A simplified classification scheme of landslides applied in Taiwan.
\r\n\t
",isbn:"978-1-80356-777-8",printIsbn:"978-1-80356-776-1",pdfIsbn:"978-1-80356-778-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"84908e027f884ec3fcbaea42eb69b698",bookSignature:"Dr. Hayri Baytan Ozmen",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11524.jpg",keywords:"Computational Intelligence, Fuzzy Clustering, Fuzzy Sets Theory, Genetic Algorithm, Neural Network, Artificial Intelligence, Decision Making, Control Theory, Computer-Aided Diagnosis, Fuzzy Optimization, Pattern Recognition, Feature Extraction",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 1st 2022",dateEndSecondStepPublish:"April 29th 2022",dateEndThirdStepPublish:"June 28th 2022",dateEndFourthStepPublish:"September 16th 2022",dateEndFifthStepPublish:"November 15th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Researcher with more than sixty-five research papers published in international journals and has been involved in more than ten national and international research projects. He is the editor-in-chief of an international journal on materials and structural engineering.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen",profilePictureURL:"https://mts.intechopen.com/storage/users/198122/images/system/198122.png",biography:"Dr. Hayri Baytan Ozmen is currently an associate professor in the Department of Civil Engineering, Usak University, Turkey. He graduated from the Civil Engineering Department of the Middle East Technical University, Turkey, in 2001. He received his PhD in the same field from Pamukkale University in 2011. His research interests includes reinforced concrete structures, earthquake engineering, seismic evaluation, and retrofit. He has more than sixty-five research papers published in international journals and conferences and has conducted and been involved in more than ten national and international research projects. He performed seismic evaluation or design of seismic retrofit systems for more than 150 RC buildings and provided consultancy for structural engineering studies. He is the editor in chief of an international journal on materials and structural engineering.",institutionString:"Usak University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Usak University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347259",firstName:"Karmen",lastName:"Daleta",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"karmen@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51197",title:"Quantum Walks",doi:"10.5772/62481",slug:"quantum-walks",body:'\nQuantum walks (QWs) are mathematical models on graphs whose systems repeatedly update according to time-evolution rules. They have been in an emerging field which describes the quantum world. Experts in mathematics, physics, and information theory have been interested in them and to study QWs, and a lot of fascinating properties of QWs have been discovered. Historically, QWs were independently introduced in science from several view points; mathematics in 1988 [1], physics in 1993 [2], and computer science in 1996 [3]. After a while, they began to get attention around 2000. Since QWs can be considered as quantum counterparts of random walks in mathematics, they are also called quantum random walks. The dynamics of QWs are similar to those of random walks in mathematical terms. But, whereas a random walker moves on a graph at random, a quantum walker spreads out as a wave on a graph. Although random walks are stochastic processes, QWs are different. They are unitary processes because the systems of quantum walkers get updated with unitary operators. In quantum physics, the update rules of QWs are interpreted as discretized models of Dirac equations. High dimensional Dirac equations are hard to solve even in numerics due to their complexities, and then we expect QWs to become alternative systems to solve the equations on computer. QWs also play an important role in quantum computers because they are quantum algorithms themselves. Indeed, some quantum algorithms based on QWs show quadratic speed-up, compared to the corresponding classical algorithms [4]. Such algorithms imply that quantum computers could give rise to excellent performance.
\nIn this chapter, we are going to be seeing mathematical aspects of the QWs, which will be described as limit theorems. We first observe a standard QW on the line in Sec.2 Then we shift our focus to time-dependent QWs on the line in Secs. 3 and 4.
\nWe start off with the description of a standard QW on the line. The system of the QW is defined in a tensor space of two Hilbert spaces. One is a Hilbert space ℋ
Customarily,
with\n\n
where
and an initial state
assuming the complex numbers
where the random variable
Probability distribution at time 500.
