The phase transition temperatures and the homeotropic alignment capability of the liquid crystalline dendrimers.
\r\n\tWithin this scenario, special attention needs to be devoted to financial implications, due to their pervasiveness. Nobody would question the key role that finance plays to complement the real sphere of the economy and that has increasingly attracted both academics and practitioners. As a result, traditional pillars – such as financial markets, products, and institutions – have evolved significantly, with financial innovation fueling further progress over time. The global side of the coin features – among others – financially connected markets, international financial exchanges, and financial conglomerates that provide valuable opportunities in terms of international corporate finance. On the other side, recent advances have involved a wider recourse to ESG factors, allowed forward steps towards a more inclusive financial system, and have made digital finance a must, rather than an option, even though much remains to be accomplished, for instance, to facilitate access to formal financial channels in many underdeveloped regions.
\r\n\r\n\t
\r\n\tThis book aims to examine emerging trends, new perspectives, and empirical applications that deal with globalization and sustainability. The goal is to provide a comprehensive overview of these important concepts as valuable support to successfully meet the challenges and take on the opportunities ahead. At the same time, drawing upon empirical evidence can contribute to bridging the gap between theory and practice, which also fits within the scope of this book.
Azo molecules show photo-induced conformational changes based on
Dendrimers are a kind of polymeric materials consisting of regular multi-branched structure with a specific topology. Dendrimers are known to exhibit low viscosity and good solubility comparing with linear polymers with comparable molecular weights because of less tangled molecular structures. Their molecular structures consist of core units, branched repeating units, and terminal groups. The modifications of the terminals are quite easy because the terminal functional groups are not hindered unlike the functional groups bound to the crowding main chain of linear polymers.
Introducing mesogenic groups into the terminal groups of flexible dendrimers provides the dendrimers with liquid crystalline natures [12]. Then we can expect better compatibility of the dendrimer with LCs. Such liquid crystalline dendrimers can be prepared using commercial polypropyleneimine dendrimers (PPIDs), whose chemical structure is shown in Figure 1(a), and mesogen-carrying acrylates through the double-Michael addition to produce tertiary amine linkages, as shown in Figure 1(b) [13]. For the latter, we can use numerous acrylates, which have been reported in many literatures, developed for the syntheses of side-chain liquid crystalline polymers. The reaction can be carried out by simply heating in THF solution at 40–50°C, but requires two or more weeks in order to prevent the reaction from stopping at the secondary amine stage, which is difficult to be removed from the final product. Once the complete Michael addition, which means the absence of the residual primary or secondary amines, can be achieved, the resulting liquid crystalline dendrimer can be purified by simple precipitation to poor solvents such as methanol or hexane, which is chosen based on the solubility of the mesogenic units.
(a) Chemical structure of a polypropyleneimine dendrimers (PPID).
We have introduced various mesogens including biphenyls, phenyl benzoates, cyclohexylbenzene, and azobenzenes, as shown in Figure 2 [13, 14]. We refer the liquid crystalline dendrimers as D
Chemical structures of mesogenic groups used for the preparation of liquid crystalline dendrimers synthesized. Please refer to
Dendrimer | Phase transition temperaturea/°C | Homeotropic alignmentd |
---|---|---|
D2-6PPCN | I 68 SmA −5 G | + |
D2-6PPO1 | I 96 SmA 90 SmEb | − |
D2-6PPF | I 50 SmEb | − |
D1-10PPF2O4 | I 72 SmA 56 SmEb | − |
D2-10PPF2O4 | I 78 SmA 58 SmEb | + |
D3-10PPF2O4 | I 86 SmA 51 SmEb | + |
D4-10PPF2O4 | I 91 SmA 54 SmEb | + |
D5-10PPF2O4 | I 97 SmA 54 SmEb | − |
D2-6BPO1 | I 67 SmA −3 G | − |
D2-3PC5 | I 74 SmA 16 SmB −14 G | + |
D2-6PC5 | I 69 SmA 17 SmB −21 G | + |
D2-12PC5 | I 80 SmA 73 SmB 5 G | − |
D2-6Azo5 | G − 5 SmB 34 SmA 85 Ic | + |
The phase transition temperatures and the homeotropic alignment capability of the liquid crystalline dendrimers.
Recorded during the 2nd cooling scan with Δ
Glass transition temperatures were not observed above −20°C.
Recorded during the heating scan (Δ
Tendency to show spontaneous homeotropic alignment between glass plates on slow cooling.
Signs: +, exhibited homeotropic orientation; −, exhibited random orientation.
Some dendrimers exhibit spontaneous homeotropic orientation between two bare glass surfaces on slow cooling (typically Δ
Photomicrographs of D2-6PC5 under crossed polarizers during slow cooling from the isotropic melt (from left to right, DT = −1°C/min). A conoscopic image at room temperature is also shown on the right.
These orientation behaviors are strongly influenced by the mesogenic phase structure. Table 1 also lists the tendency to exhibit spontaneous homeotropic orientation together with the phase sequences. Among the D2-6X series, homeotropic orientation was observed for X = PPCN, PC5, and Azo5 as well as D2-10PPF2O4. These dendrimers exhibited relatively wide temperature ranges of the SmA phase. On the other hand, the mesogens, PPO1 and PPF, showed a narrow SmA temperature range and no SmA phase, respectively. The similar tendency was more clearly observed in D2-
The present dendrimers have an advantage for providing spontaneous LC alignment at surfaces and interfaces. In other words, no pretreatment of surfaces is necessary for obtaining good alignment. This advantage can be used for manufacturing LC displays. In this section, we introduce two applications of dendrimer molecules for LC alignment; LC displays and controlling physical parameters of LC cells.
The first issue to be discussed is how dendrimer molecules align at surfaces. Based on X-ray diffraction measurements, Li et al. [15] assigned a strong diffraction peak in a small angle region to
Model structures of dendrimer molecules adsorbed on a surface, (a) symmetric shape [
SHG intensity as a function of UV intensity [
LC displays are essentially driven by an electric field. Hence, photo-induced switching is not relevant in LC displays. However, to introduce the capability of spontaneous alignment of LCs at surfaces/interfaces by the present dendrimers, we cannot avoid the description of the LC display application using dendrimers with and without azo linkages (see Figure 2).
The most important property is spontaneous adsorption of dendrimers onto substrate surfaces, resulting in spontaneous homeotropic alignment of LCs, which makes pre-surface treatment-free or polyimide-free LC displays possible [20]. The process of LC introduction into an empty cell shown in Figure 6(a) and (b) are illustrations of the initial and final stages of the introduction of LCs containing dendrimers, respectively [21]. A corresponding texture is shown in Figure 6(c) [22]. In the injected area (right), homeotropic alignment is realized, but in the area far from the entrance (left), planar alignment is obtained because of the lack of surface coverage by dendrimers.
Cartoons showing the introduction of LC with dendrimers into a cell; (a) initial and (b) final stages. Actual photomicrograph image corresponding to (b) is also shown in (c).
The application of dendrimers to a LC display was first reported in IDW (International Display Workshop) in 2011 [20]. Since the unperturbed state is homeotropic, application is principally possible for vertical alignment (VA) mode. The main advantage is of course polyimide-free spontaneous homeotropic (vertical) alignment just by dissolving dendrimers in LCs used. Momoi et al. [20, 21, 23] used a large glass substrate with dimensions 100 mm × 100 mm and large ITO interdigitated electrodes used for the in-plane switching (IPS) mode. The electrode with the gap of 10 μm covers a 10 mm × 10 mm area. Figure 7 shows photographs of (a) off and (b) on states of a test cell of an LC mixture ZLI-4792 (Merck) containing 1% D2-6PC5 (see Figure 2) [20, 23]. The corresponding orientation change during the electro-optic switching between dark and bright is illustrated in Figure 7(c) and (d) [24]. A polarizing microscope image and a temporal electro-optic response behavior are shown in Figure 8 [18].
Electro-optic performance. Photographs of (a) off and (b) on states of a test cell [
Electro-optic response [
An important question for practical applications is whether this method using dendrimers is applicable for all LCs and surfaces or not. Haba et al. [18] addressed this question. They used two dendrimers (D2-6PPCN and D2-6PC5) as shown in Figure 2, and two LCs; 4′-cyano-4-n-penthylbiphenyl (5CB) and a mixture ZLI-4792. Although 5CB could dissolve both dendrimers, D2-6PCN was not soluble in ZLI-4792. Both D2-6PPCN/5CB and D2-6PC5/ZLI-4792 gave good homeotropic alignment in the absence of an electric field. The surface free energy of substrates was found to be another important factor for good homeotropic alignment. Examination of contact angles for various surfaces showed that hydrophilic surfaces are important for good homeotropic alignment.
Another question is a possible use of azodendrimers for planar alignment, which is necessary for the twisted nematic (TN) and IPS modes. A new dendrimer was successfully developed for this purpose [25]. It is well known as a command surface [2] that surface azobenzene layer commands the orientation change from homeotropic-to-planar by photo-isomerization of the azobenzene. A cartoon of this phenomenon in the present azodendrimer case is illustrated in Figure 9. For the present purpose of IPS mode displays, however, there are two problems such as (1) prohibiting the relaxation to the
Cartoons showing a command surface effect. (a) Without UV light irradiation, dendrimers are in the
In order to prevent the relaxation and fix the planar orientation, we introduced a cinnamate group (Figure 10(a)), which is expected to dimerize and prevent the transformation of the
(a) Chemical structure of an azodendrimer with cinnamate tails. Please refer to
The second problem, uniform planar alignment, could be solved by using linearly polarized UV light irradiation [25]. Preferential orientation of LCs along the direction perpendicular to the polarization of UV light is well known [3]. The result is shown as photo-micrograph images under crossed polarizers subjected to a rotation of a microscope stage, as shown in Figure 11. At angles 0° (parallel to the linear polarization of UV light), complete dark views were obtained. At 45°, bright views due to the birefringence were obtained. Thus, a uniform planar alignment was successfully obtained. Electro-optic response was confirmed to occur. The detailed examination of the electro-optic response is a future problem.
