Continuous variables for three-bar truss problem.
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8301",leadTitle:null,fullTitle:"Ubiquitin Proteasome System - Current Insights into Mechanism Cellular Regulation and Disease",title:"Ubiquitin Proteasome System",subtitle:"Current Insights into Mechanism Cellular Regulation and Disease",reviewType:"peer-reviewed",abstract:"The human ubiquitin proteasome system (UPS) is comprised of nearly 1000 proteins. Although originally identified as a mechanism of protein destruction, the UPS has numerous additional functions and mediates central signaling events in myriad processes involved in both cellular and organismal health and homeostasis. Numerous pathways within the UPS are implicated in disease, ranging from cancer to neurodegenerative diseases such as Parkinson's. The goal of this book is to deliver a collection of synopses of current areas of UPS research that highlights the importance of understanding the biology of the UPS to identify disease-relevant pathways, and the need to elucidate the molecular machinations within the UPS to develop methods for therapeutic modulation of these pathways.",isbn:"978-1-83880-491-6",printIsbn:"978-1-83880-490-9",pdfIsbn:"978-1-83880-717-7",doi:"10.5772/intechopen.78430",price:119,priceEur:129,priceUsd:155,slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",numberOfPages:226,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"ec9eada73dbddb8b41315a3b089302b4",bookSignature:"Matthew Summers",publishedDate:"June 19th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8301.jpg",numberOfDownloads:11073,numberOfWosCitations:10,numberOfCrossrefCitations:15,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:27,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:52,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 7th 2018",dateEndSecondStepPublish:"August 29th 2018",dateEndThirdStepPublish:"October 28th 2018",dateEndFourthStepPublish:"January 16th 2019",dateEndFifthStepPublish:"March 17th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"204371",title:"Associate Prof.",name:"Matthew",middleName:null,surname:"Summers",slug:"matthew-summers",fullName:"Matthew Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/204371/images/system/204371.jpeg",biography:"Matthew Summers received a Bachelor’s of Science degree in Biochemistry in 1997 from the University of Delaware. He then pursued his thesis work at the Wistar Institute and received a Ph.D. in Cell and Molecular Biology from the University of Pennsylvania in 2003. From 2004-2009 he performed postdoctroral research at Stanford University and Genentech. In 2009, he joined the faculty at the Cleveland Clinic Lerner Research Institute as Assistant Staff. In 2015 he joined the The Ohio State University and James Comprehensive Cancer Center as an Associate Professor. Research in the Summers lab focuses on the interplay between cellular checkpoints and the ubiquitin proteasome system to regulate genome stability.",institutionString:"The Ohio State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"The Ohio State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"913",title:"Proteomics",slug:"structural-biology-proteomics"}],chapters:[{id:"65109",title:"Ubiquitin Signaling in Regulation of the Start of the Cell Cycle",doi:"10.5772/intechopen.82874",slug:"ubiquitin-signaling-in-regulation-of-the-start-of-the-cell-cycle",totalDownloads:1583,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:1,abstract:"The small protein ubiquitin plays a vital role in virtually all aspects of cellular life. Among the diverse signaling outcomes associated with ubiquitination, the most well-established is the targeted degradation of substrates via the proteasome. During cell growth and proliferation, ubiquitin plays an outsized role in promoting progression through the cell cycle. In particular, ubiquitin-mediated degradation is critically important at transition points where it provides directionality and irreversibility to the cell cycle, which is essential for maintaining genome integrity. Specifically, the boundary between G1 and S-phase is tightly regulated by the ubiquitin proteasome system. Notably, the G1/S boundary represents a major barrier to cell proliferation and is universally dysfunctional in cancer cells, allowing for the unbridled proliferation observed in malignancy. Numerous E3 ubiquitin ligases, which facilitate the ubiquitination of specific substrates, have been shown to control G1/S. In this chapter, we will discuss components in the ubiquitin proteasome system that are implicated in G1/S control, how these enzymes are interconnected, gaps in our current knowledge, and the potential role of these pathways in the cancer cycle and disease proliferation.",signatures:"Michael James Emanuele and Taylor Paige Enrico",downloadPdfUrl:"/chapter/pdf-download/65109",previewPdfUrl:"/chapter/pdf-preview/65109",authors:[{id:"264977",title:"Dr.",name:"Michael",surname:"Emanuele",slug:"michael-emanuele",fullName:"Michael Emanuele"},{id:"282200",title:"Ms.",name:"Taylor",surname:"Enrico",slug:"taylor-enrico",fullName:"Taylor Enrico"}],corrections:null},{id:"64852",title:"Processes that Regulate the Ubiquitination of Chromatin and Chromatin-Associated Proteins",doi:"10.5772/intechopen.82567",slug:"processes-that-regulate-the-ubiquitination-of-chromatin-and-chromatin-associated-proteins",totalDownloads:1107,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Ubiquitin is a post-translational modification important for many different processes in the cell, including antigen presentation and proteosomal degradation of proteins. It is heavily involved in the regulation of chromatin and the proteins that control chromatin-related processes. In this review, we will focus on ubiquitin-based chromatin regulation involved in four different processes. The first is DNA double strand break (DSB) repair and the role that ubiquitin plays in not just recruiting and stimulating DSB repair, but also the choice of pathway. The second is the PAF1 complex, which is involved in transcriptional elongation and interacts with RNAPII. The third is polycomb repressive complexes, specifically polycomb repressive complex 1, which utilizes ubiquitin to repress constitutively inactive genes. The last role of ubiquitin discussed is ubiquitin as a mitotic bookmark, which serves to provide a record of -active genes as cells transit mitosis. Each of these processes has independent pathways, but each is necessary for proper cellular function and organismal health.",signatures:"Alexander E. Hare and Jeffrey D. Parvin",downloadPdfUrl:"/chapter/pdf-download/64852",previewPdfUrl:"/chapter/pdf-preview/64852",authors:[{id:"266907",title:"Prof.",name:"Jeffrey",surname:"Parvin",slug:"jeffrey-parvin",fullName:"Jeffrey Parvin"},{id:"266910",title:"Mr.",name:"Alexander",surname:"Hare",slug:"alexander-hare",fullName:"Alexander Hare"}],corrections:null},{id:"65025",title:"E3 Ubiquitin Ligases in Cancer and Their Pharmacological Targeting",doi:"10.5772/intechopen.82883",slug:"e3-ubiquitin-ligases-in-cancer-and-their-pharmacological-targeting",totalDownloads:1683,totalCrossrefCites:2,totalDimensionsCites:8,hasAltmetrics:1,abstract:"Ubiquitination plays many critical roles in protein function and regulation. Consequently, mutation and aberrant expression of E3 ubiquitin ligases can drive cancer progression. Identifying key ligase-substrate relationships is crucial to understanding the molecular basis and pathways behind cancer and toward identifying novel targets for cancer therapeutics. Here, we review the importance of E3 ligases in the regulating the hallmarks of cancer, discuss some of the key and novel E3 ubiquitin ligases that drive tumor formation and angiogenesis, and review the clinical development of inhibitors that antagonize their function. We conclude with perspectives on the field and future directions toward understanding ubiquitination and cancer progression.",signatures:"Joseph Y. Ong and Jorge Z. Torres",downloadPdfUrl:"/chapter/pdf-download/65025",previewPdfUrl:"/chapter/pdf-preview/65025",authors:[{id:"186645",title:"Dr.",name:"Jorge",surname:"Torres",slug:"jorge-torres",fullName:"Jorge Torres"},{id:"264944",title:"Mr.",name:"Joseph",surname:"Ong",slug:"joseph-ong",fullName:"Joseph Ong"}],corrections:null},{id:"65165",title:"The Role of Lysine 63-Linked Ubiquitylation in Health and Disease",doi:"10.5772/intechopen.83659",slug:"the-role-of-lysine-63-linked-ubiquitylation-in-health-and-disease",totalDownloads:1082,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"A specific subfamily within the E2 protein family is involved in the synthesis of noncanonical poly-ubiquitin chains, linked through lysine 63 residues. The role of lysine 63-linked polyubiquitylation in diseases has emerged only recently. Under physiological conditions, this process does not seem to be involved in the classical protein degradation by the proteasome, but it is involved in the regulation of intracellular signaling, DNA damage response, cellular trafficking, and lysosomal targeting. The alteration of this process has been described in a number of pathological conditions, including immune disorders, diabetes, and cancer. In this chapter, we will describe the role of lysine 63-linked ubiquitylation in the regulation of diverse signaling pathways involved in cell behavior. We will also describe some pathological conditions in which altered lysine 63-linked ubiquitylation has been referred to play an important role.",signatures:"Paola Pontrelli, Francesca Conserva and Loreto Gesualdo",downloadPdfUrl:"/chapter/pdf-download/65165",previewPdfUrl:"/chapter/pdf-preview/65165",authors:[{id:"271734",title:"Ph.D.",name:"Paola",surname:"Pontrelli",slug:"paola-pontrelli",fullName:"Paola Pontrelli"},{id:"287311",title:"MSc.",name:"Francesca",surname:"Conserva",slug:"francesca-conserva",fullName:"Francesca Conserva"},{id:"287312",title:"Prof.",name:"Loreto",surname:"Gesualdo",slug:"loreto-gesualdo",fullName:"Loreto Gesualdo"}],corrections:null},{id:"65458",title:"Regulation of Selective Proteolysis in Cancer",doi:"10.5772/intechopen.83830",slug:"regulation-of-selective-proteolysis-in-cancer",totalDownloads:985,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Proteins are the fundamental building blocks of cells for diverse cellular and physiological functions. The dynamic equilibrium of protein turnover is balanced by protein synthesis and proteolysis. The newly synthesized proteins undergo proper folding into the three-dimensional conformations for executing biological functions and constructing cellular components like organelles. On the other hand, ubiquitin-proteasome system (UPS) and lysosome are two major proteolytic systems by which the unneeded, misfolded, or damaged proteins are selectively sent for clearance to maintain the quality and quantity of cellular proteins. Loss of the ability to maintain cellular proteolysis in control has been known to contribute as disease-causing factors. In this chapter, the function, regulation, and pathological roles of dysregulated proteolysis will be described in a concise view, focusing on the link between cancer and UPS.",signatures:"Pai-Sheng Chen",downloadPdfUrl:"/chapter/pdf-download/65458",previewPdfUrl:"/chapter/pdf-preview/65458",authors:[{id:"262441",title:"Dr.",name:"Pai-Sheng",surname:"Chen",slug:"pai-sheng-chen",fullName:"Pai-Sheng Chen"}],corrections:null},{id:"66407",title:"Ubiquitin Carboxyl-Terminal Hydrolase L1 in Parkinson’s Disease",doi:"10.5772/intechopen.85273",slug:"ubiquitin-carboxyl-terminal-hydrolase-l1-in-parkinson-s-disease",totalDownloads:754,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Ubiquitin plays the crucial roles to maintain the ubiquitin proteasome system (UPS) functions, which were suggested that involved in Parkinson’s diease (PD). Ubiquitin C-terminal hydrolase L1 (UCHL1), which was detected in Lewy bodies of nerve cells in PD brains, plays an important role for maintaining ubiquitin pool in UPS. The first UCHL1 mutation (UCHL1I93M) was found in two siblings of a PD family. By contrast, UCHL1S18Y mutation was recognized to reduce the risk of developing PD by its specific antioxidant