Objective functions.
\r\n\tUsually, the most popular alternative to RWG is the printed circuit technology: microstrip or coplanar lines, for instance. Despite the benefits of reduced cost, volume, and manufacturing easiness, these technologies present quite high power losses.
\r\n\r\n\t
\r\n\tNew planar and substrate integrated waveguides are being developed since 2001 to achieve the desired performance of an RWG but synthesized on one or more printed circuit boards. The first one of its kind was the substrate-integrated waveguide (SIW), which emulates a dielectric-filled RWG in a single circuit board where side walls are made of metallic via holes. Although SIW is a good alternative to classic planar technologies, the presence of lossy dielectric makes it impossible to get a performance similar to an RWG. In 2014 the empty substrate-integrated waveguide (ESIW) was introduced as a composite of three soldered metalized circuit board layers where the middle layer had been emptied to emulate an RWG. By now, ESIW is the best approach to an RWG in terms of performance but retains the characteristics of planar circuits: easiness, compactness, mass production, low volume, low weight, and low cost. Newer hybrid planar – 3D waveguiding structures have also arisen since then, both implementing waveguides of just one conductor (no TEM mode) or two conductors (pure TEM mode).
\r\n\t
\r\n\tThese novel hybrid technologies are receiving much research efforts and continuous advances are being published. The maturity of these technologies and their use by the communication industry may come with an increase in the performance of the communication devices and a major economic impact on the high-frequency communication sectors.
\r\n\tThe goals of this book are to present the basis of these new hybrid structures and to show the advances in the design of devices and systems, manufacturing processes and tests, as well as applications where these technologies can be used.
",isbn:"978-1-80356-150-9",printIsbn:"978-1-80356-149-3",pdfIsbn:"978-1-80356-151-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"f3f7a30af6eb89fb09c1dc1b0cb9768c",bookSignature:"Dr. Marcos David Fernandez, Dr.Ing. José Antonio Ballesteros, Dr. Hector Esteban and Dr. Angel Belenguer",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11511.jpg",keywords:"SIW, ESIW, ESICL, Tapered, Widened, Circulators, Power-Dividers, 3-D Printing, Measurements, Antennas, Satellites, Internet-of-Things",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 1st 2022",dateEndSecondStepPublish:"March 1st 2022",dateEndThirdStepPublish:"April 30th 2022",dateEndFourthStepPublish:"July 19th 2022",dateEndFifthStepPublish:"September 17th 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Telecommunications engineer and Ph.D. in engineering. Researcher in empty substrate integrated waveguide devices and their manufacturing and applications. Present position: associate professor at Universidad de Castilla-La Mancha and Dean of the Escuela Politécnica de Cuenca.",coeditorOneBiosketch:"Ph.D. in engineering from the Universidad Politécnica de Madrid. The research focused on Empty Substrate Integrated Waveguide devices and their manufacturing and applications. Present position: associate professor at Universidad de Castilla-La Mancha.",coeditorTwoBiosketch:"Telecommunications engineer and Ph.D. in Universidad Politécnica de Valencia, Spain. Former positions: Joint Research Centre, European Commission, Italy, and European Topic Centre on Soil (European Environment Agency). Present position: full professor at UPV, and dean of the School of Telecommunication.",coeditorThreeBiosketch:"Telecommunications engineer and Ph.D. in engineering. Leader of the research group on applications on microwave, millimeter-wave, and antennas at the Escuela Politécnica de Cuenca. Present position: full professor at Universidad de Castilla-La Mancha.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"271424",title:"Dr.",name:"Marcos",middleName:"David",surname:"Fernandez",slug:"marcos-fernandez",fullName:"Marcos Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/271424/images/system/271424.jpg",biography:"MARCOS FERNANDEZ received his degree in telecommunications engineering from the Universitat Politècnica de Catalunya (UPC), Spain, in 1996, and his Ph.D. degree, from the Universidad Politécnica de Madrid (UPM), in 2006. He joined the Universidad de Castilla-La Mancha in 2000, where he is now an Associate Professor in the Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones and, since 2021, he is also Dean of the Escuela Politécnica de Cuenca. He has authored or co-authored several papers in peer-reviewed international journals and conference proceedings. His research interests are involved with Empty Substrate Integrated Waveguide (ESIW) devices and their manufacturing and applications.",institutionString:"University of Castilla-La Mancha",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:{id:"271426",title:"Dr.Ing.",name:"José Antonio",middleName:null,surname:"Ballesteros",slug:"jose-antonio-ballesteros",fullName:"José Antonio Ballesteros",profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000rTNhXQAW/Co1_Profile_Picture__c%202021-11-30%2018%3A02%3A14.535",biography:"JOSÉ A. BALLESTEROS received his degree in telecommunications engineering from the Universidad de Alcalá de Henares (UAH), Spain, in 2009, and his Ph.D. degree, from the Universidad Politécnica de Madrid (UPM), in 2014. He joined the Universidad de Castilla-La Mancha in 2007, where he is now an Associate Professor in the Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones. He has authored or co-authored several papers in peer-reviewed international journals and conference proceedings. His research interests are involved with Empty Substrate Integrated Waveguide (ESIW) devices and their manufacturing and applications.",institutionString:"University of Castilla-La Mancha",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Castile-La Mancha",institutionURL:null,country:{name:"Spain"}}},coeditorTwo:{id:"447482",title:"Dr.",name:"Hector",middleName:null,surname:"Esteban",slug:"hector-esteban",fullName:"Hector Esteban",profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000rTNhXQAW/Co3_Profile_Picture__c%202021-11-30%2018%3A06%3A30.399",biography:"HECTOR ESTEBAN received a degree in telecommunications engineering and a Ph.D. degree from the Universidad Politécnica de Valencia (UPV), Spain, in 1996 and 2002, respectively. He worked with the Joint Research Centre, European Commission, Ispra, Italy. He was with the European Topic Centre on Soil (European Environment Agency), in 1997. He rejoined the UPV, in 1998. He is a full professor and dean of the School of Telecommunication Engineering. His research interests include methods for the full-wave analysis of open-space and guided multiple scattering problems, and CAD design of microwave devices, especially using new empty substrate integrated waveguide technologies, and its characterization for use in space conditions.",institutionString:"Universitat Politècnica de València",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universitat Politècnica de València",institutionURL:null,country:{name:"Spain"}}},coeditorThree:{id:"137520",title:"Dr.",name:"Angel",middleName:null,surname:"Belenguer",slug:"angel-belenguer",fullName:"Angel Belenguer",profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000rTNhXQAW/Co2_Profile_Picture__c%202021-11-30%2018%3A04%3A21.765",biography:"ANGEL BELENGUER received his degree in telecommunications engineering from the Universidad Politécnica de Valencia (UPV), Spain, in 2000, and his Ph.D. degree, also from the UPV, in 2009. He joined the Universidad de Castilla-La Mancha in 2000, where he is now Full Professor in the Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones. He has authored or co-authored more than 50 papers in peer-reviewed international journals and conference proceedings and frequently acts as a reviewer for several international technical publications. His research interests include methods in the frequency domain for the full-wave analysis of open-space and guided multiple scattering problems, the application of accelerated solvers or solving strategies (like grouping) to new problems or structures, EM metamaterials, and Empty Substrate Integrated Waveguide (ESIW) devices and their applications.",institutionString:"University of Castilla-La Mancha",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Castile-La Mancha",institutionURL:null,country:{name:"Spain"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"56264",title:"Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance",doi:"10.5772/intechopen.69224",slug:"heuristics-techniques-for-scheduling-problems-with-reducing-waiting-time-variance",body:'\nIn real world, scheduling is an approach through which a large number of tasks (jobs) are assigned to the resources (processors) that complete the task execution process in time. Due to the limitation of resources, a number of challenging issues are initiated on execution processes. Hence, huge numbers of tasks are waiting in a queue for execution. An efficient and convenient way of ordering between the tasks and resources is the only solution to resolve these issues. Such ordering is otherwise spelled as scheduling through which the efficiency and accuracy of the task execution process is enhanced. Designing and developing a stable and secured automated scheduler for real world problems is a real challenge for enhancing the quality of services (QoS) of the scheduler. A qualitative automated scheduler\'s performance is always measured by the attributes of QoS. One of the attributes of QoS is ‘Timeliness’, which measures the time taken to execute the task and produce an output.
\nNumerous criteria of timeliness provide good QoS to a task execution process. These criteria are response time, waiting time, turn-around time, elapsed time etc. Delay indicates the extra waiting time taken by the task due to the time consumed by the resources in an execution process. To optimize the scheduling process, new methods with objectives are adapted and integrated as per the requirements and constraints of the issues at hand. In case of discrete alternatives, scheduling is the discipline of decision making. Available resources, imposed constraints, and time required for executions are important factors to form a schedule. These factors are concern for an individual or a group. In real computational world, a series of activities to be outlined serially with the help of these factors is a challenge. This can be described as multiobjective optimization deterministic scheduling problem. The main objectives are to minimize the makespan and not to overlap two or more activities in the same time span with same resources.
\nScheduling problems typically involve for search groupings, orderings, or assignments of a discrete set of activities, which satisfy the imposed conditions or constraints. These elements are generally modeled by means of countable discrete structures known as combinatorial structure. These structures are represented through a vector of decision variables which can assume values within a finite or a countable infinite set. Within these settings, a solution for a scheduling problem is a value assignment to the variables that meet specified criteria. Such cases formulate the scheduling problem exploiting the concepts of constraint satisfaction problems or optimization problems.
\nIn Computer Science and Engineering, multiobjective optimization deterministic scheduling problems are belonging to a broad class of combinatorial optimization problems. These combinatorial optimization problems area belongs to NP hard, moreover asymptotically getting an optimal solution in linear time is impossible. In the field of Computer Science and Engineering, mathematical optimizations determine an optimal solution which may be an extremely time consuming procedure due to their computational complexity, whereas heuristic is a technique for finding an approximate solution. In other words, a heuristic is a procedure which produces a quick solution that is good enough for solving the problem at hand. This solution may not be the best of all the actual solutions to this problem, or it may simply approximate the exact solution. But it is still valuable because finding it does not require a prohibitively long time. This is achieved by trading optimality, completeness, accuracy, and precision for speed.
\nThe rest of the section is structured as follows. A brief review of related work of different researchers in scheduling of tasks on single processor and parallel processor with motivation is mentioned in Section 2. In Section 3, the general definition of scheduling problem is briefly discussed. As scheduling is a NP-hard problem, different approaches for solving the scheduling problem are discussed in Section 4. The classification of deterministic scheduling problem is discussed briefly in Section 5. Different existing heuristic methods are discussed along with pseudo code in Section 6. The single processor scheduling problem with problem formulation and performance analysis of different heuristic methods is discussed in Section 7. In Section 8, the parallel processor scheduling problem with problem formulation and performance analysis of different heuristic methods is discussed. Section 9 contains a brief report on analysis of work leading to conclusion, scope for utilization of this study in different similar areas and suggestions for future research in this field.
\nIn many manufacturing and services industries, scheduling is a decision making process that is used in a day-to-day basis. It deals with the allocation of resources to tasks over a given time period. In computational world, these resources are single processor, multi processors, parallel processors, and dedicated processors. The goal is to optimize one or more objectives such as makespan, mean flow time, mean weighted flow time, mean tardiness, mean earliness, etc. Scheduling problem is a broader class of combinatorial problem, and the purpose is to search a best way to organize task so that it is completed in the shortest possible time as depicted in Refs. [1, 2]. Importance of different types of real world scheduling problems such as single processor scheduling problem, two processor scheduling problems, parallel processor scheduling problems, job shop scheduling problems, flow shop scheduling problems, open shop scheduling problems, etc. are classified and discussed in Ref. [3] and play a significant role in research. The combinatorial problems are belonging to the real world problem. These problems are either problem of minimization or maximization. Such problems consist of a set of instances, candidate solutions for each instance, and a function that assigns to each instance and each candidate solution, a positive rational number called solution value is depicted in Ref. [4]. These problems are distinguished into three subclasses and presented in Ref. [5]. They are named as optimization problem, decision problem, and search problems. An optimization problem is defined as the answer to its instance that specifies a solution for which a value of a certain objective is at its optimum, whereas a decision problem takes only two values, either ‘yes’ or ‘no’, as an answer to the instance of the problem. Finally, the search problem simply aims at finding a valid solution, regardless of any quality criterion.
\nAs scheduling is a decision making problem, effective algorithms are developed and designed by the researchers to solve it in due course of time. Such algorithms consist of two parts named as ‘head’ and ‘method’. The head starts with the keyword ‘algorithm’ followed by a name (i.e., description for the purpose of algorithm), whereas method is used to describe the idea or logic used in the algorithm. The semantic representations are reflected with the help of layout of output, procedure or function name, variable, etc. These algorithms consist of a block of instructions used in a sequential order. Changing the instruction in algorithm changes the behavior of the algorithm is explained in Ref. [2].
\nScheduling of task is an integral part of single and parallel computing. Extensive research has been conducted in this area leading to significant theoretical and practical results. New scheduling algorithms are in demand for addressing concerns originating from the single and parallel processors. How heuristic methodology encourages the researcher to explore and pursue the creative journey through internal discovery in the field of research is presented in Ref. [6].Two heuristic task scheduling methods for single processor, called balanced spiral (BS) and verified spiral (VS), which incorporate certain proven properties of optimal task sequences for minimizing the waiting time variance is proposed in Ref. [7]. The success of stochastic algorithms is often due to their ability to effectively amplify the performance of search heuristics that is focused and discussed in Ref. [8]. A heuristic procedure to minimize the weighted completion time variance in single processor is presented in Ref. [9]. Two heuristic methods named as EC1 an EC2 are developed and proposed in Ref. [10] for solving the problem for a set of large tasks by minimizing waiting time variance in the single machine problem. A novel heuristic method named as RSS is developed and proposed in Ref. [11] for solving the problem for large set of tasks by minimizing waiting time variance in the single machine problem.
