Here,
The hydraulic fracture propagation in cohesive zone model can be applied by the traction-separation law:
where
where
Here,
Hydraulic fracture in naturally fractured reservoirs is faced with a unique situation which may increase the possibility of deviation from symmetrical propagation. Experimental results reveal that three scenarios may occur at the propagation stage and beyond the collision stage of fluid-driven in hydraulic fracture interaction with the natural fracture, namely diversion, penetration, and containment. Diversion is the situation in which the collided hydraulic fracture has an effective stress too low to initiate new fracture at the front wall of preexisting joint, and as a result the fluid-driven propagates along the natural fracture axis. Many studies have been investigated in order to specify the possibility of occurrence of these scenarios.
Hanson et al. and later Shaffer et al. represented that the magnitude of difference between the young modulus of the two intersected interface has significant influence on increasing the possibility of arresting hydraulic fracture [21, 22]. Based on their experimental reports, as the hydraulic fracture propagates from higher modulus into lower interface, the arresting phenomena increase. In addition to the young modulus, experimental results and numerical analysis reveal the effect of the frictional coefficient on the containment of hydraulic fracture. These results show that if the hydraulic fracture propagates from higher frictional coefficient pathway and collides to lower frictional coefficient interface at the natural fracture, the strain increases parallel to the hydraulic fracture due to the increase in the motion rate at interface region. This increase may result in an abrupt fracture seizing. Daneshy also discussed about the possibility of seizing the growth of hydraulic fracture at the intersection stage based on the opening interface of the natural fracture [23]. Another significant parameter that can influence the crossing criteria of hydraulic fracture is the approaching angle. Blanton using different angle-approaching experiments concluded that the presence of high differential stress and high intersection angle can improve the crossing of hydraulic fracture.
The hydraulic fracture can keep on planar propagation beyond the collision point. However, because of the energy dissipation at the contacting stage, the crossing criteria cannot exactly determine if the hydraulic fracture will penetrate through the other side of weakness plane. The fluid-driven energy must be high enough in order to separate the natural fracture bonding at the intact side of the wall. However, breakage at the other side of the wall might have some offset with the collision point, which originates from the preexisted flaw or mini-cracks along the intact side. Based on Blanton’s results, the reduction of the stress anisotropy and treatment pressure may lead to increase in the possibility of diversion and dissipation of fluid-driven along the natural fracture path and also to complex natural fracture network [24, 25]. Later, Beugelsdijk using laboratory experimental results concluded that at high principle stress difference, the hydraulic fracture may have no interaction with the preexisting discontinuities and may turn around them [26]. In addition to the mentioned scenarios, hydraulic fracture may also cause dilation, long slippage along the natural fracture interface, or may turn around and bypass discontinuities. Inclined weakness plane at the propagation path of induced fracture has high tendency to divert the fluid-driven. However, all of the mentioned scenarios can only be estimated and visually represented using an experimental method. The containment stage is the only stage which can approximate the interaction on the natural fracture and fluid-driven. Beyond this stage, no other method can exactly approve the crossing criteria or diversion.
