Table summarizing the differences between stented, stentless and percutaneous bioprosthetic heart valves [12, 13, 14].
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"3784",leadTitle:null,fullTitle:"Dynamic Modelling",title:"Dynamic Modelling",subtitle:null,reviewType:"peer-reviewed",abstract:"When talking about modelling it is natural to talk about simulation. Simulation is the imitation of the operation of a real-world process or systems over time. The objective is to generate a history of the model and the observation of that history helps us understand how the real-world system works, not necessarily involving the real-world into this process. A system (or process) model takes the form of a set of assumptions concerning its operation. In a model mathematical and logical assumptions are considered, and entities and their relationship are delimited. The objective of a model – and its respective simulation – is to answer a vast number of “what-if” questions. Some questions answered in this book are: What if the power distribution system does not work as expected? What if the produced ships were not able to transport all the demanded containers through the Yangtze River in China? And, what if an installed wind farm does not produce the expected amount of energyt? Answering these questions without a dynamic simulation model could be extremely expensive or even impossible in some cases and this book aims to present possible solutions to these problems.",isbn:null,printIsbn:"978-953-7619-68-8",pdfIsbn:"978-953-51-5486-0",doi:"10.5772/88",price:139,priceEur:155,priceUsd:179,slug:"dynamic-modelling",numberOfPages:302,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"7f783ec92574516ef2da53a6be85d3cd",bookSignature:"Alisson V. Brito",publishedDate:"January 1st 2010",coverURL:"https://cdn.intechopen.com/books/images_new/3784.jpg",numberOfDownloads:45070,numberOfWosCitations:28,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:32,numberOfDimensionsCitationsByBook:1,hasAltmetrics:0,numberOfTotalCitations:70,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 30th 2013",dateEndSecondStepPublish:"August 20th 2013",dateEndThirdStepPublish:"November 24th 2013",dateEndFourthStepPublish:"February 22nd 2014",dateEndFifthStepPublish:"March 24th 2014",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"7330",title:"Dr.",name:"Alisson",middleName:"Vasconcelos",surname:"Brito",slug:"alisson-brito",fullName:"Alisson Brito",profilePictureURL:"https://mts.intechopen.com/storage/users/7330/images/system/7330.jpg",biography:"Alisson Brito currently works at the Centro de Informática, Universidade Federal da Paraíba, Brazil. Alisson does research in Computer Engineering. His current main project is 'Development of Safe and Efficient Solutions using UAVs.'",institutionString:null,position:"Adjunct Professor",outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"607",title:"Mathematical Modeling",slug:"numerical-analysis-and-scientific-computing-mathematical-modeling"}],chapters:[{id:"6817",title:"An Electric Simulator of a Vehicle Transmission Chain Coupled to a Vehicle Dynamic Model",doi:"10.5772/7095",slug:"an-electric-simulator-of-a-vehicle-transmission-chain-coupled-to-a-vehicle-dynamic-model",totalDownloads:2594,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"A. Chaibet, C. Larouci and M. Boukhnifer",downloadPdfUrl:"/chapter/pdf-download/6817",previewPdfUrl:"/chapter/pdf-preview/6817",authors:[null],corrections:null},{id:"6818",title:"Modelling and Design of a Mechatronic Actuator Chain Application to a Motorized Tailgate",doi:"10.5772/7093",slug:"modelling-and-design-of-a-mechatronic-actuator-chain-application-to-a-motorized-tailgate",totalDownloads:3415,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"K. Ejjabraoui, C. Larouci, P. Lefranc, C. Marchand, B. Barbedette and P. Cuvelier",downloadPdfUrl:"/chapter/pdf-download/6818",previewPdfUrl:"/chapter/pdf-preview/6818",authors:[null],corrections:null},{id:"6819",title:"A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems",doi:"10.5772/7094",slug:"a-methodology-for-modelling-and-simulation-of-dynamic-and-partially-reconfigurable-systems",totalDownloads:2357,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Alisson Vasconcelos Brito, George Silveira and Elmar Uwe Kurt Melcher",downloadPdfUrl:"/chapter/pdf-download/6819",previewPdfUrl:"/chapter/pdf-preview/6819",authors:[null],corrections:null},{id:"6820",title:"Dynamic Modelling and Control Design of Advanced Energy Storage for Power System Applications",doi:"10.5772/7092",slug:"dynamic-modelling-and-control-design-of-advanced-energy-storage-for-power-system-applications",totalDownloads:6666,totalCrossrefCites:1,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"Marcelo Gustavo Molina",downloadPdfUrl:"/chapter/pdf-download/6820",previewPdfUrl:"/chapter/pdf-preview/6820",authors:[null],corrections:null},{id:"6821",title:"Improving the Kill Chain for Prosecution of Time Sensitive Targets",doi:"10.5772/7091",slug:"improving-the-kill-chain-for-prosecution-of-time-sensitive-targets",totalDownloads:4396,totalCrossrefCites:4,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Edward H. S. Lo and T. Andrew Au",downloadPdfUrl:"/chapter/pdf-download/6821",previewPdfUrl:"/chapter/pdf-preview/6821",authors:[null],corrections:null},{id:"6822",title:"Investment in Container Ships for the Yangtze River: A System Dynamics Model",doi:"10.5772/7090",slug:"investment-in-container-ships-for-the-yangtze-river-a-system-dynamics-model",totalDownloads:2562,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Yan Jin",downloadPdfUrl:"/chapter/pdf-download/6822",previewPdfUrl:"/chapter/pdf-preview/6822",authors:[null],corrections:null},{id:"6823",title:"Integrating Economic and Ecological Impact Modelling: Dynamic Processes in Regional Agriculture under Structural Change",doi:"10.5772/7089",slug:"integrating-economic-and-ecological-impact-modelling-dynamic-processes-in-regional-agriculture-under",totalDownloads:2031,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Heikki Lehtonen",downloadPdfUrl:"/chapter/pdf-download/6823",previewPdfUrl:"/chapter/pdf-preview/6823",authors:[null],corrections:null},{id:"6824",title:"Advanced Simulation for Semi-Autogenous Mill Systems: A Simplified Models Approach",doi:"10.5772/7088",slug:"advanced-simulation-for-semi-autogenous-mill-systems-a-simplified-models-approach",totalDownloads:4648,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"José Luis Salazar, Héctor Valdés-González and Francisco Cubillos",downloadPdfUrl:"/chapter/pdf-download/6824",previewPdfUrl:"/chapter/pdf-preview/6824",authors:[null],corrections:null},{id:"6825",title:"Dynamic Modelling Predictions of Airborne Acidification of Polish Terrestrial Ecosystems",doi:"10.5772/7086",slug:"dynamic-modelling-predictions-of-airborne-acidification-of-polish-terrestrial-ecosystems",totalDownloads:1611,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Wojciech Mill",downloadPdfUrl:"/chapter/pdf-download/6825",previewPdfUrl:"/chapter/pdf-preview/6825",authors:[null],corrections:null},{id:"6826",title:"Toward the Formulation of a Realistic Fault Governing Law in Dynamic Models of Earthquake Ruptures",doi:"10.5772/7087",slug:"toward-the-formulation-of-a-realistic-fault-governing-law-in-dynamic-models-of-earthquake-ruptures",totalDownloads:1625,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Andrea Bizzarri",downloadPdfUrl:"/chapter/pdf-download/6826",previewPdfUrl:"/chapter/pdf-preview/6826",authors:[null],corrections:null},{id:"6827",title:"Dynamic Modelling of a Wind Farm and Analysis of Its Impact on a Weak Power System",doi:"10.5772/7085",slug:"dynamic-modelling-of-a-wind-farm-and-analysis-of-its-impact-on-a-weak-power-system",totalDownloads:6675,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Gastón Orlando Suvire and Pedro Enrique Mercado",downloadPdfUrl:"/chapter/pdf-download/6827",previewPdfUrl:"/chapter/pdf-preview/6827",authors:[null],corrections:null},{id:"6828",title:"Optimal Design of a Multifunctional Reactor for Catalytic Oxidation of Glucose with Fast Catalyst Deactivation",doi:"10.5772/7084",slug:"optimal-design-of-a-multifunctional-reactor-for-catalytic-oxidation-of-glucose-with-fast-catalyst-de",totalDownloads:2674,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Zuzana Gogová, Jiří Hanika and Jozef Markoš",downloadPdfUrl:"/chapter/pdf-download/6828",previewPdfUrl:"/chapter/pdf-preview/6828",authors:[null],corrections:null},{id:"6829",title:"Adiabatic Shear: Pre- and Post-Critical Dynamic Plasticity Modelling and Study of Impact Penetration. Heat Generation in this Context",doi:"10.5772/7083",slug:"adiabatic-shear-pre-and-post-critical-dynamic-plasticity-modelling-and-study-of-impact-penetration-h",totalDownloads:2207,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Patrice Longère and André Dragon",downloadPdfUrl:"/chapter/pdf-download/6829",previewPdfUrl:"/chapter/pdf-preview/6829",authors:[null],corrections:null},{id:"6830",title:"Influencing the Effect of Treatment of Diseases Related to Bone Remodelling by Dynamic Loading",doi:"10.5772/7082",slug:"influencing-the-effect-of-treatment-of-diseases-related-to-bone-remodelling-by-dynamic-loading",totalDownloads:1609,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Václav Klika, František Maršík and Ivo Mařík",downloadPdfUrl:"/chapter/pdf-download/6830",previewPdfUrl:"/chapter/pdf-preview/6830",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1917",title:"Principal Component Analysis",subtitle:null,isOpenForSubmission:!1,hash:"f4e1f70e05e715125ecf4d35805a800f",slug:"principal-component-analysis",bookSignature:"Parinya Sanguansat",coverURL:"https://cdn.intechopen.com/books/images_new/1917.jpg",editedByType:"Edited by",editors:[{id:"110312",title:"Dr.",name:"Parinya",surname:"Sanguansat",slug:"parinya-sanguansat",fullName:"Parinya Sanguansat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1362",title:"Numerical Simulations of Physical and Engineering Processes",subtitle:null,isOpenForSubmission:!1,hash:"5cd4c772ac313082f094190ade16e150",slug:"numerical-simulations-of-physical-and-engineering-processes",bookSignature:"Jan Awrejcewicz",coverURL:"https://cdn.intechopen.com/books/images_new/1362.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3746",title:"Fuzzy Systems",subtitle:null,isOpenForSubmission:!1,hash:"91145b2a9dac88653c1e608e5f75918f",slug:"fuzzy-systems",bookSignature:"Ahmad Taher Azar",coverURL:"https://cdn.intechopen.com/books/images_new/3746.jpg",editedByType:"Edited by",editors:[{id:"6666",title:"Prof.",name:"Ahmad Taher",surname:"Azar",slug:"ahmad-taher-azar",fullName:"Ahmad Taher Azar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3758",title:"Simulated Annealing",subtitle:null,isOpenForSubmission:!1,hash:"93d0c8c3b499d3150a080a9890a69f41",slug:"simulated_annealing",bookSignature:"Cher Ming Tan",coverURL:"https://cdn.intechopen.com/books/images_new/3758.jpg",editedByType:"Edited by",editors:[{id:"218918",title:"Prof.",name:"Cher Ming",surname:"Tan",slug:"cher-ming-tan",fullName:"Cher Ming Tan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3763",title:"Nonlinear Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"b5ee7d6358444964cc91a15898d5391a",slug:"nonlinear-dynamics",bookSignature:"Todd Evans",coverURL:"https://cdn.intechopen.com/books/images_new/3763.jpg",editedByType:"Edited by",editors:[{id:"15945",title:"Dr.",name:"Todd",surname:"Evans",slug:"todd-evans",fullName:"Todd Evans"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2309",title:"Principal Component Analysis",subtitle:"Engineering Applications",isOpenForSubmission:!1,hash:"1ff906c829e05ef07235415309a10e30",slug:"principal-component-analysis-engineering-applications",bookSignature:"Parinya Sanguansat",coverURL:"https://cdn.intechopen.com/books/images_new/2309.jpg",editedByType:"Edited by",editors:[{id:"110312",title:"Dr.",name:"Parinya",surname:"Sanguansat",slug:"parinya-sanguansat",fullName:"Parinya Sanguansat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3734",title:"Modelling, Simulation and Optimization",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"modelling-simulation-and-optimization",bookSignature:"Gregorio Romero Rey and Luisa Martinez Muneta",coverURL:"https://cdn.intechopen.com/books/images_new/3734.jpg",editedByType:"Edited by",editors:[{id:"964",title:"Dr.",name:"Gregorio",surname:"Romero",slug:"gregorio-romero",fullName:"Gregorio Romero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2310",title:"Principal Component Analysis",subtitle:"Multidisciplinary Applications",isOpenForSubmission:!1,hash:"deccffe6521a2568e05dcd17bc875cf0",slug:"principal-component-analysis-multidisciplinary-applications",bookSignature:"Parinya