Carbonate rock.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"332",leadTitle:null,fullTitle:"Crystalline Silicon - Properties and Uses",title:"Crystalline Silicon",subtitle:"Properties and Uses",reviewType:"peer-reviewed",abstract:"The exciting world of crystalline silicon is the source of the spectacular advancement of discrete electronic devices and solar cells. The exploitation of ever changing properties of crystalline silicon with dimensional transformation may indicate more innovative silicon based technologies in near future. For example, the discovery of nanocrystalline silicon has largely overcome the obstacles of using silicon as optoelectronic material. The further research and development is necessary to find out the treasures hidden within this material. The book presents different forms of silicon material, their preparation and properties. The modern techniques to study the surface and interface defect states, dislocations, and so on, in different crystalline forms have been highlighted in this book. This book presents basic and applied aspects of different crystalline forms of silicon in wide range of information from materials to devices.",isbn:null,printIsbn:"978-953-307-587-7",pdfIsbn:"978-953-51-4478-6",doi:"10.5772/844",price:139,priceEur:155,priceUsd:179,slug:"crystalline-silicon-properties-and-uses",numberOfPages:358,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"c8a4a98e2179065e6e713a5d907f5692",bookSignature:"Sukumar Basu",publishedDate:"July 27th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/332.jpg",numberOfDownloads:88116,numberOfWosCitations:207,numberOfCrossrefCitations:83,numberOfCrossrefCitationsByBook:29,numberOfDimensionsCitations:195,numberOfDimensionsCitationsByBook:36,hasAltmetrics:1,numberOfTotalCitations:485,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 9th 2010",dateEndSecondStepPublish:"December 7th 2010",dateEndThirdStepPublish:"April 13th 2011",dateEndFourthStepPublish:"May 13th 2011",dateEndFifthStepPublish:"July 12th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"50632",title:"Prof.",name:"Sukumar",middleName:null,surname:"Basu",slug:"sukumar-basu",fullName:"Sukumar Basu",profilePictureURL:"https://mts.intechopen.com/storage/users/50632/images/system/50632.jpg",biography:"Prof. Sukumar Basu, Ph.D. in Solid State Chemistry in 1973 from IIT Kharagpur, India, earned post doctoral research experience in the Institute of Physical and Theoretical Chemistry, University of Vienna, Austria (1972-1974) and in Max Planck Institute for Carbon Research, Muelheim/Ruhr, Germany (1975-1978). In 1979 he joined IIT Kharagpur as a faculty member of Materials Science Center. He spent one year (1995-96) in the State University of Milan as an ICTP senior research fellow. He also spent 3 months (2000) in the Institute of Atom Research, Science City, Tsukuba, Japan as JSPS fellow. He was the foreign expert of the evaluation committee of the Singapore-MIT research alliance of the National University of Singapore (NUS). He also served as the member of the expert committee of the National Program on Smart Materials (NPSM) and the project evaluation committee of the Department of Science and Technology (DST), Government of India. Prof. Basu was the joint investigator of an India-Sweden Research Program funded by Swedish Research Council (SRC) during 2008-2010 and he visited Linkoping University, Sweden. He was a joint investigator of an India-Brazil-South Africa (IBSA) collaborative Research Program involving IIT Kharagpur, India, Sao Paolo University, Brazil and Cape Town University, S. Africa for the period 2011 and 2014. At present he is Professor Emeritus, Dept. of Physics & Materials Science, Jaypee University of Information Technology, India.",institutionString:"Jaypee University of Information Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Jadavpur University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"956",title:"Crystallography",slug:"semiconductor-crystallography"}],chapters:[{id:"45801",title:"Amorphous and Crystalline Silicon Films from Soluble Si-Si Network Polymers",doi:"10.5772/22427",slug:"amorphous-and-crystalline-silicon-films-from-soluble-si-si-network-polymers",totalDownloads:3444,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Michiya Fujiki and Giseop Kwak",downloadPdfUrl:"/chapter/pdf-download/45801",previewPdfUrl:"/chapter/pdf-preview/45801",authors:[{id:"47698",title:"Prof.",name:"Michiya",surname:"Fujiki",slug:"michiya-fujiki",fullName:"Michiya Fujiki"},{id:"47710",title:"Prof.",name:"Giseop",surname:"Kwak",slug:"giseop-kwak",fullName:"Giseop Kwak"}],corrections:null},{id:"17722",title:"Study of SiO2/Si Interface by Surface Techniques",doi:"10.5772/23174",slug:"study-of-sio2-si-interface-by-surface-techniques",totalDownloads:14165,totalCrossrefCites:13,totalDimensionsCites:36,hasAltmetrics:0,abstract:null,signatures:"Rodica Ghita, Constantin Logofatu, Catalin-Constantin Negrila, Florica Ungureanu, Costel Cotirlan, Adrian-Stefan Manea, Mihail-Florin Lazarescu and Corneliu Ghica",downloadPdfUrl:"/chapter/pdf-download/17722",previewPdfUrl:"/chapter/pdf-preview/17722",authors:[{id:"50919",title:"Dr.",name:"Rodica V.",surname:"Ghita",slug:"rodica-v.-ghita",fullName:"Rodica V. Ghita"},{id:"57132",title:"Dr.",name:"Constantin",surname:"Logofatu",slug:"constantin-logofatu",fullName:"Constantin Logofatu"},{id:"57133",title:"Dr.",name:"Catalin-Constantin",surname:"Negrila",slug:"catalin-constantin-negrila",fullName:"Catalin-Constantin Negrila"},{id:"57134",title:"Mrs.",name:"Florica",surname:"Ungureanu",slug:"florica-ungureanu",fullName:"Florica Ungureanu"},{id:"57135",title:"Dr.",name:"Costel",surname:"Cotirlan",slug:"costel-cotirlan",fullName:"Costel Cotirlan"},{id:"57136",title:"Dr.",name:"Adrian-Stefan",surname:"Manea",slug:"adrian-stefan-manea",fullName:"Adrian-Stefan Manea"},{id:"57137",title:"Dr.",name:"Mihail-Florin",surname:"Lazarescu",slug:"mihail-florin-lazarescu",fullName:"Mihail-Florin Lazarescu"},{id:"101735",title:"Dr.",name:"Corneliu",surname:"Ghica",slug:"corneliu-ghica",fullName:"Corneliu Ghica"}],corrections:null},{id:"17723",title:"Effect of Native Oxide on the Electric Field-induced Characteristics of Device-quality Silicon at Room Temperature",doi:"10.5772/22481",slug:"effect-of-native-oxide-on-the-electric-field-induced-characteristics-of-device-quality-silicon-at-ro",totalDownloads:2244,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Halyna Khlyap, Viktor Laptev, Luydmila Pankiv and Volodymyr Tsmots",downloadPdfUrl:"/chapter/pdf-download/17723",previewPdfUrl:"/chapter/pdf-preview/17723",authors:[{id:"40433",title:"Dr.",name:"Viktor",surname:"Laptev",slug:"viktor-laptev",fullName:"Viktor Laptev"},{id:"47878",title:"Dr.",name:"Halyna",surname:"Khlyap",slug:"halyna-khlyap",fullName:"Halyna Khlyap"},{id:"92204",title:"MSc.",name:"Luydmila",surname:"Pankiv",slug:"luydmila-pankiv",fullName:"Luydmila Pankiv"},{id:"92205",title:"Prof.",name:"Volodymyr",surname:"Tsmots",slug:"volodymyr-tsmots",fullName:"Volodymyr Tsmots"}],corrections:null},{id:"17724",title:"Structure and Properties of Dislocations in Silicon",doi:"10.5772/22902",slug:"structure-and-properties-of-dislocations-in-silicon",totalDownloads:6967,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Martin Kittler and Manfred Reiche",downloadPdfUrl:"/chapter/pdf-download/17724",previewPdfUrl:"/chapter/pdf-preview/17724",authors:[{id:"49724",title:"Dr.",name:"Manfred",surname:"Reiche",slug:"manfred-reiche",fullName:"Manfred Reiche"},{id:"49726",title:"Prof.",name:"Martin",surname:"Kittler",slug:"martin-kittler",fullName:"Martin Kittler"}],corrections:null},{id:"17725",title:"High Mass Molecular Ion Implantation",doi:"10.5772/24194",slug:"high-mass-molecular-ion-implantation",totalDownloads:5916,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Bill Chang and Michael Ameen",downloadPdfUrl:"/chapter/pdf-download/17725",previewPdfUrl:"/chapter/pdf-preview/17725",authors:[{id:"56067",title:"Dr.",name:"Bill",surname:"Chang",slug:"bill-chang",fullName:"Bill Chang"},{id:"57908",title:"Dr.",name:"Michael",surname:"Ameen",slug:"michael-ameen",fullName:"Michael Ameen"}],corrections:null},{id:"17726",title:"Infrared Spectroscopic Ellipsometry for Ion-Implanted Silicon Wafers",doi:"10.5772/23438",slug:"infrared-spectroscopic-ellipsometry-for-ion-implanted-silicon-wafers",totalDownloads:3415,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Li and Xianming Liu",downloadPdfUrl:"/chapter/pdf-download/17726",previewPdfUrl:"/chapter/pdf-preview/17726",authors:[{id:"52038",title:"Dr.",name:"Bincheng",surname:"Li",slug:"bincheng-li",fullName:"Bincheng Li"},{id:"57024",title:"Dr.",name:"Xianming",surname:"Liu",slug:"xianming-liu",fullName:"Xianming Liu"}],corrections:null},{id:"17727",title:"Silicon Nanocrystals",doi:"10.5772/22015",slug:"silicon-nanocrystals",totalDownloads:4103,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Hong Yu, Jie-Qiong Zeng and Zheng-Rong Qiu",downloadPdfUrl:"/chapter/pdf-download/17727",previewPdfUrl:"/chapter/pdf-preview/17727",authors:[{id:"45879",title:"Dr.",name:"Hong",surname:"Yu",slug:"hong-yu",fullName:"Hong Yu"},{id:"90139",title:"Ms.",name:"Jie-Qiong",surname:"Zeng",slug:"jie-qiong-zeng",fullName:"Jie-Qiong Zeng"},{id:"97322",title:"MSc.",name:"Zheng-Rong",surname:"Qiu",slug:"zheng-rong-qiu",fullName:"Zheng-Rong Qiu"}],corrections:null},{id:"17728",title:"Defect Related Luminescence in Silicon Dioxide Network: A Review",doi:"10.5772/22607",slug:"defect-related-luminescence-in-silicon-dioxide-network-a-review",totalDownloads:9516,totalCrossrefCites:46,totalDimensionsCites:99,hasAltmetrics:0,abstract:null,signatures:"Roushdey Salh",downloadPdfUrl:"/chapter/pdf-download/17728",previewPdfUrl:"/chapter/pdf-preview/17728",authors:[{id:"48391",title:"Dr.",name:"Roushdey",surname:"Salh",slug:"roushdey-salh",fullName:"Roushdey Salh"}],corrections:null},{id:"17729",title:"Silicon Nanocluster in Silicon Dioxide: Cathodoluminescence, Energy Dispersive X-Ray Analysis and Infrared Spectroscopy Studies",doi:"10.5772/35404",slug:"silicon-nanocluster-in-silicon-dioxide-cathodoluminescence-energy-dispersive-x-ray-analysis-and-infr",totalDownloads:4746,totalCrossrefCites:7,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"Roushdey Salh",downloadPdfUrl:"/chapter/pdf-download/17729",previewPdfUrl:"/chapter/pdf-preview/17729",authors:[{id:"48391",title:"Dr.",name:"Roushdey",surname:"Salh",slug:"roushdey-salh",fullName:"Roushdey Salh"}],corrections:null},{id:"17730",title:"Nanocrystalline Porous Silicon",doi:"10.5772/23355",slug:"nanocrystalline-porous-silicon",totalDownloads:6002,totalCrossrefCites:9,totalDimensionsCites:16,hasAltmetrics:0,abstract:null,signatures:"Sukumar Basu and Jayita Kanungo",downloadPdfUrl:"/chapter/pdf-download/17730",previewPdfUrl:"/chapter/pdf-preview/17730",authors:[{id:"50632",title:"Prof.",name:"Sukumar",surname:"Basu",slug:"sukumar-basu",fullName:"Sukumar Basu"},{id:"58906",title:"Dr.",name:"Jayita",surname:"Kanungo",slug:"jayita-kanungo",fullName:"Jayita Kanungo"}],corrections:null},{id:"17731",title:"Nanocrystalline Porous Silicon: Structural, Optical, Electrical and Photovoltaic Properties",doi:"10.5772/20683",slug:"nanocrystalline-porous-silicon-structural-optical-electrical-and-photovoltaic-properties",totalDownloads:5432,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Ma. Concepción Arenas-Arrocena, Marina Vega-Gonzalez, Omar Martinez and Oscar H. Salinas-Aviles",downloadPdfUrl:"/chapter/pdf-download/17731",previewPdfUrl:"/chapter/pdf-preview/17731",authors:[{id:"40078",title:"Dr.",name:"Ma. Concepción",surname:"Arenas-Arrocena",slug:"ma.-concepcion-arenas-arrocena",fullName:"Ma. Concepción Arenas-Arrocena"},{id:"57630",title:"Dr.",name:"Marina",surname:"Vega-Gonzalez",slug:"marina-vega-gonzalez",fullName:"Marina Vega-Gonzalez"},{id:"57631",title:"Dr.",name:"Omar",surname:"Martinez",slug:"omar-martinez",fullName:"Omar Martinez"},{id:"57632",title:"Dr.",name:"Oscar H.",surname:"Salinas-Aviles",slug:"oscar-h.-salinas-aviles",fullName:"Oscar H. Salinas-Aviles"}],corrections:null},{id:"17732",title:"Porous Silicon Integrated Photonic Devices for Biochemical Optical Sensing",doi:"10.5772/20782",slug:"porous-silicon-integrated-photonic-devices-for-biochemical-optical-sensing",totalDownloads:3140,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Emanuele Orabona, Ivo Rendina, Luca De Stefano and Ilaria Rea",downloadPdfUrl:"/chapter/pdf-download/17732",previewPdfUrl:"/chapter/pdf-preview/17732",authors:[{id:"27129",title:"Dr.",name:"Luca",surname:"De Stefano",slug:"luca-de-stefano",fullName:"Luca De Stefano"},{id:"40496",title:"Dr.",name:"Ilaria",surname:"Rea",slug:"ilaria-rea",fullName:"Ilaria Rea"},{id:"57211",title:"Dr.",name:"Emanuele",surname:"Orabona",slug:"emanuele-orabona",fullName:"Emanuele Orabona"},{id:"57212",title:"Dr.",name:"Ivo",surname:"Rendina",slug:"ivo-rendina",fullName:"Ivo Rendina"}],corrections:null},{id:"17733",title:"Life Cycle Assessment of PV systems",doi:"10.5772/23134",slug:"life-cycle-assessment-of-pv-systems",totalDownloads:7951,totalCrossrefCites:3,totalDimensionsCites:12,hasAltmetrics:1,abstract:null,signatures:"Masakazu Ito",downloadPdfUrl:"/chapter/pdf-download/17733",previewPdfUrl:"/chapter/pdf-preview/17733",authors:[{id:"50764",title:"Dr.",name:"Masakazu",surname:"Ito",slug:"masakazu-ito",fullName:"Masakazu Ito"}],corrections:null},{id:"17734",title:"Design and Fabrication of a Novel MEMS Silicon Microphone",doi:"10.5772/21277",slug:"design-and-fabrication-of-a-novel-mems-silicon-microphone",totalDownloads:6957,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Bahram Azizollah Ganji",downloadPdfUrl:"/chapter/pdf-download/17734",previewPdfUrl:"/chapter/pdf-preview/17734",authors:[{id:"42543",title:"Dr.",name:"Bahram",surname:"Azizollah Ganji",slug:"bahram-azizollah-ganji",fullName:"Bahram Azizollah Ganji"}],corrections:null},{id:"17735",title:"Global Flow Analysis of Crystalline Silicon",doi:"10.5772/23573",slug:"global-flow-analysis-of-crystalline-silicon",totalDownloads:4119,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Hiroaki Takiguchi",downloadPdfUrl:"/chapter/pdf-download/17735",previewPdfUrl:"/chapter/pdf-preview/17735",authors:[{id:"52603",title:"Dr.",name:"Hiroaki",surname:"Takiguchi",slug:"hiroaki-takiguchi",fullName:"Hiroaki Takiguchi"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"7684",title:"Multilayer Thin Films",subtitle:"Versatile Applications for Materials Engineering",isOpenForSubmission:!1,hash:"fd04577df0c895320c3f06d98308ea67",slug:"multilayer-thin-films-versatile-applications-for-materials-engineering",bookSignature:"Sukumar Basu",coverURL:"https://cdn.intechopen.com/books/images_new/7684.jpg",editedByType:"Edited by",editors:[{id:"50632",title:"Prof.",name:"Sukumar",surname:"Basu",slug:"sukumar-basu",fullName:"Sukumar Basu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"correction-to-chemical-composition-and-biological-activities-of-mentha-species",title:"Correction to: Chemical Composition and Biological Activities of Mentha Species",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/57158.pdf",downloadPdfUrl:"/chapter/pdf-download/57158",previewPdfUrl:"/chapter/pdf-preview/57158",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/57158",risUrl:"/chapter/ris/57158",chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]}},chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]},book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10696",leadTitle:null,title:"Applications of Calorimetry",subtitle:null,reviewType:"peer-reviewed",abstract:"Calorimetry is used to measure the transfer and exchange of heat. It is a technique that has applications in different research and industrial sectors. It can be applied in kinetic studies as well as to measure physical changes of first- and second-order transitions such as glass transition, melting, and crystallization. It can also be used to evaluate thermodynamic parameters. This book reports on calorimetry in three sections: “Applications in General”, “Calorimetry in Materials”, and “Calorimetry in Biotechnology”.",isbn:"978-1-80355-322-1",printIsbn:"978-1-80355-321-4",pdfIsbn:"978-1-80355-323-8",doi:"10.5772/intechopen.94666",price:119,priceEur:129,priceUsd:155,slug:"applications-of-calorimetry",numberOfPages:160,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",bookSignature:"José Luis Rivera-Armenta and Cynthia Graciela Flores-Hernández",publishedDate:"June 23rd 2022",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",keywords:null,numberOfDownloads:348,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 1st 2021",dateEndSecondStepPublish:"November 10th 2021",dateEndThirdStepPublish:"January 9th 2022",dateEndFourthStepPublish:"March 30th 2022",dateEndFifthStepPublish:"May 29th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"9 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"Dr. José Luis Rivera-Armenta is head of the thermal analysis, injection, and extrusion laboratory. He has been responsible for several research projects sponsored by Consejo Nacional de Ciencia y Tecnología (CONACYT) and the National Technological Institute of Mexico (TecNM).",coeditorOneBiosketch:"Dr. Flores-Hernández holds a Ph.D. in environmental sciences from the Autonomous Mexico State University (UAEM). She is a member of the Mexican Composites Materials Association.