Ratio of gas component obtained from binchotan suspension by laser irradiation under argon atmosphere with argon-purged water (100% H2O) and 50 wt% ethanol/argon-purged water (50% EtOH/H2O).
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8081",leadTitle:null,fullTitle:"Trichoderma - The Most Widely Used Fungicide",title:"Trichoderma",subtitle:"The Most Widely Used Fungicide",reviewType:"peer-reviewed",abstract:"Trichoderma is a genus of fungi that are present in all soils, where they are the most prevalent culturable fungi. They are also the most successful biofungicides used in today's agriculture. These green-colored fungi are well known for their antifungal and plant-growth-stimulating effects. This book provides comprehensive information on Trichoderma and its use in medical, agricultural and industrial applications. Section I focuses mainly on identification of Trichoderma species, and Section II is concerned with Trichoderma as a biological control agent. Chapters in these sections cover topics ranging from taxonomic status and biodiversity to biochemical analysis and bio-control application.",isbn:"978-1-78923-918-8",printIsbn:"978-1-78923-917-1",pdfIsbn:"978-1-83881-855-5",doi:"10.5772/intechopen.77912",price:119,priceEur:129,priceUsd:155,slug:"trichoderma-the-most-widely-used-fungicide",numberOfPages:116,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"fb120bd787a35aeeb72997edc44d0c5d",bookSignature:"Mohammad Manjur Shah, Umar Sharif and Tijjani Rufai Buhari",publishedDate:"September 4th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8081.jpg",numberOfDownloads:9887,numberOfWosCitations:19,numberOfCrossrefCitations:16,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:41,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:76,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 5th 2018",dateEndSecondStepPublish:"September 26th 2018",dateEndThirdStepPublish:"November 25th 2018",dateEndFourthStepPublish:"February 13th 2019",dateEndFifthStepPublish:"April 14th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah",profilePictureURL:"https://mts.intechopen.com/storage/users/94128/images/system/94128.png",biography:"Dr. Mohammad Manjur Shah obtained a Ph.D. from Aligarh Muslim University (AMU), India, in 2003. He is a pioneer in the field of insect parasitic nematodes and has presented his findings at several conferences and published articles in various international journals. He completed two post-doctoral fellowships under the Ministry of Science and Technology, Government of India, before joining Yusuf Maitama Sule University Kano (YUMSUK), Nigeria, as an associate professor in 2015. Dr. Shah is the editor of six books and a reviewer for several scientific journals.",institutionString:"Yusuf Maitama Sule University, Kano",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"5",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"240922",title:"Dr.",name:"Umar",middleName:null,surname:"Sharif",slug:"umar-sharif",fullName:"Umar Sharif",profilePictureURL:"https://mts.intechopen.com/storage/users/240922/images/system/240922.jpg",biography:"Dr. Umar Sharif obtained an MSc and Ph.D. from Bayero University Kano (BUK), Nigeria. Since 1990, he has been actively involved in teaching as well as various research programmes. He has good experience in the field of pathology. He is a member of various scientific societies in Nigeria and well versed in various fields of biology with constructive criticism and review. He has presented his findings at various conferences and published papers in journals of international repute.",institutionString:"Yusuf Maitama Sule University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"272727",title:"Dr.",name:"Tijjani Rufai",middleName:null,surname:"Buhari",slug:"tijjani-rufai-buhari",fullName:"Tijjani Rufai Buhari",profilePictureURL:"https://mts.intechopen.com/storage/users/272727/images/system/272727.png",biography:"Dr. Tijjani Rufai Buhari obtained a Ph.D. from Universiti Putra Malaysia in 2012. At present, he is the director of Academic Planning, at Yusuf Maitama Sule University Kano (YUMSUK), Nigeria. Since 2007, he has been engaged in teaching and research in biology, particularly namely developmental biology, embryology, fisheries and aquaculture, marine biology, environmental microbiology, genetics, general biology, food and nutrition, and food sanitation. Apart from publishing many papers in journals of international repute, Dr. Buhari has attended and presented papers at many conferences, seminars, and workshops.",institutionString:"Yusuf Maitama Sule University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"366",title:"Mycetology",slug:"mycetology"}],chapters:[{id:"65413",title:"Introductory Chapter: Identification and Isolation of Trichoderma spp. - Their Significance in Agriculture, Human Health, Industrial and Environmental Application",doi:"10.5772/intechopen.83528",slug:"introductory-chapter-identification-and-isolation-of-em-trichoderma-em-spp-their-significance-in-agr",totalDownloads:2953,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Mohammad Manjur Shah and Hamisu Afiya",downloadPdfUrl:"/chapter/pdf-download/65413",previewPdfUrl:"/chapter/pdf-preview/65413",authors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],corrections:null},{id:"65048",title:"Trichoderma: Invisible Partner for Visible Impact on Agriculture",doi:"10.5772/intechopen.83363",slug:"-em-trichoderma-em-invisible-partner-for-visible-impact-on-agriculture",totalDownloads:1540,totalCrossrefCites:8,totalDimensionsCites:16,hasAltmetrics:0,abstract:"Species of genus Trichoderma may benefit as plant pathogen control agent (mycofungicide) and plant growth promoter (biofertilizer) and their application may lower the production costs and environmental impact. Direct effects of these fungi on plant growth and development are crucially important for agricultural uses and for understanding the roles of Trichoderma in natural and managed ecosystems. The Trichoderma potential as bioagent is utilized through the commercial production of Trichoderma-based product. Commercial products of Trichoderma-based biofungicides account for about 60% of the biofungicide market, while the availability and dispersion of Trichoderma-based biofertilizers are more widespread than commonly known with a tendency to expand due to the easier registrations. Limiting factors for availability of commercial products are expensiveness of registration requirements as they must be registered as pesticides, especially patenting, efficacy testing, toxicological, and biosafety testing. This chapter intends to give insight into agricultural importance of Trichoderma and current status of implementation of Trichoderma products in developing and in the developed countries.",signatures:"Snježana Topolovec-Pintarić",downloadPdfUrl:"/chapter/pdf-download/65048",previewPdfUrl:"/chapter/pdf-preview/65048",authors:[{id:"66211",title:"Prof.",name:"Snježana",surname:"Topolovec-Pintaric",slug:"snjezana-topolovec-pintaric",fullName:"Snježana Topolovec-Pintaric"}],corrections:null},{id:"65901",title:"Trichoderma as a Biocontrol Agent against Sclerotinia Stem Rot or White Mold on Soybeans in Brazil: Usage and Technology",doi:"10.5772/intechopen.84544",slug:"-em-trichoderma-em-as-a-biocontrol-agent-against-em-sclerotinia-em-stem-rot-or-white-mold-on-soybean",totalDownloads:1249,totalCrossrefCites:0,totalDimensionsCites:8,hasAltmetrics:0,abstract:"Biological control agents are alternatives to chemical pesticides in the management of plant diseases. Currently, hundreds of bioproducts are commercially available in international market varying mainly in antagonistic microorganisms and formulation. We screened four Trichoderma-based products as to their efficacy in controlling Sclerotinia stem rot (SSR) under protected and field environments and their effect on soybean seeds’ sanity and physiological qualities. We also tested application technologies through seed microbiolization and foliar spraying to deliver the microorganisms, and their compatibility with chemical fungicides. In vitro assays showed that all Trichoderma strains were antagonistic to S. sclerotiorum evidencing hyperparasitic activity. Moreover, the bioproducts reduced fungi incidence on soybean seeds, promoted faster seedling emergence and did not hamper seeds’ vigor. Increases of 14 and 37% were registered for root length and shoot fresh weight over that of the untreated control indicating potential application of the bioproducts as soybean growth promoters. Thiophanate-methyl and procymidone were the most compatible, without drastically affecting spore germination or mycelium growth. Under field conditions, all Trichoderma strains reduced SSR incidence and increased soybean grain yield. Formulation interferes on bioproducts’ viability and efficacy deserving special attention upon development.",signatures:"Fernando C. Juliatti, Anakely A. Rezende, Breno Cezar Marinho Juliatti and Tâmara P. Morais",downloadPdfUrl:"/chapter/pdf-download/65901",previewPdfUrl:"/chapter/pdf-preview/65901",authors:[{id:"146372",title:"Dr.",name:"Fernando",surname:"Cezar Juliatti",slug:"fernando-cezar-juliatti",fullName:"Fernando Cezar Juliatti"}],corrections:null},{id:"64952",title:"A Review Study on the Postharvest Decay Control of Fruit by Trichoderma",doi:"10.5772/intechopen.82784",slug:"a-review-study-on-the-postharvest-decay-control-of-fruit-by-em-trichoderma-em-",totalDownloads:1392,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"This chapter consists of an overview with the most relevant results about the efficacy of Trichoderma on postharvest disease control. The results of investigations demonstrate that this fungus can control several phytopathogens in different fruits. Postharvest losses represent a major problem in several countries. The constant application of fungicides not only at field but also at postharvest stage has led to microbial resistance cases, which make the control of these pathogens difficult. Biological control is a promising alternative to chemical fungicide applications. In this sense, an eco-friendly alternative and effective approach for controlling diseases is the use of microbial antagonists like Trichoderma, which have several mechanisms of action to stop disease development. A crucial treat in biological control is related to the maintenance of microbial viability and efficacy, that is why other technologies like their incorporation into edible films and coatings, nanotechnology, microbial mixtures, among others have been applied in combination with Trichoderma successfully. An enhancement in biocontrol activity is achieved when alternative systems are combined like GRAS substances, biopolymers, and other antagonists. Thus, Trichoderma is an eco-friendly alternative to threat postharvest diseases as an alternative to chemical treatments.",signatures:"Ramsés González-Estrada, Francisco Blancas-Benítez, Beatriz Montaño-Leyva, Cristina Moreno-Hernández, Luz Del Carmen Romero-Islas, Jovita Romero-Islas, Rosa Avila-Peña, Anelsy Ramos-Guerrero, Angel Fonseca-Cantabrana and Porfirio Gutierrez-Martinez",downloadPdfUrl:"/chapter/pdf-download/64952",previewPdfUrl:"/chapter/pdf-preview/64952",authors:[null],corrections:null},{id:"65709",title:"A Review Report on the Mechanism of Trichoderma spp. as Biological Control Agent of the Basal Stem Rot (BSR) Disease of Elaeis guineensis",doi:"10.5772/intechopen.84469",slug:"a-review-report-on-the-mechanism-of-em-trichoderma-em-spp-as-biological-control-agent-of-the-basal-s",totalDownloads:1735,totalCrossrefCites:3,totalDimensionsCites:9,hasAltmetrics:0,abstract:"Trichoderma spp. have been the most common fungi applied as biological control agents (BCA) as an effort to combat a wide range of plant diseases. Its uses have recorded good success rate in controlling major plant diseases. Knowledge on the mechanisms employed by Trichoderma spp. could be further studied to improve its ability as an efficient biocontrol agent. The Trichoderma ability to curb plant diseases were mainly based on the activation of single or multiple control mechanisms. It is known that the Trichoderma-based biocontrol mechanisms mainly rely on mycoparasitism, production of antibiotic and/or hydrolytic enzymes, competition for nutrients, as well as induced plant resistance; numerous secondary metabolites produced by Trichoderma species could directly inhibit the growth of several plant pathogens. These mechanisms may act directly or indirectly against the targeted plant pathogen. This chapter reviews the recent updates on published research findings on mechanisms used by Trichoderma as biological control of plant diseases particularly on basal stem rot disease of oil palm caused by Ganoderma spp.",signatures:"Syed Ali Nusaibah and Habu Musa",downloadPdfUrl:"/chapter/pdf-download/65709",previewPdfUrl:"/chapter/pdf-preview/65709",authors:[null],corrections:null},{id:"65206",title:"Trichoderma harzianum Rifai: A Beneficial Fungus for Growth and Development of Abroma augusta L. Seedlings with Other Microbial Bio-Inoculants",doi:"10.5772/intechopen.83533",slug:"-em-trichoderma-harzianum-em-rifai-a-beneficial-fungus-for-growth-and-development-of-em-abroma-augus",totalDownloads:1018,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Rhizospheric microbes play an important role in plant health. Rhizosphere is an area around the roots of plants where all microbes repose and influence the health of plants. These microbes require organic matter for their activity and provide nutrients to the plants and maintain the plant health. In this research paper, these useful microbes like fungi (Trichoderma harzianum), endomycorrhizae (Arbuscular Mycorrhiza) and bacteria (Pseudomonas putida) were isolated and after mass multiplication applied as bio-inoculants in alone and in combination to see the effect on growth and development of Abroma augusta seedlings which is a threatened medicinal plant in north-eastern part of India. T. harzianum alone and in combined form showed significant growth and development effect on seedlings. The effect of alone and combined treatments of T. harzianum on growth and development of this important medicinal plant species has been discussed in detail in this research paper.",signatures:"Vipin Parkash, Akshita Gaur, Rahul Agnihotri and Ashok Aggarwal",downloadPdfUrl:"/chapter/pdf-download/65206",previewPdfUrl:"/chapter/pdf-preview/65206",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1692",title:"Parasitology",subtitle:null,isOpenForSubmission:!1,hash:"b2110e81c765897e4ffdfbd340495e25",slug:"parasitology",bookSignature:"Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/1692.