Sanguansat",coverURL:"https://cdn.intechopen.com/books/images_new/2310.jpg",editedByType:"Edited by",editors:[{id:"110312",title:"Dr.",name:"Parinya",surname:"Sanguansat",slug:"parinya-sanguansat",fullName:"Parinya Sanguansat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2985",title:"Smoothing, Filtering and Prediction",subtitle:"Estimating The Past, Present and Future",isOpenForSubmission:!1,hash:"e671ee8b4750b45627825d577f9fde43",slug:"smoothing-filtering-and-prediction-estimating-the-past-present-and-future",bookSignature:"Garry A. Einicke",coverURL:"https://cdn.intechopen.com/books/images_new/2985.jpg",editedByType:"Authored by",editors:[{id:"147649",title:"Dr.",name:"Garry",surname:"Einicke",slug:"garry-einicke",fullName:"Garry Einicke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"1867",title:"Numerical Modelling",subtitle:null,isOpenForSubmission:!1,hash:"2599b8ac8189b5b84556e825e9030422",slug:"numerical-modelling",bookSignature:"Peep Miidla",coverURL:"https://cdn.intechopen.com/books/images_new/1867.jpg",editedByType:"Edited by",editors:[{id:"53706",title:"Dr.",name:"Peep",surname:"Miidla",slug:"peep-miidla",fullName:"Peep Miidla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74118",slug:"corrigendum-to-congenital-anomalies-of-the-gastrointestinal-tract",title:"Corrigendum to: Congenital Anomalies of the Gastrointestinal Tract",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74118.pdf",downloadPdfUrl:"/chapter/pdf-download/74118",previewPdfUrl:"/chapter/pdf-preview/74118",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74118",risUrl:"/chapter/ris/74118",chapter:{id:"74014",slug:"congenital-anomalies-of-the-gastrointestinal-tract",signatures:"Richa Verma",dateSubmitted:"November 20th 2019",dateReviewed:"April 17th 2020",datePrePublished:"November 11th 2020",datePublished:"September 15th 2021",book:{id:"9132",title:"Congenital Anomalies in Newborn Infants",subtitle:"Clinical and Etiopathological Perspectives",fullTitle:"Congenital Anomalies in Newborn Infants - Clinical and Etiopathological Perspectives",slug:"congenital-anomalies-in-newborn-infants-clinical-and-etiopathological-perspectives",publishedDate:"September 15th 2021",bookSignature:"Rita P. Verma",coverURL:"https://cdn.intechopen.com/books/images_new/9132.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"278358",title:"Dr.",name:"Rita P.",middleName:null,surname:"Verma",slug:"rita-p.-verma",fullName:"Rita P. Verma"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"315763",title:"M.D.",name:"Richa",middleName:null,surname:"Verma",fullName:"Richa Verma",slug:"richa-verma",email:"rverma1024@gmail.com",position:null,institution:null}]}},chapter:{id:"74014",slug:"congenital-anomalies-of-the-gastrointestinal-tract",signatures:"Richa Verma",dateSubmitted:"November 20th 2019",dateReviewed:"April 17th 2020",datePrePublished:"November 11th 2020",datePublished:"September 15th 2021",book:{id:"9132",title:"Congenital Anomalies in Newborn Infants",subtitle:"Clinical and Etiopathological Perspectives",fullTitle:"Congenital Anomalies in Newborn Infants - Clinical and Etiopathological Perspectives",slug:"congenital-anomalies-in-newborn-infants-clinical-and-etiopathological-perspectives",publishedDate:"September 15th 2021",bookSignature:"Rita P. Verma",coverURL:"https://cdn.intechopen.com/books/images_new/9132.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"278358",title:"Dr.",name:"Rita P.",middleName:null,surname:"Verma",slug:"rita-p.-verma",fullName:"Rita P. Verma"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"315763",title:"M.D.",name:"Richa",middleName:null,surname:"Verma",fullName:"Richa Verma",slug:"richa-verma",email:"rverma1024@gmail.com",position:null,institution:null}]},book:{id:"9132",title:"Congenital Anomalies in Newborn Infants",subtitle:"Clinical and Etiopathological Perspectives",fullTitle:"Congenital Anomalies in Newborn Infants - Clinical and Etiopathological Perspectives",slug:"congenital-anomalies-in-newborn-infants-clinical-and-etiopathological-perspectives",publishedDate:"September 15th 2021",bookSignature:"Rita P. Verma",coverURL:"https://cdn.intechopen.com/books/images_new/9132.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"278358",title:"Dr.",name:"Rita P.",middleName:null,surname:"Verma",slug:"rita-p.-verma",fullName:"Rita P. Verma"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11815",leadTitle:null,title:"Pediatric Oral Health - New Insights",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe field of pediatric oral health management is ever-evolving; with humble beginnings in providing basic requirements of oral health, the all-encompassing field is directed towards comprehensive skill sets, including preventive and corrective dentistry.
\r\n\tThe emphasis is on developing or modifying the available oral health diagnosis and preventive and corrective methods for children starting from newborn to pre-schoolers to school going and up to adolescence.
\r\n\tProfessionals involved in providing oral health care to children must keep themselves updated with the available and newer behaviour management and dental procedures and techniques that may begin with the first dental visit of the child write up to providing preventive and comprehensive treatment to the child and develop long-lasting good oral health habits.
\r\n\tThis book will provide an opportunity for various health professionals to share their expertise which may vary from providing various forms of oral health procedures to children at an individual and community level.
Calcification is one of the most common issues that arise concerning biocompatibility, known to affect many systems in the body. It is often associated with an increase in free phosphate and calcium particles in the serum that leads to mineral deposition [1]. Calcification is problematic both in the naturally occurring state of the body, as well as when it exists as result of biomaterial implants [2]. While recent research confirms that it is an active, cell-mediated process rather than a passive association of age, the various mechanisms of calcification and related factors that are involved with this phenomenon are still not completely understood.
The cardiovascular system is one that is majorly affected by calcification, both naturally and via biosynthetic and bioprosthetic implants. Natural vascular calcification is associated with the stiffening of arterial walls and the deposition of free calcium and phosphate particles in the serum [3]. Vascular calcification is also seen to increase in patients on dialysis, due to serum being stripped of natural inhibitors of mineralization [4]. Valve implants, coronary stents, and balloon angioplasty are all affected by mineralization due to immune response of biomaterials used, calcium affinity, or even elastin/collagen injury post-implantation [5]. The consequence of this calcification is often associated with implant failure and stiffness of tissue. This also occurs in implants in the urinary system due to adhesion of various minerals and cells to the surface of the implant [6]. Implants such as urinary catheters and ureteral stents calcify as a result of interaction of the bacteria and the device.
While calcification is prominent in many different forms, not all mechanisms and processes associated with the phenomenon are completely understood. In this chapter, materials affected by calcification, potential mechanisms of action, and potential treatments will be discussed. Both bioprosthetic and polymer heart valves and urinary implants will be evaluated for material composition, application, and failure. Current research on the assessment of these materials will be reported, with the associated chemical and biological mechanisms explained. The chapter will also detail diseased states of the arteries that induce calcification and what treatments can be used for both arterial and bioprosthetic calcification. Finally, the chapter will conclude by detailing future designs for biomaterials to prevent and treat calcification in both natural and synthetic applications.
A major contributor to morbidity and mortality worldwide is valvular heart diseases (VHDs). Valvular dysfunction is related to an insufficient opening or closing of the valve caused by either stenosis, regurgitation or both [7]. Stenosis can be described as a stiffening of the leaflets, leading to improper opening and closing of the valves. Regurgitation occurs when blood flows back through the valve indicating inadequate valve closure [8]. Almost 2.5% of the U.S. population is affected by VHDs. With 300,000 surgeries completed annually, heart valve replacements come in second for the most common cardiovascular surgical procedure to treat this issue [7]. There are currently two strategies for this treatment: repair or valve replacement [7].
Valve replacements generally exist in two forms: mechanical heart valves (MHVs) or bioprosthetic (biological) heart valves (BHVs) [9]. There are five categories of biological heart valves: autograft, autologous, homografts, pericardial valves, and porcine xenografts [7]. Autograft heart valves are implanted using the Ross procedure, which replaces the problematic aortic valve with a healthy valve that is already within the patient [10]. To create an autologous heart valve, cells from a patient must be harvested and transplanted onto a scaffold using tissue engineering techniques. The resulting tissue that has formed within the scaffold is then placed back inside the same patient [11]. Homografts that used for valve replacements are typically taken from organ donors. Grafts obtained from these donors, or sources other than the receiving individual are known as allografts. Pericardial valves are fabricated from bovine pericardium and are fixed onto a stented frame during implantation [12]. Xenografts are any valves transplanted from an animal source, including porcine and bovine pericardial valves [12].
Bioprosthetic valves can also be in one of three forms: stented, stentless, and percutaneous [13]. Mechanical valves are typically created from non-biological materials like polymers, metal, carbon, and various alternatives [9]. Of the two valve replacement types, roughly half of U.S. patients receive bioprosthetic valves. These are usually either porcine xenograft or bovine pericardial valves. Another 43% of patients undergoing heart valve surgery will receive mechanical prosthesis (Table 1) [7].
Bioprosthetic heart valves | Material | Purpose | Implantation methods | |
---|---|---|---|---|
Stented | Porcine valve leaflets and bovine pericardium fabricated into pericardial valves are both mounted onto a polymer or metallic supporting stent | Unlike mechanical valves, stented valves are not susceptible to thrombo-embolic effects | Requires open heart surgery | These biological valves do not present the patient with thrombo-embolic problems but they do lead to calcification and tissue hardening due to immune response |
Stentless | Made from bovine pericardium or porcine aortic valves | Used to improve hemodynamics and durability of the valves | Requires open heart surgery | These present the same problems |
Percutaneous | Biologic porcine or bovine pericardium is affixed to a supporting stent or cage | A less invasive surgery for valve replacement in patients with high operative risks | Implanted into the body by a percutaneous transfemoral method | Presents same problems as stented and stentless but is a very novel technique and needs further investigating |
When choosing between a bioprosthetic and a mechanical valve, there are some important factors that should be taken into consideration. These include the patient’s age, preference, life expectancy, comorbidities, and indication/contraindication for warfarin therapy [13]. MHVs and BHVs not only have different compositions, but also differ in features like thrombogenicity, durability, and hemodynamic properties [15]. MHVs have superb durability but require lifelong anticoagulation therapy because of their increased risk of thromboembolism, thrombotic obstruction, and hemorrhage. In contrast, bioprosthetic valves do not require anticoagulation therapy because they are less thromboembolic; however, due to calcific tissue degradation, their durability is finite [13]. MHVs and BHVs last around 20–30 years and 10–15 years, respectively. Biological valves are used more often than mechanical valves because of their ease of implantation, safety, functionality, and the fact that they do not require anticoagulant therapy [7, 15].