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta",profilePictureURL:"https://mts.intechopen.com/storage/users/107855/images/system/107855.png",biography:"José Luis Rivera Armenta has a BSc in Chemical Engineering, an MSc in Petroleum Technology and Petrochemicals, and a Ph.D. in Chemical Engineering, all from the Technological Institute of Madero City (ITCM), México. Since 2003, he has been a full-time professor in postgraduate programs at ITCM and head of the thermal analysis, injection, and extrusion laboratory. He has been responsible for several research projects sponsored by Consejo Nacional de Ciencia y Tecnología (CONACYT) and the National Technological Institute of México (TecNM). He has advised bachelor’s, master’s, and Ph.D. theses. He has published fifty-six scientific articles and six book chapters and has edited three books and one special journal issue. Dr. Rivera-Armenta is also an active reviewer for several journals.",institutionString:"National Technological Institute of Mexico",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"National Technological Institute of Mexico",institutionURL:null,country:{name:"Mexico"}}}],coeditorOne:{id:"108894",title:"MSc.",name:"Cynthia Graciela",middleName:null,surname:"Flores-Hernández",slug:"cynthia-graciela-flores-hernandez",fullName:"Cynthia Graciela Flores-Hernández",profilePictureURL:"https://mts.intechopen.com/storage/users/108894/images/system/108894.png",biography:"Cynthia Graciela Flores Hernández received a BSc and MSc in Chemical Engineering from the Technological Institute of Madero City (ITCM), Mexico. She also obtained a Ph.D. in Environmental Sciences from the Autonomous Mexico State University (UAEM). In addition, she completed a postdoctoral stay at the Querétaro Institute of Technology (ITQ), Mexico. She is currently a professor in the Metal-Mechanics Department at ITQ. She has advised bachelor´s and master\\'s students. In addition, she has directed several research projects to respond to national problems. Her research interests include the synthesis and characterization of composite materials using biopolymers, polymer manufacturing by 3D printing, casting, and extrusion.",institutionString:"Instituto Tecnológico de Querétaro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Instituto Tecnológico de Querétaro",institutionURL:null,country:{name:"Mexico"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"81",title:"Analytical Chemistry",slug:"chemistry-analytical-chemistry"}],chapters:[{id:"81759",title:"Isothermal Calorimetry: Molecular Interactions between Small Molecules in Organic Solvents",slug:"isothermal-calorimetry-molecular-interactions-between-small-molecules-in-organic-solvents",totalDownloads:35,totalCrossrefCites:0,authors:[{id:"200784",title:"Dr.",name:"Aude",surname:"Cordin",slug:"aude-cordin",fullName:"Aude Cordin"},{id:"437961",title:"Dr.",name:"Luminita",surname:"Duma",slug:"luminita-duma",fullName:"Luminita Duma"},{id:"452641",title:"Dr.",name:"Raquel",surname:"Gutiérrez-Climente",slug:"raquel-gutierrez-climente",fullName:"Raquel Gutiérrez-Climente"},{id:"452642",title:"Ms.",name:"Elise",surname:"Prost",slug:"elise-prost",fullName:"Elise Prost"},{id:"452643",title:"Prof.",name:"Carlos",surname:"Chesta",slug:"carlos-chesta",fullName:"Carlos Chesta"}]},{id:"81052",title:"A State of Art Review on Thermodynamics Performance Analysis in Pulse Detonation Combustor",slug:"a-state-of-art-review-on-thermodynamics-performance-analysis-in-pulse-detonation-combustor",totalDownloads:101,totalCrossrefCites:0,authors:[{id:"277139",title:"Prof.",name:"Krishna Murari",surname:"Pandey",slug:"krishna-murari-pandey",fullName:"Krishna Murari Pandey"},{id:"278464",title:"Dr.",name:"Pinku",surname:"Debnath",slug:"pinku-debnath",fullName:"Pinku Debnath"}]},{id:"81365",title:"Assessment of the Heat Capacity by Thermodynamic Approach Based on Density Functional Theory Calculations",slug:"assessment-of-the-heat-capacity-by-thermodynamic-approach-based-on-density-functional-theory-calcula",totalDownloads:33,totalCrossrefCites:0,authors:[{id:"289039",title:"Dr.",name:"Viorel",surname:"Chihaia",slug:"viorel-chihaia",fullName:"Viorel Chihaia"},{id:"437996",title:"Prof.",name:"Valentin",surname:"Alexiev",slug:"valentin-alexiev",fullName:"Valentin Alexiev"},{id:"437997",title:"Dr.",name:"Hasan S.",surname:"AlMatrouk",slug:"hasan-s.-almatrouk",fullName:"Hasan S. AlMatrouk"}]},{id:"80426",title:"Comparative Study of Setting Time and Heat of Hydration Development of Portland Cement According to EN 196-3",slug:"comparative-study-of-setting-time-and-heat-of-hydration-development-of-portland-cement-according-to-",totalDownloads:81,totalCrossrefCites:0,authors:[{id:"440439",title:"Ph.D. Student",name:"Attila",surname:"Baranyi",slug:"attila-baranyi",fullName:"Attila Baranyi"},{id:"440447",title:"Dr.",name:"Katalin",surname:"Kopecskó",slug:"katalin-kopecsko",fullName:"Katalin Kopecskó"}]},{id:"81145",title:"Calorimetry to Understand Structural Relaxation in Chalcogenide Glasses",slug:"calorimetry-to-understand-structural-relaxation-in-chalcogenide-glasses",totalDownloads:12,totalCrossrefCites:0,authors:[{id:"241129",title:"Dr.",name:"Balbir Singh",surname:"Patial",slug:"balbir-singh-patial",fullName:"Balbir Singh Patial"}]},{id:"80163",title:"Cone Calorimetry in Fire-Resistant Materials",slug:"cone-calorimetry-in-fire-resistant-materials",totalDownloads:14,totalCrossrefCites:0,authors:[{id:"436994",title:"Prof.",name:"Rakesh Kumar",surname:"Soni",slug:"rakesh-kumar-soni",fullName:"Rakesh Kumar Soni"},{id:"437013",title:"Dr.",name:"Meenu",surname:"Teotia",slug:"meenu-teotia",fullName:"Meenu Teotia"},{id:"437016",title:"Ms.",name:"Aakansha",surname:"Sharma",slug:"aakansha-sharma",fullName:"Aakansha Sharma"}]},{id:"80910",title:"Calorimetry to Quantify Protein-Ligand Binding",slug:"calorimetry-to-quantify-protein-ligand-binding",totalDownloads:17,totalCrossrefCites:0,authors:[{id:"438114",title:"Dr.",name:"Salerwe",surname:"Mosebi",slug:"salerwe-mosebi",fullName:"Salerwe Mosebi"}]},{id:"80464",title:"Calorimetry in Allergy Diagnostic",slug:"calorimetry-in-allergy-diagnostic",totalDownloads:55,totalCrossrefCites:0,authors:[{id:"173204",title:"Dr.",name:"Maria",surname:"Dencheva",slug:"maria-dencheva",fullName:"Maria Dencheva"},{id:"437328",title:"Dr.",name:"Evgeni",surname:"Stanev",slug:"evgeni-stanev",fullName:"Evgeni Stanev"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"418965",firstName:"Nera",lastName:"Butigan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/418965/images/16899_n.jpg",email:"nera@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors.\nFrom chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors, and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing or reviewing.\nI assist authors in preparing their full chapter submissions and track important deadlines to ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6702",title:"Polymer Rheology",subtitle:null,isOpenForSubmission:!1,hash:"c24234818cd4b2ce3ed569c2b29f714c",slug:"polymer-rheology",bookSignature:"Jose Luis Rivera-Armenta and Beatriz Adriana Salazar Cruz",coverURL:"https://cdn.intechopen.com/books/images_new/6702.jpg",editedByType:"Edited by",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6522",title:"Modified Asphalt",subtitle:null,isOpenForSubmission:!1,hash:"3f759084429ece2b3f7ec329b8242459",slug:"modified-asphalt",bookSignature:"Jose Luis Rivera-Armenta and Beatriz Adriana Salazar-Cruz",coverURL:"https://cdn.intechopen.com/books/images_new/6522.jpg",editedByType:"Edited by",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6720",title:"Fractionation",subtitle:null,isOpenForSubmission:!1,hash:"0e798d7509b906c1947191552285a628",slug:"fractionation",bookSignature:"Hassan Al- Haj Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/6720.jpg",editedByType:"Edited by",editors:[{id:"12400",title:"Prof.",name:"Hassan Al- Haj",surname:"Ibrahim",slug:"hassan-al-haj-ibrahim",fullName:"Hassan Al- Haj Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7488",title:"Analytical Pyrolysis",subtitle:null,isOpenForSubmission:!1,hash:"30a667792c3a70b53d30fb6e9e1e7b4d",slug:"analytical-pyrolysis",bookSignature:"Peter Kusch",coverURL:"https://cdn.intechopen.com/books/images_new/7488.jpg",editedByType:"Edited by",editors:[{id:"254714",title:"Dr.",name:"Peter",surname:"Kusch",slug:"peter-kusch",fullName:"Peter Kusch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7319",title:"Color Detection",subtitle:null,isOpenForSubmission:!1,hash:"6c3c446db0a120cfd1f2697760e7d784",slug:"color-detection",bookSignature:"Ling-Wen Zeng and Shi-Lin Cao",coverURL:"https://cdn.intechopen.com/books/images_new/7319.jpg",editedByType:"Edited by",editors:[{id:"173972",title:"Dr.",name:"Lingwen",surname:"Zeng",slug:"lingwen-zeng",fullName:"Lingwen Zeng"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11072",title:"Sample Preparation Techniques for Chemical Analysis",subtitle:null,isOpenForSubmission:!1,hash:"38fecf7570774c29c22a0cbca58ba570",slug:"sample-preparation-techniques-for-chemical-analysis",bookSignature:"Massoud Kaykhaii",coverURL:"https://cdn.intechopen.com/books/images_new/11072.jpg",editedByType:"Edited by",editors:[{id:"349151",title:"Prof.",name:"Massoud",surname:"Kaykhaii",slug:"massoud-kaykhaii",fullName:"Massoud Kaykhaii"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9932",title:"Analytical Chemistry",subtitle:"Advancement, Perspectives and Applications",isOpenForSubmission:!1,hash:"18f54a89cdbbafde70f56e55e122171a",slug:"analytical-chemistry-advancement-perspectives-and-applications",bookSignature:"Abhay Nanda Srivastva",coverURL:"https://cdn.intechopen.com/books/images_new/9932.jpg",editedByType:"Edited by",editors:[{id:"293623",title:"Dr.",name:"Abhay Nanda",surname:"Srivastva",slug:"abhay-nanda-srivastva",fullName:"Abhay Nanda Srivastva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58325",title:"Nanofluids as Novel Alternative Smart Fluids for Reservoir Wettability Alteration",doi:"10.5772/intechopen.72267",slug:"nanofluids-as-novel-alternative-smart-fluids-for-reservoir-wettability-alteration",body:'In the past half century, industrial processes in general have experienced a transition in material applications owing to a shift from conventional bulk materials toward nanoscale materials. This has driven innovative applications in wide-ranging areas of science and technology globally, thus yielding a proliferating interest and investment in nanoscience and nanotechnology fields. The increase possibilities for the manipulation of matter in nanometer-scale have primarily led to this growth with nanomaterials at the leading edge of this fast-developing field. The potentials for direct control of systems at the same scale as nature such as DNA, cells, mitochondria and even reservoir rock pores can yield effective approaches in a wide variety of industrial processes such as the production of chemicals, materials, and energy [1]. Although nanomaterial appears to be a recent development owing to the current tremendous research growth and diverse applications, this material is not completely new as it has a rather shocking protracted history. The knowledge of the materials commenced as early as the 1950’s by Richard Feynman who proposed that fabrications of materials and devices can be performed at atomic scales. Then in the 1980s, the term nanotechnology became even popular as established by Drexler Eric K. The current applications of these materials are not an exclusive result of modern research or laboratory synthesis, or even circumscribed to man-made materials. These materials have long been in existence with traceable applications in the old days. For instance, natural asbestos nanofibers and metal nanoparticles were used several decades ago for the control reinforcement of ceramic matrix and as color pigments in glass and luster technology respectively [2, 3].
Ever since, novel studies of nanoscale fundamentals and principles, design, characterization, production, and application of these materials [4, 5, 6] have evolved and remained intriguing and ground-breaking. Since 2000, the nanotechnology industry has experienced a growing trend and the funding of nanotechnology research has also been on the rise (Figure 1). For example; in 2013, the global market for nanotechnology was estimated at $22.9 billion, by 2014, the estimate had grown to about $26 billion with a further projected growth of about $64.2 billion by 2019 [7]. This innovative development involves the nanometer (nm) length scale manipulations of the structure of matter, where a nanometer represents a billionth of a meter, a distance that is equivalent to 2–20 atoms positioned next to one another. Nanomaterial has increasingly gained attention for a variety of processes such as electronic cooling and space applications, transportation, biomedicine, cooling of high-power laser diodes and submarines, and heating of buildings [8, 9]. Its wide applicability also extends to the field of environmental protection. This material exhibits great potentials as pollution reduction agent and improves the quality of air, water, and soil [10] and it is also currently being used as novel tools for oil and gas operations. Nanomaterials especially nanoparticles can be used alone or manipulated for the creation of larger scale materials to facilitate innovative applications. The material allow for clear-cut design and manipulation of atoms and molecules and its industrial applications are cost-effective and efficient [11, 12]. Nanoparticle cut across diverse fields of science and engineering and shows great potentials as effective approach for novel applications with high technological prospects and environmental friendliness. A recent drift in its application is its usage for resolving reservoir engineering challenges.