protective function. The studies of UCHL1 in mouse models showed that lack of UCHL1 resulted in motor ataxia, degeneration of axons, and instability of free ubiquitin level. Transgenic mice expressing UCHL1I93M mutant exhibited dopaminergic neuron (DA) degeneration in MPTP-treated conditions. In this chapter, we provide a summary on recent findings related to roles of UCH-L1 in PD. Knockdown dUCH, a homolog of human UCHL1, in fly dopaminergic neuron resulted as some Parkinson’s disease—like phenotype such as: (1) the underdevelopment and/or degeneration of DA neurons; (2) the shortage of dopamine in the brain; and (3) the locomotor dysfunctions. Those finding indicated that dUCH (ortholog of human UCH-L1 in Drosophila) plays an important role in Parkinson’s disease.",signatures:"Dang Thi Phuong Thao",downloadPdfUrl:"/chapter/pdf-download/66407",previewPdfUrl:"/chapter/pdf-preview/66407",authors:[{id:"202162",title:"Prof.",name:"Thao",surname:"Dang",slug:"thao-dang",fullName:"Thao Dang"}],corrections:null},{id:"66145",title:"New Insights into the Mechanisms Underlying NEDD8 Structural and Functional Specificities",doi:"10.5772/intechopen.83426",slug:"new-insights-into-the-mechanisms-underlying-nedd8-structural-and-functional-specificities",totalDownloads:995,totalCrossrefCites:6,totalDimensionsCites:9,hasAltmetrics:0,abstract:"Ubiquitin (Ub) and ubiquitin-like (Ubl) proteins are small polypeptides that are conjugated to substrates affecting their activity and stability. Cells encode “receptors” containing Ub-/Ubl-binding domains that interpret and translate each modification into appropriate cellular responses. Among the different Ubls, NEDD8, which is the ubiquitin’s closest relative, retains many of the structural determinants that enable ubiquitin the ability to target proteins to degradation. Nevertheless, the direct involvement of NEDD8 conjugation to proteasome recruitment has been proved only in a few cases. To date, well-defined major NEDD8 substrates are primarily members of the cullin family, and cullin neddylation does not appear to mark these proteins for degradation. Various studies have demonstrated that selectivity between ubiquitin and NEDD8 is guaranteed by small but substantial differences. Nevertheless, several issues still need to be addressed, mainly concerning which interaction surfaces mediate NEDD8 function and what domains recognize them. Recently, two novel domains identified in KHNYN and N4BP1 proteins have shed new light on this research area. Here, I discuss some recent reports that contributed to shed light on the mechanisms underlining the discrimination between ubiquitin and NEDD8. Understanding the details of these molecular mechanisms represents a prominent facet for the identification of new therapeutic targets.",signatures:"Elena Santonico",downloadPdfUrl:"/chapter/pdf-download/66145",previewPdfUrl:"/chapter/pdf-preview/66145",authors:[{id:"271923",title:"Dr.",name:"Elena",surname:"Santonico",slug:"elena-santonico",fullName:"Elena Santonico"}],corrections:null},{id:"64167",title:"ADP-Ribosylation of the Ubiquitin C-Terminus by Dtx3L/Parp9",doi:"10.5772/intechopen.81613",slug:"adp-ribosylation-of-the-ubiquitin-c-terminus-by-dtx3l-parp9",totalDownloads:930,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Ubiquitylation is a post-translational modification that regulates a wide range of cellular pathways including protein degradation, autophagy, mitophagy, cell signaling, DNA damage response, and protein trafficking. This post-translational modification is characterized by covalent attachment of ubiquitin to lysine residues on target proteins by E3 ubiquitin ligases. These enzymes can catalyze both mono- and polyubiquitylation of target substrates. Because of the presence of multiple ubiquitylation acceptor sites on ubiquitin, polyubiquitin chains differing by linkage type and branching patterns can be generated. Post-translational modifications on ubiquitin including glutamine deamidation, lysine SUMOylation, lysine acetylation, and serine, threonine, and tyrosine phosphorylation add to the range of ubiquitin structures that can be synthesized in cells. Recently, ADP-ribosylation was discovered as a new post-translational modification on ubiquitin in two different biological contexts. The bacterial SidE proteins ADP-ribosylate ubiquitin to activate it for a unique mode of ubiquitylation. The human Dtx3L (E3 ubiquitin ligase)/Parp9 (ADP-ribosyltransferase) complex ADP-ribosylates ubiquitin which inhibits conjugation. In this review, we describe the discovery of ubiquitin ADP-ribosylation in the bacterial context, provide an overview of the biological roles of Dtx3L/Parp9, and discuss how NAD+ levels and ubiquitin ADP-ribosylation could regulate the E3 output of Dtx3L/Parp9.",signatures:"Teddy Kamata and Bryce Paschal",downloadPdfUrl:"/chapter/pdf-download/64167",previewPdfUrl:"/chapter/pdf-preview/64167",authors:[{id:"266602",title:"Prof.",name:"Bryce",surname:"Paschal",slug:"bryce-paschal",fullName:"Bryce Paschal"},{id:"266603",title:"MSc.",name:"Teddy",surname:"Kamata",slug:"teddy-kamata",fullName:"Teddy Kamata"}],corrections:null},{id:"67393",title:"Structural Insight into Regulation of the Proteasome Ub-Receptor Rpn10",doi:"10.5772/intechopen.85283",slug:"structural-insight-into-regulation-of-the-proteasome-ub-receptor-rpn10",totalDownloads:901,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Ubiquitylation is a posttranslational modification that determines protein fate. The ubiquitin code is written by enzymatic cascades of E1 and E2 and E3 enzymes. Ubiquitylation can be edited or erased by deubiquitylating enzymes. Ub-receptors are proteins that read and decipher the ubiquitin codes into cellular response. They harbor a ubiquitin-binding domain and a response element. Interestingly, Ub-receptors are also regulated by ubiquitylation and deubiquitylation. However, until recently, the molecular details and the significance of this regulation remained enigmatic. Rpn10 is a Ub-receptor that shuttles ubiquitylated targets to the proteasome for degradation. Here we review recent data on Rpn10, with emphasis on its regulation by ubiquitylation.",signatures:"Tal Keren-Kaplan, Ilan Attali, Olga Levin-Kravets, Oded Kleifeld, Shay Ben-Aroya and Gali Prag",downloadPdfUrl:"/chapter/pdf-download/67393",previewPdfUrl:"/chapter/pdf-preview/67393",authors:[{id:"175869",title:"Dr.",name:"Gali",surname:"Prag",slug:"gali-prag",fullName:"Gali Prag"},{id:"266434",title:"Dr.",name:"Tal",surname:"Keren-Kaplan",slug:"tal-keren-kaplan",fullName:"Tal Keren-Kaplan"},{id:"266435",title:"Dr.",name:"Ilan",surname:"Attali",slug:"ilan-attali",fullName:"Ilan Attali"},{id:"266436",title:"Dr.",name:"Olga",surname:"Levin-Kravets",slug:"olga-levin-kravets",fullName:"Olga Levin-Kravets"},{id:"266437",title:"Prof.",name:"Shay",surname:"Ben-Aroya",slug:"shay-ben-aroya",fullName:"Shay Ben-Aroya"},{id:"294446",title:"Dr.",name:"Oded",surname:"Kleifeld",slug:"oded-kleifeld",fullName:"Oded Kleifeld"}],corrections:null},{id:"66768",title:"Zinc-Binding B-Box Domains with RING Folds Serve Critical Roles in the Protein Ubiquitination Pathways in Plants and Animals",doi:"10.5772/intechopen.85895",slug:"zinc-binding-b-box-domains-with-ring-folds-serve-critical-roles-in-the-protein-ubiquitination-pathwa",totalDownloads:1053,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Protein ubiquitination is an essential cellular process that maintains protein homeostasis, regulates protein, and cell functions, and removes aggregated and misfolded protein. Disruption in function of any of the protein components of the ubiquitination pathway is associated with human diseases including cancers. An important member in the ubiquitination cascade is the very large E3 ligase family that directs substrate modification. The RING-type E3 ligases possess a cysteine/histidine-rich zinc-binding RING domain that confers ligase functionality. RING domains adopt a canonical ββα-fold. TRIM proteins represent a novel class of RING-type E3 ligase. TRIM proteins consist of an N-terminal RING domain followed by one or two B-box domains. The two types of B-box domains play essential roles in protein ubiquitination by contributing to substrate targeting, ligase activity enhancement, and redundancy of ligase activity. This review presents a general background of the B-box domains, a structural and functional comparison with RING domains, and a summary of recent work demonstrating their role in proteolysis. We discuss new findings that reveal B-box domains which are ubiquitous and are found in non-TRIM plant proteins without the adjacent RING domain, indicating that B-boxes are members of RING-class E3 ligases.",signatures:"Michael Anthony Massiah",downloadPdfUrl:"/chapter/pdf-download/66768",previewPdfUrl:"/chapter/pdf-preview/66768",authors:[{id:"263255",title:"Associate Prof.",name:"Michael",surname:"Anthony Massiah",slug:"michael-anthony-massiah",fullName:"Michael Anthony Massiah"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"780",title:"Proteomics",subtitle:"Human Diseases and Protein Functions",isOpenForSubmission:!1,hash:"a90c4e5b369d27036134a3c66ce1cb26",slug:"proteomics-human-diseases-and-protein-functions",bookSignature:"Tsz-Kwong Man and Ricardo J. Flores",coverURL:"https://cdn.intechopen.com/books/images_new/780.jpg",editedByType:"Edited by",editors:[{id:"35047",title:"Prof.",name:"Tsz Kwong",surname:"Man",slug:"tsz-kwong-man",fullName:"Tsz Kwong Man"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6635",title:"Protein-Protein Interaction Assays",subtitle:null,isOpenForSubmission:!1,hash:"1bed553d74f0565c89758a7159647634",slug:"protein-protein-interaction-assays",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/6635.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5989",title:"Ubiquitination Governing DNA Repair",subtitle:"Implications in Health and Disease",isOpenForSubmission:!1,hash:"d9892e3c8d2c928119619d7425c9e371",slug:"ubiquitination-governing-dna-repair-implications-in-health-and-disease",bookSignature:"Effrossyni Boutou and Horst-Werner Stürzbecher",coverURL:"https://cdn.intechopen.com/books/images_new/5989.jpg",editedByType:"Edited by",editors:[{id:"58579",title:"Dr.",name:"Effrossyni",surname:"Boutou",slug:"effrossyni-boutou",fullName:"Effrossyni Boutou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6649",title:"Peripheral Membrane Proteins",subtitle:null,isOpenForSubmission:!1,hash:"dd98f01959b3ba6cc9483c03e75b9e0a",slug:"peripheral-membrane-proteins",bookSignature:"Shihori Tanabe",coverURL:"https://cdn.intechopen.com/books/images_new/6649.jpg",editedByType:"Edited by",editors:[{id:"48635",title:"Dr.",name:"Shihori",surname:"Tanabe",slug:"shihori-tanabe",fullName:"Shihori Tanabe"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10424",title:"Homology Molecular Modeling",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"b1e441eeee1e41b634c8f8086fa4283c",slug:"homology-molecular-modeling-perspectives-and-applications",bookSignature:"Rafael Trindade Maia, Rômulo Maciel de Moraes Filho and Magnólia Campos",coverURL:"https://cdn.intechopen.com/books/images_new/10424.jpg",editedByType:"Edited by",editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",isOpenForSubmission:!1,hash:"af6880d3a5571da1377ac8f6373b9e82",slug:"ubiquitin-proteasome-pathway",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9352",title:"Proteoforms",subtitle:"Concept and Applications in Medical Sciences",isOpenForSubmission:!1,hash:"0f0288da2d32c0c0fcda6be0d4d45d67",slug:"proteoforms-concept-and-applications-in-medical-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/9352.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{},chapter:{},book:{}},ofsBook:{item:{type:"book",id:"11760",leadTitle:null,title:"Applications and Use of Diamond",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tCrystalline carbon appears before us in two main hypostases: three-dimensional and two-dimensional. The 3D form of carbon is diamond with sp3 hybridization of chemical bonds. The 2D form is sp2-hybridized graphene. These forms of carbon imply the development of a variety of electronic and photonic components from flexible sensors to three-dimensional processors.
