Physical properties of natural fibers (single fiber) [9, 13, 14].
\r\n\tThere will be a chapter on secondary causes of sexual dysfunction disorders related to diabetes, cardiovascular disease, and obesity. A chapter on remedial measures to enhance sexual activity and maintain human relationships will be discussed. As there is a growing number of cancer survivors a chapter on cancer-related sexual dysfunction will be welcomed for including it.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"b988fda30a4e2364ee9d47e417bd0ba9",bookSignature:"Dr. Dhastagir Sultan Sheriff",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",keywords:"Sex, Sexual Response Cycle, Erection, Premature Ejaculation, Libido, Orgasm, Painful Intercourse, Psychological, Female, Lack of Desire, Erectile Disorders, Pain Disorders",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 8th 2022",dateEndSecondStepPublish:"May 6th 2022",dateEndThirdStepPublish:"July 5th 2022",dateEndFourthStepPublish:"September 23rd 2022",dateEndFifthStepPublish:"November 22nd 2022",remainingDaysToSecondStep:"16 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dhastagir Sultan Sheriff is a life member of the European Society for Human Reproduction and Early Human Development, Association of Physiologists and Pharmacologists of India, member of the National Academy of Medical Sciences, New Delhi, and resource person for UNESCO for Medical and Bioethics. Dr. Sheriff has authored five books including a textbook on medical biochemistry with additional interest in human sexology. He has done extensive research in andrology, sex education, and counseling.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff",profilePictureURL:"https://mts.intechopen.com/storage/users/167875/images/system/167875.jpg",biography:"Dhastagir Sultan Sheriff is a life member of the European Society for Human Reproduction and Early Human Development, Association of Physiologists and Pharmacologists of India, member of the National Academy of Medical Sciences, New Delhi, and resource person for UNESCO for Medical and Bioethics. Dr. Sheriff has authored five books including a textbook on medical biochemistry with additional interest in human sexology. He had editorials written in the British Journal of Sexology, Journal of Royal Society of Medicine, Postgraduate Medicine, and Scientist. He was a former Rotarian, Citizen Ambassador, and was selected for the Ford Foundation Fellowship.",institutionString:"University of Benghazi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Benghazi",institutionURL:null,country:{name:"Libya"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"56533",title:"The Visual Evoked Potential in Idiopathic Inflammatory Demyelinating Diseases",doi:"10.5772/intechopen.69311",slug:"the-visual-evoked-potential-in-idiopathic-inflammatory-demyelinating-diseases",body:'\nVisual evoked potential (VEP), which has been known for more than 40 years, consists of electric signals mainly generated by the occipital cortex in response to visual stimulation. They are generally used to assist in the identification of pathologies that impair the visual pathways in any of its segments.
\nIn VEP studies, two types of stimulation, photostimulators and pattern reversal, are normally used. The most used photostimulators are the common photographic flash and goggles, which are used for swimming, or similar ones, in which each lens is replaced by a cloudy plate, with minute light bulbs installed in its internal face, for the luminous extremities to face each eye. These stimulators are connected and synchronized with the equipment system of stimulation, scanning, and promediation. Flash stimulation is not only the oldest one, used in clinical neurophysiology since the 40s, but also the most common method used during many years and until the beginning of the 70s to obtain VEP. The flash stimulates almost all the retina, mainly the peripheral one, because of its capacity to capture the variations of room luminosity. Depolarization waves provoked by stimuli radiate mainly to the pretectal zones and thalamic nuclei, ending up in lesser amount in the visual cortex, and in larger amount in the association areas, on the nonvisual cortex. When the flash is used, it is necessary that the contralateral eye is very well occluded, because the capture of potentials generated by the stimulation of the unexamined side can lead to false‐negative results.
\nOne of the main disadvantages in the responses obtained with this technique is its great variability, both among individuals and in the same patient; it can also vary according to the electroencephalographic activity at that moment. Therefore, flash stimulation was gradually replaced by more reliable methods, being reserved for the cases of patients with very low visual acuity, encephalopathies, and other pathologies.
\nIn the case of goggles, the light bulbs or light emitting diodes (LEDs) on them are generally red, and each one has 3 mm of diameter. At each series of stimuli, the stimulator is adjusted so that one side of the goggles remains with the light off, occluding vision in one of the patient’s eyes, while in the stimulated side the LEDs are on and are turned off with a frequency of 1–2 Hz. In each side, at least two series of 60–260 stimuli are applied.
\nBoth flash and goggles stimulate the entire retina and provide results that are more qualitative than quantitative. However, they are very useful, because they can stimulate the retina even when the eyes are closed, as it occurs in the case of patients in coma, children or adults who do not want to cooperate [1, 2].
\nCurrently, despite the utility of the photostimulators, the most commonly used visual stimulation is the pattern reversal that, as already mentioned, consists of a monitor in the screen of which there is an image with black and white squares, similar to a chessboard. During stimulation, the squares alternate their colors. The white ones become black, and the black ones become white, successively, at a frequency of 1–2 Hz. These constant inversions stimulate the macular area of the retina, more specifically the foveal zone, radiating to the lateral geniculate body, and then to the primary visual cortex, in area 17. However, for this, it is important that the patient keeps the look fixed on the center of the monitor screen [3].
\nIn the stimulation by the reversal pattern, the patient should remain seated in front of the monitor, with the eyes keeping a distance of 70 cm to 1 m from the screen. As the stimulation is monocular, the contralateral eye is kept occluded and at least two series of 60–260 stimuli in each side of the visual pathway are applied.
\nThe distance between the patient’s eye and the monitor, related to the size of the each reversal pattern square side, provides the visual angle used in the test. Despite the existence of tables, the simplest way to calculate the visual angle is to multiply the width of the square by 3450 and divide the result by the distance in millimeters between the screen and the patient’s eyes. This way, the visual angle is obtained in minutes. To convert this unit to degrees, we simply divide the resulting value by 60 [4–6].
\nThe visual angle used is very important, because it influences in the exam results. In adults, visual angles with 10–20 arcmin produce responses of higher amplitude. The visual angles of more than 15 min stimulate mainly the fovea, and those with more than 40 min stimulate more the parafoveal retina. The central visual field is the most responsible for P100 amplitude, because the central vision has greater cortical representation than the peripheral vision. Problems in the central vision can change P100 amplitude without modifying its latency. In the diagnostic routine, angles of 28–32 arcmin are more frequently used.
\nThe equipment visual stimulation module allows the use of a reversal pattern, the squares of which can vary in size according to the examiner interest. In practice, they have options of squares of 0.5, 1.0, 2.0, or 5 cm of side. With this, depending on the clinical case and the patient’s visual acuity, the series of stimuli can be repeated with the use of different visual angles.
\nThere is a direct relation between the visual angle and the exam result. The smaller the squares, the more reliable the responses. However, in the patients with visual acuity deficit, the use of bigger squares is necessary, because even losing some precision, it is crucial that the patient visualizes and identifies the reversal pattern; otherwise, it will not be possible to capture responses, or falsely abnormal responses will be obtained [7–9]. Before undergoing a VEP study, the patient should have an ophthalmologic evaluation for measuring his/her visual acuity, aiming to rule out refractive defects [10].
\nThe reversal pattern can be one of “full field,” which is the most used, or of “half field.” In the half‐field pattern, the chessboard image fills only one of the halves of the monitor screen, with the other remaining entirely black. This allows selective stimulation of the nasal or temporal field of the retinas, serving both for the diagnosis and to inform if the lesion is prechiasmatic, chiasmatic, or retrochiasmatic [11].
\nSome authors have used colored reversal patterns, but the results have not been advantageous. There is also the “bar grating reversal pattern,” known as gratings, which is little used and on which, instead of the squares, the monitor presents horizontal or vertical, white and black bars, which alternate colors consecutively too [12, 13].
\nIn brief, because of its higher precision and sensitivity, the reversal pattern is the most commonly used. The flash and goggles are used in cases where it is supposed that the patient is not looking at the center of the screen, in comatose patients, in surgical monitoring, or in children who have difficulty fixing attention on the monitor.
\nThe most common assembly consists of the colocation of an active electrode in Oz, on the occipital cortex, with the reference in Fz, and the ground in the frontal area in Fpz. However, depending on the number of channels available, other assemblies can be made. In a second channel, for example, the active on Oz can be used, with the reference on Pz or Cz. Although being a capture type that is more used in half‐field stimulations, the active electrodes can be fixed on points located 5 and 10 cm lateral to Oz, in known leads, such as R5, R10, L5, or L10, in which the letters “R” and “L” represent the right side and the left side, respectively.
\nThe visual response is formed by three waves, which form the M‐like image. The first deflection is N75, which is negative. It is followed by a positive, sharper, and deeper wave, with a mean latency of 100 ms, that it is the P100. The third wave, N145, is also negative as the first one. However, the most important response is P100, because it is the most defined and the one that has greater reproducibility in normal people. It represents the occipital cortex depolarization to the applied stimuli. The normal values for each one of these responses can vary in accordance with the laboratory and its equipment.
\nThe first negative potential (N1) has a latency between 60 and 90 ms; the first positive potential (P100) has a latency of 85–120 ms, with an average value of 100 ms. The second negative potential (N2) varies from 125 to 155 ms.
\nThe amplitude of the P100 response varies between 3 and 21 μV. The amplitude of the N1 and N2 responses is a little lower and usually measures less than 12 μV for N1 and less than 16 μV for N2. N1 and N2 responses vary a lot, and in some cases, they are not easy to be identified. In part, for this reason, maximum attention is usually given to P100 response, which is easy to obtain and reproduce in normal people, and has well‐defined parameters.
\nP100 latency and the parameters of normality vary from a laboratory to another due to the technique used, the type of equipment, and the age of the examined people. In laboratories where a population of young patients predominates, the mean and maximum latencies accepted as normal will be lower than those obtained in laboratories where older patients predominate.
\nThe ideal is that each examining physician determines his/her own normal values. For this, at least 30 normal and representative people should be examined. The results obtained should be analyzed, and a mean latency should be determined for the whole group. The normal parameters are obtained, adding two or three standard deviations to this average value. If this is not possible, then normal values published by authors of high credibility in the area can be used in a more practical way.