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6019",title:"Nematology",subtitle:"Concepts, Diagnosis and Control",isOpenForSubmission:!1,hash:"986caa9915f3701347de93affb89c70f",slug:"nematology-concepts-diagnosis-and-control",bookSignature:"Mohammad Manjur Shah and Mohammad Mahamood",coverURL:"https://cdn.intechopen.com/books/images_new/6019.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4692",title:"Microbiology in Agriculture and Human Health",subtitle:null,isOpenForSubmission:!1,hash:"253eae9043fbdabe3fe0bdf315200d7a",slug:"microbiology-in-agriculture-and-human-health",bookSignature:"Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/4692.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6619",title:"Insect Science",subtitle:"Diversity, Conservation and Nutrition",isOpenForSubmission:!1,hash:"08241b041b2072a88452041f8fdebe7e",slug:"insect-science-diversity-conservation-and-nutrition",bookSignature:"Mohammad Manjur Shah and Umar Sharif",coverURL:"https://cdn.intechopen.com/books/images_new/6619.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"22",title:"Fungicides",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"fungicides",bookSignature:"Odile Carisse",coverURL:"https://cdn.intechopen.com/books/images_new/22.jpg",editedByType:"Edited by",editors:[{id:"14447",title:"Dr.",name:"Odile",surname:"Carisse",slug:"odile-carisse",fullName:"Odile Carisse"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6923",title:"Candida Albicans",subtitle:null,isOpenForSubmission:!1,hash:"b037c09c5e2980ef09b650b87fabb668",slug:"candida-albicans",bookSignature:"Doblin Sandai",coverURL:"https://cdn.intechopen.com/books/images_new/6923.jpg",editedByType:"Edited by",editors:[{id:"179627",title:"Dr.",name:"Doblin",surname:"Sandai",slug:"doblin-sandai",fullName:"Doblin Sandai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9463",title:"An Introduction to Mushroom",subtitle:null,isOpenForSubmission:!1,hash:"989e23dafb2b12c71acfe79ce04c3c2b",slug:"an-introduction-to-mushroom",bookSignature:"Ajit Kumar Passari and Sergio Sánchez",coverURL:"https://cdn.intechopen.com/books/images_new/9463.jpg",editedByType:"Edited by",editors:[{id:"304710",title:"Dr.",name:"Ajit",surname:"Kumar Passari",slug:"ajit-kumar-passari",fullName:"Ajit Kumar Passari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"76285",slug:"corrigendum-evidence-based-practice-and-trends-in-visual-rehabilitation-for-patients-with-age-related-macular-de",title:"Corrigendum: Evidence-Based Practice and Trends in Visual Rehabilitation for Patients with Age-Related Macular De",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/76285.pdf\r\n",downloadPdfUrl:"/chapter/pdf-download/76285",previewPdfUrl:"/chapter/pdf-preview/76285",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/76285",risUrl:"/chapter/ris/76285",chapter:{id:"75711",slug:"evidence-based-practice-and-trends-in-visual-rehabilitation-for-patients-with-age-related-macular-de",signatures:"Luis Leal Vega, Irene Alcoceba Herrero, Adrián Martín Gutiérrez, Joaquín Herrera Medina, Natalia Martín Cruz, Juan F. Arenillas Lara and María Begoña Coco Martín",dateSubmitted:"October 19th 2020",dateReviewed:"February 24th 2021",datePrePublished:"March 23rd 2021",datePublished:null,book:{id:"10344",title:"Recent Advances and New Perspectives in Managing Macular Degeneration",subtitle:null,fullTitle:"Recent Advances and New Perspectives in Managing Macular Degeneration",slug:null,publishedDate:null,bookSignature:"Prof. Pinakin Gunvant Gunvant Davey",coverURL:"https://cdn.intechopen.com/books/images_new/10344.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"48794",title:"Prof.",name:"Pinakin Gunvant",middleName:"Gunvant",surname:"Davey",slug:"pinakin-gunvant-davey",fullName:"Pinakin Gunvant Davey"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"75711",slug:"evidence-based-practice-and-trends-in-visual-rehabilitation-for-patients-with-age-related-macular-de",signatures:"Luis Leal Vega, Irene Alcoceba Herrero, Adrián Martín Gutiérrez, Joaquín Herrera Medina, Natalia Martín Cruz, Juan F. Arenillas Lara and María Begoña Coco Martín",dateSubmitted:"October 19th 2020",dateReviewed:"February 24th 2021",datePrePublished:"March 23rd 2021",datePublished:null,book:{id:"10344",title:"Recent Advances and New Perspectives in Managing Macular Degeneration",subtitle:null,fullTitle:"Recent Advances and New Perspectives in Managing Macular Degeneration",slug:null,publishedDate:null,bookSignature:"Prof. Pinakin Gunvant Gunvant Davey",coverURL:"https://cdn.intechopen.com/books/images_new/10344.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"48794",title:"Prof.",name:"Pinakin Gunvant",middleName:"Gunvant",surname:"Davey",slug:"pinakin-gunvant-davey",fullName:"Pinakin Gunvant Davey"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"10344",title:"Recent Advances and New Perspectives in Managing Macular Degeneration",subtitle:null,fullTitle:"Recent Advances and New Perspectives in Managing Macular Degeneration",slug:null,publishedDate:null,bookSignature:"Prof. Pinakin Gunvant Gunvant Davey",coverURL:"https://cdn.intechopen.com/books/images_new/10344.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"48794",title:"Prof.",name:"Pinakin Gunvant",middleName:"Gunvant",surname:"Davey",slug:"pinakin-gunvant-davey",fullName:"Pinakin Gunvant Davey"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12057",leadTitle:null,title:"Timber Buildings - Recent Developments in Testing, Modeling, Analysis, Design, and Construction",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tGiven the trend toward sustainability and minimizing carbon footprint in building construction, timber buildings offer many opportunities toward such goals. Besides traditional stick-built framing, today, mass timber is gaining more acceptance for multi-story building construction. Furthermore, panelized and modular systems are becoming of interest to the economy and the fast construction they offer. The technology of cross-laminated timber is gaining wide acceptance. It has provided the opportunity for timber to be used as the main gravity and lateral load resisting system in multi-story buildings.
\r\n\tThe objective of this book is to provide a state-of-the-art review of the use of timber in building construction from various perspectives, including manufacturing, fabrication, modeling, design, and construction of residential and other types of buildings. Of special interest will be contributions related to new developments in timber technologies, design, construction, testing, sustainability, LCA, building envelope, and the performance of timber buildings in natural and man-made hazard conditions.
\nLaser ablation in the liquid phase, which is a breakdown method leading to nanoparticle formations developed in the study of laser-processing techniques using short and ultrashort laser pulses [1, 2], was applied to organic materials in the middle of the 1990s by Masuhara and coworkers [3–14]. In the liquid phase, laser ablation proceeds under rather mild conditions via a cycle of heating by light absorption and cooling by mediated solvent molecules under ambient atmospheric pressure and temperature, in contrast to the laser ablation in the gas phase such as laser deposition of metals under vacuum [2]. Therefore, it is applicable for an organic material that is more intolerant of optical radiation than a metal or an inorganic semiconductor.
\nLaser ablation of an organic material in the liquid phase results in impressive phenomena. Microcrystals of an organic material suspended in a poor solvent, typically water, are irradiated by laser pulses; thereby, the cloudy suspension is transformed into transparent-colored water. The resultant is a colloidal solution containing organic fragments of a few tens to hundreds nanometers in diameter, that is, nanoparticles. The colloidal solution is stable for a long time without any surfactants, typically for weeks or more, because of persistent Brownian motion of the nanoparticles in the solvent [12]. Therefore, laser ablation in the liquid phase produces a uniform solution of small organic materials. The size of the nanoparticles can be controlled by the ablation conditions such as the irradiated laser fluence [15], laser pulse duration [16], and wavelength [10]. The easy and high collectability of the created nanoparticles by treating the solution is a useful characteristic of laser ablation in the liquid phase.
\nSuch a colloidal solution is applicable in an ink print, a drag delivery, and cosmetic applications. In particular, it is expected to provide a low-cost wet process in the device fabrication field. In recent years, organic materials are increasingly utilized in optical and electronic devices such as organic light-emitting diodes (OLEDs) [17] and organic field-effect transistors (OFETs) [18]. However, high-cost vacuum sublimation processes are required for the fabrication of such devices, because small organic molecules are difficult to dissolve in solvents without the addition of hydrophilic moieties on the molecule or any surfactants. The attachment of additional moieties generally does not guarantee the original functions of molecules, and surfactants may affect the functions of systems. Therefore, the formation of a stable solution of the target organic materials by laser ablation is a promising technique for the device fabrication. The colloidal solution gives a significant advantage to the industrial field with regard to low-cost and eco-friendly products, by applying a print technique as introduced in Ref. [19].
\nAlternatively, an irradiated site in laser ablation can be a reaction centre of photochemistry for energy conversion from light to a fuel gas. A novel hydrogen generation method was discovered during laser ablation of solid carbon in water [20, 21]. Hydrogen gas is a clean gaseous fuel, and hydrogen generation methods have been intensively studied. Classical coal gasification [22] and optically induced water-splitting in the presence of a photocatalyst titanium oxide [23] are representative phenomena in hydrogen generation methods. In the photocatalytic water-splitting reaction, the addition of solid carbon assisted the reaction by avoiding the reverse reaction through oxidization [24, 25]. Thus, solid carbon has been utilized for hydrogen gas production. However, the optical activity of solid carbon itself was not known before the discovery.
\nAs by-products of this laser-induced hydrogen gas generation reaction, nanoparticles of carbon-based materials were also found in the post-irradiated solution. Thus far, novel carbon-based materials, such as graphene oxide (GO) [26–28], nano-diamond [29, 30], and diamond-like carbon (DLC) [29, 31], have been studied as photocatalysts in the water splitting reaction [26, 30] and reduction of carbon oxide [27, 28]. These carbon-based materials can be produced by laser ablation of solid carbon as demonstrated in Refs. [29, 31]. Therefore, laser ablation of solid carbon in an aqueous solution is attractive for at least two different interests: hydrogen generation and carbon-based nanoparticle production.
\nIn this chapter, two topics of laser ablation in the liquid phase using nanosecond laser pulses are presented. The first is nanoparticle formation of organic materials, particularly from the points of particle size control by irradiated laser fluence and absorption spectrum properties depending on particle size. The second is hydrogen gas generation from solid carbon in water accompanied with nanoparticle generation. Through these topics, the extended abilities of liquid laser ablation to transform ordinary materials into functional ones are introduced.
\nLaser ablation in liquid phase is performed for a solid material suspended in poor solvent, in which the material is difficult to dissolve, by irradiation of laser pulses through the side wall of a transparent cuvette/bottle or the top surface of the solution. The suspension was stirred by a magnetic stirrer during the irradiation. The experiments presented in this chapter were performed with laser pulses of 5 ns pulse duration from a tunable optical parametric oscillator excited by a Q-switched YAG laser operated at a 10 Hz repetition rate (Spectra Physics, MOPO) or from a second harmonics of a Q-switched YAG laser (Continuum Surelite) operated at a 10 Hz repetition rate. The incident laser power was controlled using a Glan-Laser calcite polarizer. By maintaining the laser beam unfocused or loosely focused, the energy density was maintained below a few hundred milli-joule per square centimeter in order to not achieve a plasma state [29, 32, 33]. The experimental details are described in the following sections. All laser ablation experiments were performed at room temperature (24°C).