Worldwide nanotechnology research and funding by year [
Nanoparticles are nano-sized structures with dimensions in the range of 1 to 100 nm. These materials exhibit unique properties with better potentials than bulk materials. Nanoparticles application enables the creation of new composites with unique properties which allows for innovative technological advancements. Unarguably, the effectiveness of this material cut across diverse industries such as energy, manufacturing, medicine, electronics, oil and gas industries etc., however, the understanding of the material is still very limited in EOR processes especially in wetting evaluations.
Nanoparticles are categorized as magnetic (iron, cobalt etc. and the oxides) [13, 14, 15, 16], metallic (gold, silver, copper, and Platinum) [17, 18] or metal oxides (oxides of aluminum, zinc, silicon, magnesium, zirconium, cerium, titanium) [8, 19, 20, 21, 22, 23]. Among these categories, the metal oxides are the most commonly used nanoparticles in EOR [24, 25, 26, 27, 28] as the material offers special unique structures, compositions, physical, and chemical properties. These materials display efficient thermal conductivity effect [8], great stability [19] and excellent saline-alkaline tolerance [23]. However, its effectiveness depends greatly on the preparation methods, dispersant and subsequent applicability. Generally, nanoparticles can be prepared via chemical, biological or physical methods, although the preparation method is mainly based on the nature of the material and associated chemical reactions [29], and the applications thereof.
Nanofluids are colloidal suspensions of solid nanoparticles or nanofibers. These solid-liquid composite materials are typically two-phase systems, consisting of a carrier medium and solid phase. The carrier liquids are often water, polymer solution, oil, ethylene glycol and sodium chloride brine. The solid phases are nanoparticles of chemically stable metals and oxides usually within the range of 1-100 nm [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Nanofluid has continuously attracted great attention for various processes owing to its great thermal properties at low volume fractions of less than 1%. To achieve the same functionality with conventional suspensions of well-dispersed particles, high concentrations that are greater than 10% of particles is often a requirement. Such high concentrations increase the issues of rheology and stability which has remained a deterrent to the extensive use of conventional slurries as heat transfer fluids [35]. Nanofluid production can be achieved via chemical or physical synthesis. The chemical synthesis involves the use of methods such as thermal spraying, chemical vapor deposition, spray pyrolysis, chemical precipitation, or micro-emulsions. Whereas, the physical synthesis involves inert-gas-condensation technique and mechanical grinding approach. During its production, a one-step or two-step approach can be adopted. The one-step approach allows for the production of nanoparticle and its dispersion in a fluid in a single combined process, which is suitable for nanofluids with high-conductivity metals contents. Whereas with the two-step method, production process is performed in two separate steps, firstly, the nanoparticle is produced, and then the produced nanoparticle is dispersed in a fluid – this is considered an effective strategy for commercial use [8, 9].
In the face of the diverse functionalities of the nanoparticle, a major impediment in the manipulation and application of nanoparticle is the colloidal stability control. Nanoparticle tends to agglomerate when in suspensions irrespective of its small size. This has remained an issue with the production and utilization of nanoparticle based fluid as this behavior impacts the overall fluid stability. Such agglomeration can impede fluid flow characteristics in porous media as well as in flow based cooling applications [35]. Since nanofluids are typically produced in small quantities at laboratory scale, there is high potentials of yielding sufficiently well dispersed, homogenized, and stable fluids. However, homogeneous nanoparticle dispersion is often a challenge owing to agglomerating or clustering tendencies. The agglomeration inclination or clustering behavior of nanoparticle is dependent on the nanoparticles properties, particle concentrations, production methods, nature of dispersants, fluid homogeneity and stability. The nanofluids stability is vital for process efficiency as instability can influence the particles functionalities. Fedele et al. [19] reported stability evaluation of nanoparticle via a comparison of various preparation methods such as ball milling, sonication, and high-pressure homogenization. The ball milling method produced the least stable fluids when compared to sonication and homogenization, which produced better stable fluid. The use of magnetic stirrer or ball milling method has been shown to be rather insufficient for stable nanofluid formulation [23]. Similarly, Roustaei and Bagherzadeh [20] reported sonication and homogenization [21, 22, 23] as the most efficient methods.
An approach to ensure the stability and homogeneity of nanofluids aside the use of additives or stabilizers, is the uniform dispersibility of the particles in the solution. Attaining high-performance heat transfer nanofluids require efficient dispersion of the particles in the base fluid [8, 12, 40, 41] and ensuring an approximately monodispersed or non-agglomerated nanoparticle in liquids during the production of the suspensions. Thus, the fluid stability and excellent particle dispersion in base fluids can be significantly improved by using appropriate dispersants, suitable fluid production methods, and surface treated nanoparticles. Suitable dispersal and fluid production methods are vital to achieving desirable properties and uniform distribution of the particles in the system which can further prevent issues of agglomeration and can also improve the mechanical properties such as strength and ductility of the system [42]. Careful consideration should also be given to the concentration of the nanoparticles, as high particle concentration volume can propel high particle agglomeration.
Wetting applies to several practical processes and a variety of industries such as energy, marine, manufacturing and materials. Wetting processes often involve the interaction of solids such as porous material, suspensions, or fibers, and liquids - water, ink, dye or lubricants. Typical indications of solid-liquid wetting can be illustrated using standard scenarios to correlate the dynamics such as: (1) the interaction between porous soil and water - where the water wets the solid components of the soil; (2) enhanced oil recovery processes - where the process permeates water into oil-wet porous media. However, the mineral floatation in these processes is often based on the selective wetting characteristics of the mineral particles [43]. Two key mechanisms [44] governs wettability alteration of surfaces - cleaning and coating. Cleaning involves the use of surface-active agents to desorb surfaces e.g. surfactants induced wettability alteration, where cationic surfactants can desorb the hydrophobic layer on a surface while changing the surface toward hydrophilic condition. Whereas coating involves covering a hydrophobic surface with a hydrophilic material, e.g. hydrophilic zirconium nanoparticle can adsorb on hydrophobic rock surface and form nanotextures capable of coating the hydrophobic surfaces. At large scales, wetting or non-wetting plays an essential role during oil recovery [45]. Inadequate formation wetting can prohibit efficient hydrocarbon flow, which in turn hinders the oil, gas or water movement or distribution through the pore spaces, as such fluids may appear to have flowed whereas its distribution through the pore spaces is hindered owing to poor rock wetting. Assuming a system contains only three phases (solid, liquid, and vapor), for any two of these phases to be in contact, a transitional area of molecular dimensions occurs owing to the compositional alteration of the system that leads to phase changes. For example, if a non-volatile molecular smooth solid is in contact with an inert gas, it is expected that the system will exhibit a transition region thickness of about a molecule, this would cause a change from solid molecules to gas molecules. Whereas, if similar trend occurs on an irregular surface, the transition region would reflect the physical non-uniformity of the surface and a concentration profile of the region would indicate the existence or non-existence of the solid phase. Similar concentration profile phenomenon holds for solid-liquid systems; however, the related specifics are dependent on the solubility of the solid in the liquid or the solubility of the liquid in the solid [46, 47]. In a typical solid-liquid-vapor three-phase system [48], the system would exhibit a completely dry behavior if there is an intrusion of a macroscopic vapor layer between the solid and the liquid; a partial wetting behavior if the droplet is bounded by microscopic thin film that is adsorbed on the surface of the solid; and complete wetting occurs due to macroscopic adsorbed thick wetting layer.
With respect to petroleum reservoir rocks, wetting is ascribed to the measurement of the reservoir rocks affinity for water or oil in a typical rock-fluid-oil system. An understanding of the wetting preference of rock is vital, as it unveils the mechanisms behind fluid flow in porous media, soil decontamination process evaluations, and ultimately promotes recovery efficiency. Reservoirs exhibit different wetting inclinations: water-wet, oil-wet, or intermediate-wet (Figure 2). Reservoir rocks considered as water-wet have high affinity for water and water predominantly occupies the tiny rock pores as well as the surface of the formation rock. Whereas, oil-wet reservoir rocks have high affinity for oil and such oil mainly occupies the tiny rock pores and the formation rock surface. For example; in controlled laboratory experiments involving the manipulations of cores or rock samples, the samples are usually cleaned and modified to a preferential wetting state. If such samples have high affinity for water or were originally water wet, then saturated to a suitable oil-wet state, the rock surface becomes even more oil-wet or hydrophobic upon exposure to oil under efficient and favorable treatment conditions. However, this does not influence the actual wetting affinity of the rock. The actual wetting affinity can be affirmed by exposing such hydrophobic rock to a water imbibition test. The water imbibing potential of the rock can be used to predict its wetting affinity.
Rock surface wetting transition from hydrophobic to hydrophilic. Left: Oil-wet (105–180◦); Center: Intermediate-wet (75–105◦); right: Water-wet (0–75◦).
Ideally, if the rock has high affinity for water then the oil will be displaced from the surface of the rock by water. Whereas if a rock with high affinity for oil is saturated with water, and then the rock is placed in an oil-wet environment, the oil will displace the water from the rock surface while efficiently imbibing into the rock pores. In the absence of an actual inclination for water or oil, the formation rock is considered intermediate wetting. Aside from these key-wetting preferences, there also exists fractional wetting where the formation rock exhibit different wetting inclination in different sections of the rock [49, 50, 51, 52, 53].
Reservoir rocks considered as porous media are formations with an interconnected network of pores or voids characterized by the rock’s porosity, and physical and textural properties that exhibit a dependency on the formations constituents. Oil recovery exhibits great dependency on the formation wettability as it controls the fluid displacements of the wetting and non-wetting phase at the pore scale. Reservoir wettability is a prime factor for determining the microscopic displacement efficiency in the swept regions of a waterflood. Originally, reservoirs were strongly water-wet, and the formation traps were initially filled with water, thus the surface of reservoir rocks had high affinity for water in the presence of oil. However, overtime, oil migrated into such formations forming firm adsorbed layers of heavy hydrocarbons that poise several challenges and cannot be altered via gasoline or mere solvent applications. The oil migration and accumulation cause water to be retained in the rock pore spaces due to capillary pressure, while the rock pores surface become covered by oil, and water existed on such surfaces in the form of films. Such effect is primarily due to the rock surface wettability changes owing to the ease of invasion by a wetting fluid, which causes lithological variances. The level of oil migration also determines the formations wetting state. For instance, if the migrated oil is negligible, the possibilities are that the neighboring formations will be more oil wetting, while the tight regions of the formation would exhibit more water-wet behavior [49, 50, 51, 52, 53, 54, 55]. This behavior is more prevalent in carbonate rocks owing to the oil-wet character of this formation, which is still poorly understood.
It is well established that heterogeneous carbonate rocks are more prevalent globally. Carbonate rocks exhibit complex microstructures [56, 57, 58] and its complex nature impacts reservoir wetting preference. These formations are predominantly naturally fractured, and exhibits diverse wetting conditions; intermediate-wet or oil-wet behavior with as high as over 80% oil-wetness. The oil-wet nature of carbonate formation is due to its surface charges, which tend to attract negatively charged carboxylic acids compounds in crude oils [59, 60, 61]. Ideally, the formations positive surface charges attract crude oil acidic components. Carbonate reservoirs are problematic, as the complex wetting characteristics of this reservoir make the production capacity quite different in comparison to other conventional formations. Typically, an enormous capacity of the original oil in place is left stranded in this formation after primary and secondary oil recovery approaches are employed. Such approaches have been implemented for several decades, however, the fraction of recoverable oil from this reservoir is less than two-thirds [39, 62]. Fractured reservoir with enormous oil resources in its matrix requires advanced approaches for efficient recovery. Although water flooding enhances productivity in this reservoir by imbibing water from the formation fractures into the rock matrix, while enhancing oil flow out of the matrix through the fractures to the production well, this is mainly achievable if the capillary driving force is robust and efficient as it influences recovery efficiency, and the interaction between the matrix and the fracture is required for oil recovery from the formation matrix. Capillary forces have a significant effect on recovery capacities, however, its impact is greatly dependent on the nature of the reservoir, whether it is fractured or non-fractured. For non-fractured reservoirs, the presence of strong capillary forces during water flooding traps oil, however, the residual oil saturation becomes relatively high. Hence, the need for a reduction of the oil-water interfacial tension forces in order to remobilize residual oil in such formations. Whereas, for fractured reservoirs such as carbonate, the key driving force for efficient oil displacement in this formation is the spontaneous imbibition of water [63, 64]. Capillary effect and wettability are the underlying mechanisms in this case. This effect is attainable if the formation rock is hydrophilic [65]. Strong capillary effect occurs if the matrix is sufficiently water-wet and the fracture network holds enough water. Ideally, this is not the case with carbonate reservoir, as it is characterized by complex microstructures and poor rock wettability (intermediate-wet or oil-wet). This behavior impedes productivity, hence, harnessing substantial oil from this formation is rather unsatisfactory.
Understanding wettability in oil-wet carbonate reservoir is challenging owing to the complex nature of crude oil, and its characterization is even more difficult. Crude oil contains polar compounds which are normally surface-active and capable of altering reservoir rock surfaces when adsorbed [55, 66, 67, 68, 69]. Among such polar compounds, asphaltenes and resins have the most polar oil fractions with high surface activity. Asphaltenes are known for their propensity to self-associate in solution, with high surface adsorption behavior. Surface wettability alteration is mainly caused by the asphaltenes through interaction of its polar functional component with the surface polar sites, which leads to operational problems, and such interaction poses even more complexities [66, 70, 71, 72, 73, 74, 75]. Since the distribution of the oil in the reservoir is dependent on the degree of the reservoir rock wettability, it is, therefore, imperative to quantify the balance of forces existing at the line of contacts between the rock, oil, and water. Typically, if the oil and water are in contact with the rock surface, either of these fluids will exhibit displacement tendencies of the other or attain equilibrium as the fluids create an angle of contact with the rock. However, such interactions can be affected by factors such as the mineralogy of the rock surface, brine composition, pore roughness and the nature of the oil.
Contact angle and spontaneous imbibition tests are key approaches for assessing formation wettability among other approaches such as relative permeability, capillary pressure/displacement capillary pressure or USBM [49, 50, 51, 52, 76]. However, there exists a remarkable variation in the test methods, which is primarily based on how much of the rock surface is exposed to the wetting phase or wetted by water. In contact angle tests, only the outer surface area of the sample is exposed to a drop of water without consideration for the inner surface of the rock, whereas, in the spontaneous imbibition tests, the whole sample is exposed to the wetting phase (Figure 3). Thus, the inner surface area of the rock can be accounted for upon displacement of the non-wetting phase (oil) by the wetting phase. For example, in an oil-wet carbonate rock, for oil to be displaced by the wetting phase (water/brine solutions etc.) the capillary barriers must be overcome. If the wetting phase penetrates the rock pores, two key possibilities exist; (a) rock wettability change; (b) the presence of a positive capillary due to the wettability change. Such scenarios can enhance recovery especially if the formation rock is hydrophilic. Figure 3b (i-ii) shows a typical case of an oil-wet rock or core sample placed in an imbibition cell containing NaCl brine solution (the wetting phase). The brine imbibes into the rock or core pores and pushes out the oil in the cores. Such expelled oil sticks on the rock surface while been collected at the top of the cell simultaneously for estimation of the recoverable oil. Formation rock with a considerable water-wet condition exhibits high potentials for allowing water into the tight rock matrix pores. Thus, more water-wet rocks allow higher rates in spontaneous imbibition with possibilities of improving recovery. However, maintaining water wetness of formation rocks depends on the extent to which the water film on the rock surface is stable. The presence of unstable water films can lead to oil migration to the rock surface (like the behavior observed in Figure 3b), thus, changing the rock surface wettability. With respect to a typical crude oil system, such behavior would lead to adsorption of polar compounds on the solid surface which in turn changes the wetting properties of the solid [51]. Usually the brine present in a typical carbonate reservoir exhibits a somewhat basic pH (7–8), very high concentration of Ca2+, and a very small amount of CO32−, thus the rock-water interface becomes positively charged [77]. The carboxylic materials present in the crude oil acts as surface-active materials, and partial dissociation of the acidic group leads to negatively charged oil-water interface. This behavior causes instability of the initial water film between the oil and the rock and the oil comes in contact with the rock yielding mixed-wet characteristics. Several wetting studies have been conducted with crude oil used to alter originally water-wet surfaces to oil-wet in different systems [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]. For example; Standnes and Austad [79, 80] performed a wettability test on chalk cores and calcite mineral surfaces altered by crude oil to a sufficient oil-wet state using surfactant as the surface-active agents via spontaneous imbibition. The authors reported that the cationic surfactant changed the wettability of the chalk by desorbing the organic carboxylates from the chalk surface leading to an increased oil recovery of about 70% from the chalk. Buckley and Lord [83] altered mica surface to oil-wet using series of crude oil through atomic force microscopy (AFM), and found that the oils that produce the thickest coatings exhibited the highest water-advancing angles.