Polarizing photomicrographs of a cell after linearly polarized UV light irradiation. Two images are taken during the cell rotation under crossed polarizers. Photos taken by Mr. Shun Sato.
As mentioned in Section 3.1, the present dendrimer molecules are useful for aligning LCs without pretreatment of surfaces. Initially, the surfaces force LCs to align homeotropically, as mentioned in Section 3.1. If we use azodendrimers, the surface acts as a command surface; UV and VIS light irradiation commands LC molecules to make planar and homeotropic orientations, respectively, due to
The sample used was 4′-n-pentyloxybiphenyl-4-carbonitrile (5OCB) containing a small amount (0.02 wt%) of azodendrimers. The thermal diffusivity was measured by a temperature wave method [27]. Figure 12(a) shows a temperature dependence of thermal diffusivity for a sample under UV (365 nm) light irradiation (cross), under VIS (420 nm) light irradiation (open circle), and without light irradiation (filled circle). It is natural to have a good agreement between the latter two data because of the same homeotropic alignment in both conditions. Photo-induced switching of the thermal diffusivity at 54°C is shown in Figure 12(b). Upon UV and VIS light irradiation, the thermal diffusivity drastically changes almost by two times. The switching speed depends on light intensity. It was found that the switching rate linearly depends on UV and VIS light intensities. Under a moderate light intensity such as 5–10 mW/cm2, the response time of a few tens of seconds was obtained.
(a) Temperature dependence of thermal diffusivity under UV light irradiation (cross), under VIS light irradiation (open circle), and without light irradiation (filled circle). (b) Photo-induced temporal change of thermal diffusivity [
One of the important applications of azo molecules is a surface relief grating formation, which is based on the phenomenon of photo-induced mass migration in azo-containing polymer films [28], low-molecular-mass azo compounds [29], and even in dendron-containing compounds [30]. According to Seki et al. [31], the mass migration in liquid crystalline azo-polymers is highly sensitive to UV light compared with conventional amorphous polymer films. In this sense, the azodendrimer systems are a very attractive candidate for efficient mass migration upon UV light irradiation.
For experiments [15], quartz substrates were properly cleaned to be hydrophilic. Chloroform solution of azodendrimers was spin coated on such substrates. The samples were subjected to UV light irradiation.
Figure 13 shows atomic force microscopy (AFM) images of D2-6Azo5 after UV light irradiation under different conditions. The morphological change is remarkable, exhibiting the surface dewetting and providing a number of separated domains of a few micrometers [15]. Note that a linear polymer of almost identical molecular mass showed no change under the same experimental condition. Another important condition is the hydrophobicity of the substrate. No dewetting behavior was observed under the same experimental condition when hydrophobic surfaces were used. The morphological structure depends on many factors such as UV intensity, irradiation duration, film thickness, etc. The initial flat surface started to change above UV light intensity of 150 mJ cm−2. First, holes grew, coalesced, and formed dome structures with increasing UV light intensity. Under UV light intensity of 400 mJ cm−2, the dome height reached 770 nm, which was about eight times of the initial film thickness. The film thickness dependence of the morphology is shown in Figure 13(a). With increasing the film thickness, the dome size increased and the dome density decreased. The films thicker than 100 nm did not show dewetting. Instead, some protrusions of several micrometers diameters were observed on the film surface. Patterned structure formation such as a surface relief grating is also possible using patterned UV light irradiation through photomasks. The result reflects the film thickness dependence. Namely, as shown in Figure 13(b), hierarchical morphologies were observed in films thinner than 100 nm, but ordinary surface relief grating was formed in a film of 120 nm thick.
AFM images of azodendrimer surface layer with different thicknesses after UV light irradiation [
LC devices are usually fabricated as sandwich cells with different surface orientations planar, homeotropic, and hybrid orientations obtained using two planar surfaces, two homeotropic surfaces, and (planar/homeotropic) surfaces, respectively. If we can manipulate the surface orientation locally, we can make memory devices. LC displays are one of the examples, where an electric field is applied using matrix-type electrodes to change the LC orientation locally. In this case, however, the perturbed LC orientation returns back to the original one after terminating the field, since the stable orientation is guaranteed by the surface anchoring condition. Using light irradiation is another useful technique for driving devices.
We proposed a novel bistable device using an anchoring transition and a command surface [32]. This device (Figure 14(c)) has advantages compared with devices, which use only anchoring transition (Figure 14(a)) [33] or command surface (Figure 14(b)) [2]. Here the anchoring transition we used was a spontaneous discontinuous orientation transition between planar and homeotropic orientations. This phenomenon was clearly observed in a commercial compound 4′-butyl-4-heptyl-bicyclohexyl-4-carbonitrile (CCN-47, Merck) sandwiched by glass substrates with poly[perfluoro(4-vinyloxy-1-butene)] (CYTOP, Asahi Glass) (Figure 15(a)) on their surfaces [33]. As schematically shown in Figure 15(b), the transmittance of the cell between crossed polarizers appears at the Isotropic (Iso)-nematic (N) transition, and suddenly drops to zero by decreasing temperature. This process is the manifestation of a discontinuous anchoring transition from planar to homeotropic alignment. On heating, the reverse change is observed at different temperatures. This means that there exists a temperature range (hatched area in Figure 15(b)) showing bistable states, where both planar and homeotropic orientations are stable. The existence of the bistable states provides us with a bistable memory device [34].
Cartoons showing orientation change upon UV light irradiation and termination (from left to right) in three cells with different surface layers; (a) CYTOP/CYTOP, (b) azodendrimer/azodendrimer, and (c) azodendrimer/CYTOP hybrid. Intense light irradiation is needed for an orientation change in (a). An induced planar orientation relaxes back to a homeotropic orientation in (b). A hybrid orientation is established and preserved in (c).
(a) Molecular structures of a LC compound (CCN-47) and a surface layer (CYTOP). The LC cell with the combination of CCN-47 and CYTOP exhibits a discontinuous anchoring transition. (b) Cartoon illustrating a discontinuous anchoring transition with a bistable temperature range (hatched area).
We constructed a hybrid cell consisting of CYTOP-coated and bare glass substrates (Figure 14(c)) and introduced a small amount (0.05 wt%) of azodendrimer molecules into the CCN-47 host [32]. In this cell, we confirmed stable performance as a memory device, as described in the following. First, the hybrid cell was cooled to room temperature. At this condition, the homeotropic orientation was realized. Then the cell was heated to a bistable temperature region, keeping the homeotropic orientation (dark view under crossed polarizers). UV light irradiation onto the cell induced the anchoring transition at the azodendrimer surface. The orientation change to a planar state propagated to the opposing surface, resulting in a bright spot. Since the anchoring transition is light-driven, the UV light intensity was very low (35 μW/mm2), compared with laser (heat)-driven anchoring transitions (1 kW/mm2) [34]. Hence, the present hybrid device is advantageous to the devices using only the anchoring transition (Figure 14(a)).
The advantage of the hybrid device over the device using only command surfaces (Figure 14(b)) is clear. If we use sandwich cells with azodendrimer-attached surfaces in both sides without using CYTOP, the azodendrimers play as a command surface, that is, a homeotropic-to-planar orientation change occurs locally at the spot under UV irradiation. However, the life time of the
The azodendrimer command surface facing to LCs makes photo-switching of LC orientation possible, as mentioned above (see Figure 9). This phenomenon is well known on flat substrate surfaces, which are necessary to be coated with azo molecules before fabricating cells [2]. The present azodendrimers have a characteristic feature that the azodendrimer molecules are spontaneously adsorbed at interfaces. This means that we need no pretreatment of surfaces. Moreover, the molecules can be attached at interfaces, which we cannot intentionally treat beforehand, such as liquid/liquid interfaces. Only thing we have to do is just dissolving the azodendrimer molecules into LCs before preparing samples. Four examples are introduced in the following.
If LC molecules are mixed with other liquid materials such as water or glycerol and stirred, LC forms droplets with different sizes (Figure 16(a)). The formation of LC microdroplets with a uniform size is one of topical fields, that is, microfluidics, which are interesting both from basic science and various applications [35].
(a) Photomicrograph of LC droplets in water. Photomicrographs of a droplet of 5CB in (b) glycerol and (c) CYTOP [
The studies of LC microdroplets have been conducted since long time ago [36]. The LC orientations at interfaces are fixed when background liquid is chosen: LC molecules orient tangentially at glycerol interfaces. On the other hand, in aqueous solutions and hydrophobic polymer CYTOP, LC molecules align normal to the interface. Under crossed polarizers, LC droplets in glycerol and CYTOP show a bipolar image and a dark cross, respectively, being characteristic of tangential and radial molecular orientations, respectively, as shown in Figure 16(b) and (c) [22]. In previous studies, fixed surface conditions were used except for a work by Yamamoto et al. [37]. We introduced the azodendrimer molecules into host LCs, which provide normal orientation of LCs at droplet surfaces. In addition, planar orientation is induced by irradiating the droplet with ultraviolet (UV) light. We showed the orientation change of LCs upon UV and visible (VIS) light irradiation in three phases, nematic (N), cholesteric (Ch), and smectic A (SmA) [22], which will be described in the following. We used 5CB for the N phase. For a cholesteric material, a chiral dopant CB15 (Merck) was added to 5CB. For smectic A (SmS) materials, 4′-n-octyl-4-cyanobiphenyl (8CB) was also used. The dendrimer molecules added in LC hosts were 0.1–0.3 wt% of D2-6Azo5.
In the N phase, the textures are similar to Figure 16(b) and (c) under UV and VIS (or before UV irradiation), respectively [22]. In the Ch phase, concentric rings were observed when the sample was irradiated with UV light (Figure 17(a)), although they are vague because of a short helical pitch. If we use a Ch LC with a longer pitch, clear concentric rings with a periodic space are observed, as shown in Figure 17(c). Under UV light, the surface orientation is planar (see Figure 17(a) right), so a helical structure with the helical axis along the radial direction is formed. Since the planar surface orientation overall the droplet surface inevitably induces defect(s), at least one defect line from the center of the droplet toward the surface emerges, as clearly seen in Figure 17(c). The situation is more complicated under VIS light. The helical structure remains at least in the central region, which is identified by remaining concentric rings. The helical structure is disturbed from the surface region, where homeotropic orientation is achieved (see Figure 17(b) right). Many dark lines showing defects are observed in the texture (see Figure 17(b) left) [22].