Hydraulic fracture propagation in the naturally fractured reservoirs plays a different role than the conventional porous media. As the hydraulic fracture passes beyond the induced stress of drilled well, the hydraulic fracture propagation reorientates through the maximum stress principle. The hydraulic fracture propagation in homogeneous porous media is approximately near to the straight path; however, in a real reservoir rock media, because of discontinuities and inhomogeneity, the induced fracture trajectory waver is perpendicular with the minimum compressional stress. The hydraulic fracture tip tends to propagate through the local direction, which has the maximum energy release rate and minimum resistance. Still, there is the possibility of curving and increasing the deviation of hydraulic fracture from straight trajectory by increasing the shearing intensity factor. As long as the induced fracture propagates in opening mode, its fracture trajectory is near to the straight line. When the fracture faced the two materials with different Young’s modulus, the angle of deflection tends to rematch the tip direction in accordance with the lower Young’s modulus material. By increasing the hydraulic fracture length by the propagation of the tip of the hydraulic fracture away from the wellbore, the curvature of hydraulic fracture tends to be decreased. In addition to the rock mechanic properties, the fracturing fluid properties and flow rate injection also have a great impact on the straightness stability. Also, increasing the fracturing fluid viscosity will decrease the leak-off rate and tortuosity of the fracture, but it requires a higher rate of treatment pressure [27]. However, increasing the fluid viscosity in fracturing treatment leads to an abrupt increase in fluid pressure at the fracture path and reduces the flow rate at the fracture tip, because of the uniformity in pressure profile within the hydraulic fracture path. High rate of pressure difference between the fracture tip and the mouth region causes an inhomogeneity in the geometry of the fracture path and lowers the rate of growth [28]. Unlike the high viscosity, lower viscosity will cause a uniform pressure profile within the hydraulic fracture path increasing fluid leakage rate to the adjacent layer. Increasing the fluid leak-off rate will cause a perturbation in the local stress regime and increase the possibility of zigzag fracture pattern. Natural fractures have different response in alteration of the rate of injection and fracturing fluid properties. In the naturally fractured reservoir, increasing the flow rate injection will increase the leak-off rate to the adjacent layer and subsequently cause debonding of the natural fracture in tensile mode [29]. From the studies, reducing the fluid flow injection rate and viscosity of fracturing fluid in fractured media will greatly reduce the possibility of complex fracture network generation [30].
After initiation and propagation stage of hydraulic fracture beyond the far-field stress region, the hydraulic fracture tries to rematch its orientation by the maximum stress principle. The hydraulic fracture direction is almost parallel with the orientation of maximum stress principle but not exactly perpendicular to the minimum compressional stress, because it tends to orient its trajectory in porous media along the path of minimum resistance. Despite the stress direction in the local field, the induced fracture trajectory may have a wavy shape because of the inhomogeneity of the porous media along its path. The local stress component at the neighborhood of the fracture tip can be expressed by the following equation:
where (
where
In numerical modeling, we can only predict the local displacement within the natural fracture only at the
where
where
where
where
As mentioned earlier, when the hydraulic fracture propagates through the 90° natural fracture, at the early stage of approaching, the natural fracture is almost closed. By approaching the hydraulic fracture to the natural fracture interface, some activation may occur which may change the local physical properties at that region. In addition to the hydraulic fracture acting stress, the natural fracture also perturbs the stress regime around its area, which is directly proportional to its length. In reality, we cannot represent that if the approaching angle is 90°, then the collision angle is orthogonal too. This is due to the fact that the local perturbation and acting stress in coalescence process are mutual. Natural fracture by acting stress to the tip of the hydraulic fracture will cause deviation on its overall propagation, which may lead to deviation from the 90°. The magnitude of this stress can be expressed by the following equation [33]:
where
From Figure 2, assume that the approaching angle is the same as collision angle which is 90°. As seen in Figure 2, the hydraulic fracture approaches the natural fracture in an orthogonal angle. The tensile and shear debonding can be evaluated at the approaching stage of the hydraulic fracture tip to the natural fracture interface in a, b and c areas. a and b areas are located, respectively, at 10- and 5-cm distances from the 50-cm length natural fracture interface, and c area is precisely located at the collision point of the hydraulic fracture to the natural fracture. Stress condition is assumed to be isotopic.
Evaluated areas for debonding of natural fracture when induction fracture is 90° angle.
The maximum opening and shearing displacement in perpendicular approaching stage approximately occurs at the 20-cm distance from the north tip of the natural fracture. The maximum tensile and debonding size and location in the orthogonal approaching stage are the same. Moreover, debonding evaluation indicates that the minimum debonding size occurs at the 30-cm distance from the north of the natural fracture tip. As already mentioned, in the realistic-induced fracture propagation, debonding displacement alteration in tensile and shearing mode happens because changing the propagation angle at the perturbed stress region is not monotonic.