\nSeveral meta-heuristics have been inspired by nature in due course of time. Two well-known robust metaheuristic methods, including genetic algorithm (GA), simulated annealing (SA), were improved and presented in Ref. [12] to tackle large-scale problems. A MAX-MIN Ant System, which makes use of a separate local search routine, is proposed in Ref. [13] for tackling a typical university course timetabling problem. An ant algorithm based on a multiagent system inspired by the observation of some real ant colony behavior exploiting the stigmergic communication paradigm is discussed in Ref. [14]. An agent-based parallel genetic algorithm for job shop scheduling problem is proposed in Ref. [15]. A genetic algorithm (GA) has been developed in Ref. [16] for minimizing the average residence time to produce a set of batches in function of batch order in a multipurpose-multiproduct batch plant. Multi objective genetic algorithm to find a balance point in respect of a solution of the Pareto front is presented in Ref. [17]. A decomposition heuristics algorithm based on multibottleneck processors for large-scale job shop scheduling problems is proposed in Ref. [18]. A new heuristic based on adaptive memory programming and a simulated annealing algorithm is presented in Ref. [19].
\nTo enhance the property of different heuristic methods for parallel processing in uniform processors, a unique task allocation scheme named as PUM is developed and presented in Ref. [20]. One exact algorithm and one approximation algorithm are proposed in Ref. [21] to minimize the completion time variance. A heuristic algorithm to solve preemptive scheduling problem of dependent tasks on parallel identical processors is proposed in Ref. [22]. A new heuristic algorithm for scheduling metatasks in heterogeneous computing system is presented in Ref. [23]. Heuristic algorithms are proposed to solve a number of independent tasks on multiple number of identical parallel processors problem so as to minimize the waiting time variance [24].
\nIn computing systems, while working with large data files on a Web server, often the response time to a user\'s request is strongly dependent on the time required to access or retrieve the data files referenced by the user. Especially in online systems, it is often desirable to provide uniform response to user\'s requests, i.e., minimize the variance of response time by minimizing the variance of access time. The variance of completion time and variance of waiting time performance measures are analyzed [25] for the single processor sequencing problem. These measures are compared and contrasted to the performance measures of mean completion time and mean waiting time. It was shown that the sequence that minimizes the variance of waiting times is antithetical to the sequence that minimizes the variance of flow times, which motivate to take waiting time variance as the performance parameter.
\nAnother motivation is to find out the effectiveness of the methods used for calculation of WTV in parallel processor by efficient task allocation scheme, which will be able to generate a schedule with less time as far as possible.
\nThe deterministic scheduling problems are part of a much broader class of combinatorial optimization problems. To analyze these problems, the peculiarities of the problem must be studied. The time required for solving those scheduling problems is seriously limited, so that only low-order polynomial time algorithms may be used. Thus, the examination of the complexity of these problems should be the basis for analysis of scheduling problems and algorithms, which is shown in Figure 1 as a problem solving cycle for deterministic scheduling problem.
\nProblem solving cycle for deterministic scheduling problem.
The deterministic scheduling problems can be defined as a combination of a set of tasks \n
The dedicated processors are distinguished as task shop, flow shop, and open shop. In task shop, each task has its own predetermined route to follow with a set of processors. But a distinction is made between task shops in which each task visits each processor at most once and task shops in which a task may visit each processor more than once. On the contrary in flow shop, a set of processor are placed in series. Each task has to be processed on every processor exactly once. All tasks have to follow the same route, i.e., they have to be processed first on processor 1, then on processor 2, and so on. In case of open shop, a set of tasks must be processed for given amounts of time at each of a given set of processors, in an arbitrary order. The idea is to determine the time at which each task is to be processed at each processor. In such systems, it is assumed that the buffers between processors have unlimited capacity and a task after completion on one processor may wait before its processing starts on the next one. However, buffers of zero capacity tasks cannot wait between two consecutive processors are termed as no-wait property.
\nThe classical deterministic scheduling problem can be stated as follows. There are a set of
From the literature review, it was observed that there exists a large class of combinatorial optimization problems for which most probably no polynomial optimization algorithms are available. These are the problems whose decision counterparts are NP complete. Hence, in such cases, the optimization problems are NP hard. A comprehensive study on NP completeness, NP hardness, polynomial time transformation, etc. helps the researchers in analyzing the multiobjective scheduling problem. It also helps the researchers to solve those problems by using polynomial time algorithm. The usefulness of the algorithm depends on the order of its worst-case complexity function and on the particular application. It was found that sometimes, the worst-case complexity function is not low enough, although still polynomial, a mean complexity function of the algorithm may be sufficient. On the other hand, if the decision version of the analyzed problem is NP complete, then there are several approaches taken into consideration to make the problem NP hard. These approaches are discussed below.
\nFirst, constraints like allowing preemptions, assuming unit-length tasks, and assuming certain types of precedence graphs are relaxed by imposing on the original problem and then solving the relaxed problem. The solution of the latter may be a good approximation to the solution of the original problem. In case of computer application, the relaxation method is justified when parallel processors share a common primary memory. Moreover, such a relaxation is also advantageous from the viewpoint of certain optimality criteria.
\nSecond, in the process of solving NP hard scheduling problems, the use of approximation algorithms tends to find an optimal schedule but does not always succeed. It is a useful heuristic for finding near optimal solutions, when the optimal solution is not required [5]. The necessary condition for these algorithms to be applicable in practice is that their worst-case complexity function is bounded from above by a low-order polynomial in the input length. So that approximation algorithm often give raise to heuristic that return solution much closer to optimal than indicated by their performance guarantee and bring the researchers to study of heuristics and allowed to prove how well the heuristic performs on all instances [5]. Their sufficiency follows from an evaluation of the difference between the value of a solution they produce and the value of an optimal solution. This evaluation may concern the worst case or a mean behavior. However, for some combinatorial problems, it can be proved that there is no hope of finding an approximation algorithm of certain accuracy.
\nAnalysis of the worst-case behavior of an approximation algorithm may be complimented by an analysis of its mean behavior. This can be done in two ways. The first consists in assuming that the parameters of instances of the considered problem are drawn from a certain distribution, and then the mean performance of algorithm is analyzed. Distinguish between the absolute error and the relative error asymptotic optimality results in the stronger (absolute) sense are quite rare. On the other hand, asymptotic optimality in the relative sense is often easier to establish. It is rather obvious that the mean performance can be much better than the worst-case behavior, thus justifying the use of a given approximation algorithm. A main obstacle is the difficulty of proofs of the mean performance for realistic distribution functions. Thus, the second way of evaluating the mean behavior of approximation algorithms, consisting of experimental studies, is still used very often in real world problems.
\nThe third and the last way of dealing with hard scheduling problems is to use exact enumerative algorithms whose worst-case complexity function is exponential in the input length. Such problems are not NP hard in strong sense. These problems are possible to solve by pseudo-polynomial optimization algorithm whose worst-case complexity function is bounded from above by a polynomial in the input length and in the maximum number appearing in the instance of the problem. For reasonably small numbers, such an algorithm may behave quite well in practice, and it can be used even in computer applications.
\nThe above discussion is summarized in a schematic way in Figure 2. It is observed that finding an exact algorithm for a large-scale task scheduling problem is not easy. Hence, local optimum algorithm as heuristic is always better to develop and to be used. Knowledge of classification for these scheduling problems serves as a basis for developing heuristic algorithms, which is discussed in next session.
\nApproaches to scheduling problem.
A scheduling problem is described by a triplet (
Parallel processors are classified as per their behavior of the parallelisms into three types. They are named as identical parallel processors, uniform parallel processors, and unrelated parallel processors denoted by the symbol P, Q, and R, respectively. Similarly dedicated processors are classified into three categories named as flow shop processors, task shop processors, and open shop processors denoted by the symbol F, J, and O, respectively.
\nThe symbol
The symbol
Completion time | \n|
---|---|
Flow time | \n|
Lateness | \n|
Tardiness | \n|
Earliness | \n|
Tardy task unit | \n\n\n | \n
Objective functions.
As it has been observed from different research articles that a good number of objectives are available for minimizing the different performance measure of scheduling, the ultimate objective is minimizing the makespan. To fulfill the aforementioned objective under different constraints, several methods have been developed which therefore gives raise to various classes of schedules.
\nFrom the literatures, it is observed that a number of task ordering methods are developed and improved in due course of time. These methods either belong to exact or heuristic or meta- heuristic methods. In the process of searching a best or improved method with desired objective, all possible solutions are tested one by one. This process is viable only for small size of problems but very challenging, complicated, and time consuming as the size of problem increases. Therefore, to reorder the tasks of large problems, heuristic methods are developed for obtaining optimum solution. The solutions obtained by the heuristic methods are optimum or near optimum in nature by using less number of computer resources and computational time. Calculation of CTV and WTV are the two objectives for these types of heuristics. For minimizing the WTV, Elion & Chowdhary, verified spiral (VS), balanced spiral (BS), and Rati-Satya-Sateesh (RSS) heuristic methods are discussed below.
\nEC1 and EC2 are two types of heuristics, designed and presented in Ref. [10] for an n-task WTV problem. Here, ‘
Verified spiral (VS) presented in Ref. [7] is an improved version of EC1. This method incorporates Schrage\'s conjecture and Hall & Kubiak\'s proof [28] about the placement of first three largest processing time tasks. For the remaining task on the task queue, a modified spiral placement method is implemented. This method removes the next task from the task queue and place either after the front task or before the rear task of the sequence on the basis of which position produces a small WTV with the existing tasks.
\nThe balanced spiral (BS) method discussed in Ref. [7] is developed to reduce the computational cost of VS method. This method is otherwise known as observation method, as it balance the left (L) and right (R) optimal sequence to get optimum or near optimum sequence after placing the processing time of each tasks in sequence one by one until the task queue is empty.
\nIn our locality, the fishmongers are those who sell a whole unit of fish. Sometimes a large fish has to be distributed equally to two or more customers. These fishmongers are so skilled that they can equally distribute the cut pieces of the same fish among the customers during the time of cutting. It reduces the post measurement for equality, which generally found almost equal. This distribution mechanism to serve the customers used in this method is named as RSS, presented in Ref. [20]. This method allocates the tasks in the sequence with minimum computational cost and time.
\nThe effectiveness of the above discussed methods is presented in the next two sections by using single processor and parallel processors with an objective WTV.
\nIn the task scheduling problem, ‘
In the process of searching, an effective and optimized sequence of tasks, it needs to calculate all possible combination of tasks (factorial n). It consumes much time and resources to give an optimum sequence. Different heuristics and meta-heuristics methods are required to develop by reducing the number of calculations for handling many concurrent tasks in computer and in network systems. To achieve this service stability on an individual recourse, it is required to minimize the WTV, which is the objective of the task scheduling problem on single processor.
\nThe above mentioned problem can typically describe as an allocation of tasks to a processor by considering the concept that once a task get into the processor for processing, it did not leave from the processor until the processing time of that task was over. The decision whether the task
The objective is to minimize the variance of waiting time of
The constraint that each position of the sequence is used exactly once by a task is described in Eq. (S.3). Each task is assigned to a position in the sequence is exactly described once in Eq. (S.4). The integer constraint for decision variable is described in Eq. (S.5). The waiting time for the first task is described in Eq. (S.6), and the waiting time
This section presents the effectiveness of five heuristic algorithms discussed in section 6 by generating the test cases with the help of three probability distributions namely normal distribution, Poisson distribution, and exponential distribution. At first, a small set of test cases have been selected which are same as used in Refs. [7, 10] to find the effectiveness of the algorithms. To increase the number of testing cases, another three large sets of data are also generated randomly of 5 through 500 numbers of tasks. These large data sets are generated with the help of normal, Poisson, and exponential distribution, respectively.
\nTo measure the performance of the heuristics presented in Section 6, at first for optimality, all possible sequences are generated by placing the tasks randomly for each problem of small data set. Each generated possible sequence is considered as one sub example of all possible optimal sequences. For example, there are 120 numbers of task sequences (e.g., 5!) are generated for 5 numbers of tasks. Similarly, there are 720 numbers of task sequences (e.g., 6!) are generated as there are six tasks so on. But the above discussed five heuristic methods generate only one task sequence for each test case of small data set. The basic aim is to calculate WTV for the test cases, which satisfy the V-shaped optimal property.
\nFigure 3 shows the WTV performance of five heuristic methods is as good as the performance of optimal methods for small size test cases. It was also observed that the RSS method gives optimum or near optimum WTV results as compared with optimum generated WTV value.
\nWTV performance of between heuristics vs optimal for small set of jobs.
The WTV performance of EC1, EC2, VS, BS, and RSS heuristic methods for all the test cases of large data set is shown in Figure 4. The computational result depicted that the WTV obtained by RSS method seems to be near optimum in comparison with other four methods for different numbers of tasks generated by three distribution methods discussed above.
\nPerformance of WTV with respect to heuristics methods for large set of data (i.e., processing time) generated by normal, Poisson, and exponential distribution.