\r\n\r\n\t
\r\n\tUnstoppable progress in the technologies of synthesis of diamond, graphene, and its compounds with stable parameters will provide materials for the industry of devices for integrated, radio, Opto- and quantum electronics and photonics.
\r\n\tIn most electronic and optical properties, diamond and graphene are superior to traditional and perspective semiconductors. It is safe to say that silicon and gallium arsenide are materials for electronics and optoelectronics of the past, gallium nitride and silicon carbide are high-tech today, and diamond and graphene are the future of electronics and photonics.
It is well known that the deoxyribonucleic acid (DNA) of a genome essential for human life often demonstrates structural changes [1–3] called genome copy number alterations (CNAs) [4–6], which are associated with disease such as cancer [7]. Analysis of the breakpoint locations in the CAN structure is still an important issue because it helps detecting structural alterations, load of alterations in the tumor genome, and absolute segment copy numbers. Thus, efficient estimators are required to extract information about the breakpoints with accuracy acceptable for medical needs. To produce CNA profile, several technologies have been developed such as comparative genomic hybridization (CGH) [8], high‐resolution CGH (HR‐CGH) [9], whole genome sequencing [10], and most recently single‐nucleotide polymorphism (SNP) [11]. The HR‐CGH technology is still used widely in spite of its low resolution [12]. It has been reported in [13] that the HR‐CGH arrays are accurate to detect structural variations (SVs) at the resolution of 200 bp (
In the HR‐CGH microarray technique, the CNAs are often normalized and plotted as
It is piecewise constant (PWC) and sparse with a small number of alterations on a long base‐pair length.
Constant values are integer, although this property is not survived in the log‐
The measurement noise in the log‐
The CNA estimation problem is thus to predict the breakpoint locations and the segmental levels with a maximum possible accuracy and precision acceptable for medical applications. In this work, we developed our methods to two types of cancer: B‐cell chronic lymphocytic leukemia (B‐CLL) and BLC primary breast carcinoma. Nevertheless, the methods were designed to any samples of cancer with the characteristics described above.
\nConsider a chromosome section observed with some resolution
Typical CNA measurements with white Gaussian noise with a single breakpoint, between two segments
Introduce a vector
where the regression matrix
having a component\n
in which the
The CNA estimation problem is thus to predict the breakpoint locations and evaluate the segmental changes
Consider a typical genomic measurement of two neighboring CNA segments in white Gaussian noise with different segmental variances as shown in Figure 1. A constant signal changes from level
Now considerer
Because each point can belong only to one segment, the inverse events are
Events
If
The inverse event
To determine the confidence limits for CNAs using high‐resolution genomic arrays, jitter in the breakpoints must be specified statistically for the segmental Gaussian distribution. This can be done approximately if to employ either the discrete skew Laplace distribution or, more accurately, the modified Bessel function of the second kind and zeroth order.
\nFollowing the definition of the
where
Suppose that jitter occurs at some point
By normalizing Eqs. (11) and (12) with Eq. (8), one can arrive at a function that turns out to be independent on
Further normalization of
where
It follows from the approximation admitted that
Accepting
The
where
If now to substitute
where
where
and which
By combining Eq. (18) with Eq. (20), one may also get a simpler form for
Now, introduce the segmental signal‐to‐noise ratios (SNRs):
where
An analysis shows that the discrete skew Laplace pdf (17) gives good results only if SNR is >1. Otherwise, real measurements do not fit well, and a more accurate function is required. Below, we show that better approach to real jitter distribution can be provided using the modified Bessel functions.
\nFigure 2 demonstrates the jitter pdf measured experimentally (dotted) for different SNRs. The breakpoint corresponds here to the peak density and the probability of the breakpoint location diminishes to the left and to the right of this point. Note that the discrete skew Laplace pdf (17) behaves linearly in such scales. Therefore, Eq. (17) cannot be applied when SNR is <1 and a more accurate function is required.
\nExperimentally defined one‐sided jitter probability densities (dotted) of the breakpoint location for equal segmental SNR
Among available functions demonstrating the pdf properties, the modified Bessel function of the second kind
in which a variable
In order to use Eq. (24) as an approximating function \n
Simulated CNA with a single breakpoint at
conditioned on
if to set
where
In summary, Figure 3 gives a typical example of a simulated CNA, where the modified Bessel function‐based approximation (depicted as MBA) demonstrates better accuracy than the approximation obtained using the skew Laplace distribution (depicted as SkL).
\nIt follows from Figure 3 that, in view of large noise, estimates of the CNAs may have low confidence, especially with small SNR
Given an estimate
where
Likewise, detected the
where
By combining Eqs. (30) and (31) with Eqs. (32) and (33), the probabilistic masks can be formed as shown in [20] to bound the CNA estimates in the
Noticing that the segmental boundaries (30) and (31) remain the same irrespective of the jitter in the breakpoints, below we specify the masks for the jitter represented with the Laplace distribution (17) and Bessel‐based approximation (25).
\nFor the Laplace distribution (17), the jitter left boundary
where [
The probabilistic UB mask
The UB mask
that yields
Next, substitute Eqs. (37) and (38) into Eqs. (19) and (20) to obtain
Finally, define the jitter left boundary
and use the algorithm previously designed in the study of Munoz‐Minjares and Shmaliy [22] for the confidence masks based on the Laplace distribution.
\nIn this section, we test some CNA measurements and estimates by the algorithm developed in [22] based on the Laplace and Bessel approximations. In order to demonstrate the efficiency of the probabilistic masks and getting practically useful results, we exploit probes obtained by different technologies. First, we employ the results obtained with the HR‐CGH profile and test them by the probabilistic masks using Laplace distribution. We next demonstrate the efficiency of the Bessel‐based probabilistic masks versus the Laplace‐based masks for the probes obtained with the SNP profile.
\nThe first test is conducted in the three‐sigma sense suggesting that the CNAs exist between the UB and LB masks with high probability of
It follows from Figure 4a that the only breakpoint which location can be estimated with high accuracy is
Our purpose now is to apply the probabilistic mask with SNP profile that represents the CNA with low levels of SNR. Specifically, we employ the probes of the first chromosome available from “BLC_B1_T45.txt” a sample of primary breast carcinoma.
\nInherently, the more accurate Bessel‐based approximation extends the jitter probabilistic boundaries with respect to the Laplace‐based ones, especially for low SNRs. We illustrate it in Figure 5, where the estimates of the first chromosome were tested by
In Figure 6, the masks
Jitter left boundaries
The
The confidence masks placed around
The confidence masks
A special case can also be noticed when the masks
A conclusion that can be made based on the results illustrated in Figures 5–8 is that the Bessel‐based probabilistic masks can be used to improve estimates of the chromosomal changes for the required probability.
\nWe finally notice that the computation time required by the masks to process the first chromosome from sample “BLC B1 T45.txt” with a length of
We evaluate the breakpoints obtained by the projects representational oligonucleotide microarray analysis [23] and GAP [14] with the confidence masks. As has been shown before, not all of the detected chromosomal changes have the same confidence to mean that there is a probability that some breakpoints do not exist. In order to improve the CNA estimates for the required confidence, the following process can be used:\n
Obtain estimates of the CNA using the standard CBS algorithm [24, 25] or any other algorithm.