\nLaser ablation of organic molecules was performed with dispersed mixture of organic molecules in the distilled water in quartz cuvette of 1 × 1 × 5 cm3 at a concentration in the range from 2 × 10−2 to 5 × 10−5 mol/l. The microcrystals in suspension were irradiated by laser pulses for a few minutes. The wavelengths of the irradiated laser pulse were selected corresponding to absorption band of molecules. Here, results for two materials are presented; a yellow pigment quinacridone quinone (QQ, Aldrich) was irradiated at the wavelength 430 nm, and rubrene (Rb, Aldrich, sublimated grade) was irradiated at 520 nm. More details of preparation procedure were described in Refs. [34, 35].
\nPost-irradiated solution was investigated by UV-VIS absorption measurement with a conventional system (JASCO, V-560) and a dynamic light scattering (DLS) measurement (HORIBA Scientific, nanopartica, or Otsuka Electronics, Photal). The mode diameter, which indicates the most frequent diameter of nanoparticles in the ensemble, was employed to estimate the size of particles. Dried nanoparticles in deposited films were visualized by an atomic force microscopy (AFM) (SII, SPA400) and the transmission electron microscopy (TEM) (JEOL, 2000EX). Surface electric potential on the nanoparticles was obtained by a ζ-potential measurement (HORIBA Scientific, nanopartica, or Otsuka Electronics, Photal). A film of the QQ nanoparticles was prepared on a glass substrate covered by an indium-tin-oxide (ITO) transparent electrode by the electrophoretic deposition (EPD) method, and its UV-VIS absorption spectrum was compared with that of a vapor-deposited film of QQ with a thickness of 46.5 nm and that of solutions.
\nTime-resolved EPR measurement was carried out in QQ 2-methyltetrahydrofuran solution at 90 K and C60 toluene solutions at 100 K by the excitation at 430 and 532 nm, respectively, with an instrument (Bruker, ELEXSYS E580).
\nIn the laser ablation of carbon in aqueous solution, binchotan charcoal powder of a mean diameter 5 μm (A, Latest Coop., Wakayama, Japan), high-grade carbon powder of a mean diameter 5 μm (B, SEC, SCN-5, 99.5%), and graphite powder of a mean diameter less than 45 μm (C, Wako, 072-03845) were used. Surface area of powder was measured by the BET method developed by Brunauer, Emmett, and Teller. The mixture of the powder and distilled water was irradiated by an unfocused beam (6.2 mm in diameter) of laser pulses for 30 or 60 min. The wavelengths of the laser pulses were selected in the VIS-near-infrared (NIR) region. The generated gas was collected by the water displacement method. The collected gas volume was measured with a scale on a tube at a resolution of 0.05 mL.
\nGas components were analyzed by quadrupole mass spectrometry (Nuclear Engineering Co., Ltd., Ibaraki, Japan) for gases generated under argon atmosphere. The gas components were compared with two gas samples generated from binchotan powder in 100% distilled water and in 50% ethanol aqueous solution. The portion of molecules N2, CO, and C2H4 of the same molecular mass at 28 was determined by filtered partial presser measurements and mass fragments at N and C in quadrupole mass spectrometer. More details of preparation procedure were described in Refs. [20, 21].
\nDuring the hydrogen generation, optical radiation from the irradiated site was observed for a commercial binchotan charcoal block and a carbon electrode block (99.9%) in distilled water (H2O) or in 50% ethanol aqueous solution (EtOH/H2O). The block was irradiated by loosely focused nanosecond laser pulses (5 ns, 10 Hz, 532 nm) with a laser beam size of 0.50 × 0.25 cm2. The emission spectrum was detected using an intensified charge-coupled device (ICCD) (Roper Scientific, PI-MAX) attached to a monochromator (Acton, 300i) with 4 nm spectral resolution. Strong light scattering was blocked by a super notch filter designed for 532 nm incident light. More details of preparation procedure were described in Ref. [36].
\nPost-irradiated solutions and ablation products were investigated by UV-VIS, DLS, and TEM methods, similar to the organic nanoparticles as mentioned in Section 2.2. In addition, FT-IR spectrum of dried carbon-based nanoparticles deposited on a pure silicon substrate was observed.
\nThe validity of the laser ablation in the liquid phase for nanoparticle generation has been demonstrated by several groups for organic systems including poly-diacetylene (poly-DCHD) [4], metallo-phthalocyanines [6–9], dendronized perylenediimide (DPDI) [13, 14], perylene [12], pentacene [37], and a series of pigments including quinacridone (QA) [10–12] and its derivatives [34, 35]. Fullerene C60 was also fragmented into nanoparticles by laser ablation in water [15], although it is an inorganic molecule. The number of molecules is rather limited. The diversity of applicable organic molecules for fragmentation by laser ablation is limited by the photodegradation of a molecule [34] even under the mild conditions in the liquid phase. As a result, the optical properties of the colloidal solutions need case by case interpretations. Further investigation is required for nanoparticle formation of various organic molecules by laser ablation.
\nThe most successful organic system for laser ablation is a class of pigments, QA, and quinacridone-quinone (QQ), whose molecular structures are shown in Figure 1. They exhibit an excellent tolerance for photolysis. A yellow pigment QQ has a simple monomorphism crystal phase [38], which made spectral analysis easy. On the other hand, a red pigment QA has polymorphism in α, β, or γ forms, and significant spectral change was observed depending on the crystal form [10]. Therefore, QQ is more suitable to investigate the optical properties of colloidal solutions. Here, the size-dependent optical properties of the QQ colloidal solutions prepared by laser ablation in the liquid phase are presented.
Molecular structures of QQ, QA, and rubrene (Rb).
\nFigure 2a shows the absorption spectra of the supernatants before and after laser irradiation at the irradiation fluence of 11 mJ/cm2 and the wavelength 430 nm [35]. Light extinction in the suspension is due to the absorption and scattering of light. For prolonged laser irradiation, a characteristic absorption peak at 2.88 eV increased and a scattering tails at 2.24 eV decreased. Such changes were accompanied with a visible disappearance of precipitants and appearance of a transparent yellow solution. This visible change is a characteristic of laser ablation in the liquid phase, caused by converting precipitants to QQ nanoparticles, as described in the following section. The transparency is maintained for months, imparting interests for various applications [19].
\n(a) Absorption spectra before and after various irradiation times at a laser fluence of 11 mJ/cm2. (b) Absorption spectra before and after 1 min irradiation at various laser fluences of 5.2, 19, 67, and 88 mJ/cm2. Adapted with permission from Ref. [
A similar change was also observed for increase in the irradiated laser fluence. Figure 2b shows the absorption spectra of the QQ supernatants before and after laser irradiation for 1 min at laser fluences of 5.2, 19, 67, and 88 mJ/cm2. As the laser fluence increased, the absorbance increased. In addition, the peak energy clearly shifted to the higher energy side (blueshift), and each full width at half maximum (FWHM) became narrower (see Figure 4a). Similar spectral changes were observed above a threshold fluence, which depends on the specimens for QA in water [10], QQ in chloroform, and others [7, 14], whereas the threshold was smeared for QQ in water due to the relatively higher solubility in water [35]. Furthermore, in the case of QQ, nanoparticle generation by laser ablation was confirmed even in pH-controlled water from 2.5 to 10 by ion-exchange resin.
\n(a) Typical TEM image and (b) electron diffraction pattern of QQ nanoparticles prepared with the laser fluence 19.2 mJ/cm2 for 1 min. Adapted with permission from Ref. [
The formation of nanoparticles was confirmed by AFM and TEM images of dried specimens as well as by DLS measurements of the solution. A typical TEM image of the QQ nanoparticles, which was prepared at a fluence of 19.2 mJ/cm2 for 1 min, indicates the shape of distorted ellipsoid dispersed uniformly, as shown in Figure 3a. The image of the nanoparticles was observed typically in size around 90 nm, which is not far from the mode diameter observed by the DLS (78 nm). An electron diffraction pattern of the nanoparticle ensemble shows multiple Debye-Scherrer rings (Figure 3b), which means that the nanoparticles consist of a crystalline structure. The lattice spacings were coincident with those obtained by X-ray diffraction measurements for the QQ powder within analytical accuracy. Therefore, the crystalline structure of the QQ powder is maintained after the laser ablation in water.
\n(a) Fluence dependence of the lowest absorption peak energy (solid triangles) and its FWHM (solid circles). (b) Fluence dependence of the mode diameter estimated by DLS (open circles). Dotted curves are guides for eyes. (c) Correlation of the mode diameter to the lowest peak energy obtained at various fluences (solid circles). A broken line is a fitting curve obtained by the least squares method. Adapted with permission from Ref. [
Note the relationship between the blueshift of the lowest absorption peak energy and the mode diameters of the nanoparticles contained in the solutions estimated by DLS. As shown in Figure 4b, the observed mode diameter was smaller for the irradiation at higher laser fluences. A linear correlation between the mode diameters and the lowest absorption peak energies was found as shown in Figure 4c. This relationship provides us the possibility of simple estimation of the most frequent nanoparticle diameter in an ensemble by observation of the absorption peak energy, at least, within the range from 55 to 90 nm in QQ. Such a size dependence was hidden by spectral variation due to polymorphism in QA [10] and by superposition of light scattering in DPDI [14].
\n\nThe size dependence of the energy shift in the absorption spectrum can be considered in relation to the surface states. The ratio of a surface area (S) to a particle volume (V) is larger for smaller particles with the dependence of S/V=6/D, where D is the diameter. Thus, the larger shifts with the smaller particles imply influences from surface states. Indeed, the QQ nanoparticles were under a negative surface potential (ζ-potential) of −69 to −44 mV [34] in water, indicating the creation of charge or polarization on the surface by laser irradiation.
\nFurthermore, by utilizing the negative ζ-potential on the nanoparticles, a film was fabricated on an ITO glass electrode from the colloidal solution by electrophoretic deposition (EPD). As shown in Figure 5, the absorption spectrum of the nanoparticle film (d) showed that the lowest energy peak was apparent at the same position as that in the colloidal solution (c) but was shifted from those of a vapor-deposited film (b) and solution before irradiation (a) [34]. The characteristic of the colloidal solution formed by liquid laser ablation was maintained in the EPD film. A preliminary device with nanoparticles by the EPD method was demonstrated for QA [11]. Such negative surface potential response to the electric field is also applicable for the roll-to-roll fabrication method [39].
Comparison of normalized absorption spectra of (a) a starting aqueous QQ solution before irradiation, (b) a vapor-deposited film, (c) a colloidal solution before preparing an EPD deposit film, and (d) an EPD deposit film on an ITO electrode. Adapted with permission from Ref. [
No signal of photodegradation appeared in the yellow pigment QQ under the aforementioned irradiation conditions. The rigid molecular structure and stacking of flat molecules in QQ and QA systems enhance the tolerance for laser irradiation [38]. In contrast, the laser ablation of fragile and luminous molecules, such as rubrene (Rb) whose molecular structure is shown Figure 1, failed because Rb underwent photodissociation upon irradiation by the laser pulses [34].
\nBesides a molecular structure, it is worth taking into account the relaxation processes after optical excitation in order to understand the necessary condition for laser fragmentation. Because the fragmentation of organic powders into nanoparticles proceeds by rapid photothermal conversion on the surface layers of a solid [10], non-radiative relaxation processes, such as intersystem crossing and/or internal conversions, are potential thermal sources in the molecules. Population into an excited triplet state is a plausible entrance of the de-excitation path into thermal energy generation.
\nThe population of an excited triplet state was observed for QQ and C60 by transient EPR measurements as shown in Figure 6; however, it was unobservable for Rb. Transient microwave signals of emission and absorption decayed with a lifetime of 57 μs in the QQ solution at 90 K and 3–6 μs in the C60 solution at 100 K, respectively. These signals arise from transitions between sublevels of an excited triplet state which were populated via efficient intersystem crossing from an excited singlet state after optical excitation. Although the observed lifetime in the C60 solution was much faster than the value in literature [40] due to oxidation and a high concentration of the solution, a large intersystem crossing and triplet population were obvious. Therefore, a sufficient population of an excited triplet state is one possible necessary condition for laser fragmentation via photothermal conversion in organic materials. In addition, photoluminescence (PL) from QQ was hardly observed, similar to C60, in which PL was somewhat observed with a radiative quantum yield of 10−4 [41]. The absent of PL may also be a good signal for proceeding with the photothermal conversion.