Most BHVs used are fabricated from porcine heart valves or from bovine pericardium. While bioprosthetic valves are competent, they are still lacking in that they have significant structural deterioration due to calcification [16]. Younger age, renal insufficiency, mitral valve position, and hyperparathyroidism are all predictive factors thought to be associated with structural valve deterioration (SVD). Patient age is a major factor of SVD in bioprostheses. Implant failure ten years after application occurs in less than 10% of elderly patients, while reaching 20–30% in patients less that forty years old [13].
Other factors contributing to calcification are the pre-implantation techniques used on bioprosthetic valves. For example, prior to implantation, most bovine or porcine valves are decellularized which make them less antigenic; however, this process removes all the endothelial cells present. Therefore, adjoining tissue and/or circulating cells cannot then be reseeded after decellularization occurs [7, 17]. Along with decellularization, stabilization of the extracellular matrix (ECM) components, and masking of xenogeneic epitopes are important. For this reason, all animal pericardium must be treated with specific crosslinking agents such as glutaraldehyde prior to implantation. However, glutaraldehyde stimulates many destructive effects such as structural damage, cytotoxicity, and calcific deterioration [18]. Because of problems associated with prosthetic valves, approximately 60% of all patients receiving heart valve replacements will need to have a revision surgery [7]. Also, all studies thus far have neither confirmed nor rejected the use of pericardial valves over porcine valves or
Image of a porcine bioprosthetic heart valve. (C) is showing calcification, (T) is showing cusp tears, and (S) is showing stenosis of the valve [
The specific mechanisms leading to VHD are not fully known, meaning it is unclear how important genetics, cellular characteristics, and microenvironmental characteristics are in this disease. However, in light of recent evidence, it is believed that alterations in developmental morphogenesis signaling pathways could play a role in VHD [8]. One affected pathway is that of Notch1. The Notch1 pathway is engaged in numerous cell-to-cell communication processes. With this pathway being an intercellular signaling mechanism, it is believed that the loss of Notch1 results in deformation of leaflet morphology throughout embryo development and the inability to suppress calcification during adulthood [19].
One known major cause of failure in bioprosthetic heart valves is calcification [17]. The exact mechanism of tissue degeneration leading to calcification is not fully known. However, IgM/IgG antibodies entering the valve matrix initiate the process. This then leads to deposition of macrophages on the valve surface which is followed by collagen breakdown and calcification [15]. These macrophages are critical factors in the innate immune response. Macrophages are in charge of inducing phagocytosis and killing bacteria. When these macrophages become overwhelmed, they induce an inflammatory response [20]. This inflammatory response causes an increase in inflammatory cytokines that cause calcification [13]. For this reason, the immune system is thought to be a key factor in the initiation of calcification (Figure 2) [15].
This is a theoretical model showing the degenerative, atherosclerotic, and immune rejection processes involved in the structural degradation of bioprosthetic heart valves [
To further determine the reason for calcification involved with BHVs, their composition must be examined. BHVs are fixed in glutaraldehyde to reduce immunogenicity and ameliorate the mechanical strength of the heart valve; however, this fixation reduces antigen presentation and chemical stabilization by concealing antigens and eventually leading to an influx in calcium [9]. Consequently, glycoproteins and other substances are lost during glutaraldehyde fixation which allows for the formation of a calcium phosphate precipitate that would not occur under normal cardiac conditions [17]. This glutaraldehyde fixation is also thought to cause chemical interactions between aldehyde groups, phospholipids and circulating calcium ions which can also cause calcification in bioprosthetic valves [15].
Surface heparin has been used as a preventative method for dealing with tissue calcification in heart valve replacements. This heparin treatment is meant to replace glutaraldehyde fixation. In one study, it was discovered that porcine aortic valves that were pretreated with surface heparin showed a decrease in the accumulation of calcium in valve tissue [17]. While the exact mechanisms of heparin are unclear, it is thought that the heparin molecules block calcium phospholipid-binding sites that glutaraldehyde fixation targets. Ingrowth and antiproliferative effects are also characteristics of heparin which may potentially influence small muscle cell growth during implantation which would indirectly inhibit calcification [17].
In addition to glutaraldehyde fixation causing calcium influx and tissue degradation deterioration, recent studies have suggested that SVD is also due to active mechanisms such as atherosclerosis and immune rejection. This immune rejection could be due to bioprosthetic valves not being “immunologically inert” [13]. This results in humoral and cellular immune responses that lead to tissue disruption and/or mineralization. This would explain why younger patients with a more vigorous immune system might experience faster SVD.
Bioprosthetic SVD might also be due to atherosclerotic processes from associated risk factors [13]. The oxidation and infiltration of low-density lipoproteins within bioprosthetic tissue might trigger an inflammatory process. This would result in osteoblastic differentiation of stem/progenitor cells caused by the oxidized low-density lipoproteins and inflammatory cytokines [13]. Another reason for bioprosthetic valve failure is calcific deposits found in tears in the commissural and basal areas of the cusp. Within 15 years of implantation, over 50% of porcine valves show some form of functional degradation, usually due to regurgitation caused by these cusp tears [15].
One of the major reasons that implants calcify is due to the biocompatibility of the material. In several studies, either altering the chemical makeup and properties of the biomaterial or coating the material with anticalcification agents have been used to reduce these effects.
Crosslinking surface material of various implants has become a topic of interest in current research, specifically because of the mechanical properties it supplies to implants. Crosslinking chemistry provides protection to various extracellular matrix components in bioprosthetic heart valves in order to retain structural strength [21]. Several crosslinking methods, specifically crosslinking with glutaraldehyde, provide strength by preventing degradation, but the elastin in the ECM is not protected. This leads to stiffness, tears, and deformations in the surface of the material, a condition known as “permanent set” [5]. A modified form of crosslinking involving treating the surface of biomaterial implants with pentagalloyl glucose does not cause damage to collagen or surface deformations. In a study using bovine pericardium tissue, the combined cross-linking was prepared by first soaking the tissue in neomycin trisulfate and a buffer, then incubating it in a cross-linking carbodiimide solution with pentagalloyl glucose. The treated leaflets of tissue were then tested
Another method of preventing calcification is by targeting the free aldehydes present in bioprosthetic tissue. As previously mentioned, glutaraldehyde is used to set tissue to be used for implants because of the strength it provides, and the aldehydes remaining on the tissue are thought to promote calcification [22]. When bovine pericardium is treated with alternatives to cap the free aldehydes, the tissue shows significantly reduced levels of calcium content and mineralization [23]. Reducing agents such as glycine, glutamate, and sodium bisulfite can form a Schiff base and effectively neutralize the aldehydes present [23]. This process allows the tissue to maintain its mechanical strength but inhibits the formation of calcification [23].
Nanocomposites are growing in popularity for use in biomaterials due to their biocompatibility and anticalcification properties [24]. Using polyhedral oligomeric silsesquioxane (POSS) nanoparticles with poly(carbonate-urea)urethane (PCU) has proven to increase mechanical strength, and potentially work as a calcification-resistant material. Figure 3 illustrates the treatment of POSS-PCU [24]. These composites have been shown to significantly decrease deposition compared to glutaraldehyde-fixed bovine pericardium tissue. The treated tissue shows decreased platelet adhesion to its surface compared to typical bovine pericardium, a mechanism thought to be associated with calcification resistance [25]. These nanocomposites show increased promise for use in biomaterials.
Treating the biomaterial with POSS to form POSS-PCU changes existing receptors so that free calcium ions are no longer able to bind, preventing deposition and mineralization [
Because of their biocompatibility and regenerative capabilities, tissue engineered scaffolds are becoming a popular source for heart valves replacements. There are three different types of scaffolds: porous, fibrous, and hydrogels. These can be either acellular or seeded with autologous cells to promote regeneration and avoid a negative immune response [7]. A key component in the scaffold is its ability to degrade in a controlled time period [7]. The tissue can then be regenerated while the synthetic scaffold degrades or is remodeled, leaving behind growth and proliferation resembling natural tissue [26].
Tissue-engineered scaffolds seeded with vascular interstitial cells (VICs) have been shown to regenerate valvular tissue, while still retaining the alpha-smooth muscle actin (α-SMA) marker expressed in smooth muscle cells [7]. The tissue engineered scaffolds have a lower risk of ECM damage than the decellularized tissue used in many heart valve implants; therefore, the collagen and fibers behave in a more normal manner, retaining their smooth muscle phenotype. Porosity can be controlled, compared to the unintentional porosity created in decellularized tissue, making the scaffolds more resistant to calcification [7].
These scaffolds can be manipulated before entering the body, from seeding them with autologous cells to promote new growth to loading them with ions as a form of drug delivery to mitigate negative responses post-implantation. Metal ions, including iron, aluminum, and magnesium, are gaining popularity in current research because of their ability to bind to forming hydroxyapatite crystals in the serum and prevent further deposition [27]. Though the mechanism is not fully understood, it is hypothesized that ions such as magnesium bind where calcium typically would, preventing calcium deposits [28]. They also are thought to interrupt alkaline phosphatase activity [27]. These ions often exist naturally in the body for this process, but by loading tissue-engineered scaffolds with different metals (aluminum, magnesium, iron) they can specifically target calcium deposition at the site of the implant to prevent failure. The problem that rises with this design is that, after implantation, there is no way to reload the matrices with more ions, so it cannot act as a long term inhibitor.
In the entire urinary system, the organs most commonly and significantly affected by calcifications are the kidneys, followed by ureters, and then the urinary bladder. Urinary tract calculi are formed when the urine is supersaturated with salt and minerals such as calcium oxalate, struvite (ammonium magnesium phosphate), uric acid, and cysteine [29]. This supersaturation can be caused by a variety of genetic and dietary factors, urinary calcium excretion, and environmental triggers [30]. Urinary calculi are solid particles in the urinary system that cause pain, nausea, vomiting, hematuria, and chills/fever due to secondary infection.
Urinary tract calcification is organized in three different categories: renal calcification, ureteral calcification, and bladder calcification. These are further classified by their orientation, position, shape, size, mobility, opacity, chemical composition, and location in the kidneys, ureters, or bladder, and their relation to pathologic conditions [31]. Calcification in the urinary tract can also occur from infection of the implants. Healthcare associated infections are the fourth leading cause of disease [33]. Studies indicate that biofilm infections cause up to 80% death [33]. One of the leading causes of infection is the insertion of catheters and ureteral stents [33].
Catheters and stents used in patients are subject to biofilm formation when different particles in the urine, blood, or surrounding tissue attach to the surface of the implant. Biofilms begin to form when colonized bacteria attaches to the surface of the device, altering the surface properties [32]. Once attached, the bacteria binds with target molecules and, after an extended period of time, the attachment becomes permanent and the process is irreversible. Overtime, as the biofilm becomes more developed, it will repeat these processes to form a new biofilm formation on an unpopulated area of the implantation device [34].
One of the main reasons for encrustation of a device is infection due to bacteria that produce urease. This enzyme uses urea to create an alkaline environment from ammonia, raising the pH [35].