Photomicrographs of a droplet of a cholesteric LC-containing azodendrimers under (a) UV and (b) VIS light irradiation [
In the SmA phase, the deformation is serious under UV light. Since the surface orientation is homeotropic under VIS light, an onion-like smectic layer structure is formed with the director being parallel to the radial direction (Figure 18(b)). A large extinction cross is a manifestation of the concentric SmA layer structure. Here the splay deformation of the director within each layer is allowed. The molecular orientation under UV light is complex, because the layer must be perpendicular to the surface. Since the reorientation occurs from the surface, curved smectic layers are formed in the outer region of the droplets, and are connected to concentric layer structure inside the droplets. As shown in Figure 18(a) right, many defect lines are formed along the radial direction, and are observed as a microscope image (Figure 18(a) left).
Photomicrographs of a droplet of a SmA LC-containing azodendrimers under (a) UV and (b) VIS light irradiation [
Droplet formations of LCs in other phases are interesting topics. Bent-shaped molecules exhibit various phases [38]. Particularly, many phases, in which reflection symmetry breaking occurs, such as the B2, B4, B7, DC (dark conglomerate), and NTB (twist-bend nematic) phases would be interesting. How does chiral segregation occur in droplets, if it occurs? Bent-shaped molecules are also useful for the study of the blue phase (BP), since they stabilize the BP and expand the temperature range. The N phase of bent-shaped molecules also show peculiar features unlike the conventional N phase. Apart from the bent-shaped mesogens, the relationship between photo-induced reorientation phenomena as a function of elastic constants is another interesting topic. In homeotropic orientation, a splay deformation exists. In contrast, in tangential orientation, a bend deformation is the major component. UV-induced radial-to-bipolar reorientation is strongly suppressed in compounds with huge bend elastic constants compared with splay elastic constants. A compound reported in [39] is an example, in which bend elastic constant is a hundred times larger than splay elastic constants.
Extensive studies have been made since late 1990s on the defect structures in the vicinity of microspheres [40] and the attractive forces between them [41]. The studies to control the microspheres and the defects around them by external stimuli have been widely made. The external fields used were an electric field [42], laser trapping [43], and thermal gradient [44]. As same as in LC/liquid interface mentioned above, however, the surface of microspheres is normally pretreated to have tangential or homeotropic orientation of LCs. Hence the surface orientation was fixed and no orientation changes have been studied except for the studies by Yamamoto et al. [37]. They observed photo-induced changes of topological defects around colloidal droplets dispersed in azobenzene-containing LCs. In our dendrimer case, photo-controllable interfaces can be provided just by introducing a small amount of azodendrimers into a LC host. The results are shown in [45].
The sample used was 5CB mixed with 0.1 wt% of azodendrimers (D2-6Az05) and a small amount (volume fraction of about 2 × 10−4) of silica microparticles (about 3 μm in diameter). The sample was introduced into an empty cell of 25 μm thick with rubbing treated planar surfaces. Figure 19 shows microscope images under crossed polarizers without (a)–(c) and with (d)–(f) a waveplate inserted along the direction diagonal to the crossed polarizers [45]. From the left to right, the temporal changes before ((a) and (d)), during ((b) and (e)), and after ((c) and (f)) UV irradiation are shown. These images are consistent to the defect structures, hedgehog, boojum, and Saturn ring, shown in Figure 19(g)–(i), respectively. Before UV irradiation (g), azodendrimers at surfaces are in a
Photomicrographs showing defect structures around a microsphere under crossed polarizers (a)–(c), with a waveplate (d)–(f). A hedgehog defect (g) corresponding to (a) and (d) is observed before UV irradiation. A boojum defect (h) corresponding to (b) and (e) is observed during UV irradiation. A Saturn ring defect (i) corresponding to (c) and (f) is observed after turning off the UV irradiation [
The response time upon light irradiation is dependent on the UV light intensity and is quite fast under high intensity UV irradiation, as shown in Figure 20 [45]. The response is nearly exponential (Figure 20(a) inset). All processes complete within a one video frame (66 ms). Interestingly, the square of the switching rate is proportional to UV intensity (Figure 20(b)).
(a) Switching rate as a function of UV light intensity. Temporal change of transmittance is also shown in an inset. (b) Square of the switching rate as a function of UV light intensity [
Let us consider the UV light intensity dependence of the response time assuming a two-level model (Figure 21). Here,
Two-level model for photoisomerization process.
Here,
The exponential change shown in the inset of Figure 20(a) is reasonable. By using Eqs. (1) and (2) with
The switching rate (1/
The studies of microrods in LCs are much minor [46]. Here we first describe the defect structures around a microrod and their photo-induced changes [17]. Silica microrods used have their length of 10–20 μm and their diameter of 1.5 μm. Figure 22 shows micrographs of a microrod in a homeotropically aligned LC cell and the director map around the rod. The background under crossed polarizers is dark because of the homeotropic alignment of LCs (Figure 22(a)). The regions, where LC molecules orient along nearly 45° with respect to the polarizers, are brightest because of birefringence. The insertion of a waveplate gives a blue color at the sides of the rod and an orange color at the edges of the rod, being consistent with the director map shown in Figure 22(d). Figure 22(e) is another view of the molecular orientation structure, where two defect lines perpendicular to the image plane (along the rod) are shown as dots.
Photomicrographs of a nematic LC with a microrod in a homeotropic cell and corresponding director maps. Micrographs under (a) crossed polarizers, (b) and (c) with a waveplate. Before (a) and (b) and after (c) UV irradiation. Top view of the director orientations before UV irradiation is shown in (d). Side views before and after UV irradiation are shown in (e) and (f), respectively (SI in [
Upon UV light irradiation, the blue color becomes lighter, but the blue and orange colors themselves do not change. This means that the LC molecules (director) do not orient along the long axis of the rod, but align tangentially perpendicular to the long axis, as shown in Figure 22(f). In this situation, the slow and fast axes of the index ellipsoid do not change but the birefringence becomes smaller, being consistent with the microscope image (Figure 22(c)) and the molecular orientation structure (Figure 22(f)).
Next, let us describe the results in cells with planar surfaces [17]. Although the free energy does not depend on the orientation of a microrod sitting parallel to the surfaces in homeotropic cells, it does in planar cells, because the elastic energy of LCs and the energy of defects around the rod depend on how the rod orients with respect to the director. Figure 23 shows the distribution of the rod orientation observed. Two distribution peaks can be seen at 0° and 60°. Full understanding of this distribution is not easy because of the difficulty particularly of the energy estimation of the defect structures.
Angular distribution of rod orientation with respect to a rubbing direction (SI in [
Figure 24 shows the orientation field of the director around a microrod; (a) and (c) before UV irradiation and (b) and (d) under UV irradiation, where directors are perpendicular and parallel to the rod, respectively. The director orientations are visualized by green and yellow colors in the images seen with a waveplate, which are the same color as observed experimentally (see the actual microscope images at left top in each subfigure). Under UV irradiation (Figure 24(b) and (d)), the director changes the orientation to be parallel to the rod. In Figure 24(b), where the microrod is almost parallel to the director, the director deformation is localized only at the edge of the rod, so that no color appears, as actually observed experimentally. If the rod tilts from the director by 45° (Figure 24(c) and (d)), the director orientation in the vicinity of the rod changes from perpendicular to parallel with respect to the waveplate. Then, a color change from yellow to green occurs, as shown in Figure 24(b) and (d). At the edges of the rod, an opposite color change occurs.
Photomicrographs (left up in each figure) of a nematic LC with a microrod in a planar cell and corresponding director [
Such observations are possible when microrods are somehow fixed at surfaces. When rods are free from surfaces, additional dynamic motions are observed, which are the topics in the next section.
Figure 25 shows three different dynamic motions of microrods in LCs by UV irradiation [17]. When microrods are parallel to the director, we often observe a lateral motion of the microrods along the director as shown in Figure 25(a) and (b). In the other case, the microrod motion appears as its length change (Figure 25(c) and (d)). This is the result of the rotation of the microrod about its short axis parallel to the surface. The most distinguished motion is observed when rods orient to the direction with finite angles to the director, that is, microrod rotation about its short axis within a plane parallel to the surface (Figure 25(e) and (f)). The rod returns back to the original direction when UV light is turned off. Thus, the microrods make a seesaw motion by repeated UV light on/off.
Photomicrographs showing dynamic motions of microrods: (a) and (b) before and during UV light irradiation, respectively, for a lateral motion along the director. (c) and (d) Before and during UV light irradiation, respectively, for a seesaw motion about an axis parallel to a cell surface. (e) and (f) Before and during UV light irradiation, respectively, for a seesaw motion about an axis normal to the cell surface [
The temporal rotation behavior is shown in Figure 26(a), where the angle between the microrod long axis and the director is plotted as a function of time. The rod tends to rotate to the direction parallel to the director (0°) under UV irradiation. When the UV light is terminated, the rod tends to rotate back to the original direction. The rotation speed (response time) is faster and the rotation angle becomes larger with increasing UV light intensity, as shown in Figure 26(b). The solid line in Figure 26(b) is the best theoretical fit. The switching angle and the switching rate (inverse switching time) are shown as a function of UV intensity in Figure 27. With increasing UV light intensity, the rotation angle becomes larger and the switching time becomes faster. As will be discussed in Section 7, the anchoring energy
Rotation angle of the seesaw motion of microrods (a) after on and off of the UV light irradiation and (b) the irradiation power dependence [
(a) UV intensity dependence of a saturated rotation angle of a microrod. (b) UV intensity dependence of a switching rate of a microrod [
Important difference to the command surface is no use of polarized UV light. In the command surface, linearly polarized UV light irradiation forces the azo linkage to align perpendicular to the polarization direction [3]. On the contrary, linear polarization is not necessary in the present case. However, preferential bending direction in the
Cartoons showing the mechanisms of (a) the lateral motion and (b) the seesaw motion of microrods. Arrows indicate the bending direction in the
When the rod is tilted from the director field (Figure 28(b)), the director field is oppositely bends at both sides of the rod by UV light, so that the azo groups bend to opposite directions at both sides of the rod, resulting in clockwise rotation of LC molecules. The subsequent torque leads to the rotation of the rod toward the direction parallel to the director. When the UV light is terminated, the rod rotates back to the original orientation shown in Figure 28(b).