Time-resolved EPR signals for a QQ solution at 90 K and electron-spin-echo-detected time-resolved EPR signals for the C60 solution at 100 K.
From another viewpoint, the irradiated site in the laser ablation can be a reaction centre of energy conversion from light to a fuel gas. In this section, our recent discovery of novel hydrogen gas generation during laser ablation of carbon in an aqueous solution [20, 21] is presented. This reaction proceeded via a photochemical reaction that carried the temperature elevation of the irradiated sites in water [36]. Electrodes and any other photocatalysts were not necessary for such reactions. Furthermore, the hydrogen generation was accompanied by simultaneous carbon-based nanoparticle production. Therefore, the laser ablation of carbon in water demonstrated two different interests: the hydrogen generation and the carbon-based nanoparticle production.
\nThis hydrogen generation reaction occurred under a lower irradiation energy than that required for plasma-state generation. It has been known that the plasma state is induced when the laser pulse energy is focused on materials with an energy density over a few joule per square centimeter [29, 32]. Such an exploded plasma gas is the result of material dissociation and has been investigated, for example, in laser-induced breakdown spectroscopy (LIBS) by measuring the luminescence from the plasma state [29, 32]. In contrast, in the present reaction, no evidence of a plasma state was observed, but temperature elevation at the irradiated site was confirmed by spectroscopy [36] as described in Section 4.5.
\nIn this reaction, a high-grade Japanese charcoal, known as binchotan in Japan, is adopted as the carbon source because of its high carbonization over 93%. Among various carbon materials, charcoal is a sustainable carbon source, because it is made of wood and intermediates Earth’s carbon cycle. Laser ablation effects are compared to other carbon materials.
\nDuring a trial of nanoparticle generation by laser ablation in the liquid phase, we found that bubbles rose from the irradiated site inside a bottle which contained powder of binchotan charcoal and water. After preliminary discovery of explosive combustion of the generated gas by ignition, the collected gas was analyzed to find that hydrogen gas was contained. Table 1 shows the ratio of the generated gas components, where argon portion from the argon-purged water was excluded. In the collected gas, roughly 50% of hydrogen and 20% of carbon monoxide were contained, whereas the amount of oxygen was very low [20, 21]. No gas was generated from pure water itself under the same irradiation conditions. From these facts, it was concluded that the reaction is due to photochemical reaction of carbon with water, instead of ideal water-splitting. Alcohol additive enhanced the generated gas volume with 56% of hydrogen concentration [21] as shown in the third row in Table 1. Details are described in Section 4.3.
\n | H2 (%) | \nO2 (%) | \nCO (%) | \nCO2 (%) | \nN2 (%) | \nCH (%) | \n
---|---|---|---|---|---|---|
100% H2O | \n48.7 | \n1.3 | \n20.5 | \n0.5 | \n5.1 | \n23.1 | \n
50% EtOH/H2O | \n56.2 | \n2.7 | \n25.2 | \n0.0 | \n5.5 | \n8.5 | \n
From the ratio of the generated gas components, the reaction resembles to that of coal gasification, which is a classical technique of syngas production by steaming of coal under high pressure (a few MPa) and high temperature (>800°C) (HPHT) [42] via the following:
In the present laser-induced reaction, the water temperature rose from 22 to 29°C during the 30-min irradiation at 182 mJ/cm2 for 9.5 mL volume of water. Further evidence of temperature elevation in the laser pulse duration was witnessed by optical emission spectroscopy as discussed later in Section 4.5.
\n(a) Laser fluence dependence of generated gas volume with irradiation at 532 nm for 30 min, 26 mg of binchotan charcoal powder (A, red solid circles), high-grade carbon powder (B, black open circles), and graphite powder (C, blue solid triangles). The results for sample A and B were adapted with permission from Ref. [
The hydrogen-included gas was generated above a threshold fluence of nanosecond laser pulse irradiation. Figure 7a shows the laser fluence dependence of a generated gas volume after 30 min of irradiation at a laser wavelength of 532 nm for three kinds of carbon powders. Macroscopic gas volumes of more than 0.05 mL were detectable only above a laser fluence of ca. 50 mJ/cm2. The gas volume generated with binchotan charcoal powder of 5 μm in diameter (A, red solid circles) was almost twice that of the high-grade carbon powder of 5 μm (B, black open circles) and graphite powder of less than 45 μm (C, blue solid triangles) under the same irradiation conditions, whereas the threshold laser fluences were nearly coincident. The generated gas volume increased by irradiation time within one hour, but the further prolonged irradiation at 144 mJ/cm2 made irreducible change, and the generated gas volume decreased [20]. This hydrogen generation reaction did not proceed by the irradiation of 30 fs laser pulses which affords a laser fluence of 80 mJ/cm2 [20], implying the present reaction is classified into the thermal ablation process [1].
\nThe BET surface area of the binchotan of 5 μm (A) was 22 ± 3 m2/g, which was almost twice that of the high-grade carbon powder of 5 μm (B) 13 ± 3 m2/g [20] or the graphite powder of less than 45 μm (C) 9 ± 3 m2/g. Therefore, the higher gas generation is mainly attributed to its larger surface area. However, when the gas volume was compared to binchotan powders of different sizes of 1, 5, and 10 μm in mean diameter, whose BET surface areas were 120, 22, and 8 m2/g, the generated volume did not depend on the surface area ratio linearly as shown in Figure 7b. This fact implies that there are other factors affecting the reaction efficiency.
\nThe gas generation was observed from VIS to near-infrared (NIR) irradiation for both cases with binchotan (A) and pure carbon (B). Figure 8 shows the generated gas volume versus the irradiated wavelength, obtained for 30 min irradiation at a laser fluence of 112 mJ/cm2. The gas volume generated with binchotan (A, red solid circles) was more than twice that of the pure carbon (B, black open circles) under the same irradiation conditions in the VIS-NIR range. A tendency for a reduction in gas yield at longer wavelengths was anticorrelated to the optical reflectivity [20].
Irradiated wavelength dependence of the generated gas volume for binchotan powder (A, solid circles) and pure carbon powder (B, red circles) obtained by pulse irradiation of 112 mJ/cm2 for 30 min. The result for sample A was adapted with permission from Ref. [
An alcohol additive in the binchotan water suspension enhanced the hydrogen generation efficiency for the laser fluences above the threshold of ca. 50 mJ/cm2 [21]. Among methanol, ethanol, and isopropanol, ethanol was the most efficient additive and raised twice the generated volume. The generated volume increased according to the increase of ethanol additive and saturated at 40–50% of ethanol in water. The generated gas contained 56% of hydrogen as shown in Table 1.
\nAlcohol is known to act as an oxygen scavenger preventing the reverse reaction into water [43, 44] and/or as a current doubler [45] in photocatalytic water splitting. As the present photochemical reaction is different from the photocatalytic water-splitting reaction, the enhancement of the reaction is partially due to a photochemical reaction of ethanol itself. Endothermic reactions of a steam reformation of ethanol, C2H5OH + 3H2O → 2CO2 + 6H2 and/or C2H5OH + H2O → 2CO + 4H2, which usually progress under HPHT [40], might occur by the laser irradiation, in addition to the oxidation reactions of solid carbon.
\nThe generated gas volume of 7.3 mL, which was obtained after 1 h of irradiation with a 209 mJ/pulse at 532 nm by the 50% ethanol additive [21], was quite small. According to the hydrogen ratio of 56%, the hydrogen amount included in the volume was calculated as 0.17 mmol. That is, one hydrogen molecule per 126 photons was generated, assuming that 64% of the irradiated laser power was used in the reaction [20]. Although this gas volume was comparable to the production by a photocatalytic water reduction with hydrogen-terminated nano-diamonds [30], it was much less than the carbon-assisted electrochemical hydrogen generation by electric power [46].
\nUV-Vis absorption spectra of centrifuged solutions after laser irradiation at 125 (black line), 150 (blue line), and 175 (red line) mJ/cm2 for binchotan in water. Inset: size distribution of nanoparticles (bars) and logarithmic normal distribution function (broken line) in the centrifuged solution created by laser irradiation at 175 mJ/cm2, measured using the DLS method. Adapted with permission from Ref. [
A post-irradiated solution was investigated using UV-VIS absorption and DLS methods. As shown in Figure 9, light extinction by UV absorption and light scattering appeared in the centrifuged solution following the irradiation. This change indicates the production of new materials by laser ablation as by-products of the hydrogen generation. DLS measurements showed that this solution contained nanoparticles of 125 nm in mean diameter (see the inset). Such nanoparticles could be measured only for the irradiation above the threshold fluence that is the same as that for gas generation. The mean diameter of the nanoparticles was independent of the laser fluence, whereas light extinction was enhanced at higher irradiation fluences corresponding to an increase in the nanoparticle number. Furthermore, the generated nanoparticles are slightly dressed by a negative ζ-potential (−15 MeV) in water. Therefore, the nanoparticles suspended in water are expected to be stable for a long time as in the case of the organic QQ nanoparticles mentioned in Section 3.
\nA TEM image of the nanoparticles is shown in Figure 10a. Nanoparticles with sizes of around 100 nm were typically observed, as indicated by a yellow circle for a typical one. The sizes of the nanoparticles are consistent with the mean diameter observed by the DLS. A selected area electron diffraction (SAED) pattern of the nanoparticles (Figure 10b) shows clear diffraction spots in addition to diffused halo rings, whereas the Debye-Scherrer rings from the carbon structure were observed in a SAED pattern from the nonirradiated particle ensemble (Figure 10c). Some of spots in Figure 10b was located on the rings derived from the lattice spacings of diamond, and other parts of spots were on those of the C8 and n-diamond that were produced by laser ablation of a graphite target covered by water [29]. There were still other diffraction spots that could not be assigned to diffraction patterns of known structures. These results indicate that various crystalline/amorphous carbon structures including nanocrystalline carbon/diamond were created by laser ablation of binchotan charcoal in the liquid phase.
(a) A TEM image of binchotan nanoparticles produced by laser ablation. (b) SAED pattern obtained from the nanoparticles. (c) SAED pattern obtained from binchotan powder before irradiation.
Furthermore, the dried nanoparticles on a silicon substrate showed new IR peaks at 797, 873, 1019, 1261, 1425, 2906, and 2963 cm−1 as shown in Figure 11. Generally, vibrations of aromatic molecules are observed in the fingerprint range of 500–1500 cm−1, and C─H stretch modes are in 2800–3000 cm−1 by an FT-IR measurement. The Raman peaks of O─H bonding were also observed during the reaction as described in Section 4.5. Therefore, the appearance of the peaks in these ranges indicated the creation of small carbon networks including the bonding of C─H and O─H groups.
\nFT-IR spectra of dried post-irradiated nanoparticles (a red line) and nonirradiated binchotan powder (a black line) on a silicon substrate at room temperature. For comparison, the spectrum of a silicon substrate (a blue line) is also shown.
It is known that charcoal constitutes a form of amorphous carbons consisting of sp2 and sp3 bonding [47]. For the creation of new networks, bond breaking and reconstruction occur during the laser ablation by nanosecond pulses. Light energy at the threshold is necessary for such reactions. Surprisingly, in graphite powder, no nanoparticle was measured, and no additional IR peaks were observed.
\n(a) Optical emission spectra from binchotan block in water (red solid line) and in 50% ethanol aqueous solution (broken black line) excited by laser pulses with 170 mJ/cm2 energy density and 532 nm wavelength. (b) Incident laser fluence dependence of emission intensity at 470 nm for binchotan block in water (red solid circles) and in 50% ethanol aqueous solution (blue open circles). Adapted with permission from Ref. [
A clue to understand the mechanism behind the hydrogen generation via intense light irradiation is to clarify the nonequilibrium conditions at the irradiated site within a nanosecond time period. Investigation by time-integrated/-resolved spectroscopy during the hydrogen generation provided us crucial information regarding on-site nonequilibrium conditions including temperature increases [36].