Encrustation of ureteral stents occurs for a variety of reasons. One reason is the failure of patients to return for stent removal after surgery or inadequate counsel by professional healthcare [36]. The material of the stent may also contribute to encrustation. Silicone containing stents seems to be more resistant to encrustation, followed by polyurethane, silitek, percuflex, and hydrogel coated polyurethane [36]. Stents fracturing after being
Coatings of the urinary implantation devices are one of approaches that prevents bacterial adherence. Surface coatings of the devices inhibit bacterial biofilm formation to prevent infection and encrustation [38]. The coating needs to have certain properties to inhibit bacterial adherence which includes biocompatible, resists biofilm formation, and antimicrobial [39].
Hydrogels are hydrophilic, cross-linked polymers capable of absorbing large amounts of liquid. They form a thin layer of water on the surface of the device, preventing biofilm formation and bacterial adherence [34]. Studies have shown hydrogel-coated catheters have less bacterial adherence compared to non-hydrogel coated catheters [40]. In addition, hydrogel-coated catheters also cause less irritation and inflammation [34].
Similar to hydrogels, antimicrobial peptides (AMPs) are hydrophilic polymers that have antibiotic resistance which inhibits bacterial adhesion [39]. In one study, AMPs were coated on titanium implants and inhibited bacterial adhesions both
Polyvinylpyrrolidone (PVP) is also hydrophilic and has excellent lubricant properties. Therefore, the implantation device has less bacterial adhesion and encrustation
On the contrary, hyaluronic acid shows promising results
Researchers are continuously searching for an ultimate biocompatible material that can substitute segments of the urinary tract [41]. This involves urinary system cells or other cell sources that can be seeded onto biodegradable scaffolds [42]. Experts have reported that cells isolated from urine can express smooth muscle, endothelial and interstitial cells, and markers of urothelial [42].The ideal biomaterial has to be biocompatible and biodegradable, promote vascular regeneration, nerve regeneration, and cellular differentiation; also, it should be watertight and stretchable, resist encrustation and biofilm formation, and regain its shape [41]. However, most biomaterial includes natural collagens, and natural collagens scaffolds cannot maintain their physical properties in an
In addition to affecting different biomaterials and biosynthetic implants, calcification also occurs naturally throughout the cardiovascular and the urinary system due to various states and diseases.
Cardiovascular disease is the leading cause of death in the United States, with a high mortality rate among end stage renal disease (ESRD) patients [44]. ESRD and other forms of kidney disease are marked by elevated levels of calcium phosphate in the serum, leading to mineral deposition and calcification of the arterial wall. This occurs as vascular smooth muscle cells differentiate from their typical phenotype to osteoblast-like cells that cause bone formation in atypical regions [45]. This risk increases with patients on dialysis, due to the fact that important calcification-inhibitory molecules, such as Fetuin-A, are stripped from the body [45]. This high level of phosphate also leads to the activation of the Wnt signaling pathway. When high levels of phosphate accumulate in smooth muscle cells, 𝛽-catenin is upregulated [46]. This leads to an increased expression of bone-morphogenetic protein 2 (BMP-2) and runt-related transcription factor-2 (Runx2) in smooth muscle cells, though the two factors are typically only seen in bone cells [47].
Primary hyperparathyroidism (PHPT), often associated with cardiovascular disease, is another condition potentially linked to calcification. It has been observed that as levels of parathyroid hormone increase in PHPT patients, there is an associated increase in abdominal aortic calcification [48].
Another form of calcification associated with imbalance of minerals in the body is nephrocalcinosis. When calcium intake increases and it begins to build up in the kidneys, it leads to the deposition of minerals in the renal parenchyma and tubules [49]. These calcified regions are also formed through an osteopontin deficiency. This calcification in the urinary system can contribute to renal dysfunction and potentially lead to ESRD [49].
Calcification of both the vascular and urinary system in the body can be driven by various diseases and conditions, typically due to some sort of mineral or chemical imbalance in the serum. Taking this into account, as well as the increased rate of calcification seen in bio-implants, it is critical for current research to move toward both prevention and treatment of this phenomenon.
Calcification is a pathological process that occurs with an imbalance of several genetic, chemical, and physical properties. The process can depend on the levels of proteins and ions present in the serum, like metal ions that bind with hydroxyapatite or proteins that chaperone free calcium and phosphate particles. It can also be induced by physical damage to cells and tissue, whether by chemical means or foreign implants in the body. Though many individual factors are associated with the formation of mineral deposits and calcification in the body, the mechanisms inducing calcification are still being researched and understood.
Vascular calcification (VC) is a prominent issue affecting both the intimal and medial layers of the arterial wall. Intimal calcification is usually associated with plaque rupture and thickening of the endothelium layer in the vessels while medial calcification occurs as smooth muscle cells differentiate into osteoblast-like cells, which are associated with bone growth. This phenotypic switch in the medial layer is often associated with various osteogenic predecessors [50].
Osteoprotegerin (OPG) is a glycoprotein that works by inhibiting bone resorption, and an increase in OPG is often associated with an increase in calcification [51]. It participates in the OPG/RANK/RANKL pathway to act as a decoy receptor binding to RANKL, where RANK is supposed to bind. This in turn prevents RANK’s intended mechanism of osteoblast differentiation into osteoclasts [51].
BMP-2 is also thought to play an important role in VC, since it is expressed in higher levels in chronic kidney disease patients, and is a part of the Wnt/β-catenin pathway [52]. Typically, it is associated with bone and tooth formation, but the high phosphate levels in uremic patients activate this pathway and causes BMP-2 expression.
Apart from the osteogenic markers and factors associated with calcification is another major protein, matrix Gla protein (MGP). In its activated form, it antagonizes BMP-2 signaling as a negative feedback regulator due to its carboxylated glutamate residues [53]. It also acts by binding to forming hydroxyapatite crystals to prevent deposition and calcification. However, it must be carboxylated by vitamin-K in order to be active, which may be why vitamin-K deficient kidney disease patients show calcified vessels [54].
In biomaterials, the surface structure of the material can determine the post-implantation calcification. Materials with a higher porosity have the increased potential for calcification, because the larger pores allow for more calcium deposition [55].
Because most causes of calcification are rooted in a mineral imbalance, dietary modifications or supplementation are currently being studied for potential use in attenuating the effects of calcification in different regions in the body. Magnesium ions are known to inhibit calcium deposition, though the mechanism is not clearly understood [56]. When supplied to vascular smooth muscle cells, the rate of cell damage by apoptosis is significantly decreased as the magnesium levels increase in the media [57]. Decreasing the rate of apoptosis decreases arterial stiffness and calcification since apoptosis of smooth muscle cells often leads to the disruption and remodeling of plaque in the arteries [58]. Increased magnesium levels also decrease the expression of Runx2, inhibiting the differentiation of smooth muscle cells into osteoblast-like cells [57].
In a Framington Heart Study of 2695 participants, a dietary assessment was used to measure magnesium intake levels and determine whether adding the supplement could prevent or inhibit calcification. It was found that both coronary artery and abdominal aortic calcification decreased as magnesium intake increased, with a 22% decrease in coronary artery calcification for every 50 mg increase in daily magnesium intake, and significant decrease in abdominal aortic calcification with magnesium increase [59]. Even though the mechanism is not fully understood, the metal does correlate with an inhibition of calcification.
MGP is another inhibitor of calcification that prevents the differentiation of vascular smooth muscle cells into osteoblasts [60]. However, MGP can only inhibit calcification if it is activated via carboxylation, making it a vitamin K-dependent protein. In patients with chronic kidney disease, there is a vitamin K deficiency and MGP remains inactivated [54]. For this reason, vitamin K was investigated as a dietary supplement to activate circulating MGP and inhibit calcification.
In a randomized, controlled trial, male and female patients were given either a control or vitamin K supplement, and CT scans were used for analysis of calcification levels [61]. Blood samples were also taken and analyzed with a radioimmunoassay to determine MGP levels in the serum. While results showed that the supplement reduced the levels of calcification currently existing, it did not prevent the new formation of calcium deposits. MGP levels also showed no significant difference between the control and vitamin K group [61]. This shows that vitamin K could be used as a supplement to slow the progression of existing calcium deposits, though it has not been proven to prevent the formation of new calcification.
Several naturally occurring proteins in the body act as inhibitors of calcification. MGP, as previously mentioned, is a naturally occurring inhibitor of calcification, requiring carboxylation to prevent osteoblastic-differentiation. Fetuin-A, also known as alpha-2-Heremans-Schmid glycoprotein, is another protein that acts by binding to free calcium and phosphate particles in the serum and preventing deposition [62]. In dialysis patients, fetuin levels in the body are significantly lower than in healthy patients, correlating with an increase in vascular calcification [63]. Because of this correlation, fetuin has been considered as a potential therapeutic protein, as treatment for vascular calcification [4].
Osteopontin (OPN) is a protein associated with bone remodeling and resorption. When phosphorylated, it can easily bind with calcium ions to prevent calcification [49]. It resists calcification in a dose-dependent manner when supplemented to smooth muscle cells to protect their phenotype, and is currently being researched to determine its therapeutic abilities [49].
There are two main classifications of stents: bare metal stents and drug-eluting stents. The latter has been used to treat calcification and prevent restenosis by incorporating anti-proliferation and anti-inflammatory agents into the material of the stent [64]. However, in regions of high calcification, it is common for the stent to improperly deploy within the vessel, leading to further plaque build-up and implant failure [64].
In order to prevent improper placement of the stent and reduce adverse effects, drug-coated angioplasty balloons are often favorable to stents. Balloon angioplasty is a common treatment for calcification in the arteries, working as an immediate clearing of vessels to allow blood flow [65]. By modifying this design and using drug-coated balloons, obstructions in the vessels can be immediately broken up while also delivering various agents to prevent the return blockage without leaving a permanent implant behind [66]. Paclitaxel-coated balloons have been used because of the drug’s ability to stop cell division so that when it is delivered to regions with increased plaque buildup, further growth is inhibited. The drug is delivered uniformly to the arterial wall with immediate release and incorporation into the tissue [67].
Many different techniques are used to investigate and examine the calcification of biomaterials. This can be done with either morphologic or chemical techniques. Morphological testing yields important qualitative information like the detection, characterization, and distribution sites of calcific deposits as detailed below, but still lacks quantitative information. While chemical techniques reveal more qualitative data such as identification of elemental composition and determination of crystalline mineral phases, they require a complete ruination of the tissue specimen [68]. Furthermore, techniques such as microcomputer tomography (micro CT) are recent technologies available for both
Morphological assessment of calcification uses many different techniques, including scanning electron microscopy (SEM), radiographs (X-rays), light microscopy, transmission electron microscopy (TEM), and microcomputer tomography (micro CT) [68, 69]. Calcific deposit dispersal can be seen from X-rays, and most calcification is studied using morphological techniques done outside of the body once the implantation is removed. As mentioned previously, calcific deposit morphology, quantification, and localization can be seen from micro CT. Both X-ray and CT techniques require gross specimen sample preparation. Light microscopy is used in conjunction with various staining techniques to identify mineral deposits with either a calcium or phosphorus-specific stains. Alizarin red is a calcium-specific stain and von Kossa is a phosphate-specific stain [68]. Hematoxylin/eosin, Mallory’s trichrome and alcian blue stains are known as histological stains associated with light microscopy, both readily available and easily applied to tissue [69].
Two types of microscope techniques mentioned previously, SEM and TEM, are electron microscopes that use a highly focused electron beam contained in a vacuum to passes the specimen [68]. In one study, SEM was used to analyze bovine pericardium samples in vitro for calcification using SEM. To prepare the samples for analysis, they were first soaked in a simulated body fluid containing ionic concentrations similar to natural body plasma fluid, then placed in a controlled environment. After seven days, samples were rinsed, deionized, and frozen in liquid nitrogen. Finally, samples had to be lyophilized before SEM analysis could be performed [70]. Other methods of calcification testing include Fourier transform infrared spectroscopy, which is used to determine structure coatings and x-ray diffraction of lyophilized samples using a diffractometer with Cu-Kα radiation [70].
