Comparison of typical high-performance fibres predesignated for ballistic purposes in soft body armour (fabrics, panels, composites)1.
\r\n\tGlobalization does not represent a pure and generous process for humanity or other species, but rather it implies social exclusion and also provokes situations of vulnerability in groups of people, forced exclusion, and apartheid: poor job opportunities, lack of access to education, worse socio-sanitary conditions. Specifically, it can be said that social segregation entails the apartheid of social groups of different ages, genders, and ethnicities; these groups live a reality manifested through the deepening of poverty, in terms of increased vulnerability of the poor and groups with little economic, social, cultural, labor and health stability.
\r\n\r\n\tThis book aims to talk about some topics that are neglected in the discourses of academic communities and political elites. The inequality process is deeply rooted among humans and is part of many people's lives in the form of modern apartheid, gender segregation, lack of health access, and cultural gap. All those structural inequality processes are the product of the biopower perpetuated and produced in the macrosystem, exosystem, mesosystem, and microsystem. For many people from the academy, the information-consuming public, and the society in general, it is a problem to talk about these processes, since they have either lost interest or have normalized the structural and social inequity. For this reason, we see it as transcendental to explain how this situation occurs from the most internal fibers to the most evident processes, intending to make it more visible and thus expose the situation for possible solutions.
",isbn:"978-1-83768-406-9",printIsbn:"978-1-83768-405-2",pdfIsbn:"978-1-83768-407-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"cefab077e403fd1695fb2946e7914942",bookSignature:"Ph.D. Yaroslava Robles-Bykbaev",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",keywords:"Wage Gap, Gender Segregation, Fundamental Human Rights, Health Access, Social Inequity Processes, Modern Apartheid, Resilience, Cultural Gaps, Globalization, Geopolitics of Social Inequality, Public Policies, Social Vulnerability",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 15th 2022",dateEndSecondStepPublish:"July 13th 2022",dateEndThirdStepPublish:"September 11th 2022",dateEndFourthStepPublish:"November 30th 2022",dateEndFifthStepPublish:"January 29th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"13 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Bykbaev is a member of the UNESCO Chair of Politecnica Salesiana University. She has contributed as co-author and author to approximately thirty scientific publications in the field of statistics, inclusive education, and social and cultural anthropology. These publications focus on the visibility of problems in the field of public health and focus on the creation of proposals to improve community health. Dr. Bykbaev is an active member of the NODO Ecuadorian Network of Women Scientists (REMCI).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",middleName:null,surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev",profilePictureURL:"https://mts.intechopen.com/storage/users/313341/images/system/313341.jpg",biography:null,institutionString:"Politecnica Salesiana University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Politecnica Salesiana University",institutionURL:null,country:{name:"Ecuador"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444316",firstName:"Blanka",lastName:"Gugic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444316/images/20016_n.jpg",email:"blanka@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6926",title:"Biological Anthropology",subtitle:"Applications and Case Studies",isOpenForSubmission:!1,hash:"5bbb192dffd37a257febf4acfde73bb8",slug:"biological-anthropology-applications-and-case-studies",bookSignature:"Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:"Edited by",editors:[{id:"313084",title:"Dr.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"56372",title:"Contemporary Personal Ballistic Protection (PBP)",doi:"10.5772/intechopen.69085",slug:"contemporary-personal-ballistic-protection-pbp-",body:'\nThis chapter provides selected and the most up-to-date information concerning personal ballistic protection (PBP). The reason for writing this chapter is that the world of textiles is developing rapidly and this development includes technical textiles, protective clothing and equipment. Therefore, the novelty of these aspects is worth presenting. In addition, some selected and spectacular historical facts are presented here and they concern inventions, decorations, extreme cases and lack of ergonomic wear comfort (e.g. medieval armour). Thus, inventions like, for instance, armours dating back to pre-conquest Mexico—e.g. quilted cotton jackets soaked in brine as a support for overlapping plates of hardwood or coconut fibres armour against shark’s teeth—will not be mentioned here, although these inventions are very interesting from the textile engineer’s point of view.
\nBallistics is the science of mechanics which concerns the movement and effects of different projectiles, especially bullets, on different objects. Therefore, protection against any projectile can be termed a ballistic protection. As there are different types of ballistic-resistant materials, this chapter will be totally devoted to PBP, which can be defined as a unique, close-to-body human protection. A common mistake or a mental shortcut concerning the term ‘bulletproof materials’ is the concept of bulletproof vests. In reality, PBP materials are not bulletproof, but they are bullet resistant. This means that ballistic-protective equipment utilized to protect against any ballistic danger is not completely immune to different dangers, missiles, projectiles, etc.; for example, retarding and/or mitigating the speed of dangerous objects with potentially penetrating abilities until the ballistic protection can stop it.
\nIn addition to a concise history of PBP and its existence and evolution over the centuries, this chapter will present characteristics of the most contemporary PBPs, their composition and designs, including soft body armours, some hard body armours, helmets with concise information concerning protection from stabbing and sharp edges penetration. Additionally, different types of contemporary PBP will be presented, e.g. law enforcement, military personal protection, including sappers and K9 protection for dogs. The role of ballistics, types of guns and most of all PBP requirements, standardization and classification for contemporary PBP is also discussed in this chapter. The key market players are mentioned several times when needed. Some additional and concise facts are mentioned to reach the knowledge of the reader, e.g. future trends, especially for so-called liquid armour.
\nThe history of PBP is a history of conflicts between humans mixed with developments of weapons and materials utilized for protection. The first weapon was a human fist, a kick, a stone or a stick. Later, different bludgeon-like objects were developed for attack and self-protection. Due to its historical connotations, the club weapon is strongly associated with primitive cultures of the caveman era or Neanderthal era; however, this weapon is still in use but it is now called a baseball bat [1]. Thus, the first sorts of personal protections against blunt trauma, slashing, bites or stabbing can be dated back to beginning of humankind. These were made of different kinds of animal skins and furs [2–7]. The subject literature often mentions the skin of oxen as a source of the precious leather, which was utilized as armour by the Mongol army as early as the thirteenth century BC, a detailed description of which is given in an historic review [8]. Another important animal skin came from rhinoceros, which was utilized in China in the eleventh century BC [9], and from wild buffalo; these materials protected the torsos of the warriors. It seems that aspects of the ergonomics of personal protections were found to be important at that time. In order to increase the mobility of the warriors, some armies utilized textiles made of silk or linen. Linen was a very popular material, so there is nothing unusual in the fact that it was utilized as a component or a main raw material for linothorax. This element was a type of upper body armour used by the ancient Greeks. Different historical sources mention flax materials and associate weavers as producers of a base for an armour for the Greek army. In the early fourth century BC, the Athenian army underwent some military reforms, including the replacement of heavier bronze or chain mail body armour with linen corselets. As mentioned above, the key factor influencing changes was increasing the mobility of the soldiers by giving them armour that was ‘light but protected the body equally well’, in addition to reducing the size of the shield carried [3, 10, 11].
\nSome contemporarily reconstructed 10 mm composites were composed of 19 layers of low mass surface linen woven fabrics, while others achieved the same thickness using only 10 layers of much thicker linen. When it came to flexibility and resistance to stress, the performances of the 10-mm thick 19-layer and 10-layer pieces demonstrated very similar mechanical deformation parameters [3].
\nVery often different armies around the globe utilized cloth garments with some metal (bronze) plates or scales attached to them. This form of protection was popular among the Assyrian (900–600 BC) and later Greek armies. There were further Gallic (eighth and ninth centuries), English (eighth century) and Frankish (ninth century) developments of this style.
\nThe armour worn by a soldier presented in Figure 1 is a perfect example of scales armour combining small, usually iron plates. Another historical source [12] suggested a simplified differentiation between metal elements attached to the system. According to this study, the external small plate armours are divided into three categories: lamellar, scale and an undefined category. When utilized to protect a torso, scale armour overlaps downwards and is predominantly mounted on a continuous substrate, usually of textile or leather. The second type is lamellar armour, where lamels overlap upwards and are connected continuously to the substrate, but are connected with each other by different cords.
\nEnglish soldier, eighth century; source: Grafton [
Another very important innovation in armour was a mail armour (or chain mail). The exact invention moment and its place is unknown, but it was widely utilized in Europe in the Middle Ages quickly spread and was further developed and transformed by different nations, e.g. France, England and Germany. As mentioned before in the text of this chapter, the roles that were assigned to armour in the Middle Ages were protection and decoration but also presentation of social status and intimidation of the enemy. The examples of such types of armours are presented in Figure 2(a, b and c). The chain mail is noticeable on the arm of the silhouette (b) in Figure 2.
\nThe armours (a) and (b) date back to the thirteenth century and (c) to the fourteenth century; they all come from France, region and hierarchy unknown; source: Grafton [
Together with the development of firearms, suitable protective armour was developed to absorb the impact of firearms. As a consequence, body armours (including helmets) were made of different types of metals and their mass became very high. In fact, the period from the fifteenth to sixteenth century abounds in the greatest amount of very sophisticated, decorative armour for different level soldiers and noblemen in Europe.
\nA simplified version of protection is Polish Hussar top armour and a helmet, as presented in Figure 3. It was made of steel, iron, brass and leather. It is less decorative and the elements of tiles protecting the arms and shoulders suggest that requirements for increased mobility of the wearer were taken into consideration when designing this armour.
\nHalf armour for a Polish Hussar, dating back to 1683–1700. Made of steel, iron, brass and leather, presented at an exposition in The Art Institute of Chicago, Chicago, Illinois, USA; source: own photo, archives of the author.
Independent of the fact that further development of armour was going in the direction of increasing mobility and visibility, the armours of the nobles were still very decorative, thick, extremely expensive and also very heavy.
\nJapanese armour was also highly variated; the scale of its decorativeness depended on the position occupied by the warrior. The full armour set was worn only by the emperor, by a shogun (a military chef in the twelfth century; later the noble/the most skilled soldier), by a samurai who was a higher class swordsman or by the soldiers (but this armour was very heavy and uncomfortable). Up to the thirteenth century, there were two distinct types of armour: the
(a) Samurai armour, Edo period, eighteenth century: Kabuto bachi signed ‘Masuda Myōchin Minbu Ki no Munesada Saku’ and dated February 1757. This samurai armour has the kamon of the Inaba family. Kamon is a Japanese symbol used to decorate, identify and distinguish an individual or a family (source of (a) and (b): Giuseppe Piva Japanese Art, Milan, Italy; for more information see
It is very interesting to discover that Japanese shin guards called
There has been no special consistency in the use of armour over the centuries; however, it is believed that the use of different armours can be attributed to economic and technical reasons (e.g. external conditions, access to resources, lifestyle, fashions and a constant need not only for improvement in wear comfort but also for improvement in protective abilities of the armours due to the increasingly lethal potential of weapons). Different forms of cuirasses and plates, with reinforced or not reinforced coats, remained in use throughout the fourteenth and fifteenth centuries. In parallel and later, breastplates and backplates became popular, which covered the chest from the lower neck to just below the rib cage. They were made of steel, which was a relatively new development in the fourteenth century. The thickness of the steel shield varied between 1 and 2.5 mm, depending on the need for protection [16]. During the seventeenth century, the development of heavier, thicker plates to stop projectile-like missiles from guns offered an armour that was plain but functioned sufficiently well [16].
\nOverall, one may conclude that knights were wearing better and better protective equipment and any introduced improvements increased wear comfort and ergonomic requirements. However, armour was expensive and many young, prospective knights would need to either gain money from tournaments or capture armour in battle. Around the seventeenth century, the presence of knights became less important as the whole concept of army organization and troops had changed. Mastering horsemanship and swordplay remained important in the eighteenth and nineteenth centuries, until the mechanized warfare of World War I made it redundant [16].
\nAt the very beginning of World War I, very few armies were equipped with any form of body protection. Due to a huge number of casualties, the French Army introduced a modernized protective helmet. Starting in 1915, body armour was utilized on the battlefield, but only in a limited capacity. The equipment consisted of steep plates giving protection from shrapnel [4]. This single-shot French weapon—the same as that mounted on the FT-17 Renault tank—could fire a small explosive shell which was able to pierce ¾ inch of armour plate at 2500 yards (2286 m) and it proved to be especially effective at suppressing snipers and machine guns [17]. The German Army introduced silicon–nickel breastplates in May 1917 for its soldiers. Later, the British Army offered the highest variety of protection to their soldiers and the most interesting ones were the ‘Best Body Shield’ and ‘Portobank’ armoured waistcoats. An average level of protection and a low mass burden was provided by Berkeley’s Flexible Armour Guard, the Franco-British Cuirass and Wilkinson’s Safety Jacket (mass of about 3 lbs). The British Munitions Inventions Board conducted some experiments with textile materials, e.g. kapok, flax, cotton, sisal, hemp and silk. The idea behind the work was to slow and trap projectiles in the textile materials. The studies focused on silk, which turned out to be the most resistant of the tested fibres. The armour made of silk gave similar protection as a shield made of manganese steel.
\nOne of the greatest body protections was the Medical Research Council (MRC) Body Armour, which consisted of three separate 1-mm thick steel plates, weighing a total of 1.1 kg to protect the heart, main vessels and lungs (first version); lungs, liver, parts of the spine (second version) and abdomen (third version). This armour was made to be comfortable and it could withstand a 0.38 calibre pistol bullet at 4.5 m and 0.303 calibre bullet at 640 m. MRC was introduced by the British Army in 1941. It turned out that this armour was far from ideal. Not only was it difficult to perform rapid movements while wearing it, but it caused wounds on the body. Two other types of body armour invented by the British Army and consequently tested by the American Army—the so-called the Armourette and the Wisbrod Armoured Vest—were characterized as increasing the load on the soldier, decreasing overall mobility and efficiency; therefore, the advantages of wearing this armour were at a minimum level [4].
\nAfter an analysis of the wounds of the soldiers in the US Air Force, it turned out that about 70% were due to low velocity missiles, namely ‘flak’ fragments. The term flak refers to anti-aircraft guns operated during World War II by the German
Until 1952, numerous different body armours were designed and redesigned, including the concept of adding 12 layers of nylon fabric to increase the flexibility of the body protection (so-called M-1951 body armour). During the Vietnam War, M-1955 was issued and propagated among soldiers. M69, which contained a ballistic nylon filling covered by waterproof vinyl plastic, was issued at a later point in the conflict. Twelve layers of ballistic nylon fabric protected the front and 10 layers protected the back of the soldiers. At this point in time, zippers of Velcro were already in use to close vests; the average mass was 4 kg and the cost was 35 USD [4].