Perturbation of stress regime around the approaching hydraulic fracture tip will lead to the activation of natural fracture interface prior to the collision stage. In normal opening mode prior to the collision stage, debonding occurs at the time that the pore pressure within the natural fracture dominates the normal closure stress of the natural fracture (
Tensile and shear displacements along the deboned zone shown in
Approaching stage of hydraulic fracture and shear dilation caused by remote stress around induced fracture.
Another main approaching angle, which can be investigated in our study, is an inclined natural fracture with the 45° angle with respect to the propagated hydraulic fracture. In an inclined mode, the lower rate of energy is required in order to reactivate the natural fracture interface at the same distance compared with the perpendicular mode (Figure 5). Unlike many earlier models, the hydraulic fracture is propagated through the interface of the natural fracture, which means that the touching moment of the left side is the same as the right side. Tensile and shear displacements along the debonded crack (45°) are shown in Figure 6. When the induction with 45° angle is close to the natural fracture in the c area, tensile failure phenomenon is such that the natural fracture had an angle of 90°, because the middle area of the natural fracture becomes debonded and the maximum value of debonding occurs at the collision point. But with less distance between the natural and induced fractures, the condition is slightly different. When the hydraulic fracture approaches the 10-cm distance from the natural fracture, the 12-cm distance from the north tip of the natural fracture becomes compressed and the other part becomes debonded. The maximum value of debonding is at the collision point but the symmetry of the debonding zone in the natural fractures with 90° angle does not take place here. After the cutoff point, the natural fracture by hydraulic fracture (c area) of the upper part of the kink point becomes debonded and the lower part becomes compressed (Figure 6). In 45° angle propagation angle, the shear displacement magnitude has a higher value than the tensile opening. In this case, the lower part of the coalescence point has the tendency to bind because of the compression and the upper part in tension turns into debonding (Figure 7).
Areas of study for debonding investigation when natural fracture with a 45° angle relative to the hydraulic fracture spread.
Tensile and shear displacements along the debonded zone shown in
In low approaching angle (45°) at the isotropic stress ratio, the shearing displacement is much larger than the tensile mode; however, with an increase in the stress ratio the difference between shearing and tensile opening remains closed to each other [34]. The natural fracture length increases the remote stress caused by the tip of the hydraulic fracture that has a tendency to increase the debonding of the natural fracture [35, 36].
Debonding induced by the approaching hydraulic fracture to natural fracture.
The approaching stage of the hydraulic fracture was not fully investigated and carried out in a numerical way. As mentioned previously, considering stress regime perturbation around the natural fracture location will cause a deflection on the approaching angle of the hydraulic fracture. As the hydraulic fracture grows toward the natural fracture, influenced by the interaction stress of the natural fracture, the nearest tip edge will be active in a shorter time leading to the propagation of hydraulic fracture in a mixed mode. By increasing the shearing intensity factor, the hydraulic fracture path tends to be more kinked and deviates through the natural fracture interface. The following equation can compute the deflection angle of induced fracture (α) under mixed-mode propagation:
The curvature of the hydraulic fracture by the propagation of the hydraulic fracture will dramatically increase in stress-perturbed zone [33]. If the opening mode dominates in the tip of the hydraulic fracture, the fracture trajectory will tend to be more singular and straight. The rate of the hydraulic fracture deflection highly depends on the treatment pressure, leak-off rate, length of the natural fracture, and stress anisotropy. In this study, we assume that the hydraulic fracture is subjected to an isotropic principle stress. At the early stage of deviation, the natural fracture walls tend to stick together and are almost completely closed. In parallel natural fracture case, in addition to the distance parameter, the alteration of the approaching angle is another factor which was considered. Figure 8 shows the distance from the deviated hydraulic fracture tip on the natural fracture at 10 (a) and 5 m (b) and the exact coalescence (c) of the hydraulic and natural fractures. When the hydraulic fracture reaches the point a, the natural fracture reaches the activation threshold. When the hydraulic fracture approaches the natural fracture (Figure 8b and c), normal displacement occurs, and the natural fracture interface nearly fully separates. As seen in Figure 8, the approaching of the induced fracture will lead to an abrupt increase in the propagation angle and oriented near to perpendicularly. Increases in the values for the deviation angle and interaction stress increase the possibility of natural fracture collision.