There are many important factors to review when looking at heart valve replacements. Cost should be considered since valvular heart disease is prominent worldwide, especially in underdeveloped countries. Post-implantation failure is another factor, largely due to age of the patient given that children and young adults have a more competent immune system and experience a higher rate of BHV failure. In some countries lacking adequate ways of monitoring patients, mortality is an increased risk [9]. Calcification is also a major cause of deterioration in BHV replacements. The complications associated with calcification of artificial heart valves can lead to the need for revision surgery in patients. Mechanical valve replacements potentially require additional surgery due to thrombosis, thromboembolism, or spontaneous bleeding can occur; additionally, these replacements require lifelong anticoagulation therapies [9].
For these reasons, experts are trying to further understand the mechanism of biomaterial calcification and exploring more biocompatible materials. As mentioned before, there is not a specific mechanism that leads to VHD, so further understanding of the various processes involved will improve treatment strategies that include tissue engineering and drug-coated biomaterials [8]. Some studies have reported that tissue engineering scaffolds have similar uniaxial mechanical properties but need more investigation with biaxial mechanical properties that are more related to soft tissue. There are also clinical studies that combined both synthetic and natural polymers to construct a scaffold that could be similar to the native mechanical properties of a heart valve which may improve their biocompatibility [7]. Another approach to prevent calcification is to modify the surface of the device; for example, heparin can be used to inhibit tissue calcification [69].
In addition, urinary stents and catheters need more attention to overcome the two main causes that lead to calcification: infection and encrustation. Currently, studies are focusing on innovating stent designs, biomaterials, and surface coatings [41]. Many studies have attempted to combine multiple antimicrobial agents into one coating, for example using several antibiotics. Another approach that most researchers have recently used is constructing urinary tissue from organ-specific stromal cells resulting in better biomechanical properties similar to human than non-specific stromal cells [71]. However, most biomaterials include natural collagens that are unable to maintain the same physical properties, resulting in graft failure [43]. Further investigation and clinical studies are needed to introduce the ideal biomaterials and coating [34].
In conclusion, further development will include better understanding of VHD to improve our treatment strategies. More trials and clinical studies are needed to create an “ideal” biomaterial for tissue engineering and drug-coated biomaterials. Additional experiments will be needed to test innovating stent designs, heart valves, and surface coatings to treat implantation calcification.
Authors would like to acknowledge Mississippi State University and MAFES for funding.
Low-velocity impact is one of the most subtle threats to composite materials integrity. Due to the weak bonds between the plies, even small energies imparted by out-of-plane loads can result in hardly detectable damages, such as matrix cracks, delamination and fibre breakage, causing considerable stiffness and strength losses in tension and, especially, in compression and severely reducing the material structural integrity. Generally, the main observable damage affecting a laminate subjected to low-velocity impact is delamination, mainly responsible for compression strength decay. For this reason, diverse research works have been devoted to the mechanisms of delamination initiation and growth [1, 2, 3, 4, 5, 6]. During impact, more than one delamination in the thickness direction generally develops in a composite laminate, depending on the impact energy and the laminate stacking sequence. Hence, it is crucial to understand the mechanisms of impact damage onset and growth in composite laminates.
\nTo date, non-destructive testing (NDT) techniques play a fundamental role in diverse industrial areas (such as aerospace, automotive, naval and sporting goods, etc.) for the detection of defects in composite material components in order to ensure their integrity during both the manufacturing phase and the service life [7]. Many types of NDT methods are used for flaw analysis, including ultrasonic inspection, X-ray, acoustography, shearography, acoustic emission, etc. [8].
\nUltrasonic testing is the most widely utilised NDT procedure for the detection of flaws in composite materials, allowing the identification and characterisation of internal and external damages without cutting apart or otherwise altering the composite material. The main advantages of UT NDT include [9]: high penetration capacity, which allows to inspect parts of large size; high sensitivity, permitting to detect extremely small defects; only one surface of the part needs to be accessible for UT testing and no hazards exist for the operator or the test materials. The disadvantages of UT NDT comprise: need for expert operators; difficulty in inspecting rough surfaces with irregular or too small shapes; need for a coupling medium between the UT probe and the test part and reference standards are required for both instrument calibration and defect characterisation.In this chapter, the non-destructive characterisation and assessment of low-velocity impact damage in composite material laminates is investigated through UT inspection. A description of low-velocity impact damage generation and development in composite materials is presented in Section 2. Section 3 gives an overview of the UT testing methods, describing the basic principles, the UT inspection systems, the defect identification capabilities and the UT data representation; moreover, the UT NDT techniques applied to composite materials are illustrated. In the last section, the research studies of the last several years on the detection of defects generated in low-velocity impacted composite materials are presented and discussed.
\nBy considering that for many composite materials applications, such as body panels of cars, trucks, rail vehicles and aircraft fuselage, the designer of the composite structure must ensure the prevention of penetration by foreign objects of known mass and velocity. Accordingly, the knowledge of penetration energy becomes a critical issue. Moreover, the absorbed energy is a fundamental parameter in impact situations where it is necessary that the mechanical shock is not transferred to the human body, such as in motorcycle helmets and race car frames, with the aim to ensure the driver’s safety in case of high-speed crashes. Accordingly, for these applications, laminated composites must be designed to absorb as much as possible the impact energy and to limit the decelerations on the human body.
\nDue to their brittleness and anisotropy, composite laminates are particularly sensitive to low-velocity impact damage caused by accidental loadings imparted during fabrication or service. This has led to numerous studies concerning impact dynamics [10, 11, 12], mechanisms of failure initiation and propagation [12, 13, 14, 15] and correlation between impact energy, damage and residual material properties [2, 9, 12, 16, 17, 18].
\nDelamination is the most important and crucial damage caused by dynamic loading conditions. Matrix cracking consists in cracks that develop in the resin rich areas between two adjacent composite layers. It has been observed that delamination occurs when a threshold energy is reached in presence of matrix cracking [19]. Even if there is a common agreement on the mechanisms of initiation and growth of this failure mode during an impact event, and several research studies are devoted to this topic [15, 20], a general approach to predict the damage mechanisms and interaction in order to prevent catastrophic failures, is absent. The complexity of the stresses in the vicinity of the point of impact complicates the analysis. In [21], it was shown that delamination growth is governed by interlaminar longitudinal shear stress (σ13) and transverse in-plane stress (σ22) in the layer below the delaminated interface and by the interlaminar transverse shear stress (σ23) in the layer above the interface.
\nA critical aspect of impact damage is the fact that it is difficult to detect by visual inspection: a composite structure can be severely damaged without any external sign. The only external indication of an impact is indentation, that is, the plastic deformation of the laminate surface due to the contact, left by the impactor during the loading phase. This has led to the concept of “barely visible impact damage”, usually adopted in the design of aeronautical structures.
\nA thorough study of the behaviour of composite laminates subjected to dynamic loads, was carried out by [1, 2, 3, 4, 5, 6, 12, 13, 14], with the aim to understand the complex mechanisms of damage initiation and propagation under low-velocity impact loading. Many parameters are involved in an impact event and the diverse induced damages, together with their interaction, are very complex to investigate. Moreover, there are instances where impact damage, though seriously present inside the material, is barely visible or not at all visible from the outside.
\nAn extensive experimental testing campaign was carried out on different composite material systems by increasing the initial kinetic energy up to the complete material penetration [16]. This allowed the study of the initiation and the propagation of the complex failure modes related to impact damage. The starting point was the study of the load-deflection curves recorded during impact testing for all the different test conditions. From the curves, the relevant impact parameters were obtained: first failure load and energy, maximum load and energy, absorbed and penetration energy. The influence on the impact parameters, exercised by the composite system, the material constituents, the thickness and the laminate stacking sequence as well as the constraint conditions and the tup diameter were evaluated. Destructive and non-destructive testing were applied to investigate the failure modes, and the observed damage was correlated to the relative energies and the other relevant parameters.
\nIndentation was found to be a function of the impact energy on the basis of the perforation energy. The latter represents the minimum kinetic energy necessary to completely penetrate the laminate and is evaluated as the area under the complete load-displacement curve at penetration [22]. This is a fundamental parameter to be known in order to gather information about the impact energy that causes the loss of material mechanical properties [16, 23].
\nThe load-displacement curve recorded during experimental impact tests is a fundamental tool to obtain information about the impact response and behaviour of composite material samples or structures under service conditions. Some characteristic points on the recorded curve are correlated with the evolution of the impact damage inside the material. In correspondence of these points, the first failure load and energy, the maximum load and energy, the absorbed and the penetration energy, were calculated. The influence of the thickness, the laminate stacking sequence, the matrix type and content, the fibre type and orientations and the impact conditions (impactor tup, diameter of sample support and load speed) was clearly evidenced by comparing the load-displacement curves obtained under the different test conditions. The examination of the load-displacement curves evidence that, notwithstanding the differences in thickness, material composition and reinforcement architecture, there are typical features common to all composite laminates subjected to impact testing [24]. Figure 1 shows a schematic view of a typical load-displacement curve with the characteristic points identified by arrows and letters (“a”, “b”, “c”, “d”, “e”).
\nSchematic view of the impact load-displacement curve at penetration.
In Figure 2, four curves from low-velocity impact tests on carbon fibre reinforced polymer (CFRP) laminates with different thicknesses are overlapped: despite the thickness difference, common features can be clearly noted. Up to point “a”, the curve shows no evidence of damage developing inside the material. A different behaviour between thin and thick laminates can be observed due to the increase of the initial laminate rigidity with increasing thickness (Figure 2). The thinner laminates display a clear non-linear response for very low displacement values, due to the larger amount of displacement at low impact force in comparison with the thicker laminates [25]. At the end of the elastic phase, a load drop occurs, the more clearly when the material thickness is sufficiently high (point “a” in Figure 1). This behaviour is difficult to appreciate for the lowest thickness where the load remains substantially constant with increasing displacement or a different slope is evidenced. However, in both cases, a local rigidity variation happens, denoting damage in the laminate.
\nLoad, F, versus displacement, d, curves for different CFRP laminate thickness, t.
The successive load drop is an indication of fibre breakage and/or damage propagation in the form of matrix cracking, delamination, fibre breakage, fibre/matrix debonding and fibre pull out (point “b” on the curve). Matrix cracking in the resin pockets are the first type of damage developed during an impact [25] and the presence of matrix cracks does not affect the overall laminate stiffness [26]. However, matrix cracks represent the initiation point for delamination [4, 21] and fibre breakage which dramatically change the stiffness of the composite laminate [27]. All the energy exceeding the one necessary for these damage initiation phenomena is employed for damage propagation. After the first failure, the load increases again, although the laminate rigidity is reduced. Then, a series of load drops are noted, resulting in oscillations in the force-displacement curve, which correspond to extensive propagation of failures of fibres and in the resin through-the-thickness. In the range from points “b” to “d” (Figure 1), the different damages propagate through all the layers, until the complete perforation is achieved (point “d”). The slope of the load-displacement curve begins to rapidly decrease when composite material perforation occurs. The maximum force (point “c”) is generally achieved between points “b” and “d”, even for the thicker laminates (12 layers or more); point “b” is often found coincident with point “d”, which means that the first significant fibre failure frequently occurs at maximum force [24].