For single processor scheduling problem, the computational cost is treated as computational average time. It is observed that all heuristic methods used sorting mechanism before the generation of tasks sequence except optimal method. Quick sort is an efficient sorting mechanism that takes
Parallel processing is one of the arising concepts that used to schedule a batch of
The uniform parallel processors \n
The problem is formulated under five numbers of assumptions. At first, the starting time of individual processors are assumed to initialize at time 0 (zero). In other words, all the tasks for each processor are ready to begin for processing at the same time, i.e., 0 (zero). Second, each processor is available deliberately prior to a condition that once the processor given a task to process, it cannot be preempted until the task\'s processing time is completed on that processor. Third, once a task is allocated to any one processor, it cannot be laid away to other processor under any circumstance. Fourth, the number of tasks must be greater than the number of processors, i.e.,
From the literature, it was observed that number dominant properties on WTV problem has been discovered and depicted by the researchers. To start, first for any scheduling sequence
Minimization of WTV as a performance measure for task scheduling problem has been discussed in Section 7 for achieving the service stability between the tasks in single processor. The parallel processor is nothing but multiple numbers of single processors with same speed or multiple numbers of single processors with different speed are working simultaneously for achieving the concurrency. Hence, to come up with an optimized schedule, which minimize the WTV is the aspiration of the task scheduling problem in parallel environment. The WTV developed (S.1) in Section 7 will be utilized for the development of the WTV on parallel processors. The WTV of tasks in a complete sequence for the parallel processor is obtained as follows in Eq. (P.1).
\nThe objective is to find an optimum or near optimum schedule with pseudo-polynomial time of
subject to:
\nwhere
Each task is assigned to a position is exactly once in any one of the processor sequence is described in Eq. (P.3). Each position of any one process or sequence is used exactly once by a task is described in Eq. (P.4). The waiting time for first task of the individual processor sequence is described in Eq. (P.5). The waiting time of all other allotted tasks for the individual processor except first one is described in Eq. (P.6). Eqs. (P.7) and (P.8) state that if two tasks are on the same processor, then one must be scheduled after the other; otherwise, the values of
The uniform parallel processors are identified by their different speeds. The processors are arranged in chronological order, such that the first processor is the slowest processor with low processing cost and the last processor is the fastest processor with high processing cost. The scheduling problem (
Uniform parallel processors consist of a bank of single processors with different speed, and the computational cost is depending on the speed of the processors. It is most important to allocate the task in such a way that the computational cost must be maintained. Hence, the unique task allocation scheme named as PUM is combined with the heuristic methods namely VS, BS, and RSS is also discussed in Ref. [20]. The efficiency of the three heuristic methods with the unique task allocation scheme for uniform parallel processors is tested with a large number of test cases discussed in the next section.
\nTo find the effectiveness of these heuristic methods, test cases are randomly generated with the help of four probability distributions. At first with the help of normal distribution, 901 numbers of test cases are generated randomly in combination of 5 and 6 numbers of uniform parallel processors for each case of 100 through 1000 numbers of tasks. The test cases are followed by the same number of tasks and processors with the help of Poisson distribution, exponential distribution, and uniform distribution. The performance analysis of the heuristic methods with unique task allocation scheme is discussed below.
\nFor analysis, mean WTV is taken as the measure of performance. Performance of measure of three heuristic methods named as VS, BS, and RSS is analyzed by using a unique task allocation scheme named as PUM. This enhances the performance of heuristic methods for parallel processing in uniform processors. The allocation scheme in combination with heuristic algorithms is tested with a large number of test cases starting from 100 to 1000 tasks separately. The results analysis for normal distribution on uniform parallel processor is presented in Figure 5, which consists of two subfigures (a) and (b). The mean WTV obtained by the three heuristic algorithms with the help of unique task allocation scheme is shown in each subfigure. The task allocation schemes are implemented on each test case generated by normal distributions. The subfigures (a) and (b) represent mean WTV performance for 5 and 6 numbers of uniform parallel processors, respectively. The three heuristic methods are represented in each subfigure (a) and (b) by three distinct colors. Green color represents VS method, black color represents BS method, and red color represents RSS method. An enlarged view of mean WTV performance of heuristic methods from total task numbers 221 to 226 is presented in each subfigure. The computational result shows that the mean WTV obtained by RSS methods in combination of PUM is apparently same in comparison with other two heuristic methods.
\nComparison of mean WTV with respect to heuristics methods by using PUM allocation scheme for the processing time generated by normal distribution.
Similarly, the processing time for all the test cases is generated with the help of Poisson, exponential, and uniform distribution, respectively. It is also observed that mean WTV obtained by RSS methods in combination of PUM are apparently same in comparison with other two heuristic methods as presented in Ref. [20].
\nDeveloping an efficient task allocation scheme and execute it with the heuristic methods for uniform parallel processors is NP hard. To overcome it in uniform parallel processor, an efficient task allocation scheme is required along with the heuristic methods. The average time required for finding sequence by computing the heuristics in uniform parallel processor is represented as computational cost. From the above discussed heuristic methods with PUM allocation scheme, it is found that the VS method requires at least four tasks to commence, and all the heuristic methods discussed in Section 6 need a sorting procedure after the PUM allocation process is over and before the starting of heuristic process. Quick sort is an efficient sorting mechanism that takes
This work is motivated from the various criteria of timeliness that provide services to the users of computer and network systems including response time, waiting time, turn-around time, elapsed time etc. To provide uniform response to the users, i.e., to minimize the variance of response time by minimizing the variance of access time is the problem of task scheduling by minimizing WTV as a measure in single processor and extend to parallel processors. In other words, a step has been taken for developing a scheduling procedure that minimizes the WTV of the individual task.
\nIn task scheduling problems, a lot of works are done on the area of completion time rather than waiting time. Variance as a parameter is introduced by the researcher to minimize the CTV by distributing the task processing time in such a way that the uniformity among the task is obtained (i.e., QoS). For obtaining the uniformity in the scheduling problems, variance of completion time is more effective rather than the completion time. It was also found that the sequence that minimizes the variance of completion time is antithetical to the sequence that minimizes the variance of waiting time. But it was found from the literature that a large number of works are done on CTV, and in case of WTV, it is few.
\nThe aim of this work is to analyze, study the peculiarity behavior, and develop efficient heuristic methods for solving different classes of scheduling problems. As the addressed problems are NP hard, the alternative of using heuristic methods has been proven to be good one, whereas the exact solution always gives optimum solution by taking maximum time for both single processor as well as parallel processors for a large set of tasks.
\nIn these respects at first, basic elements of classical deterministic scheduling problem, different aspects related to scheduling problem and algorithms, and classification of scheduling problems are presented. Second, different methods for solving scheduling problems, complexity of scheduling problem, and basic knowledge on different schedule class are discussed. At last, an overview on different objective classification criteria for both single processor and parallel processors was presented.
\nUsing the aforementioned background, a mixed integer programming model with two scheduling problems was addressed:
\nA single processor scheduling problem
The processing time of tasks are generated randomly by three probability distributions namely normal distribution, Poisson distribution, and exponential distribution.
Performances of five heuristic methods are analyzed. It was observed that RSS method gives optimum or near optimum results than other heuristic methods
From the comparative result, it was also observed that the obtained WTV of the sequence generated with the help of heuristic methods are always satisfying the V-shaped optimality property.
It was also observed that RSS method gives results with minimum computational cost than other heuristic methods.
A uniform parallel processor scheduling problem
A unique task allocation scheme was developed for allocating the task to individual processor.
The processing time of tasks are generated randomly by four probability distributions namely normal distribution, Poisson distribution, exponential distribution, and uniform distribution.
Performance of measure of three heuristic methods namely as VS, BS, and RSS are analyzed by using a unique task allocation scheme named as PUM.
The experimental results are compared and observed that RSS method with PUM allocation scheme reveals the best solution with minimal computational cost.
Therefore, it is concluded that in case of single processor, the computational cost of RSS heuristic method is less than the other four heuristic methods. In case of uniform parallel processor, the RSS method with PUM allocation scheme reveals the optimum or near optimum solution with minimal computational cost.
\nOften new computer systems and new performance measures used to evaluate a system lead to new directions in scheduling. The environment of scheduling is changing time to time depending on resource availability, interruptions, and nature of changed demand. New scheduling is to be prepared in between an old unprocessed schedule. This give rise to change in constraints and resources. This has to be rescheduled with changed objectives.
\nIn future, keeping WTV as the measure of performance the following works will be carried out for finding the suitability and effectiveness of the heuristic methods and task allocation schemes proposed in this work.
\nTo apply the proposed work for available multiobjective scheduling problems.
To apply the proposed work in order to investigate the field of tasks and resources allocation in project like project management scheduling, broadcast scheduling, etc.
To find out the effect of these proposed work in dynamic scheduling.
Exploration of more efficient scheduler with better effective scheduling methods.
Use of stochastic scheduling problems in real life environment.
Suitability of techniques with cloud computing which is a kind of grid with virtual services and service oriented architecture (SOA).
In contemporary implant prosthodontics, proper treatment planning prior to dental implant placement is equally important as the prosthetic factors. The good work of oral surgeon could be easily ruined by poor prosthodontic execution, thus changing the dental implant therapy success into therapy failure.
For decades, the scientific literature identified the following criteria for the survival and success of dental implant-based prosthetic rehabilitation:
Implant survival: At the time of measurement, the implant is in situ and loaded.
Implant success is determined using the Albrektsson criteria [1] with the following modifications: Adell [2], Buser et al. [3], Mombelli and Lang [4], and Misch et al. [5].
Absence of radiographic peri-implant bone resorption greater than 1.5 mm in the first year of function [2] and greater than 0.2 mm in subsequent years (i.e. 1.7 mm after 2 years); alternative cut-off values for radiographic bone resorption after 2 years of 2 mm (I. Success) and 4 mm (II. Satisfactory Survival) were also evaluated [5].
Currently, implant success is defined by these three criteria [6]:
Annual bone lose not more than 0.2 mm,
Periodontal probing depth (PPD) no greater than 5–7 mm,
No bleeding on probing.
These criteria are based on older studies, previous dental implant designs and restorations that are not biocompatible, and they might need to be re-evaluated. Porcelain fused to metal (PFM) restorations lack the biocompatibility of zirconia, which is widely used today, and current concepts allow bone stability or even growth over time. Therefore, the expected 1.5 mm loss after 1 year and subsequent gradual resorption can be considered relicts of the past [6].
The debate between cemented and screw-retained dental implant restorations is old as the implant prosthodontics itself. There are also different opinions in the scientific literature. Studies have shown that there are no significant differences in survival between the two methods, but screw connection has shown a total of fewer technical and biological complications [7]. But, from the clinical perspective, all cemented dental implant restorations should be checked very meticulously for any cement remnants. Even after many years of function, cement remnants can cause peri-implant mucositis which if undetected and untreated can lead to peri-implantitis with severe crestal bone loss around dental implants (Figure 1). This bone loss is the clinical issue which we are trying to avoid by careful treatment planning and precise execution of clinical and laboratory procedures.
Dental implant with cement-retained PFM crown; left image—immediately after delivery with no cement remnants visible on the radiograph; right image—patient did not come for regular follow-ups until he noticed bleeding while using dental floss, 9 years later. Unfortunately, dental implant needed to be removed due to severe bone loss.
Even when using screw-retained restoration, we can witness crestal bone loss around dental implants. This can be caused by the inappropriate size and/or shape of titanium base. Too short or too wide titanium base profile for screw-retained crown can compromise transitional zone of connective tissue and junctional epithelium around dental implant restoration leading to crestal bone loss (Figure 2).
The story of dental implant system, which was newly introduced to the market, with only one available titanium base height at that time (0.5 mm). Subsequent radiographs from top left to bottom right: initial situation; immediately after dental implant placement in augmented socket (two-stage surgery); second stage surgery and healing abutment; at the time of crown delivery (highly polished CAD/CAM zirconia abutment with laboratory cemented screw-retained lithium disilicate crown); 2 years follow-up with crestal bone loss; final radiograph at the time of new crown delivery (1.5 mm high titanium base was available on the market and micro-layered screw-retained zirconia crown with polished subgingival part was made in hope to prevent further crestal bone loss).
The difference in two titanium base height and screw-retained crowns is clearly visible in Figure 3. The impact of different titanium base as well the slight changes in emergence profile shape on the crestal bone level and density in a period of 3 months is shown in Figure 4.
Left: screw-retained crown with 0.5 mm high titanium base; right: screw-retained crown with 1.5 mm high titanium base for the patient in
Left: final radiograph at the time of new crown delivery; right: 3 months’ follow-up radiograph with clearly visible bone remineralization and bone density increase around dental implant neck.
Nevertheless, the clinical success of dental reconstructions is determined not only by survival rates, but also by the number of technical or biological complications that develop during clinical function. The optimum materials and techniques for implant-borne reconstructions are frequently debated to increase clinical outcomes. One of the current discussions is about the best fixation method between the implant and the reconstruction. For a patient-centred clinical approach, it is currently uncertain whether cementation or screw retention is the superior option for restoring dental implants. In clinical practice, both cementation and screw retention appear to have advantages and disadvantages. Clinically and technically, cemented implant reconstructions are quite similar to tooth-borne reconstructions. As a result, they may be easier to make and handle in the mouths of patients. However, prefabricated cement-onto or even custom abutments are required. Recently, CAD/CAM (computer-aided design/computer-aided manufacture) technologies enable a wide range of customized abutments to be used, and cemented reconstructions have become the preferred choice in many clinical settings. The difficulty in removing extra cement from cemented crowns and FDPs is one of their drawbacks. More worrying, excess cement has been demonstrated to cause peri-implantitis in the clinical setting [8]. Another notable disadvantage of cemented reconstructions is that, in the event of a problem, they are difficult or impossible to remove without causing damage, such as in the case of technical complications.