\n\nWhite-light emission was observed during the reaction from a binchotan block in water. As shown in Figure 12a, a broad spectrum over the visible range is apparent on both sides of the 532 nm excitation wavelength, across the penetration gap of the super notch filter, in water (solid red line), or in 50% ethanol aqueous solution (broken black line). No emission was observed from the water itself. The relatively narrow peaks at 650 and 630 nm are attributed to the Raman scattering lines at 3400 and 2930 cm−1, because the peak positions changed following excitation wavelengths. There was no indication of the plasma emission from neutral/ionized atoms typically observed in LIBS. The Raman scattering lines are assigned to vibration of the O─H stretch mode under a hydrogen bond and Raman-active C─H vibrational modes of ethanol [48].
\nThe white-light emission appeared only above a threshold excitation energy density. As shown in Figure 12b, the emission intensity at 470 nm increased nonlinearly in accordance with variations in the incident laser fluence. The threshold at 50 mJ/cm2 was identical for both specimens in the water (red solid circles) and 50% ethanol aqueous solution (blue open circles). Note that the threshold for the appearance of the white light is coincident with the threshold for hydrogen generation (Figure 7). Therefore, it is reasonable to consider that the white-light emission is a simultaneous product of the hydrogen generation reaction. With a carbon electrode (99.9%), one fifth of emission intensity was observed above similar threshold excitation energy, and the generated gas volume was also small.
\nSpectral shape at shorter than 650 nm is well reproduced by Planck’s law at a temperature 3860 K. Furthermore, time-resolved spectrum revealed a repetitive spectral change due to the temperature variation in the duration of laser pulse [36]. From these experimental facts, it was confirmed that the laser pulse supplies heat energy through optical absorption, and the white-light emission can reasonably be attributed to blackbody radiation from the irradiated site. It implies that hydrogen generation induced by laser irradiation proceeds similarly to classical coal gasification, which features reactions at HPHT. Finally, it was concluded that the hydrogen generation induced by the laser pulse irradiation occurs under high-pressure and high-temperature conditions.
\nThe extended abilities of laser ablation in liquid phase were presented through two topics. The first is nanoparticle formation of an organic material, which produced a colloidal solution of a small organic material. In a yellow pigment QQ, a systematic blueshift of the absorption peak corresponding to the decrease of particle size in colloidal solutions was discoverd. This dependence provides an easy estimation method of the averaged diameter of the ensemble that will be applied to organic devices by a wet process. Furthermore, the population of an excited triplet state through optical excitation might be one guideline to select and synthesize materials for laser fragmentation.
\nThe second is hydrogen gas generation from solid carbon in water by a photochemical reaction. Even under a lower energy irradiation that achieves no plasma state, the irradiated site can be a reaction centre of energy conversion from light to a fuel gas, although the gas generation efficiency is very low. Simultaneously produced carbon-based nanoparticles possess a characteristic structure including those of diamond, nano-diamond, and diamond-like carbon, supplying new carbon materials from binchotan charcoal. A rise of temperature during the irradiated pulse duration was witnessed by the observation of white-light emission from the site ascribed to the blackbody radiation. Therefore, we conclude that the hydrogen generation induced by the laser pulse irradiation occurs under high-pressure and high-temperature conditions.
\nLaser ablation in the liquid phase is a useful technique to transform ordinary materials into functional ones under relatively mild condition. Although to date this technique has been applied to rather limited number of materials, further studies from various interests will extend the application field.
\nThis work was supported by the Original Research Support Project of Wakayama University, 2011–2012. All experiments presented here were done with students of master’s and bachelor’s courses in Wakayama University from 2011 to 2016. TEM observations were performed under the Inter-university Cooperative Research Program of the Institute for Materials Research, Tohoku University. This publishing project was supported by the Kansai Research Foundation for technology promotion (2016P001).
\nDental implant service is a life-changing treatment modality for many patients. Giving our patients a fixed restoration is a very rewarding procedure, especially if the patients have difficulties: gage reflex, bulky prostheses, lack in retention, stability, or support. Unfortunately, this is not applicable for all patients, especially patients who cannot afford multiple implants or bone grafting. By considering the strategic implants under the existing removable partial denture (RPD), we make implant treatment simple and affordable for more patients.
The removable partial denture (RPD) is the dental prostheses that the patient, who suffers the absence of some but not all the natural teeth, can readily insert and remove from his/her mouth. The prostheses restore the missing teeth as well as the gingiva and the missing bone if needed. Removable partial dentures (RPDs) are indicated for patients with a long edentulous span, too long for a fixed prosthesis. The RPD is indicated for a patient with no posterior abutment to support a fixed prosthesis, and the cantilever bridge is contraindicated. Also, it is preferred if excessive alveolar bone loss is encountered, especially in the esthetic zone. Those patients who are not indicated for bone grafting or unable to afford the costly treatment are good candidates for the removable denture (RD). The acrylic flang is a good approach to compensate for the bone and soft tissue deficiency within a short fabrication time and a less aggressive approach. Moreover, this treatment option allows the patient to remove his prostheses for easier intraoral access, subsequently, better oral hygiene. The RD enables the dentist to repair or adjust the prostheses easily.
On the other hand, RD is less secure with limited retention and stability than fixed prostheses. RD metal clasp may compromise the final esthetic result. It may act as a gum stripper and accelerate alveolar bone resorption. These drawbacks in the RD can be managed by upgrading the RD using strategic implants, which are “the implants that change the prosthetic support type to a more favorable configuration” [1].
In this chapter the folllowing points is going to be discussed:
Classification as a systematic approach for communication and planning:
Kennedy classification system
Steffel classification and modified Steffel classification
Implant-Corrected Kennedy (ICK) Classification System for Partially Edentulous Arches
Strategic mini dental implants (MDI) and standard dental implant (SDI) under existing RPD, how many implant?
The abutment prosthetic value
Immediate and delayed restoration/loading, what is the difference?
Why strategic implant?
Mini-implant-assisted removable partial denture
Conclusion
A classification is a systematic approach in which the items or units are categories in groups or subgroups according to specific criteria. This approach facilitates the discussion regarding the most suitable treatment options, eases the communication between the dentist and the technician. The classification also allows for visualization and differentiation between the RPD support types: tooth-supported, tooth tissue-supported, tissue-supported, implant-supported, implant tissue-supported, and implant tooth-supported.
In 1925 Dr. Edward Kennedy introduced his approach of categorizing partially edentulous arches into four classes. He categorized the partially edentulous arches in a way that considered the edentulous area position in the arch and if it was surrounded with teeth or not. This approach was beneficial in visualizing the cases and reaching the decisions regarding the RPD designs.
The following is the Kennedy classification:
Class I: Edentulous free-end areas located on both sides (bilateral), posterior to the remaining teeth (Figure 1).
Class I maxillary arch.
Class II: Edentulous free-end area located on one side (unilateral), posterior to the remaining teeth (Figure 2).
Class II maxillary arch.
Class III: Edentulous bounded area with natural teeth remaining both anterior and posterior to it (Figure 3). The area is located on one side (unilateral).
Class III maxillary arch.
Class IV: Edentulous bounded area with natural teeth remaining posterior to it. The area is located anteriorly and crossing the mid-line (Figure 4).
Class IV maxillary arch.
In 1965 Applegate’s added eight rules to the classification. The rules can be summarized by the following: The categorization (classification) is always determined by the most posterior edentulous region (or regions). Any additional edentulous area (other than those that define the categorization) is considered a modification (Figures 6 and 7). If the teeth posterior to the edentulous area are not used to support the RPD, the edentulous area is classified as a free end (Figures 5 and 7), and vice versa (Figures 6 and 7). If the posterior free end edentulous region is not going to receive artificial teeth, it will not be considered in the classification (Figures 6–8), and vice versa. Putting the design and the structure of the RPD into consideration is a cornerstone in giving the correct RPD classification. Subsequently, the classification will be the start point making the best clinical decision regarding the number and the position of strategic implants under the RPD.
No rest is going to be costructed on # 38 or 37 → the arch has two free end areas → Class I mandibular arch.
Direct retainer is going to be constructed on 37. No artificial teeth is going to replace 46, 47 or 48 → no free end → Class III mod 1 mandibular arch.
No artificial teeth is going to replace, 48. Direct retainer is going to be constructed on 37 but not on 47 → one free end → Class II mod 3 mandibular arch.
No artificial teeth is going to replace, 38, 37, 36, 47 or 48. Class IV mandibular arch.
In 1962 Steffel described six support possibilities that can be encountered in RPD [2]. He labeled the classification categories from A to F based on the fulcrum, and the number and distribution of the abutments, Figure 9. The fulcrum line is a hypothetical line formed between abutments, teeth or implants. The RPD may rotate somewhat around the fulcrum during function.
Steffel classification.
In this chapter, we suggest a modification to this classification to simplify the communication and decision-making regarding the strategic implant under the existing RPD. In the modification, B, C, and D will be labeled together.
The following is the
Punctual-support, only one abutment.
Linear-support, two abutments; separated with edentulous area or at least one tooth.
Triangular-support, three well-distributed abutments; separated with edentulous area or at least one tooth. One of the abutments should be on the opposite quadrant.
Quadrangular-support, two well-distributed abutments on every quadrant.
Providing the patient with a stable prosthesis is a crucial target for the dentist. However, the RPD is not rigidly attached to the intraoral hard (teeth) and soft (mucosa) tissues, which have different levels of compressibility and mobility. Subsequently, the chewing and occlusal forces may generate different levels of tissue stress and prosthesis mobility. Both (stress and mobility) should be within the physiological level and cause no harm or trauma. Achieving this critical goal depends on the clinician’s understanding of the biomechanics and the different design solutions. The RPD design should consider the unique nature of each clinical case and counter the expected RPD movement in response to loading. The design also should minimize the potentially destructive forces that may affect the supporting tissues; teeth, mucosa, and bone. That can be achieved by avoiding a long lever system, good selection for the RPD supporting elements, and wide symmetrical distribution of the functional forces [3, 4]. Many of the previous points (if not all) can be achieved (fully or partially) by delivering an RPD with quadrangular-support type.
According to the modified Steffel classification, there are four types of prosthetic support: punctual, linear, triangular, and quadrangular. The RPD support improves gradually as the classification change from I to IV. Classification IV provides the best support to the RPD with the highest resistance of rotation. The strategic implant aims to change the prosthetic support type to a more favorable configuration.
One of the simple classification systems for RPD supported with implants or implants and natural teeth is Implant-Corrected Kennedy (ICK) classification system for partially edentulous arches by Al-Johany et al. [5]. The ICK is based on the Kennedy classification system and the Applegate eight rules (Applegate–Kennedy system) [6]. According to the ICK classification system coding guidelines, the Kennedy classification comes first, followed by the number of modification spaces (Applegate rules). Finally, round brackets enclose # followed by the implant’s or implants’ position will be added, Figures 10–18.
ICK I (# 25).
ICK II mod 2 (# 33, 36). Direct retainer is going to be constructed on 28.
ICK II mod 3 (# 13, 23). Direct retainer is going to be constructed on 28.
ICK II mod 1 (# 16, 13, 23).
ICK II (# 35, 33, 43).
ICK III mod 3 (# 41).
ICK III mod 1 (# 34, 42).
ICK III mod 1 (# 13, 23).
ICK IV (# 33, 43). Direct retainers are going to be constructed on 36 and 47. No artificial teeth are going to replace 37 or 38.
Meeting our patient’s expectations is a priority. That cannot be reached if the dentist did not provide the patient with a full straightforward clarification for the treatment plan. The clarification should cover the advantages, disadvantages, risks, time, cost, and alternatives. The explanation should be done in a way that helps both the patient first and the dentist second to reach the decision that best matches the patients’ needs, health status, and financial ability, as well as respect the patient’s chief complaint and consideration. Generally speaking, teeth-implant- or implant-supported removable dentures reduce (and in many cases eliminate) traditional denture problems [1, 7, 8, 9]. It helps the dentist widen his options to meet the patient’s needs and expectations by inserting one or few implants in strategic positions, but how many implants?
The needed number of mini dental implants (MDIs) or standard dental implants (SDIs) under existing RPD is a multifactorial process (see paragraph 2.5) and taken on the quadrant level. To give the patient an RPD with acceptable retention, stability, and support, the abutments should be well distributed. Two abutments on every quadrant in symmetrical position as possible are needed. On every quadrant, the sum of the abutments prosthetic value should be ≥2, Table 1 and Figure 19.