\nAs previously cited, the inconsistency and variability of the N1 and N2 potentials discouraged most authors, and all the attention and importance was given to P100 response. Despite all this, Pavot believes that, although the N1 and N2 parameters are wider than those of P100, there are certain limits of normality. According to his experience, in certain pathological conditions, as, for example, in multiple sclerosis (MS), in some cases the manifestations appear with an increase of N2 latency, or with its disappearance [14].
\nIn the interpretation of the exams, absolute P100 latency is valued, as well as the difference between P100 latencies in one side and the other (interocular latency) and also its amplitude, which is compared with that of the contralateral eye. A difference of amplitude higher than 50% between the two sides is significant.
\nWhen performing VEP studies, it is extremely important to give much attention to some details that can affect the results. In addition to age, sex, visual acuity, and other physiological factors, the visual evoked potentials are also affected by technical parameters, such as electrode positioning; luminosity in the examination room; level of concentration of the patient, who has to keep the look persistently directed to the center of the screen of the stimulation monitor; visual angle; luminosity and brightness of the monitor screen; and type of stimulator; filters.
\nIn reversal pattern stimulation, variations in the quality of the stimuli, such as brightness, luminosity, frequency, and size of the square, can affect the responses, changing the morphology, amplitude, and latencies of its components.
\nBrightness reduction increases latency and reduces P100 amplitude, in 15 ms and 18%, respectively, for each log unit that reduces luminosity. The reduction of the contrast, which can be calculated in percentage according to the difference of luminosity between the white and black squares, also affects P100, increasing its latency and reducing its amplitude.
\nAs previously mentioned, the size of the square determines the visual angle used and has direct influence in the responses. The use of smaller squares makes the study more accurate, but in turn, its use will depend on the level of visual acuity of the patient, since they stimulate the fovea, and the refractive defects produce out‐of‐focus retinal images, increasing P100 latency. The larger squares with up to 5 cm of side are less affected by the visual acuity variations.
\nThe electrodes should be well located, because positioning them on points that are out of those normally proposed result in absent, or dispersed, responses with potentials of modified shapes, low amplitude, and unreal latencies. Loose, badly fixed electrodes produce artifacts that make the identification of the potentials difficult.
\nNoise excess in the room can affect the patient’s concentration capacity in the examination, making the look to deviate from the stimulator. During the examination, the examiner should ensure that the patient is kept awake all the time, and with the look focused on the center of the monitor screen. If the patient closes the eyes or deviates the look from the screen, the potential amplitude can lower and the latencies can increase, leading to false‐positive results.
\nIn cases of restless patients, with concentration difficulty, as it is common to occur in children and even in those cases when the examiner suspects that the patient is purposefully trying to interfere with the examination, a stimulation performed with special glasses or goggles is recommended.
\nSome authors recommend to avoid exam performance in the evening because at this time the patient is frequently tired, sleepy and it is more difficult to remain concentrated, and with the look fixed on the screen.
\nSpecial attention should be given to refractive errors, and to retinal diseases. Patients who wear glasses or contact lenses have to be alerted to take them on the day of the examination, because decreased visual acuity slightly reduces amplitude of the responses, and can also change their latency.
\nAge modifies P100 latency, following a variable curve that is descending in the two first decades of life, steady until the fifth or sixth decade, and crescent above 60 years. Women tend to have little shorter latencies than men. However, menopausal women can present a higher P100 latency than men in a similar age.
\nIn healthy individuals, there is no evidence of P100 alterations caused by the same increase of temperature or even by exercises. However, the exercises can reduce P100 amplitude in multiple sclerosis patients with impairment of the visual pathways [15].
\nIn the analysis of the visual responses obtained, the examiner should value the following parameters: absolute latency; interocular latency difference, or interocular differential latency; P100 response amplitude; interocular amplitude difference or interocular differential amplitude; and potential morphology.
\nThe examiner evaluates whether the latency of the potential obtained is within the normal range, that is, the normal average with more or less three standard deviations. A latency that exceeds the limits of normality, with the possibilities of technical errors discarded, indicates a defect of sensory conduction in the studied visual pathway.
\nThe parameter for this measure should be determined in each laboratory, but in general it varies from 5 to 8 ms. An interocular differential latency above these values is usually associated with pathologies. Many times this latency increase is the first manifestation of some diseases. In many cases of optic neuritis, the interocular latency change can be the only abnormality detected.
\nP100 amplitude can vary in normal people, but an amplitude of 1–5 μV, or the absence of P100 generally means a pathological condition [16].
\nThere is much controversy on the limit of normality for the value of the amplitude difference between the responses obtained in the two eyes. When the stimulation for the “full‐field reversal pattern” is used, some authors advocate that, to be abnormal, there must be an amplitude reduction of at least 80%, or total absence of P100. However, for most authors, a reduction of the differential amplitude between 50 and 75% or more indicates visual pathway impairment. In the stimulation of the hemifield, there is a consensus that an amplitude difference of more than 50% is abnormal.
\nIn a normal person, the P100 response has the format of a letter “V.” An alteration in the potential shape or its disappearance represents an abnormality [16].
\nAny pathology, regardless of its nature, which affects the ocular structures responsible for the reception of light and images, the visual pathway, or the cortex, can lead to changes in the visual evoked responses. In the pure retinal pathologies, as it occurs in the retinitis pigmentosa, the important changes in the ophthalmologic examination and in the electroretinogram are very striking and easy to be identified. On the other hand, it is important to remember that retinal responses take a long time to disappear in cases of brain death.
\nIn the diseases affecting the receptors and the visual pathways, or the visual pathways and the cortex, frames with coincident or divergent findings can be observed in the VEP studies. The frames known as coincident are those in which no difference in the type of response obtained is observed, either with the use of the flash, or with the reversal pattern, that is, the responses are normal or abnormal in the two methods. In the frames with divergent findings, the neurophysiological abnormalities are manifested in only one of the techniques, with normal responses being observed in the other.
\nThe visual evoked potentials are used in the investigation of neurological impairment, mainly in the suspicion of optic neuritis, multiple sclerosis, and compressive lesions affecting the visual pathways. Diseases affecting the optic nerve or causing its demyelination are the more frequently associated with changes of visual response latency. To understand the neurophysiological diagnosis, and the alterations caused by pathologies throughout the optic pathways, it is necessary to know these pathways anatomy [17, 18].
\nThe visual pathways are formed from the retina, through the chaining of three types of neurons. The first receptor neurons, which are the cones and the rods, make synapsis with bipolar cells, and these ones with a third type of neuron, which are the ganglion cells. The ganglion cell axon junction forms the optic nerves, which take the visual impulses to the lateral geniculate bodies in the diencephalon, where they make synapses with neurons that go to the occipital cortex through the geniculocalcarine tract.
\nIn its route to the geniculate bodies, the optic nerve fibers from the nasal portion of each retina cross to the opposite side on the level of the optic chiasm. Thus, from the chiasm, each optic tract consists of the optic fibers from the temporal retina on the same side and of the fibers that were formed in the contralateral nasal retina. This peculiarity of the optic pathways to cross part of their fibers in the chiasm, continuing as a mixed tract that has fibers of the retinal portion of the ipsilateral eye, and also of the contralateral eye, causes the most varied visual syndromes, depending on the location of the lesion.
\nDemyelinating optic neuritis represents the most frequent cause of transitory visual loss in young adults, affecting 2.6 men and 7.5 women per year, for each 100,000 inhabitants. The average age for its occurrence is 31 years. The optic pathway demyelination causes blocks or delays in the visual pathways conduction, with consequent alterations in the studies of visual evoked potentials. Demyelination precedes the inflammatory process, which is the real responsible for the reversibility of the picture. Thus, inflammation improvement contributes for the rapid visual improvement after a crisis. In addition, mainly in young people, remyelination is another important factor in the recovery of vision. However, when an axonal lesion and a more persistent demyelination occur, improvement is not usually complete.
\nVisual loss in optic neuritis can be preceded in some days by ocular pain in the affected side, which tends to resolve. This pain is possibly caused by the tension on the inflamed nerve. About 70% of the adults initially present with a unilateral picture, but in 30% it can affect both eyes. The visual loss can be sudden, progressing in a few hours, or can have a slower progression, taking some days to be installed. In 7% of the cases, this time is of 1–2 weeks.
\nThe diagnosis of optic neuritis is one of exclusion, what makes the investigation of other diseases affecting the optic nerve, such as hereditary, metabolic, toxic, vascular, and compressive diseases, indispensable.
\nIn the isolated demyelinating optic neuritis, the magnetic resonance reveals changes on the affected nerve in 84% of the cases. In 34% of the patients, the exam also shows changes in the asymptomatic side. In addition, 50–70% of these patients show multifocal demyelinating lesions in the corpus callosum and on the periventricular white substance or in other parts of the encephalon.
\nWithin the group of the idiopathic inflammatory demyelinating diseases, there is a great number of pathologies that can have an initial outbreak in common, either visual, motor, sensitive, proprioceptive, cerebellar, medullary or of the brainstem, characterizing the so‐called clinically isolated syndrome—CIS. It is only after the second outbreak and evaluation of the complementary exams that it is possible to establish or suggest the definitive diagnosis, such as MS. This aspect can sometimes confuse physicians who attend the patient and delay the treatment.
\nMS diagnosis is based on the identification, at history taking, of two acute episodes with a duration of at least 24 h, and evidence at the neurological examination of objective signs of functional system impairment, indicating inflammatory lesions located on different topographies in the CNS.
\nIt was only in 1983 that complementary methods, such as magnetic resonance and evoked potentials, were introduced in the MS diagnosis criteria proposed by Poser, with the purpose to identify subclinic inflammatory lesions. In the last decade, MRI was used to confirm temporal and spatial dissemination of inflammatory lesions in the neuroaxis and then to anticipate the clinical diagnosis of MS. Currently, with a patient with monofocal or multifocal clinically isolated syndrome, the dissemination in the space can be demonstrated in the MRI through T2 hyperintense lesions, in at least two of the four regions of the CNS: periventricular, juxtacortical, infratentorial, and spinal. Temporal dissemination is proven by the presence of a new T2 lesion, or a contrast‐enhancing lesion, when serial MRI scans are compared, or by the coexistence of asymptomatic contrast‐enhancing or nonenhancing lesions in a single initial examination. These radiological criteria should only be applied to young patients, with strong clinical suspicion of MS characterized by the presence of clinical signs of acute CNS impairment, which presents with outbreaks, having a suggestive behavior of an inflammatory disease, and after ruling out all the diseases secondarily affecting the white substance. The application of these criteria aims to anticipate the clinical diagnosis and, consequently, the beginning of the treatment, since all the FDA‐approved medicines from 1993 on for MS act in the initial phase of the disease, reducing inflammation and the annual rate of outbreaks [20].