\nIn Figure 3, examples of fibre failures are shown. The decrease in contact load between points “d” and “e” corresponds to the penetration process. Finally, beyond point “e”, the contact load decreases slowly: the cylindrical body of the impactor slides through the penetrated sample. The penetration energy necessary to completely penetrate the laminate, given by the area under the load-displacement curve at penetration, is conventionally calculated at point “e”. Both Figures 1 and 2 refer to impact test cases where complete perforation occurred. In case of non-perforating impacts, during the loading phase the maximum displacement is reached and then the displacement decreases during unloading (Figure 4). After the first load drop (arrows in Figure 4), the unloading part is different from the loading one since a fraction of the energy is stored in the material for damage formation.
\nFibre failures indicated by the black arrows.
Load-displacement curves for a not penetrated CFRP laminate (t = 3 mm): (a) impact energy level U = 5 J; (b) impact energy level U = 15 J.
In [5], it was demonstrated that an interaction between matrix cracking and delamination initiation exists. Delamination propagation starting from intralaminar cracks was found mainly in thin laminates [5, 28] where the membrane contribution is important. In Figure 5, low (a) and high (b) magnification micrographs of dynamically loaded CFRP samples are reported showing matrix cracks and delamination starting from the cracks in the resin pocket and connected by intralaminar cracks [5].
\nLow (a) and high (b) magnification micrographs of dynamically loaded CFRP laminate with thickness t = 2 mm.
As found in several research works by different authors [6, 21], the evolution of damage in a composite laminate subjected to a concentrated dynamic load is driven by intralaminar tensile and shear cracks occurring in the layers farther from and nearer to the contact point. From these cracks, delaminations were found to be generated at interfaces between differently oriented plies, mainly propagating in the direction of the fibres in the lower ply and extending the more sideways with respect to the contact point.
\nA different behaviour is noted for thin and for thick laminates. In thin laminates, bending stresses are more important whereas shear stresses predominate in thick laminates and delaminations without evidence of intralaminar cracks were found at mid-thickness.
\nIn Figure 6, a typical impact damage, visually observed on to the back surface of the impacted laminate, is reported, where the classical visible diamond-shaped delaminated area has attained its maximum size. The delamination axes coincide with the warp-weft fibre directions of the surface fabric layer.
\nTypical damage zone after impact (back laminate surface). Laminate thickness t = 1.92 mm. Impact energy U = 15.8 J.
During World War I, underwater detection systems using high-frequency acoustic waves and quartz resonators for submarine detection were developed by Langevin [29] as a consequence to the tragic sinking of the Titanic in 1912. In 1928, Sergei Y. Sokolov proposed the use of a through-transmission UT technique for flaw detection in metals [30]. Mulhauser firstly patented an UT device employing separate transmitter and receiver transducers to detect flaws in solids [29]. In 1940, Firestone was the first to realise the UT reflection or pulse-echo technique [31]. In 1948, extensive study of UT medical imaging started in the United States and Japan. One of the first UT testing apparatuses using piezoelectric crystal transducers for the detection of defects was patented by McNulty in 1962. This apparatus was capable of isolating defect signals from high level noise signals and providing an alarm upon occurrence of a defect signal [32]. Since those times, technology improvements led to remarkably enhanced UT non-destructive testing (NDT) allowing to detect surface, subsurface and internal flaws (cracks, delaminations, cavities, pores, inclusions and fractures) in diverse types of materials (metals, composite materials and plastics) [33]. In the manufacturing industries, UT NDT techniques are widely applied for the quality control of components and structures as well as for the characterisation of materials.
\nUT NDT is based on the measurement of the energy variations associated with mechanical waves, with frequencies ranging between 50 kHz and 25 MHz, generated by a piezoelectric transducer. The UT beams are introduced into the material by a coupling medium (oil, grease and water) and the variations of the reflected and/or transmitted UT energy are used to identify defects within the material which represent discontinuities in the UT path. When an atomic or molecular particle is displaced from its equilibrium position due to UT waves propagation in the material, the internal (interatomic or intermolecular) forces tend to bring it back to its original position. The displacement of a particle causes the dislocation of those placed in the neighbourhood, and thus the propagation of the UT waves in all the material is determined [8, 34].
\nIn Figure 7, the basic parameters of a continuous UT wave are shown. The distance between two consecutive peaks of an UT wave is the wavelength,
Basic parameters of an UT wave.
UT velocity,
In UT NDT, the shorter wavelength resulting from an increase in frequency will usually provide for the capability to detect smaller discontinuities. As a general rule, a discontinuity must be larger than one-half the wavelength in order to be detected.Based on the particle displacement mode, UT waves are classified as longitudinal, shear, surface, and Lamb waves. Longitudinal waves are compressional waves where the particle motion is parallel to the propagation direction of the wave. Shear waves are present when the oscillation direction is perpendicular to the propagation direction. Surface (Rayleigh) waves have an elliptical particle motion and travel across the surface following the profile of the material. Plate (Lamb) waves have a complex vibration occurring in materials where the thickness is less than the wavelength of the UT waves introduced into it.
\nUT propagation velocity in a medium and UT wave attenuation (loss of amplitude and energy) depend on the medium itself. In solids, the velocity of longitudinal waves,
where
The speed of transverse (or shear) waves,
where
In isotropic materials, the elastic constants are the same for all directions within the material. However, most materials are anisotropic and the elastic constants differ with each direction.
\nASTM E494 - 15: “Standard Practice for Measuring Ultrasonic Velocity in Materials” covers a test procedure for measuring UT velocity in materials with conventional UT pulse-echo flaw detection equipment. In this practice, tables with longitudinal and shear velocities are reported for metal and ceramic materials [35].
\nUT attenuation is the decay rate of the UT wave as it propagates through a material. It is mainly due to absorption (conversion of sound energy into other forms of energy) and scattering (reflection of sound in directions other than the original propagation direction) phenomena. The amount of attenuation through a material is a critical parameter for the selection of the appropriate UT transducer for an application.
\nThe basic equipment of an UT inspection system consists of diverse functional units: pulser/receiver, transducer and display devices. A pulser/receiver is an electronic device generating short, high amplitude electric pulses which are converted by the transducer into high-frequency UT energy. The sound energy is introduced into the test material and propagates through the material in the form of UT waves. If there is a discontinuity (e.g. a crack) in the UT wave path, part of the energy is reflected back from the flaw surface. The reflected UT wave signal reaches the transducer which transforms it into an electrical signal that can be recorded and/or displayed on a screen [36].
\nThe control functions associated with the pulser circuit include the pulse length or damping and the pulse energy, whereas the control functions in the receiver phase are related to the refinement, filtering and amplification of the return signals.
\nSelection of the appropriate UT transducer is the first significant step to be considered for UT inspection of a part. Two main categories of transducer are available: contact and immersion transducers. The first category refers to transducers utilised for direct contact inspections which are generally hand manipulated by a skilled operator. Diverse contact transducers are commercially available and their selection depends on the characteristics of the contact surface and the thickness of the part as well as on the aims of the UT inspection. The most common contact transducers are: flat contact, dual element and angle-beam transducers. Immersion transducers are designed to operate in a liquid environment and consequently are typically utilised inside a water tank or as part of a squirter system for UT NDT scanning applications. These transducers can be equipped with cylindrically or spherically focused lens. A focused transducer has the property to concentrate the sound energy onto a small area in order to improve sensitivity and axial resolution.
\nTwo basic quantities are measured in UT testing: the time-of-flight (TOF) corresponding to the amount of time for the sound to travel through the sample, and the amplitude of the received signal. Based on velocity and round trip time-of-flight through the material, the material thickness,
where
Measurements of the relative change in UT signal amplitude can be used for sizing flaws or measuring the material attenuation properties.
\nThe major variables to be considered in UT NDT include the characteristics of the utilised UT waves and the proprieties of the part being inspected. UT equipment type and capability interact with these variables; often, different types of equipment need be selected to accomplish different inspection objectives. Generally, a compromise must be made between favourable and adverse effects to achieve an optimum balance and to overcome the limitations imposed by equipment and test material [37].
\nThe frequency of the utilised UT waves affects the inspection capability in several ways:
Sensitivity, or the capability of an UT inspection system to detect a very small discontinuity, is generally increased by using high frequencies (short wavelengths).
Resolution, or the ability of the UT system to generate simultaneous and distinct indications from discontinuities located close to each other within the material or located close to the front surface of the part, is directly proportional to the frequency bandwidth and inversely related to the pulse length; resolution usually improves with increasing frequency.
Penetration, or the maximum depth in a material from which useful indications can be detected, is reduced by the use of high frequencies; this effect is most pronounced in the inspection of metals with coarse grain structure or inhomogeneous materials, such as composites, due to the resultant scattering of the UT waves.
Beam spread, or the divergence of an UT beam from its central axis, is also affected by frequency: as frequency decreases, the shape of an UT beam increasingly departs from the ideal of zero beam spread. This characteristic is observed at almost all frequencies used in UT inspection. Other factors, such as transducer diameter and the use of focusing lens, also affect beam spread.
Sensitivity, resolution, penetration and beam spread are largely determined by the selection of the transducer and are only slightly modified by changes in other test variables.
\nA first difference between UT inspection techniques can be made with reference to the transducer or probe position [34, 36, 37]:
Contact technique, where the probe is placed directly on the surface of the part to be examined.
Immersion technique, where the probe is immersed in a liquid substance that separates it from the part surface.
The main operating techniques of UT NDT are the through-transmission method and the pulse-echo (or reflection) method.
\nIn the through-transmission technique, two probes, positioned at opposite sides with respect to the part, are used: one probe transmits the UT beam into the part and the other probe receives it. A defect, reflecting a part of the incident beam, causes a decrease in the UT energy detected by the receiving probe. The presence of the defect is highlighted by comparing the received signal with a reference signal obtained from a standard, flaw-less sample. In this technique, two opposite surfaces of the part under examination must be accessible to the transducers.
\nThe pulse-echo technique is based on the property of the UT beam to be reflected whenever it encounters a discontinuity or a defect in its path. The amount of reflected energy highly depends on the reflecting surface size, that is, on the dimensions of the encountered discontinuity perpendicularly to the UT beam propagation direction. To perform the test, it is sufficient that only one surface of the part is accessible, since a single probe is used to send the incident UT beam and, at the same time, receive the reflected UT signal. In Figure 8, the typical UT waveform generated during UT pulse-echo inspection of a defective part is shown. The UT waveform enters the material and a first echo, called interface or front echo, is visualised. The back echo corresponds to the final (last) surface of the part under examination. If a discontinuity is encountered inside the material, a defect echo is visualised between the front and the back echoes.
\nUT waveform generated during UT pulse-echo inspection of a defective part.
Pulse-echo UT inspection can be accomplished with longitudinal, shear, surface or Lamb waves. Straight-beam or angle-beam techniques can be used, depending on the part shape and the inspection objectives. The detected UT data can be analysed to obtain the required information on defect characteristics, such as type, size, location and orientation.
\nDiverse representations of UT data are available. The most common formats utilised are: A-scan, B-scan, C-scan, D-scan and FV-scan [8, 9, 34, 36, 37].
A-scan. It provides a quantitative display of UT signal amplitudes (y axis) and time-of-flight information (x axis) obtained by UT material interrogation at a single point on the part surface. The A-scan can be used to analyse the type, size and location (chiefly depth) of flaws. A discontinuity in the material is indicated by a peak (echo) the distance of which from the zero of the time axis is proportional to the path that the UT beam performs before encountering the discontinuity itself. The amplitude of this defect peak is proportional to the acoustic energy reflected by the discontinuity.
B-scan. This format provides a quantitative display of time-of-flight data reported along the y axis obtained during a linear scan (x axis) of the part. A B-scan provides information about the part thickness and the depth of a defect for a single plane that normally intersects the part arranged along the scan direction.
C-scan. A semi-quantitative or quantitative display of UT signal amplitudes obtained over an area of the part surface is represented using a C-scan. The information can be used to map out the position of flaws in an UT image representing the plan view of the part. A C-scan format also records time-of-flight data, which can be converted and displayed by image processing techniques to provide information on flaw depth.