The retrievability of screw-retained reconstructions, on the other hand, is a big advantage. Furthermore, biological issues are extremely unlikely to arise if the reconstruction is well-fitting. Because the position of the screw access hole and the surrounding material parameters of the suprastructure must be considered, the horizontal and angular positioning of the implant is more delicate and has less tolerance than when employing screw-retained reconstructions. The fixation screw opening should ideally be located in a non-visible palatal or oral location, which is only possible if a suitable implant site and angulation are available. Furthermore, screw-retained reconstructions require more technical production because the reconstruction core must constantly be customized. Technical issues such as retaining screw loosening or veneering ceramic fracture have been clinically observed.
It is indeed difficult to choose between the two types of reconstructions, and it quite often comes down to personal preference rather than scientific data.
In a systematic review published by Sailer et al. [9], it was discovered that cemented restorations cause much higher bone loss than screw-retained restorations. From a total of 4511 titles, 59 clinical studies were chosen for this review, and the data were retrieved and analysed. For cemented single crowns, the estimated 5-year reconstruction survival was 96.5%, for screw-retained single crowns it was 89.3% (
This study found that both types of reconstructions had varied effects on clinical outcomes and that neither fixation approach was clearly superior to the other. Screw-retained reconstructions had more technical issues, while cemented reconstructions had more substantial biological consequences (implant loss, bone loss >2 mm). Screw-retained reconstructions are more easily retrievable than cemented reconstructions, allowing for easier treatment of technical and biological difficulties. These reconstructions appear to be preferred for this reason, as well as their apparent higher biological compatibility.
In contrary, Nissan et al. published a study that compared the long-term outcomes of cement versus screw-retained implant supported partial dentures in a randomized controlled trial and found that cement-retained FPDs had a better outcome [10]. The study group consisted of consecutive patients with bilateral partial posterior edentulism. In a split-mouth design, implants were placed and cemented or screw-retained restorations were randomly assigned to the patients. Examinations for follow-up (up to 15 years) were done every 6 months in the first year and every 12 months in the following years. Ceramic fracture, abutment screw loosening, metal frame fracture, Gingival Index and marginal bone loss were all assessed and reported at each recall appointment. Total of 221 implants were used to support partial prosthesis in 38 individuals. No implants were lost throughout the follow-up period (mean follow-up, 66 47 months [range, 18–180 months] for screw-retained restorations and 61 ± 40 months [range, 18–159 months] for cemented restorations). Ceramic fracture occurred substantially more frequently (P.001) in screw-retained restorations (38% ± 0.3%) than in cemented restorations (4% ± 0.1%). Abutment screw loosening occurred statistically substantially more frequently (P = .001) in screw-retained restorations (32% ± 0.3%) than in cement-retained restorations (92% ± 0.2%). Neither technique of restoration resulted in metal framework fractures. The mean Gingival Index scores for screw-retained (0.48 ± 0.5) restorations were statistically substantially higher (P.001) than for cemented (0.09 ± 0.3) restorations. The mean marginal bone loss was statistically considerably greater (P.001) for screw-retained restorations (1.4 ± 0.6 mm) than for cemented restorations (0.69 ± 0.5 mm).
The long-term clinical and biological outcomes of cemented implant-supported restorations were found to be better to screw-retained restorations in this study. With such contradictory facts, it is difficult to determine which technique is superior. The choice between cement-retained and screw-retained restorations might be philosophical. By opting for cemented restorations, the clinician accepts responsibility for removing all cement residues. Peri-implantitis caused by cement remnants is entirely an iatrogenic condition with no delegation of responsibility to the patient’s oral hygiene habits.
Whether we use standard abutments or custom CAD/CAM abutments, the cementation margin is critical. One of the most common causes of cement residues in soft tissues around dental implant restorations is the widespread clinical practice of setting the implant restoration margin too deep subgingival for aesthetic reasons.
This is typically done to conceal the abutment-crown interface and to allow for eventual peri-implant soft tissue recession. When the margin is deeper than 1.5 mm below the soft tissue level, according to one of the Academy of Osseointegration’s consensus statements, the risk of cement residues is significant [11]. Furthermore, the American Academy of Periodontology recently included residual cement to the list of risk factors for peri-implant mucositis and peri-implantitis [12]. The key challenge is where to put the cementation margin and how deep it should be?
According to the literature, the margin depth should be deep enough to conceal the margin yet shallow enough to allow residual cement to be removed. Because it is difficult to identify the exact ideal cementation margin depth, this statement does not provide sufficient information for safe and successful everyday clinical practice. To identify a safe margin for cementation, several laboratory and clinical trials were conducted.
The study conducted by Linkevicius et al. sought to determine the amount of cement that remained undiscovered following cementation and cleaning of implant-supported restorations [13]. Fifty-three single implant-supported metal-ceramic restorations were used to treat 53 patients. A periodontal probe was used to assess the subgingival location of each implant’s margin mesially, distally, buccaly and lingually, giving 212 measurements. The data were separated into four groups: tissue level (14 samples), 1 mm subgingivally (56 samples), 2 mm (74 samples) and 3 mm (68 samples) below the tissues contour. Metal-ceramic restorations with occlusal holes were made and resin-reinforced glass-ionomer was used to bond them to conventional abutments. After cleaning, a radiograph was taken to determine if all of the cement had been removed. After that, the abutment and crown complex were unscrewed for testing. Adobe Photoshop was used to analyse the photographs of all quadrants of the specimens and peri-implant tissues. Two proportions were determined: (1) the area of cement remnants relative to the overall area of the abutment/restoration; and (2) the area of cement remnants relative to the total area of the implant soft tissue contour.
Excess on the crown groups were group-1 (0.002 ± 0.001); group-2 (0.024 ± 0.005); group-3 (0.036 ± 0.004) and group-4 (0.055 ± 0.007). The amount of undetected excess grew as the margin became deeper subgingivally (P = 0.000), and there was a significant difference between all groups (P 0.05). The soft tissue groups had the following remnants: group-1 (0.014 0.006), group-2 (0.052 0.011), group-3 (0.057 0.009) and group-4 (0.071 0.012). The increase in cement remnants was statistically significant as well as the difference between groups 1 and 2. Radiographic examination revealed cement residues mesially in four cases of 53, or 7.5 %, and distally in six cases of 53, or 11.3 %.
According to the findings of this investigation, the deeper the position of the margin, the more undetected cement was revealed. Dental radiographs should not be considered as a reliable method for cement excess evaluation.
Another study done by Linkevicius et al had the purpose to determine the relationship between patients with a history of periodontitis and development of cement-related peri-implant disease [14]. Between 2006 and 2011, in private practice, 77 patients with 129 implants were selected for this retrospective study from completed implant cases that were scheduled for routine maintenance or had mechanical or biological issues. Researchers analysed implants with extracoronal cement residues and implants without cement residues. The selected cases were then separated into two groups: implants in patients with a history of periodontitis (1) and implants in persons without a history of periodontitis (2). These groups were chosen based on the patient’s treatment history and orthopantomogram. As a control group, a set of 238 screw-retained implant restorations was investigated that were delivered to 66 patients throughout the same period. The incidence of peri-implant disease was assessed in all implant groups.
In 62 of 73 implants with cement residues, peri-implant disease was seen (85%). All implants in group 1 developed peri-implantitis—four cases of early disease and 35 cases of delayed disease. Twenty-one of 30 implants in the periodontally healthy group were diagnosed with peri-implant mucositis, 3 implants developed early peri-implantitis and 11 implants with cement remnants did not develop biological problems. Peri-implant illness was identified in 17 of 56 cases of implants without cement remains (30%). In comparison, just two occurrences of peri-implant disease were discovered in the control group of screw-retained restorations (1.08%).
This study concluded that implants with cement remnants may be more likely to develop peri-implantitis in individuals with a history of periodontitis than in patients without a history of periodontitis.
The literature established that each retention method has a number of advantages and disadvantages. However, there are some clinical situations in which one method of retention is preferable to the other. Shadid and Sadaqa’s review of the literature on screw-retained versus cement-retained fixed implant supported reconstruction identifies several clinical situations in which one method of retention is preferable to the other [15].
Screw-retained large-arch implant reconstructions are preferred, as complications with these long-span prostheses are more common than with short-span prostheses.
Screw-retained cantilevered prostheses are preferred, as some maintenance of restorative structures or implants is likely to be required during the life of such prostheses.
Screw-retained restorations are preferred in patients who are at a high risk of developing gingival recession. This enables their uncomplicated removal and subsequent modification of the restorations to reflect the changed circumstances.
Screw-retained restorations are preferred in patients who are expected to lose additional teeth in the future. This is to facilitate the removal of the restorations and subsequent modification of the restorations.
In situations where there is little interocclusal space, adequate retention for cement-retained restorations may be impossible, as these restorations require a vertical component of at least 5mm to provide retention and resistance form. However, screw-retained restorations can be used with as little as 4 mm of interocclusal space. Additionally, screw-retained restorations can be directly attached to implants without the use of an intermediate abutment, reducing the amount of interocclusal space required for these restorations.
In situations where it is difficult or impossible to remove excess cement (e.g. if the final restorative margin will be greater than 3 mm subgingivally, the use of screw-retained restoration is indicated). In this situation, an alternative to screw-retained restoration is to fabricate a custom abutment for cement retention with a restorative margin that follows the gingival contours.
Screw-retained restorations are preferred in cases where technical or biologic complications are anticipated, as they allow for easy removal of the restorations, thereby resolving the issues.
Cement-retained restorations are preferred for single-unit and short-span implant restorations, assuming that implant table size, implant number and abutment screw torque can be optimized. In such cases, screw retention would be used only if the implant’s long axis was excessively palatal in the anterior region.
Cement-retained crowns are preferred in cases involving small diameter crowns where screw access may jeopardize the crown’s integrity.
Cement-retained restorations are preferred in situations where the occlusal surface will be compromised in terms of aesthetics or occlusal stability as a result of the presence of a restorative material sealing the screw access.
If the divergence between the implant axis and the retaining screw of the angled abutment receiving the restoration is less than 17 degrees, conventional screw retention of the restoration using premachined abutments is not possible.
Very valuable information for clinicians was identified in a more recent review by Hamed et al, which comprised 12 clinical research (randomized controlled trials, clinical trials, prospective studies and retrospective cohort studies) with at least 2 years’ follow-up time and published between 2010 and 2020 [16]. One of the most important advantages of cement-retained restorations is it’s the passivity and simplicity in manufacturing process in comparison with screw-retained restorations. This feature comes to light especially when zirconia is used as material for framework. The review indicates that the cement-retained implant approach is appropriate when enhanced predictability, a patient’s desire for superior aesthetic outcomes and a cost-effective method are present. Due to the significant complications associated with screw-retained restorations in terms of technical and prosthetic outcomes, cement-retained implant restoration results in more successful outcomes. Whereas a biological complication associated with the cemented implant promotes the use of screw-based implant reconstruction. Additionally, the screw-retained repair is more suitable for multiple unit implantation for patients with restricted inter-arch space. For instance, screw retention reconstruction is advised when inter-arch space is restricted (less than 4 mm) and retrievability is necessary. Similarly, cement retention can be used to compensate for inappropriately angled implants and when occlusion is easier to control without the hole.
It must be emphasized that prosthodontics plays a crucial role in maintaining mucosal homeostasis. Plaque accumulation and the soft tissue reaction are directly related to design, structural connections (screw-retained or cement-retained) and characteristics of materials. Proper prosthetic design with an appropriate emergence profile that promotes excellent oral hygiene and prevents plaque accumulation is unquestionably critical in preventing peri-implant mucositis [17]. According to de Tapia et al, when peri-implant tissue inflammation arises, the prosthetic design should be evaluated and, if necessary, adjusted to correct design issues that may obstruct good hygiene and to reduce biomechanical stress factors that may be involved [18].
The ninth edition of the Glossary of Prosthodontic Terms (GPT9) defines ‘emergence profile’ and ‘emergence angle’ identically for natural teeth and implant prosthesis [19]. Emergence profile is defined as the contour of a tooth or restoration, such as the crown on a natural tooth, dental implant or dental implant abutment, as it relates to the emergence from circumscribed soft tissues. Emergence angle is the angle between the average tangent of the transitional contour relative to the long axis of a tooth, dental implant or dental implant abutment.
However, extrapolating these words to implant prostheses remains ambiguous at the moment, as there are no established outcome metrics or protocols to support quantitative measurements. Emergence profile and emergence angle are currently defined in terms of ‘circumscribed soft tissues’. While these can be clearly characterized and quantified in the relatively narrow periodontal sulcus, they present considerable complications when it comes to implant measurements [20].
The term ‘implant supracrestal complex’ has been recently proposed in order to describe the anatomic complex of human tissue, mechanical components and bacteria extending through the transmucosal part of an implant prosthesis. The paradigm of the ‘implant supracrestal complex’ aims to describe the human tissue in parallel with the design features of the implant-abutment-prosthesis complex and assists in identifying the role of design elements in health and disease of the peri-implant tissue [21]. The review article by Mattheos et al. investigated seven focus questions regarding emergence profile, emergence angle and/or ‘implant supracrestal complex’ [21]:
Is any particular design of the implant supracrestal complex’s emergence profile or emergence angle associated with an increased risk of peri-implant mucositis or peri-implantitis?
Is there evidence that peri-implant mucositis and peri-implantitis are more prevalent in bone-level implants than in tissue-level implants?