Quantitative analysis of the switching behavior was made using a two-dimensional finite element method. With one-constant approximation of elastic constants
where
under an initial and boundary conditions. Here
Simulation results of (a) a director map and (b) a switching rate as a function of anchoring strength. Since the anchoring strength is equivalent to the ratio of UV and VIS light intensities (see Section 7), (b) can be compared with
As mentioned in Section 6.4, the orientation change due to the command surface is considered to be the result of the change in the anchoring strength
Homeotropic and planar states realized under different UV and VIS light intensities [
The anchoring strength
Here
(a) Extrapolation length as a function of
For the analysis of Eq. (1), we neglected the third term, that is, thermal relaxation from
Considering that
where
and
with
We introduced various functions given by azodendrimers. First, we summarized dendrimer molecules with mesogenic groups synthesized and their mesogenic phase sequences. Some of them have a strong tendency to align themselves to homeotropic orientation. As a function for static use, we described the use for LC display applications. Spontaneous homeotropic orientation is achieved just by doping LCs with a small amount of dendrimers without pre-surface treatment. This technique can be used not only for the VA mode but also for the IPS mode, if azo linkages are introduced to the dendrimers and photo treatment is applied using linear polarized light. We can find much more functions, if dendrimers are substituted at their tail ends by azo groups. The property of spontaneous adsorption of dendrimers onto a variety of surfaces and interfaces is very important, as exemplified in LC colloidal systems and LC systems with micro inclusions, which are the main topics of this review. Because of photo-induced
This chapter provides a review of our previous works related to physical and chemical measurements using azodendrimers. We acknowledge all coauthors particularly Prof. K. Yonetake, Prof. A. Eremin, and Dr. F. Araoka for their collaboration.
Chronic liver disease is a major healthcare problem worldwide, and various etiologies including viral hepatitis caused by hepatitis B virus (HBV) or hepatitis C virus (HCV), alcohol abuse, and non-alcoholic fatty liver disease (NAFLD) can induce chronic liver disease [1]. Moreover, chronic liver disease is an evolving and dynamic process, progressing into liver fibrosis [2, 3, 4]. When appropriate management is not given, liver injury and fibrosis can continuously progress, eventually leading to the development of liver cirrhosis, portal hypertension, hepatic insufficiency as well as hepatocellular carinoma (HCC) which can increase morbidity and mortality [5, 6]. In addition, the stage of liver fibrosis is associated with the risk of HCC development and liver-related mortality. Therefore, information regarding the stage of liver fibrosis is important for both surveillance and personalized treatment [7, 8, 9]. Owing to the dynamic and evolving nature, liver fibrosis would be reversible under the adequate management, especially in early stage of the disease. In contrast, liver cirrhosis is generally considered as an irreversible process [10, 11, 12, 13]. Therefore, evaluation, as well as detection of liver fibrosis in the early stage, is of importance for the management of the chronic liver disease.
For the assessment of liver fibrosis, liver biopsy with histopathologic examination has been used as the reference standard method [14]. In addition, histopathologic examination enables the evaluation of concurrent inflammatory activity in the liver, in addition to the assessment of liver fibrosis. However, liver biopsy has several important drawbacks limiting its clinical use. First, liver biopsy is an invasive procedure that can cause potentially lethal complications, such as bleeding. Due to the invasive nature, repeated biopsy for the monitoring of liver fibrosis during the disease course in the same patient can hardly be performed in clinical practice [15]. The small sample volume of liver biopsy, generally 1/50000th of total liver parenchyma, is another important limitation. When the distribution of liver fibrosis is heterogeneous, a small volume with sampling variability of liver biopsy can lead to either overestimation or under-estimation of liver fibrosis [16, 17]. Another important limitation of liver biopsy is considerable inter-reader variability, and the reported kappa value among the different pathologists varies from 0.5 to 0.9 [18, 19]. Therefore, there has been a continuous need for a reliable and noninvasive methods for the evaluation of liver fibrosis in clinical practice, and tremendous effort has been made to develop non-invasive diagnostic methods for the assessment of liver fibrosis [13]. In this regard, shear wave based ultrasound elastography has been developed and introduced as an accurate noninvasive diagnostic method for the evaluation of liver fibrosis. After the introduction of transient elastography (TE) which was the first commercially available liver elastography technique, various ultrasound-based shear wave elastography methods including point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) have been introduced in clinical practice and reported a good diagnostic performance in assessing liver fibrosis [20, 21].
Elastography is an imaging technique measuring a tissue mechanical characteristic such as elasticity, that was firstly described by Ophir et al. [22]. Tissue elasticity is defined as the resistance to the deformation of a certain tissue against applied stress [15], and stiff tissue is more resistant to the deformation than soft tissue in given applied stress. For the superficial organs such as the breast and thyroid, tissue elasticity can be measured by using strain elastography. In strain elastography, stress to tissue is directly applied by manual compression of an ultrasound transducer, and then the degree of tissue deformation after compression is measured by ultrasound imaging [22]. Manual compression works fairly well for superficial organs, and therefore, strain elastography is a useful technique for the evaluation of breast or thyroid lesion, providing information regarding tissue stiffness [23]. However, it is very challenging to induce stress to deeper located organs by manual compression such as the liver, limiting the application of strain elastography to the liver [24]. For deeper located organs such as the liver, the stress can be employed by acoustic radiation force impulse (ARFI) or mechanical push pulse to generate a shear wave within the target tissue [15]. Since shear wave propagation velocity is related to tissue elasticity and the shear wave velocity is faster in stiff tissue than in soft tissue, measurement of shear wave velocity generated by either ARFI or mechanical push pulse leads to the quantitative assessment of tissue elasticity [23]. Given that, the type of ultrasound-based shear wave elastography for the liver can be determined by following two factors: 1) how to generate shear wave within the liver tissue?; and 2) how to measure the velocity of generated shear wave within the liver tissue?. Based on these two factors, currently, there are three available ultrasound-based shear wave elastography techniques for the liver: 1) one-dimensional transient elastography (TE); 2) point shear wave elastography (pSWE), and 3) two-dimensional shear wave elastography (2D-SWE) [23]. The characteristics of these three elastography techniques are summarized in Table 1 and Figure 1.
Excitation method | Frequency of generated shear wave | Shear wave velocity measurement direction | Measurement area | Placement of region of interest | Reported parameter | |
---|---|---|---|---|---|---|
TE | Mechanical push pulse | 50 Hz | Parallel to excitation | Small | Restricted, no guidance | Young modulus (kPa) |
pSWE | ARFI, single focal location | Wideband (100–500 Hz) | Perpendicular to ARFI application | Small | Flexible under B-mode guidance | Young modulus (kPa) or shear wave velocity (m/s) |
2D-SWE | ARFI, multiple focal zones | Wideband (100–500 Hz) | Perpendicular to ARFI application | Medium | Flexible under B-mode guidance | Young modulus (kPa) or shear wave velocity (m/s) |
Characteristics of currently available ultrasound based shear wave elastography techniques for the liver.
Note: TE, transient elastography; pSWE, point shear wave elastography; 2D-SWE, two-dimensional shear wave elastography; ARFI, acoustic radiation force impulse; kPa, kilopascal.
Currently available ultrasound-based shear wave elastography methods for the liver. (a) Transient elastography (TE). In TE, B-mode images of the liver are not provided, and thus the measurement area cannot be selected. Ten valid measurements were performed for this patient, and the IQR/M value was 6%, indicating reliable measurement result. (b) Point shear wave elastography (pSWE) (Virtual touch quantification, Siemens Acouson S2000). The measurement box is placed within liver parenchyma 2.5 cm apart from liver capsule. Since pSWE provides B-mode images of the liver simultaneously, the placement of measurement box is undertaken under the B-mode image guidance, avoiding large hepatic vessels or areas showing artifact. (c) Two-dimensional shear wave elastography (2D-SWE) (Aixplorer, Supersonic Imagine). The size of measurement box of 2D-SWE is larger than that of pSWE, and placed within liver parenchyma under the B-mode image guidance. 2D-SWE can also provide color-coded elastogram, superimposed on B-mode image of the liver.
The FibroScan system (Echosens, Paris, France), which is TE system, was the first commercially available ultrasound-based shear wave elastography system for the liver [25]. The FibroScan probe contains both a mechanical vibrating device and an ultrasound transducer [23]. When the mechanical vibrating device part of FibroScan probe employs a 50 Hz mechanical impulse to the skin surface, the shear wave is generated and propagated within the liver tissue [15]. The generated shear wave within the liver tissue by mechanical push pulse applied to the skin surface is traced by an ultrasound transducer for the measurement of shear wave velocity. Then, liver stiffness can be calculated by measured shear wave velocity. The frequency of generated shear wave within liver tissue by mechanical push pulse in TE is 50 Hz. Although TE is an ultrasound-based technique, it is impossible to provide B-mode images of the liver in TE system, and therefore, TE is performed without direct B-mode image guidance [23]. The size of the measurement area of TE is approximately 1 cm width × 4 cm length, which is >100 times larger than the tissue volume assessed by a liver biopsy [26, 27]. There are several available probes for TE, and M probe with an operating center frequency of 3.5 MHz is used for the standard examination [15]. Since TE applies a mechanical push pulse to the skin surface for the generation of shear wave within the liver tissue, the presence of ascites and obesity limiting the shear wave generation by mechanical push pulse would be a drawback. In addition, M probe would have a limited ultrasound penetration for obese patients, hampering the accurate measurement of shear wave velocity. To overcome this limitation of M probe, XL probe with a lower operating frequency (2.5 MHz for XL probe vs. 3.5 MHz for M probe) enabling measurement at a greater depth (35–75 mm for XL probe vs. 25–65 mm for M probe) is introduced. Using XL probe, accurate and reliable measurement can be possible for obese patients.