Approaching stage of induced fracture and shear dilation caused by remote stress around hydraulic fracture.
If the collision point in the approaching stage of the hydraulic fracture is assumed to lie at the midpoint of the natural fracture in the isotropic principle stress situation, the tensile displacement is as shown in Figure 9. At the approaching stage, the shear displacement increases nonlinearly because, at a constant shear stress, the shear displacement is also a function of the normal displacement. By increasing the normal displacement of natural fracture interface, the shear displacement has lower resistance to shearing. Moreover, because of continuous changing of approaching angle besides the distance, the shearing, and opening displacement both of them have non-monotonic behavior. As the hydraulic fracture approaches the natural fracture, the approaching angle of the hydraulic fracture increases with respect to the natural fracture location, which leads to a decrease in shearing compression. Surprisingly, the influence of the approaching angle on the shear slippage as the hydraulic fracture approaches the natural fracture is greater than the influence of the distance. As Figure 9 shows, the approaching angle of the hydraulic fracturing tip is 66 (a), 49 (b), and 34° (c). As seen in Figure 10, the deviation of the intersection angle from the perpendicular will result in discrepancies in the natural fracture tip displacement. As the hydraulic fracture interacts with the natural fracture, the pore pressure within the natural fracture changes, which leads to compression and extension within the natural fracture.
Tensile and shear displacements along the debonded zone shown in
Deviation of the intersection angle from the perpendicular will result in discrepancies in natural fracture tip displacement.
Formerly, re-meshing technique has been greatly implemented in order to align the mesh with the tip of the hydraulic fracture for tracking the propagating direction. However, in our study by utilizing the XFEM as no-re-meshing tools can greatly track the hydraulic fracture trajectory to capture the stress and strain field around the tip of the hydraulic fracture. The accuracy of fracture propagation trajectory by refining the mesh around the crack tip can be improved. Stress singularity at the fracture tip is eliminated by the implementation of cohesive zone model in XFEM. Refining the mesh can provide more accurate calculation in the propagation of hydraulic fracture through natural fractures based on shearing or opening mode by computation stress concentration around the fracture tip. The number of iteration to reach convergence in our fracture tip is 5–7. The error between our numerical result and the analytical result is lower than 1%.
Natural fractures can have a significant effect on the hydraulic fracture growth and achieve successful treatment. Spacing and trajectory of natural fractures in fractured blocks with respect to the induced fracture propagation has a significant effect on the accuracy of interaction prediction. Numerical analysis of hydraulic fracturing propagation in the naturally fractured reservoir and the interaction between the induced fracture and the natural fracture are the main objectives of this paper. Numerical simulation can be used as a tool to solve this engineering problem.
In this paper, the extended finite element method (XFEM) has been implemented to simulate the coalescence stage of hydraulic fracture and natural fractures. Analysis of interaction between the induced and natural fractures in the fractured reservoirs was discussed in this study. The interaction between the induced and natural fractures depends on the collide angle. Induced fracture causes the opening of the preexisting natural fractures. The tensile and shear debonding of natural fractures in 90 and 45° displayed different behavior caused induced and variations in stresses at the natural fractures. A critical point in interaction between the hydraulic fracture and the natural fractures is the dilation caused by shearing and opening from the northing to the southing along the natural fracture in both degrees which play different scenarios. Decreasing the approaching angle from perpendicular to 45° intensifies the displacement by shearing much more than tensile. In low collision angle, the top stage of the interception point has the maximum debonding in shearing mode and the lower stage has the maximum bonding.
Submitted: October 17th, 2015 Reviewed: July 6th, 2016 Published: October 19th, 2016
© 2016 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.