Contact angle versus spontaneous imbibition (a) contact angle: Outer surface area wetted by a drop of water on calcite sample; (b) imbibition: The whole carbonate core sample is wetted by brine (NaCl) in an imbibition cell at different temperature conditions during an imbibition experiment. As the brine imbibes into the cores, the oil is pushed out of the cores to the rock surface and collected at the top of the cell (i) ambient temperature (22 ± 1°C); (ii) 50 ± 1°C showing oil droplets that have been pushed out of the cores on the outer surface of the rocks.
Based on the wettability issues in carbonate formations mentioned above, here, we investigated two specific metal oxide nanoparticle types of interest; zirconium oxide and nickel oxide. Firstly, their structure, morphology, and crystallinity phases were examined. Then the wetting inclinations of the nanoparticles were further tested to ascertain their solid-liquid interface behavior on basis of wettability owing to the growing interest in understanding reservoir rock wetting.
Nickel oxide (NiO) is a metal oxide nanoparticle in the form of dark gray (Figure 4) crystalline solid. This material has good chemical stability, excellent electrical properties, large exciton binding energy, and a stable wide band gap >3 eV [90, 91, 92, 93, 94]. NiO is considered a p-type semiconductor metal oxide particle, thus, a candidate for p-type transparent conducting films [92, 95, 96]. This material also exhibits good optical and magnetic properties; anodic electrochromism properties, excellent durability, large spin optical density, and displays strong insulating property [92, 97, 98, 99, 100]. On the basis of reactivity, NiO surface that is considered imperfect acts as a useful oxidation catalyst, although, a perfect NiO is weakly reactive. The perfect surface inertness of NiO is in accordance with the non-metallic properties of the material bulk system [92]. NiO is suitable for usage in electrochemical super-capacitors, dye-sensitized photo cathodes applications and smart windows applications [92, 97, 98, 99, 100]. Other processes where uniform size, well-dispersed NiO nanoparticles are also suitable are in heterogeneous catalytic processes, design of ceramics, magnetic applications, fabrication of gas sensors, films, and cathodes of alkaline batteries [101, 102, 103, 104, 105, 106, 107, 108, 109]. Although NiO appears to be suitable for a wide variety of processes, its property and functionality depend on the pore morphology, pore matrix-interface and process application. For instance, a very high specific surface area is required for this material in catalytic applications, whereas a rather dense material is required for cathodic applications [96].
Nanoparticles in powder form (NiO-dark gray green color; ZrO2-white color).
Zirconium Oxide (ZrO2) is a metal oxide nanoparticle in the form of white (Figure 4) crystalline solid. ZrO2 has high refractive index, high melting point of 2680°C, wide region of low absorption from the near-UV > 240 nm to mid-IR range < 8 mm and high resistance against oxidation [110, 111]. This material is also characterized by high breakdown field, good thermal stability, large band gap >5ev, and high-dielectric constant >20 [112, 113, 114, 115], thus, the material has been considered a potential challenger of other nanoparticles. In a recent report, it was established that ZrO2 exhibits superior chemical and thermal stability than alumina and silica nanoparticles [112]. Similarly, Gopalan et al. [116] earlier reported that silica nanoparticles exhibit limited chemical and physical stability, as such, ZrO2 nanoparticle was considered as a better alternative and also more chemically stable than γ-alumina or silica. ZrO2 has an extraordinary high catalytic effect and it is the only metal oxide nanoparticle with four chemical properties on the surface: acidic/basic and reducing/oxidizing properties [117]. ZrO2 has attracted attention in a wide variety of processes, as the material displays superior mechanical strength, high temperature resistance, high flexural strength, hardness, and low corrosion potential. As such, it can act as a catalyst, refractory, and insulator in transistors in fuel cells, electronic devices, and oxygen sensors, and also suitable for broadband interference filters, laser mirrors, and ionic conductors [118, 119, 120, 121].
With respect to wettability, the recent relevance of nanoparticles in wetting processes is mainly due to the particles excellent range of physical and chemical properties as reported earlier. The materials surface and interface properties play an essential role in their overall behavior, whether during preparation or applications. However, there is a lack of understanding of nanoparticles wetting on basis of the solid-liquid interactions, especially, whether strongly hydrophobic surfaces can be rendered hydrophilic, as this is vital for EOR, soil decontamination, and carbon geo-sequestration process efficiency. Since successful oil recovery from fractured carbonate reservoirs show dependency on wettability [122], it is, therefore, necessary to establish an understanding of ZrO2 and NiO nanoparticles properties, specifically, on the key areas that facilitate their process efficiency and subsequent influence on wetting.
Iceland spar calcite crystals from Ward Science as a representative of carbonate formation as calcite is a predominant mineral constituent of carbonate [38, 58] as also evident in the spectrum analysis of the calcite fraction of a carbonate rock (Figure 5; Table 1).
Spectrum analysis of the calcite fraction of the carbonate rock.
Element | Symbol | Atomic concentration (%) | Weight concentration (%) |
---|---|---|---|
Calcium | Ca | 62.76 | 57.24 |
Carbon | C | 10.78 | 24.64 |
Oxygen | O | 26.46 | 18.12 |
Carbonate rock.
Zirconium oxide (Purity: 99.5 wt. %; density: 5.89 g/mL at 25°C (lit.)) and nickel oxide (Purity 99.5 wt. %; density: 6.67 g/mL at 25°C) nanoparticles from Sigma Aldrich were used in this study (Table 2).
Sample | Concentration (Wt. %) | Chemical formula | Molecular weight (g/mol) | Form | Color | Particle Size (nm) |
---|---|---|---|---|---|---|
Zirconium Oxide | (0.005–0.05) | ZrO2 | 123.22 | Nano powder | White | < 50 |
Nickel Oxide | (0.005–0.05) | NiO | 74.69 | Nano powder | Dark gray | < 50 |
Properties of nanoparticles.
Dodecyltriethoxysilane obtained from Sigma Aldrich ((C18H40O3Si) - purity ≥99.0 mol. %; boiling point: 538.4 k; Density: 875 kg/m3 - Figure 6) was used for altering samples to sufficiently stable oil-wet state. Toluene (purity 99.9 mol. %) obtained from Sigma Aldrich was used as model oil.
Structure of silane and model oil (A) Dodecyltriethoxysilane; (B) toluene.
Sodium Chloride (purity ≥99.5 mol. %) from Rowe Scientific and ultrapure de-ionized water from David Gray was used. The sodium chloride was dissolved in deionized water to achieve desired concentrations using a 220 V/50 Hz magnetic stirrer.
Sample preparation which accounts for sample treatments and techniques used, is an important requirement in wetting analysis. Proper sample preparation, as well as, adequate sample quality and cleanliness are essential to eliminate any chances of methodical inaccuracies.
The mineral crystals (calcite) originally hydrophilic were cleaned with analytical reagent grade acetone and methanol (Rowe Scientific Pty. Ltd), and de-ionized water (David Gray & Co. Ltd). This was done to remove surface fragments and inorganic contaminants. Subsequently, the samples were exposed to air plasma for 15 mins [123, 124, 125] to remove any residual organic contaminants.
The clean samples were modified to oil-wet by aging in the oil phase (dodecyltriethoxysilane) for 12 h at 90°C. Samples were then separated from the oil phase, cleaned with methanol, and deionized water to remove excess silane from the surface of the rock and dried.
ZrO2 and NiO nanoparticles (Concentration - 0.005 - 0.05 wt. %) were mixed with a fixed amount of dispersals. To ensure adequate particle dispersal in the base fluid and the fluid uniformity, all fluids were formulated using high frequency ultrasonic homogenizer (a 300VT ultrasonic homogenizer and a titanium micro tip of 9.5 mm diameter) as also reported in literature [21, 22, 23, 126]. The formulations were kept in a cool place away from heat and light and the nanofluids were subjected to visual monitoring for a fixed period to ensure clear and stable solutions.
Wettability quantification was achieved via contact angle measurement and mechanistic approaches.
Contact angle (θ) was used as the deterministic tool for wettability assessments. The aged samples were exposed to the formulated ZrO2 and NiO nanofluids for a fixed period of one hour (1 h). Then the substrates were removed from the nanofluids and dried. A water droplet was dispensed on the modified calcite substrate and a high-performance microscopic camera (Basler scA 640–70 fm, pixel size =7.4 μm; frame rate = 71 fps; Fujinon CCTV lens: HF35HA-1B; 1:1.6/35 mm) was used to capture the water drop dispensing process. The advancing and receding contact angles were measured using a tilting stage [127] for water contact angle in air. Further analysis of the drop was done using Image J software and the standard deviation was ±3 based on replicate measurements.
Mechanistic investigation of samples was achieved by X-ray powder diffraction, atomic force microscope and scanning electron microscope.
Samples were prepared by placing the fine powders in a sample holder that has been well smeared on a glass slide for measurement in a powdered x-ray diffractometer. Diffraction arises through constructive interference due to the illumination of periodic structures of a given spacing with the light of a similar wavelength [128]. The X-ray diffraction patterns of the nanoparticle samples were recorded using powder diffractometer D8 advance (Bruker AXS, Germany), with a copper K alpha radiation source at 40 kV and 40 mA with a LynxEye detector.
The surface morphology of the treated and untreated samples was characterized by scanning electron microscopy - Zeiss Neon 40EsB FIBSEM with an Oxford Instruments x-act Inca SDD x-ray detector and Inca software, and scanning transmission electron microscopy - Tescan Mira3 FESEM instrument. High electron beam was used to scan over the surface of the sample for improved surface characterization. Several researchers have also reported the effectiveness of SEM for morphological evaluations [129, 130, 131, 132, 133, 134].
The scanning electron microscope images show the micrograph of ZrO2 and NiO nanoparticles (Figure 7). The ZrO2 nanoparticle exhibits a distribution of sphere-like shaped particles in the range of 25–40 nm, while the NiO nanoparticle displays hexagonal-like shaped particles in the range of 10–20 nm. The nanoparticles exhibited approximately uniform size distribution and high trends of finely dispersed particles in the bulk state, thus, an indication of low particle-particle agglomeration inclinations. This behavior can be attributed to the intrinsic properties of metal oxide (superior stability) and preparation method (homogenization - Section 1).
SEM images of: (a) ZrO2; (b) NiO nanoparticles.
Particle size plays a vital role in the nanoparticle characterization as their physical and chemical properties greatly depend on the particle size. The small particle size of nanoparticles yields important features such as surface area. Nanoparticle size and surface area are interrelated; as the nanoparticle size becomes negligible, the particle surface area increases. Bulk materials as opposed to nanoparticle exhibit larger particle sizes (nanoparticle avarage diameter: <100 nm; microparticle >1 μm) with tons of atoms on the inside of the particle and limited atoms at the surface, whereas, with nanoparticles more atoms are predominantly on the outer surface of the particles. Such high surface area enables the bonding of other materials on the particle surface and lead to the generation of even much stronger materials that promote better interaction with neighboring atoms or ions. Ascertaining the nanoparticles size is essential as it affects particulate materials properties and can act as an approach to determine the quality and performance of these materials. The particle size of the ZrO2 and NiO nanoparticles was investigated to obtain more accurate and precise size of the particles. Figure 8 shows that the ZrO2 particle size was 21–35 nm and NiO was in the range of 10–12 nm. The average particle diameter for ZrO2 ~ 28 nm and the average value for NiO was ~ 12 nm.
Particle size morphology of a) ZrO2; b) NiO nanoparticles (<50 nm).
To better understand the crystallographic nature of ZrO2 and NiO nanoparticles, the materials were further characterized using X-ray Diffraction (XRD). The XRD peaks usually exhibit different patterns and positioning. The pattern of the XRD of a specific sample is mainly dependent on the different arrangements of the atoms. The unit cell dimensions and angles determine the positions of the peaks. Whereas, the types and positions of the atoms within the unit cell determine the intensities of the peaks [128]. Figure 9 shows the typical XRD patterns of the ZrO2 (in red) and NiO (black) nanoparticles. The scan parameters used for phase identification were 2theta scan range (degree): 7.5–90; Step size (degree): 0.015; Time/step: 0.7 s and total scan time of approximately 1 hr. The XRD pattern indicates the crystallographic structure of the nanoparticles. Strong and sharp diffraction peaks at 2θ values were observed in both cases (ZrO2 - in red; NiO - in black), especially, for NiO with precise peaks - 37, 43.5, 63 etc., while the ZrO2 diffraction Peaks value were 28.5, 31.5, 34.5, 50.5 etc. The peaks are indications of the pure phase formation of the ZrO2 and NiO nanoparticles. The crystallographic phases of the nanoparticles were also identified. Pure ZrO2 exhibits a tetragonal phase (Figure 10 (i)), and the pure NiO exhibits a cubic phase (Figure 10 (ii)), consistent with literature [92, 135].
XRD patterns of the ZrO2 and NiO nanoparticles.
(a) Crystallographic phases of the ZrO2 nanoparticles exhibiting tetragonal phase. (b). Crystallographic phase of the NiO nanoparticles exhibiting cubic phase.
An understanding of surface chemistry is imperative for evaluating wetting behavior as porous media wetting are influenced by the rock surface morphology, as well as, the chemical compositions. Surface chemistry modifications of materials facilitate short-ranged chemical interactions. This phenomenon is predominantly governed by the surface and interfacial interactions, which act over the scale of molecules, and electrostatic surface forces that determine the extent to which a fluid can wet a surface [48]. Quantification of wettability of solid surfaces was also performed to ascertain the effects of ZrO2 and NiO nanoparticle on wettability alteration of carbonate rocks. Contact angle tests were conducted at solid-liquid-air interface to ascertain the wetting variances prior and after nano-modifications. Water-advancing and receding contact angles were measured of which the advancing contact angles better defines wettability since its relevant to waterflooding [51]. The understanding of contact angle is complex as it exhibits a dependency on the solid-liquid interaction and the structure of the solid or mineralogy of the rock sample.
Prior to the contact angle measurement, calcite substrates were cleaned and aged based on procedure 4.2.2. The nanofluids were prepared using various nanoparticle concentration (0.005–0.05 wt. %) and fixed NaCl brine concentration (7 wt. %) as dispersing agents based on procedure 4.2.2. The samples were immersed in the nanofluids and subsequently contact angles were measured. Figures 12 and 13 (SEM) show nano-modified calcites, as compared to the fresh calcite without any nano-modification (Figure 11). The ZrO2 nanoparticle exhibits a spherical-like shape and more uniformly adsorbed behavior on the calcite surface than NiO, while the NiO exhibits a hexagonal-like shape which is consistent with the earlier observation in Section 4.31. Figure 15 shows the contact angle measurement as a function of nanoparticle concentration for ZrO2 and NiO nanoparticle respectively in air. It is expected that the exposure of the calcite to a different environment would change its surface property. The calcite upon contact with the ZrO2 and NiO nanofluids, film-like deposits of the nanofluids were adsorbed on the calcite surface after exposure to air. Such film thickness can vary between a fraction to numerous fractions of a molecule. However, the level of thickness is dependent on the affinity of the molecules to the substrate and the corresponding distance to the bulk critical point. Moreso, the nano-films on the rock surface may appear thinner than others, which is dependent on the nanoparticle type, and their optical and electrical properties. ZrO2 nano-films are relatively thicker than those of other nanoparticles owing to its material properties such as large band gap >5ev and high-dielectric constant >20 (Petit and Monot, 2015). This may have formed better-adsorbed ZrO2 nano-layers on the oil-wet calcite surface when compared to the NiO nanoparticles.