\nIn 1962, studies concerning the hardening of armour were conducted and further development concerning an enamel layer that could make the armour layer harder and more resistant continued under the title Hard Face Composite armour in the Goodyear Aerospace Corporation, Ohio, US. The performance of armour containing a ceramic front and glass-reinforced plastic (GRP) at the back was proven against small round projectiles. At present, the term glass fibre reinforced plastic (GFRP) is commonly utilized in composite related terminology, commonly referred to as ‘fibreglass’; these reinforcements are made of high tensile strength glass fibres [18]. After 1965, body armour classified and standardized in the United States utilized three types of ceramics as protection, namely aluminium oxide (Al2O3; in the US Army use), silicon carbide (SiC) and boron carbide (B4C; Navy, Air Force and Marines). These ceramic plates were introduced into the textile covers of the vests as monolithic plates [4, 18].
\nOne of the most important inventions of the twentieth century, apart from computers or lifesaving heart-lung machines, is a synthetic fibre from the group of aromatic polyamides [19]. Nowadays, it is known by the name Kevlar®. The polymer out of which the fibre was made was invented in 1964 by the chemist Mrs. Stephanie Kwolek who worked in a research lab at DuPont. DuPont was looking for chemical combinations that would make stronger fibres for fabrics. In the course of lab experimentation, Kwolek heated a newly mixed combination of substances [20]. The mixture presented unexpected features. The new era of personal body protection had begun.
\nThe initial tests performed on the fabrics made of Kevlar® proved its ability to stop a wide range of projectiles. The next stage was to elaborate a new set of bullet-resistant vests for law enforcement. In the course of these experiments, five plain weave fabrics woven from Kevlar® 29 yarns of 1000 denier (about 111 tex) were tested and turned out to be the most bullet resistant. Soon, it was discovered that this amount of layers could stop some of the projectiles, but could not prevent non-lethal injuries, which are nowadays called blunt trauma. A great number of modifications to the protective set of fabrics, as well as the design of the protection itself, were introduced. One of the most meaningful was the personal armour system for ground troops (PASGT) weighing 4.5 kg (medium size). PASGT was made of Kevlar® and this abbreviation refers to both vests and helmets1 made of Kevlar®. These were utilized by all military services from the mid-1980s to around the middle of the last decade [4, 19, 21].
\nApart from well-known types of Kevlar®—Kevlar®, Kevlar® 29, Kevlar® 49, Kevlar® 68, Kevlar® 100, Kevlar® 119, Kevlar® 129 and Kevlar® 149—relatively novel varieties include Kevlar® AP (15% higher tensile strength than K-29) [23] and KM2 Plus fibre [24] with enhanced ballistic resistance for armour applications [25]. Table 1 presents a comparison of some high-performance fibres for ballistic purposes. Another type of aramid-based para-aramid fibre is Twaron® (a brand name of Teijin Aramid). It is a heat-resistant and strong synthetic fibre which was developed in the early 1970s by the Dutch company Akzo [26].
Commercial name of the fibre | \nProducer | \nChemical substance | \nDensity [g/cm3] | \nTensile modulus [GPa] | \nTensile strength [GPa] | \nElongation at break [%] | \nProduct forms and their applications | \nReferences | \n
---|---|---|---|---|---|---|---|---|
Kevlar® 29 | \nDuPont2 | \npoly-para-phenylene terephthalamide (PPTA) | \n1.44 | \n71 | \n2.9 | \n3.6 | \nBallistic applications, ropes, cables, protective apparel such as cut-resistant gloves, helmets, vehicular armouring. | \n[2, 20, 28, 32, 40–43] | \n
Kevlar® 49 | \n1.45 | \n78 | \n3.4 | \n3.3 | \nHigh-modulus type used primarily in fibre optic cable, textile processing, plastic reinforcement, ropes, cables and composites for marine sporting goods and aerospace applications. | \n|||
Kevlar® KM2/KM2 Plus | \n1.44 | \n82 | \n3.9 | \n3.3 | \nKevlar® KM2® and KM2® Plus technology help provide protection from select fragmentation and small arms threats. KM2® Plus represents the highest grade protective fibre for military use. Kevlar® KM2 is meant for helmets and vests for military and high-performing spall liners. Kevlar® KM2 Plus is a high tenacity, high toughness and finer denier fibre used in vests and helmets for both military and law enforcement officers | \n[2, 25, 28, 32, 40, 43] | \n||
Twaron® | \nTeijin | \nPPTA and poly-para-phenylenediamine (PPD) | \n1.44 | \n70 | \n3.2 | \n3.3 | \nHigh ballistic protection, lower weight, greater comfort and longer lifetimes, protects against penetration of bullets, and fragments as well as stabbing | \n[2, 20, 43–45] | \n
Spectra 900 | \nHoneywell | \nUltra-high-molecular-weight polyethylene (UHMWPE) | \n0.97 | \n2.4-3.5 | \n2.4-3.5 | \n4.0 | \nStronger than steel and 40% stronger than aramid fibre. Capable of withstanding high-load strain-rate velocities. Spectra® fibre, one of the world’s strongest manmade fibres, is commonly used to produce bullet-resistant Spectra Shield® body and vehicle armour and helmets | \n[2, 20, 35, 37] | \n
Dyneema® SK75/SK78 but Dyneema® different grades: HB212, HB210, HB80, HB56, etc. is meant for Hard Body Protection | \nDSM | \n0.97 | \n109-132 | \n3.3-3.9 | \n3.0-4.0 | \nDyneema® Force Multiplier Technology can reduce the weight of armour by up to 20%. The result is exceptionally protective performance without compromising comfort, agility, or function. Comfortable protection against handguns, shrapnel and knives. Dyneema® is used in ballistic helmets, vests and shields. It is utilized in protective equipment to safeguard soldiers, law enforcement officers, commercial pilots and high-profile civilians. Grades of hard ballistic protections (inserts, helmets and shields) are HB212, HB210, HB80, HB56, HB50, HB26 and HB2, respectively, from the highest to the lowest performance and aerial density [g/m2] from 0.136 ± 0.005 up to 0.261 ± 0.005 | \n[2, 20, 36] | \n|
M5 | \nMagellan Systems International LLC; with DuPont starting from 2005 | \nPolyhydroquinone-diimidazopyridine | \n1.70 | \n271 | \n3.9 | \n1.4 | \nFibres are lighter and give more effective protection from different threats, including bullets, fragments, IEDs and mines, than other existing fibres. Potential future applications of the fibre include fragmentation vests and helmets, composites for use in-conjunction with ceramic materials for small arms protection and structural composites for vehicles and aircraft | \n[2, 20, 28, 29] | \n
Zylon ® AS | \nToyobo | \nPoly-phenylene benzobisoxazole (PBO) | \n1.54 | \n5.8 | \n180 | \n3.5 | \nAlthough Zylon is a high-performance fibre and was utilized in the past for ballistic purposes, the website of the producer of this fibre does not provide information about potential ballistic applications for this fibre | \n[2, 20, 27] | \n
Zylon ® HM | \n1.56 | \n5.8 | \n270 | \n2.5 | \n||||
Endumax® | \nTeijin | \nUltra-high-molecular weight-polyethylene (UHMWPE) | \n0.97 | \n170 | \n2.8 | \n1.7 | \nEndumax lightweight plates enable ballistic protection gear to meet requirements in terms of protection, flexibility and low weight. Protective unidirectionals (UDs) and composites (like insert plates), protective panels and helmets made from Endumax, have a very high degree of braking energy, resulting in a particularly high-stopping power for bullets and fragments. Endumax can be applied in both soft and hard body armour | \n[39, 46] | \n
Comparison of typical high-performance fibres predesignated for ballistic purposes in soft body armour (fabrics, panels, composites)1.
1Only selected fibers are presented in Table 1. If these are classified as soft body armour, it means that they are utilized predominantly in this application, but it does not exclude them from being applied elsewhere.
2DuPont, Honeywell and other companies offer a large number of different high-performance and high-modulus types of fibres and fabrics, e.g. Kevlar 68, Kevlar 100, Kevlar 119, Kevlar 129, Kevlar® XP™ [41], Kevlar Protera® Fabric Arc Flash Performance [42], S-900 family, S-1000 family. This technology, made from a high-toughness resin combined with Kevlar® KM2® Plus fibre, helps manufacturers provide a 20% decrease in helmet weight while maintaining the same performance. Kevlar® XP™ for hard armour provides a minimal back face deformation. Although the materials have exceptional mechanical properties, only very few of these materials are designated by their producers for ballistic protections.
The high-performance yarns are collected together into a form of woven fabrics, knit structures and non-woven materials. These arrangements/structures allow the dissipation of bullet impact energy reasonably quickly. The essence of bullet-resistant materials is that when grouped together into panels (e.g. a specific/determined number of identical materials placed one onto another) and put into vests, they constitute bullet-resistant vests.
\nThe ballistic performance of woven structures in the ballistic packet of the bullet-resistant armour depends strictly on the mechanical properties of yarns and fibres (type of high-strength fibre, type of weave, linear density of the yarn and weave density). In the case of woven fabrics utilized as a protective packet, the fabrics are woven densely in the form of plain weave. It was observed that the density of the yarns packed to form the weave for ballistic fabrics is the best from 0.6 up to 0.95 [2, 28, 43]. Below 0.6, fabrics are simply too loose to meet ballistic requirements and above 0.95 the yarns are tightly packed and can be damaged during the fabric production process. When hitting the surface of protection made of woven fabrics, projectiles cause a deformation of these fabrics that starts to spread the yarns apart. This takes place especially when the calibre of the bullet is small. In such a case, it can penetrate the fabric without or with very limited yarn damage. In case of larger calibres, the yarns tend to lock up the bullet in one of the inner layers, while the initial layers and yarns within them are damaged due to the bullets passing through them. The bullets are slowed down by the initial layers and the impact energy of the bullets reduces and is dissipated. In order to dissipate impact energy quickly and to offer the maximal protection, Unidirectional (UD) shields are used for both soft and hard panels, e.g., Dyneema®UD by DSM and Spectra®Shields by Honeywell. In Dyneema®UD, all the yarns (groups of filaments) are positioned parallel to each other, in the same plane, rather than being woven together. In UD configuration, the fibres of Dyneema®UD allow energy transmission from the place where the bullet strikes by energy distribution along the fibres much faster than in conventional woven fabrics. This is due to the fact that the absorption power of the yarn in woven fabrics is lost at the cross points of warps and wefts. It has been proven that instead of supporting the impact energy dissipation process, the cross points (or crossover points) rather hamper this process [2, 35, 36, 43]. Spectra Shield™ is not a woven material, but a thin, flexible ballistic composite made from layers of unidirectional fibres held in place by flexible resins. These Spectra fibres of a single layer are arranged in a way which does not allow them to cross each other. The fibres of the second layer are placed and held in a different direction compared with the fibres of the first layer, e.g. the fibres of the first layer are kept under 0° and the fibres of the second layer are kept under 90°, but all in the same plane. Then, both layers are sealed between two thin sheets of polyethylene film. A similar solution is applied in Twaron Unidirectional Laminate UD41—or those combining UD41 with other Twaron materials—and offers several advantages for engineering these modern ballistic-protective vests. They provide enhanced protection against bullets and fragments, as well as more comfort and excellent performance–weight ratios. Twaron UD41 is a unidirectional laminate suitable for soft body armour. Consisting of four plies of unidirectional Twaron fibre lines (plied in a 0°/90°/0°/90° configuration, as presented in Figure 5), it makes full use of Twaron’s high-fibre tenacity and avoids the crimping of typical woven material. So-called smart UD technology aligns the parallel Twaron fibres in each layer, and each layer is constructed in a resin matrix. The top and bottom UD plies are then laminated to ensure maximum abrasion resistance [47].
\nSchematic presentation of a single ballistic laminate UD41 by Tejin; PE stands for polyethylene; UD stands for unidirectional; source: Ballistics material handbook—Twaron by Teijin [
Some examples of fabric and composite materials utilized for ballistic protection in soft armours are presented in Figures 6–14.
\nPlain weave fabric made of Kevlar 49® yarns by DuPont; source: author’s own photo archives. Note: Plain weave single fabric; 85 warps/10 cm and 85 wefts/10 cm. Both warps and wefts are made of Kevlar. Total area density: 300 g/m2. Thickness: 0.35 mm.
Ballistic panel Gold Shield® GV-2018 with Kevlar® by Honeywell; source: author’s own photo archives. Note: The sample is composed of two panels and each of the panels consists of two layers. The first layer consists of sets of the parallel yarns positioned vertically (V) and the second layer contains the yarns positioned horizontally (H). Thus, the scheme of the sample construction is: (V + H) + (V + H). Total area density: 510 g/m2. Thickness: 0.78 mm.
Ballistic panels Gold Shield® GV-2018 with Kevlar® by Honeywell. The sample is delaminated/stratified, showing two separate layers of a single panel with yarns positioned perpendicularly; source: author’s own photo archives.
Ballistic panel Gold Shield® GN-2119 with Kevlar® by Honeywell; source: author’s own photo archives. Note: Sample constitutes a single panel, made of two layers. The first layer consists of sets of the parallel yarns positioned vertically (V) and the second layer contains the yarns positioned horizontally (H). Thus, the scheme of the sample construction is: V + H. Total area density: 107 g/m2. Thickness: 0.1 mm.
Ballistic panel Gold Shield® GN-2119 with Kevlar® by Honeywell. The sample is delaminated/stratified, showing two separate panels with yarns positions perpendicularly; source: author’s own photo archives.
Ballistic panel Spectra Shield ® SR-1226 by Honeywell; source: author’s own photo archives. Note: Sample is composed of two panels and each of the panels consists of two layers. The first layer consists of sets of the parallel yarns positioned vertically (V) and the second layer contains the parallel yarns positioned horizontally (H). Thus, the scheme of the sample construction is: (V + H) + (V + H). Total area density: 253 g/m2. Thickness: 0.7 mm.
Ballistic panel Spectra Shield ® SR-1226 by Honeywell. The sample is delaminated/stratified, showing two panels with two layers each, and the yarns in each panel are positioned perpendicularly; source: author’s own photo archives.
Ballistic panel Spectra Shield ® II SA-4144 panel by Honeywell; source: author’s own photo archives. Note: From a distance, Spectra Shield® II SA—4144 is difficult to distinguish from Spectra Shield® SR-1226. The organoleptic assessment of the samples allows an easy verification. Spectra Shield® SR-1226 is thicker, stiffer and has a more waxy tactile sensation.
