent@ugent.be",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"171761",title:"MSc.",name:"Gaelle",middleName:null,surname:"Aziz",fullName:"Gaelle Aziz",slug:"gaelle-aziz",email:"Gaelle.Aziz@ugent.be",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"180883",title:"Mrs.",name:"Rouba",middleName:null,surname:"Ghobeira",fullName:"Rouba Ghobeira",slug:"rouba-ghobeira",email:"Rouba.Ghobeira@ugent.be",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_1_2",title:"1.1. Tissue engineering",level:"2"},{id:"sec_2_2",title:"1.2. Plasma: a brief introduction and historical background",level:"2"},{id:"sec_4",title:"2. Plasma modification of surfaces",level:"1"},{id:"sec_4_2",title:"2.1. Plasma activation",level:"2"},{id:"sec_5_2",title:"2.2. Plasma polymerization",level:"2"},{id:"sec_5_3",title:"Plasma polymers",level:"3"},{id:"sec_7_2",title:"2.3. Post-irradiation grafting",level:"2"},{id:"sec_9",title:"3. Cellular response to surfaces",level:"1"},{id:"sec_9_2",title:"Biological applications of plasma polymers",level:"2"},{id:"sec_11",title:"4. Effect of aqueous environments on plasma polymers",level:"1"},{id:"sec_12",title:"5. Surface aging",level:"1"},{id:"sec_13",title:"6. Plasma polymer gradients",level:"1"},{id:"sec_13_2",title:"6.1. Surface plasma polymer gradient of carboxylic acid functionalities",level:"2"},{id:"sec_14_2",title:"6.2. Surface plasma polymer gradient of amine functionalities",level:"2"},{id:"sec_16",title:"7. Conclusions",level:"1"},{id:"sec_17",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'Nair LS, Bhattacharyya S, Laurencin CT. Nanotechnology and tissue engineering: The scaffold based approach Nanotechnologies for the Life Sciences. 2006;1:4-23\n'},{id:"B2",body:'Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-926\n'},{id:"B3",body:'Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995-4021\n'},{id:"B4",body:'Jayagopal A, Stone GP, Haselton FR. Light-guided surface engineering for biomedical applications. Bioconjugate Chemistry. 2008;19(3):792-796\n'},{id:"B5",body:'Abenojar J, Torregrosa-Coque R, Martínez MA, Martín-Martínez JM. Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surface and Coatings Technology. 2009;203(16):2173-2180\n'},{id:"B6",body:'Kaczmarek H, Kowalonek J, Szalla A, Sionkowska A. Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surface Science. 2002;507:883-888\n'},{id:"B7",body:'Arenholz E, Svorcik V, Kefer T, Heitz J, Bäuerle D. Structure formation in UV-laser ablated poly-ethylene-terephthalate (PET). Applied Physics A: Materials Science & Processing. 1991;53(4):330-331\n'},{id:"B8",body:'Habibi Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews. 2014;43(5):1519-1542\n'},{id:"B9",body:'Xue C-H, Li Y-R, Zhang P, Ma J-Z, Jia S-T. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Applied Materials & Interfaces. 2014;6(13):10153-10161\n'},{id:"B10",body:'Shi X, Xu L, Le TB, Zhou G, Zheng C, Tsuru K, et al. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity. Materials Science and Engineering: C. 2016;59:542-548\n'},{id:"B11",body:'Puleo D, Kissling R, Sheu M-S. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials. 2002;23(9):2079-2087\n'},{id:"B12",body:'Biederman H. Plasma Polymer Films. London: World Scientific; 2004\n'},{id:"B13",body:'Gogolewski S, Mainil-Varlet P, Dillon J. Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas. Journal of Biomedical Materials Research Part A. 1996;32(2):227-235\n'},{id:"B14",body:'Chen TF, Siow KS, Ng PY, Majlis BY. Enhancing the biocompatibility of the polyurethane methacrylate and off-stoichiometry thiol-ene polymers by argon and nitrogen plasma treatment. Materials Science and Engineering: C. 2017;79:613-621\n'},{id:"B15",body:'Wolf RA. Atmospheric Pressure Plasma for Surface Modification. Hoboken, New Jersey, United States: John Wiley & Sons; 2012\n'},{id:"B16",body:'Christophorou LG, Olthoff JK. Fundamental Electron Interactions with Plasma Processing Gase. Berlin, Germany: Springer Science & Business Media; 2012\n'},{id:"B17",body:'PL_INTL. Plasmas international. Perspectives on plasmas. 2004. Available at www.plasmas.org/what-are-plasmas.htm [Accessed on 2 August 2017]\n'},{id:"B18",body:'De Geyter N. Plasma Modification of Polymer Surfaces in the Subatmospheric Pressure Range; 2007-2008\n'},{id:"B19",body:'Yasuda HK. Fundamental aspects of ionized gas. In: Plasma Polymerization. Cambridge, Massachusetts, United States: Academic Press; 2012\n'},{id:"B20",body:'Alves CM, Yang Y, Carnes D, Ong J, Sylvia V, Dean D, et al. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials. 2007;28(2):307-315\n'},{id:"B21",body:'Novotná Z, Rimpelová S, Juřík P, Veselý M, Kolská Z, Hubáček T, et al. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility. Materials Science and Engineering: C. 2017;71:125-131\n'},{id:"B22",body:'Lee JH, Park JW, Lee HB. Cell adhesion and growth on polymer surfaces with hydroxyl groups prepared by water vapour plasma treatment. Biomaterials. 1991;12(5):443-448\n'},{id:"B23",body:'Morent R, De Geyter N, Desmet T, Dubruel P, Leys C. Plasma surface modification of biodegradable polymers: A review. Plasma Processes and Polymers. 2011;8(3):171-190\n'},{id:"B24",body:'Desmet T, Morent R, Geyter ND, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 2009;10(9):2351-2378\n'},{id:"B25",body:'De Geyter N, Morent R, Leys C, Gengembre L, Payen E. Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure. Surface and Coatings Technology. 2007;201(16):7066-7075\n'},{id:"B26",body:'Van Dyke LS, Brumlik CJ, Liang W, Lei J, Martin CR, Yu Z, et al. Modification of fluoropolymer surfaces with electronically conductive polymers. Synthetic Metals. 1994;62(1):75-81\n'},{id:"B27",body:'Os MT. Surface Modification by Plasma Polymerization: Film Deposition, Tailoring of Surface Properties and Biocompatibility. Universiteit Twente; 2000\n'},{id:"B28",body:'Goodman J. The formation of thin polymer films in the gas discharge. Journal of Polymer Science. 1960;44(144):551-552\n'},{id:"B29",body:'Stuart M. Dielectric properties of cross-linked polystyrene film formed in the glow discharge. Nature. 1963;199:59-60\n'},{id:"B30",body:'Bradley A, Hammes JP. Electrical properties of thin organic films. Journal of The Electrochemical Society. 1963;110(1):15-22\n'},{id:"B31",body:'Yasuda H. Plasma Polymerization. London, UK: Academic Press; 1985\n'},{id:"B32",body:'Bax DV, McKenzie DR, Weiss AS, Bilek MM. The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials. 2010;31(9):2526-2534\n'},{id:"B33",body:'Bax DV, Wang Y, Li Z, Maitz PK, McKenzie DR, Bilek MM, et al. Binding of the cell adhesive protein tropoelastin to PTFE through plasma immersion ion implantation treatment. Biomaterials. 2011;32(22):5100-5111\n'},{id:"B34",body:'Gan B, Bilek M, Kondyurin A, Mizuno K, McKenzie D. Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2006;247(2):254-260\n'},{id:"B35",body:'Yasuda H, Hsu T. Plasma polymerization investigated by the comparison of hydrocarbons and perfluorocarbons. Surface Science. 