\nMS is a chronic disease, with greatly variable prevalence and incidence, dependent on ethnicity and demographic region, with the highest indices being described in Caucasian populations living in regions of the North hemisphere, places of cold weather. In its more prevalent clinical form, there are outbreaks and remissions that affect individuals from 20 to 40 years of age, and with predominance in women. Currently, it is estimated that more than 300,000 Americans have a definite diagnosis of the disease and, because it affects young patients in full activity, it has strong sociocultural impact [21].
\nNOM, which was included among MS variants, is currently considered an independent condition. The historical description of this disease was a clinical, and anatomical and pathological case report in 1894, in France, by Eugene Devic. This condition was called Devic’s disease, and during a century, the diagnosis was based on the identification of an acute, monophasic inflammatory disease, characterized by severe and bilateral ON, and transverse myelitis (TM), installed simultaneously or in a short interval of time. Only after the 1990s studies of independent series published in different western and eastern populations started to describe recurrent cases of NOM, where the index events occurred separately for a variable period of time, and were followed by new acute episodes, affecting the spinal cord and the optic nerve [22–24]. Only recently the presence of lesions in locations other than the spinal optic axis was accepted, with inflammatory lesions being demonstrated, although in lower frequency, in the brainstem and encephalon [23]. In Asian individuals, the selective and severe involvement of the optic nerves and spinal cord is very typical. In this region, this syndrome is classified as a variant of MS, defining two distinct subtypes: the opticospinal form (OSMS), which has characteristics that are similar to the remittent‐recurrent form of western NOM, and the conventional form, which is similar to the classic MS, as it is described in western patients [25].
\nCurrently, many works in the literature try to define the probability of an isolated and initial case of idiopathic optic neurite to progress, to keep its monophasic course, to be associated with myelitis or with outbreaks that impair other areas of the CNS. Among several significant aspects, the main justifications for these studies regarding the progression risk are related to the patient’s prognosis, and the possibility to search early therapies at the first signs of isolated idiopathic ON, since this can be the first symptom, not only of NOM, but also of MS.
\nThe clinical and evolutive characteristics of idiopathic ON have been analyzed by the Optic Neuritis Study Group (1995). The most relevant predictive factor of MS development after 15 years was the presence of changes in the brain MRI in the occasion of a visual outbreak [26]. Other works tried to identify the main characteristics of the cases of NOM‐related ON, evidencing that in this condition the visual involvement is generally more severe and bilateral [24].
\nIn 2007, Wingerchuk et al. [27], from the Mayo Clinic, defined a group of conditions that were catalogued as syndromes of the NOM spectrum. These entities, although independent, are elements of the same group. They are as follows: neuromyelitis optica (NOM), extensive idiopathic myelitis, recurrent monocular optic neuritis (rON) or simultaneously bilateral optic neuritis (BON), Asian‐type opticospinal multiple sclerosis (OSMS), optic neuritis, or extensive idiopathic myelitis associated with systemic autoimmune disease, optic neuritis, or idiopathic myelitis associated with typical brain lesions of NOM (hypothalamus, corpus callosum, and periventricular region) or lesions in the brainstem.
\nSince 1972, the pattern of visual response abnormalities of patients with ON, obtained with this method, has been studied [28], with the MS‐related VEP characteristics of the optic neuritis being well‐defined. However, there are few articles in the literature discussing the VEP pattern in NOM. Currently, MS pattern is frequently used to analyze the VEP of patients with NOM, configuring an interpretation bias.
\nThe most common changes in the VEP studies in MS, in descending order of prevalence and importance, are as follows: the absolute increase of P100 wave latency, this wave morphology changes, and finally the absence of response. Frederiksen and Petrera [29] followed patients in the acute phase of ON since the beginning of the symptoms, with performance of VEP, repeating it in subsequent months. Among these patients, 35.5% had the definite diagnosis of MS, and had, according to the authors, a significant relation with delays of P100 wave latency in the VEP. They also observed subclinical changes of the optic nerve, with the presence of abnormal VEP in asymptomatic eyes.
\nSeveral studies emphasize VEP sensitivity in the evaluation of ON in patients with demyelinating diseases, even overcoming the optical coherence tomography, as Naismith et al. showed in 2009 [30]. At that time, the authors evaluated patients with different diagnosis related to the demyelinating diseases (CIS, MS, and NOM) that had at least one episode of ON in the last six months and tried to compare VEP sensitivity to the optical coherence tomography, in the evaluation of clinical and subclinical ON. VEP showed higher sensitivity both in the evaluation of clinically identified ON (81% vs. 60%,
In the study by Matthews et al. [29], a total of 223 individuals were evaluated, with 186 with a diagnosis of MS and 37 healthy controls. In this study, the sample was submitted to VEP, to evaluate the differences in the pattern of responses to this exam, considering the groups of definite, probable, possible MS, and the control group. It showed that while all controls had VEP responses within normal range, the group with definite MS had a higher percentage of change when compared to the other groups. It was also observed that the main characteristic of the VEP that was changed was P100 wave latency in these patients.
\nFrederiksen and Petrera [31] followed patients in the acute phase of ON since the beginning of symptoms, with performance of VEP, and its repetition in subsequent months. Among these patients, 35.5% had definite diagnosis of MS, and had, according to the authors, a significant relation with delays of P100 wave latency in the VEP. They also observed subclinical changes of the optic nerve, with the presence of abnormal VEP in asymptomatic eyes.
\nIn order to enhance the sensitivity for the detection of optic nerve affections with the use of VEP, and to analyze its effectiveness in the early evaluation of patients with suggestive pictures of ON and MS, Davidson et al. in 2004 [32] examined 124 individuals with VEP using two different intensities of contrast. Although they observed a higher number of abnormal VEP with reduced contrast, when they followed the outcome they noticed that they were false positives.
\nConsidering that NOM is a pathology that is different from MS, and its strong relation with the presence of anti‐AQP4 serum antibodies, Watanabe et al., in 2009 [33], decided to study the abnormalities of the findings of evoked potentials of patients with definite diagnosis of MS, and the presence of positivity for anti‐QP4. In this study, they observe that in the anti‐QP4‐negative MS group the delay in the latency of the P100 wave is evident, following the literature. However, the anti‐QP4‐positive group presents a higher percentage of patients with absence of this wave, revealing a more severe lesion (
Naismith et al., in 2009, evaluated patients with different diagnoses related to demyelinating diseases (CIS, MS, and NOM) that had at least one episode of ON in the last 6 months and tried to compare VEP sensitivity with the optic coherence tomography in the evaluation of clinical and subclinical ON. VEP showed higher sensitivity both in the evaluation of clinically identified ON (81% vs. 60%,
Neto et al., in 2013, conducted a study where 19 patients, with NOM diagnosis, with 74% being Afro‐Brazilians, underwent VEP study. Of the 38 eyes examined, 18 (47.37%) showed no visual evocable response. Of the 20 eyes (52.63%) where VEP responses were detected, 18 (90%) had P100 wave latency within normal range, while only 2 (10%) had increase of the latency of this wave. Regarding P100 wave amplitude, 11 of the 20 eyes (65%) that generated visual responses had values below that considered normal in the study. Seven (35%) had amplitudes ≥ 5.8 μV, being considered normal. In 65% of the 20 eyes where the visual response was evocable, a reduction of the P100 wave amplitude was found, with normal latency [34].
\nRingelstein et al., in 2014, reproduced the study by Neto et al., and analyzed the medical records of 43 Caucasian patients with NOM diagnosis, and compared the findings of their VEP with those of 81 healthy patients. The authors find reduced amplitude in 12.3%, long latencies in 41.9%, and absence of response in 14% of NOM eyes, suggesting that VEP in NOM would have a heterogeneous standard. However, the frequencies of amplitude reduction and the absence of response are greater than those observed in all the studies of patients with MS. In the article, they suggest that the difference in sample results, compared to the study by Neto et al. could be explained by ethnic issues that distinguish the populations studied [19]. In addition, in the study by Ringelstein et al., the reference value for amplitude normality is lower than that used by Neto et al., being 3.0 and 5.8 μV, respectively [35].
\nIn 2015, Chirapapaisan et al. evaluated hospital medical records of patients being investigated for MS, with no definite diagnosis. VEP was analyzed, along with the confirmation of the subsequent diagnosis of MS through McDonald diagnostic criteria (2005). Twelve of the 35 patients (34%) converted to MS, and 23 (66%) did not have diagnostic confirmation. P100 Latencies and differences of interocular latency were longer in the clinically definitive MS (CDMS) than in non‐CDMS patients (
In the last decade, recurrent ON, not associated with MS and NOM, was classified according to its clinical presentation in recurrent isolated form (RION) and chronic recurrent (CRION) form [37]. In CRION and RION, ON is more severe than in MS, leading to severe, bilateral visual impairment that can cause amaurosis. However, while a high prevalence of anti‐AQP4 antibody positivity is observed in NOM, in CRION 95% of the patients present negativity for anti‐AQP4 [38]. In all syndromes cited, the OCT reveals significant reduction of the fiber layers of the temporal and nasal retina.
\nWe can conclude that VEP has recently been sufficiently studied and shows differences between the classic pattern of MS and that of NOM, where the responses are more heterogeneous, and the reduction of P100 wave amplitude and the absence of response are more prevalent [34], but data in the literature are lacking about the VEP pattern in RION, CRION, syndromes of the NOM spectrum, and OSMS of MS.
\nOver the last few decades, the search for more eco-friendly and sustainable materials led to the use of natural fibers for composite reinforcement. Natural fibers are renewable, low cost, and readily available. They have low density when compared to commodity fibers such as glass, carbon, and aramid. Composites reinforced with natural fibers have high specific mechanical properties comparable to those of glass fiber–reinforced plastics. Therefore, natural fiber–reinforced biocomposites provide a gateway toward more eco-friendly and sustainable economies [1, 2]. Some common applications of biocomposites include automotive, packaging, civil engineering, sports, and recreation [3, 4].