Spectra Shield ® II SA-4144 panel by Honeywell. The sample is delaminated/stratified, showing two separate panels with two layers of yarns in each of them, positioned perpendicularly; source: author’s own photo archives.
Ballistic protection, especially soft ballistic protection armour, has undergone a significant material and design revolution in recent years. Armour panels, meaning the essential elements providing protection in ballistic vests, consist of a ballistic panel, which is usually a set of woven or non-woven structures. They are protected by a cover from environmental influences. Of course, neither the cover for the panel nor the carrier—another element of the ballistic vest—is intended to provide ballistic protection. The carrier refers to the textile elements, usually made of nylon, which are visible from the outside when the person is wearing the ballistic vest. The principal purpose of the carrier is to support and secure the panels to the wearer’s body. This subchapter predominantly discusses so-called soft body armour and hard body armour—both of these types of protection are mentioned in the classification presented below. However, the functions, designs and the materials utilized in these two groups are different.
\nSoft body armour consists of flexible panels of ballistic materials. This type of armour is designed to protect from assaults with pistols and revolvers—generally, handguns. Due to its lower weight when compared with hard body armour, it is rather intended to be utilized for extended daily wear, for several hours, e.g. armour worn by law enforcement officers, correctional officers and guards. If it is worn under a uniform, it is called concealable armour. The soft armour panels are typically constructed of multiple layers of ballistic-resistant materials, e.g. Kevlar fabrics, Spectra or Dyneema UD non-woven materials as presented in Figures 6–14. The number of layers in the panel influences the panel’s overall performance, which means the ability to resist the energy of projectiles. Normally, each layer is supposed to absorb and dispatch a certain amount of energy, which is less and less when transferred to the next layer closer to the body. When a projectile strikes the panel, the yarns and the fibres catch the bullet due to the mutual interlacing of the yarns (in a woven structure) or superimposing yarns from different layers of the panel (unidirectional panels). These fibres have the ability to absorb and dissipate (disperse) the energy of impact, which is passed on from the bullet to the panel and to be specific to each of the panel’s layers gradually. This process causes the bullet to deform or ‘mushroom’. This ability of the panel to absorb and disperse the energy of the bullet is the key to its ability to reduce blunt force injury to the body resulting from bullets that do not perforate the panels. As the fibres in a panel jam a bullet, the energy of the bullet pushes the panel into the body of the wearer, potentially resulting in injury to the torso. The cone made in layers of a panel is schematically presented in Figure 15. This type of non-penetrating injury can cause severe contusions (bruises) and can cause damage to the internal structures of the body (musculature, bones, ligaments, organs and vascular system) that may even result in death [43, 46].
\nCharacteristic cone shapes in the layers of a soft protective panel elements after the bullet struck and perforated them, heading in the direction of the next layer. The cones become smaller due to the smaller amount of bullet kinetic energy transferred to each consecutive layer; prepared on the basis of a Tensylon™ commercial released by DuPont.
Hard armour, on the other hand, consists of rigid panels or plates. Hard armour is designed to offer greater protection against higher threats than soft armour could bear on its own. Hard armour plates are used in tactical armour. Tactical armour is typically a combination of a hard armour plate and soft armour panels, making it thicker and heavier than soft armour alone. The side of the panel that faces away from the body is referred to as the strike face, because it is the side that is intended to be hit by the bullet. The other side of the panel that is worn against the body is referred to as the wear face or body side.
\nHard armour plates may be constructed from ceramics, compressed laminate sheets, metallic plates or composites that incorporate more than one material, e.g. CeraShield™ and Cercom® by Coorstek or Tensylon [43, 48–50] as presented in Figure 16. Tensylon™ is currently being used in-theatre as a spall liner in mine-resistant ambush protected (MRAP) vehicles, e.g. Tensylon™ HSBD 30A is a bi-directional laminate. The hard armour plates act in one of the following ways: they can capture and deform the bullet or they can break up the bullet. In both instances, the armour then absorbs and distributes the force of the impact. Although some hard armour plates are designed to be used by themselves in a carrier, in the majority of cases, they are designed to be used in-conjunction (IC) with a soft armour panel. Many hard armour plates are designed to be used with a specific soft armour panel to achieve a desired level of ballistic protection. They are introduced into the ballistic set by adding pockets to the front and rear of a soft armour’s carrier. The hard armour plates are inserted into these pockets over a portion of the underlying soft armour panel. The hard armour plate component of the IC armour is clearly marked to identify the corresponding model of soft armour panel with which it is to be utilized. The most commonly used ceramics that can be used as stand-alone monolithic plates for armour purposes are aluminium oxide (Al2O3), silicon carbide (SiC) and boron carbide (B4C). Al2O3 is usually the most economical alternative, but the final protection solutions using Al2O3 are heavier, since Al2O3 has the highest density and the lowest ballistic efficiency of the three ceramic types [49, 51]. B4C is the hardest ceramic; but at high-impact pressures, an amorphization process weakens the ceramic. This is problematic when the threat is an armour-piercing projectile at high velocity. Ceramics with a small grain size usually perform better than ceramics with larger grain sizes.
\nThe characteristic indentions in the hard body armour and mushroomed projectiles after they struck the panel and perforated it; prepared on the basis of a Tensylon™ commercial released by DuPont.
Combination armours are specially designed to provide protection against both firearms and edged or stabbing weapons. It means that in these armours, the protective panels are composed of layers of materials that are stab resistant as well as layers of materials that are ballistic resistant. These types of armours are also called
Dyneema® Multi-threat level protection with pictograms describing its properties by DSM; source:
These plates are made of layers of ballistic-resistant fabrics, metals, laminate sheets or other materials. They are referred to as trauma packs or plates because they are intended to minimize blunt force trauma injury to the torso resulting from a bullet striking an armour. Sometimes these plates are inserted into the vest carriers to provide some additional ballistic protection, although this is not their prime purpose. They can be easily distinguished from traditional hard armour plates due to their size, typically anti-blunt trauma plates smaller and thinner. These anti-blunt trauma plates are usually placed in the centre of the chest in pockets in front of (or, less commonly, behind) the front soft armour panel. As is the case of armour panels, the orientation of trauma plates and packs matters. They are marked using the same convention as is used for armour panels. Some armours incorporate multiple trauma packs.
\nUsually, hard body armour plates are meant to be used with a specific type of soft body armour panel to accomplish a specific and required level of ballistic protection. In such case, these hard body armours are not designed to be used alone. These hard body armour plates are inserted into the pockets in the front and at the back of the soft body armour carrier.
\nThe classification of the materials for impact protection is quite complex due to many existing materials and existing protection elements. In Figure 18, a simplified graphical version of this classification is presented. It takes into consideration three major approaches: textile personal protection versus non-textile personal protection, ballistic personal protection versus non-ballistic personal protection and hard body armour versus soft body armour.
\nContemporary classification of PBP elements.
Similar to protective vests or other elements of body armour, helmets underwent significant changes and developments in terms of their design and applied materials. Helmets began as head protection made from woven fabric with some elements of leather and ceramics. Later on, helmets were made from metal and had three main functions—protection, deterrence and decoration. Today, the contemporary advanced combat helmet (ACH) has only one main function—protection. One of the key advances, which has influenced ballistic helmets, was the development of aramid fibres in the 1960s, which led to Kevlar®-based helmets. The Department of Defense (DoD) in the United States and other relevant national and international institutions have continued to invest in research to improve helmet performance, through better design and materials, as well as better manufacturing processes. Tables 2–6 and Figures 19–23 present an overview of contemporary ballistic helmets, which are available on the market.
\nYear 1980 | \n|
Personnel armour system for ground troops (PASGT) | \n|
Aramid fibre (Kevlar®) | \n|
Originally, only Level II and contemporarily produced PASGT helmets met Level IIIA ballistic penetration protection according to the contemporary standard of NIJ 0106.01 as presented in product information folders of producers of these helmets | \n|
Presently provide a full-coverage-style helmet, four-point adjustable retention system | \n|
3M company; https://www.3m.com/~625 USD | \n
An overview of personnel armour system for ground troops (PASGT) helmet.
Year 2001—MICH & Year 2003—ACH | \n|
Modular integrated communications helmet (MICH) Advanced combat helmet (ACH) | \n|
MICH is a composite helmet made of Kevlar intended for use by special forces. ACH was elaborated on the basis of MICH. ACH uses ballistic fibre such as Kevlar or Twaron | \n|
MICH: Level IIIa High Cut MICH Helmet | \n|
Mass of MICH without accessories is about 1.36 kg | \n|
MICH/cost starts at 449.99 USD; source: http://infidelbodyarmor.com/helmets-c-10/\n | \n
An overview of modular integrated communications helmet (MICH) and advanced combat helmet (ACH).
2010 | \n|
FAST | \n|
Ballistic shell made of a hybrid composite of carbon, unidirectional polyethylene and woven aramid | \n|
Level IIIa | \n|
Thickness of the shell: 6.43 mm | \n|
Ops-Core: 1,662 USD; source: http://www.ops-core.com/fast-mt-super-high-cut-helmet/\n | \n
An overview of future assault shell technology (FAST) helmet.
2012/2013 | \n|
ECH | \n|
Dyneema HB80 UD composite | \n|
Level IIIa | \n|
Head protection when parachuting for military paratroopers, head protection from bumping objects for military ground forces and head protection against handgun rounds and ballistic fragments. The ECH’s profile is very similar to the ACH but is thicker. The helmet’s shell is made of an ultra-high-molecular-weight polyethylene material. It protects 35% better against small-arms fire and fragmentation than the ACH. | \n|
3M company in collaboration with Ceradyne; 3M™ Defense Protection Systems/starts from 500 USD | \n
An overview of enhanced combat helmet (ECH) helmet.
2013/2014 | \n|
HEADS-UP | \n|
UHMWPE | \n|
Level IIIa | \n|
Improved ballistic materials, non-ballistic impact linear materials and designs, transparent as well as heads-up display technologies, and better eye, face and hearing protection. The helmet displays integrated electronics in the helmet, a HEADS-UP display powered by an android phone, and a pneumatic linear system that meets the 14 feet/second impact requirement to reduce traumatic brain injuries. | \n|
Gentex Corporation/price unknown | \n
An overview of helmet electronics and display system-upgradeable protection (HEADS-UP) helmet.
PASGT ballistic helmet; (a) side view on skull; (b) interior of the helmet; (c) pads of the helmet; source: CopQuest, Inc.; images available at
MICH and ACH ballistic helmets. (a) Side view of a MICH helmet; source:
(a) A side view of a FAST Maritime (MT) Super High Cut Helmet. Ear cut geometry is 16 mm higher than the FAST Ballistic High Cut (XP) shell shape, allowing for clearance of larger headset style communications devices. (b) An interior of the helmet; source:
A side view of enhanced combat helmet (ECH); source:
(a) HEADS-UP worn by soldiers; (b) a side view of HEADS-UP; (c) schematic presentation of streams of air inhalation and exhalation in the HEADS-UP; source:
A variety of threats lead to head injuries in the battlefield. Since World War II, the predominant threats have been from fragmentation and ballistic threats from explosions, artillery and small arms fire; blunt trauma caused by translation from blast, falls, vehicle crashes and impact with vehicle interiors and from parachute drops and exposure to primary blasts. Injuries, usually involving division of tissue or rupture of body tissue coming from an explosive source (e.g. fragmentation from bombs, mines and artillery), dominate all injuries, including bullets. Non-battle causes, including blunt traumatic injuries, produced nearly 50% of the hospitalizations for traumatic brain injury in Iraq/Afghanistan. There is no biomechanical link in the current test methodology between the back face deformation (BFD) assessment and head injuries from behind-helmet deformation. Different variations of steel helmets were used by forces in the United Kingdom and the British Commonwealth during World War I and later. Since 1945, the escalation in the lethality of ballistic threats, resulting in higher fatalities and injuries, is observed. The bullets and shrapnel in World War II had greater mass and higher velocities. As was the case in World War I, soldiers initially resisted wearing helmets. They felt that the 3.5 lb helmet was too heavy and that it limited the hearing, vision and mobility of the wearer. However, the troops quickly accepted the trade-off when they observed the lethality of the munitions on the battlefield and recognized the protection provided by the helmet. The personnel armor system for ground troops (PASGT) was the first helmet to utilize Kevlar. The name and the abbreviation PASGT refer to both vests and helmets made of Kevlar and they were used by all military services from the mid-1980s to around the middle of the last decade. These helmets are still being used by some services but will be replaced in the future [21].
\nThe US Special Operations Command designed and developed the modular integrated communications helmet (MICH) as a replacement for PASGT (Figure 19). MICH incorporated several changes, including improved Kevlar aramid-fibre reinforcement, leading to better protection. These helmets also allowed better fit and integration of communication headsets. MICH was adopted by the US Army in 2001–2002 as its basic helmet and renamed the advanced combat helmet. The Marine Corps decided to use a design profile that was similar to the PASGT and called it the light weight helmet (LWH). There were also developments in helmet retention systems. The MICH, ACH [54] and LWH helmets switched to a multi-pad and four-point retention system (Figure 20) that had better impact protection while providing increased comfort. The next major advance in helmet technology resulted from a combination of advances in materials and manufacturing processes. As soon as UHMWPE was developed and later on adopted by key players producing ballistic shields, the producers of ballistic helmets adopted it as well.
\nThe future assault shell technology (FAST) helmet is significant for its early use of UHMWPE material and its novel design (Figure 21). The next solution, enhanced combat helmet (ECH), delivers much better protection against fragments compared with ACH, due to a shift to unidirectional UHMWPE fibre in a thermoplastic matrix. The shift was also enabled by a new generation of preforms and manufacturing methods appropriate for UHMWPE.
\nThe US government launched the helmet electronics and display system-upgradeable protection (HEADS-UP) programme in 2009. It leverages multiple efforts—in the areas of ballistic materials (transparent and non-transparent), high-resolution miniature displays and sensors—to design a modular-integrated headgear system that takes into account the relevant ergonomic considerations. HEADS-UP has focused on developing a technical data package of design options and trade-offs to build a modular, integrated headgear system.
\nThe major threats that have caused head injuries in recent conflicts can be classified into three groups: ballistic, blunt and blast. Fragmenting weapons, including artillery, mines, mortars and other sources of explosions, are the principal source of wounding on the modern battlefield. These weapons, including improvised explosive devices (IEDs), have a multitude of fills/wounding mechanisms.