In contrast to TE which uses a mechanical push pulse to generate a shear wave within the liver tissue, pSWE uses ARFI technique to induce stress and to generate a shear wave within the liver tissue. When ARFI is delivered in the liver tissue, the longitudinal waves along with the plane of applied ARFI are generated. At the same time, a portion of longitudinal waves is converted to shear waves within the liver tissue, and propagate perpendicular to the plane of longitudinal waves [28]. The frequency of generated shear wave by applied ARFI is wideband, ranging from 100 to 500 Hz. In pSWE, the velocity of the shear wave generated by ARFI is measured, which is either directly reported in meters per second or changed to Young’s modulus E in kilopascal for the estimation of tissue elasticity [27]. Under the assumption of incompressibility, shear wave velocity can be converted to Young’s modulus E by the following equation: E (kilopascal) = 3ρc2, where c is the measured shear wave velocity in meter per second and ρ is the tissue density, assumed to be 1 of water [15]. Unlike TE, pSWE can be performed using a conventional ultrasound probe equipped with standard diagnostic ultrasound machine [27]. Therefore, pSWE can provide B-mode images of the liver simultaneously during the examination, enabling the selection of a uniform area of liver parenchyma without any large vessels, focal lesions, or artifacts where the shear wave velocity will be measured [23]. Given that, the accuracy and measurement reliability of pSWE are expected to be higher than those of TE. In addition, since the shear wave is generated by ARFI which is introduced inside the liver parenchyma, pSWE would be less affected by the presence of ascites and obesity than TE [9, 29, 30].
2D-SWE is the newest ultrasound-based shear wave elastography technique, which also utilizes ARFI. In contrast to the pSWE which introduces ARFI in a single focal location, 2D-SWE uses multiple focused ultrasound push pulses to create multiple focal zones interrogated in rapid succession, faster than shear wave speed [23]. Those multiple push pulses in 2D-SWE generate a near cylindrical shear wave cone, allowing the real-time tracing of shear waves in 2D to measure the velocity of induced shear wave or Young’s modulus E [23, 31]. The same as the pSWE, the frequency of generated shear wave by multiple push pulses in 2D-SWE is wideband, ranging from 100 to 500 Hz. Since 2D-SWE utilizes the conventional ultrasound probe for standard diagnostic imaging, it can also provide B-mode images of the liver simultaneously, and real-time visualization of a color-coded quantitative elastogram can be superimposed on a B-mide image. This merit of 2D-SWE allows the operator to obtain both anatomical and tissue stiffness information [20]. Currently, most of the major ultrasound vendors provide their own shear wave elastography technique for the liver, either form of pSWE or 2D-SWE.
Regarding patient preparation, ultrasound-based shear wave elastography techniques including TE, pSWE, and 2D-SWE share the same recommended protocols [6, 32, 33]. Since the amount of portal flow can affect the result of liver stiffness measurement obtained by shear wave elastography, fasting for at least 4 hours before the examination is recommended for patients who undergo shear wave elastography examination to minimize the effect of portal flow. The liver stiffness measurement using shear wave elastography is usually performed in either supine or slightly left lateral decubitus position (not more than 30 degrees) with the right arm extended above the head to obtain the optimal sonic window via the stretching of the intercostal muscles [6, 34]. It has been known that both deep inspiration and deep expiration can have an influence on the result of liver stiffness measurement using shear wave elastography, and therefore, the neutral breath-hold is recommended for shear wave elastography examination to minimize the effect of breath-hold status. In addition to the aforementioned protocols for patient preparation, current guidelines for both pSWE and 2D-SWE have several recommendations for imaging acquisitions since pSWE as well as 2D-SWE provide B-mode images of the liver simultaneously, and the measurement area of pSWE and 2D-SWE can be selected under the real-time B-mode imaging guidance [6, 32, 33]. The transducer should be placed perpendicular to the liver capsule to ensure proper generation and propagation of the shear wave. The measurement box for both pSWE and 2D-SWE is placed parallel to the liver capsule, and the upper edge of the measurement box should be placed 1.5 to 2.0 cm apart from the liver capsule to minimize the effect of reverberation artifact which is generally seen in the area adjacent to the liver capsule. In most currently available ultrasound systems, the ARFI pulse reaches the maximum intensity at 4.0 to 4.5 cm apart from the transducer and is attenuated by 6.0–7.0 cm [6]. Given that, the area located at 4.0 to 4.5 cm apart from the transducer would be the optimal location for liver stiffness measurement. Since B-mode image is utilized to trace the shear wave in both pSWE and 2D-SWE, high-quality B-mode images without artifacts should be acquired for accurate and reliable liver stiffness measurement. The recommended protocols for both patient preparation and imaging acquisition are summarized in Table 2.
Recommendation | Aim | |
---|---|---|
Patient preparation | Fasting for at least 4 hours before examination | To minimize effect of portal flow |
Position: supine or slight left lateral decubitus (not more than 30°) with right arm extended above the head | To obtain optimal sonic window via stretching of the intercostal muscles | |
Neutral breath hold, neither deep inspiration nor expiration | To minimize effect of breath-hold status | |
Imaging acquisition for pSWE and 2D-SWE | Transducer placed perpendicular to the liver capsule | To ensure proper shear wave generation |
Upper portion of measurement box placed at least 1.5–2.0 cm apart from liver capsule | To minimize effect of reverberation artifact | |
Ideal location of measurement box: 4–4.5 cm apart from the transducer | To maximize intensity of ARFI pulse |
Recommendation for patient preparation and imaging acquisition.
Note: pSWE, point shear wave elastography; 2D-SWE, two-dimensional shear wave elastography; ARFI, acoustic radiation force impulse.
Regarding the acquisition number of liver stiffness measurements using TE, ten valid measurements are recommended. In addition, the interquartile range (IQR)-to-median ratio of ten valid measurements (subsequently referred to as IQR/M) is usually used as the quality criteria: IQR/M equal to or less than 30% indicates reliable measurement results [6, 32, 33]. According to the result of a study including 13,369 TE examinations using M probe [35], the failure rate of obtaining valid liver stiffness measurement and unreliable measurements rates was 3.1% of cases and 15.8% of cases, respectively. Regarding the contributory factors for failed and/or unreliable measurements of TE was body mass index [15, 35], and high body mass index was significantly associated with the failed and/or unreliable measurements. With the introduction of XL probe for TE examination, the reliability of liver stiffness measurements using TE has been improved, especially for NAFLD patients [36, 37, 38, 39, 40]. Regarding the measurement reproducibility of TE, excellent inter-reader agreement with the intraclass coefficient (ICC) of 0.98 was reported in a cohort of 188 patients having chronic HCV infection [41].
The recommended acquisition number of liver stiffness measurements using pSWE is also ten valid measurements. The same as the TE, the result with IQR/M equal to or less than 30% for measurement given in kilopascals is considered a reliable result. Regarding the 2D-SWE, the area for liver stiffness measurement is larger than pSWE, and thus, each liver stiffness measurement value is actually an average value of several measurements [6]. In addition, several manufacturers provide quality assessment methods for their 2D-SWE systems such as propagation map, stability index, and reliable measurement index [6]. Given that, the current guideline recommends five measurements for 2D-SWE when a quality assessment method is provided by the manufacturer. However, when a quality assessment method is not available, ten measurements for 2D-SWE are recommended, the same as the TE or pSWE [6]. IQR/M for measurement given in kilopascals is also used as the quality criteria for 2D-SWE, the same as the TE or pSWE. Result with IQR/M equal to or less than 30% of five or ten measurements given in kilopascals indicates reliable measurement results. It has been reported that when IQR/M for measurement given in kilopascals was higher than 30%, the accuracy of liver stiffness value obtained from shear wave elastography was reduced [33, 42, 43]. According to the result of a study comparing pSWE and 2D-SWE in 79 patients at the same day [44], the failure rate was 1.3% for pSWE and 5.1% for 2D-SWE, respectively. The overall intra-reader agreement was higher for pSWE than 2D-SWE (ICC of 0.915 for pSWE vs. ICC of 0.829 for 2D-SWE, P < 0.001). In addition, intra-reader reproducibility between liver stiffness measurements by using 2D-SWE performed in the same participant on different days was higher for the experienced operator than novice operator (ICC of 0.84 for experienced reader vs. 0.65 for novice reader) [45], indicating that reader experience has an influence on the measurement reliability. Ferraioli et al. also reported that the liver stiffness measurement by using pSWE was affected by operator experience [46]. Given that, operators doing pSWE and/or 2D-SWE examinations need to be properly trained and to follow the recommendations for patient preparation and imaging acquisition [15].
Liver fibrosis is the result of chronic liver injury and is defined as an abnormal and excessive deposition of collagen and other extracellular matrix components in the liver [9, 47]. Essentially, any kind of chronic liver disease caused by HBV or HCV infection, alcohol abuse, and NAFLD lead to steatosis, inflammation with necrosis in response to an injury [9]. Without appropriate management, these liver cell injury continuously progresses, eventually developing liver cirrhosis. Information regarding the liver fibrosis stage is beneficial for the prediction of prognosis, personalized follow-up, and treatment decisions. For example, antiviral therapy for HBV or HCV infection might be guided by the information regarding the liver fibrosis stage [48, 49]. Therefore, an accurate assessment of the liver fibrosis stage is an important step for chronic liver disease management. For this purpose, liver biopsy with histopathologic examinations using various staging systems including Ishak, METAVIR, and Batts-Ludwig systems has been traditionally used as the standard reference method [18, 50]. However, liver biopsy is limited for widespread application in clinical practice, mainly due to its invasive nature. To overcome the limitation of liver biopsy, ultrasound-based shear wave elastography techniques including TE, pSWE, and 2D-SWE have been emerged as noninvasive methods for the evaluation of liver fibrosis and reported a good diagnostic performance.