SEM image of pure calcite surface before nano-modification.
SEM image of calcite surface after ZrO2 nano-modification.
SEM image of calcite surface after NiO nano-modification.
As the dispensed water droplet comes in contact with the surface of the nano-coated calcite, the contact angle decreases owing to the presence of adsorbed nano-layers. This behavior is attributed to the favorable interaction of the nanoparticles with the dispersing fluid (NaCl brine) and high chemical affinity to the calcite. Such solid-liquid interaction at the interface is mainly due to electrostatic interactions. The presence of the nanoparticle increased the surface activity of the brine (NaCl), thereby modifying the calcite surface wetting propensity upon contact. The nanoparticles in suspension act as a coating mechanism by self-structuring into layered NPs and changes the entropy of the system. The particles hydrophilic nature facilitates their adsorption on the rock surface in form of a wedge film which in turn displaces the oil on the surface of the rock, yielding a hydrophilic state. Ideally, if wettability is preferentially altered to favorable water-wet condition and the IFT is ultralow, the forces that retain oil in a fractured reservoir can be overcome as capillarity is diminished through the ultralow IFTs. Figure 14 shows the image representation of the transition phase toward water-wet in air from 88° θa to 48° θa (NiO/NaCl) and 38° θa (ZrO2/NaCl). A decrease in contact angle was observed for all the systems tested with an increase in the nanoparticle concentration (Figure 15) consistent with literature [36–38, 136–139]. Calcite substrates coated with ZrO2/NaCl fluids demonstrated better wetting propensities than the NiO/NaCl system. The efficiency of the systems is due to efficient surface adsorption of the particles on the pore walls of the rock, which invariably rendered the rock surface sufficiently water wet upon contact.
Contact angle images showing variation with increase in nanoparticle concentration (a) unmodified (high θ-indicating an intermediate-wet state—88° θa); (B, C) nano-modified—(B) NiO/NaCl modified (NiO concentration—0.005–0.05); (C) ZrO2/NaCl nano-modified (ZrO2 concentration—0.005-0.05) (B and C indicates low θ which represents strong interaction with the rock surface, and inclination to wet; I–IV); see graphical representation for θ values.
Receding and advancing water contact angles in air (1 h exposure time) (a) NiO; (b) ZrO2 at ambient condition.
The interfacial behavior of nickel oxide and zirconium oxide nanoparticles at solid-liquid interface was studied on their propensity to alter oil-wet surfaces toward water-wet conditions. The ZrO2 and NiO nanoparticles exhibited very different structural and morphological features, as well as crystallinity phases. The nanoparticles exhibited particles size in ranges below 50 nm (< 50 nm) and different shape patterns. The ZrO2 nanoparticles are sphere-like shaped particles while the NiO displayed hexagonal-like shaped particles (Figures 7, 12 and 13). The XRD crystallographic structure and phase identification shows the tetragonal phase of the ZrO2, whereas, the NiO nanoparticle has a cubic phase orientation. The nanoparticles also displayed favorable adsorption behavior on the calcite surface as evident in the SEM images, which facilitated the wetting change quantified by contact angle measurement, however, the ZrO2 based systems exhibited more uniform surface distribution and better wetting than NiO. Thus, nanoparticles are considered efficient modifiers for wettability alteration of surfaces toward a suitable hydrophilic condition.
Tumor microenvironment interacts with tumor cells, creating an environment to suppress or contribute towards tumor development and progression [1]. For the tumor development, inflammation and angiogenesis are the processes which play vital roles from initial to the advanced stages of cancer [2]. Extreme angiogenesis and neo-angiogenesis play a fundamental role in tumor progression, which is driven by various pro-and anti-angiogenic factors [3]. There are different ways for tumor cells to communicate with adjacent cells/tissues for facilitating tumor progression; one of these is through exosomes [4, 5]. Exosomes can transport various biomolecules like DNA fragments, mRNAs, noncoding RNAs, proteins, and lipids from a source cell to target/recipient cells that can enhance angiogenesis, which play a significant role in cancer progression [6]. There are evidences that various noncoding RNAs, particularly microRNAs and long non-coding RNAs (lncRNAs) play significant role in the regulation of angiogenesis [7]. Thus, alteration of angiogenesis has become a striking approach for development of effective cancer therapy [1].
Prior to the discovery of exosomes it was assumed that the transmission of information between mammalian cells occurs in an indirect manner. In 1983, two pioneer studies carried out on the differentiation of reticulocytes into mature erythrocytes, reported release of transferrin receptors into extracellular space in form of small vesicles, which were later termed as “exosomes” by R.M. Johnstone [6, 8, 9, 10]. EVs are vesicles enclosed with phospholipid bilayer secreted in the extracellular matrix. Initially, they were initially considered as “garbage dumpsters” but now they are popularly being referred as “signal boxes” [11]. The presence of extracellular vesicles in solid tissue, physiological fluid, and cell culture supernatants has been demonstrated by a number of studies [12]. EV’s are broadly categorized into different subtypes like microsomes, microvesicles, retrovirus-like particles and apoptotic bodies, different from each other on the basis of size, surface markers and their mode of biogenesis [13]. Extracellular vesicle is a collective term for exosomes and microvesicles. Microvesicles originate from through outward budding and fusion of plasma membrane whereas, exosomes are released via endocytosis and fusion with plasma membrane [14]. Exosomes are the smallest (30–100 nm) subpopulation of EVs. CD9, CD63 and Alix are the specific surface markers for these exosomes [13]. Exosome serve as important cell communication regulators and have gained more attention among all the diverse types of extracellular vesicles because they represent a more homogenous set of vesicular population more closely representing the parent cell of origin [15].
Exosomes are endosome derived extracellular vesicles. Multivesicular endosomes (MVEs) or multivesicular bodies (MVBs) are secreted via intracellular secretion pathway, from the plasma membrane. Early endosomes develop into MVBs which fuse with the cell membrane and release the exosomes or else undergoes degradation in lysosomes and autophagosomes. They are cup-or disc-shaped when observed under electron microscopy having a diameter of 30–150 nm [11, 16]. Various proteins and molecules like (ALIX, VPS4, and TSG101) are some of the major proteins involved in exosome biogenesis, content assembly and their secretion via endosomal sorting complex [16]. Exosome biogenesis supposedly occurs via two major pathways: Endosomal sorting complexes required for transport (ESCRT) dependent and ESCRT independent. The ESCRT dependent process includes ESCRT complex (0, I, and II) which are involved in recognizing and sequestering the ubiquitinylated proteins on the endosomal membrane. Exosomes are formed by membrane remodeling, involving bud formation by invagination of this endosomal membrane [17]. ESCRT independent pathway involves tetraspanins such as CD63 and lipid metabolism enzymes like neutral sphingomyelinase (nSMase) and rab family protein consisting of more than 60 GTPases that regulate intracellular trafficking of exosomes [16]. Anchoring of MVBs and transportation of different exosomes is carried out by different RAB subtypes proteins. Early endosome transportation involves RAB5 and RAB21 proteins to mediate endocytosis pathway from early to late endosome and then to lysosome for degradation involves RAB7 protein. Tumor-associated vesicle trafficking requires a vital protein that is RAB27 and it is highly expressed in several tumors. Other than this, various RAB proteins which include RAB 3,11,26,27, 35, 37 and RAB 38 are linked with the exocytic pathway of vesicle trafficking [11]. RAB27 helps in the release of exosomes from mature endosomes enriched in TSG101, ALIX and CD63 whereas RAB11 & RAB35 are associated with the release of early nuclear endosomes which are enriched with PLP, Wnt and TfR. Finally, MVBs fused with the plasma membrane and exosomes are excreted out in the extracellular environment [12]. Diagrammatic representation of exosome biogenesis and secretion has been shown in Figure 1.
Schematic representation of exosome biogenesis and secretion from eukaryotic cells. Exosome’s formation starts with endocytosis, which involves inward budding of plasma membrane, leading to the formation of early and late endosomes. Further, small vesicles are generated by inward budding of late endosomes and forming multivesicular bodies (MVBs). The ultimate fate of MVBs can be either fusion with lysosome for degradation or fusion with plasma membrane to release exosomes. The exosome formation from MVBs proceeds through ESCRT-dependent and ESCRT-independent pathways. ESCRT-dependent pathway involves various ESCRT proteins like (ESCRT 0, I, II, and III) and ESCRT-independent includes lipids (ceramide) and the tetraspanins.
Exosomes are nanovesicles enriched with a repertoire of biomolecules like proteins, nucleic acids and lipids [16]. Exosomes are dynamic and heterogeneous in nature with respect to their content which majorly depends on their cellular origin, pathological and physiological state of the parent cells. Exosomes from different cell types are enriched specifically in proteins like Alix, Tsg101, integrins, Rab GTPases, tetraspanins (CD9) and (CD63), MHC class II proteins and heat shock proteins (HSP90, HSP70), which alsoserve as exosome marker proteins [16, 18]. Besides these, exosomes are also enriched with double-stranded DNA’s and RNA population of different classes such as microRNA (miRNA), long noncoding RNA (lncRNA) [19]. ExoCarta and Vesiclepedia (http://microvesicle.org/), databases have cataloged the RNA, protein and lipid content of exosomes derived from different sources.
Tumor derived exosomes (TEXs) have been shown to play a significant role in tumor progression by accelerating angiogenesis [20]. New blood vessel formation occurred when angiogenic signaling pathways are activated by tumor-derived exosomes, when they are up taken by normal ECs [21]. Exosomal cargo once internalized into recipient cells present in the tumor microenvironment, can regulate their fate, function, and phenotype [22, 23]. Tumor cell derived exosomal cargo can activate/inhibit the various signaling pathway in ECs via receptor-ligand interaction [24]. There are several studies represent multiple avenues in which cancer-derived exosomes exert pro-angiogenic effects on ECs. Till date, the different signaling pathways that are involved in exosomes-induced angiogenesis are poorly known. However, the exosomal cargo which is involved in tumor progression and angiogenesis have been documented. Role of TEXs cargoes which is involved in tumor angiogenesis is showed in Figure 2. Also, a list of all mRNAs, proteins, and noncoding RNAs which are found in TEXs for regulating tumor angiogenesis are listed in Table 1.
Tumor derived exosomes as carrier of pro-angiogenic cargo from different cancer models promote neo-angiogenesis. Tumor-derived exosomes are enriched in proangiogenic proteins, mRNAs, miRNAs, and long noncoding RNAs which are transferred to recipient endothelial cells and activate various angiogenic signaling pathways involved in different angiogenesis process via cell proliferation, migration, and invasion.
Exosomal cargo | Tumor type | Type of study ( | Cell lines | Target cell | Mechanisms | Function | References |
---|---|---|---|---|---|---|---|
EGFRVIII | Glioma cells | Both | U373Viii | U373 and HUVECs | Increase in the VEGF gene expression, by activating the MAPK and Akt pathways | Pro-angiogenesis | [25, 26] |
Dll4 | Glioma cells | Both | U87MG | HUVEC | Inhibition of notch signaling | Pro-angiogenesis | [27] |
POU3F3 lncRNA | Glioma cells | A172, U87-MG, U251 and T98G | HBMVECs | Increasing the expression of bFGF, VEGFA and bFGFR in ECs | Pro-angiogenesis | [22] | |
HOTAIR lncRNA | Glioma cells | A172 | HBMVECs | Increase in the VEGFA expression of ECs | Pro-angiogenesis | [28] | |
CCAT2 lncRNA | Glioma cells | A172, U87-MG, U251, and T98G | HUVECs | Increase in the expression of VEGFA and other angiogenic signaling molecules of ECs and decrease in the apoptosis process | Pro-angiogenesis | [29] | |
IL-8, PDGF | Glioblastoma | U87MG | ECs | PI3K/AKT signaling | Pro-angiogenesis | [30] | |
VEGF-A | Glioblastoma | GSC | Brain microvascular ECs | Enhancement in angiogenic potential of brain ECs | Pro-angiogenesis | [31] | |
miR-148a-3p | Glioblastoma | U-138-MG, U251-MG, and HEK-293 T | HUVECs | Activating the EGFR/MAPK signaling pathway by inhibiting ERRFI1 | Pro-angiogenesis | [32] | |
miR-182-5p | Glioblastoma | U-251MG, H4, A-172, U-118MG, LN-18, and U-87MG | HUVECs | Targeting Kruppel-like Factor 2 and 4 | Pro-angiogenesis | [33] | |
miR-10b | Breast cancer | MCF-7 and MM-231 | HMLE | Suppression of HOXD10 and KLF4 proteins level | Promotes cell invasion | [34] | |
miR-373 | Breast cancer | MCF-7 and MM-231 | ECs | Wnt/β-catenin signaling | Pro-tumorigenesis | [35] | |
miR-122 | Breast cancer | Both | MCF-10A and MM-231 | Normal cells in pre metastasic niche | Downregulation of PKM | Promotes metastasis, before angiogenesis | [36] |
miR-497 | Breast cancer | Both | MCF-7 | HUVECs | Decrease in the expression of VEGF and HIF-1 | Anti-angiogenesis | [37] |
AnxA2 | Breast cancer | Both | MCF10A and MM-231 | Macrophages and ECs | Generation of plasmin | Pro-angiogenesis | [38] |
miR-210 | Breast cancer | Both | 4 T1 | ECs | Upregulation of VEGF | Pro-angiogenesis | [39] |
miR-145 | Breast cancer | Both | MDA-MB-231 | HUVECs | STIM1 promotes angiogenesis by reducing exosomal miR-145 which targets IRS1 | Pro-angiogenesis | [40] |
NA | Breast cancer | MCF-7 and MM-231 | ADSCs | SMAD pathway | Pro-angiogenesis | [41] | |
miR-135b | Multiple myeloma | Both | RPMI8226, KMS-11 and U266 | ECs | Suppression of FIH-1 | Pro-angiogenesis | [42] |
Angiogenin, bFGF, VEGF | Multiple myeloma | Both | ST33MMVT and RPMI8226 | ECs, bone marrow stromal cells | Activation of P53, N-terminal kinase, C-jun and STAT3, | Pro-angiogenesis | [43] |
miR-9 | Melanoma | SK23 | ECs | JAK-STAT pathway | Pro-angiogenesis | [44] | |
IL-6, VEGF, and MMP-2 | Melanoma | HTB63, Mewo, and A375 | ECs | WNT5A signaling pathway | Pro-angiogenesis | [45] | |
GM-CSF, HIF-1α, HIF-2α | Melanoma | NA | ECs and M1/M2 macrophages | Upregulation of VEGF expression | Pro-angiogenesis | [46] | |
Tetraspanin Tspan8 (D6.1A) | Pancreatic cancer | Both | BSp73AS | ECs | Upregulation in the expression of MMP, VEGF, and VEGFR | Pro-angiogenesis | [47, 48] |
Wnt4 | Colorectal cancer | Both | HT29 and HCT116 | ECs | Wnt/β-catenin pathway | Pro-angiogenesis | [49] |
lncRNA UCA1 | Pancreatic cancer | PANC-1, MIA PaCa-2, BxPC-3, Aspc-1, Sw1990, and HEK293T | HUVECs | AMOTL2/ERK1/2 Signaling Pathway | Pro-angiogenesis | [50] | |
M-phase-related transcripts | Colorectal cancer | SW480 | ECs | Modulation of M-phase of cell cycle and activation of cell proliferation | Initiate angiogenesis | [51] | |