\nThere is limited information on the effect of primary blast on the head. Traumatic brain injury (TBI) associated with blast exposure in operation enduring freedom (OEF)/operation Iraqi freedom (OIF) is estimated at up to 20% of deployed service personnel. The current helmet is not designed with considerations for primary blast, but there is substantial experimental evidence that the ACH helmet is protective against primary blast for most direct exposures.
\nFor severe TBI from blast exposure, there may be clear neurological changes, including reduced levels of mentation, unconsciousness and other dysfunctions. For milder exposures, possible consequences include neurological deficits, depression, anxiety, memory difficulty and impaired concentration. Epidemiological data, experimental results and computational models suggest that the ACH helmet does not exacerbate blast exposure. Modern ballistic wounding is generally differentiated between rifle and handgun rounds by velocity. For example, high-velocity tumbling rounds such as typical 5.56 mm projectiles (800 m/s or above muzzle velocity) have qualitatively different wounding behaviour than .22 calibre handgun ammunition (~330 m/s muzzle velocity), although they have similar diameters [21].
\nThe most recognizable is the work performed by NIJ in the United States, which elaborated and has improved the methodologies for testing different sorts of protections against ballistic and non-ballistic threats. This standard entitled Ballistic Resistance of Body Armour, NIJ Standard-0101.06 also classifies different personal body armours into six types (IIA, II, IIIA, III, IV + a special type) by level of ballistic performance, which are presented in Table 7. A special test class is defined to allow armour to be validated against threats that may not be covered by the first five standard classes presented in Table 7. A typical range configuration (a place where the ballistic tests take place) is presented in Figure 24. If the test is to be performed using a handgun rounds, the armour panel should be fixed at the distance 5.0 ± 1.0 m from the muzzle of the test barrel, and for rifle rounds, the armour panel should be fixed 15 ± 1.0 m from the muzzle of the test barrel. In order to minimize the possibility of excessive yaw at impact, or for other range configuration reasons, the distance may be adjusted for each threat. However, the distance should not be less than 4 m for any tested rounds [55].
\nNIJ Standard-0101.06* | \n|||
---|---|---|---|
Protection level | \nAmmunition type | \nProjectile mass | \nProjectile velocity | \n
IIA | \n9 mm FMJ RN 0.40 S&W FMJ | \n8.0 g ≅ 124 gr 11.7 g ≅ 180 gr | \n373 m/s ± 9.1 m/s 352 m/s ± 9.1 m/s | \n
II | \n9 mm FMJ 357 Magnum JSP | \n8.0 g ≅ 124 gr 10.2 g ≅ 158 gr | \n398 m/s ± 9.1 m/s 436 m/s ± 9.1 m/s | \n
IIIA | \n0.357 SIG FMJ FN 0.44 Magnum SJHP | \n8.1 g ≅ 125 gr 15.6 g ≅ 240 gr | \n448 m/s ± 9.1 m/s 436 m/s ± 9.1 m/s | \n
III | \n7.62 mm FMJ | \n9.6 g ≅ 147 gr | \n847 m/s ± 9.1 m/s | \n
IV | \n0.30 AP | \n10.8 g ≅ 166 gr | \n878 m/s ± 9.1 m/s | \n
A special type defined by the Standard-0101.06 separately | \n
An overview of the personal body armour levels of protection according to the NIJ Standard-0101.06 [55].
*The data concern only new and unworn armour, although the standards foresee also the tests on conditioned armour. In such case, the allowed parameters, namely the velocities of the projectiles are lower.
FMJ RN–Full Metal Jacketed Round Nose; JSP–Jacketed Soft Point; SIG–Schweizerische Industrie Gesellschaft–Swiss Industrial Company, a producer of the type of the gun; FN–Flat Nose; SJHP–Semi Jacketed Hollow Point; AP–Armor Piercing.
A graphical presentation of a set up for testing the armour panels at the laboratory testing range and images presenting backface deformation (backface signature depth) of a backing material and its response to ballistic impact on the plasticine (or clay) informing about the potential trance in a human body (blunt trauma) that that the fired projectile may cause. Although in an original graphical presentation of a set up presented in the Standard-0101.06 of NIJ, there is no high-speed camera, in many cases, this type of the camera is placed to observe and record the collision of projectiles with a protective panels; source: adapted from graphic [
Calibre of the gun is the approximate internal diameter of the barrel, or the diameter of the projectile it fires, e.g. 40 calibre of a firearm refers to the barrel diameter of 0.40 of an inch. The metric system is also popular to describe the diameter of a bullet or a barrel. In such case, the diameter is given in millimetres, e.g. 9 mm.
\nGrain [gr] is a unit of mass. 1 g is approximately 15.43236 grains.
\nOther present or past standards being partially equivalents of NIJ Standard-0101.06 are:
\nMIL-STD-662F, Military Standard: V50 Ballistic Test for Armor [56]
The purpose of this standard is to provide some general guidelines for procedures, equipment, physical conditions and terminology for determining the ballistic resistance of metallic, non-metallic and composite armour against small calibre arms projectiles. The ballistic test procedure described in this standard determines the V50 ballistic limit of armour. This test method standard is intended for usage in ballistic acceptance testing of armour and for the research and development of newly created armour materials.
Ballistic test method for personal armour materials and combat clothing—STANAG 2920 is used to measure materials ability to stop fragments and shrapnel. The measuring technique was originally developed for body armour but now see general use in all situations where fragments are the primary concern. For instance, STANAG 2920 is used to measure Add-on-Armour systems for armoured vehicles.
\nTests according to STANAG 2920 are conducted by shooting Fragment Simulating Projectiles (FSPs) onto the test specimen with different velocities while measuring the velocity of each FSP. By altering the velocities, after a number of shots, an estimate of the ballistic limit can be obtained, which is the speed up to which the material defeats the fragment.
\nBased on the US testing protocols, one may say that the test protocol involves several shots with a specific calibre gun at the specific speed and the specific location on the helmet to prove the resistance (total or not) of the helmet. Overall, tests are aiming at assessment of three parameters, namely resistance to penetrate (RTP), the backface deformation (BFD) and probability V50, that the helmet is equally likely to stop or not stop an object striking at a specific velocity. The original army first article testing (FAT) procedure protocol consisted of 20.9 mm shots (four helmets and shots at five specified locations on a helmet). A manufacturer’s helmet design was deemed to pass FAT for penetration if there were zero penetrations out of the 20 shots. In 2012, with Director of Operational Test and Evaluation’s (DOT&E’s) approved a new two-stage protocol. It involves performing a 0-out-of-22 test in the first part, and if the helmet design passes the first part of the test, then a second 17-out-of-218 plan is executed, for a total of 240 shots and a combined acceptable number of penetrations of 17 [21].
\nThe helmets are tested in the laboratories having a very similar set up for testing as in case of testing the protective panels, which is presented in Figure 24. However, instead of the panel, one utilizes a model of the head with a helmet on it.
\nFor combat helmets, the current testing methods and measures have no connection to research on head and brain injury. The lack of connection between injury and current test methods and measures is a significant concern. During such test, the helmet, needs to be tested, is fastened to a headform packed with modelling clay, and a rifle-like device is used to fire various projectiles into the helmet. The clay is used as a recording medium for: (1) assessing penetration should the projectile or portions thereof pass through the helmet into the clay as presented in Figure 25 and (2) measuring the deformation of the helmet, where a trace is left in the clay surface as a result of the ballistic impact pushing the helmet into the clay.
\nA ballistic test set up for testing a MICH ballistic helmet against 9 mm calibre; source:
One of the critical issues with the clay (Roma Plastilina #1) is that the clay is time and temperature sensitive in that, its properties can change significantly over a 45-minute period as it cools. These effects are likely to affect BFD measurements [21].
\nRTP is measured by shooting a given ballistic projectile at a set of helmets and counting the number of complete penetrations. Most ballistic impacts penetrate the helmet to some degree, so the DOT&E FAT distinguish between complete and partial penetrations. A complete penetration in RTP testing is defined as:
After mounting the headform in the test fixture and mounting the helmet on the headform, the helmet is removed from the headform, and the clay surface is scanned with, for instance, a Faro® Quantum Laser Scan Arm laser or in other way. The helmet is then reattached to the headform, and the shot taken. The helmet is again removed from the headform and inspected for penetration and perforation. The clay is rescanned with the FARO laser to calculate BFD or the clay indention is measured other way. It is unclear how well BFD from ballistic impact characterizes the effect of blunt force trauma, which is one of the main types of brain injury that the helmet is intended to protect against. The choice of the helmet BFD threshold values—25.4 mm for front and back shots and 16 mm for side and crown shots does not have a scientific basis [21].
\nIt refers to estimating the bullet speed at which there is a 50% chance of penetration. This test uses a witness plate mounted inside the headform rather than packing the headform with clay as is done with RTP/BFD testing. Because of this difference, the DOT&E FAT protocol defines a V50 complete penetration as a shot where impacting projectile or any fragment perforates the witness plate resulting in a crack or hole, which permits light passage. A break in the witness plate by the helmet deformation is not scored as a complete penetration. The definition of what constitutes a penetration, and how such penetrations are measured, differs between RTP and V50 tests. V50 specifies a ‘hole which permits light passage’ whereas RTP does not [21].
\nThis type of protection is applied to reduce the risk of stabbing by knives or spikes, etc. especially in places like correctional facilities. There is a standard entitled stab resistance of personal body armour by NIJ, 0115.00 [52], which establishes minimum performance requirements and methods of test for the stab resistance of personal body armour intended to protect the torso against slash and stab threats. The threat posed by a knife depends, among other things, on its sharpness, pointedness, style, handle and blade design, attacking angle, the physical condition of the attacker and the skill of the attacker. Because these parameters can vary widely from one situation to the other, armours that will defeat a standard test blade may not defeat other knife designs under similar conditions or the same knife design if other attacking parameters are changed [52]. The threats analysed in this standard came from hand-delivered impacts with sharp-edged and/or pointed instruments which points or tips lie near the centreline of the clenched fist holding the weapon. PBAs covered by this standard are classified into one of two distinct protection classes depending on the type of threat. Within each threat protection class, the armour is further classified into one of three protection levels. The levels of protection indicate the stab energy the vest is expected to bear. The first protection class is intended to deal with threats that might be expected on ‘the street’ from high quality, commercially machined edged knife blades. This class is referred to as the ‘Edged Blade’ class. The second protection class is intended to deal with threats that might be expected in correctional facilities and these are weapon types constructed by inmates. These are lower quality knife blades and spike style improvised from other materials. This class is referred to as the ‘Spike’ class. The three levels of protection presented in this standard were derived from the frequency distribution of the energy that can be delivered by a male population using several stabbing techniques. The lowest energy level corresponds to the 85th percentile (corresponds to the E1, level 1), the next energy level corresponds to the 90th percentile (E1, level 2) and the highest energy level corresponds to the 96th percentile (E1, level 3). For any given protection level, the test protocol requires the knife blade or spike to impact the armour test sample at two distinct energy levels. At the given condition, a maximum blade or spike penetration of 7 mm is allowed. The penetration limit was determined through research indicating that internal injuries to organs would be extremely unlikely at 7 mm of penetration. The test protocol then requires an overtest condition where the knife blade or spike kinetic energy is increased by 50% (e.g. 24 + 50% × 24 = 36, E2, level 1). At this higher energy condition, called ‘E2’, a maximum blade or spike penetration of 20 mm is allowed. This overtest is required to ensure that there is an adequate margin of safety in the armour design [52] (Table 8).
\nProtection level | \n‘E1’ Strike Energy [J] | \n‘E2’ Overtest Strike Energy [J] | \n
---|---|---|
1 | \n24 ± 0.50 | \n36 ± 0.60 | \n
2 | \n33 ± 0.60 | \n50 ± 0.70 | \n
3 | \n43 ± 0.60 | \n65 ± 0.80 | \n
Stab-resistant protection level strike energies [52].
During stab-resistant drop tests, the front and back panels of two complete body armours are tested for resistance to stab penetration using a different testing set up than the one for ballistic tests. The exemplary test set up is presented in Figure 26. The stabbing element is dropped on the fixed protective panel to observe and measure whether there is a perforation.
\nStab-Resistant Panel NIJ 0115.00 Level II Spikes Test; source:
Apart from an angle indent into the panel, the tests take into consideration the stab energy level and the weapon type itself.
\nThe bust area of a female body armour is shaped by a unique process, which eliminates cutting or cut depending on the producer of the front ballistic panel. It enhances wear comfort and mobility without sacrificing ballistic performance. The example of a female ballistic personal protection is in Figure 27.
\n(a) Female ballistic-resistant vest called Enforcer XLT; source:
The risks that many active soldiers present at the current world scenes may face are very often related to IED, which are homemade bombs unique in their construction, size and potential lethal effect. Therefore, IED remains in the contrast with commercially available weapons, which is controlled. Since IED is unique, it is impossible to be fully prepared and protected against its effects. Persons located in the explosion radius get affected by the penetration of the elements being hidden in the IED when it is constructed, e.g. spikes, nails, etc. or in other way because they are in the blast region of IED. Blast is defined as a detonation of liquid or solid explosive material results in the generation of gaseous products in the pressure range of 150,000 atmospheres or 1.5 billion Pascals (1.5 GPa) and temperature of 3000 Kelvin. In many cases, if there is any suspicion about the bomb and there is a time to make an attempt to disarm it, a person called sapper may be sent to the scene. Clearing the scene is only one of the duties of a sapper, among demolitions, bridge-building, field defences as well as building, and reparations. Sappers are called pioneers, combat engineers or field engineers. The personal protection for sappers called explosive ordnance disposal (EOD) suit or a blast suit is far more complexed that in case of law enforcement, correctional officers or regular soldiers as it needs to cover the whole body of the sapper. In order to enhance the protection, some of the parts of the bomb suit overlap. An example of the EOD personal protective equipment can be Med-Eng EOD 9 or Med-Eng EOD 10, mass about 33.4 kg. These are new generation bomb suits and helmets composed of jacket, an integrated groin protector, trousers and boot covers for integrated blast protection against IEDs and bombs. In order to improve the protection, some studies on specific elements of the bomb suits are performed, e.g. development of pelvic textile protection for soldiers [59].
\nThe idea, which stands behind producing this type of protection, is to hide the fact of wearing it on the body. Therefore, the carrier of the ballistic panel is having a form of a suit vest. It is meant for politicians and business people. Usually, the available level of protection in case of the concealable body armour is IIIa according to NIJ.