Since TE was the first approved and commercially available ultrasound-based elastography technique for the liver, there have been a lot of studies including meta-analyses reporting the diagnostic performance of TE in assessing liver fibrosis stage for chronic liver disease patients with various etiologies. Currently, TE is the most widely used and extensively validated elastography technique for liver stiffness measurement. Regarding the detection of advanced fibrosis and liver cirrhosis originated from HBV or HCV infection by using TE, early studies reported an excellent diagnostic performance with areas under the receiver operating characteristic curve (AUROCs) of 0.88–0.99 [51, 52, 53, 54, 55, 56, 57]. Several meta-analyses also reported the excellent diagnostic capability of TE to detect liver cirrhosis with AUROCs of 0.93–0.96, better than those for diagnosing moderate fibrosis (F2-F4) with AUROCs ranging from 0.83 to 0.88 [58, 59, 60, 61, 62]. The reported cut-off liver stiffness value was 7.0–7.9 kPa for the detection of moderate fibrosis (F2-F4) and 11.3–15.6 kPa for the diagnosis of cirrhosis (F4) [58, 59, 60, 63]. In addition to the HBV and HCV infection, TE also showed a good diagnostic performance in assessing liver fibrosis for NAFLD patients. However, the application of TE for NAFLD patients is challenging, mainly due to the high failure rate and poor measurement reliability in obese patients, especially when standard M probe is used. The reported rate of unreliable and/or failed measurement of TE for NAFLD patients ranged from 3.8% to 50.0% [38, 64, 65]. According to the result of a meta-analysis including 854 NAFLD patients with individual data, the reported pooled sensitivity and specificity of TE using the standard M probe was 79% and 75% to detect F2-F4, 85% and 82% to detect F3–4, and 92% and 92% to detect F4, respectively [66]. The AUROCs of TE ranged from 0.79–0.87 for detection of F2-F4, 0.76–0.98 for detection of F3-F4, and 0.91–0.99 for the diagnosis of F4, respectively, in NAFLD patients [15]. The introduction of XL probe for obese patients has improved the measurement reliability of TE [67].
Since both pSWE and 2D-SWE have become commercially available more lately than TE, the number of studies and the amount of data are less than those of TE. Thus, the level of evidence for the diagnostic performance of pSWE or 2D-SWE in assessing the liver fibrosis stage is usually lower than that for TE.
Regarding the pSWE, several early studies reported a high accuracy for liver fibrosis staging in both HBV patients [68, 69, 70, 71] and HCV patients [72, 73, 74, 75]. For example, a study using pSWE done by Sporea et al. reported an AUROCs of 0.91 for detecting F3-F4 stage fibrosis and 0.94 for detecting cirrhosis (F4), respectively, in 274 patients having chronic HCV infection [72]. A meta-analysis including 21 studies containing 2691 individual data with chronic HBV or HCV infections showed an AUROCs of 0.88 for the detection of F2-F4, and 0.91 for the diagnosis of cirrhosis, respectively [76]. pSWE also provides a good diagnostic performance in diagnosing liver fibrosis stage for NAFLD patients, and the reported AUROCs of pSWE to detect liver cirrhosis (F4) was greater than 0.97 [77, 78, 79, 80]. When pSWE was compared to TE for NAFLD patients in assessing liver fibrosis stage, there was no significant difference in diagnostic capability between the two elastography methods, although pSWE provided a significantly higher rate of reliable measurement [81].
In addition to pSWE, 2D-SWE also provides excellent diagnostic performance in assessing the liver fibrosis stage for patients having chronic HBV or HCV infection [20, 82, 83, 84]. However, since 2D-SWE is the newest elastography method, it has been less validated than TE or pSWE. A meta-analysis including seven studies using 2D-SWE in assessing liver fibrosis stage showed an AUROCs of 0.91 for detection of F2-F4 stage fibrosis and 0.95 for the diagnosis of liver cirrhosis (F4) [85]. In addition, recent studies reported that 2D-SWE showed a significant better diagnostic capability in detecting both F3-F4 stage fibrosis and cirrhosis (F4) than TE [86, 87]. The same as the chronic HBV or HCV patients, 2D-SWE is less well-validated for NAFLD patients than TE or pSWE. Several prospective studies showed a good diagnostic performance of 2D-SWE in detecting liver cirrhosis for NAFLD patients with AUROCs ranging from 0.88 to 0.95 [88, 89, 90].
Although currently available ultrasound-based shear wave elastography systems including TE, pSWE, and 2D-SWE provide an excellent diagnostic capability in assessing liver fibrosis stage and are widely used in clinical practice, ultrasound-based shear wave elastography systems have some limitations. Operators should be aware of the limitations of current ultrasound-based shear wave elastography techniques for accurate measurement of liver stiffness value as well as for the appropriate interpretation of the results. After the introduction of pSWE and 2D-SWE that can be incorporated into commercial ultrasound systems for routine B-mode imaging, many of manufacturers provide their own SWE systems for liver stiffness measurement. Therefore, inter-platform variability among the different SWE systems from the various vendors may be an issue [15]. In the view of physics, the liver stiffness measurement values obtained by different SWE systems from different vendors can not be interchangeable. Thus, vendor-specific cut-off values for the assessment of the liver fibrosis stage are needed since the frequencies of shear wave generated within the liver tissue are different among the various SWE systems from different vendors: 50 Hz for TE and wideband ranging from 100 to 500 Hz for pSWE and 2D-SWE [31, 91, 92]. However, the application of vendor-specific cut-off might be infeasible in clinical practice and it is hardly possible to follow up patients with the same SWE system during the disease course. According to the result of the study evaluating inter-observer variability of liver stiffness measurements among seven different SWE systems including TE, four pSWE methods, and two 2D-SWE methods, the overall agreement among the liver stiffness measurements performed with different SWE systems was good to excellent having ICCs ranging from 0.74 to 0.97 [93]. There would be an approximately 10% variability of the liver stiffness measurements among the different vendor SWE systems [93]. Therefore, these inter-platform variabilities should be taken into account in the application of various SWE systems from different vendors for the assessment of liver fibrosis staging.
To calculate the liver stiffness value from the measured shear wave propagation velocity, the current SWE systems assume that the tissue in that a stress is applied is purely elastic, and neglect the tissue viscosity. However, in some clinical situations, the assumption of pure tissue elasticity does not work well, leading to errors in the liver stiffness measurements. These conditions include acute hepatitis, liver inflammation with necrosis, obstructive cholangitis, hepatic congestion, and infiltrative disease such as amyloidosis or lymphoma [15], and have been known to increase tissue viscosity. When the tissue viscosity is increased by various causes, the liver stiffness values measured by SWE systems are usually higher than without those conditions, leading to the over-estimation of the liver fibrosis stage [94]. Therefore, current guidelines for liver elastography examination do not recommend the liver stiffness measurement for the assessment of liver fibrosis stage when the serum level of aspartate aminotransaminase (AST) and/or alanine aminotransaminase (ALT) is elevated greater than five times upper normal limits [15]. The assessment of the liver fibrosis stage by using liver SWE can be performed after the normalization of AST and/or ALT level to minimize the effect of liver inflammation on the results of liver stiffness measurement. In addition, tissue viscosity introduces a dependency of shear wave propagation velocity on excitation frequencies [23, 95]. Given that, more complex modeling taking tissue viscoelasticity into account is warranted to overcome the current limitation of ultrasound-based shear wave elastography for the liver.
Many studies reported an excellent diagnostic performance of ultrasound-based shear wave elastography in the evaluation of liver fibrosis and detection of liver cirrhosis. Among the various shear wave elastography techniques, TE has been the most widely used and extensively validated method for the assessment of liver fibrosis, subsequently having a higher level of evidence compared to the other elastography methods. In addition to TE, pSWE, and 2D-SWE have emerged as another noninvasive methods for the assessment of liver fibrosis. Since both pSWE and 2D-SWE utilize the conventional ultrasound probe for routine B-mode imaging equipped in standard diagnostic ultrasound machines, pSWE, and 2D-SWE can provide B-mode images of the liver simultaneously during the examination, enabling the liver stiffness measurement under the real-time B-mode image guidance. Although current ultrasound-based shear wave elastography techniques including TE, pSWE, and 2D-SWE provide an excellent diagnostic capability in assessing liver fibrosis stage, interchangeability of liver stiffness measurement results among the different SWE systems from different vendors may be an issue. In addition, the presence of concurrent liver inflammation with/without necrosis, hepatic congestion, obstructive cholestasis, and diffuse infiltrative disease in the liver, which can increase the tissue viscosity, is another limitation of the current liver elastography technique for the diagnosis of liver fibrosis and cirrhosis, leading to over-estimation of liver fibrosis stage. Therefore, operators should be aware of the limitations of current SWE systems for proper use of SWE technique in assessing liver fibrosis stage as well as for the accurate interpretation of the liver stiffness measurement results.
All Works published by IntechOpen prior to October 2011 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-BC-SA 3.0). Works published after October 2011 are licensed under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0), the latter allowing for the broadest possible reuse of published material.