Compute masks
If the masks reveal double uniformities, in
Application of this methodology to the CNA structure detected in frames of the Project GAP is shown in Figure 9. Its special feature is a number of hardly recognized small chromosomal changes (Figure 9a). We test them by the proposed masks
Improving estimates of the CNAs obtained in Project GAP [
Modern technologies developed to produce the CNA profiles with high resolution still admit intensive white Gaussian noise. Accordingly, not one estimator even ideal is able to provide jitter‐free estimation of segmental changes. Thus, in order to avoid wrong decisions, the estimates must be bounded for the confidence probability. Jitter exists in the CNA\'s breakpoints fundamentally. When SNR is >1, it can statistically be described using the discrete skew Laplace distribution. Otherwise, if SNR is <1, the Bessel‐based approximation produces more accuracy. By the jitter distribution, it is easy to find a region within which the breakpoint exists for the required probability. Of practical importance are the confidence UB and LB masks, which can be created based on the segmental and jitter distributions for the given confidence probability. The masks can serve as an auxiliary tool for medical experts to make decisions about the CNA structures. Applications to probes obtained using the HR‐CGH and SNP technologies confirm efficiency of the confidence masks.
\nMany engineering design problems require simultaneous optimization of multiple, often competing, objectives. Unlike in single-objective optimization, a multi-objective problem with competing objectives has no single solution. An optimum solution with respect to only one objective may not be acceptable when measured with respect to the other objectives. Multi-objective problems have a number of solutions called the Pareto-optimal set, named after Vilfred Pareto [1], that represent the range of best possible compromises amongst the objectives. Traditional gradient-based optimization algorithms are capable of addressing the multi-objective problems by converting the problem into a single-objective formulation. On the other hand, evolutionary algorithms (EAs)1 are well suited for the multi-objective problems as they can evolve to a set of designs that represent the Pareto frontier in a single run of the algorithm [2, 3]. As a result, EAs often find application to address multi-objective problems. Despite the popularity of these algorithms to solve a wide range of problems, they, like all non-gradient meta-heuristic searches, have issues with computational cost and rate of convergence to the Pareto frontier. After some number of generations, the candidate solutions may begin to exhibit little or no improvement. Modified versions of these algorithms exist which improve the convergence rate [4]. However, hybridizing EAs with an efficient gradient-based algorithm may significantly improve the convergence rate and has demonstrated the ability to solve multi-objective problems more efficiently than the EA alone [3]. Hybridization of an EA with a gradient-based local search algorithm has started to gain popularity owing to its promising capabilities to address the demerits of many optimization algorithms when used independently.
The genetic algorithm (GA) [5] is a class of EA and is a well-known population-based global search algorithm. Apart from its ability to explore the design space, GA is also capable of handling both discrete and continuous type design variables. This makes the GA an ideal choice to address problems that combine both discrete and continuous variables. However, the GA, like other EAs, does not provide any proof of convergence, and the GA cannot directly enforce constraints. Commonly, constraint handling for a GA search uses a penalty approach such that the fitness function reflects the objective function value and accounts for violated constraints. This generally requires the use of penalty multipliers to adjust the “strength” with which the penalty impacts the fitness function and selecting suitable penalty multipliers is often difficult. Further, for multi-objective problems, the different scaling or magnitude of the objectives can complicate selecting appropriate penalty multipliers.
On the other hand, Sequential Quadratic Programming (SQP) [6], is a well-known gradient-based search algorithm that directly handles constraints and provides proof of convergence to local optima using Karush-Kuhn-Tucker (KKT) optimality criteria [7]. Because SQP uses gradient information, it is a computationally efficient search algorithm. However, SQP cannot handle discrete design variables or discontinuous functions and has difficulty with multi-modal functions. Therefore, both of these (GA and SQP) well-known optimization algorithms have their own pros and cons that limit their individual applicability to fully address constrained multi-objective problems that combine both continuous and discrete type design variables. Combining the GA with SQP creates a hybrid approach that improves the overall optimization process for constrained mixed-discrete nonlinear programming problems (MDNLP).
The chapter presents a combination of the two-branch tournament GA for multi-objective problems with an SQP-based local search implementation of the goal attainment problem formulation allowing an improved information sharing between the two algorithms. To the best of the authors’ knowledge, there exists no work that emphasizes the process of hybridization combining an N-branch tournament selection GA with the goal attainment formulation as the local search in a compatible manner and then demonstrates application of the approach to solve a hard-to-solve constrained multi-objective, mixed-discrete nonlinear optimization problem. Later in the chapter, the hybrid approach is applied to solve a three-bar truss problem, a ten-bar truss problem, and a greener aircraft design optimization problem – all representatives of constrained multi-objective, mixed-discrete nonlinear programming problem. The truss problems have basis in test problems for structural optimization, and the motivation to select a greener aircraft design optimization problem arises from the increased concern about the environmental impact of the growing air transportation system.
The ability of the EAs to evolve to a Pareto-frontier as the generation progresses makes them an ideal choice for several multi-objective optimization problems. Vector Evaluated GA (VEGA), proposed by Schaffer [8] back in 1985, is one of the earlier versions of multi-objective GA. Several multi-objective EAs are developed since then including Multi-Objective Genetic Algorithm (MOGA) [9], Strength Pareto Evolutionary Algorithm [10], Non-dominated Sorted Genetic Algorithm (NSGA) [11] to mention a few popular ones.
Coello [2, 12] has conducted comprehensive literature surveys of various evolutionary multi-objective techniques. Konak et al. [13] compared various multi-objective optimization algorithms and provides a set of guidelines to follow while developing a multi-objective algorithm. Their effort primarily lies in guiding researchers with very little background in MOGA and making them familiar with the ideas and approaches of multi-objective optimization.
One such multi-objective algorithm named Non-dominated Sorting Genetic Algorithm (NSGA), developed by Srinivas and Dev [11] – arguably one of the most widely used multi-objective EAs – uses the concept of non-dominated sets originally proposed by Goldberg in his book on Genetic Algorithm and Machine Learning [14]. The NSGA approach maintains sets of non-dominated individuals, with the first set of individuals not dominated by any other individuals in the population. The second set finds the new set of non-dominated individuals after excluding the individuals from the first set. This step continues until all the individuals in the population are categorized inside the non-dominated sets.
A majority of these multi-objective algorithms, in some form, require an assignment of a scalar measure of a fitness value to the individuals in the population. As an example, MOGA [9] and NSGA [11] assign a fitness value based on a ranking scheme depending on the individual’s levels of domination. The two-branch tournament selection genetic algorithm presented by Crossley et al. [15] uses a tournament selection scheme that chooses parents considering both the objectives directly in the fitness functions. The individuals are evaluated based on their fitness across both the objectives. The overall process remains the same as that of a traditional GA. However, the only difference appears in the tournament selection operator. During the tournament selection step, the algorithm selects 50% of the parents based on the fitness value associated with the first objective, that is, the individuals are evaluated solely with respect to the first objective without consideration of the other objective. These selected parents are by nature strong in objective 1, or
The hybrid approach, presented in this chapter, uses this two-branch tournament selection GA as the global search optimizer and combines with a gradient-based approach to refine the search using a novel information sharing concept in the process of hybridization. The unique tournament selection strategy of the two-branch tournament GA allows to understand the underlying trait of the parents, i.e., if they are
Another challenge with multi-objective EAs is their ability to enforce constraints. Unlike gradient-based methods, which use constraint gradient information to guide the search in the feasible direction, no such constraint gradient is available for EAs. There have been several efforts to handle the constraints for EAs; however, not all of these methods strictly or directly enforce the problem constraints. The penalty function approach is arguably the most widely known of the various approaches to handle constraints in EAs. Assuming a minimization problem, this approach adds a penalty to the objective function when constraints are violated [14].
Another simple approach includes ignoring any infeasible design solution; because this does not differentiate between constraints that are close to the constraint boundaries and those that are far apart, this constraint handling method is inefficient.
Binh and Korn [16] suggested a method to assign fitness to individuals based on combining both the objective function vector as well as the degree to which the individual violates the constraint. Infeasible individuals are categorized into different classes based on how close or how far they are to the constraints boundaries.
Fonseca and Fleming [17] proposed a priority-based constraint handling strategy where search is first driven for feasibility followed by optimality by assigning high priority to constraints and low priority to objective functions. Although there are various techniques to “handle” constraints in EAs, “enforcing” them in a robust way is still an open issue. This is another motivation to pursue the hybrid approach that leverages the efficacy of gradient-based search to enforce the problem constraints.
Further, these population-based searches have issues with computational cost and rate of convergence to the Pareto frontier. After some number of generations, the candidate solutions may begin to exhibit little or no improvement. Modified versions of the algorithms work to improve the convergence rate [4, 18]; however, hybridizing EAs or GAs with an efficient gradient-based algorithm can significantly improve the convergence rate, thereby reducing the computational cost. Hybridization of an EA or GA with a gradient-based local search algorithm is not new. There are numerous references demonstrating how hybridization may improve the quality of the search for both single objective and multi-objective problem formulations; these include, but are not limited to, those appearing in [3, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. The local search can be considered as the local learning that takes place in an individual throughout its lifespan. Some of the approaches apply the local search to the final non-dominated set, while some techniques apply local search to all or many individuals of the population as the generation progresses.
The effort here extends the previous effort by Lehner and Crossley [27] to include a multi-objective formulation and combine the advantage of the hybrid approach with an novel information sharing technique between the global and the local search. The two-branch tournament selection GA algorithm globally explores the design space handling both discrete and continuous type variables, while the gradient-based approach sees only the continuous variables in a goal attainment formulation and seeks to efficiently refine the population based on the information passed on by the top-level GA while enforcing all the problem constraints.
The hybrid approach presented in this chapter combines the two-branch tournament GA (see Figure 1) for the global search [15] and the goal attainment SQP algorithm provided in the function
Original two branch tournament selection GA for two objective problems. Adapted from reference [
The top level of the problem, which the GA sees as its optimization problem, is a bound constrained (i.e., only side constraints on the continuous design variables) multi-objective minimization problem that uses the two-branch tournament selection technique with some modification to include the local search. This level includes both discrete and continuous design variables of the original problem. The continuous variables in this level,
In the original two-branch tournament selection GA, the tournament step selects 50% of the parents based on the fitness value associated with the first objective. These parents are by nature strong in objective 1 or
Modified two branch tournament selection GA and SQP interaction.