\nA police dog, often called K9 (Figure 28), is a specially trained type of dog to assist law enforcements and also military service in searching for drugs and explosives, searching for lost people, looking for crime scene evidence and protecting police officers who handle them. These dogs are equipped in protective vests, which are usually dual threat protections, it means that they protect dogs from firearms and stabbing. These vests are cut from the same Kevlar® bullet-resistant cloth as their human partners, covering all the vital organs. The vests are designed so that the dogs can wear without reducing their mobility and efficiency. The dogs’ protective vests, like protective ballistic vests for humans, undergo field tests.
\nDetroit police K9 dog wearing bullet-resistant vest, 9 August 2016; source: Robin Buckson/Detroit News available at
One of the interesting and significant innovations in soft body armour is a completely different structure of the protective fabric from these, which were presented in this chapter so far, namely 3D structures for ballistics. The idea of this invention is to produce a single 3D fabric capable of replacing many 2D fabrics or non-wovens currently and traditionally utilized. It requires producing a very thick 3D fabric, which would be able to compensate and even surpass the capabilities of existing 2D panels for soft body armour to dissipate the kinetic energy of the threats [2]. The advantage of these structures over the 2D structures is the fact that they can be produced using both conventional and 3D weaving machines. These are yarns in
As it was mentioned in the text of this chapter, plain weave utilized in case of woven structures made of Kevlar yarn minimizes warps and wefts slippage; however, it also provides the highest crimp of the yarns, which as a consequence limits the propagation of the wave energy along the yarns. In 3D orthogonal structures, one observes a high yarn coverage and a low yarns crimp. There are some comments in the literature [2] saying that this type of element for soft body armour may replace currently popular multi-layer system of body protection; however, the author believes that orthogonal 3D structure for ballistics will be rather utilized in the future as an alternative but will not replace the traditional 2D structures due to cost of weaving machines for 3D structures, the fact of easiness to produce UD structures and a ballistic panel for soft body armour made of Kevlar woven fabrics, and finally, the fact that 2D structures are working perfectly well at this point.
\nThere are two major directions in which the development of ballistic protections can head. The first direction mentioned here is non-Newtonian fluids as an element supporting the existing ballistic panels in stopping the projectiles and as shock absorber element. The second direction is work on auxetic materials, which are materials having a negative Poisson’s ratio.
\nFor a better understanding of this topic, it is suggested to start with an explanation what the Newtonian liquids are. The term Newtonian liquid was given after Sir Isaac Newton (1642–1726) who characterized the flow behaviour of fluids with a simple linear relation between shear stress [mPa] and shear rate [1/s]. This relationship is now known to the world as Newton’s Law of Viscosity where:
\nwhere
Liquid has a definite volume, but not a definite form [61]. A common property of liquid is that they can only transmit a pressure to solid or liquid surfaces bounding the liquid. Tangential forces on such surfaces will first occur when there is a relative motion between the liquid and the solid or liquid surface [60–62]. Such forces are frictional forces on the surface of bodies moving through air or water. When we study the flow of water in the bath or in a river, we can see that the flow velocity is greatest in the middle of the water or river and is reduced to zero at the edges of the bathtub or a riverbank. The phenomenon is explained by the notion of tangential forces, between the water layers that try to slow down the flow. The volume of flowing liquid is nearly constant. As a consequence, liquids are considered to be incompressible. A fluid is a material that deforms continuously when it is subjected to anisotropic states of stress. Usually, highly viscous fluids do not obey this linear law and therefore they belong to the
where:
In order to calculate the shear stress
Shear thickening fluids (STFs) are characterized by an increase in viscosity when the shear rate increases achieves a critical value. The incorporation of STFs to Kevlar® fabrics is being investigated to improve ballistic protection capabilities as well as to enhance stab resistance. Shear thickening is defined in the British Standard Rheological Nomenclature as the increase of viscosity with increase in shear rate [60–63].
\nThere are two main types of the non-Newtonian media: (1) fluids with the maximal (zero-shear-rate) Newtonian viscosity and (2) yielding viscoplastic materials. Numerous intermediate and superimposing situations can also exist [61–64].
\nA popular non-Newtonian substance is a combination of polyethylene glycol (liquid phase) in combination with a silica powder (solid phase). The mixture contains billions of silica nanoparticles, more than 100 times finer than a human hair evenly distributed in the glycol. In the liquid state, the particles have a weak molecular surface charge so they do not clamp together. However, when the object affects the liquid, it changes radically the state as its kinetic energy forces the particles to stick together in the lattice, which is a strong chemical bond called hydro-cluster. The liquid becomes as hard as ceramic for a very short period of time (parts of seconds). As soon as the kinetic energy is spent, the bond (lattice) is released and the solution becomes liquid again. The features of the mixture of polyethylene glycol and a silica powder are utilized to enhance abilities of ballistic protections, e.g. fabrics made of Kevlar are soaked in this mixture.
\nThese are solid materials that have negative Poisson’s ratio [65–67]. It means that when they are submitted to the stretch in the longitudinal direction, they expend latterly (get bulky or thicker) and when they are compressed, they are getting narrower in the direction perpendicular to the direction of the compressive force. This characteristic is due to the complex microstructure of these solid materials [64, 65]. Based on these structures present in nature, e.g. cristobalite or same selected human tissue, some man-made forms of auxetic structures are created, e.g. metallic, ceramic and foams. One of the typical and known examples of an auxetic foam [65, 67, 68], having high crack resistance [68]. Due to the extraordinary microstructure of these materials, the idea of imitating it and shaping textiles along the lines of this unique microstructure appeared. The liquid crystalline polymer (LCP) was developed with laterally attached rods in a main chain of this polymer [69]. The orientation of the laterally attached rods is parallel to the polymer chain axis. Under tensile stress, full extension of the polymer main chain forces is leading to an expansion in the direction normal to the chain axis and hence to auxetic behaviour. The auxetic fibres have great potential to be used in fibre-reinforced composites. Recently invented auxetic yarn [70] has the ability to response to external force and to the moisture present in the surrounding by using moisture-activated shrinking filament. The invented fibre is a combination of two components, one component is a moisture-sensitive shrinking filament with relatively high modulus of elasticity such as modified cellulosic fibres, e.g. cotton or rayon. The other component is an elastic material of lower modulus of elasticity. When the fibre is in wet state, the moisture-sensitive shrinking component shrinks and a pulling force is applied along to the elastic component causing it to deform and form helices. There were several different attempts to prepare fabrics based on the auxetic materials structure. Some studies have revealed that an auxetic effect can successfully be induced by using rotating units such as squares [71], rectangles [72]. An auxetic woven textile structure utilizing a double helix yarn in a composite material was produced [73]. The yarn was a reinforcement in the composite. Auxetic materials can also be used for vibration damping and shock absorbency in case of bomb blast curtains, which can open a large number of pores under tension allowing the shock wave through but leaving the curtains intact to catch glass and other debris. A commercially available product—Zetix™ helical-auxetic fibre technology is a perfect example an anti-ballistic application of auxetic structures into protective textiles. Zetix™ is used in a variety of products, including body armour and seat belts. XTEGRA [74] is another producer of auxetic textiles structures, which provides the fabrics for armour, blast panels and thermal protection systems. This type of protective materials utilizes a very modest amount of expensive high-performance fibres and a great amount of their cheap replacements.
\nFarming is about feeding the world population that exceeds 6.9 billion people and is estimated to be more than 9 billion by 2050 [1]. In this scenario, striving to protect the natural resources (such as soil, water, and air) needed for current and future food production is not a new endeavor, although the present-day pressures on entire Earth’s resources have generated widespread interest in agricultural productivity enhancement. Modern farming practices aids tremendously in boosting the food production across the world that too on diminishing cultivable land [2]. Increase in agricultural productivity achieved with altogether application of scientific knowledge and technological innovations [3].
The dairy world has also witnessed the rising trend of production and consumption and can be depicted as globally connected, composite and fast-changing sector of food production. Along with augmented supply of milk, rapid economic growth, population expansion, increased urbanization etc. have also boosted up the demand for dairy products. With a growing middle class population having more disposable income, consumers seeking out healthy alternatives to fit in with a more active lifestyle, and a focus on natural ingredients, so milk and dairy products are growing in popularity. Presently the dairy world is serving over 7 billion consumers and providing livelihoods for approximately 1 billion people thrive on dairy farms [4]. Rearing of dairy animals always has a complimentary, supplementary and sustainable relationship with crops under mixed farming system prevalent in majority of the countries. However, as milk found the top most agricultural commodity in value terms and ranked third by production worldwide in 2013 [5], the valuable role of dairy sector in feeding the population of this planet can be understood without neglecting the need for sustainability at dairy farms as defined by U.S. Department of Agriculture (USDA) [2].
Being the chief source of income and food for a greater part of the rural poor [6], dairying is important for food security in many developing countries; also considered as one of the important sector for alleviating poverty, unemployment and reducing income inequalities. More balanced development of the rural economy is possible through the development of this sector [7]. The increasing importance of dairy to the world economy raises the importance of competitiveness among the countries. Globalization, trade liberalization and advancement in transportation and communication have given rise to an outstanding acceleration of market competition. This assures consumers to have a variety of goods and services to choose from, for a better standard of living with encouraging lower prices and lower fluctuations too.
Milk, produced from small as well as large scale farms at micro level, is contributing to every nation’s economy, consequently global economy at macro level. There is a wide disparity of dairy farms in the world ranging from less than 3 cows per farm in some countries to over 1000 cows per farm in others, highlighting that milk production is performed distinctively in different countries. Discrepancies have also been noticed in terms of farm size, housing, milking and feeding systems. However, the world’s average farmer keeps 3.2 milk animals with an average annual milk yield of approximately 2.2-ton ECM/animal/year [8]. During the era of global competition, achieving maximum productivity by using scarce natural resources is the biggest challenge among the dairy farmers, which can been addressed by implementing dairy farming innovations at every farmer’s farm. Application of innovations at every stage of production since from cultivation of fodder till marketing of milk is the dire need of the present day.
Farm innovations are the novel practices/products/techniques suitable for particular area, physiological stage of animals and economically viable option to enhance the animals’ per diem yield. Low cost and user friendly dairy farming innovations (technologies) suitable for all kinds of farms, maintained under rural conditions existing in different tropical countries are proved to be useful in enhancing animal productivity and henceforth farmers’ socio-economic welfare. The term technology explains systematic application of scientific or other organized body of knowledge to practical purposes, which includes new ideas, inventions, innovations, techniques, methods and materials [9]. A decision made by an individual or group to use an innovation in a continuous manner termed as adoption. As, dairying has become a commercial enterprise and needs technology adoption for higher milk yield and lower per unit costs [10]; Innovations applicable for increasing net returns, reducing costs and optimizing production are discussed in this chapter; so that a common dairy farmer as well as consumer can contribute to a more resilient and more sustainable future for all of us.
Though developing countries like India contribute above half in world milk pail, productivity per animal is poor compared to other countries. The huge production is purely number driven rather than productivity achievement. This leads to over exploitation of resources and more waste production particularly manure, which is really harmful to the planet looking towards environmental concerns. Low animal productivity might be a result of ineffective breeding, improper feed and fodder management, deficient veterinary care, poor farm management etc. Dairy farmer has to improve the amount of milk each animal produces, thereby reducing the amount of feed, water and space needed per liter of milk resulting in less manure production. This provides a big window for different innovation application to enhance productivity in such developing nations where majority dairy farms are small scale and managed on traditional practices. It is well recognized that sustainability—in its economic, social and ecological dimensions - in milk production vary across different dairy systems categorized on the basis of relevant socio-economic and farm characteristics of milk producing households. However, the sustainability studies concluded that market oriented farms with a high degree of technology adoption was the most economically, socially and ecologically sustainable farms. Technology adoption is associated with better milk yield and improved dairying is directly correlated with higher technology adoption, showing direct impact on income generation, poverty alleviation and animal protein availability [11] thus, to raise the milk production, improved animal husbandry techniques should be adopted in the small house hold dairy farms. To overcome the present challenges of this sector, technological innovations as well as ability to transfer these innovations from lab to field in dairy farming system is mandatory for achieving expected animal productivity, and lowering down the cost of production for greater economic returns to the farmers. The various dairy farming innovations addressed for sustainable dairy production are broadly discussed in this chapter. Various dairy farming issues, animal ailments along with dairy farming innovations and various lab to land approaches are presented jointly in Figure 1.
Dairy farming issues, innovations and lab to land approaches.
Breeding innovations generally known as cross breeding have resulted in profitable dairy farming with serious health and fertility concerns. Selection of good, diseases resistant and climate resilient breed coupled with adoption of scientific breeding innovations laid the strong foundation to the dairy farm to grow in future. Topography, soil type, feed and fodder availability must also be given due consideration while selecting the animals. Highly productive animal requires special care in terms of management, disease control and feeding strategies. Native breeds with quality germplasm would be more appropriate for local climatic conditions. Genetic up-gradation of non-descript animals by using local superior germplasm proves more beneficial in terms of sustainable production. However introducing exotic germplasm to a certain limit generally known as cross breeding have resulted in profitable dairy farming with serious concerns. Breeding innovations commonly introduced at field level are highlighted in this chapter.
Artificial Insemination (AI) is an Assisted Reproductive Technology (ART) used worldwide to deposit proven sire’s stored semen directly into a cow’s uterus. The technique is used as a rapid way to improve desired characteristics through intensive genetic selection. Advantages, such as facilitating the use of superior quality semen without the expense and risk of sire’s ownership; reduction in the risk of introducing venereal diseases into the herd have achieved with this innovative technique. Being the quickest and most effective mean of breeding through AI, developing countries like India could witness position as the top most milk producing country of the world. Not only it exclude the need of keeping a bull for natural service but also helps in exploiting the excellent germplasm up to the fuller extent.
Progeny testing is the practical and best technique, in which bulls are evaluated on the basis of their daughters’ performance. When large numbers of animals are spread in many villages for a particular breed in its native tract, these villages can get AI services and progeny produced in this way is evaluated for their performance. Progeny testing is a practical and the best option for achieving genetic improvement in that breed.
Embryo transfer technology (ETT) is one of the latest tools available for the faster improvement of livestock worldwide particularly for exploiting the genetic potential of high quality females and the males simultaneously. Prior to the development of this technology a limited number of off springs were achieved from a superior/high milk producing cow in her life time. Higher cost of technology with low conception rate might be the factors limiting its implementation.