",metaTitle:"Translation Policy",metaDescription:"Translation of Works - Book Chapters",metaKeywords:null,canonicalURL:"/page/translation-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\\n\\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\\n\\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\\n\\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\n\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\n\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\n\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"11643",title:"Genetic Diversity - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b1e679fcacdec2448603a66df71ccc7",slug:null,bookSignature:"Prof. Mahmut Çalışkan and Dr. Sevcan Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/11643.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11644",title:"Structural and Molecular Aspects of DNA Repair",subtitle:null,isOpenForSubmission:!0,hash:"83dfefc2400d2d037281f1e25bbc544b",slug:null,bookSignature:"Prof. Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/11644.jpg",editedByType:null,editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"69f009be08998711eecfb200adc7deca",slug:null,bookSignature:"Dr. Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",editedByType:null,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11673",title:"Stem Cell Research",subtitle:null,isOpenForSubmission:!0,hash:"13092df328080c762dd9157be18ca38c",slug:null,bookSignature:"Ph.D. Diana Kitala",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",editedByType:null,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11676",title:"Recent Advances in Homeostasis",subtitle:null,isOpenForSubmission:!0,hash:"63eb775115bf2d6d88530b234a1cc4c2",slug:null,bookSignature:"Dr. Gaffar Sarwar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",editedByType:null,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11804",title:"CRISPR Technology",subtitle:null,isOpenForSubmission:!0,hash:"4051570f538bd3315e051267180abe37",slug:null,bookSignature:"Dr. Yuan-Chuan Chen",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg",editedByType:null,editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11805",title:"Genome-Wide Association Studies - Trends and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"006916e730c66d3b84d3ec036f769e00",slug:null,bookSignature:"Prof. Rafael Trindade Trindade Maia, Dr. Magnólia De Araújo Campos and Dr. Marco Antônio Alves Schetino",coverURL:"https://cdn.intechopen.com/books/images_new/11805.jpg",editedByType:null,editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12174",title:"Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!0,hash:"5922df051a2033c98d2edfb31dd84f8c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12174.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4380},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1262",title:"Mobile Robot",slug:"psychology-artificial-intelligence-mobile-robot",parent:{id:"246",title:"Artificial Intelligence",slug:"physical-sciences-engineering-and-technology-robotics-artificial-intelligence"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:76,numberOfWosCitations:189,numberOfCrossrefCitations:146,numberOfDimensionsCitations:281,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1262",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7227",title:"Applications of Mobile Robots",subtitle:null,isOpenForSubmission:!1,hash:"b4993517c29aed9abd474e362370e28a",slug:"applications-of-mobile-robots",bookSignature:"Efren Gorrostieta Hurtado",coverURL:"https://cdn.intechopen.com/books/images_new/7227.jpg",editedByType:"Edited by",editors:[{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"857",title:"Recent Advances in Mobile Robotics",subtitle:null,isOpenForSubmission:!1,hash:"f0d60714b266e84fd76fd0f18ebeebae",slug:"recent-advances-in-mobile-robotics",bookSignature:"Andon Venelinov Topalov",coverURL:"https://cdn.intechopen.com/books/images_new/857.jpg",editedByType:"Edited by",editors:[{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3689",title:"Robot Manipulators",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"robot_manipulators",bookSignature:"Marco Ceccarelli",coverURL:"https://cdn.intechopen.com/books/images_new/3689.jpg",editedByType:"Edited by",editors:[{id:"5828",title:"Prof.",name:"Marco",middleName:null,surname:"Ceccarelli",slug:"marco-ceccarelli",fullName:"Marco Ceccarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6105",title:"Mobile Robotics, Moving Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"5a118a7f27c5c73a4bc8a955ae7e2efb",slug:"mobile_robotics_moving_intelligence",bookSignature:"Jonas Buchli",coverURL:"https://cdn.intechopen.com/books/images_new/6105.jpg",editedByType:"Edited by",editors:[{id:"144262",title:"Dr.",name:"Jonas",middleName:null,surname:"Buchli",slug:"jonas-buchli",fullName:"Jonas Buchli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"63854",doi:"10.5772/intechopen.79337",title:"A Survey and Analysis of Cooperative Multi-Agent Robot Systems: Challenges and Directions",slug:"a-survey-and-analysis-of-cooperative-multi-agent-robot-systems-challenges-and-directions",totalDownloads:2418,totalCrossrefCites:8,totalDimensionsCites:20,abstract:"Research in the area of cooperative multi-agent robot systems has received wide attention among researchers in recent years. The main concern is to find the effective coordination among autonomous agents to perform the task in order to achieve a high quality of overall performance. Therefore, this paper reviewed various selected literatures primarily from recent conference proceedings and journals related to cooperation and coordination of multi-agent robot systems (MARS). The problems, issues, and directions of MARS research have been investigated in the literature reviews. Three main elements of MARS which are the type of agents, control architectures, and communications were discussed thoroughly in the beginning of this paper. A series of problems together with the issues were analyzed and reviewed, which included centralized and decentralized control, consensus, containment, formation, task allocation, intelligences, optimization and communications of multi-agent robots. Since the research in the field of multi-agent robot research is expanding, some issues and future challenges in MARS are recalled, discussed and clarified with future directions. Finally, the paper is concluded with some recommendations with respect to multi-agent systems.",book:{id:"7227",slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Zool Hilmi Ismail and Nohaidda Sariff",authors:[{id:"91546",title:"MSc.",name:"Nohaidda Binti",middleName:null,surname:"Sariff",slug:"nohaidda-binti-sariff",fullName:"Nohaidda Binti Sariff"},{id:"135439",title:"Dr.",name:"Zool",middleName:"H",surname:"Ismail",slug:"zool-ismail",fullName:"Zool Ismail"}]},{id:"5579",doi:"10.5772/6197",title:"Unit Quaternions: A Mathematical Tool for Modeling, Path Planning and Control of Robot Manipulators",slug:"unit_quaternions__a_mathematical_tool_for_modeling__path_planning_and_control_of_robot_manipulators",totalDownloads:4657,totalCrossrefCites:16,totalDimensionsCites:20,abstract:null,book:{id:"3689",slug:"robot_manipulators",title:"Robot Manipulators",fullTitle:"Robot Manipulators"},signatures:"Ricardo Campa and Karla Camarillo",authors:null},{id:"24924",doi:"10.5772/17790",title:"Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization",slug:"motion-planning-for-mobile-robots-via-sampling-based-model-predictive-optimization",totalDownloads:3546,totalCrossrefCites:3,totalDimensionsCites:20,abstract:null,book:{id:"857",slug:"recent-advances-in-mobile-robotics",title:"Recent Advances in Mobile Robotics",fullTitle:"Recent Advances in Mobile Robotics"},signatures:"Damion D. Dunlap, Charmane V. Caldwell, Emmanuel G. Collins, Jr. and Oscar Chuy",authors:[{id:"29474",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Collins",slug:"emmanuel-collins",fullName:"Emmanuel Collins"},{id:"39955",title:"Dr.",name:"Damion",middleName:null,surname:"Dunlap",slug:"damion-dunlap",fullName:"Damion Dunlap"},{id:"39956",title:"Dr.",name:"Charmane",middleName:null,surname:"Caldwell",slug:"charmane-caldwell",fullName:"Charmane Caldwell"},{id:"39957",title:"Dr.",name:"Oscar",middleName:null,surname:"Chuy",slug:"oscar-chuy",fullName:"Oscar Chuy"}]},{id:"24926",doi:"10.5772/25621",title:"Fuzzy Logic Based Navigation of Mobile Robots",slug:"fuzzy-logic-based-navigation-of-mobile-robots",totalDownloads:3791,totalCrossrefCites:9,totalDimensionsCites:14,abstract:null,book:{id:"857",slug:"recent-advances-in-mobile-robotics",title:"Recent Advances in Mobile Robotics",fullTitle:"Recent Advances in Mobile Robotics"},signatures:"Amur S. Al Yahmedi and Muhammed A. Fatmi",authors:[{id:"63929",title:"Prof.",name:"Amur",middleName:null,surname:"Al-Yahmedi",slug:"amur-al-yahmedi",fullName:"Amur Al-Yahmedi"}]},{id:"5603",doi:"10.5772/6221",title:"Robot Programming in Machining Operations",slug:"robot_programming_in_machining_operations",totalDownloads:2873,totalCrossrefCites:9,totalDimensionsCites:12,abstract:null,book:{id:"3689",slug:"robot_manipulators",title:"Robot Manipulators",fullTitle:"Robot Manipulators"},signatures:"Bjorn Solvang, Gabor Sziebig and Peter Korondi",authors:null}],mostDownloadedChaptersLast30Days:[{id:"62978",title:"Intelligent Robotic Perception Systems",slug:"intelligent-robotic-perception-systems",totalDownloads:2373,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Robotic perception is related to many applications in robotics where sensory data and artificial intelligence/machine learning (AI/ML) techniques are involved. Examples of such applications are object detection, environment representation, scene understanding, human/pedestrian detection, activity recognition, semantic place classification, object modeling, among others. Robotic perception, in the scope of this chapter, encompasses the ML algorithms and techniques that empower robots to learn from sensory data and, based on learned models, to react and take decisions accordingly. The recent developments in machine learning, namely deep-learning approaches, are evident and, consequently, robotic perception systems are evolving in a way that new applications and tasks are becoming a reality. Recent advances in human-robot interaction, complex robotic tasks, intelligent reasoning, and decision-making are, at some extent, the results of the notorious evolution and success of ML algorithms. This chapter will cover recent and emerging topics and use-cases related to intelligent perception systems in robotics.",book:{id:"7227",slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Cristiano Premebida, Rares Ambrus and Zoltan-Csaba Marton",authors:[{id:"203409",title:"Ph.D.",name:"Cristiano",middleName:null,surname:"Premebida",slug:"cristiano-premebida",fullName:"Cristiano Premebida"},{id:"254880",title:"Dr.",name:"Rares",middleName:null,surname:"Ambrus",slug:"rares-ambrus",fullName:"Rares Ambrus"},{id:"254881",title:"Dr.",name:"Zoltan-Csaba",middleName:null,surname:"Marton",slug:"zoltan-csaba-marton",fullName:"Zoltan-Csaba Marton"}]},{id:"5578",title:"Experimental Results on Variable Structure Control for an Uncertain Robot Model",slug:"experimental_results_on_variable_structure_control_for_an_uncertain_robot_model",totalDownloads:2616,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3689",slug:"robot_manipulators",title:"Robot Manipulators",fullTitle:"Robot Manipulators"},signatures:"K. Bouyoucef1 K. Khorasani and M. Hamerlain",authors:null},{id:"63854",title:"A Survey and Analysis of Cooperative Multi-Agent Robot Systems: Challenges and Directions",slug:"a-survey-and-analysis-of-cooperative-multi-agent-robot-systems-challenges-and-directions",totalDownloads:2418,totalCrossrefCites:8,totalDimensionsCites:20,abstract:"Research in the area of cooperative multi-agent robot systems has received wide attention among researchers in recent years. The main concern is to find the effective coordination among autonomous agents to perform the task in order to achieve a high quality of