miR-21 | Lung cancer | SV40 | HUVECs | Upregulation of VEGF | Pro-angiogenesis | [52] | |
miR-23a | Lung cancer | NCI-H1437, H1648, H1792 and H2087 | HUVECs | Exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1 | Pro-angiogenesis | [53] | |
miR-141 | Small cell lung cancer | H446 and H1048 | HUVECs | Exosomal miR-141/KLF12 pathway | Pro-angiogenesis | [54] | |
Profilin 2 | Small cell lung cancer | H446 | HUVECs | t PFN2 activated Smad2/3 in H446 and pERK in ECs | Pro-angiogenesis | [55] | |
Vasorin | Hepatocellular carcinoma | HepG2 | HUVEC | Promote cell proliferation and migration | Pro-angiogenesis | [56] | |
Angiopoietin-2 | Hepatocellular carcinoma | Both | Hep3B, SNU182, SNU387, Li7 and MHCC97H | HUVECs | Tie2-independent pathway | Pro-angiogenesis | [57] |
miR-1290 | Hepatocellular Carcinoma | Hep3 B and HepG2 | HUVECs | miR-1290-Induced proangiogenic phenotype via targeting SMEK1 | Pro-angiogenesis | [58] | |
NA | Renal cancer | 786-0 | HUVEC | Upregulation of VEGF, expression and downregulation of hepaCAM | Pro-angiogenesis | [59] | |
NA | Renal cancer | 786-0 | 786-0 | Increase in the expression of CXCR4 and MMP-9 | Enhance migration and invasion | [60] | |
CA9 | Renal cancer | 786-0 | HUVEC | Increasing the MMP-2 expression | Pro-angiogenesis | [61] | |
miR-549a | Renal cancer | Both | 786-0 and 293T | HUVECs | Exosomal miR-549a affects angiogenesis and endothelial cell migration by silencing HIF1α in HUVECs | Pro-angiogenesis | [62] |
miR-27a | Renal clear cell carcinoma | 786-0, RPTEC and HEK293T | HUVECs | RCCC-derived miR-27a-loaded exosomes inhibit SFRP1 expression and accelerate tumor angiogenesis in RCCC | Pro-angiogenesis | [63] | |
EDIL-3 | Bladder cancer | TCC-SUP, T24, and SV-HUC | HUVEC | Promote cell proliferation and migration | Pro-angiogenesis | [24] | |
miR-181a | Papillary thyroid cancer (PTC) | Both | BCPAP and K1 | HUVECs | Hypoxic PTC-secreted exosomes delivered miR-181a that inhibits DACT2 via downregulating MLL3, leading to YAP-VEGF-mediated angiogenesis | Pro-angiogenesis | [64] |
miR-21 | Head and neck squamous cell carcinoma | Both | FaDu | CD14+ human monocytes | Increasing the expression of M2 polarization markers of TAMs | Pro-angiogenesis | [65] |
ICAM-1, CD44v5 | Nasopharyngeal carcinoma | C666-1, NP69 and NP460 | HUVEC | Src kinase, ERK1/2 kinase, p38 MAPK, RhoA/ROCK, and eNOS | Pro-angiogenesis | [66] | |
PFKFB-3 | Nasopharyngeal carcinoma | CNE2 | HUVEC | Increasing in the production of Fru-2,6-P2 and lactate | Pro-angiogenesis | [67] | |
HMGB3 | Nasopharyngeal carcinoma | Both | CNE1, CNE2, 5-8 F, 6-10B and NP69 | HUVECs | HMGB3-containing nEXOs accelerated angiogenesis in vitro and in vivo | Pro-angiogenesis | [68] |
FAM225A lncRNA | Esophageal squamous cell carcinoma cells | ECA109, TE-1, KYSE150, and KYSE-410, and HET-1A | HUVECs | Sponging miR-206 thus derepressing its targets NETO2 and FOXP1 thereby activating PI3K/Akt/NF-κB/Snail axis | Pro-angiogenesis | [69] | |
miR-130a | Gastric cancer | Both | SGC-7901 | HUVEC | Downregulation of c-MYB | Pro-angiogenesis | [70] |
NA | Chronic myeloid leukemia | Both | K562 | HUVEC | Src pathway | Pro-angiogenesis | [71] |
IL-8 | Chronic myeloid leukemia | Both | LAMA84 | HUVEC | MAPK signaling | Pro-angiogenesis | [72] |
miR-92a | Chronic myeloid leukemia | K562 | ECs | Targeting integrin-α5 | Pro-angiogenesis | [73] | |
miR-210 | Chronic myeloid leukemia | K562 | ECs | Downregulation of EFNA3 | Pro-angiogenesis | [74] | |
miR-21 | Chronic myeloid leukemia | Both | K562 LAMA84 | HUVEC | Downregulation of RhoB | Anti-angiogenesis | [75] |
TGF-β | Prostate cancer | LNCAP, DU145, and PC3 | Fibroblasts | SMAD-dependent signaling | Pro-angiogenesis and pro-tumorigenesis | [76] | |
C-Src, IGF-IR, FAK | Prostate cancer | DU145, PC3 and C4-2B | ECs | Upregulation of VEGF | Pro-angiogenesis | [77] | |
VEGF | Ovarian cancer | CABAI | HUVEC | Acts through its tyrosine kinase receptors | Pro-angiogenesis | [78] | |
CD147 | Ovarian cancer | CABAI, A2780, OVCAR3 and SKOV3 | HUVEC | Upregulation of MMP and VEGF | Pro-angiogenesis | [79] | |
ATF2, MTA1, SARS, ROCK1/2 | Ovarian cancer | CAOV3 | HUVEC | Upregulation of VEGF and HIF-1α | Pro-angiogenesis | [80] | |
miR-221-3p | Cervical cancer | CasKi, SiHa, HeLa and SW756 | MVECs | CC cells-derived exosomes harboring miR-221-3p enhanced MVEC angiogenesis in CC by decreasing MAPK10 | Pro-angiogenesis | [81] | |
miR-141-3p | Ovarian cancer | SKOV-3a | HUVECs | Activating the JAK/STAT3 and NF-κB signaling pathways | Pro-angiogenesis | [82] | |
PTCH 1, SMO, SHH, Ihh | Cervical cancer | SiHa, HeLa and C33a | HUVECs | CC cells-derived exosomes promote pro-angiogenic response in endothelial cells via upregulation of Hh-GLI signaling and modulate downstream angiogenesis-related target genes | Pro-angiogenesis | [83, 84] | |
TIE2 | Cervical cancer | SiHa, HeLa and THP1 | HUVECs | TIE2-high tumor cells deliver TIE2 to macrophages to induce TIE2-expressing macrophages via exosomes | Pro-angiogenesis | [85] | |
RAMP2-AS1 lncRNA | Chondrosarcoma cells | SW1353 | HUVECs | Sponging miR-2355-5p thus derepressing its target VEGFR2 thereby increasing angiogenic cell surface receptors | Pro-angiogenesis | [86] | |
miR-92a-3p | Retinoblastoma | Both | WERI-Rb1 | HUVECs | Exosomally delivered miR-92a-3p modulates angiogenesis by targeting KLF2 | Pro-angiogenesis | [87] |
miR-155 | Burkitt’s lymphoma | Raji | ARPE-19 | Upregulation of VEGF-A expression via VHL/HIF-1α pathway | Pro-angiogenesis | [88] |
Tumor derived exosomes as carrier of pro-angiogenic cargo from different cancer models promotes neo-angiogenesis.
Exosomes derived from glioblastoma cells are known to carry different mRNAs, miRNAs and angiogenic factors which interacts with ECs and thus stimulate angiogenesis. Kucharzewska et al. demonstrated export of pro-angiogenic factors IL-8 and PDGF through exosomes derived from the hypoxic glioma cells and thus induce endothelial proliferation and cell migration by activating the PI3K/AKT signaling pathway [30]. Exosomes from glioblastoma cells showed enrichment of different non-coding RNAs that include, microRNAs (miRNAs): miR-148a-3p, miR-182-5p; long non-coding RNAs (lncRNAs): POU3F3, HOTAIR, CCAT2 in the regulation of glioma cell angiogenesis [22, 28, 29, 32, 33]. Exosomes derived from glioma cells are also known to carry pro-angiogenic proteins such as EGFRvIII, VEGF-A and DII4 which are important for tumor growth, survival and angiogenesis through the activation of Akt and MAPK signaling pathways [25, 26, 27, 31].
Breast cancer derived-exosomes transfer majorly pro-angiogenic microRNAs: miR-10b, miR-101, miR-105, miR-122, miR-145, miR-210 and miR-373 responsible for tumor invasion, metastasis and lead to angiogenesis [34, 35, 36, 39, 40, 41]. However, Wu et al. found that exosomes secreted from breast cancer cells loaded with miR-497 are responsible for anti-angiogenesis by downregulating the VEGF and HIF-1 [37]. Maji et al. have observed that Annexin A2 was transferred via breast cancer exosomes to ECs and induces the process of vascularization and angiogenesis through the tissue plasminogen activator (tPA)-dependent manner
Multiple myeloid cancer cells derived exosomes are known to carry miR-135b and responsible for tube formation in ECs by suppressing its target FIH-1 [42]. Wang et al. observed that various pro-angiogenic factors are released into the exosomes derived from multiple myeloma cells such as angiogenin, bFGF and VEGF that promote tumor growth [43].
In a study conducted by Zhuang et al. demonstrated that exogenous miR-9 can advance tumor angiogenesis by downregulating the SOCS-5 levels, which can discordantly regulate the JAK-STAT signaling pathway [44]. Hood et al. have observed exosomes released from melanoma cells stimulate the expression of HIF-1α, HIF-2α and GM-CSF, which leads to angiogenesis in endothelial cells [46]. Moreover, Ekstrom et al. showed that the WNT5A signaling promotes the exosomal secretion from melanoma cells containing immunomodulatory and pro-angiogenic factors such as IL-6, MMP-2 and VEGF [45].
Pancreatic adenocarcinoma produced exosomes having high levels of tetraspanin Tspan8 (D6.1A) that promote migration, proliferation and sprouting in ECs. Moreover, these exosomes also help in maturation of endothelial progenitor cells [47, 48]. Guo et al. showed that lncRNA UCA1 was exported through exosomes derived from the hypoxic pancreatic cancer cells are responsible for angiogenesis via miR-96-5p/AMOTL2 signaling pathway [50].
Studying the exosomes from the colorectal carcinoma demonstrated that these exosomes carry pro-angiogenic factors Wnt 4, which helps in angiogenesis of ECs through Wnt/β-catenin pathway [49]. Hong et al. found that the exosomes released from SW480 colorectal cancer cell lines are loaded with M-phase related transcripts such as RAD21, CDK8, and ERH and regulate M-phase of the cell cycle and promotes proliferation and in turn enhance angiogenesis [51].
Exosomes derived from small cell lung cancer (SCLC) cells are found to be enriched with miR-21 and miR-23a, which is correlated with the pro-angiogenic activities in ECs [52, 53]. A study of Mao et al. demonstrated that exosomes from SCLC cells are responsible for pro-angiogenic effect via miR-141/KLF12 pathway in targeted ECs [54]. In another recent study, Profilin2 protein was transferred from the lung cancer cells via exosomes and leads to angiogenesis by activating the t-PFN2 dependent pERK pathway in endothelial cells [55].
Vasorin (VASN), a type I transmembrane protein has an effective role in tumor progression and angiogenesis, was secreted by exosomes of hepatocellular carcinoma cells (HCC) and promotes the migration of HUVEC cells [56]. In another study of Xie et al. showed that angiopoietin-2 protein is transferred to ECs from HCC cells via exosomes and responsible for pro-angiogenesis [57]. Recently, it was found that miR-1290 is also released from the HCC cells through exosomes and responsible for angiogenesis by inducing the miR-1290 induced pro-angiogenic phenotype in endothelial cells, by targeting the SMEK1 [58].
Zhang et al. demonstrated that exosomes derived from renal cancer cell enhances angiogenesis by upregulating the expression of VEGF and downregulating the hepaCAM expression in ECs [59]. Moreover, exosomes derived from renal cancer 786-0 cells promotes invasion and migration of the endothelial cells through upregulation of chemokine receptors CXCR4 and MMP-9 [60]. A recent study of Hou et al. observed that the exosomes derived from renal clear cell carcinoma (RCCC) are loaded with miR-27a and inhibits SFRP1 expression which leads to accelerated angiogenesis in HUVECs [63].
Beckham et al. observed that the exosomes derived from urine of patients with bladder cancer and high-grade bladder cancer cell lines contain an angiogenic factor. Epidermal growth factor (EGF)-like repeats and discoidin I-like domain-3 (EDIL-3) that facilitate cell proliferation and migration which leads to angiogenesis in endothelial cells. EDIL-3 activated EGFR signaling overrule this EDIL-3 induced bladder cell migration [24].
In a recent study by Wang et al. observed that miR-181a is delivered by hypoxic PTC-secreted exosomes inhibits DACT2 by downregulating MLL3, leading to YAP-VEGF-mediated angiogenesis by increasing proliferation and forming capillary-like network in HUVECs. Further, angiogenic potential of hypoxic PTC-secreted exosomes was confirmed in-vivo, which was reversed in presence of hypoxic miR-181 inhibitor [64].
Chan et al. showed that nasopharyngeal carcinoma (NPC) derived exosomes are supplemented with pro-angiogenic factors, ICAM-1 and CD44v5, which helps in angiogenesis of endothelial cells [66]. In another study by Gu et al. recognized a vital role of PFKFB-3 in NPC derived exosomes, which helps in migration, proliferation and angiogenesis of HUVECs [67]. Exosomes derived from FaDu cells are highly enriched with miR-21, captured by monocytes present in the TME and responsible for increasing the expression of M2 polarization of TAMs markers, which helps in tumor progression by regulating the tumor invasiveness and angiogenesis [65]. In a recent study, it was observed that a nuclear protein HMGB3 is transferred to endothelial cells via exosomes released from NPC cells and responsible for accelerated angiogenesis
Zhang et al. demonstrated that exosomes released from esophageal squamous cells are enriched with lncRNA FAM225A, which accelerates esophageal squamous cell carcinoma progression and angiogenesis by sponging miR-206. Further, they showed the upregulation of NETO2 and FOXP1 expression when FAM225A absorbed the miR-206 thereby activating PI3K/Akt/NF-κB/Snail axis [69].
Exosomes derived from gastric cancer cell are enriched with miR-130a and plays a central role in tumor angiogenesis. They showed that exosomal miR-130a is able to facilitate angiogenesis by downregulating the c-MYB, which is an important transcription factor in different biological processes [70]. In another study by Li et al. demonstrated that exosomes released from irradiated gastric cancer cells promote invasiveness and proliferation of endothelial cells [89].
LAMA84 a human CML cell line releases exosomes and are able to trigger diverse signaling pathways in ECs, leading to enhanced expression of important angiogenic factor IL-8 [72]. Umezu et al. observed that exosomes from leukemia cells can transport miR-92a into ECs and responsible for enhanced tube formation and migration by downregulation of integrin-α5 [73]. In another study, it was found that leukemia cell derived exosomes are able to induce tube formation in HUVECs by activating Src [71]. It has been observed that exosomes released from K562 leukemia cells are loaded with miR-210 downregulate the receptor tyrosine kinase ligand, Ephrin A3 (EFNA3) [74]. However, in contrast, Taverna et al. showed that curcumin treatment deeply changes the molecular properties of exosomes released by leukemia cells, in particular, deplete the exosomes of the pro-angiogenic proteins and leads to enrichment of proteins with anti-angiogenic activity and miR-21 [75].
Exosomes derived from prostate cancer cells are known to carry TGF-β1 protein, which can induce the differentiation of recipient fibroblasts to myofibroblasts [76]. In a study by DeRita et al., showed that prostate cancer cell exosomes were loaded with, IGF-IR, FAK and c-src, which could promote tumor angiogenesis [77].
Taraboletti et al. demonstrated that exosomes from ovarian cancer cells are known to carry pro-angiogenic growth factor VEGF, which helps in interaction between tumor and endothelial cells and is very important for angiogenesis [78]. Ovarian cancer exosomes are enriched with pro-angiogenic protein CD147, ATF 2, MTA1, SARS and ROCK1/2. They observed that these proteins can enhance the expression of vital angiogenic factors like VEGF, HIF-1α and MMPs and resulting in the enhanced angiogenesis of HUVECs [79, 80]. Additionally, Masoumi-Dehghi et al. observed that exosomes from ovarian cancer cells are enriched in miR141-3p, which helps in angiogenesis by activating the JAK/STAT and NF-kB signaling pathways [82].
Cheng et al. demonstrated that microarray analysis revealed that exosomes released from chondrosarcoma cells carried lncRNA RAMP2-AS1, which promotes HUVECs migration, proliferation, and tube formation which leads to angiogenesis through miR-2355-5p/VEGFR2 axis, thereby regulating the angiogenic ability of endothelial cells. Successive experiments showed that RAMP2-AS1 knockdown could decrease the pro-angiogenic effect of exosomes released from chondrosarcoma cells [86].