Sexed semen is processed semen of proven bull from where ‘Y’ chromosomes bearing sperm cells are removed through sorting process. Sexed semen predominant with ‘X’ chromosomes can ensure birth of female calf. Reduction in economic burden and production of more number of female calves as a future productive cattle are the main advantages popularizing this technology among dairy farmers. However, the higher cost of semen coupled with low conception rate are important factors to be considered before its use and that too in heifers or primiparous animals for better results.
Different hormone protocols are being adopted for getting group calving or desired calving in a year for efficient and controlled management. Such desired calving matches with market demand and season. It is planned administration of hormones with fixed time AI for specified calving.
In addition to this, the advanced reproductive techniques such as Multiple Ovulation and Embryo Transfer (MOET), ovum pick up technique and embryo manipulation (splitting, sexing and cloning etc.) offer possibilities for faster multiplication of superior germplasm from highly selected elite donors to achieve the target producing large number of superior bull calves/bulls and their adequate number of quality semen doses.
Steady supply of quality feed and fodder assures productivity enhancement. Feeding constitutes about 60–70% of total cost of milk production in dairying. Feeding management plays a crucial role in exploiting real potential of dairy animals. Balanced feed (green and dry fodder along with concentrate ration) proves beneficial for sustainability as well as profitability of the farm. Fodder both green and dry needs to be grown inside the farm. High yielding fodder varieties like Bajra, Napier hybrids, Maize, Sorghum can be grown in fertile and well irrigated land, while Guinea/Rye grass can be grown in barren rain-fed land. In draught prone areas, planting of local fodder trees will sustain the animal production during scarcities. Some trees like
Silage, method of preserving surplus green fodder, predominantly adopted on large dairy farms as far as tropical countries are concerned. It is the product of controlled fermentation of green fodder retaining high moisture content. Many countries are propagating tube silage or bag silage, as one of the innovative technique of silage making, introduced for a marginal dairy farmer possessing one-two dairy animals and limited fodder acreage. Standard plastic tube/polythene bags of recyclable material are available in markets in India with a capacity of producing 500–1000 kg of silage. Baled silage is the latest upgraded innovation of fodder conservation. In this, forage is baled at higher moisture than forage to be stored as dry hay. The sealed airtight plastic bales remain sealed until they are required. The high moisture and lack of air promote fermentation within the sealed bale that preserves forage quality. Such baby corn silage bales of 50 kg are available for sale at a reasonable price on online portals like Indiamart.com.
Protein meals are subjected to suitable physical/chemical treatment, energy and nitrogen balance gets improved with only marginal increase in treatment cost. Chemical or heat treatments are the main methods used for protecting proteins. In this technique, part of the protein is not degraded in the rumen and it can be utilized more efficiently in the small intestine. This rumen inert protein commonly known as Bypass protein, that is a misnomer. This protein supplies more essential amino acids at the intestinal level, which can lead to increase in milk yield by 10–15% and growth rate by 20–25%.
Dietary fat, that resists lipolysis and bio-hydrogenation in rumen by rumen microorganisms, but gets digested in lower digestive tract, is known as bypass fat or rumen protected fat or inert fat. Among all forms of bypass fat, calcium salts of long chain fatty acids (Ca-LCFA) has highest intestinal digestibility and act as an additional source of calcium. A simple cost effective indigenous technology has been developed for the preparation of bypass fat (Ca-LCFA) using vegetable fatty acids. Ration of the high producing animals should contain 4–6% fat, which should include fat from natural feed, oil seed and bypass fat in equal proportions. Bypass fat supplementation has proved beneficial without any adverse effect on the rumen fermentation, feed intake, digestibility of nutrients and different blood parameters of the dairy animals. Rise in milk is recorded by 5.5–24.0%. Improvement in post-partum recovery and reproductive performance of dairy animals are the added advantages of this innovation.
The term total mixed ration may be defined as, “The practice of weighing and blending all feedstuffs into a complete ration which provides adequate nourishment to meet the needs of dairy cows.” Each bite consumed contains the required level of nutrients (energy, protein, minerals and vitamins) needed by the cow. A 4% increase in feed utilization, greater accuracy in formulation and feeding, masking of the flavor of less palatable feeds (urea, limestone, fats, and some by-pass protein sources) and use of commodity ingredients can be expected while using TMR. While blending all the feeds together in a TMR, over mixing and under mixing of ingredients need to be avoided.
Dietary changes like shift from hay to silage, feeding high level of grains/concentrate mixture cause increased acidity in rumen which may become detrimental for rumen microorganisms thereby affecting not only digestion but production and reproduction too. Buffers like Sodium bicarbonate, Magnesium oxide neutralize the acids produced by metabolism or fermentation. They are particularly required during hot weather when forage intake is lower and due to less chewing action natural buffer produced i.e. saliva is produced less.
Probiotics are the live microorganisms that may beneficially affect the host upon ingestion by improving the balance of the intestinal microflora. Lactobacillus spp. is the most prevalent probiotic bacteria, known as lactic acid producing bacteria (LAB). Control of diarrhea in calves, increased milk production and better composition, control of ruminal acidosis, control of growth of pathogens in rumen, reduced pathogen load are the advantages of the technology. The appropriate level of 20 g probiotic per day per animal is found effective. Prebiotic are the ingredients (like Fructo-Oligosaccharides (FOS), Mannan Oligosaccharises (MOS) etc) used to enhance the population of already present good bacteria and synbiotic pertains to combination of pre and probiotic.
Building a hygienic cow shed is another important aspect to be considered among the many factors that lead to the success or failure of dairy farms. Housing systems that require less labor, which provide a comfortable and healthy environment to animals, manage space including storage efficiently and take care of bio-security measures with easy modification and expansions are more profitable than heavy structures with huge capital investment. Sufficient sunlight, proper ventilation, clean, and dry flooring along with sufficient space for lying down and protection from adverse weather conditions are the basic necessities of animal housing. Further, an effective management program has to be developed, so that animals are prevented from falling ill and there is no need for antibiotics/medicines. The direction and orientation of shed plays an important role in keeping the animals healthy as well as reducing laborious work. Considering these factors, loose housing barn with open cattle shed are recommended here, as that can be easily adapted at small as well as marginal dairy farms.
Digital animal health tracking devices are getting attention now a days as they help farmers in tracking, monitoring and managing animal’s health, nutrition, behavior, pregnancy, milking frequency, milk production anomaly and activity level in real-time. These smart animal wearing gadgets can be implanted in the cattle’s ears, tail, legs, neck or any part of the body. For tracking the health and early diagnosis of medical condition in dairy animals, GPS-enabled digital chips have been implanted widely in India. A huge database will be generated if these devices are used efficiently. Accuracy in such data will guide in formulating strong and concrete policies for welfare of both human and animals.
Detection of heat is very important aspect of management for performing timely AI with successful animal conception.
Innovation of robotic milking machines is useful in eliminating the pressure on physical labor and maintaining a hygienic milking process with remarkable improvement in milk production. These machines have cups with sensors that can be attached individually to cows’ teats. The sensors play important role in detecting readiness of teats for milking and also identify impurities, color and quality of milk. Milk not fitted for human consumption, is diverted to a separate container. The machines automatically clean and sanitize the teats once the task is over. Few models of low-cost, non-electric milking machines are also developed considering locality and need of dairy farms. Innovation of mobile milk collection unit installed with Robotic milking machines and bulk coolers will introduce a way to produce clean and quality milk from small and marginal farms.
Scientific disposal of excreta (Dung, Urine), other organic waste (aborted fetuses, dead calf/animals, placenta) demands utmost attention. Presently, there is not a clear cut policy for dung and carcass disposal. In majority of Asian countries, both these are disposed in open, which is a serious concern from zoonotic and infectious diseases point of view. Electric incinerator and community biogas plants can provide the tangible solution.
Technology of dung cleaning robot or manure robot is available for barn cleaning and scrapping the dung in slatted floors beneath the barn. Recently Manure eating robot has been launched for cow garden cleaning that cleans the barn/cow gardens.
Completion of farm management includes accounting, finance, labor management and supply chain management. Dairy farm management softwares are the innovative tools available in markets for atomizing and digitalizing end-to-end production and operations activities. It provides a holistic view for entire farm activities, manage records, generate reports and detect inefficiencies; assuring profitable dairy farming.
Reduction in milk production is the first sign of animal discomfort and illness; whereas getting back to this production is one of the major challenge and costly affair for small as well as marginal farmer. Also there is reduction in per lactation as well as life time production of that animal. Any kind of disease treatment compels to use antibiotics. This part is of a global conversation about antibiotic resistance, which is a serious public concern shared by animal and human health experts. So, it’s always better to prevent the occurrence of diseases rather to treat. This could be possible only through application of healthcare management innovations.
Livestock vaccination is considered an emerging innovation of socio-economic importance in the Indian dairy industry [12] and reported more profitable and sustainable than artificial insemination [13].
Majority of tropical countries like India are endemic to many diseases that cause severe economic losses due to drastic reduction in the production capacity. Some of the diseases are even highly fatal. Fortunately, vaccines are available for most of these diseases and can be easily controlled if timely vaccination is carried out in a mass scale, covering a large proportion of the susceptible population (at least 80%) [14]. Farmers must stick to the standard vaccination protocol recommended by the Government following all precautions and regularity in inoculations.
The teats of all the lactating dairy animals and dry cows (during first 10–14 days of dry period) are dipped regularly after every milking in a germicidal solution. The recommended teat dips are
Iodine (0.5%) solution 5 parts + Glycerine 1 part
Chlorhexidine (0.5%) solution 1 L + Glycerine 60 ml
The iodine teat dip is the best as it treats various types of teat lesions and injuries also. Post-milking teat dipping with ‘Iodine-glycerine teat dip’ for prevention of new mammary infections is also recommended by many research institutes. Studies have reported that the treatment applying the post-milking teat dip automatically via milking machines had the lowest number of new intra-mammary infections (IMI).
Mastitis, one of the expensive diseases, affects economic returns of dairy farms heavily. Farmer has to suffer with huge financial burden due to sub-clinical mastitis (SCM) as it incur heavy losses related to culling, decreased production, decreased fecundity, and treatment costs. Diagnosis of mastitis at sub clinical stage and its management results in milk production rise with quality milk and safety to consumer health [15].
Innovation of mastitis diagnosis kit includes Sodium Lauryl Sulphate (SLS) Paddle with reagent and Bromothymol Blue (BTB) card. Such innovations can be used by the farmers at their own for early diagnosis and reducing the further incidence diseases for improving productivity [16].
Lameness is reported as the third most economically important disease in world after infertility and mastitis [17]. It is a major cause of involuntary culling after mastitis. About 90% of lameness in dairy cattle and buffaloes occurs due to foot lesions. Recommended guidelines for prevention of lameness include hoof trimming of all the animals at every 6 months and footbath of size 3 m long, 1 m wide and 15 cm high. Formalin (39–40%) should be preferred for foot bathing as a 4% solution (120 L water +5 L of formalin) in the footbath. Concrete footbaths are best and cheaper. In case there are few animals (unorganized farms), formalin spray (40 ml per liter of water) can be used on 1st, 2nd, and 3rd day of every fortnight along with close monitoring of animal gait at the time of walking.
Hardware disease is a common term for
In this competitive world, farmers are not only looking for various information sources for carrying out their production and marketing tasks efficiently but also for ensuring delivery of safe and quality products to the consumers. Food safety for consumers is at greater risk because of the increasing globalization of food systems. Information and Communication Technology (ICT) has potential to mitigate the needs of both ends by introducing virtual platform for dairy product production and marketing. ICT based information delivery to dairy sector can significantly improve the quality of decision-making in dairy farming system. Mobile phones with internet facility have been one of those successful innovations which benefit a large number of people in the developing world. As worldwide acceptance for mobile phones has improved among all users, it can be used as a major tool for communication and dissemination of information for quality decision making. Different mobile apps, web portals such as epashupalan.com and expert systems are being used by dairy farmers. The mobile application for dairy farmers, named ‘Pashu Poshan’, is available on both web and android platform, can be accessed by registering on the INAPH portal (http://inaph.nddb.coop). Guru Angad Dev Veterinary and Animal Sciences University, Punjab, India has launched ‘Precision Dairy Farming’ mobile application dealing with important aspects of dairy farming including important milch breeds, breeding, feeding and housing management, record keeping, health management and economics.
Traceability is commonly defined as the ability to trace products back and forth throughout the supply chain, from farm or point of production to the end user. The growing complexity of food supply chains, the heterogeneity in food safety regulations across countries, and lack of uniform requirements from one commodity to another are some factors that explain why greater efficiency in food traceability systems has increased in recent years. Block chain technology to give real-time data about the products to customers has been introduced among dairy manufacturers, suppliers and other stakeholders. QR code provided on the packaging of the product can be scanned on personal mobile devices to get information on the origin of the milk. Information about, how and where from the product has collected and packed, how old it is, what kind of transportation and cold milk chain facilities are used, is being provided on internet. However, scattered, diversified and unorganized dairy farming is the major barrier for deep penetration of this innovation at grass roots of the sector.
The application can be highly useful in organic milk production as demand for organic milk is increasing in the market. Organic milk is considered as the ultimate milk with almost nil risk of chemicals, drugs and also free from stress factors. However its production is quite cumbersome as it needs a lot of efforts, monitoring and adhering to the organic standards for a branded product. It fetches good value in the market and the product traceability is quite easy as its each and every production component is documented.
E-commerce market places have played revolutionary role in input availability and product sales in dairy sector. Modern equipment and advisory services have been made available at the doorstep to farmers and dairy manufacturers on their smart phones through online Business-to-Business (B2B) market places. Many Business-to-Customers (B2C) platforms have also emerged at a rapid pace. They have major role in picking fresh produce from farms and delivering them to the doorsteps of end users. These marketing innovations have reduced spacial barriers for both producers as well as consumers. Online portals like Indiamart.com, amazon.in, reliance fresh at relianceretail.com are the successful examples of innovative online marketing of various dairy products.
Despite the prevalence of innovations, the scenario for its applicability is very dismal, widening the gap between innovations developed and available; and innovations actually being adopted or used by the end users. Recommended innovations in dairy farming sector have not been adopted as widespread as it is anticipated and the correct level of adoption is far from desired. Though large scale innovative digitalization is happening in dairy sector considering the present need of time, it has yet to reach masses at root level. Factors like low socio-economic status, disrupted electric supply, and unavailability of reliable internet facilities in rural areas might be the cause of poor outreach of the innovations. Adoption is defined as a decision to make full use of an innovation as the best course of action available and the process starts with awareness of the new product and ends with routinized use of the new product by consumer [18]. So for increasing the adoption of innovation, it has to be diffused widely as, diffusion is the process by which an innovation is communicated through certain channels over time among the members of a social system.