Is there evidence that certain components of the implant supracrestal complex increase the incidence of peri-implant mucositis or peri-implantitis by obstructing oral hygiene access?
Is there evidence that an increased risk of peri-implant mucositis or peri-implantitis is associated with the ‘implant supracrestal complex’ tissue height (total vertical tissue height and/or peri-implant sulcus depth)?
Is there evidence linking the material used in the abutment and/or prosthesis to an increased risk of peri-implant mucositis or peri-implantitis?
Is there evidence that the design and placement of implant-abutment-prosthesis junctions are associated with an increased incidence of peri-implant mucositis or peri-implantitis?
Is there evidence that the kind of prosthesis retention (cement or screw) increases the incidence of peri-implant mucositis or peri-implantitis?
The conclusions from this review article can be summarized as follows:
The highest rate of peri-implantitis (37.8%) occurred when a convex profile was combined with a restoration emergence angle of >30 degrees for the bone-level implants, but the same was not confirmed for tissue-level implants. The highest prevalence of peri-implantitis occurred in the combination of bone-level implants, emergence angle ≥30, convex profile and splinted-middle implant prosthesis.
Most of analysed studies did not find any significant difference in the prevalence of peri-implant mucositis/peri-implantitis or the respective clinical outcomes measures between tissue-and bone-level implants. Few of the analysed studies reported different prevalence of peri-implantitis between bone-level and tissue-level implants, yet no statistical comparison was attempted or if then being statistically insignificant.
The complete resolution of inflammation in cases affected by peri-implant mucositis was achieved in 66.6% of the patients who were treated with additional prosthesis contour modification versus only in 9.6% of the patients who received standard peri-implant mucositis treatment. Modifying the contour of the prostheses to improve access for oral hygiene significantly improved the clinical outcomes after standard mechanical treatment of peri-implant mucositis.
Sites with a shallow mucosal tunnel showed greater and faster resolution of inflammation after treatment compared with the deep ones.
Analysis of abutment material (titanium, zirconia or gold) and peri-implant tissue health outcomes measures reported no, or insignificant, differences.
Results from different studies concluded that the use or not of intermediary abutments on an external connection implant was not found to have any influence on the prevalence of peri-implantitis after 5 years. Marginal bone loss was significantly lower at superstructures connected to abutments compared with those at implant level. No significant difference was found between abutments with different surface topography.
Of the five analysed papers which suggested a difference, two papers found cement-retained restorations to be related to higher risk of peri-implantitis, while two found cement-retained restorations to be related to higher risk of peri-implant mucositis and one found screw-retained restorations to be related to higher risk of peri-implant mucositis.
Additionally, the authors state that there are insufficient data with bone-level implants to conclude that a large emergence angle in combination with a convex abutment or prosthesis may result in peri-implantitis. Additional study is necessary to characterize the emerging profile in respect to the real degree of peri-implant soft tissue and to interpret these results more accurately. A single randomized clinical study found no difference in the risk of peri-implant mucositis between tissue- and bone-level implants. Prosthesis modification may be an effective and necessary adjunct to anti-infective therapy for peri-implant mucositis in implant-supported prostheses with limited access to oral hygiene. At the moment, there are no data to suggest that increasing the vertical height of the peri-implant soft tissues alone increases the risk of peri-implantitis. However, it has been shown that treating established peri-implant mucositis is more difficult in the presence of a deep peri-implant sulcus. It has not been shown that the presence or absence of a prosthetic abutment, or the material of the abutment (Titanium or Zirconia), alters the risk of peri-implantitis. The evidence relating the kind of prosthesis retained and the risk of developing peri-implantitis is equivocal.
From a clinical standpoint, properly shaped dental implant restorations are critical for the treatment’s aesthetics and biological success. The primary challenge is the shift from a round dental implant to the cervical shape of the missing tooth. This transition is accomplished through the use of implant abutments. Su et al. [22] characterized this contour as having two adjacent but distinct zones within the dental implant abutment and crown, an apically located subcritical contour zone and a coronally located critical zone. The critical zone refers to the portion of the dental implant abutment and crown that lies between the free gingival margin and the deeper subcritical zone. This zone is circumferential in form, approximately 1 mm wide in the apicocoronally direction and is often convex or flat in shape. The critical zone may or may not contain a variety of restorative materials, depending on the kind of restoration (cemented or screw-retained). The subcritical zone is positioned apically to the critical zone and may be concave, convex or flat in shape. Changes in the shape of the critical and subcritical contour zones should be planned carefully in accordance with the dental implant site, soft tissue thickness and materials used. If the crown form cannot be adjusted, reshaping the subcritical zone can improve both the aesthetic and biological success of the treatment.
There are numerous strategies for peri-implant soft tissue conditioning, including immediate temporary restorations, custom-made healing abutments and gradual remodelling of soft tissues through modification of critical and subcritical zones of the temporary implant crown. Figure 5 shows the emergence profile shaping with custom-made temporary PMMA crown on PEEK abutment after the implant was integrated.
Emergence profile shaping with temporary PMMA crown on PEEK abutment. Upper-left: initial clinical appearance with stock healing abutment; upper-right: size and shape of soft tissue emergence profile after removal of stock healing abutment; middle-left: lateral view of temporary PMMA crown on PEEK abutment; middle-right: frontal view of temporary PMMA crown on PEEK abutment; lower-left: clinical appearance 2 months after temporary crown delivery; lower-right: newly formed and shaped emergence profile with soft tissue maturation.
In clinical cases like the one shown in Figure 5, additional challenge may emerge during copying and transferring emergence profile shape to either digital or conventional stone cast model. In both ways, the clinician needs to act fast due to fast tissue begin to collapse immediately after removing temporary crown (or custom-made healing abutment). In conventional prosthodontics impression, fast and predictable way is open tray pick-up transfer customization intraorally or extra orally with flowable composite resin material. This technique with intra oral customization with flowable composite resin material is shown in Figure 6.
Left: intraoral customization of open tray pick-up transfer and final impression with preserved emergence profile size and shape for final crown fabrication.
Additionally, the significance of the emergence profile and the interest of clinicians and researchers have increased significantly in recent years. Gomez-Meda et al. [23] defined a more detailed classification of emergence profile surfaces and areas. This article discusses the esthetic biological contour concept (EBC), which consists of distinguishing important zones of emergence profiles and recommending detailed design principles for those zones. The clinical significance of EBC is that it promotes aesthetic outcomes and a favourable biological response to implant-supported restorations when designed properly. The EBC concept denotes three zones that correspond to the subgingival contour of an implant restoration’s emergence profile (Figure 7). Each of these zones will come into contact with a distinct type of tissue and therefore must be designed differently.
Schematic presentation of three zones of EBC concept: E—esthetic zone (blue), B—bounded zone (green) and C—crestal zone (red).
The EBC concept is divided into three zones:
E Zone (esthetic zone) is a subgingival area that is 1 mm wide and located apical to the free gingival margin. It should be shaped similarly to the crown of the extracted or contralateral tooth to resemble a natural crown. Its contour should be convex and support the free gingival margin in the proper position, establishing the implant crown’s cervical morphology. This zone is adjacent to sulcular epithelium, a type of stratified squamous epithelium.
B Zone (bounded zone) is the emergence profile area apical to the E zone that is approximately 1–2 mm wide in cases where the dental implant is ideally placed 3–4 mm apical from the free gingival margin zenith point. Although the B zone is normally concave, in patients with deficient soft tissues, connective tissue graft may be required to improve gingival phenotype, crestal stability and aesthetics. This biologic boundary zone is in contact with junctional epithelium, which is a non-keratinized epithelium.
C Zone (crestal zone) is a 1–1.5 mm wide area immediately coronal to the implant neck. However, its dimensions vary depending on the depth of the integrated dental implant. In this area, the abutment contour should be flat or slightly concave to avoid putting pressure on the bone tissue surrounding the restoration. Figure 2 illustrates the detrimental effect of this pressure on crestal bone stability. Additionally, certain dental implant designs (i.e. tissue level implants) incorporate this zone into the implant body. This zone is critical for the stability of the crestal bone because it is in contact with connective tissue.
Each of the zones described in the EBC concept serves a distinct purpose in the emergence profile’s design. Understanding the significance and unique design features of the EBC zones enables the provision of aesthetic and biologically sound interim and definitive implant restorations.
Several new dental materials have entered the market over the last decade. They offer an aesthetic, functional and economical alternative to metal-ceramics, the most frequently used material for prosthodontic restorations. This is especially true for zirconium oxide and lithium disilicate ceramics. The incorporation of CAD/CAM manufacturing technology into daily work has resulted in a significant reduction in dental technicians’ labour costs. Furthermore, these increased aesthetic standards have resulted in an increase in the use of metal-free restorations at the expense of metal-ceramic restorations. These events also influenced the materials used and the manufacturing process for custom-made dental implant abutments, effectively eradicating stock dental implant abutments. Additionally, the titanium bases for implant abutments have been redesigned to incorporate anti-rotation properties and a cylindrical shape, allowing for more efficient extraoral cementation of prosthodontic restorations. Such prosthodontic restorations, particularly following the introduction of angulated screw access to the abutment screw, resulted in an increase in the proportion of screw-retained restorations versus cemented restorations. All these advancements are now being used more frequently in clinical practice, but they have also prompted scientists to explore new materials and techniques. Given the time, material, human and technical resources required to conduct a high-quality long-term prospective or retrospective study, there is still insufficient solid evidence of these new materials and technologies’ clinical benefits and effectiveness. However, prior research and the subjective clinical experience of numerous clinicians indicate that the new materials will eventually justify their partially uncritical use in clinical practice.
From the clinician’s perspective, 5- or 10-year success or survival rates are not the only criterion to consider when planning and implementing implant-prosthodontic treatment. Additionally, the clinician should consider the frequency with which technical and biological issues may emerge when specific materials are used.
With so much conflicting information and data, clinicians may depend on review articles that structurally describe and analyse more scientific studies on a given subject. Pjetursson et al. recently published a statement paper about material selection for implant-supported restorations [24].
For a long period of time, metal frameworks veneered with feldspathic ceramic have been used in dentistry. They are well-researched and documented restorations that can be used for single crowns and fixed partial dentures. The metal framework provides a high-strength core, protecting the whole restoration against tensile and flexural stress during chewing function. Besides the conventional casting technique, metal framework nowadays can be produced by milling or an additive laser printing process. There are two important published meta-review papers that examine the clinical outcomes, success and survival rates of metal-ceramic implant-supported restorations, as well as the complications rates.
The meta-review analysing metal-ceramic single crowns [25] included 30 studies with a total of 4542 crowns, with 83% of cement-retained crowns and 17% of screw-retained crowns, respectively. The meta-analysis estimated an annual failure rate of 0.35% (95% CI: 0.19%–0.66%), which corresponds to a 5-year survival rate of 98.3%. The respective complication rates were 13.3%, which means that one out of eight metal-ceramic single crowns showed some technical, biologic or aesthetic complication or failure. Only 86.7% of the metal-ceramic implant-supported single crowns showed no complications over the 5-year follow-up period. The 5-year incidence rate of peri-implantitis and soft-tissue complications was 5.1%, and significant bone loss of more than 2 mm at marginal bone level was 3.3%. Technical complications, including fracture of abutments or abutment screws, were rare complications, with an incidence rate of 0.2%. Abutment screws loosening was more frequent, with a 5-year complication rate of 3.6%. The incidence of ceramic fractures and chipping was 2.9%, and framework fractures were only reported to be 0.2%.
Another meta-review by Sailer et al was analysing multiple-unit metal-ceramic fixed partial dentures [26] and included 16 studies with a total of 993 fixed partial dentures supported by 2289 dental implant abutments, with 73% of cement-retained fixed partial dentures and 27% of screw-retained fixed partial dentures, respectively. The annual failure rate for metal-ceramic fixed partial dentures was 0.26% (95% CI: 0.10%–0.64%), corresponding to a 5-year survival rate of 98.7%. The respective complication rates were 15.1%, meaning that one out of six fixed partial dentures had some kind of complication. Hence, 84.9% of fixed partial dentures were free of any complications over the 5-year follow-up observation period. The 5-year rate of peri-implantitis and soft tissue complications was estimated to be 8.5%. The significant bone loss incidence rate was reported to be 2.6%. Among technical complications, the incidence rate was reported as follows: abutment screws loosening was 5.3%, ceramic fractures or chipping was 11.6% and framework fractures were 0.5%.
Both metal-ceramic single crowns and multiple-unit fixed partial dentures are well researched with very good long-term success rates. They can be used as a treatment option in a wide spectrum of clinical indications, especially in clinical cases with high clinical implant crowns, cantilever types of implant restorations and implant-supported fixed partial dentures with distal units extending more than 8 mm, fixed partial dentures with more than two pontics and in cases with small connector height due to limited interocclusal space.
Increasing aesthetic demands have led to the development of different subtypes of zirconia ceramics. With their appearance, they adequately imitate not only the appearance but also the structure of hard dental tissues. In addition, new generations of zirconia ceramics have excellent biocompatibility and improved mechanical properties. Previous generations of zirconia ceramics had an opaque whitish appearance and had to be veneered to make the restoration look aesthetically pleasing. Newer generations of zirconia ceramics come in multilayer blanks or blocks with different levels of translucency and can be used as monolithic restorations.
The previously mentioned meta-reviews also analysed zirconia-ceramic implant-supported single crowns and fixed partial dentures.