Recently a study conducted by Chen et al. demonstrated that exosomes released by human retinoblastoma cell line WERI-Rb1, were enriched inmiR-92a-3p. The study, predicted that Krüppel-like factor 2 (KLF2) might activate target of miR-92a-3p, using bioinformatics tools & analysis. Thus, exosomal miR-92a-3p was found to modulate tumor angiogenesis by targeting KLF2 [87].
A study performed by Yoon et al. observed that miR-155 is transported from EBV-positive Burkitt’s lymphoma cells derived exosomes which could induces angiogenesis in retinal epithelial pigment (RPE) cells (ARPE-19) by upregulation of transcriptional and translational levels of VEGF A via VHL/HIF-1α pathway. Thus, study demonstrated that miR-155 accumulation through exosomes affect nearby recipient cells [88].
Zhang et al. observed that exosomes released from cervical cancer cells harboring miR-221-3p, which accelerate the MVEC migration, proliferation, invasion and angiogenesis in cervical cancer cells by regulating MAPK10 [81]. In another study performed by Bhat et al. showed that cervical cancer exosomes were highly enriched with upstream proteins of hedgehog-GLI signaling includes, PTCH1, SMO, SHH and Ihh [83]. Also, they observed that these cervical cancer exosomes facilitate pro-angiogenic endothelial reconditioning through transfer of Hedgehog-GLI signaling components [84].
The discovery of exosomes as natural carriers of different mRNAs, miRNAs and lncRNAs makes them a suitable candidate as therapeutic drug vehicles and drug carriers to target cancer cells and modulation of tumor microenvironment. Recent advance in the field reveals several success stories (Table 2). The manipulation of exosomes as drug carriers provides significant advantage for example their nonimmunogenic nature [95]. Exosomes are also known to carry different cell surface molecules due to which they have a commendable ability to transgress numerous biological barriers, such as the BBB (blood-brain barrier). They are highly stable in blood, which permits them to perform long distance intercellular communication [96]. Clinical data from various studies revealed that progression of cancer can be delayed or prevented when tumor angiogenesis is blocked [97]. So, angiogenesis during tumor development has now become the major emphasis of study and angiogenesis inhibition is evolving as a new method to treat cancer [98]. Recent investigations reported that exosomes can decrease or increase angiogenesis based on their molecular content. Thus, there is a lot of promise in developing engineered exosomes to transport numerous biological and synthetic genetic materials that can modify the expression of various genes involved in tumor angiogenesis [99]. For example, Ohno et al. demonstrated that modified exosomes carrying EGF or GE11 on their surface can deliver miR let-7a (tumor suppressor miR) to EGFR expressing breast cancer cells in RAG2−/− mice model. Their previous investigation showed that GE11-exosomes which delivered miR-let 7a, effectively downregulated HMGA2 expression in cancer cells [90]. This study verifies that exosomes can be used as drug delivery vehicle to transport their cargo efficiently to the target cells. Exosomes have capability to act as carriers for delivering different small interfering RNAs (siRNAs) for targeted cancer treatment. Exosomes having HGF siRNA packed inside them can be transported into gastric cancer cells, where they downregulate the HGF expression [91]. Liu et al. demonstrated that exosomes are able to transport antisense RNA targeted to miR-150, which induces the expression of VEGF. They established that the neutralization of miR-150 downregulates the VEGF levels in mice and blocked angiogenesis [92]. Gupta et al. have shown that the bone marrow stromal cells (BMSCs) are involved in the tumor progression by secreting different pro-angiogenic factors, bFGF and VEGF [100]. In another study, it was observed that the miR content of exosomes derived from old and young BMSCs was different from each other. Young BMSC exosomes were highly enriched with miR-340, which inhibited the angiogenesis through HGF/c-MET signaling pathway in ECs. The antiangiogenic effect of older BMSCs was remarkably enhanced, when miR-340 was transferred to older BMSC exosomes that was highly expressed in young BMSC exosomes. Therefore, this investigation indicates the exosome-based cancer therapy via replenishment of miRNAs of exosomes [94]. The Arg-Gly-Asp (RGD) sequence containing peptide specifically bounds to αVβ3 integrin and plays an important role in endothelial cell survival, migration and angiogenic growth. In a study performed by Wang et al. showed successful binding of the RGD sequence containing peptide to the exosomal membrane surface and thereby binding of the αVβ3 integrin on the surface of angiogenic blood vessel. Thus, engineered exosomes are emerging as a new probable therapeutic motor for angiogenesis therapy [99]. In another study, it has been observed that curcumin treated CML cells released the exosomes, which are highly enriched with miR-21, which is further transferred to ECs and downregulates the expression of RhoB [75]. Docosahexaenoic acid (DHA) is a polyunsaturated omega-3 fatty acid (PUFA) and popularly known for its anti-cancer and anti-angiogenesis properties. A group of researchers demonstrated that exosomes released from the DHA-treated breast cancer cell lines are highly enriched with miRs, including miR-21, miR-27a/b, miR-23b, miR-320b, let-7 and let-7a, which are well known for their anti-angiogenic properties. They observed the increased expression of these miRs when exosomes were co-incubated with the endothelial cells. Collectively, the exosomes show a strong therapeutic potential as natural nano carrier [93].
Exosomal cargos | Study models | Study Outcome | References |
---|---|---|---|
let-7a miR | Breast cancer | Secreted exosomes delivered miR-let7a to the breast cancer cells expressing EGFR and inhibited cancer growth by blocking angiogenesis | [90] |
HGF siRNA | Gastric cancer | Exosomes decrease the tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA (HGF siRNA) | [91] |
Antisense RNA targeted to miR-150 | NA | Downregulated the expression levels of VEGF in mice and blocked angiogenesis | [92] |
miR-21, miR-23b, miR-27a/b, miR-320b, let-7 and let-7a | Breast cancer | DHA treated exosomes have altered miRNA content that have anti-angiogenic properties in breast cancer | [93] |
miR-340 | Old Bone Marrow Stromal Cells (BMSCs) | Exosomes having miR-340, inhibits angiogenesis through HGF/c-MET signaling pathway in ECs | [94] |
miR-21 | Chronic Myeloid Leukemia (CML) | Exosomes transferred miR-21 to ECs and downregulated the expression of RhoB | [75] |
Engineered exosomes as anti-angiogenic drug carriers in different cancer models.
Herein, we have emphasized the current advances in the roles of tumor derived exosomes in cancers of different origins in tumor angiogenesis. Exosomes could modulate the angiogenic programming in target cells by transferring the angiogenic cargoes that include different mRNAs, miRNAs, lncRNAs and proteins. Angiogenesis is a very complex process in which aberrant growth of tumor and its metastasis occurs. So, the inhibition of angiogenesis is a pivotal point to control the progression of cancer. In spite of increasing amount of information about tumor derived exosomal cargo and changes prompted by them on target cells, the complexity of exosomal cargoes remains to be fully elucidated. There are several limitations and road blockers in the significance of exosomes in cancer therapy. These specifically pertain to exosomal yield, exosomes efficacy and specificity of targeting for effective cancer therapy. This field is yet elusive to assess the effect of exosomes on tumor angiogenesis and use them as potential means for different cancer therapies. So, future investigations should focus on identifying the fundamental exosomal cargoes and the mechanisms behind differential loading of different bioactive molecules, whose role could be implemented for designing non-invasive procedures to detect exosomes for cancer diagnosis and prognosis as well as development of effective therapeutic approaches based on exosomes.
Not Applicable.
The authors declare that there are no competing/conflicts of interest.
Financial support from Science and Engineering Research Board Department of Science and Technology, Government of India (DST-SERB (EMR/2017/004018/BBM)) and Institution of Eminence University of Delhi (Ref. No./IoE/2021/12/FRP) to ACB and grant from CCRH to ACB:SC:KT (17-51/2016–2017/CCRH/Tech/Coll./DU-Cervical Cancer.4850) and Indian Council of Medical Research (ICMR-ICRC (No.5/13/4/ACB/ICRC/2020/NCD-III), are thankfully acknowledged. Study was partly supported by Junior Research Fellowship to TT (764/(CSIR-UGC NET JUNE 2019) and Senior Research Fellowship to AC [573(CSIR-UGC NET JUNE 2017)] by University Grants Commission (UGC), Senior Research Fellowship to NA (09/045(1622)/2019-EMR-I) and JY (09/045(1629)/2019-EMR-I) by Council of Scientific and Industrial Research (CSIR); Junior Research Fellowship to DJ (09/0045/(11635)/2021-EMR-1) and AC (09/0045(12901)/2022-EMR-1).
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11453",title:"Biomimetics - Bridging the Gap",subtitle:null,isOpenForSubmission:!0,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",slug:null,bookSignature:"Prof. Ziyad S. Haidar",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",editedByType:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11456",title:"Autonomous Mobile Mapping Robots",subtitle:null,isOpenForSubmission:!0,hash:"405e1f7c0ef62700f4d590722cf428be",slug:null,bookSignature:"Dr. Janusz Bȩdkowski",coverURL:"https://cdn.intechopen.com/books/images_new/11456.jpg",editedByType:null,editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11459",title:"Soft Robotics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"06e947238d5d4ea1162509a5d66de887",slug:null,bookSignature:"Dr. Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11459.jpg",editedByType:null,editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:24},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:39},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:64},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:480},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"698",title:"Ophthalmology",slug:"engineering-biomedical-engineering-ophthalmology",parent:{id:"112",title:"Biomedical Engineering",slug:"engineering-biomedical-engineering"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:24,numberOfWosCitations:32,numberOfCrossrefCitations:17,numberOfDimensionsCitations:45,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"698",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8569",title:"Intraocular Lens",subtitle:null,isOpenForSubmission:!1,hash:"2c184a80e647c0e74df5bc34318a2d8b",slug:"intraocular-lens",bookSignature:"Xiaogang Wang and Felicia M. Ferreri",coverURL:"https://cdn.intechopen.com/books/images_new/8569.jpg",editedByType:"Edited by",editors:[{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3410",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!1,hash:"5874633eec9992aae494f9a513225cbb",slug:"optical-coherence-tomography",bookSignature:"Masanori Kawasaki",coverURL:"https://cdn.intechopen.com/books/images_new/3410.jpg",editedByType:"Edited by",editors:[{id:"50603",title:"Dr.",name:"Masanori",middleName:null,surname:"Kawasaki",slug:"masanori-kawasaki",fullName:"Masanori Kawasaki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"43475",doi:"10.5772/53960",title:"Optical Coherence Tomography – Applications in Non- Destructive Testing and Evaluation",slug:"optical-coherence-tomography-applications-in-non-destructive-testing-and-evaluation",totalDownloads:3019,totalCrossrefCites:4,totalDimensionsCites:15,abstract:null,book:{id:"3410",slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Alexandra Nemeth, Günther Hannesschläger, Elisabeth Leiss- Holzinger, Karin Wiesauer and Michael Leitner",authors:[{id:"158226",title:"Dr.",name:"Michael",middleName:null,surname:"Leitner",slug:"michael-leitner",fullName:"Michael Leitner"},{id:"160982",title:"Dr.",name:"Alexandra",middleName:null,surname:"Nemeth",slug:"alexandra-nemeth",fullName:"Alexandra Nemeth"},{id:"160983",title:"MSc.",name:"Elisabeth",middleName:null,surname:"Leiss-Holzinger",slug:"elisabeth-leiss-holzinger",fullName:"Elisabeth Leiss-Holzinger"},{id:"160984",title:"Dr.",name:"Karin",middleName:null,surname:"Wiesauer",slug:"karin-wiesauer",fullName:"Karin Wiesauer"},{id:"166671",title:"MSc.",name:"Günther",middleName:null,surname:"Hannesschläger",slug:"gunther-hannesschlager",fullName:"Günther Hannesschläger"}]},{id:"43468",doi:"10.5772/53510",title:"Optical Coherence Tomography in Neuro-Ophthalmology",slug:"optical-coherence-tomography-in-neuro-ophthalmology",totalDownloads:4038,totalCrossrefCites:1,totalDimensionsCites:7,abstract:null,book:{id:"3410",slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Tony Garcia, Ghislain Bonnay, Ayman Tourbah and Carl Arndt",authors:[{id:"160652",title:"Prof.",name:"Carl",middleName:null,surname:"Arndt",slug:"carl-arndt",fullName:"Carl Arndt"}]},{id:"43462",doi:"10.5772/53961",title:"Current Applications of Optical Coherence Tomography in Ophthalmology",slug:"current-applications-of-optical-coherence-tomography-in-ophthalmology",totalDownloads:3921,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"3410",slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Nadia Al Kharousi, Upender K. Wali and Sitara Azeem",authors:[{id:"130480",title:"Dr.",name:"Nadiya",middleName:null,surname:"Al Kharousi",slug:"nadiya-al-kharousi",fullName:"Nadiya Al Kharousi"}]},{id:"43473",doi:"10.5772/53962",title:"Optical Coherence Tomography (OCT): A New Imaging Tool During Carotid Artery Stenting",slug:"optical-coherence-tomography-oct-a-new-imaging-tool-during-carotid-artery-stenting",totalDownloads:1886,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"3410",slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Shinichi Yoshimura, Masanori Kawasaki, Kiyofumi Yamada, Arihiro Hattori, Kazuhiko Nishigaki, Shinya Minatoguchi and Toru Iwama",authors:[{id:"164185",title:"Dr.",name:"Shinichi",middleName:null,surname:"Yoshimura",slug:"shinichi-yoshimura",fullName:"Shinichi Yoshimura"}]},{id:"41448",doi:"10.5772/53959",title:"B-Scan and ‘En-Face’Spectral-Domain Optical Coherence Tomography Imaging for the Diagnosis and Follow-Up of White Dot Syndromes",slug:"b-scan-and-en-face-spectral-domain-optical-coherence-tomography-imaging-for-the-diagnosis-and-follow",totalDownloads:2767,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"3410",slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Benjamin Wolff, Alexandre Matet, Vivien Vasseur, José-Alain Sahel and Martine Mauget-Faÿsse",authors:[{id:"89023",title:"Dr",name:"Benjamin",middleName:null,surname:"Wolff",slug:"benjamin-wolff",fullName:"Benjamin Wolff"},{id:"157805",title:"Dr.",name:"Martine",middleName:null,surname:"Mauget-Faÿsse",slug:"martine-mauget-faysse",fullName:"Martine Mauget-Faÿsse"},{id:"166351",title:"Dr.",name:"Alexandre",middleName:null,surname:"Matet",slug:"alexandre-matet",fullName:"Alexandre Matet"},{id:"166352",title:"Mr.",name:"Vivien",middleName:null,surname:"Vasseur",slug:"vivien-vasseur",fullName:"Vivien Vasseur"},{id:"166353",title:"Prof.",name:"José-Alain",middleName:null,surname:"Sahel",slug:"jose-alain-sahel",fullName:"José-Alain Sahel"}]}],mostDownloadedChaptersLast30Days:[{id:"70120",title:"Intraocular Lens (IOL) Materials",slug:"intraocular-lens-iol-materials",totalDownloads:1041,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"In 1949, first intraocular lens (IOL) insertion after cataract surgery was performed by Sir Harold Ridley, in London. Only in the 1970s, the IOL insertion after cataract surgery began to be a standard procedure. The material the first IOL-s were composed of was polymethyl methacrylate (PMMA). The PMMA is a rigid material and the corneal incision had to be at least as big as the IOLs optic and it became its biggest disadvantage in the cataract surgery. The main goal of modern cataract surgery is as smallest incision possible, so the IOL-s had to be flexible and therefore foldable. This goal was achieved by improvements in the IOL design and materials that made them foldable. First foldable IOL-s were made of hydrogel but they were unstable and the development of the first silicone IOL-s overcame that problem. Foldable silicone IOL-s were first implanted in 1978 by Kai-yi Zhou. Foldable IOL’s benefits are its compatibility with a small incision surgery that is self-sealing procedure and the possibility of insertion by a single-use applicators that made the surgery safer. In the future, we can expect some new, different and innovative approaches in the IOL design and materials.",book:{id:"8569",slug:"intraocular-lens",title:"Intraocular Lens",fullTitle:"Intraocular Lens"},signatures:"Samir Čanović, Suzana Konjevoda, Ana Didović Pavičić and Robert Stanić",authors:null},{id:"43466",title:"Application of Optical Coherence Tomography and Macular Holes in Ophthalmology",slug:"application-of-optical-coherence-tomography-and-macular-holes-in-ophthalmology",totalDownloads:4474,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"3410",slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Robert