\nThe overall performance of biocomposites depends on several factors such as fiber and resin type, fiber/matrix volume fraction, fiber architecture, and fiber-matrix interface quality. The interface between natural fibers and polymer resin has a large impact on the mechanical and degradation properties of biocomposites. In a composite structure, fibers are the main load-bearing component, whereas the matrix phase keeps the fibers together and protects them from external damage. A good bonding between fibers and matrix is necessary for the successful transfer of applied loads from weak matrix material to stiff and strong fibers. The fiber/matrix interface in these composites has always been problematic because of the incompatibility between the surface energies of hydrophilic natural fibers and hydrophobic polymer resins. Research efforts generally focused on enhancing the fiber-matrix bonding by using various chemical and physical modification techniques such as silane treatment, acetylation, use of coupling agents, and alkali treatment [5].
\nThis chapter deals with the interfacial modification of hemp fiber–based composites. In this scope, first, the structure of hemp fiber was explained. Mechanisms of fiber/matrix bonding in composite materials were outlined. A range of available techniques for the determination of interfacial strength was presented. Finally, the interface modification methods used for hemp fiber–reinforced composites were introduced in the light of scientific work in this field.
\nHemp is a member of bast fibers (\nFigure 1\n) [6] which are extracted from the phloem layer of plant stem. Like all bast fibers, hemp fiber has a multicellular structure (\nFigure 2\n) [7, 8]. A single hemp fiber is made up of lumen, primer wall, and seconder wall [9, 10]. Seconder wall can be further divided into three sub-layers such as S1, S2, and S3. S2 layer is particularly rich in cellulose microfibrils that are responsible for the fiber strength and stiffness [11, 12]. Physical properties of hemp fiber along with some other common natural fibers are given in \nTable 1\n [9, 13, 14]. \nTable 2\n shows the chemical composition of hemp and other natural fibers [15, 16].
\nClassification of natural fibers [
(a) Bundled hemp bast fibers [
Fiber | \nLength, | \nDiameter, | \nAspect ratio ( | \nMicrofibril angle (°) | \nDensity (kg/m3) | \nMoisture uptake (%) | \n
---|---|---|---|---|---|---|
Cotton | \n20–64 | \n11.5–17 | \n2752 | \n20–30 | \n1550 | \n8.5 | \n
Flax | \n27–36 | \n17.8–21.6 | \n1258 | \n5 | \n1400–1500 | \n12 | \n
Hemp | \n8.3–14 | \n17–23 | \n549 | \n6.2 | \n1400–1500 | \n12 | \n
Jute | \n1.9–3.2 | \n15.9–20.7 | \n157 | \n8.1 | \n1300–1500 | \n12 | \n
Kenaf | \n2–61 | \n17.7–21.9 | \n119 | \n– | \n1220–1400 | \n17 | \n
Ramie | \n60–250 | \n28.1–35 | \n4639 | \n– | \n1550 | \n8.5 | \n
Sisal | \n1.8–3.1 | \n18.3–23.7 | \n115 | \n10–22 | \n1300–1500 | \n11 | \n
Coir | \n0.9–1.2 | \n16.2–19.5 | \n64 | \n39–49 | \n1150–1250 | \n13 | \n
Fiber | \nCellulose (% wt.) | \nHemicellulose (% wt.) | \nLignin(% wt.) | \nPectin (% wt.) | \nMoisture (% wt.) | \nWax/oil (% wt.) | \n
---|---|---|---|---|---|---|
Cotton | \n85–90 | \n5.7 | \n– | \n0–1 | \n7.85–8.5 | \n0.6 | \n
Jute | \n61–71.5 | \n13.6–20.4 | \n12–13 | \n0.2 | \n12.5–13.7 | \n0.5 | \n
Flax | \n71 | \n18.6–20.6 | \n2.2 | \n2.3 | \n8–12 | \n1.7 | \n
Hemp | \n70–74 | \n17.9–22.4 | \n3.7–5.7 | \n0.9 | \n6.2–12 | \n0.8 | \n
Rami | \n68.6–76.2 | \n13.1–16.7 | \n0.6–0.7 | \n1.9 | \n7.5–17 | \n0.3 | \n
Sisal | \n66–78 | \n10–14 | \n10–14 | \n10 | \n10–22 | \n2 | \n
Pineapple | \n70–82 | \n– | \n5–12.7 | \n– | \n11.8 | \n– | \n
Coir | \n32–43 | \n0.15–0.25 | \n40–45 | \n3–4 | \n8 | \n– | \n
The most important component of hemp fiber is cellulose. Cellulose is a linear polymer of glucose (C6H12O6). Glucose molecules add on successively through β-1,4 linkages to form long cellulose chains (\nFigure 3\n) [17]. These cellulose chains form hydrogen bonds with one another through their pendant ─OH or ─CH2OH groups to form microfibrils. Typical diameter and length of these microfibrils are 2–20 and 100–40,000 nm, respectively [18]. There are different regions in cellulose with respect to the arrangement of these microfibrils, i.e., crystalline regions where the microfibrils are well oriented and run parallel to each other creating ordered structures and amorphous regions, which have a more disordered and openly packed structure. Crystalline regions are so closely packed that they are hard to penetrate for the majority of chemical agents. Amorphous regions, on the other hand, are more accessible and easier to manipulate. Therefore, almost all fiber modifications aim at modifying the structure of amorphous regions as well as the surfaces of crystalline regions. Hemicelluloses refer to a group of polysaccharides which bind individual cellulose microfibrils in cell walls [18, 19]. They generally have amorphous structures and are easier to remove or manipulate by using chemical agents. Lignin is also an amorphous material with a branched structure. It typically consists of oxyphenyl propan units [9, 18, 20, 21]. Pectin is a common name representing a range of complex pectic polysaccharides [22]. Like hemicelluloses, pectin serves as a binding agent in plant cell wall. There are various other aromatic compounds in plant cell wall such as condensed tannins [23] and low-molecular-weight phenolic acids, e.g., ferulic and
Chemical structure of cellulose [
Wetting is the ability of a liquid to make and sustain contact with a solid surface, when the two phases are brought together. Fiber wetting occurs when intermolecular interactions between the fiber and resin molecules are greater than the cohesive forces between the resin molecules. There are various intermolecular interactions that may take part in the adhesion process such as ion-ion, ion-dipole, dipole-dipole, van der Waals interactions, and hydrogen bonding [25]. Fiber wetting is the first necessary step before any further interaction or bonding between fibers and matrix can occur. A successful wetting means that the resin spreads over the greatest possible surface area of the fibers (contact angle,
Contact angle,
Wetting behavior of fibers can be fully described by determining four wetting parameters such as thermodynamic work of adhesion (
Where
The interfacial energy is defined as the work necessary to increase the interfacial surface area by unit area [27]. Hence, a small value of interfacial energy indicates a good wetting.
\nThe spreading coefficient is the ability of a liquid to spontaneously spread over a solid. A positive value of the spreading coefficient indicates instantaneous spreading.
\nFinally, the wetting tension can be defined as the work needed against wetting a porous network by eliminating a unit area of the solid-liquid interface while exposing a unit area of the solid vacuum interface. A positive value of wetting tension is an indication of good wetting [27].
\nIn general, wetting is strongly favored when the surface energy of the fiber greatly exceeds that of the resin. For instance, glass fibers (
Chemical bonds include ionic, covalent, and metallic bonds. Covalent bonds are the most common form of chemical bonding in the case of natural fiber composites and are much stronger compared with intermolecular interactions. These bonds generally form between the hydroxyl groups of natural fibers and the functional groups of the polymer resin. Coupling agents with these functional groups can also be used to improve fiber/matrix bonding.
\nCoulombic interactions can occur when the surfaces of fibers and resin have charges of opposite signs. Coulombic forces are weaker when compared to other forms of interactions and are not stable due to the fact that they can change with humidity, pH, and temperature.
\nAnother important mechanism for interface adhesion for natural fiber composites is mechanical interlocking. In this case, the resin in liquid form penetrates into the surface cavities of fibers during composite production and is locked inside these cavities upon curing/hardening. It is noteworthy that this mechanism works only for fibers with a rough surface. As the surface roughness of the natural fiber increases, so does the effectiveness of mechanical interlocking. Thus, some fiber modification techniques such as alkali treatment are employed to increase the surface roughness of natural fibers and promote the mechanical locking between fibers and resin.
\nSingle-fiber or bulk laminate methods can be employed to determine the interfacial bonding strength of composite materials. The most common single-fiber tests are pull-out, microbond, and full fragmentation tests. These test methods use a single fiber embedded in a matrix. The interfacial shear strength (IFSS) is correlated with the shear debonding stress of the single fiber. One major limitation of single-fiber tests is that the shear behavior of fibers in real composite material may be different from that of the single fiber because of the effect of neighboring fibers. Yet, single-fiber tests yield a reasonable quantification of interfacial bond strength under tensile loading. Bulk laminate experiments, on the other hand, include transverse tensile and bending tests, short beam shear test and Iosipescu shear test. Complementary methods used for the assessment of interfacial adhesion include X-ray photoelectron spectroscopy (XPS), ToF-SIMS, SEM, and surface energy analysis. Only single-fiber test methods which are the most common are explained in this section, since the full discussion of all the available techniques goes beyond the scope of this chapter.
\nSingle-fiber pull-out is among the most common testing methods for interface characterization of natural fiber composites [28, 29]. In this method, a single fiber that is half embedded in a matrix is pulled out of the matrix under a tensile load. The apparent interfacial shear strength (IFSS,
in which
More sophisticated treatment of single-fiber pull-out test requires calculating the debonding shear stress by using shear lag theory [30, 31]. \nFigure 5\n shows axial distributions of the normal stress in the fiber and shear stress at the interface [26]. There are three stages for the complete pulling out of the fiber, i.e., elastic loading up to debonding, propagation of the debonding front, and pull-out by frictional sliding. Shear lag theory assumes that there is no shear strain in the fiber and no transfer of normal stress across the fiber ends [26].
\nSchematic stress distributions and load-displacement plot during the single-fiber pull-out test [
The peak in the load-displacement curve (
Where
in which
Microbond test is generally used for fibers with small diameter and is similar to the fiber pull-out test. In this method, a small droplet of resin is applied to the fiber and the specimen is positioned between two knife edge–shaped plates (\nFigure 6\n) [32]. A tensile force is then applied to the free end of the fiber to pull the resin droplet against the knife edges so that the load is transferred to the fiber-matrix interface. The same equation as in the pull-out method is used to calculate the IFSS. This technique requires very small droplets and is suitable for very soft matrix materials [33].