1978;76(1):232-241\n'},{id:"B36",body:'Chiper A, Borcia G. Argon versus helium dielectric barrier discharge for surface modification of polypropylene and poly (methyl methacrylate) films. Plasma Chemistry and Plasma Processing. 2013;33(3):553-568\n'},{id:"B37",body:'Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C. Plasma surface modification of biomedical polymers: Influence on cell-material interaction. Plasma Chemistry and Plasma Processing. 2012;32(5):1039-1073\n'},{id:"B38",body:'Liu Y, Su C, Ren X, Fan C, Zhou W, Wang F, et al. Experimental study on surface modification of PET films under bipolar nanosecond-pulse dielectric barrier discharge in atmospheric air. Applied Surface Science. 2014;313:53-59\n'},{id:"B39",body:'Inagaki N. Plasma Surface Modification and Plasma Polymerization. Boca Raton, Florida, United States: CRC Press; 1996\n'},{id:"B40",body:'Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering: C. 2003;23(4):551-560\n'},{id:"B41",body:'Pandiyaraj KN, Kumar AA, RamKumar M, Deshmukh R, Bendavid A, P-G S, et al. Effect of cold atmospheric pressure plasma gas composition on the surface and cyto-compatible properties of low density polyethylene (LDPE) films. Current Applied Physics. 2016;16(7):784-792\n'},{id:"B42",body:'Gupta AK, Gupta M, Yarwood SJ, Curtis AS. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. Journal of Controlled Release. 2004;95(2):197-207\n'},{id:"B43",body:'Aziz G, Cools P, De Geyter N, Declercq H, Cornelissen R, Morent R. Dielectric barrier discharge plasma treatment of ultrahigh molecular weight polyethylene in different discharge atmospheres at medium pressure: A cell-biomaterial interface study. Biointerphases. 2015;10(2):029502\n'},{id:"B44",body:'Meyer-Plath A, Schröder K, Finke B, Ohl A. Current trends in biomaterial surface functionalization—Nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum. 2003;71(3):391-406\n'},{id:"B45",body:'Finke B, Luethen F, Schroeder K, Mueller PD, Bergemann C, Frant M, et al. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials. 2007;28(30):4521-4534\n'},{id:"B46",body:'Robinson DE, Marson A, Short RD, Buttle DJ, Day AJ, Parry KL, et al. Surface gradient of functional heparin. Advanced Materials. 2008;20(6):1166-1169\n'},{id:"B47",body:'Xu J, Gleason KK. Conformal, amine-functionalized thin films by initiated chemical vapor deposition (iCVD) for hydrolytically stable microfluidic devices. Chemistry of Materials. 2010;22(5):1732-1738\n'},{id:"B48",body:'Detomaso L, Gristina R, Senesi GS, d’Agostino R, Favia P. Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials. 2005;26(18):3831-3841\n'},{id:"B49",body:'Zhang Z, Chen Q, Knoll W, Foerch R, Holcomb R, Roitman D. Plasma polymer film structure and DNA probe immobilization. Macromolecules. 2003;36(20):7689-7694\n'},{id:"B50",body:'Zhang Z, Knoll W, Förch R. Amino-functionalized plasma polymer films for DNA immobilization and hybridization. Surface and Coating Technology. 2005;200(1):993-995\n'},{id:"B51",body:'Muguruma H, Hiratsuka A, Karube I. Thin-film glucose biosensor based on plasma-polymerized film: Simple design for mass production. Analytical Chemistry. 2000;72(11):2671-2675\n'},{id:"B52",body:'Gupta B, Plummer C, Bisson I, Frey P, Hilborn J. Plasma-induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) films: Characterization and human smooth muscle cell growth on grafted films. Biomaterials. 2002;23(3):863-871\n'},{id:"B53",body:'Yuan S, Szakalas-Gratzl G, Ziats NP, Jacobsen DW, Kottke-Marchant K, Marchant RE. Immobilization of high-affinity heparin oligosaccharides to radiofrequency plasma-modified polyethylene. Journal of Biomedical Materials Research Part A. 1993;27(6):811-819\n'},{id:"B54",body:'Siow KS, Britcher L, Kumar S, Griesser HJ. Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization–a review. Plasma Processes and Polymers. 2006;3(6-7):392-418\n'},{id:"B55",body:'Deng X, Nikiforov AY, Coenye T, Cools P, Aziz G, Morent R, et al. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Scientific Reports. 2015;5:10138\n'},{id:"B56",body:'Kumar V, Jolivalt C, Pulpytel J, Jafari R, Arefi-Khonsari F. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. Journal of Biomedical Materials Research Part A. 2013;101(4):1121-1132\n'},{id:"B57",body:'Degoutin S, Jimenez M, Casetta M, Bellayer S, Chai F, Blanchemain N, et al. Anticoagulant and antimicrobial finishing of non-woven polypropylene textiles. Biomedical Materials. 2012;7(3):035001\n'},{id:"B58",body:'Detomaso L, Gristina R, d’Agostino R, Senesi GS, Favia P. Plasma deposited acrylic acid coatings: Surface characterization and attachment of 3T3 murine fibroblast cell lines. Surface and Coatings Technology. 2005;200(1):1022-1025\n'},{id:"B59",body:'Majani R, Zelzer M, Gadegaard N, Rose FR, Alexander MR. Preparation of Caco-2 cell sheets using plasma polymerised acrylic acid as a weak boundary layer. Biomaterials. 2010;31(26):6764-6771\n'},{id:"B60",body:'Senesi GS, D’Aloia E, Gristina R, Favia P, d’Agostino R. Surface characterization of plasma deposited nano-structured fluorocarbon coatings for promoting in vitro cell growth. Surface Science. 2007;601(4):1019-1025\n'},{id:"B61",body:'Gristina R, D’Aloia E, Senesi GS, Milella A, Nardulli M, Sardella E, et al. Increasing cell adhesion on plasma deposited fluorocarbon coatings by changing the surface topography. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2009;88(1):139-149\n'},{id:"B62",body:'Dhayal M, Cho S-I. Leukemia cells interaction with plasma-polymerized acrylic acid coatings. Vacuum. 2006;80(6):636-642\n'},{id:"B63",body:'Intranuovo F, Sardella E, Gristina R, Nardulli M, White L, Howard D, et al. PE-CVD processes improve cell affinity of polymer scaffolds for tissue engineering. Surface and Coatings Technology. 2011;205:S548-SS51\n'},{id:"B64",body:'Finke B, Hempel F, Testrich H, Artemenko A, Rebl H, Kylián O, et al. Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surface and Coating Technology. 2011;205:S520-S5S4\n'},{id:"B65",body:'Daw R, Candan S, Beck AJ, Devlin AJ, Brook IM, MacNeil S, et al. Plasma copolymer surfaces of acrylic acid/1, 7 octadiene: Surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells. Biomaterials. 1998;19(19):1717-1725\n'},{id:"B66",body:'Buttiglione M, Vitiello F, Sardella E, Petrone L, Nardulli M, Favia P, et al. Behaviour of SH-SY5Y neuroblastoma cell line grown in different media and on different chemically modified substrates. Biomaterials. 2007;28(19):2932-2945\n'},{id:"B67",body:'Zheng Y, Xiong C, Wang Z, Li X, Zhang L. A combination of CO 2 laser and plasma surface modification of poly (etheretherketone) to enhance osteoblast response. Applied Surface Science. 2015;344:79-88\n'},{id:"B68",body:'Pezzatini S, Morbidelli L, Gristina R, Favia P, Ziche M. A nanoscale fluorocarbon coating on PET surfaces improves the adhesion and growth of cultured coronary endothelial cells. Nanotechnology. 2008;19(27):275101\n'},{id:"B69",body:'Myung SW, Ko YM, Kim BH. Protein adsorption and cell adhesion on three-dimensional polycaprolactone scaffolds with respect to plasma modification by etching and deposition techniques. Japanese Journal of Applied Physics. 