D-scan. It is similar to a C-scan, but in this case the time-of-flight data obtained over an area of the part is utilised for UT image generation instead of the signal amplitude data.
FV-scan. Full volume scan (FV-scan), or volumetric scan, is based on the detection and storage of the entire UT waveform in the propagation direction (z-direction) during x-y scanning of the part surface. FV-scan provides for the 2½ D representation of the material internal structure, based on the generation of C-scans at any depth along the z-axis for any portion of the material thickness.
Due to the non-homogeneous and anisotropic nature of composites materials, the frequency range utilised in UT NDT of composites is markedly reduced due to the high damping and attenuation of the high-frequency signals. Usually, the employed frequency in industrial applications is 5 MHz or less, limiting the possibility to detect small flaws. The typical defects present in composite materials are: delamination, cracks, fibre-matrix debonding and fibres fractures [6, 12, 13, 14, 15]. Delamination is probably the most investigated failure mode in composite material laminates [1, 4, 5, 16]. During UT NDT of a composite part, the presence of an extended delamination corresponds to a UT waveform with a reduction of the back echo amplitude together with the appearance of a defect echo located at the delamination depth. Other smaller defects such as voids and inclusions cause a loss of the UT back echo amplitude and/or can be weakly reflected [38, 39]. Flaws (e.g. delamination) lying parallel to the surface of the part subjected to UT inspection can be easily detected utilising normal incidence probes, whereas defects (e.g. cracks and fibre fractures) lying perpendicular to the surface are difficult to detect due to their small reflecting surface (this problem can be solved using angle-beam transducers) [40].
\nBy employing UT through-transmission or pulse-echo techniques, it is possible to locate and size the defects based on the measurements of UT signal amplitude and/or time-of-flight. The pulse-echo technique allows to characterise the matrix material proprieties (volume fraction, moisture content and porosity) of a composite by evaluating the UT velocity and/or attenuation. Knowing the composite thickness, the attenuation coefficient can be evaluated by measuring the amplitude reduction of the multiple back echoes, and the UT velocity by determining the time spacing between them.
\nA limitation of UT inspection consists of the difficulty to identify defects located very close to the front surface of the part (known as “dead zone”) where the pulse length is approximately equal to the time period. This problem can be limited by using shorter pulses or immersion testing procedures. The anisotropic and inhomogeneous properties of composite laminates cause high attenuation of the UT waves, internal UT reflections and UT velocity variations due to the presence of different materials (fibres and matrix) and interfaces (fibre-matrix and inter-ply interfaces).
\nIn the last several years, numerous studies were carried out on the application of UT NDT for defect detection in low-velocity impacted composite material laminates.
\nIn 1998, the estimation of impact induced damage under low-velocity impact (impact energy: from 3 to 30 J) in carbon fibre reinforced polymer (CFRP) laminates was investigated in [41] through UT C-scans using the pulse-echo immersion method. Delamination areas were accurately quantified by processing the UT image data and the correlation between impact energy and delamination extension was established.
\nIn [42], an UT NDT system for delamination evaluation in CFRP, glass fibre reinforced plastic (GFRP) and aramid fibre reinforced plastic (AFRP) laminates subjected to low-velocity impact tests (impact energy: 2, 3, 5 J) is described. The UT NDT analysis was performed using two different probes (5 and 15 MHz) to evaluate the influence of frequency on the reliable evaluation of delamination in these composites. The results confirmed the NDT system capabilities in terms of damage detection, location and evaluation.
\nIn [40], the authors demonstrated that a combination of normal and oblique incidence pulse-echo UT techniques provide highly detailed volumetric images of the damage (matrix cracks and delaminations) induced in composite laminates by low-velocity and low-energy impacts. The tested specimens (quasi-isotropic carbon/polyetheretherketone (PEEK) laminates) were immersed in water and scanned at normal (to detect delaminations) and oblique (to identify matrix cracks) incidence using a focussed broadband transducer (3.2 mm diameter, 18 mm focal length) with a centre frequency of 22 MHz.
\nA comparative analysis of two different NDT techniques, UT air-coupled C-scan and X-ray radiography, applied to thin carbon/epoxy composite laminates, utilised in naval structures, for the detection of low-energy impact damage was carried out by [43]. The damage area was identified by the two NDT techniques but the UT inspection provided for an easier, faster and more accurate damage characterisation.
\nIn [44], the response of CFRP laminates with different stacking sequences (unidirectional, cross-ply, quasi-isotropic and woven laminates) at low impact velocity and under low-temperature conditions was examined. Low-velocity impact tests at different temperatures were carried out using an impact energy range from 1 to 13 J. After the impact tests, the damage extension was measured by UT C-scan inspection and the damage mechanisms were studied by optical and scanning electron microscopy. The results showed the influence of temperature, ply reinforcement architecture and stacking sequence on the mechanical behaviour of the CFRP laminates subjected to low-velocity impulsive loads.
\nA multi-functional non-linear UT testing approach was presented in [45] for in-situ and ex-situ detection of diverse defects (micro-cracking, delamination and disbonding) generated by different damage inducing loads (stress, impact and heat) in CFRP materials and structures for aeronautical applications. The impact tests were conducted using several impact loadings ranging from 4 to 69 J impact energy. The applied UT methodology proved to be a useful tool for the identification of damage for impact energy below 30 J where the visual evidence of damage is lacking.
\nThe effect of temperature on low-velocity impact resistance properties and post-impact flexural performance of CFRP laminates was studied in [46] using UT C-scan and micro-focus X-ray computed tomography. A correlation between the impact temperature and the damage area was validated by the results obtained with the two NDT techniques.
\nA sparse digital signal model was presented in [47] as an efficient model for the estimation of UT measurements obtained from multi-layered composites. A CFRP laminate with stacking sequence [0/90]4S was impacted in a drop weight tower with 3.8 J impact energy. The laminate was excited by a low-frequency UT sine-burst with central frequency 5 MHz. The UT response signals were utilised for the validation of the developed digital signal model in order to obtain the damage identification. In [48], a multi-level Bayesian method was utilised to identify the through-the-thickness position and the effective mechanical properties of the damaged layers in the same composite laminates using through-transmission UT measurements.
\nIn [49], the authors experimentally tested three composite structures with barely visible impact (BVI) damage and delaminations, using different NDT techniques including UT scanning, piezoelectric sensing, thermography and vibration-based inspection in order to analyse their applicability in the environmental conditions of aircraft elements inspection. The applied UT technique provided a detailed damage evaluation in terms of damage depth, size and location.
\nInfrared thermography and phased array UT techniques were employed in [50] to detect the impact damage in CFRP composites. Three values of impact energy (18, 29 and 39 J) were chosen for the tests. Both NDT methods presented advantages and limitations. Thermography is fast in detecting the impact damage over large panels, but it is affected by loss of contrast in case of deep defects. The UT technique is more effective in the estimation of thickness and in the inspection of thick parts, but it can be applied only over smooth surfaces and requires a coupling medium.
\nA laser-ultrasound (LU) scanner was used in [51] to obtain high-quality images of damage in CFRP composites subjected to low-velocity impact with energies 25 and 50 J. X-ray tomograms were also carried out for comparison with the results of the LU study. The high-speed and high-resolution LU scanning method proved to be efficient for in-situ non-contact imaging of the internal materials structure with resolution higher than 1 ply.
\nIn [52], the response to repeated low-velocity impacts was studied for two types of hybrid laminates made of metal and composite layers specifically designed for aircraft structural applications. The damage was evaluated using visual inspection and UT C-scan procedures. Three categories of impact damage were observed: visible deformation without internal or external damage, visible internal damage (C-scan) without external damage and visible internal and external damages.
\nAn UT technique was used in [53] to investigate the delamination caused by low-velocity impact tests on poly(lactic acid)/jute woven fabric composite laminates obtained by conventional film stacking and compression moulding techniques. Square specimens, 100 × 100 mm, were impacted in a falling dart test machine using 5 impact energy values: 2, 5, 10, 12 and 15 J. Delamination damage was evaluated through an UT technique employing a linear phased array probe. The delaminated area was correlated with both the impact energy and the measured indentation depth. The results allowed to identify a threshold energy value beyond which internal damage was detected. Moreover, a linear relationship between delaminated area, energy and indentation depth was found.
\nA delamination prediction method for composite laminates, utilised for application in unmanned aerial vehicles, subjected to low-energy impact was presented in [54]. UT C-scan tests were carried out with UT beam propagation direction from the bottom laminate surface to the top laminate surface that received the impact. Numerical models were built to simulate the delamination behaviour of the composite laminates, showing a good correlation with the experimental UT results. Delamination prediction can contribute to the evaluation of composite residual strength and the optimization of aircraft structures.
\nIn [55], an UT NDT system was utilised to carry out the metrological characterisation of quadriaxial non-crimp fabric (NCF) CFRP composite laminates subjected to low-velocity impact. The scopes of the UT inspection were thickness estimation, stacking sequence and fibre orientation verification, and composite quality assessment in terms of impact damage development within the whole material volume. The same UT NDT system was considered in [33, 55, 56] for diverse UT testing procedures. Figure 9 illustrates the specially designed hardware and custom-made software of the UT system operating as follows: the UT oscillator/detector excites the piezoelectric immersion UT probe which is displaced by a 6-axis robotic arm. After interacting with the tested material, the reflected UT pulses return to the oscillator/detector which forwards them to a digital oscilloscope for visualisation and digitisation of the UT waveforms. The digitised UT waveforms are then transferred to a PC where a custom-made software code provides for UT waveform signal storage and analysis.
\nSpecially designed UT NDT system.
Low-velocity impact tests were performed on rectangular composite specimens under a falling weight machine using a cylindrical indenter with hemispherical nose at different impact energies: 9, 12, 16, 20, 25, 30 and 40 J.
\nAfter impact testing, pulse-echo immersion FV-UT scanning was carried out on the impacted specimens with a focused high-frequency transducer (15 MHz) over a 110 × 155 mm area with scan step 1 mm. The delaminated area was measured through UT image processing. In Figures 10, 11, 12, four UT images of the impacted quadriaxial laminates are reported for drop weight low-velocity impact tests with energy 9, 20 and 40 J, respectively. Each of the four images represents the internal structure of 1/4 (i.e. 1 mm) of the NCF laminate thickness starting from the upper surface (first image on the left) down to the opposite lower surface (last image on the right). In particular, in every figure, image (a) represents the surface damage, images (b) and (c) the internal damage and image (d) the in-plane projection of the total internal damage. The analysis of the UT images shows that: (i) the impact damage develops differently at interfaces between layers characterised by diverse fibre orientations; (ii) the delamination area increases with rising distance (depth) from the impact surface as well as with growing impact energy and (iii) the delamination outline exhibits the well-known hat-shaped configuration [20]. The UT analysis also reveals the absence of delamination in a small zone directly below the impact surface contact point.
\nFour UT images for low-energy (9 J) impacted NCF laminate. Each image reports the internal structure of 1 mm thickness from upper (a) to lower laminate surface (d).
Four UT images for medium energy (20 J) impacted NCF laminate. Each image reports the internal structure of 1 mm thickness from upper (a) to lower laminate surface (d).
Four UT images for high energy (40 J) impacted NCF laminate. Each image reports the internal structure of 1 mm thickness from upper (a) to lower laminate surface (d).