Demographic, social and economic factors along with adoption behavior of farmers affect application of innovations in dairy sector. Farmer’s education, knowledge, attitude, risk orientation, and innovation proneness controls adoption behavior [19, 20]. Constraints faced by the farmers such as lack of awareness, knowledge and skill of application can be considered as the major impeding factors in dairy technology adoption [21, 22, 23].
Attributes of innovation, known as characteristics of the innovation, also play influential role on farmers’ technology adoption and usage decisions [24]. Five characteristics of innovations
Low government policy support, insurance complexities and market fluctuations act as major barriers in adoption-decision making process; reducing the interest of young generation in dairy sector. Poor collective actions, low financial policy support and absence of fixed pricing assurance to milk are remained the major constraints and demotivating factors in moving this sector towards sustainability.
Majority of policies and government schemes are suited for medium and large farmers as they are knowledgeable and can invest more in their farms. Small and marginal farmers are resource poor, less knowledgeable, low risk bearer and investor; possessing only 2–3 animals for family sustenance rather than income generating activity. However, their proportion as the dairy stake holders means a lot to the economy when it comes to scarce resources, as it is more than medium and large farmers. Hence the policies should focus more on such group of producers to change their attitude, knowledge and skill for introducing innovativeness among them and for motivating them towards sustainable dairy farming. The resistance against policy reforms in the northern Pakistan has been reported under the Dairy Science Park (DSP) as a conflict of interests among the weaker and power stakeholders across food value chain, and DSP has come up with the idea of the Triple Helix Model of Academia-Industry-Government Nexus of good governance [26].
This chapter entitled ‘Dairy farming Innovations for productivity enhancement’ has focused light on today’s dairy sector all over the world, describing the similarity and diversity in production and production performance. The innovation needs are justified for making the farming profitable for welfare of farmers and providing customer satisfaction by offering healthy, qualitative milk and milk products. Innovations from breeding, feeding, animal management, health care and preventive measures, waste disposal, product traceability and marketing features are discussed and explained with examples and success stories. Factors impeding innovations are discussed from point of innovation generation, diffusion till its adoption. Removal of these barriers and application of suitable extension approach with policy support will lead to more and more adoption for productivity enhancement and quality production. Recommendations have given for not only technology generation but also for its implementations.
In this innovative world, there is no single perfect technique or innovation which can cater to all the needs of farmers. Innovations must be considered with regards to their total cost for owner and end user. User friendly, economical, easily updated, accessible and locally available innovations, termed as ‘fit in situation innovation’, will be adopted at once and has more chances of popularization compared to the one which has complex or more steps for executions. There is need for local and region specific technology generation and further its vast diffusion among similar socio-geographic regions. Innovation must reach the target people at right time; otherwise they are lying on shelves or in the books. The impacts of innovation application on the farmers’ livelihoods should be adequately addressed and documented for different agro-ecologies of the world. There is a need for greater follow-up in tracking the adoption of technologies for sustainable farming systems and in the accountability of research efforts and policies for technology dissemination and adoption. Targeted efforts should be made in changing and building farmers’ awareness, attitude and perceptions through training, demonstration, field visits, experience sharing etc. Already, huge dairy innovations have been made around the globe, but still they lack to be in rationale people for their usage. For that, strong extension is the need and call of the hour for getting more successful and sustainable farms, to break the ongoing trend of closure of dairy farms.
The authors are thankful to Intech Open Limited, England for extending this opportunity to write this chapter for welfare of society. Authors acknowledge the institutions like Guru Angad Dev Veterinary & Animal Science University, Ludhiana, Punjab and Maharashtra Animal & Fishery Sciences University, Nagpur for capacity building and providing necessary facilities. The authors are also thankful to the researchers, farmers and end users who have established two way channel of useful information for further betterment of dairy sector.
“The authors hereby declare that there is no conflict of interest.”
These Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6669},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2457},{group:"region",caption:"Asia",value:4,count:12710},{group:"region",caption:"Australia and Oceania",value:5,count:1016},{group:"region",caption:"Europe",value:6,count:17716}],offset:12,limit:12,total:134176},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11856",title:"Testosterone - Functions, Uses, Deficiencies, and Substitution",subtitle:null,isOpenForSubmission:!0,hash:"8549d2b1fcd1242f85a6a70447b1db10",slug:null,bookSignature:"Associate Prof. Hirokazu Doi",coverURL:"https://cdn.intechopen.com/books/images_new/11856.jpg",editedByType:null,editors:[{id:"473383",title:"Associate Prof.",name:"Hirokazu",surname:"Doi",slug:"hirokazu-doi",fullName:"Hirokazu Doi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Prof. Jose Marti",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12387",title:"Natural Killer Cells - Lessons and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"5576cda9d50adf4e4256e47427560510",slug:null,bookSignature:"Associate Prof. Leisheng Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/12387.jpg",editedByType:null,editors:[{id:"439674",title:"Associate Prof.",name:"Leisheng",surname:"Zhang",slug:"leisheng-zhang",fullName:"Leisheng Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12072",title:"Finite Element Method and Its Extensions",subtitle:null,isOpenForSubmission:!0,hash:"3b9656ca1f591fcc44f127e12a6ef28f",slug:null,bookSignature:"Prof. Mahboub Baccouch",coverURL:"https://cdn.intechopen.com/books/images_new/12072.jpg",editedByType:null,editors:[{id:"186635",title:"Prof.",name:"Mahboub",surname:"Baccouch",slug:"mahboub-baccouch",fullName:"Mahboub Baccouch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11994",title:"MXenes - Fabrications and Applications",subtitle:null,isOpenForSubmission:!0,hash:"184e1a0c9b5e62ebb3c7ebc53103db9f",slug:null,bookSignature:"Prof. Dhanasekaran Vikraman",coverURL:"https://cdn.intechopen.com/books/images_new/11994.jpg",editedByType:null,editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12143",title:"Herbs and Spices - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"dbbc40b4b09244389b52ca80dcc10768",slug:null,bookSignature:"Dr. Eva Ivanišová",coverURL:"https://cdn.intechopen.com/books/images_new/12143.jpg",editedByType:null,editors:[{id:"352448",title:"Dr.",name:"Eva",surname:"Ivanišová",slug:"eva-ivanisova",fullName:"Eva Ivanišová"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12007",title:"Updates in Volcanology - Linking Active Volcanism and the Geological Record",subtitle:null,isOpenForSubmission:!0,hash:"a55d00d84b7616824cc783586c092525",slug:null,bookSignature:"Dr. Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/12007.jpg",editedByType:null,editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12307",title:"New Insights Into Dystonia",subtitle:null,isOpenForSubmission:!0,hash:"1b011946aab26d18e0f4cfa61eb4249a",slug:null,bookSignature:" Tamer Rizk",coverURL:"https://cdn.intechopen.com/books/images_new/12307.jpg",editedByType:null,editors:[{id:"170531",title:null,name:"Tamer",surname:"Rizk",slug:"tamer-rizk",fullName:"Tamer Rizk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:417},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4428},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics",parent:{id:"4",title:"Social Sciences and Humanities",slug:"social-sciences-and-humanities"},numberOfBooks:143,numberOfSeries:0,numberOfAuthorsAndEditors:2685,numberOfWosCitations:1862,numberOfCrossrefCitations:1806,numberOfDimensionsCitations:3312,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"7",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11258",title:"Innovation, Research and Development and Capital Evaluation",subtitle:null,isOpenForSubmission:!1,hash:"a644b267db0cddd8a16f0dfadf03bad6",slug:"innovation-research-and-development-and-capital-evaluation",bookSignature:"Luigi Aldieri",coverURL:"https://cdn.intechopen.com/books/images_new/11258.jpg",editedByType:"Edited by",editors:[{id:"246585",title:"Prof.",name:"Luigi",middleName:null,surname:"Aldieri",slug:"luigi-aldieri",fullName:"Luigi Aldieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editedByType:"Edited by",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11956",title:"Integrating Quality and Risk Management in Logistics",subtitle:null,isOpenForSubmission:!1,hash:"7a708a069296dbd9d73d67a3b74fd264",slug:"integrating-quality-and-risk-management-in-logistics",bookSignature:"Marieta Stefanova",coverURL:"https://cdn.intechopen.com/books/images_new/11956.jpg",editedByType:"Authored by",editors:[{id:"448989",title:"Ph.D.",name:"Marieta",middleName:"Georgieva",surname:"Stefanova",slug:"marieta-stefanova",fullName:"Marieta Stefanova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"10226",title:"Risk Management",subtitle:null,isOpenForSubmission:!1,hash:"9b65afaff43ec930bc6ee52c4aa1f78f",slug:"risk-management",bookSignature:"Muddassar Sarfraz and Larisa Ivascu",coverURL:"https://cdn.intechopen.com/books/images_new/10226.jpg",editedByType:"Edited by",editors:[{id:"260655",title:"Dr.",name:"Muddassar",middleName:null,surname:"Sarfraz",slug:"muddassar-sarfraz",fullName:"Muddassar Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10818",title:"Accounting and Finance Innovations",subtitle:null,isOpenForSubmission:!1,hash:"dd81bc60e806fddc63d1ae22da1c779a",slug:"accounting-and-finance-innovations",bookSignature:"Nizar M. Alsharari",coverURL:"https://cdn.intechopen.com/books/images_new/10818.jpg",editedByType:"Edited by",editors:[{id:"231461",title:"Dr.",name:"Nizar",middleName:"Mohammad",surname:"Alsharari",slug:"nizar-alsharari",fullName:"Nizar Alsharari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10551",title:"Beyond Human Resources",subtitle:"Research Paths Towards a New Understanding of Workforce Management Within Organizations",isOpenForSubmission:!1,hash:"4a34551c1324fb084e902ad7f56e584d",slug:"beyond-human-resources-research-paths-towards-a-new-understanding-of-workforce-management-within-organizations",bookSignature:"Gonzalo Sánchez-Gardey, Fernando Martín-Alcázar and Natalia García-Carbonell",coverURL:"https://cdn.intechopen.com/books/images_new/10551.jpg",editedByType:"Edited by",editors:[{id:"332101",title:"Prof.",name:"Gonzalo",middleName:null,surname:"Sánchez",slug:"gonzalo-sanchez",fullName:"Gonzalo Sánchez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8970",title:"Tourism",subtitle:null,isOpenForSubmission:!1,hash:"4b086129cadc323ba152b00c6386c2c8",slug:"tourism",bookSignature:"Syed Abdul Rehman Khan",coverURL:"https://cdn.intechopen.com/books/images_new/8970.jpg",editedByType:"Edited by",editors:[{id:"254664",title:"Prof.",name:"Syed Abdul Rehman",middleName:null,surname:"Khan",slug:"syed-abdul-rehman-khan",fullName:"Syed Abdul Rehman Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9551",title:"Emerging Markets",subtitle:null,isOpenForSubmission:!1,hash:"321d2a2e57b30b6121e8fd330a298fc8",slug:"emerging-markets",bookSignature:"Vito Bobek and Chee-Heong Quah",coverURL:"https://cdn.intechopen.com/books/images_new/9551.jpg",editedByType:"Edited by",editors:[{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9547",title:"Outsourcing and Offshoring",subtitle:null,isOpenForSubmission:!1,hash:"fe7e9888b734a1e92df022d267eb4415",slug:"outsourcing-and-offshoring",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/9547.jpg",editedByType:"Edited by",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9546",title:"E-Business",subtitle:"Higher Education and Intelligence Applications",isOpenForSubmission:!1,hash:"f36f73e0d1eee6ab21c285209ba01734",slug:"e-business-higher-education-and-intelligence-applications",bookSignature:"Robert M.X. Wu and Marinela Mircea",coverURL:"https://cdn.intechopen.com/books/images_new/9546.jpg",editedByType:"Edited by",editors:[{id:"190913",title:"Dr.",name:"Robert M.X.",middleName:null,surname:"Wu",slug:"robert-m.x.-wu",fullName:"Robert M.X. Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9559",title:"Teamwork in Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"0053c2ff8d9ec4cc4aab82acea46a41e",slug:"teamwork-in-healthcare",bookSignature:"Michael S. Firstenberg and Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/9559.jpg",editedByType:"Edited by",editors:[{id:"64343",title:"Dr.",name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:143,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"58010",doi:"10.5772/intechopen.72304",title:"Fourth Industrial Revolution: Current Practices, Challenges, and Opportunities",slug:"fourth-industrial-revolution-current-practices-challenges-and-opportunities",totalDownloads:6371,totalCrossrefCites:42,totalDimensionsCites:68,abstract:"The globalization and the competitiveness are forcing companies to rethink and to innovate their production processes following the so-called Industry 4.0 paradigm. It represents the integration of tools already used in the past (big data, cloud, robot, 3D printing, simulation, etc.) that are now connected into a global network by transmitting digital data. The implementation of this new paradigm represents a huge change for companies, which are faced with big investments. In order to benefit from the opportunities offered by the smart revolution, companies must have the prerequisites needed to withstand changes generated by “smart” system. In addition, new workers who face the world of work 4.0 must have new skills in automation, digitization, and information technology, without forgetting soft skills. This chapter aims to present the main good practices, challenges, and opportunities related to Industry 4.0 paradigm.