2014;53(11S):11RB01\n'},{id:"B70",body:'Hamerli P, Weigel T, Groth T, Paul D. Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials. 2003;24(22):3989-3999\n'},{id:"B71",body:'Mitchell S, Davidson M, Emmison N, Bradley R. Isopropyl alcohol plasma modification of polystyrene surfaces to influence cell attachment behaviour. Surface Science. 2004;561(1):110-120\n'},{id:"B72",body:'Muir BW, Nelson A, Fairbrother A, Fong C, Hartley PG, James M, et al. A comparative X-ray and neutron reflectometry study of plasma polymer films containing reactive amines. Plasma Processes and Polymers. 2007;4(4):433-444\n'},{id:"B73",body:'Zhang Z, Chen Q, Knoll W, Förch R. Effect of aqueous solution on functional plasma polymerized films. Surface and Coating Technology. 2003;174:588-590\n'},{id:"B74",body:'Jeon H, Wyatt J, Harper-Nixon D, Weinkauf D. Characterization of thin polymer-like films formed by plasma polymerization of methylmethacrylate: A neutron reflectivity study. Journal of Polymer Science Part B: Polymer Physics. 2004;42(13):2522-2530\n'},{id:"B75",body:'Tamirisa PA, Hess DW. Water and moisture uptake by plasma polymerized thermoresponsive hydrogel films. Macromolecules. 2006;39(20):7092-7097\n'},{id:"B76",body:'Vasilev K, Britcher L, Casanal A, Griesser HJ. Solvent-induced porosity in ultrathin amine plasma polymer coatings. The Journal of Physical Chemistry B. 2008;112(35):10915-10921\n'},{id:"B77",body:'Förch R, Zhang Z, Knoll W. Soft plasma treated surfaces: Tailoring of structure and properties for biomaterial applications. Plasma Processes and Polymers. 2005;2(5):351-372\n'},{id:"B78",body:'Tarasova A, Hamilton-Brown P, Gengenbach T, Griesser HJ, Meagher L. Colloid probe AFM and XPS study of time-dependent aging of amine plasma polymer coatings in aqueous media. Plasma Processes and Polymers. 2008;5(2):175-185\n'},{id:"B79",body:'Aziz G, Thukkaram M, De Geyter N, Morent R. Plasma parameters effects on the properties, aging and stability behaviors of allylamine plasma coated ultra-high molecular weight polyethylene (UHMWPE) films. Applied Surface Science. 2017;409:381-395\n'},{id:"B80",body:'Gengenbach TR, Vasic ZR, Chatelier RC, Griesser HJ. A multi-technique study of the spontaneous oxidation of N-hexane plasma polymers. Journal of Polymer Science Part A: Polymer Chemistry. 1994;32(8):1399-1414\n'},{id:"B81",body:'Gengenbach TR, Griesser HJ. Compositional changes in plasma-deposited fluorocarbon films during ageing. Surface and Interface Analysis. 1998;26(7):498-511\n'},{id:"B82",body:'Gengenbach TR, Griesser HJ. Aging of 1, 3-diaminopropane plasma-deposited polymer films: Mechanisms and reaction pathways. Journal of Polymer Science Part A: Polymer Chemistry. 1999;37(13):2191-2206\n'},{id:"B83",body:'Gengenbach TR, Griesser HJ. Post-deposition ageing reactions differ markedly between plasma polymers deposited from siloxane and silazane monomers. Polymer. 1999;40(18):5079-5094\n'},{id:"B84",body:'Goreham RV, Short RD, Vasilev K. Method for the generation of surface-bound nanoparticle density gradients. The Journal of Physical Chemistry C. 2011;115(8):3429-3433\n'},{id:"B85",body:'Menzies DJ, Cowie B, Fong C, Forsythe JS, Gengenbach TR, McLean KM, et al. One-step method for generating PEG-like plasma polymer gradients: Chemical characterization and analysis of protein interactions. Langmuir. 2010;26(17):13987-13994\n'},{id:"B86",body:'Goreham RV, Mierczynska A, Pierce M, Short RD, Taheri S, Bachhuka A, et al. A substrate independent approach for generation of surface gradients. Thin Solid Films. 2013;528:106-110\n'},{id:"B87",body:'Harding F, Goreham R, Short R, Vasilev K, Voelcker NH. Surface bound amine functional group density influences embryonic stem cell maintenance. Advanced Healthcare Materials. 2013;2(4):585-590\n'},{id:"B88",body:'Zelzer M, Alexander MR, Russell NA. Hippocampal cell response to substrates with surface chemistry gradients. Acta Biomaterialia. 2011;7(12):4120-4130\n'},{id:"B89",body:'Zelzer M, Scurr D, Abdullah B, Urquhart AJ, Gadegaard N, Bradley JW, et al. Influence of the plasma sheath on plasma polymer deposition in advance of a mask and down pores. The Journal of Physical Chemistry B. 2009;113(25):8487-8494\n'},{id:"B90",body:'Mangindaan D, Kuo W-H, Wang M-J. Two-dimensional amine-functionality gradient by plasma polymerization. Biochemical Engineering Journal. 2013;78:198-204\n'},{id:"B91",body:'Parry KL, Shard A, Short R, White R, Whittle J, Wright A. ARXPS characterisation of plasma polymerised surface chemical gradients. Surface and Interface Analysis. 2006;38(11):1497-1504\n'},{id:"B92",body:'Pitt WG. Fabrication of a continuous wettability gradient by radio frequency plasma discharge. Journal of Colloid and Interface Science. 1989;133(1):223-227\n'},{id:"B93",body:'Whittle JD, Barton D, Alexander MR, Short RD. A method for the deposition of controllable chemical gradients. Chemical Communications. 2003;14:1766-1767\n'},{id:"B94",body:'Vasilev K, Mierczynska A, Hook AL, Chan J, Voelcker NH, Short RD. Creating gradients of two proteins by differential passive adsorption onto a PEG-density gradient. Biomaterials. 2010;31(3):392-397\n'},{id:"B95",body:'Ghobeira R, Philips C, Declercq H, Cools P, De Geyter N, Cornelissen R, et al. Effects of different sterilization methods on the physico-chemical and bioresponsive properties of plasma-treated polycaprolactone films. Biomedical Materials. 2017;12(1):015017\n'},{id:"B96",body:'Walker RA, Cunliffe VT, Whittle JD, Steele DA, Short RD. Submillimeter-scale surface gradients of immobilized protein ligands. Langmuir. 2009;25(8):4243-4246\n'},{id:"B97",body:'Wells N, Baxter MA, Turnbull JE, Murray P, Edgar D, Parry KL, et al. The geometric control of E14 and R1 mouse embryonic stem cell pluripotency by plasma polymer surface chemical gradients. Biomaterials. 2009;30(6):1066-1070\n'},{id:"B98",body:'Harding FJ, Clements LR, Short RD, Thissen H, Voelcker NH. Assessing embryonic stem cell response to surface chemistry using plasma polymer gradients. Acta Biomaterialia. 2012;8(5):1739-1748\n'},{id:"B99",body:'Wang P-Y, Clements LR, Thissen H, Tsai W-B, Voelcker NH. Screening rat mesenchymal stem cell attachment and differentiation on surface chemistries using plasma polymer gradients. Acta Biomaterialia. 2015;11:58-67\n'},{id:"B100",body:'Mangindaan D, Kuo WH, Kurniawan H, Wang MJ. Creation of biofunctionalized plasma polymerized allylamine gradients. Journal of Polymer Science Part B: Polymer Physics. 2013;51(18):1361-1367\n'},{id:"B101",body:'Barry JJ, Howard D, Shakesheff KM, Howdle SM, Alexander MR. Using a core–sheath distribution of surface chemistry through 3D tissue engineering scaffolds to control cell ingress. Advanced Materials. 2006;18(11):1406-1410\n'},{id:"B102",body:'Zelzer M, Majani R, Bradley JW, Rose FR, Davies MC, Alexander MR. Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials. 2008;29(2):172-184\n'},{id:"B103",body:'Robinson DE, Buttle DJ, Whittle JD, Parry KL, Short RD, Steele DA. The substrate and composition dependence of plasma polymer stability. Plasma Processes and Polymers. 2010;7(2):102-106\n'},{id:"B104",body:'Delalat B, Goreham RV, Vasilev K, Harding FJ, Voelcker NH. Subtle changes in surface chemistry affect embryoid body cell differentiation: Lessons learnt from surface-bound amine density gradients. Tissue Engineering Parts A. 2014;20(11-12):1715-1725\n'},{id:"B105",body:'Liu X, Shi S, Feng Q, Bachhuka A, He W, Huang Q, et al. Surface chemical gradient affects the differentiation of human adipose-derived stem cells via ERK1/2 signaling pathway. ACS Applied Materials & Interfaces. 2015;7(33):18473-18482\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Gaelle Aziz",address:"gaelle.aziz@ugent.be",affiliation:'
Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Ghent, Belgium
Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Ghent, Belgium
'},{corresp:null,contributorFullName:"Nathalie De Geyter",address:null,affiliation:'
Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Ghent, Belgium
'}],corrections:null},book:{id:"6141",type:"book",title:"Polymerization",subtitle:null,fullTitle:"Recent Research in Polymerization",slug:"recent-research-in-polymerization",publishedDate:"January 17th 2018",bookSignature:"Nevin Cankaya",coverURL:"https://cdn.intechopen.com/books/images_new/6141.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-953-51-3747-4",printIsbn:"978-953-51-3746-7",pdfIsbn:"978-953-51-4044-3",isAvailableForWebshopOrdering:!0,editors:[{id:"175645",title:"Associate Prof.",name:"Nevin",middleName:null,surname:"Çankaya",slug:"nevin-cankaya",fullName:"Nevin Çankaya"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"89353",title:"Prof.",name:"Young-Suk",middleName:null,surname:"Lee",email:"paradiso73@hanmail.net",fullName:"Young-Suk Lee",slug:"young-suk-lee",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"34593",title:"Chlamydial Infection in Urologic Diseases",slug:"chlamydial-infection-in-urologic-diseases",abstract:null,signatures:"Young-Suk Lee and Kyu-Sung Lee",authors:[{id:"82095",title:"Prof.",name:"Kyu-Sung",surname:"Lee",fullName:"Kyu-Sung Lee",slug:"kyu-sung-lee",email:"ksleedr@skku.edu"},{id:"89353",title:"Prof.",name:"Young-Suk",surname:"Lee",fullName:"Young-Suk Lee",slug:"young-suk-lee",email:"paradiso73@hanmail.net"}],book:{id:"644",title:"Chlamydia",slug:"chlamydia",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"86195",title:"Dr",name:"Fabienne",surname:"Paumet",slug:"fabienne-paumet",fullName:"Fabienne Paumet",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. Fabienne Paumet is an Associate Professor in the Department of Microbiology and Immunology at Thomas Jefferson University in Philadelphia (USA). Since 2007, her laboratory has focused on all aspects of host-pathogen interactions in the context of Chlamydia infection, with a major emphasis on how Chlamydia co-opts the host cell to promote pathogenicity. \nDr. Paumet developed her expertise in cellular biology and biochemistry at the Pasteur Institute (Paris, France), where she received her PhD. During her post-doctoral training at the Memorial Sloan Kettering Cancer Center and Columbia University (NYC), she studied the molecular machinery involved in vesicular trafficking in eukaryotic cells. As she developed her expertise in Chlamydia biology, all of her efforts now focus on understanding how this obligate intracellular bacterium reorganizes complex eukaryotic pathways to support its survival.",institutionString:"Thomas Jefferson University",institution:null},{id:"88604",title:"Dr.",name:"Sanchez",surname:"Monroy",slug:"sanchez-monroy",fullName:"Sanchez Monroy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"89085",title:"Dr.",name:"José D'Artagnan",surname:"Villalba-Magdaleno",slug:"jose-d'artagnan-villalba-magdaleno",fullName:"José D'Artagnan Villalba-Magdaleno",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"89420",title:"Dr.",name:"Danny",surname:"Schust",slug:"danny-schust",fullName:"Danny Schust",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Missouri",institutionURL:null,country:{name:"United States of America"}}},{id:"89524",title:"Dr.",name:"Joyce",surname:"Ibana",slug:"joyce-ibana",fullName:"Joyce Ibana",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Louisiana State University",institutionURL:null,country:{name:"United States of America"}}},{id:"89525",title:"Dr.",name:"Allison",surname:"Quayle",slug:"allison-quayle",fullName:"Allison Quayle",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Louisiana State University",institutionURL:null,country:{name:"United States of America"}}},{id:"89527",title:"Dr.",name:"Kei",surname:"Kawana",slug:"kei-kawana",fullName:"Kei Kawana",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",institutionURL:null,country:{name:"Japan"}}},{id:"89528",title:"BSc.",name:"Gerialisa",surname:"Caesar",slug:"gerialisa-caesar",fullName:"Gerialisa Caesar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Missouri",institutionURL:null,country:{name:"United States of America"}}},{id:"94047",title:"Mr.",name:"Erik",surname:"Ronzone",slug:"erik-ronzone",fullName:"Erik Ronzone",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Thomas Jefferson University",institutionURL:null,country:{name:"United States of America"}}},{id:"94048",title:"Mr.",name:"Jordan",surname:"Wesolowski",slug:"jordan-wesolowski",fullName:"Jordan Wesolowski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. Jordan Wesolowski is a post-doctoral research fellow at Thomas Jefferson University, where he conducts research on the cellular microbiology of intracellular pathogens. To this end, his interests center on identifying the molecular pathways co-opted by the intracellular bacterium Chlamydia trachomatis to survive inside of its host cell, as well as utilizing Chlamydia to discover novel host pathways.\nDr. Wesolowski received his PhD in Immunology and Microbial pathogenesis at Thomas Jefferson University (2014). During his graduate work, he investigated the impact bacteria have on host SNARE-mediated membrane fusion in the context of allergy and infection. As a post-doctoral fellow, Dr. Wesolowski’s work now focuses on identifying the molecular mechanisms used by Chlamydia to hijack the host cytoskeletal network to establish and maintain its intracellular niche.",institutionString:"Thomas Jefferson University",institution:{name:"Thomas Jefferson University",institutionURL:null,country:{name:"United States of America"}}}]},generic:{page:{slug:"open-access-funding",title:"Open Access Funding",intro:"
IntechOpen’s Academic Editors and Authors have received funding for their work through many well-known funders, including: the European Commission, Bill and Melinda Gates Foundation, Wellcome Trust, Chinese Academy of Sciences, Natural Science Foundation of China (NSFC), CGIAR Consortium of International Agricultural Research Centers, National Institute of Health (NIH), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), National Institute of Standards and Technology (NIST), German Research Foundation (DFG), Research Councils United Kingdom (RCUK), Oswaldo Cruz Foundation, Austrian Science Fund (FWF), Foundation for Science and Technology (FCT), Australian Research Council (ARC).
Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\\n\\n
In order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\\n\\n
\\n\\t
Does your institution already have a budget for covering Open Access publication costs?
\\n\\t
Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\\n
\\n\\n
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\\n\\n
Please note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\\n\\n
Please be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\n\n
In order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\n\n
\n\t
Does your institution already have a budget for covering Open Access publication costs?
\n\t
Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\n
\n\n
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
Please note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\n\n
Please be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"18"},books:[{type:"book",id:"12166",title:"New Topics on Electroencephalography",subtitle:null,isOpenForSubmission:!0,hash:"e6eae5162ca3ec5be1a1f2b85f007b2d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12166.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12167",title:"Neuroprotection",subtitle:null,isOpenForSubmission:!0,hash:"5b16c09a6266c3be63796aefa6828df2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12167.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12168",title:"Neuroglial Research",subtitle:null,isOpenForSubmission:!0,hash:"ce5fb5312ae2e8239b9ba2710fe3c0fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12168.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12170",title:"Hydrocephalus",subtitle:null,isOpenForSubmission:!0,hash:"2a0f7f54e5e93c674dd19336fa859f50",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12170.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11636",title:"Neuroplasticity - Visual Cortex Reorganization From Neurons to Maps",subtitle:null,isOpenForSubmission:!0,hash:"b306ce94998737c764d08736e76d60e1",slug:null,bookSignature:"Dr. Alyssa A Brewer and Dr. Brian Barton",coverURL:"https://cdn.intechopen.com/books/images_new/11636.jpg",editedByType:null,editors:[{id:"115304",title:"Dr.",name:"Alyssa",surname:"Brewer",slug:"alyssa-brewer",fullName:"Alyssa Brewer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12300",title:"Dopamine Receptors",subtitle:null,isOpenForSubmission:!0,hash:"257af6b69ae2215cdd6327cc5a5f6135",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12300.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11637",title:"Neuropsychology of Dementia",subtitle:null,isOpenForSubmission:!0,hash:"d40f707b9ef020bb202be89404f77a1e",slug:null,bookSignature:"Dr. Devendra Kumar, Prof. Sushil Kumar Singh and Dr. Ankit Ganeshpurkar",coverURL:"https://cdn.intechopen.com/books/images_new/11637.jpg",editedByType:null,editors:[{id:"454030",title:"Dr.",name:"Devendra",surname:"Kumar",slug:"devendra-kumar",fullName:"Devendra Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12169",title:"Olfactory and Gustatory Systems",subtitle:null,isOpenForSubmission:!0,hash:"6ee31032ea51909b6995f41e16d254b2",slug:null,bookSignature:"Dr. Vonnie D.C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/12169.jpg",editedByType:null,editors:[{id:"82613",title:"Dr.",name:"Vonnie D.C.",surname:"Shields",slug:"vonnie-d.c.-shields",fullName:"Vonnie D.C. Shields"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12165",title:"Mild Cognitive Impairment - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"908d319a0cd368c5274419678d293bb1",slug:null,bookSignature:"Dr. Shuzhen Zhu",coverURL:"https://cdn.intechopen.com/books/images_new/12165.jpg",editedByType:null,editors:[{id:"470534",title:"Dr.",name:"Shuzhen",surname:"Zhu",slug:"shuzhen-zhu",fullName:"Shuzhen Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"151",title:"Pure Microbiology",slug:"pure-microbiology",parent:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"},numberOfBooks:19,numberOfSeries:0,numberOfAuthorsAndEditors:529,numberOfWosCitations:317,numberOfCrossrefCitations:235,numberOfDimensionsCitations:542,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"151",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10442",title:"Cyanobacteria",subtitle:"Recent Advances in Taxonomy and Applications",isOpenForSubmission:!1,hash:"2fec78743d3f973c80881957ce3e6d79",slug:"cyanobacteria-recent-advances-in-taxonomy-and-applications",bookSignature:"Wael N. Hozzein",coverURL:"https://cdn.intechopen.com/books/images_new/10442.jpg",editedByType:"Edited by",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9665",title:"Pseudomonas aeruginosa",subtitle:"Biofilm Formation, Infections and Treatments",isOpenForSubmission:!1,hash:"00e9f0f41cf8cd97ff33fac3bcea14cb",slug:"pseudomonas-aeruginosa-biofilm-formation-infections-and-treatments",bookSignature:"Theerthankar Das",coverURL:"https://cdn.intechopen.com/books/images_new/9665.jpg",editedByType:"Edited by",editors:[{id:"179493",title:"Dr.",name:"Theerthankar",middleName:null,surname:"Das",slug:"theerthankar-das",fullName:"Theerthankar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8997",title:"Microorganisms",subtitle:null,isOpenForSubmission:!1,hash:"d4bb9c77b89f8baf2716d1fb84c5bd9f",slug:"microorganisms",bookSignature:"Miroslav Blumenberg, Mona Shaaban, Abdelaziz Elgaml",coverURL:"https://cdn.intechopen.com/books/images_new/8997.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9025",title:"Parasitology and Microbiology Research",subtitle:null,isOpenForSubmission:!1,hash:"d9a211396d44f07d2748e147786a2c8b",slug:"parasitology-and-microbiology-research",bookSignature:"Gilberto Antonio Bastidas Pacheco and Asghar Ali Kamboh",coverURL:"https://cdn.intechopen.com/books/images_new/9025.jpg",editedByType:"Edited by",editors:[{id:"238219",title:"Dr.",name:"Gilberto Antonio",middleName:null,surname:"Bastidas Pacheco",slug:"gilberto-antonio-bastidas-pacheco",fullName:"Gilberto Antonio Bastidas Pacheco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8806",title:"Biology of Trypanosoma cruzi",subtitle:null,isOpenForSubmission:!1,hash:"514ab85661e01a47575e845792ef5bdc",slug:"biology-of-em-trypanosoma-cruzi-em-",bookSignature:"Wanderley De Souza",coverURL:"https://cdn.intechopen.com/books/images_new/8806.jpg",editedByType:"Edited by",editors:[{id:"161922",title:"Dr.",name:"Wanderley",middleName:null,surname:"De Souza",slug:"wanderley-de-souza",fullName:"Wanderley De Souza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6979",title:"Parasites and Parasitic Diseases",subtitle:null,isOpenForSubmission:!1,hash:"f55304c8bd1d92268e33689c368f9e33",slug:"parasites-and-parasitic-diseases",bookSignature:"Gilberto Bastidas",coverURL:"https://cdn.intechopen.com/books/images_new/6979.jpg",editedByType:"Edited by",editors:[{id:"238219",title:"Dr.",name:"Gilberto Antonio",middleName:null,surname:"Bastidas Pacheco",slug:"gilberto-antonio-bastidas-pacheco",fullName:"Gilberto Antonio Bastidas Pacheco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8122",title:"Vectors and Vector-Borne Zoonotic Diseases",subtitle:null,isOpenForSubmission:!1,hash:"5a088c3ab82e499c8d5d2f8ceec6a601",slug:"vectors-and-vector-borne-zoonotic-diseases",bookSignature:"Sara Savić",coverURL:"https://cdn.intechopen.com/books/images_new/8122.jpg",editedByType:"Edited by",editors:[{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",isOpenForSubmission:!1,hash:"105e347b2d5dbbe6b593aceffa051efa",slug:"influenza-therapeutics-and-challenges",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5831",title:"Clostridium Difficile",subtitle:"A Comprehensive Overview",isOpenForSubmission:!1,hash:"fabbec5ed99960d2fb904f16790e8b97",slug:"clostridium-difficile-a-comprehensive-overview",bookSignature:"Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/5831.jpg",editedByType:"Edited by",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:19,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"31812",doi:"10.5772/32521",title:"Soft