\nSchematic representation of the microbond test [
In the full-fragmentation test, a single fiber is fully embedded in a matrix, and the matrix is elongated in tension parallel to the fiber axis (\nFigure 7\n) [34]. Eventually, the fiber breaks into a number of fragments with varying lengths. The shortest fiber length obtained in this way is referred to as the critical fiber length,
Schematic representation of the full fragmentation test [
In a real composite structure, the interface is usually subject to various loads, and its failure may comprise different modes such as debonding, cracking, and sliding, most of which involve plastic deformation of the matrix. Single-fiber experiments generally consider shear debonding and sliding as the failure mechanisms with no regard to normal stress across the interface because of the difficulty in applying such stresses to a cylindrical interface. The basic assumption in all these tests is that the tensile load applied to the fiber end is transferred as a shear load across the fiber/matrix interface. Thus, higher tensile loads indicate better fiber/matrix adhesion at the interface. It is important to bear in mind that the single-fiber tests yield only approximate values, and the real-life structure can be subjected to different distribution of loads and may show very complex interface failure mechanisms.
\nThis method is based on “corona discharge”, i.e., an electrical discharge appearing around the surface of charged conductors, caused by ionization of the surrounding fluid. This ionization creates radicals on the surface of the fibers and promotes fiber-matrix bonding. Ragoubi et al. [35] investigated the mechanical properties of composites obtained from different combinations of untreated and corona-treated hemp fibers and PP matrix. The corona treatment resulted in a significant increase in tensile strength with 30% enhancement in Young’s modulus. Authors reported that the etching effect generated by corona treatment which is evidenced by microscopy increased the mechanical locking between fibers and the matrix and therefore resulted in enhanced mechanical properties.
\nIn plasma treatment, plasma of different gases is used to modify the surface of natural fibers. It is similar to corona treatment in that an ionized region including excited species such as ions and radicals is formed around the fiber surface. This technique requires a vacuum chamber and gas feed to maintain the desired pressure and composition of the gas mixture. Jimenez et al. [36] studied the impact of atmospheric air pressure plasma (AAPP) treatment on the mechanical properties and interfacial behavior of hemp fiber–reinforced cellulose-acetate-butyrate (CAB) biocomposites. During testing, the untreated and AAPP-treated fibers exhibited a linear region and then exhibited a sharp drop in strength after reaching ultimate failure stress. After the treatment, the tensile strength, Young’s modulus, and elongation at break of hemp fibers reduced dramatically. However, the heat generated during the plasma treatment causes dehydration of the fibers and the etching effect of plasma results in rougher fiber surfaces. It was shown that the interfacial shear strength (IFSS) increases after 1-min AAPP treatment due to enhanced surface roughness and accompanying increment in fiber/matrix mechanical locking. The introduction of functional groups and cleaning of contaminant substances were other factors that enhanced fiber/matrix bonding efficiency.
\nAlkali treatment is among the most popular fiber modification methods for its simplicity, low cost, and effectiveness. This technique involves using a dilute solution of sodium hydroxide (NaOH) or other bases to modify the fiber surface. Alkali treatment creates a rougher fiber surface by removing hemicelluloses polymers and other polymeric materials from the fiber surface thus improving mechanical locking between fibers and resin. Alkali treatment also separates fiber bundles by removing pectin and hemicellulose polymers that bind the individual fibers together resulting in an increased effective fiber surface area for resin adherence. Mwaikambo and Ansell [37] treated hemp fibers with different concentrations of NaOH. After the treatment, the surfaces of hemp fibers were cleaner and rougher. X-ray diffraction and thermal analysis indicated that the crystallinity index of the fibers slight increased at low NaOH concentration but reduced at higher concentrations of NaOH. Alkalization increased the surface roughness and resulted in better mechanical locking between fibers and the matrix, thus improving the composite mechanical properties (\nFigure 8\n) [37]. In another study [38], the same research group treated hemp fibers with NaOH and reported that alkalization caused a rapid degradation of the cellulose between 0.8 and 8% NaOH concentrations. At higher concentrations, the degradation was reported to be marginal. Similarly, there was a marginal decrease in the crystallinity index at NaOH concentrations between 0.8 and 30%. SEM study indicated that alkalization resulted in rougher fiber surface, favoring fiber-matrix interlocking and adhesion.
\n(a) Untreated hemp fiber and (b) alkali treated hemp fiber [
Aziz and Ansell [39] investigated the effect of alkalization and fiber alignment on the performance of hemp fiber composites. Alkali-treated fiber composites possessed higher flexural strength and modulus compared with untreated fiber composites. SEM micrographs indicated that the surfaces of hemp fibers were cleaner after the treatment. Dynamic mechanical analysis showed that the alkalized fiber composites have higher storage modulus values corresponding to higher flexural moduli. Ouajai and Shanks [40] investigated the properties of hemp fibers after mercerization with NaOH solution. The greater activation energy of treated hemp fiber compared with untreated fiber suggested an increase of purity and improvement in structural order. FTIR study indicated that mercerization removed noncellulosic substances from the fiber. However, NaOH treatment caused structural degradation of fibers especially at higher concentrations and longer treatment times as evidenced by X-ray measurements. Park et al. [41] investigated the interfacial properties of PP composites reinforced with as-received and alkaline and silane treated hemp fibers by using acoustic emission (AE) and dynamic contact angle measurement. Surface energy of the fibers was increased after alkaline treatment due to the removal of the weak boundary layers and resulting increase in surface area. The IFSS also increased after alkali treatment. Islam et al. [42] produced short and long hemp fiber reinforced polylactic acid (PLA) composites by film stacking method. Interfacial shear strength (IFSS) measurements proved that the interfacial bonding was favored by alkali treatment of hemp fibers which also led to improved composite mechanical properties. In another study [43], industrial hemp fibers were treated with a 5-wt% NaOH solution at 120°C for 60 min to remove noncellulosic fiber components. The results showed that alkali treatment removed lignin, separated fiber bundles, exposed cellulose hydroxyl groups, and enhanced thermal stability of the fibers by increasing cellulose crystallinity via better packing of cellulose chains. Alkali treatment also improved the strength and stiffness of resulting hemp/epoxy composites. Sawpan et al. [44] treated hemp fibers with a range of chemicals including NaOH, acetic anhydride, maleic anhydride and silane in an attempt to improve interfacial shear strength (IFSS) of hemp fiber–reinforced polylactide (PLA) and unsaturated polyester (UPE) composites. \nFigure 9\n shows IFSS as a function of embedded length for UPE/hemp fiber (untreated and treated) samples [44]. IFSS of alkali-treated hemp fiber composites (UPE/ALK) generally increased when compared to untreated samples (UPE/FB), which was attributed to better fiber/matrix bonding, increased matrix transcrystallinity, and increased chemical bonding as evidenced by FTIR results. In a recent work, Dayo et al. [45] prepared bisphenol A-aniline–based benzoxazine (BA-a) composites reinforced with 5% NaOH-treated short hemp fibers. The study showed that the rich ─OH groups in treated fibers can promote the ring opening of oxazines at lower curing temperature and improve the adhesion between fiber and matrix. Considerable improvements were recorded in mechanical properties of the composites by using treated fibers.
\nIFSS as a function of embedded length for UPE/hemp fiber (untreated and treated) samples [
An ester refers to the product of the reaction between a carboxylic acid and an alcohol. In esterification technique, carboxyl groups, ─COOH, in carboxylic acids react with hydroxyl groups, ─OH, in cellulose macromolecules. After the reaction, ─OH groups are eliminated resulting in more hydrophobic fibers making them more compatible with polymer matrix. Esterification techniques include acetylation, benzylation, propionylation and treatment with stearates [33]. Acetylation is the most popular and effective esterification technique for the treatment of natural fibers. Tserki et al. [46] investigated the effect of acetylation and propionylation on various natural fibers including hemp. It was shown that ester bonds formed on the fiber surface and noncrystalline substances were removed, hence changing the surface topography. The moisture absorption of the fibers reduced after the treatment. \nFigure 10\n shows ester content versus reaction time plots of various treated fibers [46].
\nEster content of chemically treated fibers [
Mwaikambo and Ansell [37] applied acetylation treatment to hemp and other natural fibers. Acetylation was carried out using acetic anhydride with and without an acid catalyst to graft acetyl groups onto the cellulose structure (\nFigure 11\n) [37]. The surface of treated fibers was rougher compared with untreated fibers. Acetylation significantly enhanced the performance of natural fiber composites by promoting better fiber to resin bonding. Gulati and Sain [47] examined the effect of acetylation on acid–base characteristics of hemp fibers by using inverse gas chromatography. The results suggested that acetylation caused hemp fibers to be more basic due to esterification of hydroxyl groups. Composites manufactured with acetylated fibers showed improved flexural properties.
\nAcetylation process [
Traditionally, organosilanes are used in glass fiber–reinforced composites in order to enhance their strength and durability, and they are still the largest group of coupling agents used in composite industry today. A silane that contains at least one carbon-silicon bond (Si─C) structure is referred to as an organosilane. The organosilane molecule can be represented by the formula R─(CH2)\n
The general mechanism of alkoxysilane reaction with fiber surface [
Panaitescu [48] investigated the combined effect of 3-aminopropyl triethoxy silane and MAPP treatments on the morphology, thermal, and mechanical properties of hemp fiber–reinforced high-flow PP modified with poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS). Thermal stability of hemp fibers enhanced after silane treatment. Better dispersion of fibers and enhanced static and dynamic mechanical properties of their composites were observed with treated fibers compared with untreated fibers and their composites. In another study [49], the impact of silane treatment on the properties of nonwoven hemp fabric–reinforced unsaturated polyester resin (UPE) composites was investigated. The silane treatment resulted in a better interface adhesion and mechanical and thermal properties of the composites. Rachini et al. [50] reported that silane treatment of hemp fibers increased their hydrophobic character through a condensation reaction between hydrolyzed silane and hydroxyl groups of hemp fibers. Recently, Panaitescu et al. [51] treated hemp fibers with various silane coupling agents to improve the mechanical properties of hemp fiber/PP composites for automotive parts. The silane treatment resulted in bundle splitting and separation of elementary fibers. All the silane treatments were shown to increase the mechanical and thermal properties of the resulting hemp fiber/PP composites.