overall performance. Therefore, this paper reviewed various selected literatures primarily from recent conference proceedings and journals related to cooperation and coordination of multi-agent robot systems (MARS). The problems, issues, and directions of MARS research have been investigated in the literature reviews. Three main elements of MARS which are the type of agents, control architectures, and communications were discussed thoroughly in the beginning of this paper. A series of problems together with the issues were analyzed and reviewed, which included centralized and decentralized control, consensus, containment, formation, task allocation, intelligences, optimization and communications of multi-agent robots. Since the research in the field of multi-agent robot research is expanding, some issues and future challenges in MARS are recalled, discussed and clarified with future directions. Finally, the paper is concluded with some recommendations with respect to multi-agent systems.",book:{id:"7227",slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Zool Hilmi Ismail and Nohaidda Sariff",authors:[{id:"91546",title:"MSc.",name:"Nohaidda Binti",middleName:null,surname:"Sariff",slug:"nohaidda-binti-sariff",fullName:"Nohaidda Binti Sariff"},{id:"135439",title:"Dr.",name:"Zool",middleName:"H",surname:"Ismail",slug:"zool-ismail",fullName:"Zool Ismail"}]},{id:"24916",title:"Three-Dimensional Environment Modeling Based on Structure from Motion with Point and Line Features by Using Omnidirectional Camera",slug:"three-dimensional-environment-modeling-based-on-structure-from-motion-with-point-and-line-features-b",totalDownloads:2429,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"857",slug:"recent-advances-in-mobile-robotics",title:"Recent Advances in Mobile Robotics",fullTitle:"Recent Advances in Mobile Robotics"},signatures:"Ryosuke Kawanishi, Atsushi Yamashita and Toru Kaneko",authors:[{id:"2556",title:"Dr.",name:"Atsushi",middleName:null,surname:"Yamashita",slug:"atsushi-yamashita",fullName:"Atsushi Yamashita"},{id:"64426",title:"Dr.",name:"Ryosuke",middleName:null,surname:"Kawanishi",slug:"ryosuke-kawanishi",fullName:"Ryosuke Kawanishi"},{id:"64431",title:"Prof.",name:"Toru",middleName:null,surname:"Kaneko",slug:"toru-kaneko",fullName:"Toru Kaneko"}]},{id:"24928",title:"Tracking Control for Reliable Outdoor Navigation Using Curb Detection",slug:"tracking-control-for-reliable-outdoor-navigation-using-curb-detection",totalDownloads:2715,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"857",slug:"recent-advances-in-mobile-robotics",title:"Recent Advances in Mobile Robotics",fullTitle:"Recent Advances in Mobile Robotics"},signatures:"Seung-Hun Kim",authors:[{id:"63534",title:"Mr.",name:"Seung-Hun",middleName:null,surname:"Kim",slug:"seung-hun-kim",fullName:"Seung-Hun Kim"}]}],onlineFirstChaptersFilter:{topicId:"1262",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:10,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:617,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNVJQA4/Profile_Picture_2022-03-07T13:23:04.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. degree from Integral University. Currently, he’s working as an Assistant Professor of Pharmaceutics in the Faculty of Pharmacy, Integral University. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than 32 original articles published in reputed journals, 3 edited books, 5 book chapters, and a number of scientific articles published in ‘Ingredients South Asia Magazine’ and ‘QualPharma Magazine’. He is a member of the American Association for Cancer Research, International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs that aim to provide practical solutions to current healthcare problems.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}},{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",biography:"Dr. Margarete Dulce Bagatini is an associate professor at the Federal University of Fronteira Sul/Brazil. She has a degree in Pharmacy and a PhD in Biological Sciences: Toxicological Biochemistry. She is a member of the UFFS Research Advisory Committee\nand a member of the Biovitta Research Institute. She is currently:\nthe leader of the research group: Biological and Clinical Studies\nin Human Pathologies, professor of postgraduate program in\nBiochemistry at UFSC and postgraduate program in Science and Food Technology at\nUFFS. She has experience in the area of pharmacy and clinical analysis, acting mainly\non the following topics: oxidative stress, the purinergic system and human pathologies, being a reviewer of several international journals and books.",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",country:{name:"Brazil"}}},{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",biography:"Metin Budak, MSc, PhD is an Assistant Professor at Trakya University, Faculty of Medicine. He has been Head of the Molecular Research Lab at Prof. Mirko Tos Ear and Hearing Research Center since 2018. His specializations are biophysics, epigenetics, genetics, and methylation mechanisms. He has published around 25 peer-reviewed papers, 2 book chapters, and 28 abstracts. He is a member of the Clinical Research Ethics Committee and Quantification and Consideration Committee of Medicine Faculty. His research area is the role of methylation during gene transcription, chromatin packages DNA within the cell and DNA repair, replication, recombination, and gene transcription. His research focuses on how the cell overcomes chromatin structure and methylation to allow access to the underlying DNA and enable normal cellular function.",institutionString:"Trakya University",institution:{name:"Trakya University",country:{name:"Turkey"}}},{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",biography:"Anca Pantea Stoian is a specialist in diabetes, nutrition, and metabolic diseases as well as health food hygiene. She also has competency in general ultrasonography.\n\nShe is an associate professor in the Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. She has been chief of the Hygiene Department, Faculty of Dentistry, at the same university since 2019. Her interests include micro and macrovascular complications in diabetes and new therapies. Her research activities focus on nutritional intervention in chronic pathology, as well as cardio-renal-metabolic risk assessment, and diabetes in cancer. She is currently engaged in developing new therapies and technological tools for screening, prevention, and patient education in diabetes. \n\nShe is a member of the European Association for the Study of Diabetes, Cardiometabolic Academy, CEDA, Romanian Society of Diabetes, Nutrition and Metabolic Diseases, Romanian Diabetes Federation, and Association for Renal Metabolic and Nutrition studies. She has authored or co-authored 160 papers in national and international peer-reviewed journals.",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",country:{name:"Romania"}}},{id:"279792",title:"Dr.",name:"João",middleName:null,surname:"Cotas",slug:"joao-cotas",fullName:"João Cotas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279792/images/system/279792.jpg",biography:"Graduate and master in Biology from the University of Coimbra.\n\nI am a research fellow at the Macroalgae Laboratory Unit, in the MARE-UC – Marine and Environmental Sciences Centre of the University of Coimbra. My principal function is the collection, extraction and purification of macroalgae compounds, chemical and bioactive characterization of the compounds and algae extracts and development of new methodologies in marine biotechnology area. \nI am associated in two projects: one consists on discovery of natural compounds for oncobiology. The other project is the about the natural compounds/products for agricultural area.\n\nPublications:\nCotas, J.; Figueirinha, A.; Pereira, L.; Batista, T. 2018. An analysis of the effects of salinity on Fucus ceranoides (Ochrophyta, Phaeophyceae), in the Mondego River (Portugal). Journal of Oceanology and Limnology. in press. DOI: 10.1007/s00343-019-8111-3",institutionString:"Faculty of Sciences and Technology of University of Coimbra",institution:null},{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",biography:"Leonel Pereira has an undergraduate degree in Biology, a Ph.D. in Biology (specialty in Cell Biology), and a Habilitation degree in Biosciences (specialization in Biotechnology) from the Faculty of Science and Technology, University of Coimbra, Portugal, where he is currently a professor. In addition to teaching at this university, he is an integrated researcher at the Marine and Environmental Sciences Center (MARE), Portugal. His interests include marine biodiversity (algae), marine biotechnology (algae bioactive compounds), and marine ecology (environmental assessment). Since 2008, he has been the author and editor of the electronic publication MACOI – Portuguese Seaweeds Website (www.seaweeds.uc.pt). He is also a member of the editorial boards of several scientific journals. Dr. Pereira has edited or authored more than 20 books, 100 journal articles, and 45 book chapters. He has given more than 100 lectures and oral communications at various national and international scientific events. He is the coordinator of several national and international research projects. In 1998, he received the Francisco de Holanda Award (Honorable Mention) and, more recently, the Mar Rei D. Carlos award (18th edition). He is also a winner of the 2016 CHOICE Award for an outstanding academic title for his book Edible Seaweeds of the World. In 2020, Dr. Pereira received an Honorable Mention for the Impact of International Publications from the Web of Science",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",country:{name:"Portugal"}}},{id:"61946",title:"Dr.",name:"Carol",middleName:null,surname:"Bernstein",slug:"carol-bernstein",fullName:"Carol Bernstein",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61946/images/system/61946.jpg",biography:"Carol Bernstein received her PhD in Genetics from the University of California (Davis). She was a faculty member at the University of Arizona College of Medicine for 43 years, retiring in 2011. Her research interests focus on DNA damage and its underlying role in sex, aging and in the early steps of initiation and progression to cancer. In her research, she had used organisms including bacteriophage T4, Neurospora crassa, Schizosaccharomyces pombe and mice, as well as human cells and tissues. She authored or co-authored more than 140 scientific publications, including articles in major peer reviewed journals, book chapters, invited reviews and one book.",institutionString:"University of Arizona",institution:{name:"University of Arizona",country:{name:"United States of America"}}},{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/182258/images/system/182258.jpeg",biography:"Dr. Serra studied Agronomy on Universidade Federal de Mato Grosso do Sul (UFMS) (2005). He received master degree in Agronomy, Crop Science (Soil fertility and plant nutrition) (2007) by Universidade Federal da Grande Dourados (UFGD), and PhD in agronomy (Soil fertility and plant nutrition) (2011) from Universidade Federal da Grande Dourados / Escola Superior de Agricultura Luiz de Queiroz (UFGD/ESALQ-USP). Dr. Serra is currently working at Brazilian Agricultural Research Corporation (EMBRAPA). His research focus is on mineral nutrition of plants, crop science and soil science. Dr. Serra\\'s current projects are soil organic matter, soil phosphorus fractions, compositional nutrient diagnosis (CND) and isometric log ratio (ilr) transformation in compositional data analysis.",institutionString:"Brazilian Agricultural Research Corporation",institution:{name:"Brazilian Agricultural Research Corporation",country:{name:"Brazil"}}}]}},subseries:{item:{id:"26",type:"subseries",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},onlineFirstChapters:{},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/57120",hash:"",query:{},params:{id:"57120"},fullPath:"/chapters/57120",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()