Ticks as Pathogen Vectors: Distribution, Surveillance and Control",slug:"soft-ticks-as-pathogen-vectors-distribution-surveillance-and-control-",totalDownloads:6446,totalCrossrefCites:15,totalDimensionsCites:40,abstract:null,book:{id:"1692",slug:"parasitology",title:"Parasitology",fullTitle:"Parasitology"},signatures:"Raúl Manzano-Román, Verónica Díaz-Martín, José de la Fuente and Ricardo Pérez-Sánchez",authors:[{id:"91813",title:"Dr.",name:"Ricardo",middleName:null,surname:"Pérez-Sánchez",slug:"ricardo-perez-sanchez",fullName:"Ricardo Pérez-Sánchez"},{id:"120373",title:"Dr.",name:"Raúl",middleName:null,surname:"Manzano-Román",slug:"raul-manzano-roman",fullName:"Raúl Manzano-Román"},{id:"120375",title:"Ms.",name:"Verónica",middleName:null,surname:"Díaz-Martín",slug:"veronica-diaz-martin",fullName:"Verónica Díaz-Martín"},{id:"120378",title:"Dr.",name:"José",middleName:null,surname:"De La Fuente",slug:"jose-de-la-fuente",fullName:"José De La Fuente"}]},{id:"54154",doi:"10.5772/67338",title:"Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach",slug:"staphylococcus-aureus-overview-of-bacteriology-clinical-diseases-epidemiology-antibiotic-resistance-",totalDownloads:7168,totalCrossrefCites:14,totalDimensionsCites:25,abstract:"Staphylococcus aureus is an important human pathogen that causes wide range of infectious conditions both in nosocomial and community settings. The Gram-positive pathogen is armed with battery of virulence factors that facilitate to establish infections in the hosts. The organism is well known for its ability to acquire resistance to various antibiotic classes. The emergence and spread of methicillin-resistant S. aureus (MRSA) strains which are often multi-drug resistant in hospitals and subsequently in community resulted in significant mortality and morbidity. The epidemiology of MRSA has been evolving since its initial outbreak which necessitates a comprehensive medical approach to tackle this pathogen. Vancomycin has been the drug of choice for years but its utility was challenged by the emergence of resistance. In the last 10 years or so, newer anti-MRSA antibiotics were approved for clinical use. However, being notorious for developing antibiotic resistance, there is a continuous need for exploring novel anti-MRSA agents from various sources including plants and evaluation of non-antibiotic approaches.",book:{id:"5471",slug:"frontiers-in-i-staphylococcus-aureus-i-",title:"Frontiers in Staphylococcus aureus",fullTitle:"Frontiers in Staphylococcus aureus"},signatures:"Arumugam Gnanamani, Periasamy Hariharan and Maneesh Paul-\nSatyaseela",authors:[{id:"192829",title:"Dr.",name:"Arumugam",middleName:null,surname:"Gnanamani",slug:"arumugam-gnanamani",fullName:"Arumugam Gnanamani"},{id:"204388",title:"Dr.",name:"Periasamy",middleName:null,surname:"Hariharan",slug:"periasamy-hariharan",fullName:"Periasamy Hariharan"},{id:"204389",title:"Dr.",name:"Maneesh",middleName:null,surname:"Paul-Satyaseela",slug:"maneesh-paul-satyaseela",fullName:"Maneesh Paul-Satyaseela"}]},{id:"32282",doi:"10.5772/33983",title:"Bacteriophages of Ralstonia solanacearum: Their Diversity and Utilization as Biocontrol Agents in Agriculture",slug:"bacteriophages-of-ralstonia-solanacearum-their-diversity-and-utilization-as-biocontrol-agents-in-agr",totalDownloads:3748,totalCrossrefCites:7,totalDimensionsCites:23,abstract:null,book:{id:"555",slug:"bacteriophages",title:"Bacteriophages",fullTitle:"Bacteriophages"},signatures:"Takashi Yamada",authors:[{id:"98151",title:"Dr.",name:"Takashi",middleName:null,surname:"Yamada",slug:"takashi-yamada",fullName:"Takashi Yamada"}]},{id:"32276",doi:"10.5772/34642",title:"Bacteriophages and Their Structural Organisation",slug:"bacteriophages-and-their-structural-organisation-",totalDownloads:12411,totalCrossrefCites:9,totalDimensionsCites:17,abstract:null,book:{id:"555",slug:"bacteriophages",title:"Bacteriophages",fullTitle:"Bacteriophages"},signatures:"E.V. Orlova",authors:[{id:"101052",title:"Prof.",name:"Elena",middleName:null,surname:"Orlova",slug:"elena-orlova",fullName:"Elena Orlova"}]},{id:"53782",doi:"10.5772/66645",title:"Methicillin-Resistant Staphylococcus aureus (MRSA) in Food- Producing and Companion Animals and Food Products",slug:"methicillin-resistant-staphylococcus-aureus-mrsa-in-food-producing-and-companion-animals-and-food-pr",totalDownloads:2743,totalCrossrefCites:8,totalDimensionsCites:16,abstract:"Methicillin-resistant Staphylococcus aureus (MRSA) has become a growing concern in companion and food-producing animals. The presence of multidrug-resistance with a wide range of extracellular enterotoxin genes, virulence factors, and Panton-Valentine leukocidin (pvl) cytotoxin genes confer life-threatening traits on MRSA and makes them highly pathogenic and difficult to treat. Clonal complex 398 (CC398), a predominant clonal lineage of livestock-associated-MRSA in domestic animals and retail meat, is capable of infecting humans. In order to monitor and prevent MRSA contamination, it is critical to understand its source and transmission dynamics. In this review, we describe MRSA in food-producing animals (pig, cattle, chicken), horses, pet animals (dogs, cats), and food products (pork, beef, chicken, milk, and fish).",book:{id:"5471",slug:"frontiers-in-i-staphylococcus-aureus-i-",title:"Frontiers in Staphylococcus aureus",fullTitle:"Frontiers in Staphylococcus aureus"},signatures:"Jungwhan Chon, Kidon Sung and Saeed Khan",authors:[{id:"189634",title:"Dr.",name:"Kidon",middleName:null,surname:"Sung",slug:"kidon-sung",fullName:"Kidon Sung"},{id:"190400",title:"Dr.",name:"Jungwhan",middleName:null,surname:"Chon",slug:"jungwhan-chon",fullName:"Jungwhan Chon"},{id:"190401",title:"Dr.",name:"Saeed",middleName:null,surname:"Khan",slug:"saeed-khan",fullName:"Saeed Khan"}]}],mostDownloadedChaptersLast30Days:[{id:"69731",title:"Isolation and Purification of Sulfate-Reducing Bacteria",slug:"isolation-and-purification-of-sulfate-reducing-bacteria",totalDownloads:1526,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"Sulfate-reducing bacteria (SRB) are a widespread group of microorganisms that are often isolated from the anoxygenic environments (lake depths, soil, or swamps), and they are also present in the human and animal intestines. This group is often detected in patients with inflammatory bowel disease, including ulcerative colitis. That is why new rapid methods for their isolation, purification, and identification are important and necessary. In this chapter, the methods of mesophilic SRB isolation from various environments are described. Particular attention is paid to the purification of mesophilic SRB since they can be in close interaction with other microorganisms (Clostridium, Bacteroides, Pseudomonas, etc.), which are their frequent satellites. Moreover, the main methods of mesophilic SRB identification based on their morphological, physiological, biochemical, and genetical characteristics are presented.",book:{id:"8997",slug:"microorganisms",title:"Microorganisms",fullTitle:"Microorganisms"},signatures:"Ivan Kushkevych",authors:[{id:"252191",title:"Associate Prof.",name:"Ivan",middleName:null,surname:"Kushkevych",slug:"ivan-kushkevych",fullName:"Ivan Kushkevych"}]},{id:"65773",title:"Life Cycle of Trypanosoma cruzi in the Invertebrate and the Vertebrate Hosts",slug:"life-cycle-of-em-trypanosoma-cruzi-em-in-the-invertebrate-and-the-vertebrate-hosts",totalDownloads:1450,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"Trypanosoma cruzi (T. cruzi) is a protozoan parasite that causes Chagas disease, a zoonotic disease that can be transmitted to humans by blood-sucking triatomine bugs. T. cruzi is a single-celled eukaryote with a complex life cycle alternating between reduviid bug invertebrate vectors and vertebrate hosts. This article will look at the developmental stages of T. cruzi in the invertebrate vector and the vertebrate hosts, the different surface membrane proteins involved in different life cycle stages of T. cruzi, roles of different amino acids in the life cycle, carbon and energy sources and gene expression in the life cycle of T. cruzi. The author will also look at extracellular vesicles (EV) and its role in the dissemination and survival of T. cruzi in mammalian host.",book:{id:"8806",slug:"biology-of-em-trypanosoma-cruzi-em-",title:"Biology of Trypanosoma cruzi",fullTitle:"Biology of Trypanosoma cruzi"},signatures:"Kenechukwu C. Onyekwelu",authors:[{id:"245368",title:"Dr.",name:"Kenechukwu C.",middleName:null,surname:"Onyekwelu",slug:"kenechukwu-c.