The review by Pjetursson et al [25] analysed eight studies with a total of 912 zirconia-ceramic implant supported single crowns for an average 5-year follow-up period. Of all the included single crowns, 51% were cement retained and 49% were screw retained. The annual failure rate for implant-supported zirconia-ceramic single crowns was 0.49% (95% CI: 0.21%–1.18%), which corresponds to a respective 5-year survival rate of 97.6%. The estimated 5-year complication rate was 16.2%, meaning that only 83.8% of implant-supported zirconia-ceramic single crowns were free of any complications over the complete 5-year observation period. The most frequent complication rates were: 5.3% for peri-implantitis and soft tissue complications, 4.4% for marginal bone loss of more than 2 mm, 2.8% for ceramic fractures or chipping and 2.1% for framework fracture.
Another meta-review by Sailer et al [26] included three studies with a total of 175 zirconia-ceramic fixed partial dentures and an average follow-up period of 5.1 years. Only 15% of all restorations were cement-retained and 75% were screw-retained. The annual failure rate for implant-supported fixed partial dentures was 1.455 (95% CI: 1.06%–1.98%), which corresponds to a respective 5-year survival rate of 93.0%. The most frequent complications were soft tissue complications with a 10.1% incidence rate and framework fracture with a 4.7% rate.
According to the previously mentioned research and numerous other published articles, today we cannot consider veneered zirconia-ceramic as the material of choice for implant-supported fixed partial dentures. They show a high degree of risk of chipping or catastrophic fracture of the restoration framework. The study by Larsson et al. [27] states that the frequency of chipping and framework fractures of fixed partial dentures is up to 50%, which is a clinically unacceptable value. These problems are largely eliminated by the use of monolithic zirconia-ceramic, which with its aesthetic properties satisfies everyday clinical applications. In addition to the lack of chipping, implant-supported restorations of monolithic zirconia-ceramic show greater fracture resistance because the framework of such structures has larger dimensions compared with the framework of coated veneered zirconia-ceramic restorations. Evidence of this is a recent systematic review paper by Pjetursonn et al. [28] that analysed the 3-year survival and failure rates of veneered and monolithic zirconia-ceramic implant-supported restorations. The estimated 3-year survival rates were 96.3% (95% CI: 93.9%–97.7%) for veneered zirconia-ceramic single crowns and 96.1% (95% CI: 93.4%–97.8%) for monolithic zirconia single crowns. Veneered single crowns showed significantly (p = 0.017) higher annual ceramic chipping rates (1.65%) compared with monolithic single crowns (0.39%). Interestingly, the location of the single crowns, anterior vs. posterior, did not influence survival and chipping rates.
When a clinician needs to choose between veneered or monolithic zirconia-ceramic implant-supported restorations, the following factors must be considered: aesthetic demands, location in the dental arch, physical properties of the material, possibility for surface modification and abrasion (wear) properties of the material [24].
To improve the physical properties of glass-ceramic and make it more suitable for prosthetic restorations, lithium disilicate or, in rare cases, leucite fillers were added. Nowadays, there are several techniques for the production of lithium-disilicate reinforced glass-ceramic, such as heat pressing and CAD/CAM milling from prefabricated blanks. Due to its mechanical properties, lithium-disilicate reinforced glass-ceramic can be used for both implant-supported single crowns and short-span fixed partial dentures in the anterior region of the dental arch. A systematic review article by Pjetursson et al. [28] evaluated five studies reporting on veneered leucite or lithium-disilicate reinforced glass-ceramic implant-supported single crowns (a total of 110 crowns) and 14 studies on monolithic leucite or lithium-disilicate reinforced glass-ceramic implant-supported single crowns (a total of 484 crowns). The mean follow-up period for veneered single crowns was 8.1 years and 2.6 years for monolithic single crowns, respectively. Results show a low annual failure rate of 0.80% (95% CI: 0.14%–4.64%) for veneered crowns and 1.02% (95% CI: 0.51%–2.05%) for monolithic reinforced glass-ceramic single crowns. This means that 3-year survival rates were 97.6% for veneered single crowns and 97.0% for monolithic single crowns. The study also reported that monolithic reinforced glass-ceramic crowns had the lowest annual complication rate of 1.7%, and veneered reinforced glass-ceramic crowns had an annual complication rate of 2.6%. In comparison, annual complication rates for monolithic zirconia-ceramic single crowns were 3.6% and for veneered zirconia-ceramic single crowns were 4.5%.
Considering these meta-review results, it is reasonable to conclude that lithium-disilicate reinforced glass-ceramic implant-supported crowns are the treatment of choice for high aesthetic-demanding clinical cases in the maxillary anterior region Figure 8 shows such a clinical case with tooth #21 replaced by a dental implant where the implant-supported crown was made on a titanium base abutment customized with a zirconia CAD/CAM abutment and a lithium-disilicate reinforced glass-ceramic crown.
Clinical case with tooth #21 replaced by a dental implant where the implant-supported crown was made on a titanium base abutment customized with a zirconia CAD/CAM abutment and a lithium-disilicate reinforced glass-ceramic crown.
Proper treatment planning prior to dental implant implantation is just as critical in current implant prosthodontics as the prosthetic components. The wonderful work of the oral surgeon may quickly be destroyed by inadequate prosthodontic execution, resulting in the failure of dental implant treatment.
The controversy between cemented and screw-retained dental implant restorations is as ancient as implant prosthodontics itself. Additionally, there are divergent views in the scientific literature. Although no substantial difference in survival has been shown between the two procedures, screw connection has demonstrated a total of less technical and biological problems. It is presently unknown whether cementation or screw retention is the preferable choice for restoring dental implants from a patient-centred clinical perspective. Both cementation and screw retention seem to have benefits and downsides in practical practice. Choosing between cement-retained and screw-retained restorations may be a matter of philosophy. By choosing cemented restorations, the physician is responsible for completely eliminating all cement residue. Peri-implantitis induced by cement remains is a completely iatrogenic disease with no blame assigned to the patient’s oral hygiene practices.
The emergence profile of a tooth or restoration, such as a crown on a natural tooth, a dental implant or a dental implant abutment, is described as the shape of the tooth or restoration in relation to its emergence from restricted soft tissues. Clinically, appropriately designed dental implant restorations are crucial for both the aesthetics and biological effectiveness of the procedure. The biggest difficulty is adapting the circular dental implant to the cervical form of the lost tooth. This shift is made possible by implant abutments. Changes in the critical and subcritical contour zones should be carefully considered in relation to the dental implant location, soft tissue thickness and materials employed. If the crown shape cannot be altered, altering the subcritical zone may significantly enhance the treatment’s cosmetic and biological success.
Over the recent decade, many innovative dental materials have reached the market. They provide an attractive, practical and cost-effective alternative to metal-ceramic restorations, the most often used material in prosthodontics. This is particularly true for ceramics made of zirconium oxide and lithium disilicate. Both metal-ceramic single crowns and multi-unit fixed partial dentures have a lengthy track record of success. They can be used to treat a wide variety of clinical indications but are particularly useful in cases requiring high clinical implant crowns, cantilever-type implant restorations, implant-supported fixed partial dentures with distal units extending beyond 8 mm, fixed partial dentures with more than two pontics and cases requiring a small connector height due to limited interocclusal space. When a clinician must choose between veneered and monolithic zirconia-ceramic implant-supported restorations, the following factors must be considered: aesthetic requirements, location in the dental arch, material physical properties, surface modification capability and material abrasion (wear) properties. Considering the findings of this meta-analysis, it is acceptable to infer that lithium-disilicate reinforced glass-ceramic implant-supported crowns are the treatment of choice for clinical situations requiring a high level of aesthetics in the maxillary anterior area.
The author declares no conflict of interest.
IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. We uphold a flexible Copyright Policy, guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Monograph",metaDescription:"IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.",metaKeywords:null,canonicalURL:"/page/publication-agreement-monograph",contentRaw:'[{"type":"htmlEditorComponent","content":"When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\\n\\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\\n\\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\\n\\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\\n\\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\\n\\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\\n\\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\\n\\nAUTHOR'S DUTIES
\\n\\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\\n\\nThe Author agrees to:
\\n\\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\\n\\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\\n\\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\\n\\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\\n\\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\nAUTHOR'S WARRANTY
\\n\\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\\n\\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\\n\\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\\n\\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\nTERMINATION
\\n\\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\\n\\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\\n\\nIntechOpen’s DUTIES AND RIGHTS
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\\n\\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\\n\\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\nMISCELLANEOUS
\\n\\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\\n\\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\\n\\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\\n\\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\\n\\nPolicy last updated: 2018-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\n\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\n\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\n\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\n\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\n\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\n\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\n\nAUTHOR'S DUTIES
\n\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\n\nThe Author agrees to:
\n\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\n\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\n\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\n\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\n\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\nAUTHOR'S WARRANTY
\n\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\n\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\n\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\n\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\nTERMINATION
\n\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\n\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\n\nIntechOpen’s DUTIES AND RIGHTS
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\n\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\n\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\n\nMISCELLANEOUS
\n\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\n\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\n\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\n\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\n\nPolicy last updated: 2018-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-T-0-T1-NW"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11533",title:"Advances in Green Electronics Technologies",subtitle:null,isOpenForSubmission:!0,hash:"209fb1d781e97e58e1b2098b8976e2c3",slug:null,bookSignature:"Dr. Albert Sabban",coverURL:"https://cdn.intechopen.com/books/images_new/11533.jpg",editedByType:null,editors:[{id:"16889",title:"Dr.",name:"Albert",surname:"Sabban",slug:"albert-sabban",fullName:"Albert Sabban"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11630",title:"Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules",subtitle:null,isOpenForSubmission:!0,hash:"9c39aa5fd22296ba53d87df6d761a5fc",slug:null,bookSignature:"Dr. Afef Najjari",coverURL:"https://cdn.intechopen.com/books/images_new/11630.jpg",editedByType:null,editors:[{id:"196823",title:"Dr.",name:"Afef",surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11842",title:"Altimetry - Theory, Applications and Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"b2b6e7b58333453ef7b73416d8fdfaf3",slug:null,bookSignature:"Prof. Tomislav Bašić",coverURL:"https://cdn.intechopen.com/books/images_new/11842.jpg",editedByType:null,editors:[{id:"343125",title:"Prof.",name:"Tomislav",surname:"Bašić",slug:"tomislav-basic",fullName:"Tomislav Bašić"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11804",title:"CRISPR Technology",subtitle:null,isOpenForSubmission:!0,hash:"4051570f538bd3315e051267180abe37",slug:null,bookSignature:"Dr. Yuan-Chuan Chen",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg",editedByType:null,editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12104",title:"Viral Outbreaks - Global Trends and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"60828f26feed5832a47a13caac706c08",slug:null,bookSignature:"Prof. Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/12104.jpg",editedByType:null,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12108",title:"Clinical Trials - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"79472fc7310e9655a881c6d2ad7128b0",slug:null,bookSignature:"Dr. Xianli Lv",coverURL:"https://cdn.intechopen.com/books/images_new/12108.jpg",editedByType:null,editors:[{id:"153155",title:"Dr.",name:"Xianli",surname:"Lv",slug:"xianli-lv",fullName:"Xianli Lv"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11676",title:"Recent Advances in Homeostasis",subtitle:null,isOpenForSubmission:!0,hash:"63eb775115bf2d6d88530b234a1cc4c2",slug:null,bookSignature:"Dr. Gaffar Sarwar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",editedByType:null,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11872",title:"Peripheral Arterial Disease - The Challenges of Revascularization",subtitle:null,isOpenForSubmission:!0,hash:"80be3d16e4c8f89f3501ed408729f695",slug:null,bookSignature:"Prof. Ana Terezinha Guillaumon, Dr. Daniel Emilio Dalledone Siqueira and Dr. Martin Geiger",coverURL:"https://cdn.intechopen.com/books/images_new/11872.jpg",editedByType:null,editors:[{id:"251226",title:"Prof.",name:"Ana Terezinha",surname:"Guillaumon",slug:"ana-terezinha-guillaumon",fullName:"Ana Terezinha Guillaumon"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11467",title:"Bismuth-Based Nanostructured Materials",subtitle:null,isOpenForSubmission:!0,hash:"951c872d9d90e13cfe7d97c0af91845e",slug:null,bookSignature:"Dr. William Wilson Anku",coverURL:"https://cdn.intechopen.com/books/images_new/11467.jpg",editedByType:null,editors:[{id:"196465",title:"Dr.",name:"William Wilson",surname:"Anku",slug:"william-wilson-anku",fullName:"William Wilson Anku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11584",title:"Migraine Research",subtitle:null,isOpenForSubmission:!0,hash:"44a6090845f971a215ddf013f1dc2027",slug:null,bookSignature:"Dr. Theodoros Mavridis, Dr. Georgios Vavougios and Associate Prof. Dimos-Dimitrios Mitsikostas",coverURL:"https://cdn.intechopen.com/books/images_new/11584.jpg",editedByType:null,editors:[{id:"320230",title:"Dr.",name:"Theodoros",surname:"Mavridis",slug:"theodoros-mavridis",fullName:"Theodoros Mavridis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:20},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:405},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:75,numberOfSeries:0,numberOfAuthorsAndEditors:2021,numberOfWosCitations:1898,numberOfCrossrefCitations:1498,numberOfDimensionsCitations:3255,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"13",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10442",title:"Cyanobacteria",subtitle:"Recent Advances in Taxonomy and Applications",isOpenForSubmission:!1,hash:"2fec78743d3f973c80881957ce3e6d79",slug:"cyanobacteria-recent-advances-in-taxonomy-and-applications",bookSignature:"Wael N. Hozzein",coverURL:"https://cdn.intechopen.com/books/images_new/10442.jpg",editedByType:"Edited by",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,isOpenForSubmission:!1,hash:"31d6882518ca749b12715266eed0a018",slug:"advances-in-candida-albicans",bookSignature:"Xinhui Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",editedByType:"Edited by",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8043",title:"Monoclonal Antibodies",subtitle:null,isOpenForSubmission:!1,hash:"91da3371c910d66deb7b8c434948b834",slug:"monoclonal-antibodies",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/8043.jpg",editedByType:"Edited by",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,isOpenForSubmission:!1,hash:"c31366ba82585ba3ac91d21eb1cf0a4d",slug:"human-microbiome",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",editedByType:"Edited by",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9665",title:"Pseudomonas aeruginosa",subtitle:"Biofilm Formation, Infections and Treatments",isOpenForSubmission:!1,hash:"00e9f0f41cf8cd97ff33fac3bcea14cb",slug:"pseudomonas-aeruginosa-biofilm-formation-infections-and-treatments",bookSignature:"Theerthankar Das",coverURL:"https://cdn.intechopen.com/books/images_new/9665.jpg",editedByType:"Edited by",editors:[{id:"179493",title:"Dr.",name:"Theerthankar",middleName:null,surname:"Das",slug:"theerthankar-das",fullName:"Theerthankar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9481",title:"Celiac Disease",subtitle:null,isOpenForSubmission:!1,hash:"e6e11ac5ac7485c2653e734fafdc7b64",slug:"celiac-disease",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/9481.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10424",title:"Homology Molecular Modeling",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"b1e441eeee1e41b634c8f8086fa4283c",slug:"homology-molecular-modeling-perspectives-and-applications",bookSignature:"Rafael Trindade Maia, Rômulo Maciel de Moraes Filho and Magnólia Campos",coverURL:"https://cdn.intechopen.com/books/images_new/10424.jpg",editedByType:"Edited by",editors:[{id:"212393",title:"Prof.",name:"Rafael",middleName:"Trindade",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",isOpenForSubmission:!1,hash:"af6880d3a5571da1377ac8f6373b9e82",slug:"ubiquitin-proteasome-pathway",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8967",title:"Bacterial Biofilms",subtitle:null,isOpenForSubmission:!1,hash:"e692b520263526cca2b37092c3e8d0b4",slug:"bacterial-biofilms",bookSignature:"Sadik Dincer, Melis Sümengen Özdenefe and Afet Arkut",coverURL:"https://cdn.intechopen.com/books/images_new/8967.jpg",editedByType:"Edited by",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:75,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"62553",doi:"10.5772/intechopen.79371",title:"Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance",slug:"antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance",totalDownloads:7129,totalCrossrefCites:42,totalDimensionsCites:82,abstract:"A surge in the development and spread of antibiotic resistance has become a major cause for concern. Over the past few decades, no major new types of antibiotics have been produced and almost all known antibiotics are increasingly losing their activity against pathogenic microorganisms. The levels of multi-drug resistant bacteria have also increased. It is known that worldwide, more than 60% of all antibiotics that are produced find their use in animal production for both therapeutic and non-therapeutic purposes. The use of antimicrobial agents in animal husbandry has been linked to the development and spread of resistant bacteria. Poultry products are among the highest consumed products worldwide but a lot of essential antibiotics are employed during poultry production in several countries; threatening the safety of such products (through antimicrobial residues) and the increased possibility of development and spread of microbial resistance in poultry settings. This chapter documents some of the studies on antibiotic usage in poultry farming; with specific focus on some selected bacterial species, their economic importance to poultry farming and reports of resistances of isolated species from poultry settings (farms and poultry products) to essential antibiotics.",book:{id:"6978",slug:"antimicrobial-resistance-a-global-threat",title:"Antimicrobial Resistance",fullTitle:"Antimicrobial Resistance - A Global Threat"},signatures:"Christian Agyare, Vivian Etsiapa Boamah, Crystal Ngofi Zumbi and\nFrank Boateng Osei",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"261271",title:"MSc.",name:"Crystal Ngofi",middleName:null,surname:"Zumbi",slug:"crystal-ngofi-zumbi",fullName:"Crystal Ngofi Zumbi"},{id:"261272",title:"MSc.",name:"Frank Boateng",middleName:null,surname:"Osei",slug:"frank-boateng-osei",fullName:"Frank Boateng Osei"},{id:"261273",title:"Dr.",name:"Vivian Etsiapa",middleName:null,surname:"Boamah",slug:"vivian-etsiapa-boamah",fullName:"Vivian Etsiapa Boamah"}]},{id:"39599",doi:"10.5772/50046",title:"Encapsulation Technology to Protect Probiotic Bacteria",slug:"encapsulation-technology-to-protect-probiotic-bacteria",totalDownloads:12297,totalCrossrefCites:40,totalDimensionsCites:81,abstract:null,book:{id:"3145",slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"María Chávarri, Izaskun Marañón and María Carmen Villarán",authors:[{id:"150285",title:"Dr.",name:"María",middleName:null,surname:"Chávarri Hueda",slug:"maria-chavarri-hueda",fullName:"María Chávarri Hueda"},{id:"151613",title:"MSc.",name:"Izaskun",middleName:null,surname:"Marañon",slug:"izaskun-maranon",fullName:"Izaskun Marañon"},{id:"151621",title:"Dr.",name:"Mª Carmen",middleName:null,surname:"Villarán",slug:"ma-carmen-villaran",fullName:"Mª Carmen Villarán"}]},{id:"39607",doi:"10.5772/50121",title:"Recent Application of Probiotics in Food and Agricultural Science",slug:"recent-application-of-probiotics-in-food-and-agricultural-science",totalDownloads:10098,totalCrossrefCites:28,totalDimensionsCites:74,abstract:null,book:{id:"3145",slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"Danfeng Song, Salam Ibrahim and Saeed Hayek",authors:[{id:"107905",title:"Prof.",name:"Salam",middleName:null,surname:"Ibrahim",slug:"salam-ibrahim",fullName:"Salam Ibrahim"},{id:"150202",title:"Dr.",name:"Danfeng",middleName:null,surname:"Song",slug:"danfeng-song",fullName:"Danfeng Song"},{id:"151025",title:"MSc.",name:"Saeed",middleName:null,surname:"Hayek",slug:"saeed-hayek",fullName:"Saeed Hayek"}]},{id:"49246",doi:"10.5772/61300",title:"Chitosan as a Biomaterial — Structure, Properties, and Electrospun Nanofibers",slug:"chitosan-as-a-biomaterial-structure-properties-and-electrospun-nanofibers",totalDownloads:4607,totalCrossrefCites:24,totalDimensionsCites:55,abstract:"Chitosan is a polysaccharide derived from chitin; chitin is the second most abundant polysaccharide in the world, after cellulose. Chitosan is biocompatible, biodegradable and non-toxic, so that it can be usedin medicalapplications such as antimicrobial and wound healing biomaterials. It also used as chelating agent due to its ability to bind with cholesterol, fats, proteins and metal ions.",book:{id:"4648",slug:"concepts-compounds-and-the-alternatives-of-antibacterials",title:"Concepts, Compounds and the Alternatives of Antibacterials",fullTitle:"Concepts, Compounds and the Alternatives of Antibacterials"},signatures:"H. M. Ibrahim and E.M.R. El- Zairy",authors:[{id:"90645",title:"Dr.",name:"Hassan",middleName:null,surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"},{id:"175694",title:"Dr.",name:"Enas",middleName:null,surname:"El- Zairy",slug:"enas-el-zairy",fullName:"Enas El- Zairy"}]},{id:"51065",doi:"10.5772/63499",title:"Role of the Biofilms in Wastewater Treatment",slug:"role-of-the-biofilms-in-wastewater-treatment",totalDownloads:6759,totalCrossrefCites:24,totalDimensionsCites:55,abstract:"Biological wastewater treatment systems play an important role in improving water quality and human health. This chapter thus briefly discusses different biological methods, specially biofilm technologies, the development of biofilms on different filter media, factors affecting their development as well as their structure and function. It also tackles various conventional and modern molecular techniques for detailed exploration of the composition, diversity and dynamics of biofilms. These data are crucial to improve the performance, robustness and stability of biofilm-based wastewater treatment technologies.",book:{id:"5197",slug:"microbial-biofilms-importance-and-applications",title:"Microbial Biofilms",fullTitle:"Microbial Biofilms - Importance and Applications"},signatures:"Shama Sehar and Iffat Naz",authors:[{id:"180364",title:"Dr.",name:"Iffat",middleName:null,surname:"Naz",slug:"iffat-naz",fullName:"Iffat Naz"},{id:"183345",title:"Dr.",name:"Shama",middleName:null,surname:"Sehar",slug:"shama-sehar",fullName:"Shama Sehar"}]}],mostDownloadedChaptersLast30Days:[{id:"65613",title:"The Methods for Detection of Biofilm and Screening Antibiofilm Activity of Agents",slug:"the-methods-for-detection-of-biofilm-and-screening-antibiofilm-activity-of-agents",totalDownloads:9033,totalCrossrefCites:11,totalDimensionsCites:20,abstract:"Biofilm producer microorganisms cause nosocomial and recurrent infections. Biofilm that is a sticky exopolysaccharide is the main virulence factor causing biofilm-related infections. Biofilm formation begins with attachment of bacteria to biotic surface such as host cell or abiotic surface such as prosthetic devices. After attachment, aggregation of bacteria is started by cell-cell adhesion. Aggregation continues with the maturation of biofilm. Dispersion is started by certain conditions such as phenol-soluble modulins (PSMs). By this way, sessile bacteria turn back into planktonic form. Bacteria embedded in biofilm (sessile form) are more resistant to antimicrobials than planktonic bacteria. So it is hard to treat biofilm-embedded bacteria than planktonic forms. For this reason, it is important to detect biofilm. There are a few biofilm detection and biofilm production methods on prosthetics, methods for screening antibacterial effect of agents against biofilm-embedded microorganism and antibiofilm effect of agents against biofilm production and mature biofilm. The aim of this chapter is to overview direct and indirect methods such as microscopy, fluorescent in situ hybridization, and Congo red agar, tube method, microtiter plate assay, checkerboard assay, plate counting, polymerase chain reaction, mass spectrometry, MALDI-TOF, and biological assays used by antibiofilm researches.",book:{id:"8427",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}]},{id:"62553",title:"Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance",slug:"antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance",totalDownloads:7129,totalCrossrefCites:42,totalDimensionsCites:82,abstract:"A surge in the development and spread of antibiotic resistance has become a major cause for concern. Over the past few decades, no major new types of antibiotics have been produced and almost all known antibiotics are increasingly losing their activity against pathogenic microorganisms. The levels of multi-drug resistant bacteria have also increased. It is known that worldwide, more than 60% of all antibiotics that are produced find their use in animal production for both therapeutic and non-therapeutic purposes. The use of antimicrobial agents in animal husbandry has been linked to the development and spread of resistant bacteria. Poultry products are among the highest consumed products worldwide but a lot of essential antibiotics are employed during poultry production in several countries; threatening the safety of such products (through antimicrobial residues) and the increased possibility of development and spread of microbial resistance in poultry settings. This chapter documents some of the studies on antibiotic usage in poultry farming; with specific focus on some selected bacterial species, their economic importance to poultry farming and reports of resistances of isolated species from poultry settings (farms and poultry products) to essential antibiotics.",book:{id:"6978",slug:"antimicrobial-resistance-a-global-threat",title:"Antimicrobial Resistance",fullTitle:"Antimicrobial Resistance - A Global Threat"},signatures:"Christian Agyare, Vivian Etsiapa Boamah, Crystal Ngofi Zumbi and\nFrank Boateng Osei",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"261271",title:"MSc.",name:"Crystal Ngofi",middleName:null,surname:"Zumbi",slug:"crystal-ngofi-zumbi",fullName:"Crystal Ngofi Zumbi"},{id:"261272",title:"MSc.",name:"Frank Boateng",middleName:null,surname:"Osei",slug:"frank-boateng-osei",fullName:"Frank Boateng Osei"},{id:"261273",title:"Dr.",name:"Vivian Etsiapa",middleName:null,surname:"Boamah",slug:"vivian-etsiapa-boamah",fullName:"Vivian Etsiapa Boamah"}]},{id:"65914",title:"Introductory Chapter: The Action Mechanisms of Antibiotics and Antibiotic Resistance",slug:"introductory-chapter-the-action-mechanisms-of-antibiotics-and-antibiotic-resistance",totalDownloads:4310,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"8427",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu, Nesrin Gareayaghi and Bekir S. Kocazeybek",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"},{id:"248288",title:"Prof.",name:"Bekir",middleName:null,surname:"Kocazeybek",slug:"bekir-kocazeybek",fullName:"Bekir Kocazeybek"},{id:"406463",title:"Dr.",name:"Nesrin",middleName:null,surname:"Gareayaghi",slug:"nesrin-gareayaghi",fullName:"Nesrin Gareayaghi"}]},{id:"50992",title:"Probiotics: A Comprehensive Review of Their Classification, Mode of Action