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Antonella Petrillo, Fabio De Felice, Raffaele Cioffi and Federico\nZomparelli",authors:[{id:"161682",title:"Prof.",name:"Fabio",middleName:null,surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"},{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"},{id:"205141",title:"Dr.",name:"Federico",middleName:null,surname:"Zomparelli",slug:"federico-zomparelli",fullName:"Federico Zomparelli"},{id:"208748",title:"Dr.",name:"Raffaele",middleName:null,surname:"Cioffi",slug:"raffaele-cioffi",fullName:"Raffaele Cioffi"}]},{id:"35715",doi:"10.5772/38693",title:"The Role and Importance of Cultural Tourism in Modern Tourism Industry",slug:"the-role-and-importance-of-cultural-tourism-in-modern-tourism-industry",totalDownloads:41056,totalCrossrefCites:30,totalDimensionsCites:57,abstract:null,book:{id:"2298",slug:"strategies-for-tourism-industry-micro-and-macro-perspectives",title:"Strategies for Tourism Industry",fullTitle:"Strategies for Tourism Industry - Micro and Macro Perspectives"},signatures:"Janos Csapo",authors:[{id:"118766",title:"Dr.",name:"János",middleName:null,surname:"Csapó",slug:"janos-csapo",fullName:"János Csapó"}]},{id:"37707",doi:"10.5772/51110",title:"Principle of Meat Aroma Flavors and Future Prospect",slug:"principle-of-meat-aroma-flavors-and-future-prospect",totalDownloads:7443,totalCrossrefCites:17,totalDimensionsCites:52,abstract:null,book:{id:"3276",slug:"latest-research-into-quality-control",title:"Latest Research into Quality Control",fullTitle:"Latest Research into Quality Control"},signatures:"Hoa Van Ba, Inho Hwang, Dawoon Jeong and Amna Touseef",authors:[{id:"153361",title:"Ph.D.",name:"Hoa",middleName:null,surname:"Van Ba",slug:"hoa-van-ba",fullName:"Hoa Van Ba"},{id:"163181",title:"Prof.",name:"Touseef",middleName:null,surname:"Amna",slug:"touseef-amna",fullName:"Touseef Amna"}]},{id:"38973",doi:"10.5772/51460",title:"Risk Management in Construction Projects",slug:"risk-management-in-construction-projects",totalDownloads:102492,totalCrossrefCites:33,totalDimensionsCites:51,abstract:null,book:{id:"2175",slug:"risk-management-current-issues-and-challenges",title:"Risk Management",fullTitle:"Risk Management - Current Issues and Challenges"},signatures:"Nerija Banaitiene and Audrius Banaitis",authors:[{id:"139414",title:"Dr.",name:"Nerija",middleName:null,surname:"Banaitiene",slug:"nerija-banaitiene",fullName:"Nerija Banaitiene"},{id:"149658",title:"Dr.",name:"Audrius",middleName:null,surname:"Banaitis",slug:"audrius-banaitis",fullName:"Audrius Banaitis"}]},{id:"12330",doi:"10.5772/10393",title:"Drilling Fluid Technology: Performances and Environmental Considerations",slug:"drilling-fluid-technology-performances-and-environmental-considerations",totalDownloads:34573,totalCrossrefCites:20,totalDimensionsCites:49,abstract:null,book:{id:"3726",slug:"products-and-services--from-r-d-to-final-solutions",title:"Products and Services",fullTitle:"Products and Services; from R&D to Final Solutions"},signatures:"Mohamed Khodja, Malika Khodja-Saber, Jean Paul Canselier, Nathalie Cohaut and Faïza Bergaya",authors:null}],mostDownloadedChaptersLast30Days:[{id:"58969",title:"Corruption, Causes and Consequences",slug:"corruption-causes-and-consequences",totalDownloads:27589,totalCrossrefCites:11,totalDimensionsCites:13,abstract:"Corruption is a constant in the society and occurs in all civilizations; however, it has only been in the past 20 years that this phenomenon has begun being seriously explored. It has many different shapes as well as many various effects, both on the economy and the society at large. Among the most common causes of corruption are the political and economic environment, professional ethics and morality and, of course, habits, customs, tradition and demography. Its effects on the economy (and also on the wider society) are well researched, yet still not completely. Corruption thus inhibits economic growth and affects business operations, employment and investments. It also reduces tax revenue and the effectiveness of various financial assistance programs. The wider society is influenced by a high degree of corruption in terms of lowering of trust in the law and the rule of law, education and consequently the quality of life (access to infrastructure, health care). There also does not exist an unambiguous answer as to how to deal with corruption. Something that works in one country or in one region will not necessarily be successful in another. This chapter tries to answer at least a few questions about corruption and the causes for it, its consequences and how to deal with it successfully.",book:{id:"6487",slug:"trade-and-global-market",title:"Trade and Global Market",fullTitle:"Trade and Global Market"},signatures:"Štefan Šumah",authors:[{id:"228073",title:"Mr.",name:"Stefan",middleName:null,surname:"Sumah",slug:"stefan-sumah",fullName:"Stefan Sumah"}]},{id:"55499",title:"Human Resources Management in Nonprofit Organizations: A Case Study of Istanbul Foundation for Culture and Arts",slug:"human-resources-management-in-nonprofit-organizations-a-case-study-of-istanbul-foundation-for-cultur",totalDownloads:2294,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The aim of this study is to investigate the efficiency and importance of human resources management in nonprofit organizations. The understanding was included to the literature as personnel management at the beginning of the twentieth century and it turned into an approach as human resources management in the 1980s. It could be observed that many organizations, which deem the human as the most critical stakeholder, adopt a traditional way of personnel management in operating human resources. The employees play a key role in the success of an organization. For this reason, subjects such as recruitment, training, development, career management, performance appraisal, occupational health, and safety are the fundamental functions of human resources management. The study examines to what extent these roles are evaluated through a case study. The subject matter of the study is the most powerful culture and art foundation in Turkey. Compared to many other nonprofit organizations, the foundation actively performs a variety of services within a year worldwide. The fact that the total number of employees might rise up to 800, including the field personnel, indicates the need of a good functioning human resources management. The human resources practices of the foundation are examined and evaluated within that scope.",book:{id:"5826",slug:"issues-of-human-resource-management",title:"Issues of Human Resource Management",fullTitle:"Issues of Human Resource Management"},signatures:"Beste Gökçe Parsehyan",authors:[{id:"189113",title:"Dr.",name:"Beste",middleName:null,surname:"Gokce Parsehyan",slug:"beste-gokce-parsehyan",fullName:"Beste Gokce Parsehyan"}]},{id:"59152",title:"Marketing Strategies for the Social Good",slug:"marketing-strategies-for-the-social-good",totalDownloads:1594,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Social network sites (SNS) have proven to be a good environment to promote and sell goods and services, but marketing is more than creating commercial strategies. Social marketing strategies can also be used to promote behavioral change and help individuals transform their lives, achieve well-being, and adopt prosocial behaviors. In this chapter, we seek to analyze with a netnographic study, how SNS are being employed by nonprofits and nongovernment organizations (NGOs) to enable citizens and consumers to participate in different programs and activities that promote social transformation and well-being. A particular interest is to identify how organizations are using behavioral economic tactics to nudge individuals and motivate them to engage in prosocial actions. By providing an understanding on how SNS can provide an adequate environment for the design of social marketing strategies, we believe our work has practical implications both for academicians and marketers who want to contribute in the transformation of consumer behavior and the achievement of well-being and social change.",book:{id:"6583",slug:"marketing",title:"Marketing",fullTitle:"Marketing"},signatures:"Alicia De La Pena",authors:[{id:"196878",title:"Dr.",name:"Alicia",middleName:null,surname:"De La Pena",slug:"alicia-de-la-pena",fullName:"Alicia De La Pena"}]},{id:"37593",title:"Standard Operating Procedures (What Are They Good For ?)",slug:"standard-operating-procedures-what-are-they-good-for-",totalDownloads:26482,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"3276",slug:"latest-research-into-quality-control",title:"Latest Research into Quality Control",fullTitle:"Latest Research into Quality Control"},signatures:"Isin Akyar",authors:[{id:"36323",title:"Dr.",name:"Isin",middleName:null,surname:"Akyar",slug:"isin-akyar",fullName:"Isin Akyar"}]},{id:"38348",title:"Globalization and Culture: The Three H Scenarios",slug:"globalization-and-culture-the-three-h-scenarios",totalDownloads:16772,totalCrossrefCites:4,totalDimensionsCites:11,abstract:null,book:{id:"3009",slug:"globalization-approaches-to-diversity",title:"Globalization",fullTitle:"Globalization - Approaches to Diversity"},signatures:"Abderrahman Hassi and Giovanna Storti",authors:[{id:"148330",title:"Dr.",name:"Abderrahman",middleName:null,surname:"Hassi",slug:"abderrahman-hassi",fullName:"Abderrahman Hassi"},{id:"152537",title:"Prof.",name:"Giovanna",middleName:null,surname:"Storti",slug:"giovanna-storti",fullName:"Giovanna Storti"}]}],onlineFirstChaptersFilter:{topicId:"7",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82425",title:"Financial Reporting and Analysis of Tesla Green Technology in the United States Market",slug:"financial-reporting-and-analysis-of-tesla-green-technology-in-the-united-states-market",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105065",abstract:"This study aims to discuss and analyze the financial position and performance of the US Tesla green technology company in the United States. This study uses a case study approach, financial data, and website methodologies to collect and analyze the research data. The case study is Tesla, Inc., which is a US electric vehicle and clean energy company based in Austin, Texas. Tesla is a green technology company that produces and designs electric cars, battery energy storage from home to grid-scale, solar roof tiles and solar panels, and related products and services. Tesla is growing fastly by introducing new green products, and it is now one of the world’s most valuable enterprises. It has a high market capitalization of almost US$1 trillion to become the world’s most valuable automaker. This study concludes that Tesla has changed their strategy to become the most worldwide sales of purely battery electric vehicles, capturing 23% of the market and 16% of the plug-in electric battery in the market for 2020. It has also developed a significant installer of photovoltaic systems through its subsidiary Tesla Energy in the United States. One of the largest global battery energy-storage systems suppliers is Tesla Energy, with 3.99 gigawatt-hours installed in 2021.",book:{id:"11251",title:"Banking and Accounting",coverURL:"https://cdn.intechopen.com/books/images_new/11251.jpg"},signatures:"Nizar Mohammad Alsharari"},{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105545",abstract:"In the last decades, the never-ending and unlimited expanding of both international economies and operations became globalization. Among its main features, one could recall the enormous increase of world macro-economic quantities (Gross World Product, Inter-continental Trade, FDI), as well as financial values (public debts and currency printing). The chapter tries to quantify them, by a statistical analysis of historical data (Section 1). Section 2 is dedicated to the strategic problems of firms, in particular the threats and opportunities for (inter) national firms willing to become global, and obstacles are included in Section 3. This given, it deals with the behavior of countries from the political and juridical points of view, and those ones passed form initial perplexities, distaste, or even hostility to a favorable behavior. Conclusions (Section 4) recall both the problematic alternative for globalized companies between “the world as our next door” and their social responsibilities and the similar problem for host countries, between socioeconomic advantages and protection of local workers, resources, and environment.",book:{id:"11476",title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg"},signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji"},{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.105607",abstract:"The defining feature of contemporary consumer culture is the escalation of consumption opportunities and the expanding space for choice. An unbridled and unrestricted range of products is part of material prosperity, rising living standards, and emancipation of human freedoms. The growing demands for constant consumer decision-making in an increasingly opaque environment of potential targets of choice exposes consumers to the risk of procrastination, passivity, and resignation, as well as psychological discomfort. The goal here is to contribute to theories of consumer behavior in the context of the psychological experience of choice under the conditions of the accelerated quantity of consumption volumes against the backdrop of the COVID-19 pandemic. While conventional offline shopping was drastically curtailed during the coronavirus crisis, freedom of consumer choice was maintained despite many proclamations to the contrary. I seek to provide support to the claim that freedom of consumer choice was maintained and often amplified during the pandemic in the online virtual environment of digital commerce formats. Freedom of consumer choice has merely been transformed into a horizontal level of application by the relatively rapid and fluid conversion of market activities into the cyberspace of a growing number of e-stores and online supermarkets, unconstrained by the physical space of shelves and counters.",book:{id:"11581",title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg"},signatures:"Ondřej Roubal"},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.105589",abstract:"This chapter examines the impact of board elements on CSR spending by private commercial banks in an emerging economy, considering Bangladesh as a case. In doing so, we collected necessary data from the annual reports of 30 commercial banks listed on the Dhaka Stock Exchange, covering the period 2007–2020. In addition, we reviewed the patterns of CSR spending by commercial banks to understand the CSR universe in Bangladesh. We adopted the OLS model with two-way clustering to measure the effects of board elements on CSR spending. Our results confirm that factors, such as independent directors and board size, have a significant and positive relationship with CSR expenditures, while board gender deters the same. Also, board meetings do not have any significant connection with CSR spending. For control variables, factors, such as firm size and leverage, tend to promote the CSR spending of commercial banks, while profitability has no such relationship. As for the sectoral distribution of CSR funds, we found that although the absolute amount of CSR expenditures by banks has increased substantially over the years, they are primarily limited to health, education, natural disasters, and humanitarian activities. These findings are expected to have significant policy implications.",book:{id:"11602",title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg"},signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra"},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:9,totalDimensionsCites:0,doi:"10.5772/intechopen.105528",abstract:"Today, green human resource management (GHRM) has become a key business strategy where HRM plays an active role in the ongoing green movement. Thus, the topic of GHRM is of growing interest among management scholars. However, despite the theoretically important role of GHRM, relatively small number of research has been discovered so far about how GHRM, in companies striving to achieve environmental sustainability, could help them gain a green competitive advantage (GCA). Thus, based on the resource-based view (RBV) arguments, the main objective of this paper is to develop a conceptual model of the relationship between GHRM and green competitive advantage through green knowledge, green values, and green commitment. This model is expected to provide a strategic map that could be utilized by the practitioners and managers so that GHRM implementation can be more effective in contributing to green competitive advantage. Overall, the present article extends knowledge on the resource-based view by contributing to the literature on GHRM and its interactions with the main assets that lead to green competitive advantage.",book:{id:"11602",title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg"},signatures:"Hosna Hossari and Kaoutar Elfahli"},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105420",abstract:"The chapter presents an overview of management models starting with self-assessment (ISO 9004) and continuing with the European Foundation for Quality Management (EFQM) Excellence Model. Stakeholders’ analysis and their needs and expectations diagnostic are the baseline for building sustainable businesses. Sustainability and excellence are connected, and particular details of these approaches’ implementation are presented. Partnership development appears a key principle in the EFQM model. Based on companies’ strategies analysis, a simplified model may be proposed in order to support business survival in changing environments. Some guidelines to allow assessment of excellence fundamentals implementation are given. Based on experience and without seeing as exhaustive, a summary sheet of possible approaches and deployments is given. This may be used as a practical tool to connect actions implemented in organizations with the excellence model enablers, so as to facilitate assessment to explore the performance maturity level. The same sequence of Plan-Do-Check-Act relates approaches stated by ISO 26000 and sustainability initiatives. Embedding excellence and sustainability into business strategic objectives allows the management to define the framework for competitive continuous improvement.",book:{id:"11476",title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg"},signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai"}],onlineFirstChaptersTotal:75},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"