(A1 upper jaw and A2 lower jaw to G1 upper jaw): The recommended number of strategic standard implants (SDIs) or mini dental implants (MDIs) under existing RPD.
The abutments prosthetic value | ||
---|---|---|
Teeth | Upper or lower incisor or lateral incisor | 0–0.5* |
Upper or lower canine | 1.3** | |
Upper or lower premolar or molar | 1*** | |
MDI | Upper MDI | 0.5–0.7**** |
lower MDI | 1 | |
SDI | Upper Standard Implant | 1 |
Lower Standard Implant | 1 |
The prosthetic value of the available teeth and the planned MDIs and SDIs. The recommendations are on the quadrant level.
The numbers represent the prosthetic value if abutment rest is planned; if not, the value will be 0.
If the four natural anterior abutment teeth are missing (11, 12, 13, 14), strategic implant/s is recommended even if all posterior teeth are available, and vice versa.
If there is no space ( edentulous area or at least one natural tooth) between the abutment teeth, the prosthetic value will decrease to 0.5 for each abutment.
Bone quality impacts the MDI prosthetic value.
For partially edentulous patients, the abutments can be implants or natural teeth and should be well-distributed with a sum of the prosthetic value ≥2 on quadrant level.
In the course of formulating the prosthodontic plan, not all teeth or abutments have the same prosthetic value. The prosthetic value stands for the importance of the tooth or implant from a specific prosthodontic point of view. The last first molar (#36) in Figure 20 has a very high prosthetic value than the lateral incisor #32. Extracting #36 shifts the treatment modality (if an implant is not feasible) from fixed partial denture to removable partial denture. Suppose the dentist changes his prosthodontic point of view by selecting RPD as a treatment modality. In that case, the prosthetic value of #36 will be reduced a little for this specific treatment modality. However, the prosthetic value for the same tooth (#36, Figure 20) and the same treatment modality (RPD) will be very high if the patient has a knife-edge thin, sensitive mucosa. Usually, this type of patient can tolerate tooth-tooth-supported RPD better than tooth tissue-supported RPD. Therefore, it can be concluded that:
The #36 has a very high prosthetic value because the extracting change the treatment modality (if implant is not feasible) from fixed partial denture to removable partial denture.
The hidden #23 MDI under the saddle (Figure 21) has a very high esthetic value as it helps the dentist avoid metal clasp in the esthetic zone. In some cases, strategic implants enable the dentist to reduce or remove the flange to achieve a better esthetic result by reducing lip protrusion. In other cases, it gives the dentist the ability to minimize the RPD size (palate, Figure 24) and increase patient acceptance.
The SDI #23 and MDI #33 have very high esthetic value as they help the dentist avoiding anterior metal clasps. #27 and MDI 35 have relatively high prosthetic value as they shift the RPD from tooth tissue supported to more implant tooth-supprted or implat implant-supported RPD.
The prosthetic value (importance) for each abutment is estimated according to Table 1 and mainly the following points: [11, 12, 17, 18].
Periodontal status, mobility, and bone level around the abutment.
Crown-root ratio.
Tooth vitality, size of the defect (caries), size, and type of the restoration.
The shape and number of the abutment roots.
Occlusion, parafunctional activity and opposite jaw status: natural teeth, implant, fixed partial denture, complete denture, or partial denture.
In 1981 Albrektsson et al. suggested a protocol in which the implants are left to heal in situ for at least 3 to 4 months without loading [19]. He considered the non-loading phase a crucial period to achieve successful osseointegration and avoid fibrous tissue formation between the implant surface and the bone. On the other hand, many clinical studies proved that immediate restoration, immediate loading, or early loading are acceptable treatment modalities [20, 21]. These studies were in response to the social and psychological needs of many patients. The immediate or early treatment modalities aim to reduce the overall recovery time between the surgical intervention and the insertion of the final restoration. These approaches are known as immediate restoration protocol, immediate loading protocol, and early loading protocol.
Patients typically are uncomfortable and, in many cases, refuse to stay without their RPD for a long time, especially if it restores a lot of missing teeth or teeth in the esthetic zone. The immediate protocols can reduce the patient concerns related to the final restoration by reducing the waiting period. In some cases, a temporary restoration is immediately delivered to give the patient a hint on the form, size, and position (in some cases, the shade) of the final restoration. Moreover, the second surgical intervention can be averted through immediate protocols. To achieve a good success rate in this treatment modality, a good understanding of the topic, terminology, limitation, and biology is essential. These topics will be discussed in other chapters, but it is crucial to clarify a few terms.
The loading can be classified into four categories:
Conventional loading: The implants are left without loading for around two to three months.
Delayed loading: If the loading on the implant is applied after the conventional loading time, it is classified as delayed. That can be indicated if the tissue needs more healing time, such as external sinus lift with bone grafting. In such cases, the final restoration and implant loading may be applied after six to nine months.
Early loading: The implant is loaded by placing dental restoration in contact with opposing dentition at any time after one week but within two months after implant insertion.
Immediate loading: The dental restoration is inserted intraorally and placed in contact with opposing dentition within one week after the surgical intervention.
The timing of dental restoration can also be categorized to:
Conventional restoration in which the implant is left without temporary or final restoration for around two to three months.
Immediate restoration: The temporary or final restoration is placed within one week after surgical intervention.
Early restoration: The temporary or final restoration is placed any time after one week but within two months after implant insertion.
Delayed restoration: If the dental restoration is placed intraorally after the conventional loading time, the restoration is classified as delayed restoration.
According to the previous classifications, the dentist has different types of intervention. For example, he can go for immediate restoration with conventional loading or implement early restoration with delayed loading.
In the case of the strategic implant under existing RPD, there are seven scenarios: immediate restoration with one of the four loading types, or early restoration with early, conventional, or delayed loading. The decision regarding the best approach is multifactorial: age, esthetic expectations, oral hygiene level, bone quality and quantity, and treatment expenses. According to the 2018 census supported by the International Team for Implantology (ITI), the most critical factors that may impact the loading protocol selection are patient-related factors, especially patient’s general health, implant primary stability (ISQ), bone grafting, the size and shape of the implant, and the doctor skills and experience [22]. Moreover, the ITI tried to unify the two classifications (loading and restoration timing) to make it less complicated for the clinician and easier for the researchers to perform clinical studies and compare their results. They described four protocols:
Immediate loading: Within one week after implant placement, dental implants are linked to a prosthesis in occlusion with the opposing arch.
Immediate restoration: Within one week after implant placement, dental implants are linked to the dental restoration and are kept out of occlusion.
Early loading: Between one week and two months following implant placement, dental implants are linked to the prosthesis.
Conventional loading: dental implants are linked to the prosthesis after two months of implantation.
Improving dental treatment output by using implants to enhance the functional performance of the complete denture is a well-known approach in prosthodontics. The McGill Consensus Statement stated that the first option in treating the lower jaw edentulous patient should be two implants retained overdenture and not lower jaw conventional complete denture (CD) [23]. Overwhelming scientific evidence supports the statement [23]. The evidence emphasized the superiority of two implants retained overdenture treatment modality on the conventional CD in many aspects, such as patients’ chewing efficiency, positive modification in patients’ diet, patients’ satisfaction with the CD stability, retention, and comfort as well as quality of life [23]. Although a lot of scientific evidence highlighted the positive impact of inserting implants under existing RPD, no similar Consensus Statement is available regarding implant-retained or implant-assisted removable partial denture [24, 25, 26].
Not all patients are suitable for implant-supported fixed dental prostheses. For example, many patients are unwilling to have an extra surgical intervention (bone grafting, sinus lifting, bone splitting, or expansion). Other patients are not suitable for such intervention because they are medically compromised or do not have adequate financial flexibility. As an alternative to inserting multiple implants, the dentist can improve the quality of the prosthodontic treatment by changing the support type of the RPD to the quadrangular-support type. The improvement can be achieved by inserting one/two standard implants or one/two/three mini-implants per quadrant to reach a symmetrical quadrangular-support type. The prostheses will be tooth implant-supported RPD instead of tooth tissue-supported RPD. This prosthodontic approach is affordable to many patients.
The strategic implant is “the implant that can change the prosthetic support type to a more favorable configuration” [1]. It is a reliable way of treatment with an implant survival rate of 91.7–100% [4]. Also, it can support both the RPD and the other abutments effectively. In two clinical studies with 2 and 3 years follow-up, the survival rate of the natural teeth abutments was 100% [9, 24].
Moreover, it can improve the survival rate of the RPD. The 10-year survival rate of RPDs; clasp-retained removable partial dentures, conical crown-retained dentures, or a combination of conical crown and clasp-retained dentures is 71.3% [27]. On the other hand, clinical studies with observation periods between 1 and 12.2 years reported survival rates of 90–100% for the implant-assisted removable partial denture prostheses [7, 28, 29, 30, 31]. This remarked difference in the survival rate plays an essential role in formulating the prosthodontic plan.
Many clinical studies have shown that implant placement in strategic locations under an existing RPD can enhance chewing efficiency, dental health-related quality of life, and patient satisfaction with speaking and eating, as well as RPD retention, stability, and support [1, 8, 32]. Above that, it gives the dentist the ability to reduce the tissue coverage and reduce the size of the RPD, which can positively impact the patient’s acceptance of the RPD, especially if he suffers hyperactive gag reflex, Figure 24. Also, it can improve the final esthetic result by avoiding the traditional metal clasp, Figures 19 and 22.
Upgrading the existing clasp retained lower RPD by inserting strategic mini-implants, immediate restoration with immediate loading/soft material. A- Intraoral image with lower RPD before implantation. B- Partial edentulous lower jaw before implantation. C- Tissue surface of the RPD before implantation. D- Four strategic mini-implants in the interforaminal region, tooth 32 was extracted. E- Tissue surface of the RPD after implantation, soft relining in the areas opposing the implants’ head. F- Tissue surface of the RPD after 4 months, the matrix pick-up (housings). G- Intraoral image with lower RPD after the housing, clasps in esthetic zone were removed.
Unfortunately, inserting a standard implant under the existing RPD is not always feasible. The patient may have a very narrow bone that prevents inserting a standard implant without bone grafting. A procedure that is not suitable or acceptable by some patients. In this case, mini-implants can be considered a good alternative, Figures 22 and 25 [1, 8, 16].
In 1976, the U.S. Food and Drug Administration (FDA) approved the 3 mm root-form dental implant. With time, dental implants proved to be a predictable and reliable prosthodontic treatment modality with a high success rate [33, 34, 35]. After 21 years, the approval was cleared for implants less than 3 mm. The approval widens the spectrum of the patients treated with dental implants, particularly the cases with reduced bone width.
In literature, there is no standardization regarding the terminology of dental implant diameter [36]. For example, some authors considered the implants with diameters from 1.8 to 2.9 mm as small implants; others call them mini-implants [37]. Some authors defined the mini-implant as the implant with 2.2 mm [38]. Al-Johany et al. proposed a classification scheme and used four terms: Extra-narrow <3.0 mm, Narrow ≥3.0 mm to <3.75 mm, Standard 3.75 mm to <5 mm, and Wide ≥5 mm [36]. In this text, we will follow the lead of Resnik et al. and Schiegnitz et al. by considering the mini-implant as the implant with a diameter < 3.0 and the narrow-diameter implant as the implant with a diameter ≤ 3.5 [25, 37]. This implant type is mainly used in heavily atrophic jaws but with sufficient bone height. The mini-implant gives the dentist the ability to avoid bone augmentation procedure, which is considered a time and cost-consuming surgical intervention. Avoiding additional surgical procedures can reduce morbidity and possible complications such as nerve trauma, hemorrhage, postoperative pain, or infection [25]. The infection may lead to the failure of bone grafting [25]. Above that, it is less invasive than the standard implant as it requires a smaller implant bed and no flap in a considerable number of cases [26]. Therefore, it is more appropriate for the compromised or elderly patients. Moreover, it is cost-effective and affordable. On the other hand, the small diameter of the implant may create a shear load to the crestal bone. That may increase the risk of bone resorption [37, 39]. Narrow -implant has been linked to biomechanical risk factors as implant fatigue or fracture, particularly when used in the canine area where high occlusal loads are applied or in parafunctional habits patients [40].