\nIn graft copolymerization, the cellulosic fiber is treated with an aqueous solution of selected ions and is then exposed to high energy radiation. As a result, the cleavage of cellulose macromolecules takes place, and radical groups are formed. Then, the cellulose material is grafted using a suitable polymer that is compatible with polymer matrix such as acrylonitrile, vinyl monomers, polystyrene, and methyl methacrylate. The most popular and efficient grafting method is the treatment of natural fibers with maleic anhydride grafted polypropylene (MAPP) copolymers. This process results in the formation of covalent bonds across fiber-matrix interface. The reaction takes place in two steps as shown in Figure 13 [5].
\nThe reaction between natural fibers and maleic anhydride grafted polypropylene (MAPP) copolymers [
Vignon et al. [52] studied the properties of hemp bast fibers purified by steam treatment compounded with polypropylene (PP), either directly or after surface treatment with polypropylene-maleic anhydride co-polymer. The treatment increased the mechanical properties, tensile modulus, and tensile strength at yield of the resulting PP composites due to a better adhesion between the matrix and the fibers. Mishra et al. [53] investigated the effect of maleic anhydride treatment on the mechanical properties of hemp/novolac resin composites. The treatment resulted in more hydrophobic character in hemp fibers. The impact strength, Young\'s modulus, flexural modulus, and Shore-D hardness were reported to be higher in maleic anhydride–treated fiber composites compared with as-received hemp fiber composites. Wielage et al. [54] investigated the influence of MAH-PP on storage modulus and loss factor of hemp fiber polypropylene composites. SEM analysis confirmed that the coupling agent causes a significantly better wetting of the natural fibers when compared to untreated composites. Some researchers combined MAH-PP treatment with mercerization to obtain a synergistic effect. Bledzki et al. [55] modified hemp fibers by mercerization and MAH-PP coupling agent and used for the production of epoxy and PP composites. The tensile modulus increased after the chemical treatments. Mishra and Naik [56] treated hemp fibers with maleic anhydride and fabricated their polystyrene composites. They reported that maleic anhydride treatment resulted in significant enhancement in Young’s modulus, flexural modulus, impact strength, and Shore-D hardness of the composites when compared to the untreated fiber composites. Wang et al. [57] investigated the effect of maleic anhydride-grafted polyethylene (MAPE) on the compressive dynamic behavior and flammability of short hemp fibers/high-density polyethylene (HDPE) composites. The compressive modulus and yield stress increased with MAPE treatment. Etaati et al. [58] investigated the static and dynamic mechanical and viscoelastic properties of short hemp fiber polypropylene composites. The maleic anhydride–grafted polypropylene (MAPP) and maleic anhydride–grafted poly(ethylene octane) (MAPOE) were used as coupling agents for modifying the matrices. The damping ratio analysis suggested that the bonding between fibers and resin was improved by MAPP. This was also evidenced by tensile strength experiments and scanning electron microscope (SEM) observations. Recently, Sullins et al. [59] studied the impact of NaOH and maleic anhydride–grafted polypropylene (MAPP) on the properties of hemp fiber/PP composites. It was reported that the treatments resulted in composites with better mechanical properties. The composites with 5 wt% MAPP displayed the highest mechanical properties.
\nPolymethylene-polyphenyl isocyanates (PMPPIC) can make strong covalent bonds with ─OH groups of cellulose through their –N=C=O functional groups. The isocyanate treatment is very effective and can be used to modify both fibers and the polymer matrix. The reaction of isocyanates depends upon the catalysts and temperature. The main disadvantage of this method is the toxicity of the chemicals used. Hemp fiber were modified with 3-isopropenyl-dimethylbenzyl isocyanate (TMI), using dibutyltin dilaurate (DBT) as a catalyst and then used to reinforce unsaturated polyester (UPE) composites [60]. The treatment significantly increased the tensile strength, flexural strength, and water resistance of the resulting composites. SEM study of the fractured surfaces confirmed that the pretreatment significantly improved the interfacial adhesion between hemp fibers and UPE resins. FT-IR spectra and X-ray photoelectron spectroscopy (XPS) analysis indicated that the treated fibers made covalent bonds with the resin. In a recent study, Liu et al. [61] prepared an environmentally friendly composite from hemp fibers and acrylated epoxidized soybean oil (AESO) and N-vinyl-2-pyrrolidone copolymer. The properties of the composites were enhanced through the incorporation of isophorone diisocyanate (IPDI). The FTIR and 13C NMR spectra reveal that IPDI could react with the ─OH groups of both hemp fibers and AESO by forming urethane connections thus acting as a bridge between the fibers and matrix. As a result, the tensile and flexural properties, storage modulus, and glass transition temperature of the composites were significantly increased.
\nNatural fiber–reinforced composites have a growing popularity in various industries such as automotive, construction, recreation, sports, and biomedical due to their high mechanical properties and environmentally friendly nature. However, these composites suffer from problems related to weak interfacial bonding between natural fibers and polymer resins as well as the hydrophilic nature of plant fibers. Over the last few decades, studies mostly concentrated on improving fiber/matrix bonding in natural fiber composites in an attempt to enhance their mechanical properties and at the same time reduce their vulnerability to moisture. Several physical and chemical modification methods have been implemented such as corona, plasma, and alkali treatment, esterification-based treatments, silane coupling agents, graft copolymerization, and isocyanate treatment. Significant improvements have been recorded in the mechanical, thermal, and moisture absorption properties of biocomposites by applying these modification methods. Alkali treatment and graft copolymerization stand out among other treatments for their low cost and efficiency. Interface modification efforts are likely to continue in the future with the implementation of new physical and chemical methods. It is expected that more sophisticated techniques will come into play with an effective use of nanotechnology in the field. It is expected that, with the use of cellulose nanofibrils together with advanced nano-modification methods, stronger, more durable, and cost-effective natural fiber composites will dominate the composite industry in the near future.
\nOve Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.
',metaTitle:"Odredbe i uvjeti",metaDescription:"Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.",metaKeywords:null,canonicalURL:"/page/cro-terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\\n\\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\\n\\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\\n\\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\\n\\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\\n\\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\\n\\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\\n\\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\\n\\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\\n\\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\\n\\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\\n\\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\\n\\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\\n\\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\\n\\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\\n\\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\n\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\n\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\n\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\n\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\n\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\n\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\n\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\n\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\n\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\n\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\n\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\n\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\n\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\n\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\n\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18 FILLER ads"},books:[{type:"book",id:"11609",title:"Fungicides - Application, Technologies, and Materials for the Future of Plant Disease Management",subtitle:null,isOpenForSubmission:!0,hash:"3a8c9d55c21ce8d69d2edc94f9e592f3",slug:null,bookSignature:"Dr. Mizuho Nita",coverURL:"https://cdn.intechopen.com/books/images_new/11609.jpg",editedByType:null,editors:[{id:"98153",title:"Dr.",name:"Mizuho",surname:"Nita",slug:"mizuho-nita",fullName:"Mizuho Nita"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11648",title:"Current Status and Ecological Aspects of Seabirds",subtitle:null,isOpenForSubmission:!0,hash:"7754b354f7deebdb8576189aefbdbc5c",slug:null,bookSignature:"Dr. Muhammad Nawaz Rajpar",coverURL:"https://cdn.intechopen.com/books/images_new/11648.jpg",editedByType:null,editors:[{id:"183095",title:"Dr.",name:"Muhammad Nawaz",surname:"Rajpar",slug:"muhammad-nawaz-rajpar",fullName:"Muhammad Nawaz Rajpar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11620",title:"Tomato - From Cultivation to Processing Technology",subtitle:null,isOpenForSubmission:!0,hash:"cdc23b5aad5d52bc0f0327c453ac7a1b",slug:null,bookSignature:"Prof. Pranas Viskelis, Dr. Dalia Urbonaviciene and Dr. Jonas Viskelis",coverURL:"https://cdn.intechopen.com/books/images_new/11620.jpg",editedByType:null,editors:[{id:"83785",title:"Prof.",name:"Pranas",surname:"Viskelis",slug:"pranas-viskelis",fullName:"Pranas Viskelis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11020",title:"Dietary Supplements - Challenges and Future Research",subtitle:null,isOpenForSubmission:!0,hash:"2283ae2d0816c17ad46cbedbe4ce5e78",slug:null,bookSignature:"Dr. Venketeshwer Rao and Dr. Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/11020.jpg",editedByType:null,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11627",title:"Oilseed Crops - Biology, Production and Processing",subtitle:null,isOpenForSubmission:!0,hash:"010cdbbb6a716d433e632b350d4dcafe",slug:null,bookSignature:"Prof. Mirza Hasanuzzaman and MSc. Kamrun Nahar",coverURL:"https://cdn.intechopen.com/books/images_new/11627.jpg",editedByType:null,editors:[{id:"76477",title:"Prof.",name:"Mirza",surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11615",title:"Humus and Humic Substances - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"a9b75be6b30278fca930c4dd560a8b2b",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/11615.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11802",title:"Honey - Composition and Properties",subtitle:null,isOpenForSubmission:!0,hash:"60482dae5e08f5b22b0c7a2749cdfc02",slug:null,bookSignature:"Dr. Muhammad Imran, Dr. Muhammad Haseeb Ahmad and Dr. Rabia Shabir Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/11802.jpg",editedByType:null,editors:[{id:"208646",title:"Dr.",name:"Muhammad",surname:"Imran",slug:"muhammad-imran",fullName:"Muhammad Imran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10744",title:"Astrocytes in Brain Communication and Disease",subtitle:null,isOpenForSubmission:!0,hash:"8b6a8e2bb5f070305768945fdef8eed2",slug:null,bookSignature:"Prof. Denis Larrivee",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg",editedByType:null,editors:[{id:"206412",title:"Prof.",name:"Denis",surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11644",title:"Structural and Molecular Aspects of DNA Repair",subtitle:null,isOpenForSubmission:!0,hash:"83dfefc2400d2d037281f1e25bbc544b",slug:null,bookSignature:"Prof. Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/11644.jpg",editedByType:null,editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11638",title:"Meat Science and Nutrition - Recent Advances and Innovative Processing Technologies",subtitle:null,isOpenForSubmission:!0,hash:"3923d89fcf837fac59c906f9694ab1f8",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad",coverURL:"https://cdn.intechopen.com/books/images_new/11638.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11667",title:"Marine Pollution - Recent Developments",subtitle:null,isOpenForSubmission:!0,hash:"e524cd97843b075a724e151256773631",slug:null,bookSignature:"Dr. Monique Mancuso",coverURL:"https://cdn.intechopen.com/books/images_new/11667.jpg",editedByType:null,editors:[{id:"318562",title:"Dr.",name:"Monique",surname:"Mancuso",slug:"monique-mancuso",fullName:"Monique Mancuso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11619",title:"Root Vegetables",subtitle:null,isOpenForSubmission:!0,hash:"2c5535e66fed5abd8f80ee521b51b2d3",slug:null,bookSignature:"Dr. Prashant Kaushik",coverURL:"https://cdn.intechopen.com/books/images_new/11619.jpg",editedByType:null,editors:[{id:"311935",title:"Dr.",name:"Prashant",surname:"Kaushik",slug:"prashant-kaushik",fullName:"Prashant Kaushik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:76},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4389},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"765",title:"Electrical Engineering",slug:"electrical-engineering",parent:{id:"117",title:"Energy Engineering",slug:"engineering-energy-engineering"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:83,numberOfWosCitations:72,numberOfCrossrefCitations:34,numberOfDimensionsCitations:78,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"765",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6837",title:"Lithium-ion Batteries",subtitle:"Thin Film for Energy Materials and Devices",isOpenForSubmission:!1,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:"lithium-ion-batteries-thin-film-for-energy-materials-and-devices",bookSignature:"Mitsunobu Sato, Li Lu and Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:"Edited by",editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6698",title:"Smart Microgrids",subtitle:null,isOpenForSubmission:!1,hash:"a1fac6b89121e7fda4b7c712c18a9fb0",slug:"smart-microgrids",bookSignature:"Majid Nayeripour, Eberhard Waffenschmidt and Mostafa Kheshti",coverURL:"https://cdn.intechopen.com/books/images_new/6698.jpg",editedByType:"Edited by",editors:[{id:"66929",title:"Prof.",name:"Majid",middleName:null,surname:"Nayeripour",slug:"majid-nayeripour",fullName:"Majid Nayeripour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6285",title:"Proton Exchange Membrane Fuel Cell",subtitle:null,isOpenForSubmission:!1,hash:"ed010c881a38d577f89ccb714c17f785",slug:"proton-exchange-membrane-fuel-cell",bookSignature:"Tolga Taner",coverURL:"https://cdn.intechopen.com/books/images_new/6285.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1648",title:"Electromotive Force and Measurement in Several Systems",subtitle:null,isOpenForSubmission:!1,hash:"a8720934b325d51e7f4fdcef34be5a9a",slug:"electromotive-force-and-measurement-in-several-systems",bookSignature:"Sadik Kara",coverURL:"https://cdn.intechopen.com/books/images_new/1648.jpg",editedByType:"Edited by",editors:[{id:"63995",title:"Prof.",name:"Sadik",middleName:null,surname:"Kara",slug:"sadik-kara",fullName:"Sadik Kara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"24118",doi:"10.5772/28934",title:"The EMF Method with Solid-State Electrolyte in the Thermodynamic Investigation of Ternary Copper and Silver Chalcogenides",slug:"the-emf-method-with-solid-state-electrolyte-in-the-thermodynamic-investigation-of-ternary-copper-and",totalDownloads:2648,totalCrossrefCites:15,totalDimensionsCites:31,abstract:null,book:{id:"1648",slug:"electromotive-force-and-measurement-in-several-systems",title:"Electromotive Force and Measurement in Several Systems",fullTitle:"Electromotive Force and Measurement in Several Systems"},signatures:"Mahammad Babanly, Yusif Yusibov and Nizameddin Babanly",authors:[{id:"75915",title:"Prof.",name:"Mahammad",middleName:null,surname:"Babanly",slug:"mahammad-babanly",fullName:"Mahammad Babanly"},{id:"139232",title:"Prof.",name:"Yusif",middleName:null,surname:"Yusibov",slug:"yusif-yusibov",fullName:"Yusif Yusibov"},{id:"139233",title:"Prof.",name:"Nizameddin",middleName:null,surname:"Babanly",slug:"nizameddin-babanly",fullName:"Nizameddin Babanly"}]},{id:"58665",doi:"10.5772/intechopen.72208",title:"Degradation in PEM Fuel Cells and Mitigation Strategies Using System Design and Control",slug:"degradation-in-pem-fuel-cells-and-mitigation-strategies-using-system-design-and-control",totalDownloads:1572,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"The rapid miniaturization of electronics, sensors, and actuators has reduced the cost of field sensor networks and enabled more functionality in ever smaller packages. Networks of field sensors have emerging applications in environmental monitoring, in disaster monitoring, security, and agriculture. Batteries limit potential applications due to their low specific energy. A promising alternative is photovoltaics. Photovoltaics require large, bulky panels and are impacted by daily and seasonal variation in solar insolation that requires coupling to a backup power source. Polymer electrolyte membrane (PEM) fuel cells are a promising alternative, because they are clean, quiet, and operate at high efficiencies. However, challenges remain in achieving long lives due to catalyst degradation and hydrogen storage. In this chapter, we present a design framework for high-energy fuel cell power supplies applied to field sensor networks. The aim is to achieve long operational lives by controlling degradation and utilizing high-energy density fuels such as lithium hydride to produce hydrogen. Lithium hydride in combination with fuel-cell wastewater or ambient humidity can achieve fuel specific energy of 5000 Wh/kg. The results of the study show that the PEM hybrid system fueled using lithium hydride offers a three- to fivefold reduction in mass compared to state-of-the-art batteries.",book:{id:"6285",slug:"proton-exchange-membrane-fuel-cell",title:"Proton Exchange Membrane Fuel Cell",fullTitle:"Proton Exchange Membrane Fuel Cell"},signatures:"Jekan Thangavelautham",authors:[{id:"210571",title:"Prof.",name:"Jekan",middleName:null,surname:"Thangavelautham",slug:"jekan-thangavelautham",fullName:"Jekan Thangavelautham"}]},{id:"57938",doi:"10.5772/intechopen.71635",title:"Fundamentals of Electrochemistry with Application to Direct Alcohol Fuel Cell Modeling",slug:"fundamentals-of-electrochemistry-with-application-to-direct-alcohol-fuel-cell-modeling",totalDownloads:1345,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"Fuel cell modeling is an inherently multiphysics problem. As a result, scientists and engineers trained in different areas are required to work together in this field to address the complex physicochemical phenomena involved in the design and optimization of fuel cell systems. This multidisciplinary approach forces researchers to become accustomed to new concepts. Electrochemical processes, for example, constitute the heart of a fuel cell. Accurate modeling of electrochemical reactions is therefore essential to successfully predict the performance of these devices. However, becoming familiar with the complex concepts of electrochemistry can be an arduous task for those who approach the study of fuel cells from fields other than chemical engineering. This process can extend over time and requires careful reading of many textbooks and papers, the most illuminating ones being hidden to the newcomer in a plethora of recent publications on the subject. The authors, who engaged in the study of fuel cells coming from the field of mechanical engineering, had to travel this road once and, with this contribution, would like to make the journey easier for those who come behind. As an illustrative example, the thermodynamic and electrochemical principles reviewed in this chapter are applied to a complex electrochemical system, the direct ethanol fuel cell (DEFC), reviewing recent work on this problem and suggesting future research directions.",book:{id:"6285",slug:"proton-exchange-membrane-fuel-cell",title:"Proton Exchange Membrane Fuel Cell",fullTitle:"Proton Exchange Membrane Fuel Cell"},signatures:"Juan Sánchez-Monreal, Marcos Vera and Pablo A. García-Salaberri",authors:[{id:"176049",title:"Dr.",name:"Marcos",middleName:null,surname:"Vera",slug:"marcos-vera",fullName:"Marcos Vera"},{id:"213212",title:"Dr.",name:"Juan",middleName:null,surname:"Sánchez-Monreal",slug:"juan-sanchez-monreal",fullName:"Juan Sánchez-Monreal"},{id:"213213",title:"Dr.",name:"Pablo A.",middleName:null,surname:"García-Salaberri",slug:"pablo-a.-garcia-salaberri",fullName:"Pablo A. García-Salaberri"}]},{id:"59885",doi:"10.5772/intechopen.74780",title:"Transformation of Conventional Houses to Smart Homes by Adopting Demand Response Program in Smart Grid",slug:"transformation-of-conventional-houses-to-smart-homes-by-adopting-demand-response-program-in-smart-gr",totalDownloads:1018,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"In an ever-growing state of electricity demand due to population growth as well as modernization of societies, it has compelled us to look for many options to cope with the situations. However, for a balanced electrical power demand and supply, it is necessary to respond requirement at any time without any interruption with the strategy of demand response programs (DRP) to the users. In order to promote smart usage of electrical power, smart grid networks are gradually transforming conventional grids in many places. As a part of smart grid, conventional houses may be transformed to smart house by simply implementing some intelligent controller with interfaces like smart plugs to the conventional electrical appliances. This chapter elaborates a new strategy of home energy management system (HEMS) in a smart grid environment to transform any ordinary premises to smart house to be energy efficient by simply rescheduling operation time.",book:{id:"6698",slug:"smart-microgrids",title:"Smart Microgrids",fullTitle:"Smart Microgrids"},signatures:"Mohammad Shakeri and Nowshad Amin",authors:[{id:"192623",title:"Dr.",name:"Nowshad",middleName:null,surname:"Amin",slug:"nowshad-amin",fullName:"Nowshad Amin"},{id:"237347",title:"Dr.",name:"Mohammad",middleName:null,surname:"Shakeri",slug:"mohammad-shakeri",fullName:"Mohammad Shakeri"}]},{id:"57505",doi:"10.5772/intechopen.71470",title:"Robotic Technologies for Proton Exchange Membrane Fuel Cell Assembly",slug:"robotic-technologies-for-proton-exchange-membrane-fuel-cell-assembly",totalDownloads:1327,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Proton exchange membrane fuel cell (PEMFC) stacks and their components are currently being manufactured using laboratory fabrication methods. While in recent years these methods have been scaled up in size, they do not incorporate high-volume manufacturing methods. In this context, manufacturing R&D is necessary to prepare advanced manufacturing and assembly technologies that are required