With a given goal
Figure 3 demonstrates the parent selection process of the new two-branch tournament selection GA and the goal assignment technique with a simple example. The approach starts with a population size of 8
Selective parent mixing strategy.
The lower-level problem presented to the SQP algorithm refines the population of the GA by searching the continuous variable space and helps the hybrid algorithm converge to the Pareto frontier at a faster rate. The
This goal attainment formulation seeks to attain values for the objectives close to a set of predefined goal values,
The
Goal assignment technique.
To assign the goal point values, the hybrid approach first identifies the local ideal point in each generation. This ideal point is the combination of the lowest
To assign a goal point to an individual, the approach defines a vector that originates from an individual and ends to where the vector intersects with either of the dotted lines. The point of intersection becomes the goal point for that individual. Children of parents from sub-pool 1, the
Referring back to Figure 3, parents 1 and 4 from sub-pool 1 create children
Although the approach seems robust in enforcing constraints via goal attainment formulation, there may be instances when no feasible solution exists to the goal attainment formulation for a given set of discrete variables. In such cases, the local search will not be able to return a feasible solution and the fitness function receives a severe penalty in the GA-level in an effort to discard such discrete design choices from the population. This severe penalty has some resemblance to the approach of ignoring infeasible designs that was criticised above; however, because the situation where no locally-feasible design exists results from a specific combination of discrete variables, there is no analog to having a “nearly feasible” design with a slightly violated constraint. Severely penalizing such infeasible designs for certain combinations of discrete variable choices, in this context, is appropriate.
To demonstrate the efficacy of the hybrid approach in solving constrained multi-objective MDNLP problems, we solve three different engineering test problems with varying difficulties - a three-bar truss, a ten-bar truss, and greener aircraft design problem.
For the three-bar truss problem (see Figure 5), the problem formulation includes the objectives of minimizing the weight of the truss and minimizing the deflection of the free node. The deflection of a node is calculated as the resultant of the deflections in both the x and y directions. The problem consists of six design variables, of which three are continuous and three are discrete. The continuous variables describe the cross-sectional area of the three bars while the discrete variables describe the material selection properties of these bars. The details of the continuous design variables and their design bounds appear in Table 1. For this problem, four discrete material selection choices are available for each element and include aluminum, titanium, steel, and nickel options. The yield stress for every bar acts as a constraint for the problem (total three constraints), not allowing the stress in the bar to go beyond that upper limit. References [35, 36] provide more details about the three-bar truss problem. For the hybrid approach, the GA population is limited to 8 individuals while setting the upper limit for the number of generations to 50. The probability of crossover is set to 0.5 and the mutation rate is fixed at 0.005. The continuous and discrete variables uses 8 and 2 bits respectively in the Gray-coded binary scheme.
Three bar truss problem.
Design variables | Lower bound | Upper bound |
---|---|---|
Cross-sectional area of bar 1 [cm2] | 0 | 5 |
Cross-sectional area of bar 2 [cm2] | 0 | 5 |
Cross-sectional area of bar 3 [cm2] | 0 | 5 |
Continuous variables for three-bar truss problem.
The resulting Pareto frontier for the three-bar truss problem appears in Figure 6(a). The plot shows the Pareto frontier has a good spread, leading to a total of 248 non-dominated points as solutions to the optimization problem. The visible trend in the non-dominated design set indicates that as the weight of the three bar truss system increases, they are accompanied by similar increases in the cross-sectional area of the bars with the material selection choice gradually shifting to steel for all the three bars. Aluminum or nickel never appeared as the material selection choice in the first two bars. The designs visible in the top left corner of the Pareto front in Figure 6(a) correspond to high displacement and low weight designs. The separated cluster of points (six designs) visible at the bottom right corner of the Pareto frontier corresponds to low displacement and high weight designs, with the maximum weight design having a material combination of all steel bars.
Pareto front for the three-bar truss problem and its comparison with the other approaches. (a) Pareto front for the three-bar truss problem using the hybrid approach. (b) Comparison of Pareto frontier obtained using the hybrid approach, a weighted sum approach and the original two-branch tournament GA approach.
For the three-bar truss problem, only 64 possible combinations of discrete design variables exist. Hence, it is possible to perform a complete enumeration of the discrete design space and get a sense of the shape of the true Pareto front and help assess the performance of the hybrid approach. This led the authors to compare the hybrid approach (and the original two-branch tournament selection GA2) with a gradient-based weighted sum approach for this three-bar truss problem. The weighted sum approach converts the multi-objective problem formulation into a single objective problem by assigning weights to both the objectives and solves the single objective problem with the gradient-based approach using MATLAB’s
First, the objectives are normalized using the utopia point. Next, objective 1 is assigned a weight
Figure 7 compares how the Pareto frontier evolved with generations using the original two-branch tournament GA and the proposed hybrid approach. As expected, without the local search feature, the original two-branch tournament selection GA shows distinct improvement in both the quality and the spread of the Pareto front as the generation progresses. That is, the black diamonds (non-dominated set after second generation) are replaced with better non-dominated designs as the generation progresses. However, in the hybrid case, we start to see the shape of the final Pareto front immediately after the second generation. As the generation progresses further, more points get added to the list of non-dominated designs. This is due to the multi-start approach where the top-level GA populates various possible combinations of the discrete material selection choices and the local gradient-based search then improves these designs by varying the continuous design variables. The hybrid approach is able to rapidly get to the final Pareto front at the expense of increased number of function evaluations needed by the gradient-based local search.
Evolution of the non-dominated sets as the generation progresses. (a) Original two-branch tournament selection GA. (b) Proposed hybrid approach.
Next, the hybrid approach solves a more difficult and challenging version of the three-bar truss problem – a ten-bar truss. Similar to the three-bar truss problem, the ten-bar truss has the competing objectives that include minimizing the weight of the ten-bar truss system and minimizing the resultant displacement of any of the free nodes. The displacement is taken as the absolute of the maximum calculated displacement among all the bar elements. This problem consists of twenty design variables – ten continuous type and ten discrete type. The continuous variables describe the cross-sectional diameters of the ten bars, ranging from 0.1 cm2 to 40 cm2, while the discrete variables specify the material selection properties of these bars. Like the three-bar problem, the four discrete material choices available for each bar include aluminum, titanium, steel, and nickel. However, this problem has over one million possible combinations of the discrete choices (
Figure 8(a) compares the Pareto front obtained using the hybrid approach after 20 GA generations with the Pareto frontier obtained using the two-branch tournament selection GA after 100 generations. The figure shows both the approaches performed well for this problem with the two-branch tournament selection GA resulting a better spread in the low weight/high displacement region of the objective space, whereas the hybrid GA has a better spread in the low displacement/high weight region. Figure 8(b) shows how the non-dominated set evolved as the generation progresses using the hybrid approach. We see a similar trend as that of the three-bar truss problem. That is, there is not much significant change in the final shape of the Pareto front other than the increase in the number of non-dominated designs as the generation progresses. However, this time there is slight improvement in the quality of the Pareto front (the red non-dominated set obtained after generation 20 is slightly better than the blue or the black non-dominated designs obtained at generation 5 and 2 respectively).
Ten bar truss problem results. (a) Comparison between the original two-branch tournament GA (after 100 GA generation) and the hybrid approach (after 20 GA generations) for the 10 bar truss problem. (b) Evolution of non-dominated set as the generation progresses for the 10 bar truss problem using the hybrid approach.
For the three-bar example, a majority of the improvements across the objective space are due to the gradient-based local search’s ability to obtain designs with better cross-sectional area. With only 64 possible material selection combinations, there are not many discrete material selection options to explore. On the other hand, for the ten-bar truss problem, a vast majority of the improvement is due to the ability of the GA to find a better material selection combination rather than fine-tuning the cross sectional variables. It is not possible to seek further improvement in the Pareto front just by varying the continuous variables, so the local search saturates as appear in the case of black (diamonds) and blue (squares) non-dominated designs. After few more GA iterations, the algorithm is able to find better combinations of material selection that lead to further improvement in the Pareto front (red dots).
The third application problem solved using the hybrid approach is the greener aircraft design problem. Here, a “greener” aircraft design problem provides an example to demonstrate the efficacy of the hybrid algorithm and its ability to solve such MDNLP problems. The intent is to find aircraft designs that represent the best possible trade-offs among performance, economics, and environmental metrics which essentially makes this a multi-objective problem. Further, with the inclusion of discrete technologies, the problem becomes MDNLP in nature.
The aircraft design optimization problem employs the NASA sizing code FLOPS [37] to evaluate discrete design configurations and perform the sizing and performance calculations of the candidate aircraft designs. The sizing code accepts both continuous and discrete design variables as input and returns the aircraft gross weight along with environmental metrics (fuel weight, which corresponds to CO2 emissions, and NO
The problem includes ten continuous variables that define the wing and the engine parameters of the aircraft. The details of these continuous design variables and their design bounds appear in Table 2.
Design variables | Lower bound | Upper bound |
---|---|---|
Aspect Ratio | 8 | 12 |
Taper Ratio | 0.3 | 0.5 |
Thickness to Chord Ratio | 0.09 | 0.17 |
Wing Area [ft2] | 1,000 | 1,500 |
Wing Sweep at 25 percent [deg] | 0 | 40 |
Thrust per engine [lbs] | 20,000 | 30,000 |
By-Pass Ratio | 5 | 10 |
Turbine Inlet Temperature [R] | 3010 | 3510 |
Overall Pressure Ratio | 35 | 55 |
Fan Pressure Ratio | 1.6 | 1.7 |
Continuous variables for aircraft design problem.
This aircraft design optimization study models three types of discrete technologies. Table 3 lists the set of discrete technologies considered in this study. To model composite material selection choice on various aircraft components, the approach here uses a binary variable for each of the aircraft components that includes wing, fuselage, tail, and nacelle. A value of one represents composites being present while a value of zero represents no composite materials in that structure. The second discrete variable includes the eight possible combinations of the location and the number of engines. Lastly, eight combinations of laminar flow technologies are included for this problem, depending on whether it is natural laminar flow (NLF) or hybrid laminar flow control (HLFC) technology and the number of components on which it is applied (as listed in Table 3). References [38, 39, 40] describe the various discrete technologies used in this study in further detail.