A systematic review and meta-analysis reported that mini-implants (diameter < 3.0 mm) performed substantially worse than standard diameter implants with survival rates of 94.7 ± 5% [25]. However, narrow implants with a diameter (3–3.5 mm) have a better survival rate of 97.7 ± 2.3% [25]. Therefore, some researchers believe the best approach for a thin bone is bone augmentation [37]. If this is not feasible, narrow implant, osteoplasty and standard implant, or one-piece mini-implant with ball attachment and removable denture can be considered, Figure 23.
Narrow bone can be treated with bone grafting. Unfortunately, this is not always feasible. A- Biomechanically, the narrow implant is not always the best approach, see paragraph 5. B- Osteoplasty is used to insert a wider implant by increasing the bone width, which will impact the crown-implant ratio negatively and may place the implant near vital anatomical structure. C- One-piece mini-implant with ball attachment and preferable crown-implant ratio can be used to stabilize a complete removable denture or partial removable denture.
The small diameter implant is used to replace missing individual teeth in the anterior region, lower and upper jaw [41, 42]. Mini-implant is used as an orthodontic implant or transitional or provisional implant to support interim prostheses during the healing period after extensive implantations or augmentations and bone grafting [43]. The one-piece mini-implant with ball attachment is used as assisting / anchoring element under the removable denture [1]. Strategic min-implant under existing RPD and CD proved to be a reliable and straightforward approach [1, 8, 44]. New studies reported that the one-piece mini-implant with ball attachment has a significant advantage on the final prosthodontic treatment [1, 8].
The one-piece implant mimics nature by having a solid unibody structure with no microgaps between the implant and the abutment. As a result, the possible biological complication (bone resorption) and structural flaw are reduced. Also, the flap or flapless single-stage surgery allows the dentist to implement immediate loading or immediate restoration [42]. Moreover, delayed loading is possible by preparing a recess against the mini-implant in the RPD’s tissue surface. The treatment protocol can be conventional or delayed loading. However, the recess (cavity) distorts the fit of the RPD’s, Figure 24.
Upgrading the existing double crown retained upper RPD by inserting strategic mini-implants, immediate restoration, and delayed loading. A- Partial edentulous upper jaw before implantation. B- Tissue surface of the RPD before implantation. C- Five strategic mini-implants. D- Tissue surface of the RPD after implantation, recesses (empty notches) against the mini-implants. E- Tissue surface of the RPD after 4 months, the matrix pick-up (housings). The palate coverage was reduced. F- Intraoral image with the RPD after the housing.
On the other hand, if the mini-implants are inserted in a healthy, not compromised patent with insertion torque ≥35 Ncm, immediate loading can be considered. The immediate restoration with immediate loading can be implemented through one of two forms:
immediate loading using soft relining material, Figure 22.
immediate loading using the matrix pick-up (housings), Figure 25.
Upgrading the existing double crown retained lower RPD by inserting strategic mini-implants, immediate restoration and immediate loading. A- Partial edentulous lower jaw before implantation. B- Tissue surface of the RPD before implantation. C- Two strategic mini-implants. D- Tissue surface of the RPD after implantation, the matrix pick-up (housings) inserted in the same implantation session. E- Intraoral image with the RPD in place after implantation.
After implantation, soft relining material can restore the fit of the RPD, ease tissue pressure, and give the patient a secure feeling because the relining material encircles the implant head and minimizes RPD rocking. If all mini-implants have a high insertion torque, the patient can receive the final restoration with matrix pick-up (housings). Subsequently, no additional session for adjusting the RPD is needed. In this approach, the patient can directly feel and recognize the significant improvement in the RPD in many domains especially, retention, support stability, and chewing [1, 8].
Studies proved that inserting strategic implants under existing RPD improves patient satisfaction on short- and medium-term follow-up (3-years) [1, 43]. The improvement can be explained by the symmetrical distribution of the abutments and the increased number of the rests/abutments [1, 17]. Gorai S, et al. study reported a correlation between the rests number and denture usage [17].
To sum it up, using strategic implants under existing RPD upgrade the design to more favorable support type and improve patient satisfaction with the RPD on several domains like speaking, chewing, retention, stability, and support of the RPD. This improvement could be reached earlier if the patient received immediate loading [1].
In many cases, after putting into consideration the patient’s main complaint, expectation, desire, general health, intraoral/extraoral findings, evaluating the risks (do no harm) and the benefits of bone grafting and several implants, the dentist is able to provide his patient with one or few strategic standard or mini-implants that can satisfy the patients’ needs
Strategic implants can also improve chewing ability, stabilize the occlusion, increase bite force and improve patient oral health-related quality of life. Moreover, better distribution of occlusal forces that may reduce bone resorption may be gained. Furthermore, strategic implants can improve comfort, confidence, and esthetics by reducing the RPD size and removing metal clasps from the esthetic zone.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12717},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:666},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"32",title:"Aquaculture",slug:"aquaculture",parent:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:9,numberOfSeries:0,numberOfAuthorsAndEditors:290,numberOfWosCitations:923,numberOfCrossrefCitations:396,numberOfDimensionsCitations:1046,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"32",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10902",title:"Salmon Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"7bcbad5fcc881acddf080f6df0bd061c",slug:"salmon-aquaculture",bookSignature:"Qian Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10902.jpg",editedByType:"Edited by",editors:[{id:"304473",title:"Prof.",name:"Qian",middleName:null,surname:"Lu",slug:"qian-lu",fullName:"Qian Lu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8928",title:"Emerging Technologies, Environment and Research for Sustainable Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"9bfeadf50d4d57ea0b440f005d420752",slug:"emerging-technologies-environment-and-research-for-sustainable-aquaculture",bookSignature:"Qian Lu and Mohammad Serajuddin",coverURL:"https://cdn.intechopen.com/books/images_new/8928.jpg",editedByType:"Edited by",editors:[{id:"304473",title:"Prof.",name:"Qian",middleName:null,surname:"Lu",slug:"qian-lu",fullName:"Qian Lu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7229",title:"Aquaculture",subtitle:"Plants and Invertebrates",isOpenForSubmission:!1,hash:"12cedbde363e45e8dc69fd5017482a6c",slug:"aquaculture-plants-and-invertebrates",bookSignature:"Genaro Diarte-Plata and Ruth Escamilla-Montes",coverURL:"https://cdn.intechopen.com/books/images_new/7229.jpg",editedByType:"Edited by",editors:[{id:"198991",title:"Dr.",name:"Genaro",middleName:null,surname:"Diarte-Plata",slug:"genaro-diarte-plata",fullName:"Genaro Diarte-Plata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5792",title:"Sea Urchin",subtitle:"From Environment to Aquaculture and Biomedicine",isOpenForSubmission:!1,hash:"03e5af4d15dfb028a11e298e47948799",slug:"sea-urchin-from-environment-to-aquaculture-and-biomedicine",bookSignature:"Maria Agnello",coverURL:"https://cdn.intechopen.com/books/images_new/5792.jpg",editedByType:"Edited by",editors:[{id:"175306",title:"Dr.",name:"Maria",middleName:null,surname:"Agnello",slug:"maria-agnello",fullName:"Maria Agnello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2052",title:"Health and Environment in Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"e9bbb1af278ed9e5df351641aaf598f0",slug:"health-and-environment-in-aquaculture",bookSignature:"Edmir Daniel Carvalho, Gianmarco Silva David and Reinaldo J. Silva",coverURL:"https://cdn.intechopen.com/books/images_new/2052.jpg",editedByType:"Edited by",editors:[{id:"80438",title:"Dr.",name:"Edmir",middleName:"Daniel",surname:"Carvalho",slug:"edmir-carvalho",fullName:"Edmir Carvalho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1689",title:"Marine Ecosystems",subtitle:null,isOpenForSubmission:!1,hash:"1fcdb7a6dd3ef54b6669111c7b6355ea",slug:"marine-ecosystems",bookSignature:"Antonio Cruzado",coverURL:"https://cdn.intechopen.com/books/images_new/1689.jpg",editedByType:"Edited by",editors:[{id:"122197",title:"Dr.",name:"Antonio",middleName:null,surname:"Cruzado",slug:"antonio-cruzado",fullName:"Antonio Cruzado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1009",title:"Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"ed29c6b4a288a1549dc724e247930545",slug:"aquaculture",bookSignature:"Zainal Abidin Muchlisin",coverURL:"https://cdn.intechopen.com/books/images_new/1009.jpg",editedByType:"Edited by",editors:[{id:"92673",title:"Dr.",name:"Zainal",middleName:"Abidin",surname:"Muchlisin",slug:"zainal-muchlisin",fullName:"Zainal Muchlisin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2053",title:"Aquaculture and the Environment",subtitle:"A Shared Destiny",isOpenForSubmission:!1,hash:"896dc149c63ab74b6f76141f3ed6535d",slug:"aquaculture-and-the-environment-a-shared-destiny",bookSignature:"Barbara Sladonja",coverURL:"https://cdn.intechopen.com/books/images_new/2053.jpg",editedByType:"Edited by",editors:[{id:"88464",title:"Dr.",name:"Barbara",middleName:null,surname:"Sladonja",slug:"barbara-sladonja",fullName:"Barbara Sladonja"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"612",title:"Recent Advances in Fish Farms",subtitle:null,isOpenForSubmission:!1,hash:"531750867c1b8db770f8557eaf1e21bc",slug:"recent-advances-in-fish-farms",bookSignature:"Faruk Aral and Zafer Doğu",coverURL:"https://cdn.intechopen.com/books/images_new/612.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:9,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"35141",doi:"10.5772/28157",title:"Antibiotics in Aquaculture – Use, Abuse and Alternatives",slug:"antibiotics-in-aquaculture-use-abuse-and-alternatives",totalDownloads:19288,totalCrossrefCites:136,totalDimensionsCites:288,abstract:null,book:{id:"2052",slug:"health-and-environment-in-aquaculture",title:"Health and Environment in Aquaculture",fullTitle:"Health and Environment in Aquaculture"},signatures:"Jaime Romero, Carmen Gloria Feijoo and Paola Navarrete",authors:[{id:"72898",title:"Dr.",name:"Jaime",middleName:null,surname:"Romero",slug:"jaime-romero",fullName:"Jaime Romero"},{id:"79684",title:"Dr.",name:"Paola",middleName:null,surname:"Navarrete",slug:"paola-navarrete",fullName:"Paola Navarrete"},{id:"83411",title:"Dr.",name:"Carmen",middleName:null,surname:"Feijoo",slug:"carmen-feijoo",fullName:"Carmen Feijoo"}]},{id:"27104",doi:"10.5772/30576",title:"Nutritional Value and Uses of Microalgae in Aquaculture",slug:"nutritional-value-and-uses-of-microalgae-in-aquaculture",totalDownloads:6772,totalCrossrefCites:12,totalDimensionsCites:86,abstract:null,book:{id:"1009",slug:"aquaculture",title:"Aquaculture",fullTitle:"Aquaculture"},signatures:"A. Catarina Guedes and F. Xavier Malcata",authors:[{id:"83136",title:"Prof.",name:"F. Xavier",middleName:null,surname:"Malcata",slug:"f.