J. Lowe and Ronald C. Gentile",authors:[{id:"98144",title:"Prof.",name:"Ronald",middleName:"Concetto",surname:"Gentile",slug:"ronald-gentile",fullName:"Ronald Gentile"},{id:"105049",title:"Dr.",name:"Robert",middleName:"James",surname:"Lowe",slug:"robert-lowe",fullName:"Robert Lowe"}]},{id:"43462",title:"Current Applications of Optical Coherence Tomography in Ophthalmology",slug:"current-applications-of-optical-coherence-tomography-in-ophthalmology",totalDownloads:3921,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"3410",slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Nadia Al Kharousi, Upender K. Wali and Sitara Azeem",authors:[{id:"130480",title:"Dr.",name:"Nadiya",middleName:null,surname:"Al Kharousi",slug:"nadiya-al-kharousi",fullName:"Nadiya Al Kharousi"}]},{id:"66640",title:"Reduction of Myopia Burden and Progression",slug:"reduction-of-myopia-burden-and-progression",totalDownloads:900,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Myopia is a significant worldwide public health concern, and its prevalence is drastically increasing in recent years. It was once viewed as a benign refractive error, but is now one of the leading causes of blindness and is associated with numerous ocular diseases, which makes it crucial to develop viable treatment options to adequately correct the refractive error and to halt the disease progression. The treatment of myopia can be classified into three groups: optical, pharmacological, and surgical management, which are aimed at adjusting to the refractive error and reducing the axial elongation. The conventional treatment modalities for myopia, such as single vision glasses, correct the refractive error and improve visual quality of life, but do not affect myopia progression or axial elongation. The newer and various myopic interventions including spectacle corrections, contact lens corrections, pharmacological treatments and surgical corrections, hold great potential for adequate disease control to improve the quality of life, reduce myopia burden, and preserve the ocular health.",book:{id:"8569",slug:"intraocular-lens",title:"Intraocular Lens",fullTitle:"Intraocular Lens"},signatures:"Sangeethabalasri Pugazhendhi, Balamurali Ambati and Allan A. Hunter",authors:null},{id:"43475",title:"Optical Coherence Tomography – Applications in Non- Destructive Testing and Evaluation",slug:"optical-coherence-tomography-applications-in-non-destructive-testing-and-evaluation",totalDownloads:3017,totalCrossrefCites:4,totalDimensionsCites:15,abstract:null,book:{id:"3410",slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Alexandra Nemeth, Günther Hannesschläger, Elisabeth Leiss- Holzinger, Karin Wiesauer and Michael Leitner",authors:[{id:"158226",title:"Dr.",name:"Michael",middleName:null,surname:"Leitner",slug:"michael-leitner",fullName:"Michael Leitner"},{id:"160982",title:"Dr.",name:"Alexandra",middleName:null,surname:"Nemeth",slug:"alexandra-nemeth",fullName:"Alexandra Nemeth"},{id:"160983",title:"MSc.",name:"Elisabeth",middleName:null,surname:"Leiss-Holzinger",slug:"elisabeth-leiss-holzinger",fullName:"Elisabeth Leiss-Holzinger"},{id:"160984",title:"Dr.",name:"Karin",middleName:null,surname:"Wiesauer",slug:"karin-wiesauer",fullName:"Karin Wiesauer"},{id:"166671",title:"MSc.",name:"Günther",middleName:null,surname:"Hannesschläger",slug:"gunther-hannesschlager",fullName:"Günther Hannesschläger"}]}],onlineFirstChaptersFilter:{topicId:"698",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"August 12th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!0,editor:{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",slug:"tomas-jarzembowski",fullName:"Tomas Jarzembowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKriQAG/Profile_Picture_2022-06-16T11:01:31.jpg",biography:"Tomasz Jarzembowski was born in 1968 in Gdansk, Poland. He obtained his Ph.D. degree in 2000 from the Medical University of Gdańsk (UG). After specialization in clinical microbiology in 2003, he started studying biofilm formation and antibiotic resistance at the single-cell level. In 2015, he obtained his D.Sc. degree. His later study in cooperation with experts in nephrology and immunology resulted in the designation of the new diagnostic method of UTI, patented in 2017. He is currently working at the Department of Microbiology, Medical University of Gdańsk (GUMed), Poland. Since many years, he is a member of steering committee of Gdańsk branch of Polish Society of Microbiologists, a member of ESCMID. He is also a reviewer and a member of editorial boards of a number of international journals.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorTwo:{id:"484980",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Garbacz",slug:"katarzyna-garbacz",fullName:"Katarzyna Garbacz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003St8TAQAZ/Profile_Picture_2022-07-07T09:45:16.jpg",biography:"Katarzyna Maria Garbacz, MD, is an Associate Professor at the Medical University of Gdańsk, Poland and she is head of the Department of Oral Microbiology of the Medical University of Gdańsk. She has published more than 50 scientific publications in peer-reviewed journals. She has been a project leader funded by the National Science Centre of Poland. Prof. Garbacz is a microbiologist working on applied and fundamental questions in microbial epidemiology and pathogenesis. Her research interest is in antibiotic resistance, host-pathogen interaction, and therapeutics development for staphylococcal pathogens, mainly Staphylococcus aureus, which causes hospital-acquired infections. Currently, her research is mostly focused on the study of oral pathogens, particularly Staphylococcus spp.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:11,paginationItems:[{id:"83053",title:"Apologies in L2 French in Canadian Context",doi:"10.5772/intechopen.106557",signatures:"Bernard Mulo Farenkia",slug:"apologies-in-l2-french-in-canadian-context",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Bernard",surname:"Mulo Farenkia"}],book:{title:"Second Language Acquisition - Learning Theories and Recent Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11480.jpg",subseries:{id:"89",title:"Education"}}},{id:"82903",title:"Walking Accessibility to Primary Healthcare Services: An Inequity Factor for Olders in the Lisbon Metropolitan Area (Portugal)",doi:"10.5772/intechopen.106265",signatures:"Eduarda Marques da Costa, Ana Louro, Nuno Marques da Costa, Mariana Dias and Marcela Barata",slug:"walking-accessibility-to-primary-healthcare-services-an-inequity-factor-for-olders-in-the-lisbon-met",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82622",title:"Contemporary Geographical Gerontology: Reconciling Space and Place in Population Ageing",doi:"10.5772/intechopen.105863",signatures:"Hamish Robertson",slug:"contemporary-geographical-gerontology-reconciling-space-and-place-in-population-ageing",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hamish",surname:"Robertson"}],book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82610",title:"Perspective Chapter: The Role of Learning Styles in Active Learning",doi:"10.5772/intechopen.105964",signatures:"Armando Lozano-Rodríguez, Fernanda Inez García-Vázquez and José Luis García-Cué",slug:"perspective-chapter-the-role-of-learning-styles-in-active-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81909",title:"Educational Paradigm with Ubuntu Mindset: Implications for Sustainable Development Goals in Education",doi:"10.5772/intechopen.104929",signatures:"George Frempong and Raavee Kadam",slug:"educational-paradigm-with-ubuntu-mindset-implications-for-sustainable-development-goals-in-education",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82243",title:"The Language that Grade R Students Use to Achieve the Envisaged Mathematics Outcomes, a South African Perspective",doi:"10.5772/intechopen.105446",signatures:"Shakespear M. Chiphambo and Nosisi N. Feza",slug:"the-language-that-grade-r-students-use-to-achieve-the-envisaged-mathematics-outcomes-a-south-african",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:3,group:"subseries"},{caption:"Education",value:89,count:8,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:35,paginationItems:[{id:"248645",title:"Dr.",name:"Sérgio",middleName:null,surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248645/images/system/248645.jpg",biography:"Sérgio António Neves Lousada has an international Ph.D. in Civil Engineering (Hydraulics). He teaches Hydraulics, Environment, and Water Resources and Construction at the University of Madeira, Portugal. He has published articles and books and participated in events mainly in the areas of hydraulics, urban planning, and land management. Furthermore, he collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx); VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; CITUR - Madeira - Centre for Tourism Research, Development and Innovation, Madeira, Portugal; and Institute of Research on Territorial Governance and Inter-Organizational Cooperation, Dąbrowa Górnicza, Poland. Moreover, he holds an International master\\'s degree in Ports and Coasts Engineering.",institutionString:"University of Madeira",institution:{name:"University of Madeira",country:{name:"Portugal"}}},{id:"424419",title:"Dr.",name:"Matthew",middleName:"Ayorinde",surname:"Ayorinde Adebayo",slug:"matthew-ayorinde-adebayo",fullName:"Matthew Ayorinde Adebayo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/424419/images/17356_n.jpg",biography:null,institutionString:null,institution:null},{id:"215342",title:"Prof.",name:"José Manuel",middleName:null,surname:"Naranjo Gómez",slug:"jose-manuel-naranjo-gomez",fullName:"José Manuel Naranjo Gómez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"354033",title:"Dr.",name:"Ahmed",middleName:null,surname:"Nasri",slug:"ahmed-nasri",fullName:"Ahmed Nasri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435702",title:"Dr.",name:"Amel",middleName:null,surname:"Hannachi",slug:"amel-hannachi",fullName:"Amel Hannachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420857",title:"Prof.",name:"Ezzeddine",middleName:null,surname:"Mahmoudi",slug:"ezzeddine-mahmoudi",fullName:"Ezzeddine Mahmoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420856",title:"Prof.",name:"Hamouda",middleName:null,surname:"Beyrem",slug:"hamouda-beyrem",fullName:"Hamouda Beyrem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435703",title:"Dr.",name:"Hary",middleName:null,surname:"Demey",slug:"hary-demey",fullName:"Hary Demey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Cartagena",country:{name:"Spain"}}},{id:"425026",title:"Mr.",name:"Kholofelo",middleName:null,surname:"Clifford Malematja",slug:"kholofelo-clifford-malematja",fullName:"Kholofelo Clifford Malematja",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Tshwane University of Technology",country:{name:"South Africa"}}},{id:"435701",title:"Dr.",name:"Mohamed",middleName:null,surname:"Allouche",slug:"mohamed-allouche",fullName:"Mohamed Allouche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420855",title:"Prof.",name:"Patricia",middleName:null,surname:"Aïssa",slug:"patricia-aissa",fullName:"Patricia Aïssa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435699",title:"Dr.",name:"Takoua",middleName:null,surname:"Mhadhbi",slug:"takoua-mhadhbi",fullName:"Takoua Mhadhbi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"442300",title:"Prof.",name:"Véronique",middleName:null,surname:"Perrier",slug:"veronique-perrier",fullName:"Véronique Perrier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Montpellier",country:{name:"France"}}},{id:"445179",title:"Mr.",name:"Aman",middleName:null,surname:"Jaiswal",slug:"aman-jaiswal",fullName:"Aman Jaiswal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Science Education and Research Mohali",country:{name:"India"}}},{id:"445178",title:"Mr.",name:"Dhiraj",middleName:null,surname:"Dutta",slug:"dhiraj-dutta",fullName:"Dhiraj Dutta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"445180",title:"Dr.",name:"Rama",middleName:null,surname:"Dubey",slug:"rama-dubey",fullName:"Rama Dubey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"424992",title:"Dr.",name:"Mohamed",middleName:null,surname:"Helal",slug:"mohamed-helal",fullName:"Mohamed Helal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Institute of Oceanography and Fisheries",country:{name:"Egypt"}}},{id:"426808",title:"Associate Prof.",name:"Yesim",middleName:null,surname:"Gucbilmez",slug:"yesim-gucbilmez",fullName:"Yesim Gucbilmez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Eskisehir Technical University",country:{name:"Turkey"}}},{id:"428329",title:"Mr.",name:"Collet",middleName:null,surname:"Maswanganyi",slug:"collet-maswanganyi",fullName:"Collet Maswanganyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"428546",title:"MSc.",name:"Ndivhuwo",middleName:null,surname:"Shumbula",slug:"ndivhuwo-shumbula",fullName:"Ndivhuwo Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"352155",title:"Dr.",name:"Poslet",middleName:"Morgan",surname:"Shumbula",slug:"poslet-shumbula",fullName:"Poslet Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"435064",title:"Dr.",name:"Mohammadtaghi",middleName:null,surname:"Vakili",slug:"mohammadtaghi-vakili",fullName:"Mohammadtaghi Vakili",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yangtze Normal University",country:{name:"China"}}},{id:"437268",title:"Dr.",name:"Linda Lunga",middleName:null,surname:"Sibali",slug:"linda-lunga-sibali",fullName:"Linda Lunga Sibali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437269",title:"Dr.",name:"Peter P.",middleName:null,surname:"Ndibewu",slug:"peter-p.-ndibewu",fullName:"Peter P. Ndibewu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424106",title:"Ph.D. Student",name:"Siyabonga",middleName:null,surname:"Aubrey Mhlongo",slug:"siyabonga-aubrey-mhlongo",fullName:"Siyabonga Aubrey Mhlongo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424233",title:"Ph.D. Student",name:"Ifeoluwa Oluwafunmilayo",middleName:null,surname:"Daramola",slug:"ifeoluwa-oluwafunmilayo-daramola",fullName:"Ifeoluwa Oluwafunmilayo Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446429",title:"Dr.",name:"Dev Vrat",middleName:null,surname:"Kamboj",slug:"dev-vrat-kamboj",fullName:"Dev Vrat Kamboj",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"425585",title:"Dr.",name:"NISHA",middleName:null,surname:"GAUR",slug:"nisha-gaur",fullName:"NISHA GAUR",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"226635",title:"Prof.",name:"Amany",middleName:null,surname:"El-Sikaily",slug:"amany-el-sikaily",fullName:"Amany El-Sikaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"435668",title:"Dr.",name:"Sara",middleName:null,surname:"Ghanem",slug:"sara-ghanem",fullName:"Sara Ghanem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"8",type:"subseries",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11404,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",slug:"marcus-vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:50,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"80064",title:"Robust Template Update Strategy for Efficient Visual Object Tracking",doi:"10.5772/intechopen.101800",signatures:"Awet Haileslassie Gebrehiwot, Jesus Bescos and Alvaro Garcia-Martin",slug:"robust-template-update-strategy-for-efficient-visual-object-tracking",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"80109",title:"Siamese-Based Attention Learning Networks for Robust Visual Object Tracking",doi:"10.5772/intechopen.101698",signatures:"Md. Maklachur Rahman and Soon Ki Jung",slug:"siamese-based-attention-learning-networks-for-robust-visual-object-tracking",totalDownloads:122,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"79005",title:"Smart-Road: Road Damage Estimation Using a Mobile Device",doi:"10.5772/intechopen.100289",signatures:"Izyalith E. Álvarez-Cisneros, Blanca E. Carvajal-Gámez, David Araujo-Díaz, Miguel A. Castillo-Martínez and L. Méndez-Segundo",slug:"-em-smart-road-em-road-damage-estimation-using-a-mobile-device",totalDownloads:135,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"78576",title:"A Study on Traditional and CNN Based Computer Vision Sensors for Detection and Recognition of Road Signs with Realization for ADAS",doi:"10.5772/intechopen.99416",signatures:"Vinay M. Shivanna, Kuan-Chou Chen, Bo-Xun Wu and Jiun-In Guo",slug:"a-study-on-traditional-and-cnn-based-computer-vision-sensors-for-detection-and-recognition-of-road-s",totalDownloads:106,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"77617",title:"Adsorption-Semiconductor Sensor Based on Nanosized SnO2 for Early Warning of Indoor Fires",doi:"10.5772/intechopen.98989",signatures:"Nelli Maksymovych, Ludmila Oleksenko and George Fedorenko",slug:"adsorption-semiconductor-sensor-based-on-nanosized-sno-sub-2-sub-for-early-warning-of-indoor-fires",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},publishedBooks:{paginationCount:14,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:{name:"University of Macau",institutionURL:null,country:{name:"Macau"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/58325",hash:"",query:{},params:{id:"58325"},fullPath:"/chapters/58325",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()