-onyekwelu",fullName:"Kenechukwu C. Onyekwelu"}]},{id:"54154",title:"Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach",slug:"staphylococcus-aureus-overview-of-bacteriology-clinical-diseases-epidemiology-antibiotic-resistance-",totalDownloads:7155,totalCrossrefCites:14,totalDimensionsCites:25,abstract:"Staphylococcus aureus is an important human pathogen that causes wide range of infectious conditions both in nosocomial and community settings. The Gram-positive pathogen is armed with battery of virulence factors that facilitate to establish infections in the hosts. The organism is well known for its ability to acquire resistance to various antibiotic classes. The emergence and spread of methicillin-resistant S. aureus (MRSA) strains which are often multi-drug resistant in hospitals and subsequently in community resulted in significant mortality and morbidity. The epidemiology of MRSA has been evolving since its initial outbreak which necessitates a comprehensive medical approach to tackle this pathogen. Vancomycin has been the drug of choice for years but its utility was challenged by the emergence of resistance. In the last 10 years or so, newer anti-MRSA antibiotics were approved for clinical use. However, being notorious for developing antibiotic resistance, there is a continuous need for exploring novel anti-MRSA agents from various sources including plants and evaluation of non-antibiotic approaches.",book:{id:"5471",slug:"frontiers-in-i-staphylococcus-aureus-i-",title:"Frontiers in Staphylococcus aureus",fullTitle:"Frontiers in Staphylococcus aureus"},signatures:"Arumugam Gnanamani, Periasamy Hariharan and Maneesh Paul-\nSatyaseela",authors:[{id:"192829",title:"Dr.",name:"Arumugam",middleName:null,surname:"Gnanamani",slug:"arumugam-gnanamani",fullName:"Arumugam Gnanamani"},{id:"204388",title:"Dr.",name:"Periasamy",middleName:null,surname:"Hariharan",slug:"periasamy-hariharan",fullName:"Periasamy Hariharan"},{id:"204389",title:"Dr.",name:"Maneesh",middleName:null,surname:"Paul-Satyaseela",slug:"maneesh-paul-satyaseela",fullName:"Maneesh Paul-Satyaseela"}]},{id:"55437",title:"Biological Control of Parasites",slug:"biological-control-of-parasites-2017-07",totalDownloads:4281,totalCrossrefCites:7,totalDimensionsCites:7,abstract:"Parasites (ectoparasites or endoparasites) are a major cause of diseases in man, his livestock and crops, leading to poor yield and great economic loss. To overcome some of the major limitations of chemical control methods such as rising resistance, environmental and health risks, and the adverse effect on non‐target organisms, biological control (biocontrol) is now at the forefront of parasite (pests) control. Biocontrol is now a core component of the integrated pest management. Biocontrol is defined as “the study and uses of parasites, predators and pathogens for the regulation of host (pest) densities”. Considerable successes have been achieved in the implementation of biocontrol strategies in the past. This chapter presents a review of the history of biocontrol, its advantages and disadvantages; the different types of biological control agents (BCAs) including predators, parasites (parasitoids) and pathogens (fungi, bacteria, viruses and virus‐like particles, protozoa and nematodes); the effect of biocontrol on native biodiversity; a few case studies of the successful implementation of biocontrol methods and the challenges encountered with the implementation of biocontrol and future perspectives.",book:{id:"5527",slug:"natural-remedies-in-the-fight-against-parasites",title:"Natural Remedies in the Fight Against Parasites",fullTitle:"Natural Remedies in the Fight Against Parasites"},signatures:"Tebit Emmanuel Kwenti",authors:[{id:"191763",title:"Dr.",name:"Tebit Emmanuel",middleName:null,surname:"Kwenti",slug:"tebit-emmanuel-kwenti",fullName:"Tebit Emmanuel Kwenti"}]},{id:"70336",title:"Plastics Polymers Degradation by Fungi",slug:"plastics-polymers-degradation-by-fungi",totalDownloads:1416,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"The studies on plastic degradation are very important for the development of biodegradable plastics, and for reduction of pollution, since plastic waste can remain in the environment for decades or centuries. We have showed the degradation of oxo-biodegradable plastic bags and green polyethylene by Pleurotus ostreatus. This fungus can also produce mushrooms using these plastics. The plastic degradation was possibly by three reasons: (a) presence of pro-oxidant ions or plant polymer, (b) low specificity of the lignocellulolytic enzymes, and (c) the presence of endomycotic nitrogen-fixing microorganisms. In this chapter, the plastic bags’ degradation by abiotic and microbial process using the exposure to sunlight and the use of a white-rot fungus will described. The physical, chemical, and biological alterations of plastic were analyzed after each process of degradation. The degradation of plastic bags was more effective when the abiotic and biotic degradations were combined.",book:{id:"8997",slug:"microorganisms",title:"Microorganisms",fullTitle:"Microorganisms"},signatures:"José Maria Rodrigues da Luz, Marliane de Cássia Soares da Silva, Leonardo Ferreira dos Santos and Maria Catarina Megumi Kasuya",authors:[{id:"217699",title:"Dr.",name:"Jose Maria",middleName:null,surname:"Da Luz",slug:"jose-maria-da-luz",fullName:"Jose Maria Da Luz"}]}],onlineFirstChaptersFilter:{topicId:"151",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",doi:"10.5772/intechopen.105528",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82270",title:"From Corporate Social Opportunity to Corporate Social Responsibility",doi:"10.5772/intechopen.105445",signatures:"Brian Bolton",slug:"from-corporate-social-opportunity-to-corporate-social-responsibility",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82339",title:"Green Human Resource Management: An Exploratory Study from Moroccan ISO 14001 Certified Companies",doi:"10.5772/intechopen.105565",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"green-human-resource-management-an-exploratory-study-from-moroccan-iso-14001-certified-companies",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82194",title:"CSR and Female Directors: A Review and Future Research Agenda",doi:"10.5772/intechopen.105112",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Sirimon Treepongkaruna",slug:"csr-and-female-directors-a-review-and-future-research-agenda",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Marketing",value:88,count:1,group:"subseries"},{caption:"Business and Management",value:86,count:7,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:739,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. from Integral University, Lucknow, India, with his work titled ‘Development and evaluation of silymarin nanoformulation for hepatic carcinoma’. Currently, he is an Assistant Professor of Pharmaceutics, at the Faculty of Pharmacy, Integral University. He has been teaching PharmD, BPharm, and MPharm students and conducting research in the novel drug delivery domain. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than twenty-four original journal articles, two edited books, four book chapters, and several scientific articles to his credit. He is a member of the American Association for Cancer Research, the International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"333824",title:"Dr.",name:"Ahmad Farouk",middleName:null,surname:"Musa",slug:"ahmad-farouk-musa",fullName:"Ahmad Farouk Musa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333824/images/22684_n.jpg",biography:"Dato’ Dr Ahmad Farouk Musa\nMD, MMED (Surgery) (Mal), Fellowship in Cardiothoracic Surgery (Monash Health, Aust), Graduate Certificate in Higher Education (Aust), Academy of Medicine (Mal)\n\n\n\nDato’ Dr Ahmad Farouk Musa obtained his Doctor of Medicine from USM in 1992. He then obtained his Master of Medicine in Surgery from the same university in the year 2000 before subspecialising in Cardiothoracic Surgery at Institut Jantung Negara (IJN), Kuala Lumpur from 2002 until 2005. He then completed his Fellowship in Cardiothoracic Surgery at Monash Health, Melbourne, Australia in 2008. He has served in the Malaysian army as a Medical Officer with the rank of Captain upon completing his Internship before joining USM as a trainee lecturer. He is now serving as an academic and researcher at Monash University Malaysia. He is a life-member of the Malaysian Association of Thoracic & Cardiovascular Surgery (MATCVS) and a committee member of the MATCVS Database. He is also a life-member of the College of Surgeons, Academy of Medicine of Malaysia; a life-member of Malaysian Medical Association (MMA), and a life-member of Islamic Medical Association of Malaysia (IMAM). Recently he was appointed as an Interim Chairperson of Examination & Assessment Subcommittee of the UiTM-IJN Cardiothoracic Surgery Postgraduate Program. As an academic, he has published numerous research papers and book chapters. He has also been appointed to review many scientific manuscripts by established journals such as the British Medical Journal (BMJ). He has presented his research works at numerous local and international conferences such as the European Association for Cardiothoracic Surgery (EACTS) and the European Society of Cardiovascular Surgery (ESCVS), to name a few. He has also won many awards for his research presentations at meetings and conferences like the prestigious International Invention, Innovation & Technology Exhibition (ITEX); Design, Research and Innovation Exhibition, the National Conference on Medical Sciences and the Annual Scientific Meetings of the Malaysian Association for Thoracic and Cardiovascular Surgery. He was awarded the Darjah Setia Pangkuan Negeri (DSPN) by the Governor of Penang in July, 2015.",institutionString:null,institution:{name:"Monash University Malaysia",country:{name:"Malaysia"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}}]}},subseries:{item:{id:"10",type:"subseries",title:"Animal Physiology",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",institutionString:"Kafkas University",institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:352,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:398,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"
\r\n\tIn general, the harsher the environmental conditions in an ecosystem, the lower the biodiversity. Changes in the environment caused by human activity accelerate the impoverishment of biodiversity.
\r\n
\r\n\tBiodiversity refers to “the variability of living organisms from any source, including terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; it includes diversity within each species, between species, and that of ecosystems”.
\r\n
\r\n\tBiodiversity provides food security and constitutes a gene pool for biotechnology, especially in the field of agriculture and medicine, and promotes the development of ecotourism.
\r\n
\r\n\tCurrently, biologists admit that we are witnessing the first phases of the seventh mass extinction caused by human intervention. It is estimated that the current rate of extinction is between a hundred and a thousand times faster than it was when man first appeared. The disappearance of species is caused not only by an accelerated rate of extinction, but also by a decrease in the rate of emergence of new species as human activities degrade the natural environment. The conservation of biological diversity is "a common concern of humanity" and an integral part of the development process. Its objectives are “the conservation of biological diversity, the sustainable use of its components, and the fair and equitable sharing of the benefits resulting from the use of genetic resources”.
\r\n
\r\n\tThe following are the main causes of biodiversity loss:
\r\n
\r\n\t• The destruction of natural habitats to expand urban and agricultural areas and to obtain timber, minerals and other natural resources.
\r\n
\r\n\t• The introduction of alien species into a habitat, whether intentionally or unintentionally which has an impact on the fauna and flora of the area, and as a result, they are reduced or become extinct.
\r\n
\r\n\t• Pollution from industrial and agricultural products, which devastate the fauna and flora, especially those in fresh water.
\r\n
\r\n\t• Global warming, which is seen as a threat to biological diversity, and will become increasingly important in the future.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation"},{id:"39",title:"Environmental Resilience and Management",scope:"
\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
\r\n\tWater is not only a crucial substance needed for biological life on Earth, but it is also a basic requirement for the existence and development of the human society. Owing to the importance of water to life on Earth, early researchers conducted numerous studies and analyses on the liquid form of water from the perspectives of chemistry, physics, earth science, and biology, and concluded that Earth is a "water polo". Water covers approximately 71% of Earth's surface. However, 97.2% of this water is seawater, 21.5% is icebergs and glaciers, and only 0.65% is freshwater that can be used directly by humans. As a result, the amount of water reserves available for human consumption is limited. The development, utilization, and protection of freshwater resources has become the focus of water science research for the continued improvement of human livelihoods and society.
\r\n
\r\n\tWater exists as solid, liquid, and gas within Earth’s atmosphere, lithosphere, and biosphere. Liquid water is used for a variety of purposes besides drinking, including power generation, ecology, landscaping, and shipping. Because water is involved in various environmental hydrological processes as well as numerous aspects of the economy and human society, the study of various phenomena in the hydrosphere, the laws governing their occurrence and development, the relationship between the hydrosphere and other spheres of Earth, and the relationship between water and social development, are all part of water science. Knowledge systems for water science are improving continuously. Water science has become a specialized field concerned with the identification of its physical, chemical, and biological properties. In addition, it reveals the laws of water distribution, movement, and circulation, and proposes methods and tools for water development, utilization, planning, management, and protection. Currently, the field of water science covers research related to topics such as hydrology, water resources and water environment. It also includes research on water related issues such as safety, engineering, economy, law, culture, information, and education.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection"}],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/58504",hash:"",query:{},params:{id:"58504"},fullPath:"/chapters/58504",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()