for low-cost, high-volume fuel cell power plant production. U.S. Department of Energy (DOE) has identified high-priority manufacturing R&D needs for PEMFCs. Along with efforts to develop technologies for high-speed manufacturing of fuel cell components, DOE identified the need for demonstrating automated assembly processes for fuel cell stacks. The scope of this chapter is to review current manufacturing R&D efforts in the area of automated processes for assembling PEMFC stacks, to present the current state of development, successful demonstrations, related technological challenges and the technical solutions used to overcome them. An emphasis of this review is on the design of tools used for robotic grasping, handling and inserting fuel cell components in the stack and on the use of design for manufacture and assembly (DFMA) strategies that enable the automated assembly process.",book:{id:"6285",slug:"proton-exchange-membrane-fuel-cell",title:"Proton Exchange Membrane Fuel Cell",fullTitle:"Proton Exchange Membrane Fuel Cell"},signatures:"Vladimir Gurau, Devin Fowler and Daniel Cox",authors:[{id:"219399",title:"Dr.",name:"Vladimir",middleName:null,surname:"Gurau",slug:"vladimir-gurau",fullName:"Vladimir Gurau"},{id:"220252",title:"MSc.",name:"Devin",middleName:null,surname:"Fowler",slug:"devin-fowler",fullName:"Devin Fowler"},{id:"222195",title:"Prof.",name:"Daniel",middleName:null,surname:"Cox",slug:"daniel-cox",fullName:"Daniel Cox"}]}],mostDownloadedChaptersLast30Days:[{id:"57392",title:"Advanced Supporting Materials for Polymer Electrolyte Membrane Fuel Cells",slug:"advanced-supporting-materials-for-polymer-electrolyte-membrane-fuel-cells",totalDownloads:1628,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Among the various kinds of fuel cell, polymer electrolyte membrane fuel cell (PEMFC) is the most prominent energy conversion device for portable applications. The catalyst-supporting materials provide active triple phase boundary for electrochemical reactions where the reactant molecules can easily interact with the catalyst surface. Catalysts play a vital role for improving the overall efficiency of the fuel cells through the advancement in the catalyst and their supporting materials for cathodic oxygen reduction reaction (ORR) in PEMFCs. The supporting materials mainly contribute to increase the electrocatalytic activity of the catalysts by providing more active surface area and extended life-time. The major roles of supporting materials are (i) they act as electron source with improved conductivity; (ii) they hold the metal nanoparticles; (iii) they possess higher surface area and (iv) they should have better stability under operating conditions. In this chapter, the various supporting materials were reviewed carefully based on their nature and performance toward the electrochemical reduction of oxygen for PEMFCs. They are classified into three major categories as (i) carbon supports; (ii) carbon-free supports, and (iii) polymer nanocomposites. In summary, the overall view on support materials and their role on electrocatalysis for fuel cell reactions is provided.",book:{id:"6285",slug:"proton-exchange-membrane-fuel-cell",title:"Proton Exchange Membrane Fuel Cell",fullTitle:"Proton Exchange Membrane Fuel Cell"},signatures:"Narayanamoorthy Bhuvanendran",authors:[{id:"210500",title:"Dr.",name:"Narayanamoorthy",middleName:null,surname:"Bhuvanendran",slug:"narayanamoorthy-bhuvanendran",fullName:"Narayanamoorthy Bhuvanendran"}]},{id:"66339",title:"Cathode for Thin-Film Lithium-Ion Batteries",slug:"cathode-for-thin-film-lithium-ion-batteries",totalDownloads:795,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Thin-film lithium-ion batteries (LIBs) have attracted considerable attention for energy storage device application owing to their high specific energy compared to conventional LIBs. However, the significant breakthroughs of electrochemical performance for electrode materials, electrolyte, and electrode/electrolyte interface are still highly desirable. This chapter firstly gives an overview of cathode materials including lithium-containing cathode (e.g., LiCoO2, LiMn2O4, LiFePO4, LiNi1−x−yMnxCoyO2, LiNi0.5Mn1.5O4) and lithium-free cathode (e.g., vanadium oxides) for LIBs in terms of specific capacity, energy density, working voltage, cycling life, and safety. In the meanwhile, the existing drawbacks and limitations of various battery chemistries are also analyzed. Furthermore, some modification strategies for these cathode materials have also been discussed for improving electrochemical performance. Finally, the thin-film Li-ion battery applications of these cathode materials are summed up toward next-generation flexible and high-energy devices.",book:{id:"6837",slug:"lithium-ion-batteries-thin-film-for-energy-materials-and-devices",title:"Lithium-ion Batteries",fullTitle:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices"},signatures:"Yuan-Li Ding",authors:[{id:"269473",title:"Prof.",name:"Yuanli",middleName:null,surname:"Ding",slug:"yuanli-ding",fullName:"Yuanli Ding"}]},{id:"57548",title:"Introductory Chapter: An Overview of PEM Fuel Cell Technology",slug:"introductory-chapter-an-overview-of-pem-fuel-cell-technology",totalDownloads:1819,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"6285",slug:"proton-exchange-membrane-fuel-cell",title:"Proton Exchange Membrane Fuel Cell",fullTitle:"Proton Exchange Membrane Fuel Cell"},signatures:"Tolga Taner",authors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}]},{id:"60763",title:"Assessment of Reliability of Composite Power System Including Smart Grids",slug:"assessment-of-reliability-of-composite-power-system-including-smart-grids",totalDownloads:1348,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The large service interruptions of power supply in the transmission system have significant impact on modern society. The aim of the power system engineers is to prevent and mitigate such events with optimal decisions in design, planning, operation and maintenance. Due to the rapid growth in the power demand and competitive power market scenario, the transmission and distribution systems are frequently being operated under heavily loaded conditions. This tends to make failure of components more frequent in the power system necessitating large downtime to repair or replace the equipment. A majority of the service interruptions are happening due to lack of proper planning and operation of power system. Therefore, complete reliability assessment in generation, transmission and distribution systems is needed at the planning stage. The reliability assessment in smart grids is very much beneficial to the power operator and reduces the risk of grid failure due to failure of major components in power systems. This chapter is confined to composite power system reliability assessment. The composite power system combines both the generation and transmission systems’ adequacy. The generation system in the composite power system includes both conventional and renewable sources. The composite power system reliability assessment is quite difficult due to the large number of equipment, interconnected network topology and uncertainties in generation capacity. The reliability assessment concentrates mainly on the use of probabilistic states of components in generation and transmission systems to evaluate the overall reliability. This analysis will result in a cost-effective system configuration to provide continuous power supply to the consumers at reasonable cost. The reliability level of the system is measured by the defined indices. One of these indices is the probability of average power availability at load bus. This reliability assessment mainly focuses on development of methods to evaluate the probability of average power availability at load buses for a specified system configuration. This chapter discusses the two main techniques called node elimination method and modified minimal cut set method.",book:{id:"6698",slug:"smart-microgrids",title:"Smart Microgrids",fullTitle:"Smart Microgrids"},signatures:"Thotakura Bharath Kumar, M. Ramamoorty and O. Chandra Sekhar",authors:[{id:"236816",title:"Dr.",name:"Bharath Kumar",middleName:null,surname:"T",slug:"bharath-kumar-t",fullName:"Bharath Kumar T"},{id:"237692",title:"Dr.",name:"Ramamoorty",middleName:null,surname:"M",slug:"ramamoorty-m",fullName:"Ramamoorty M"},{id:"244043",title:"Dr.",name:"Chandra Sekhar",middleName:null,surname:"O",slug:"chandra-sekhar-o",fullName:"Chandra Sekhar O"}]},{id:"58665",title:"Degradation in PEM Fuel Cells and Mitigation Strategies Using System Design and Control",slug:"degradation-in-pem-fuel-cells-and-mitigation-strategies-using-system-design-and-control",totalDownloads:1578,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"The rapid miniaturization of electronics, sensors, and actuators has reduced the cost of field sensor networks and enabled more functionality in ever smaller packages. Networks of field sensors have emerging applications in environmental monitoring, in disaster monitoring, security, and agriculture. Batteries limit potential applications due to their low specific energy. A promising alternative is photovoltaics. Photovoltaics require large, bulky panels and are impacted by daily and seasonal variation in solar insolation that requires coupling to a backup power source. Polymer electrolyte membrane (PEM) fuel cells are a promising alternative, because they are clean, quiet, and operate at high efficiencies. However, challenges remain in achieving long lives due to catalyst degradation and hydrogen storage. In this chapter, we present a design framework for high-energy fuel cell power supplies applied to field sensor networks. The aim is to achieve long operational lives by controlling degradation and utilizing high-energy density fuels such as lithium hydride to produce hydrogen. Lithium hydride in combination with fuel-cell wastewater or ambient humidity can achieve fuel specific energy of 5000 Wh/kg. The results of the study show that the PEM hybrid system fueled using lithium hydride offers a three- to fivefold reduction in mass compared to state-of-the-art batteries.",book:{id:"6285",slug:"proton-exchange-membrane-fuel-cell",title:"Proton Exchange Membrane Fuel Cell",fullTitle:"Proton Exchange Membrane Fuel Cell"},signatures:"Jekan Thangavelautham",authors:[{id:"210571",title:"Prof.",name:"Jekan",middleName:null,surname:"Thangavelautham",slug:"jekan-thangavelautham",fullName:"Jekan Thangavelautham"}]}],onlineFirstChaptersFilter:{topicId:"765",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:10,editor:{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11476",title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",hash:"8d41fa5f3a5da07469bbc121594bfd3e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 24th 2022",isOpenForSubmission:!0,editors:[{id:"335401",title:"Prof.",name:"Margherita",surname:"Mori",slug:"margherita-mori",fullName:"Margherita Mori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78617",title:"Doppler Ultrasound in the Reproduction of Mares",doi:"10.5772/intechopen.98951",signatures:"Camila Silva Costa Ferreira and Rita de Cássia Lima Morais",slug:"doppler-ultrasound-in-the-reproduction-of-mares",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:169,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:304,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424836",title:"Dr.",name:"Orsolya",middleName:null,surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",country:{name:"Romania"}}},{id:"422262",title:"Ph.D.",name:"Paola Andrea",middleName:null,surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Guadalajara",country:{name:"Mexico"}}}]}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"