In low-velocity impacted composite materials, damages due to this type of loading usually develop inside the material structure and are difficult to detect. Delamination, arising from dynamic loading, is seemingly the most investigated impact failure mode due to its high criticality. However, other damage types such as matrix cracking, fibre-matrix debonding and fibre breakage can also occur due to impact loads. These damage mechanisms can interact with each other and lead to considerable reduction of the load-carrying capability of composite structures. Thus, the thorough material damage characterisation is essential to assess the impact damage criticality. This chapter focussed on the non-destructive characterisation and assessment of low-velocity impact damage in composite material laminates through ultrasonic testing and inspection. A general description of low-velocity impact damage generation in composite materials was presented. Ultrasonic testing methodologies for composite materials were illustrated and compared in terms of accuracy, resolution and performance. Applications were presented and discussed for industrial areas where composite materials usage is highly relevant.
\nIn our mission to support the dissemination of knowledge, we travel throughout the world to present our publications and support our Authors and Academic Editors. We attend international symposia, conferences, workshops and book fairs as well as business meetings with science, academic and publishing professionals. Take a look at the current events.
",metaTitle:"IntechOpen events",metaDescription:"In our mission to support the dissemination of knowledge, we travel worldwide to present our publications, authors and editors at international symposia, conferences, and workshops, as well as attend business meetings with science, academia and publishing professionals. We are always happy to host our scientists in our office to discuss further collaborations. Take a look at where we’ve been, who we’ve met and where we’re going.",metaKeywords:null,canonicalURL:"/page/events",contentRaw:'[{"type":"htmlEditorComponent","content":"May 18, 2022 | 1:00 PM - 2:00 PM CEST
\\n\\n\\n\\n\\n\\n
03 - 12 June 2022
\\n\\nPutra World Trade Centre, Kuala Lumpur, Malaysia
\\n\\nIntechOpen Represented by BOOKS INTERNATIONAL (M) SDN BHD
\\n\\n\\n\\n
24 - 27 August 2022, Beijing, China
\\n\\nIntechOpen Represented by China Publishers Services (CPS)
\\n\\n\\n\\n\\n\\n
19 - 23 October 2022, Frankfurt, Germany
\\n\\n\\n\\n
Guadalajara International Book Fair
\\n\\n26 November - 04 December 2022, Guadalajara, Mexico
\\n\\nIntechOpen Represented by LSR Libros Servicios y Representaciones SA de CV
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
May 18, 2022 | 1:00 PM - 2:00 PM CEST
\n\n\n\n\n\n
03 - 12 June 2022
\n\nPutra World Trade Centre, Kuala Lumpur, Malaysia
\n\nIntechOpen Represented by BOOKS INTERNATIONAL (M) SDN BHD
\n\n\n\n
24 - 27 August 2022, Beijing, China
\n\nIntechOpen Represented by China Publishers Services (CPS)
\n\n\n\n\n\n
19 - 23 October 2022, Frankfurt, Germany
\n\n\n\n
Guadalajara International Book Fair
\n\n26 November - 04 December 2022, Guadalajara, Mexico
\n\nIntechOpen Represented by LSR Libros Servicios y Representaciones SA de CV
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:132968},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish'||lower('')||'"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:730,numberOfDimensionsCitations:1705,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5886,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2564,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9671,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7157,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1439,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192666,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4558,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3478,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3601,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1331,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81998",title:"Understanding the Neuropathophysiology of Psychiatry Disorder Using Transcranial Magnetic Stimulation",slug:"understanding-the-neuropathophysiology-of-psychiatry-disorder-using-transcranial-magnetic-stimulatio",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.103748",abstract:"Transcranial magnetic stimulation (TMS) is a safe and non-invasive tool that allows researchers to probe and modulate intracortical circuits. The most important aspect of TMS is its ability to directly stimulate the cortical neurons, generating action potentials, without much effect on intervening tissue. This property can be leveraged to provide insight into the pathophysiology of various neuropsychiatric disorders. Using multiple patterns of stimulations (single, paired, or repetitive), different neurophysiological parameters can be elicited. Various TMS protocol helps in understanding the neurobiological basis of disorder and specific behaviors by allowing direct probing of the cortical areas and their interconnected networks. While single-pulse TMS can provide insight into the excitability and integrity of the corticospinal tract, paired-pulse TMS (ppTMS) can provide further insight into cortico-cortical connections and repetitive TMS (rTMS) into cortical mapping and modulating plasticity.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Jitender Jakhar, Manish Sarkar and Nand Kumar"},{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:15,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81488",title:"Aggression and Sexual Behavior: Overlapping or Distinct Roles of 5-HT1A and 5-HT1B Receptors",slug:"aggression-and-sexual-behavior-overlapping-or-distinct-roles-of-5-ht1a-and-5-ht1b-receptors",totalDownloads:20,totalDimensionsCites:0,doi:"10.5772/intechopen.104872",abstract:"Distinct brain mechanisms for male aggressive and sexual behavior are present in mammalian species, including man. However, recent evidence suggests a strong connection and even overlap in the central nervous system (CNS) circuitry involved in aggressive and sexual behavior. The serotonergic system in the CNS is strongly involved in male aggressive and sexual behavior. In particular, 5-HT1A and 5-HT1B receptors seem to play a critical role in the modulation of these behaviors. The present chapter focuses on the effects of 5-HT1A- and 5-HT1B-receptor ligands in male rodent aggression and sexual behavior. Results indicate that 5-HT1B-heteroreceptors play a critical role in the modulation of male offensive behavior, although a definite role of 5-HT1A-auto- or heteroreceptors cannot be ruled out. 5-HT1A receptors are clearly involved in male sexual behavior, although it has to be yet unraveled whether 5-HT1A-auto- or heteroreceptors are important. Although several key nodes in the complex circuitry of aggression and sexual behavior are known, in particular in the medial hypothalamus, a clear link or connection to these critical structures and the serotonergic key receptors is yet to be determined. This information is urgently needed to detect and develop new selective anti-aggressive (serenic) and pro-sexual drugs for human applications.",book:{id:"10195",title:"Serotonin and the CNS - New Developments in Pharmacology and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg"},signatures:"Berend Olivier and Jocelien D.A. Olivier"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"}],onlineFirstChaptersTotal:18},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Computational Neuroscience",value:23,count:1},{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"11",type:"subseries",title:"Cell Physiology",keywords:"Neurodevelopment and Neurodevelopmental Disease, Free Radicals, Tumor Metastasis, Antioxidants, Essential Fatty Acids, Melatonin, Lipid Peroxidation Products and Aging Physiology",scope:"
\r\n\tThe integration of tissues and organs throughout the mammalian body, as well as the expression, structure, and function of molecular and cellular components, is essential for modern physiology. The following concerns will be addressed in this Cell Physiology subject, which will consider all organ systems (e.g., brain, heart, lung, liver; gut, kidney, eye) and their interactions: (1) Neurodevelopment and Neurodevelopmental Disease (2) Free Radicals (3) Tumor Metastasis (4) Antioxidants (5) Essential Fatty Acids (6) Melatonin and (7) Lipid Peroxidation Products and Aging Physiology.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"186048",title:"Prof.",name:"Ines",middleName:null,surname:"Drenjančević",slug:"ines-drenjancevic",fullName:"Ines Drenjančević",profilePictureURL:"https://mts.intechopen.com/storage/users/186048/images/5818_n.jpg",institutionString:null,institution:{name:"University of Osijek",institutionURL:null,country:{name:"Croatia"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"79615",title:"Dr.",name:"Robson",middleName:null,surname:"Faria",slug:"robson-faria",fullName:"Robson Faria",profilePictureURL:"https://mts.intechopen.com/storage/users/79615/images/system/79615.png",institutionString:null,institution:{name:"Oswaldo Cruz Foundation",institutionURL:null,country:{name:"Brazil"}}},{id:"84459",title:"Prof.",name:"Valerie",middleName:null,surname:"Chappe",slug:"valerie-chappe",fullName:"Valerie Chappe",profilePictureURL:"https://mts.intechopen.com/storage/users/84459/images/system/84459.jpg",institutionString:null,institution:{name:"Dalhousie University",institutionURL:null,country:{name:"Canada"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8176",title:"DNA Methylation Mechanism",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8176.jpg",slug:"dna-methylation-mechanism",publishedDate:"July 1st 2020",editedByType:"Edited by",bookSignature:"Metin Budak and Mustafa Yıldız",hash:"1de018af20c3e9916b5a9b4fed13a4ff",volumeInSeries:15,fullTitle:"DNA Methylation Mechanism",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",institutionString:"Trakya University",institution:{name:"Trakya University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7012",title:"Biochemical Testing",subtitle:"Clinical Correlation and Diagnosis",coverURL:"https://cdn.intechopen.com/books/images_new/7012.jpg",slug:"biochemical-testing-clinical-correlation-and-diagnosis",publishedDate:"April 29th 2020",editedByType:"Edited by",bookSignature:"Varaprasad Bobbarala, Gaffar Sarwar Zaman, Mohd Nasir Mohd Desa and Abdah Md Akim",hash:"1aa28a784b136633d827933ad91fe621",volumeInSeries:12,fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis",editors:[{id:"207119",title:"Dr.",name:"Varaprasad",middleName:null,surname:"Bobbarala PhD",slug:"varaprasad-bobbarala-phd",fullName:"Varaprasad Bobbarala PhD",profilePictureURL:"https://mts.intechopen.com/storage/users/207119/images/system/207119.jpg",institutionString:"Adhya Biosciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",institutionString:"Australian College of Business & Technology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"94",title:"Climate Change and Environmental Sustainability",scope:null,coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",keywords:null},{id:"92",title:"Health and Wellbeing",scope:"\r\n\tSustainable approaches to health and wellbeing in our COVID 19 recovery needs to focus on ecological approaches that prioritize our relationships with each other, and include engagement with nature, the arts and our heritage. This will ensure that we discover ways to live in our world that allows us and other beings to flourish. We can no longer rely on medicalized approaches to health that wait for people to become ill before attempting to treat them. We need to live in harmony with nature and rediscover the beauty and balance in our everyday lives and surroundings, which contribute to our well-being and that of all other creatures on the planet. This topic will provide insights and knowledge into how to achieve this change in health care that is based on ecologically sustainable practices.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",keywords:"Ecology, Ecological, Nature, Health, Wellbeing, Health production"},{id:"93",title:"Inclusivity and Social Equity",scope:"\r\n\tGlobally, the ecological footprint is growing at a faster rate than GDP. This phenomenon has been studied by scientists for many years. However, clear strategies and actions are needed now more than ever. Every day, humanity, from individuals to businesses (public and private) and governments, are called to change their mindset in order to pursue a virtuous combination for sustainable development. Reasoning in a sustainable way entails, first and foremost, managing the available resources efficiently and strategically, whether they are natural, financial, human or relational. In this way, value is generated by contributing to the growth, improvement and socio-economic development of the communities and of all the players that make up its value chain. In the coming decades, we will need to be able to transition from a society in which economic well-being and health are measured by the growth of production and material consumption, to a society in which we live better while consuming less. In this context, digitization has the potential to disrupt processes, with significant implications for the environment and sustainable development. There are numerous challenges associated with sustainability and digitization, the need to consider new business models capable of extracting value, data ownership and sharing and integration, as well as collaboration across the entire supply chain of a product. In order to generate value, effectively developing a complex system based on sustainability principles is a challenge that requires a deep commitment to both technological factors, such as data and platforms, and human dimensions, such as trust and collaboration. Regular study, research and implementation must be part of the road to sustainable solutions. Consequently, this topic will analyze growth models and techniques aimed at achieving intergenerational equity in terms of economic, social and environmental well-being. It will also cover various subjects, including risk assessment in the context of sustainable economy and a just society.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",keywords:"Sustainable, Society, Economy, Digitalization, KPIs, Decision Making, Business, Digital Footprint"},{id:"95",title:"Urban Planning and Environmental Management",scope:"