-xavier-malcata",fullName:"F. Xavier Malcata"}]},{id:"30642",doi:"10.5772/34423",title:"Meiofauna as a Tool for Marine Ecosystem Biomonitoring",slug:"meiofauna-as-a-tool-for-marine-ecosystem-monitoring",totalDownloads:3897,totalCrossrefCites:22,totalDimensionsCites:83,abstract:null,book:{id:"1689",slug:"marine-ecosystems",title:"Marine Ecosystems",fullTitle:"Marine Ecosystems"},signatures:"Maria Balsamo, Federica Semprucci, Fabrizio Frontalini and Rodolfo Coccioni",authors:[{id:"100075",title:"Prof.",name:"Maria",middleName:null,surname:"Balsamo",slug:"maria-balsamo",fullName:"Maria Balsamo"},{id:"104309",title:"Dr.",name:"Federica",middleName:null,surname:"Semprucci",slug:"federica-semprucci",fullName:"Federica Semprucci"},{id:"104311",title:"Dr.",name:"Fabrizio",middleName:null,surname:"Frontalini",slug:"fabrizio-frontalini",fullName:"Fabrizio Frontalini"},{id:"104313",title:"Prof.",name:"Rodolfo",middleName:null,surname:"Coccioni",slug:"rodolfo-coccioni",fullName:"Rodolfo Coccioni"}]},{id:"35136",doi:"10.5772/29571",title:"Transmission Biology of the Myxozoa",slug:"transmission-biology-of-the-myxozoa",totalDownloads:2685,totalCrossrefCites:34,totalDimensionsCites:63,abstract:null,book:{id:"2052",slug:"health-and-environment-in-aquaculture",title:"Health and Environment in Aquaculture",fullTitle:"Health and Environment in Aquaculture"},signatures:"Hiroshi Yokoyama, Daniel Grabner and Sho Shirakashi",authors:[{id:"78409",title:"Dr.",name:"Hiroshi",middleName:null,surname:"Yokoyama",slug:"hiroshi-yokoyama",fullName:"Hiroshi Yokoyama"},{id:"83562",title:"Dr.",name:"Daniel",middleName:"Stefan",surname:"Grabner",slug:"daniel-grabner",fullName:"Daniel Grabner"},{id:"122643",title:"Dr.",name:"Sho",middleName:null,surname:"Shirakashi",slug:"sho-shirakashi",fullName:"Sho Shirakashi"}]},{id:"24078",doi:"10.5772/26795",title:"Photobacterium damselae subsp. damselae, an Emerging Pathogen Affecting New Cultured Marine Fish Species in Southern Spain",slug:"photobacterium-damselae-subsp-damselae-an-emerging-pathogen-affecting-new-cultured-marine-fish-speci",totalDownloads:3777,totalCrossrefCites:19,totalDimensionsCites:45,abstract:null,book:{id:"612",slug:"recent-advances-in-fish-farms",title:"Recent Advances in Fish Farms",fullTitle:"Recent Advances in Fish Farms"},signatures:"A. Labella, C. Berbel, M. Manchado, D. Castro and J.J. Borrego",authors:[{id:"67855",title:"Prof.",name:"Juan J.",middleName:null,surname:"Borrego",slug:"juan-j.-borrego",fullName:"Juan J. Borrego"},{id:"71146",title:"Dr.",name:"Alejandro",middleName:null,surname:"Labella",slug:"alejandro-labella",fullName:"Alejandro Labella"},{id:"71148",title:"Dr.",name:"Concepcion",middleName:null,surname:"Berbel",slug:"concepcion-berbel",fullName:"Concepcion Berbel"},{id:"71149",title:"Dr.",name:"Manuel",middleName:null,surname:"Manchado",slug:"manuel-manchado",fullName:"Manuel Manchado"},{id:"71151",title:"Dr.",name:"Dolores",middleName:null,surname:"Castro",slug:"dolores-castro",fullName:"Dolores Castro"}]}],mostDownloadedChaptersLast30Days:[{id:"35141",title:"Antibiotics in Aquaculture – Use, Abuse and Alternatives",slug:"antibiotics-in-aquaculture-use-abuse-and-alternatives",totalDownloads:19291,totalCrossrefCites:136,totalDimensionsCites:288,abstract:null,book:{id:"2052",slug:"health-and-environment-in-aquaculture",title:"Health and Environment in Aquaculture",fullTitle:"Health and Environment in Aquaculture"},signatures:"Jaime Romero, Carmen Gloria Feijoo and Paola Navarrete",authors:[{id:"72898",title:"Dr.",name:"Jaime",middleName:null,surname:"Romero",slug:"jaime-romero",fullName:"Jaime Romero"},{id:"79684",title:"Dr.",name:"Paola",middleName:null,surname:"Navarrete",slug:"paola-navarrete",fullName:"Paola Navarrete"},{id:"83411",title:"Dr.",name:"Carmen",middleName:null,surname:"Feijoo",slug:"carmen-feijoo",fullName:"Carmen Feijoo"}]},{id:"69948",title:"Floating Cage: A New Innovation of Seaweed Culture",slug:"floating-cage-a-new-innovation-of-seaweed-culture",totalDownloads:930,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Eucheumatoid cultivation continues to expand with a variety of methods that can increase production. This chapter will discuss an innovation in seaweed cultivation of the genus Eucheuma, which is the prime marine commodity in the tropical regions of the world. Research conducted during 2015-2017 and 2019 in Southeast Sulawesi Province, Indonesia, provided an overview of the use of floating cage that showed very significant growth results. The research result showed that the growth rates of Eucheuma denticulatum and Kappaphycus alvarezii in floating cage seemed faster and resulted in better thallus morphology. Daily production of E. denticulatum and K. alvarezii that were cultivated in floating cage was higher than daily production of E. denticulatum and K. alvarezii cultivated on longline. Specific growth rate (SGR) of E. denticulatum and K. alvarezii cultivated by using floating cage method was also higher than E. denticulatum and K. alvarezii cultivated by using longline method. Moreover, the cultivation by using floating cages produces good growth rates with no effect of herbivore attacks.",book:{id:"8928",slug:"emerging-technologies-environment-and-research-for-sustainable-aquaculture",title:"Emerging Technologies, Environment and Research for Sustainable Aquaculture",fullTitle:"Emerging Technologies, Environment and Research for Sustainable Aquaculture"},signatures:"Ma’ruf Kasim, Abdul Muis Balubi, Ahmad Mustafa, Rahman Nurdin, Rahmad Sofyan Patadjai and Wardha Jalil",authors:[{id:"309893",title:"Prof.",name:"Maruf",middleName:null,surname:"Kasim",slug:"maruf-kasim",fullName:"Maruf Kasim"},{id:"313040",title:"MSc.",name:"Abdul Muis",middleName:null,surname:"Balubi",slug:"abdul-muis-balubi",fullName:"Abdul Muis Balubi"},{id:"313041",title:"MSc.",name:"Wardha",middleName:null,surname:"Jalil",slug:"wardha-jalil",fullName:"Wardha Jalil"},{id:"313042",title:"MSc.",name:"Ahmad",middleName:null,surname:"Mustafa",slug:"ahmad-mustafa",fullName:"Ahmad Mustafa"},{id:"313043",title:"MSc.",name:"Rahman",middleName:null,surname:"Nurdin",slug:"rahman-nurdin",fullName:"Rahman Nurdin"},{id:"313044",title:"MSc.",name:"Rahmat Sofyan",middleName:null,surname:"Patadjai",slug:"rahmat-sofyan-patadjai",fullName:"Rahmat Sofyan Patadjai"}]},{id:"62842",title:"Integrated Rice and Aquaculture Farming",slug:"integrated-rice-and-aquaculture-farming",totalDownloads:1889,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"The burning problems like scarcity of food for ever-growing human population in the present world are addressed by adapting various methods for production of protein, carbohydrate, oils and other food materials. One of the methods to produce high amount of food is integrated farming including rice-aquaculture farming, which produces protein and carbohydrate as major components besides others. Rice-aquaculture farming produces grain (carbohydrate) and animal protein without affecting the quality and quantity of rice yield on the same piece of land and renders additional financial gain besides main crop (rice) like conventional monoculture. The aquatic species grown in the integrated culture are mainly distinct types of fishes, selected crustaceans and other selected species. Profitable rice-aquaculture integrated farming is popular in Asian countries than in Western countries. However, the integrated rice-aquaculture farming has its own limitations. The type of methods, culture species, influencing factors, and pros and cons of rice-aquaculture integrated farming are discussed in the present chapter.",book:{id:"7229",slug:"aquaculture-plants-and-invertebrates",title:"Aquaculture",fullTitle:"Aquaculture - Plants and Invertebrates"},signatures:"Pamuru Ramachandra Reddy and Battina Kishori",authors:[{id:"242524",title:"Dr.",name:"Ramachandra Reddy",middleName:null,surname:"Pamuru",slug:"ramachandra-reddy-pamuru",fullName:"Ramachandra Reddy Pamuru"},{id:"255022",title:"Dr.",name:"Kishori",middleName:null,surname:"Battina",slug:"kishori-battina",fullName:"Kishori Battina"}]},{id:"24074",title:"Embryonic and Larval Development of Freshwater Fish",slug:"embryonic-and-larval-development-of-freshwater-fish",totalDownloads:7448,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"612",slug:"recent-advances-in-fish-farms",title:"Recent Advances in Fish Farms",fullTitle:"Recent Advances in Fish Farms"},signatures:"Faruk Aral, Erdinç Şahınöz and Zafer Doğu",authors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"},{id:"29132",title:"Dr.",name:"Zafer",middleName:null,surname:"Dogu",slug:"zafer-dogu",fullName:"Zafer Dogu"},{id:"39952",title:"Dr.",name:"Erdinc",middleName:null,surname:"Sahinoz",slug:"erdinc-sahinoz",fullName:"Erdinc Sahinoz"}]},{id:"68966",title:"Novel Biofloc Technology (BFT) for Ammonia Assimilation and Reuse in Aquaculture In Situ",slug:"novel-biofloc-technology-bft-for-ammonia-assimilation-and-reuse-in-aquaculture-in-situ",totalDownloads:1926,totalCrossrefCites:1,totalDimensionsCites:7,abstract:"Ammonia is one of the most harmful risks for success of fish and shrimp culture. There is no effective solution for harmlessness of ammonia in traditional aquaculture operations except exchanging water, which would bring negative effects on environment, or fixing expensive equipment. Biofloc technology (BFT) that appeared in recent years supplies a novel solution for this issue without exchanging huge water and fixing equipment. This technology could assimilate ammonia almost in real time with many other supplemental benefits. Because of the very high nutritional value for fish and shrimp, bioflocs, the by-product of BFT, could also be reused as a complemented food in situ or a gradient for feedstuff to replace expensive fishmeal or be processed to pellet diet to feed fish and shrimp directly. However, some aspects with regard to the effective use of biofloc as a food source for fish and shrimp, such as high lipid content, productivity, and palatability, need to be further researched in detail.",book:{id:"8928",slug:"emerging-technologies-environment-and-research-for-sustainable-aquaculture",title:"Emerging Technologies, Environment and Research for Sustainable Aquaculture",fullTitle:"Emerging Technologies, Environment and Research for Sustainable Aquaculture"},signatures:"Hai-Hong Huang",authors:[{id:"305215",title:"Dr.",name:"Hai-Hong",middleName:null,surname:"Huang",slug:"hai-hong-huang",fullName:"Hai-Hong Huang"}]}],onlineFirstChaptersFilter:{topicId:"32",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:28,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:15,paginationItems:[{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81975",title:"Self-Sustained Communities: Food Security in Times of Crisis",doi:"10.5772/intechopen.104425",signatures:"Kriengsak Chareonwongsak",slug:"self-sustained-communities-food-security-in-times-of-crisis",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81297",title:"Legumes Cropping and Nitrogen Fixation under Mediterranean Climate: The Case of Montado/Dehesa System",doi:"10.5772/intechopen.104473",signatures:"Fernando Teixeira",slug:"legumes-cropping-and-nitrogen-fixation-under-mediterranean-climate-the-case-of-montado-dehesa-system",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81493",title:"Rust Disease Classification Using Deep Learning Based Algorithm: The Case of Wheat",doi:"10.5772/intechopen.104426",signatures:"Shivani Sood, Harjeet Singh and Suruchi Jindal",slug:"rust-disease-classification-using-deep-learning-based-algorithm-the-case-of-wheat",totalDownloads:75,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81235",title:"Global Food System Transformation for Resilience",doi:"10.5772/intechopen.102749",signatures:"Jasper Okoro Godwin Elechi, Ikechukwu U. Nwiyi and Cornelius Smah Adamu",slug:"global-food-system-transformation-for-resilience",totalDownloads:65,totalCrossrefCites:1,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80749",title:"Analysis of the Nexus between Coping Strategies and Resilience to Food Insecurity Shocks: The Case of Rural Households in Boricha Woreda, Sidama National Regional State, Ethiopia",doi:"10.5772/intechopen.102613",signatures:"Adane Atara Debessa, Degefa Tolossa and Berhanu Denu",slug:"analysis-of-the-nexus-between-coping-strategies-and-resilience-to-food-insecurity-shocks-the-case-of",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},subseriesFiltersForOFChapters:[{caption:"Climate Change and Environmental Sustainability",value:94,count:1,group:"subseries"},{caption:"Sustainable Economy and Fair Society",value:91,count:14,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:229,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",country:{name:"Spain"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}}]}},subseries:{item:{id:"18",type:"subseries",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/52241",hash:"",query:{},params:{id:"52241"},fullPath:"/chapters/52241",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()