Laminar Flow Technologies | Engine Position | Composite Material Choices | |||
---|---|---|---|---|---|
Wing | Fuselage | Nacelle | Tail | ||
NLF-Wing | 2 wing | Yes | Yes | Yes | Yes |
HLFC-Wing | 2 fuselage | No | No | No | No |
HLFC-Wing + Nacelle | 2 wing +1 fuselage | ||||
HLFC-Wing + Tail | 3 fuselage | ||||
HLFC-Wing + Tail + Nacelle | 4 wing | ||||
NLF-Wing + HLFC-Tail | 2 wing +2 fuselage | ||||
NLF-Wing + HLFC-Nacelle | 1 fuselage | ||||
NLF-Wing + HLFC-Tail + HLFC-Nacelle | 4 wing +1 fuselage |
Discrete technologies for aircraft design problem.
The problem also has four constraints that appear in Table 4. The constraints ensure that the design solution meets the desired field length criteria, has sufficient ground clearance, and sets a maximum limit on the amount of allowable fuel carrying space in the fuselage.
Take-off field length [ft] | |
Landing field length [ft] | |
Landing gear length [in] | |
Fuselage fuel capacity [lbs] |
Problem constraints.
The aircraft design optimization problem considers two different pairs of competing objectives. The first pair involves simultaneous minimization of the aircraft fuel weight (index of CO2 emissions) and the total operating cost of the aircraft, and the second pair involves minimizing the NO
Figure 9 shows the set of 24 non-dominated designs for the competing objective pair – aircraft fuel weight and total operating cost. The aircraft fuel weight, analogous to fuel burn, is directly related to the amount of CO2 produced during the trip. The Pareto frontier consists of designs employing combinations of composite structures, eight different engine position(s), and eight different laminar flow technologies, modeled as a part of the greener technology approaches described in the previous section.
The non-dominated set for objective pair – aircraft fuel weight (index for CO2 production) and the total operating cost.
The design point ND1 (for Non-Dominated design number 1) in Figure 9 corresponds to highest total operating cost (also lowest fuel weight) and makes use of NLF technology on the wing and HLFC technology on the nacelles and tail, along with two wing-mounted engines. This design also features composite wings, fuselage, and nacelles. The use of composite structures leads to a decrease in the fuel consumption (due to the reduction in aircraft empty weight) at the expense of increased total operating cost (due to increase in the manufacturing and maintenance costs associated with composite materials). The design with the lowest total operating cost (ND24) makes use of NLF technology on the wing and HLFC technology on the nacelles and tail, along with two wing-mounted engines as well. But, this design has no composite components and, hence, has the lowest total operating cost according to the models used in this study.
All the non-dominated designs employ NLF technology on the wings and HLFC technology on both the nacelle and tail, along with two wing-mounted engine configuration. The laminar flow technologies tend to reduce the skin friction drag of the aircraft, making the design more aerodynamically efficient, and reducing its fuel consumption for a given mission range. All the non-dominated designs employ these technologies in various forms (NLF or HLFC) to reduce fuel burn, depicting the importance of employing these technologies in near future “greener” aircraft design.
An interesting region in the Pareto frontier from an airline’s standpoint would be near the points ND1 and ND3 (or ND2), where a substantial decrease in total operating cost is possible for a marginal increase in the aircraft fuel weight (index of CO2 production per trip). Considering non-dominated designs ND1 and ND3, a nearly 1% reduction in total operating cost is possible to achieve for only a 0.6% increase in the total fuel weight needed for the mission, as one move from ND1 to ND3. Similar trends for the objective pair in consideration are also observed for designs ND9, ND10, and ND11.
The Pareto front corresponding to the NO
The non-dominated set for objective pair – NOX emissions versus total operating cost.
The design with minimum NO
An interesting region from the airline’s point of view is the near the points ND2, ND3, ND4 and ND5, where a nearly vertical portion is visible in the top left portion of the Pareto frontier (refer to Figure 10). Moving from left to right in this region, a substantial decrease in total operating cost is possible for a marginal increase in the NO
Given there is some degree of randomness associated with the genetic operations in the GA, subsequent runs of the hybrid GA for the two objective pairs find a slightly different number of non-dominated designs points. However, the basic trait of the Pareto frontier, in terms of the discrete choices, did not alter; only the density of points in the Pareto frontier varied with different runs.
This chapter describes a hybrid multi-objective algorithm that makes use of an efficient gradient-based SQP algorithm for fitness evaluation inside a GA in a learning approach. The combination allows the GA to evolve a population of designs in the direction of the Pareto frontier while the SQP algorithm enforces constraints, eliminating the need for penalty multipliers or other special constraint handling methods and refines the values of the continuous design variables. The selective parent mixing and unique sets of goal point assignment to the individual lead to a distinct improvement in convergence and the quality of the Pareto frontier from a previous variation of this approach. When applied to various constrained MDNLP engineering design problems, the hybrid algorithm shows the ability to identify promising designs.
Although the ability of the hybrid approach to solve difficult constrained MDNLP problems is demonstrated in this chapter, the methodology relies heavily on the constraint enforcing ability and efficient searching of the continuous design space via the local gradient-based SQP algorithm that requires some estimates (either numerically or analytically) of the gradients of the objectives and the constraints with respect to the continuous design variables. A major advantage of a gradient-based approach besides being able to enforce the problem constraints (hence, the motivation to hybridize) is that the computational cost needed to compute the gradients is nearly independent of the number of design variables [41] when using adjoint-based methods to estimate the derivatives. This allows the gradient-based approach to efficiently solve problems with a very large number of design variables. However, if the objectives are encapsulated in a black-box function and are computationally very expensive to evaluate, then it may not be possible to directly implement a gradient-based search and may require a surrogate-based design optimization approach [40, 42, 43].
αi | Weight vector for the relative under/over-attainment of objective |
fi(x) | Value of the objective |
fiG | Goal value for objective |
gi(x) | Nonlinear inequality constraints |
γ | Attainment factor |
hi(x) | Nonlinear equality constraints |
n | Population size |
xc | Continuous design variable |
xd | Discrete design variable |
xL | Design variable lower bound |
xU | Design variable upper bound |
EA | Evolutionary algorithm |
GA | Generic algorithm |
HLFC | Hybrid laminar flow control |
MDNLP | Mixed-discrete nonlinear programming |
ND | Non-dominated design |
NLF | Natural laminar flow |
NSGA | Non-dominated Sorted Genetic Algorithm |
SPEA | Strength Pareto Evolutionary Algorithm |
SQP | Sequential Quadratic Programming |
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12113",title:"Tendons - Trauma, Inflammation, Degeneration, and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"2387a4e0d2a76883b16dcccd452281ab",slug:null,bookSignature:"Dr. Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/12113.jpg",editedByType:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:394},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11042",title:"Complementary Therapies",subtitle:null,isOpenForSubmission:!1,hash:"9eb32ccbef95289a133a76e5808a525b",slug:"complementary-therapies",bookSignature:"Mario Bernardo-Filho, Redha Taiar, Danúbia da Cunha de Sá-Caputo and Adérito Seixas",coverURL:"https://cdn.intechopen.com/books/images_new/11042.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"157376",title:"Prof.",name:"Mario",middleName:null,surname:"Bernardo-Filho",slug:"mario-bernardo-filho",fullName:"Mario Bernardo-Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10037",title:"Thermoelectricity",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ad1d3f637564a29cf1636759f5401994",slug:"thermoelectricity-recent-advances-new-perspectives-and-applications",bookSignature:"Guangzhao Qin",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"188870",title:"Mr.",name:"Guangzhao",middleName:null,surname:"Qin",slug:"guangzhao-qin",fullName:"Guangzhao Qin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11357",title:"Sustainable Crop Production",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"ee41e09e4ad6a336ca9f0e5462da3904",slug:"sustainable-crop-production-recent-advances",bookSignature:"Vijay Singh Meena, Mahipal Choudhary, Ram Prakash Yadav and Sunita Kumari Meena",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"420235",title:"Dr.",name:"Vijay",middleName:null,surname:"Meena",slug:"vijay-meena",fullName:"Vijay Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10863",title:"Cardiac Rhythm Management",subtitle:"Pacing, Ablation, Devices",isOpenForSubmission:!1,hash:"a064ec49b85ebfc60585c9c3690af53a",slug:"cardiac-rhythm-management-pacing-ablation-devices",bookSignature:"Mart Min and Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/10863.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"62780",title:"Prof.",name:"Mart",middleName:null,surname:"Min",slug:"mart-min",fullName:"Mart Min"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10874",title:"Insights on Antimicrobial Peptides",subtitle:null,isOpenForSubmission:!1,hash:"23ca26025e87356a7c2ffac365f73a22",slug:"insights-on-antimicrobial-peptides",bookSignature:"Shymaa Enany, Jorge Masso-Silva and Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11137",title:"Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"e0e4727c9f1f9b34d788f0dc70278f2b",slug:"mineralogy",bookSignature:"Miloš René",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"70c3ce4256324b3c58db970d446ddac4",slug:"smart-drug-delivery",bookSignature:"Usama Ahmad, Md. Faheem Haider and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10885",title:"Snake Venom and Ecology",subtitle:null,isOpenForSubmission:!1,hash:"cc4503ed9e56a7bcd9f2ca82b0c880a8",slug:"snake-venom-and-ecology",bookSignature:"Mohammad Manjur Shah, Umar Sharif, Tijjani Rufai Buhari and Tijjani Sabiu Imam",coverURL:"https://cdn.intechopen.com/books/images_new/10885.