and Role in Human Nutrition",slug:"probiotics-a-comprehensive-review-of-their-classification-mode-of-action-and-role-in-human-nutrition",totalDownloads:5325,totalCrossrefCites:14,totalDimensionsCites:26,abstract:"Probiotics are live microorganisms that live in gastrointestinal (GI) tract and are beneficial for their hosts and prevent certain diseases. In this chapter, after a complete introduction to probiotics, definition, mechanism of action, and their classification, currently used organisms will be discussed in detail. Moreover, different kinds of nutritional synthetic products of probiotics along with their safety and drug interaction will be noticed. This chapter mentions all clinical trial studies that have been done to evaluate probiotic efficacy with a focus on gastrointestinal diseases.",book:{id:"5193",slug:"probiotics-and-prebiotics-in-human-nutrition-and-health",title:"Probiotics and Prebiotics in Human Nutrition and Health",fullTitle:"Probiotics and Prebiotics in Human Nutrition and Health"},signatures:"Amirreza Khalighi, Reza Behdani and Shabnam Kouhestani",authors:[{id:"179560",title:"Dr.",name:"Amirreza",middleName:null,surname:"Khalighi",slug:"amirreza-khalighi",fullName:"Amirreza Khalighi"},{id:"185238",title:"Dr.",name:"Reza",middleName:null,surname:"Behdani",slug:"reza-behdani",fullName:"Reza Behdani"},{id:"185239",title:"Dr.",name:"Shabnam",middleName:null,surname:"Kouhestani",slug:"shabnam-kouhestani",fullName:"Shabnam Kouhestani"}]},{id:"56849",title:"Physiology and Pathology of Innate Immune Response Against Pathogens",slug:"physiology-and-pathology-of-innate-immune-response-against-pathogens",totalDownloads:6083,totalCrossrefCites:20,totalDimensionsCites:26,abstract:"Pathogen infections are recognized by the immune system, which consists of two types of responses: an innate immune response and an antigen-specific adaptive immune response. The innate response is characterized by being the first line of defense that occurs rapidly in which leukocytes such as neutrophils, monocytes, macrophages, eosinophils, mast cells, dendritic cells, etc., are involved. These cells recognize the pathogen-associated molecular patterns (PAMPs), which have been evolutionarily conserved by the diversity of microorganisms that infect humans. Recognition of these pathogen-associated molecular patterns occurs through pattern recognition receptors such as Toll-like receptors and some other intracellular receptors such as nucleotide oligomerization domain (NOD), with the aim of amplifying the inflammation and activating the adaptive cellular immune response, through the antigenic presentation. In the present chapter, we will review the importance of the main components involved in the innate immune response, such as different cell types, inflammatory response, soluble immune mediators and effector mechanisms exerted by the immune response against bacteria, viruses, fungi, and parasites; all with the purpose of eliminating them and eradicating the infection of the host.",book:{id:"5975",slug:"physiology-and-pathology-of-immunology",title:"Physiology and Pathology of Immunology",fullTitle:"Physiology and Pathology of Immunology"},signatures:"José Luis Muñoz Carrillo, Flor Pamela Castro García, Oscar\nGutiérrez Coronado, María Alejandra Moreno García and Juan\nFrancisco Contreras Cordero",authors:[{id:"214236",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Muñoz-Carrillo",slug:"jose-luis-munoz-carrillo",fullName:"Jose Luis Muñoz-Carrillo"},{id:"216080",title:"Dr.",name:"Alejandra",middleName:null,surname:"Moreno-García",slug:"alejandra-moreno-garcia",fullName:"Alejandra Moreno-García"},{id:"216081",title:"Dr.",name:"Oscar",middleName:null,surname:"Gutiérrez-Coronado",slug:"oscar-gutierrez-coronado",fullName:"Oscar Gutiérrez-Coronado"},{id:"216082",title:"Dr.",name:"Pamela",middleName:null,surname:"Castro-García",slug:"pamela-castro-garcia",fullName:"Pamela Castro-García"},{id:"220717",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Contreras Cordero",slug:"juan-francisco-contreras-cordero",fullName:"Juan Francisco Contreras Cordero"}]}],onlineFirstChaptersFilter:{topicId:"13",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81760",title:"On the Selective Isolation of Actinobacteria from Different Mexican Ecosystems",slug:"on-the-selective-isolation-of-actinobacteria-from-different-mexican-ecosystems",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.104699",abstract:"Actinobacteria isolated from less studied sites on our planet represent a huge opportunity for the discovery of novel microorganisms that may produce unique compounds with biological activity. The class actinobacteria encompasses 80% of the microbes that produce the antibacterial compounds used in medicine today. However, the resistance acquired/showed by pathogenic microorganisms opens the opportunity to explore Mexican ecosystems as a source of novel actinobacteria. Air samples have shown to be an excellent site of study, marine ecosystems which include sediments and marine organisms are important sources of novel actinobacteria and soil samples are still a promising source to isolate this microbial group. The isolation of novel actinobacteria is a dynamic strategy that depends on the expertise, patience, and talent of the techniques applied and needs to be fully explored to untap the unknown actinobacterial diversity with potential in biology.",book:{id:"10893",title:"Actinobacteria",coverURL:"https://cdn.intechopen.com/books/images_new/10893.jpg"},signatures:"Erika T. Quintana, Luis A. Maldonado, Luis Contreras-Castro, Amanda Alejo-Viderique, Martha E. Esteva García, Claudia J. Hernández-Guerrero, Juan C. Cancino-Díaz, Carlos Sánchez, Luis A. Ladino, Juan Esteban Martínez-Gómez and Noemí Matías-Ferrer"},{id:"81741",title:"Chronic Intraocular Leptospiral Infection Relying on Biofilm Formation inside the Vitreous Cavity Leads to Recurrent Uveitis in Horses",slug:"chronic-intraocular-leptospiral-infection-relying-on-biofilm-formation-inside-the-vitreous-cavity-le",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.104527",abstract:"Equine recurrent uveitis (ERU) is a disease known and feared for centuries, as it almost always leads to blindness even with careful and meticulous conservative treatment of the individual episodes of uveitis. In about one-third of horses, both eyes are affected, often necessitating euthanasia. A link between ERU and leptospiral infection has been suspected for nearly 80 years. Vitreous lavage (vitrectomy) can preserve vision in affected eyes. After surgery, no further episodes of uveitis occur in up to more than 95% of operated eyes. With routine performance of vitrectomies, numerous vitreous samples could be used for further investigations. Intraocular anti-Leptospira antibody production was proven, leptospires could be cultured from the vitreous samples, and the LipL32 gene could be detected in the vitreous samples by PCR. Thus, there was convincing evidence of a chronic intraocular leptospiral infection, which can be eliminated most reliably by vitrectomy. Recently, it has been shown that the intraocular leptospires produce biofilm in the equine vitreous. Biofilm formation explains not only the success of vitrectomy, but also the survival of leptospires in the vitreous cavity for many years despite the presence of high intraocular antibody titers and immunocompetent cells, as well as the high tolerance to antibiotics.",book:{id:"11092",title:"Bacterial Biofilms",coverURL:"https://cdn.intechopen.com/books/images_new/11092.jpg"},signatures:"Bettina Wollanke and Hartmut Gerhards"},{id:"81758",title:"Growing Environmental Bacterium Biofilms in PEO Cryogels for Environmental Biotechnology Application",slug:"growing-environmental-bacterium-biofilms-in-peo-cryogels-for-environmental-biotechnology-application",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.104813",abstract:"This Chapter discusses the entrapment, growing and biofilm formation by an environmental bacterium immobilized in polyethyleneoxide cryogel to be applied in environmental biotechnology. The KCM-R5 bacterium was isolated from the heavy metal-polluted environment near a large Pb-Zn smelter, also producing precious metals in Bulgaria. Molecular-genetic analysis revealed affiliation with Pseudomonas rhodesiae. The strain is capable of growing in high concentrations of phenol and different phenol derivatives. Polyethylene oxide was found to be friendly and nontoxic to bacteria polymer enabling bacteria easy to penetrate in it and fast to grow. KCM-R5 biofilms were grown for 30 days in batch culture with phenol (300-1000 mg L−1) dissolved in the mineral medium. The bacterium was able to involve phenol in its metabolism and use it as a single carbon supplier. The results obtained in the study showed 98% phenol biodegradation using the biotech installation described. The proposed PEO cryogel-P. rhodesiae KCM-R5 bacterium biotech biofilter can be used for environmental biotechnology application in industrial wastewater detoxification.",book:{id:"11092",title:"Bacterial Biofilms",coverURL:"https://cdn.intechopen.com/books/images_new/11092.jpg"},signatures:"Galina Satchanska"},{id:"81733",title:"Impairment of the Cardiovascular System during SARS-CoV-2 Infection",slug:"impairment-of-the-cardiovascular-system-during-sars-cov-2-infection",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.103964",abstract:"Although the infection with the severe acute respiratory syndrome (SARS-CoV-2) virus affects primarily the respiratory system, it became evident from the very beginning that the coronavirus disease 2019 (COVID-19) is frequently associated with a large spectrum of cardiovascular involvements such as myocarditis/pericarditis, acute coronary syndrome, arrhythmias, or thromboembolic events, explained by a multitude of pathophysiological mechanisms. Individuals already suffering of significant cardiovascular diseases were more likely to be infected with the virus, had a worse evolution during COVID-19, with further deterioration of their basal condition and increased morbidity and mortality, but significant cardiac dysfunctions were diagnosed even in individuals without a history of heart diseases or being at low risk to develop such a pathology. Cardiovascular complications may occur anytime during the course of COVID-19, persisting even during recovery and, potentially, explaining many of the persisting symptoms included now in terms as subacute or long-COVID-19. It is now well accepted that in COVID-19, the occurrence of cardiovascular impairment represents a significant negative prognostic factor, immensely rising the burden of cardiovascular pathologies.",book:{id:"11369",title:"RNA Viruses",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg"},signatures:"Cristina Tudoran, Mariana Tudoran, Voichita Elena Lazureanu, Adelina Raluca Marinescu, Dorin Novacescu and Talida Georgiana Cut"},{id:"81718",title:"Advances in the Development of Anti-Trichinella spiralis Vaccine, Challenges, and Future Prospective",slug:"advances-in-the-development-of-anti-trichinella-spiralis-vaccine-challenges-and-future-prospective",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.103027",abstract:"Trichinellosis is a food-borne, zoonotic disease that causes infection by a nematode parasite belonging to the genus Trichinella. This is an important disease, and its causative agent is prevalent throughout the world (cosmopolitan). More clinical awareness of trichinellosis is required due to its many outbreaks, increase in the consumption of pork meat and its by-products. Trichinellosis is an epizootic in nature and its economic burden is associated with the prevention of this disease from the human food chain. This disease is transmitted from animals to humans through the consumption of raw or undercooked meat containing encapsulated muscle larvae of Trichinella spiralis. This paper demonstrates the direct effect of progesterone (P4) and mifepristone (RU486) on the progesterone receptors of T. spiralis. Also, studied the challenges in the preparation of DNA and recombinant protein vaccination to control trichinellosis. It is simply done this study at different life cycle developmental stages of T. spiralis. Vaccines development against T. spiralis infection is the new paradime shift from prevention of trichinellosis to fulfilling the food safety requirements.",book:{id:"11380",title:"Parasitic Helminths and Zoonoses - From Basic to Applied Research",coverURL:"https://cdn.intechopen.com/books/images_new/11380.jpg"},signatures:"Muhammad Tahir Aleem, Ruofeng Yan, Asad Khan, Rida Asrar, Amna Shakoor, Areej Asif, Zhaohai Wen, Zhengqing Yu, Muhammad Abdullah Malik, Tauseef-ur-Rehman, Rao Zahid Abbas, Muhammad Mohsin, Xiaokai Song, Lixin Xu and Xiangrui Li"},{id:"81699",title:"Efflux Pumps among Urinary E. coli and K. pneumoniae Local Isolates in Hilla City, Iraq",slug:"efflux-pumps-among-urinary-e-coli-and-k-pneumoniae-local-isolates-in-hilla-city-iraq",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.104408",abstract:"Urinary tract infections (UTI) are the most common bacterial infections affecting humans. Escherichia coli and Klebsiella pneumoniae were common enterobacteria engaged with community-acquired UTIs. Efflux pumps were vital resistance mechanisms for antibiotics, especially among enterobacteria. Overexpression of an efflux system, which results in a decrease in antibiotic accumulation, is an effective mechanism for drug resistance. The ATP-binding cassette (ABC) transporters, small multidrug resistance (SMR), and multidrug and toxic compound extrusion (MATE) families, the major facilitator superfamily (MFS), and the resistance-nodulation- cell division (RND) family are the five superfamilies of efflux systems linked to drug resistance. This chapter highlights the results of studying the prevalence of efflux pump genes among local isolates of E. coli and K. pneumoniae in Hilla City, Iraq. class RND AcrAB-TolC, AcrAD-TolC, and AcrFE-TolC genes detected by conventional PCR of E. coli and K. pneumoniae respectively. The result revealed approximately all studied efflux transporter were found in both E. coli and K. pneumoniae in different percentages. Biofilm formation were observed in 50(100%) of K. pneumoniae and 49(98%) of E. coli isolates were biofilm former and follow: 30(60%), 20(40%) were weak, 12(24%), 22(44%) were moderate and 7(14%) and 8(16%) were Strong biofilm former for E. coli and K. pneumoniae, respectively.",book:{id:"11373",title:"The Global Antimicrobial Resistance Epidemic – Innovative Approaches and Cutting-Edge Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11373.jpg"},signatures:"Hussein Al-Dahmoshi, Sahar A. Ali and Noor Al-Khafaji"}],onlineFirstChaptersTotal:87},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:86,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:96,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:283,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:138,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:128,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:100,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:25,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:159,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11476",title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",hash:"8d41fa5f3a5da07469bbc121594bfd3e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 24th 2022",isOpenForSubmission:!0,editors:[{id:"335401",title:"Prof.",name:"Margherita",surname:"Mori",slug:"margherita-mori",fullName:"Margherita Mori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disor