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10381",title:"Electrocatalysis and Electrocatalysts for a Cleaner Environment",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"9dbafb0b297cf5cbdb220707e022a228",slug:"electrocatalysis-and-electrocatalysts-for-a-cleaner-environment-fundamentals-and-applications",bookSignature:"Lindiwe Eudora Khotseng",coverURL:"https://cdn.intechopen.com/books/images_new/10381.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"236596",title:"Dr.",name:"Lindiwe Eudora",middleName:null,surname:"Khotseng",slug:"lindiwe-eudora-khotseng",fullName:"Lindiwe Eudora Khotseng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10900",title:"Prunus",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"9261926500acb26c4ae5a29eee78f0db",slug:"prunus-recent-advances",bookSignature:"Ayzin B. Küden and Ali Küden",coverURL:"https://cdn.intechopen.com/books/images_new/10900.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"200365",title:"Prof.",name:"Ayzin B.",middleName:"B.",surname:"Küden",slug:"ayzin-b.-kuden",fullName:"Ayzin B. Küden"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"763",title:"Bioresource Engineering",slug:"bioresource-engineering",parent:{id:"117",title:"Energy Engineering",slug:"engineering-energy-engineering"},numberOfBooks:18,numberOfSeries:0,numberOfAuthorsAndEditors:726,numberOfWosCitations:2363,numberOfCrossrefCitations:1209,numberOfDimensionsCitations:3333,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"763",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6839",title:"Anaerobic Digestion",subtitle:null,isOpenForSubmission:!1,hash:"b2f120cc045f5e705912043f9802ec7d",slug:"anaerobic-digestion",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7355",title:"Renewable Resources and Biorefineries",subtitle:null,isOpenForSubmission:!1,hash:"b39e383ab1b5558e459a501604cc94be",slug:"renewable-resources-and-biorefineries",bookSignature:"Eduardo Jacob-Lopes and Leila Queiroz Zepka",coverURL:"https://cdn.intechopen.com/books/images_new/7355.jpg",editedByType:"Edited by",editors:[{id:"171980",title:"Dr.",name:"Eduardo",middleName:null,surname:"Jacob-Lopes",slug:"eduardo-jacob-lopes",fullName:"Eduardo Jacob-Lopes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6349",title:"Gasification for Low-grade Feedstock",subtitle:null,isOpenForSubmission:!1,hash:"480f5fb4bb3c9b3af32c926e04d78233",slug:"gasification-for-low-grade-feedstock",bookSignature:"Yongseung Yun",coverURL:"https://cdn.intechopen.com/books/images_new/6349.jpg",editedByType:"Edited by",editors:[{id:"144925",title:"Dr.",name:"Yongseung",middleName:null,surname:"Yun",slug:"yongseung-yun",fullName:"Yongseung Yun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5393",title:"Biomass Volume Estimation and Valorization for Energy",subtitle:null,isOpenForSubmission:!1,hash:"f2bd967a72387889d0000243d139cdba",slug:"biomass-volume-estimation-and-valorization-for-energy",bookSignature:"Jaya Shankar Tumuluru",coverURL:"https://cdn.intechopen.com/books/images_new/5393.jpg",editedByType:"Edited by",editors:[{id:"95803",title:"Dr.",name:"Jaya Shankar",middleName:null,surname:"Tumuluru",slug:"jaya-shankar-tumuluru",fullName:"Jaya Shankar Tumuluru"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5509",title:"Frontiers in Bioenergy and Biofuels",subtitle:null,isOpenForSubmission:!1,hash:"6c4844a7ea8030eca37ed4b8590db897",slug:"frontiers-in-bioenergy-and-biofuels",bookSignature:"Eduardo Jacob-Lopes and Leila Queiroz Zepka",coverURL:"https://cdn.intechopen.com/books/images_new/5509.jpg",editedByType:"Edited by",editors:[{id:"171980",title:"Dr.",name:"Eduardo",middleName:null,surname:"Jacob-Lopes",slug:"eduardo-jacob-lopes",fullName:"Eduardo Jacob-Lopes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4544",title:"Biomass Production and Uses",subtitle:null,isOpenForSubmission:!1,hash:"990d48178655c1a2db9884611031fb2b",slug:"biomass-production-and-uses",bookSignature:"Eduardo Jacob-Lopes and Leila Queiroz Zepka",coverURL:"https://cdn.intechopen.com/books/images_new/4544.jpg",editedByType:"Edited by",editors:[{id:"171980",title:"Dr.",name:"Eduardo",middleName:null,surname:"Jacob-Lopes",slug:"eduardo-jacob-lopes",fullName:"Eduardo Jacob-Lopes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3858",title:"Technology and Application of Microbial Fuel Cells",subtitle:null,isOpenForSubmission:!1,hash:"ba52ca9aad923c7d602fd9e8585e798a",slug:"technology-and-application-of-microbial-fuel-cells",bookSignature:"Chin-Tsan Wang",coverURL:"https://cdn.intechopen.com/books/images_new/3858.jpg",editedByType:"Edited by",editors:[{id:"27537",title:"Prof.",name:"Chin-Tsan",middleName:null,surname:"Wang",slug:"chin-tsan-wang",fullName:"Chin-Tsan Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2965",title:"Sustainable Degradation of Lignocellulosic Biomass",subtitle:"Techniques, Applications and Commercialization",isOpenForSubmission:!1,hash:"79f3af7841253f5e3e67f53245c121d6",slug:"sustainable-degradation-of-lignocellulosic-biomass-techniques-applications-and-commercialization",bookSignature:"Anuj K. Chandel and Silvio Silvério da Silva",coverURL:"https://cdn.intechopen.com/books/images_new/2965.jpg",editedByType:"Edited by",editors:[{id:"76898",title:"Dr.",name:"Anuj",middleName:null,surname:"Chandel",slug:"anuj-chandel",fullName:"Anuj Chandel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3526",title:"Liquid, Gaseous and Solid Biofuels",subtitle:"Conversion Techniques",isOpenForSubmission:!1,hash:"27e5fc2ee32eebf66804d16b48e3545f",slug:"liquid-gaseous-and-solid-biofuels-conversion-techniques",bookSignature:"Zhen Fang",coverURL:"https://cdn.intechopen.com/books/images_new/3526.jpg",editedByType:"Edited by",editors:[{id:"63891",title:"Prof.",name:"Zhen",middleName:null,surname:"Fang",slug:"zhen-fang",fullName:"Zhen Fang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3525",title:"Biofuels",subtitle:"Economy, Environment and Sustainability",isOpenForSubmission:!1,hash:"c96c437f720c3cd5fec55f29198625c9",slug:"biofuels-economy-environment-and-sustainability",bookSignature:"Zhen Fang",coverURL:"https://cdn.intechopen.com/books/images_new/3525.jpg",editedByType:"Edited by",editors:[{id:"63891",title:"Prof.",name:"Zhen",middleName:null,surname:"Fang",slug:"zhen-fang",fullName:"Zhen Fang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3251",title:"Biodiesel",subtitle:"Feedstocks, Production and Applications",isOpenForSubmission:!1,hash:"4b2be3bdff49ff76b474e85cbfaeb236",slug:"biodiesel-feedstocks-production-and-applications",bookSignature:"Zhen Fang",coverURL:"https://cdn.intechopen.com/books/images_new/3251.jpg",editedByType:"Edited by",editors:[{id:"63891",title:"Prof.",name:"Zhen",middleName:null,surname:"Fang",slug:"zhen-fang",fullName:"Zhen Fang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1323",title:"Biogas",subtitle:null,isOpenForSubmission:!1,hash:"3bd0527b475ee7658e14add4834a8937",slug:"biogas",bookSignature:"Sunil Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/1323.jpg",editedByType:"Edited by",editors:[{id:"86581",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar",slug:"sunil-kumar",fullName:"Sunil Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:18,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"20058",doi:"10.5772/17047",title:"Ethanol Production in Brazil: The Industrial Process and Its Impact on Yeast Fermentation",slug:"ethanol-production-in-brazil-the-industrial-process-and-its-impact-on-yeast-fermentation",totalDownloads:23175,totalCrossrefCites:14,totalDimensionsCites:144,abstract:null,book:{id:"448",slug:"biofuel-production-recent-developments-and-prospects",title:"Biofuel Production",fullTitle:"Biofuel Production - Recent Developments and Prospects"},signatures:"Luiz Carlos Basso, Thiago Olitta Basso and Saul Nitsche Rocha",authors:[{id:"27097",title:"Dr.",name:"Luiz Carlos",middleName:null,surname:"Basso",slug:"luiz-carlos-basso",fullName:"Luiz Carlos Basso"},{id:"27117",title:"Dr.",name:"Thiago Olitta",middleName:null,surname:"Basso",slug:"thiago-olitta-basso",fullName:"Thiago Olitta Basso"},{id:"84059",title:"Prof.",name:"Saul",middleName:"Nitsche",surname:"Rocha",slug:"saul-rocha",fullName:"Saul Rocha"}]},{id:"23666",doi:"10.5772/25370",title:"Biodiesel Quality, Standards and Properties",slug:"biodiesel-quality-standards-and-properties",totalDownloads:5489,totalCrossrefCites:50,totalDimensionsCites:119,abstract:null,book:{id:"1858",slug:"biodiesel-quality-emissions-and-by-products",title:"Biodiesel",fullTitle:"Biodiesel - Quality, Emissions and By-Products"},signatures:"István Barabás and Ioan-Adrian Todoruț",authors:[{id:"63110",title:"Prof.",name:"István",middleName:null,surname:"Barabás",slug:"istvan-barabas",fullName:"István Barabás"},{id:"117497",title:"Dr.",name:"Ioan-Adrian",middleName:null,surname:"Todorut",slug:"ioan-adrian-todorut",fullName:"Ioan-Adrian Todorut"}]},{id:"44332",doi:"10.5772/53544",title:"A Review of Xylanase Production by the Fermentation of Xylan: Classification, Characterization and Applications",slug:"a-review-of-xylanase-production-by-the-fermentation-of-xylan-classification-characterization-and-app",totalDownloads:9797,totalCrossrefCites:22,totalDimensionsCites:107,abstract:null,book:{id:"2965",slug:"sustainable-degradation-of-lignocellulosic-biomass-techniques-applications-and-commercialization",title:"Sustainable Degradation of Lignocellulosic Biomass",fullTitle:"Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization"},signatures:"F. L. Motta, C. C. P. Andrade and M. H. A. Santana",authors:[{id:"29669",title:"Prof.",name:"Maria Helena",middleName:null,surname:"Santana",slug:"maria-helena-santana",fullName:"Maria Helena Santana"},{id:"154939",title:"Dr.",name:"Fernanda",middleName:null,surname:"Motta",slug:"fernanda-motta",fullName:"Fernanda Motta"},{id:"165676",title:"Dr.",name:"Cristiane",middleName:null,surname:"Andrade",slug:"cristiane-andrade",fullName:"Cristiane Andrade"}]},{id:"31331",doi:"10.5772/31355",title:"Digestate: A New Nutrient Source - Review",slug:"digestate-a-new-nutrient-source-review",totalDownloads:7736,totalCrossrefCites:45,totalDimensionsCites:101,abstract:null,book:{id:"1323",slug:"biogas",title:"Biogas",fullTitle:"Biogas"},signatures:"Marianna Makádi, Attila Tomócsik and Viktória Orosz",authors:[{id:"86724",title:"Ms.",name:"Marianna",middleName:null,surname:"Makádi",slug:"marianna-makadi",fullName:"Marianna Makádi"}]},{id:"20063",doi:"10.5772/16454",title:"Detoxification of Lignocellulosic Hydrolysates for Improved Bioethanol Production",slug:"detoxification-of-lignocellulosic-hydrolysates-for-improved-bioethanol-production",totalDownloads:11889,totalCrossrefCites:8,totalDimensionsCites:90,abstract:null,book:{id:"448",slug:"biofuel-production-recent-developments-and-prospects",title:"Biofuel Production",fullTitle:"Biofuel Production - Recent Developments and Prospects"},signatures:"Anuj K. Chandel, Silvio Silvério da Silva and Om V. Singh",authors:[{id:"25160",title:"Prof.",name:"Om",middleName:"V",surname:"Singh",slug:"om-singh",fullName:"Om Singh"},{id:"51540",title:"Dr.",name:"Silvio",middleName:null,surname:"Silva",slug:"silvio-silva",fullName:"Silvio Silva"},{id:"76898",title:"Dr.",name:"Anuj",middleName:null,surname:"Chandel",slug:"anuj-chandel",fullName:"Anuj Chandel"}]}],mostDownloadedChaptersLast30Days:[{id:"59269",title:"Gasification of Municipal Solid Waste",slug:"gasification-of-municipal-solid-waste",totalDownloads:3654,totalCrossrefCites:19,totalDimensionsCites:30,abstract:"Gasification of municipal solid waste (MSW) is an attractive alternative fuel production process for the treatment of solid waste as it has several potential benefits over traditional combustion of MSW. Syngas produced from the gasification of MSW can be utilized as a gas fuel being combusted in a conventional burner or in a gas engine to utilize the heat or produce electricity. Also, it can be used as a building block for producing valuable products such as chemicals and other forms of fuel energy. This book chapter covers the properties of MSW, gasification mechanism, chemistry, operating conditions, gasification technologies, processes, recovery system, and most importantly by reviewing the environmental impacts of MSW gasification. As one of recent advanced technologies, a case study of pilot-scale MSW gasification is introduced, which could be one of the most efficient pathways to utilize the technology to produce electricity with a newly developed gasification process by reducing tar and pollutant emission.",book:{id:"6349",slug:"gasification-for-low-grade-feedstock",title:"Gasification for Low-grade Feedstock",fullTitle:"Gasification for Low-grade Feedstock"},signatures:"Yong-Chil Seo, Md Tanvir Alam and Won-Seok Yang",authors:[{id:"213854",title:"Prof.",name:"Yong-Chil",middleName:null,surname:"Seo",slug:"yong-chil-seo",fullName:"Yong-Chil Seo"},{id:"213857",title:"Mr.",name:"Md Tanvir",middleName:null,surname:"Alam",slug:"md-tanvir-alam",fullName:"Md Tanvir Alam"},{id:"222321",title:"Dr.",name:"Won-Seok",middleName:null,surname:"Yang",slug:"won-seok-yang",fullName:"Won-Seok Yang"}]},{id:"52687",title:"Methods of Estimating Forest Biomass: A Review",slug:"methods-of-estimating-forest-biomass-a-review",totalDownloads:3448,totalCrossrefCites:9,totalDimensionsCites:14,abstract:"Forest plays a special role in carbon sequestration and thus mitigating climate change. However, the large uncertainty in biomass estimation is unable to meet the requirement of the accurate carbon accounting. The use of a suitable and rigor method to accurately estimate forest biomass is significant. Moreover, the world is increasingly facing the conflicting pressures of economic growth and environmental protection. Improving energy structure and vigorously developing biomass energy has become the development trend of energy utilization in the future. As energy plant is characterized by a large net accumulation of biomass. Therefore, the scientific evaluation of the size and potential of energy from plant also requires a suitable method for estimating biomass. Here, we reviewed the estimate methods, including allometric equation, mean biomass density, biomass expansion factor, geostatistics, etc. For each method, we will present background, rational, applicability, as well as estimation procedure by exemplifying a case. In this chapter, we argued that the new developed technique such as geo-statistics and remote sensing technique (e.g. LIDAR) would be the key tools to improve forest biomass estimation accuracy. However, prior to this, spatial variation of forest biomass at various levels should be explored using multi-source data and multi-approaches.",book:{id:"5393",slug:"biomass-volume-estimation-and-valorization-for-energy",title:"Biomass Volume Estimation and Valorization for Energy",fullTitle:"Biomass Volume Estimation and Valorization for Energy"},signatures:"Lei Shi and Shirong Liu",authors:[{id:"187616",title:"Associate Prof.",name:"Lei",middleName:null,surname:"Shi",slug:"lei-shi",fullName:"Lei Shi"},{id:"194544",title:"Prof.",name:"Shirong",middleName:null,surname:"Liu",slug:"shirong-liu",fullName:"Shirong Liu"}]},{id:"52751",title:"Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals",slug:"biomass-compositional-analysis-for-conversion-to-renewable-fuels-and-chemicals",totalDownloads:2882,totalCrossrefCites:14,totalDimensionsCites:30,abstract:"As the world continues to deplete its nonrenewable resources, there has begun a shift toward using renewable materials for the production of fuels and chemicals. Terrestrial biomass, as well as municipal solid wastes, provides renewable feedstocks for fuel and chemical production. However, one of the major challenges to using biomass as a feedstock for fuel and chemical production is the great amount of innate variability between different biomass types and within individual biomass species. This inconsistency arises from varied growth and harvesting conditions and presents challenges for conversion processes, which frequently require physically and chemically uniform materials. This chapter will examine intrinsic biomass compositional characteristics including cellulose, hemicellulose, lignin, extractives/volatiles, and ash for a wide array of biomass types. Additionally, extrinsic properties, such as moisture content and particle grind size, will be examined for their effect on biomass conversion to fuels using four major conversion processes: direct combustion, pyrolysis, hydrothermal liquefaction, and fermentation. A brief discussion on recent research for the production of building block chemicals from biomass will also be presented.",book:{id:"5393",slug:"biomass-volume-estimation-and-valorization-for-energy",title:"Biomass Volume Estimation and Valorization for Energy",fullTitle:"Biomass Volume Estimation and Valorization for Energy"},signatures:"C. Luke Williams, Rachel M. Emerson and Jaya Shankar Tumuluru",authors:[{id:"95803",title:"Dr.",name:"Jaya Shankar",middleName:null,surname:"Tumuluru",slug:"jaya-shankar-tumuluru",fullName:"Jaya Shankar Tumuluru"},{id:"187715",title:"Dr.",name:"C. Luke",middleName:null,surname:"Williams",slug:"c.-luke-williams",fullName:"C. Luke Williams"},{id:"194456",title:"MSc.",name:"Rachel M.",middleName:null,surname:"Emerson",slug:"rachel-m.-emerson",fullName:"Rachel M. Emerson"}]},{id:"52891",title:"Advances in the Application of Spectroscopic Techniques in the Biofuel Area over the Last Few Decades",slug:"advances-in-the-application-of-spectroscopic-techniques-in-the-biofuel-area-over-the-last-few-decade",totalDownloads:2642,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Guided by the instability of the oil market, as well as limited availability of and, especially, the environmental impacts of fossil fuels, the needs of the market for environmental-friendly energy sources have increased. However, as with any other product that is intended to place on the market, it is essential to ensure the quality of the fuel for successful marketing and acceptance by consumers. Spectroscopic techniques have been widely used for different purposes in the literature for the past decades, from biological applications to the measurement of the elemental composition of planets. From studies focused on biodiesel, bioethanol, biomass and biofuel in general, different spectroscopic techniques have also been applied in the area. The focus of this chapter is to elucidate what has been published in the last few decades over the subject, detailing the basic concepts of the main spectroscopic techniques applied and showing the results and developments over biofuel. The aim of the chapter is to achieve a set of information that can be used as a bigger compile of information of the state of the art regarding the theme.",book:{id:"5509",slug:"frontiers-in-bioenergy-and-biofuels",title:"Frontiers in Bioenergy and Biofuels",fullTitle:"Frontiers in Bioenergy and Biofuels"},signatures:"João Cajaiba Da Silva, Alex Queiroz, Alline Oliveira and Vinícius\nKartnaller",authors:[{id:"107106",title:"Prof.",name:"João",middleName:null,surname:"Cajaiba Da Silva",slug:"joao-cajaiba-da-silva",fullName:"João Cajaiba Da Silva"},{id:"192636",title:"MSc.",name:"Alex",middleName:null,surname:"Queiroz",slug:"alex-queiroz",fullName:"Alex Queiroz"},{id:"192637",title:"MSc.",name:"Alline",middleName:null,surname:"Oliveira",slug:"alline-oliveira",fullName:"Alline Oliveira"},{id:"192638",title:"M.Sc.",name:"Vinicius",middleName:null,surname:"Kartnaller",slug:"vinicius-kartnaller",fullName:"Vinicius Kartnaller"}]},{id:"62959",title:"Biogas for Clean Energy",slug:"biogas-for-clean-energy",totalDownloads:1690,totalCrossrefCites:2,totalDimensionsCites:8,abstract:"This chapter demonstrates a biogas renewable energy resource potential study for electric power generation from easily available biogas feedstock materials in four selected case study sites. Under this study, the site used in the model is a rural Kebele in Jama Woreda at 10.548° N, 39.33° E. The common biogas feedstocks considered under this study are animal slurry, human feces and jatropha byproducts whereas the biodiesel is considered from jatropha seed.",book:{id:"6839",slug:"anaerobic-digestion",title:"Anaerobic Digestion",fullTitle:"Anaerobic Digestion"},signatures:"Demsew Mitiku Teferra and Wondwosen Wubu",authors:[{id:"259485",title:"Mr.",name:"Demsew Mitiku",middleName:null,surname:"Teferra",slug:"demsew-mitiku-teferra",fullName:"Demsew Mitiku Teferra"}]}],onlineFirstChaptersFilter:{topicId:"763",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"