Time evolution of the probability distribution ℙ(
The definition of the standard QW on the line has been done. So, what are we curious about? One of the major studies on QWs is to know how their probability distributions behave after they have updated a lot of times. For the probability distribution of the QW defined in this section, one can assert a limit theorem which tells us an approximate behavior of the probability distribution ℙ(
This limit theorem, to be exact which was a theorem for a general unitary operator
Oppositely, we can obtain the coin states by inverse Fourier transformation,
This picture shows how the probability distribution at time 150 depends on the value of the parameter
Equation (2) gives the evolution of the Fourier transform,
with
The iteration by Eq. (12) connects the system at time
To prove the theorem, we concentrate on a convergence
with
It is known from probability theory that the convergence guarantees Eq. (8). Before we compute the limit, let us depict the
Noting that
we have
Integrating Eq. (19) over the interval [−
from which the
Here, let
The Fourier transform at time
which also gives a description of the derivative
where
Equations (23) and (24) change the integral picture in Eq. (21),
Dividing Eq. (26) by
and obtain a convergence as
Now what we need more has made sense. It is the eigensystem of the operator
from which a matrix representation follows,
The matrix contains two different eigenvalues
in which
from which the function
The normalized eigenvector associated to the eigenvalue
with its normalized factor
Back in Eq. (28), we put
Equation (36) allows us to hold Eq. (8).
\nNow that we have obtained a limit theorem for the QW whose operator was defined by
Theorem 1 can be extended for the parameter
Since we already had the limit theorem for the parameter
The negative sign in front of the operator
We should remark that Eq. (40) holds under the condition
Figure 4 shows an example of the limit density function.
\nWe see that the limit density function reproduces the features of the probability distribution shown in Figure 1.
\nThe limit density function (
In this section, we see a time-dependent QW whose coin-flip operator depends on time. The evolution of the QW is given by two unitary operators,
with
where
It is plane that the operators
Now, we are looking at examples of the probability distribution when the walker starts off with
The features, which we have seen in Figures 5 to 7 are caught by a limit theorem.
\nProbability distribution at time 500 (
This limit theorem was proved by Fourier analysis in 2010 [7]. First, we find the time evolution of the Fourier transform
which comes from Eq. (44). We should recall
Time evolution of the probability distribution (
The eigensystem of the matrix
These pictures show how the probability distribution at time 150 depends on the value of the parameters
Arranging the
we obtain the representations of the
Dividing these equations by time 2
which are combined as
As a result, we have
The Hilbert space ℋ
and one can find its eigenvalues
The normalized eigenvector associated to the eigenvalue
with
Here we compute
from Eq. (61). Putting
For the same reason as the proof for Theorem 1, this convergence promises Theorem 3. As mentioned earlier, if the parameters
Given an initial state with
We confirm that the function has two singularities at the points ±
Limit density function (
The standard QW in Sec.2 and the two-period time-dependent QW in Sec.3 have the same type of limit density function. In the final section, we see a three-period time-dependent QW and its limit density function. As a result, a different type of limit density function will be discovered. With a unitary operator
where
The 3-period time-dependent QW was studied by Grünbaum and Machida [8] when the unitary operator
with
We find a long-time limit theorem in the paper [8] and it asserts the convergence of a random variable rescaled by time
Probability distribution at time 500
Time evolution of the probability distribution
where
\n\nThis picture shows how the probability distribution at time 150 depends on the value of the parameter
and ℜ (
This limit theorem can be derived by Fourier analysis as well. For the Fourier transform
Given an orthogonal normalized basis such as Eq. (29), the matrix
has two eigenvalues
A possible expression of the normalized eigenvector associated to the eigenvalue
where
With a decomposition
and compute their derivatives
The moments
and we see
which is put together as
where
Setting
which guarantees Theorem 4. Figure 12 shows the limit density function (
Limit density function
The author is supported by JSPS Grant-in-Aid for Young Scientists (B) (No. 16K17648).
\nTaiwan has a land area of 36000 m2. 26.68% of the land areas are covered by plain region, whereas 27.31% are hilly and 46.01% are mountainous. By official definition for the purpose of land conservation management, hilly lands refer to the area under 100m but with a slope more than 5% or the area between 100m and 1000m. Mountainous lands refer to the area with an altitude above 1000m. Therefore, 73.32% of the areas are under conservation management. The complicated landscape of Taiwan is characterized by small drainage basins, highly fractured rock, high relief, and steep stream gradients. Frequent earthquakes due to the collision of Eurasian Plate and Philippine Sea Plate in eastern Taiwan further loosen the top surface of the land. Rock formations are highly fractured and jointed. Therefore the lands are particularly sensitive to episodic events such as typhoons and earthquakes, and various types of anthropogenic disturbance.
\n\t\t\tIn addition, Taiwan is located in tropical and sub-tropical zones, often suffering from heavy rainfalls, especially in the summer seasons with typhoons. The average annual rainfall of Taiwan is 2500 mm which is about three times the world average. Landslides are easily induced by the heavy rainfall come along with typhoons. These physiographic settings make Taiwan a fragile land, especially vulnerable to rainfall-induced landslides. The consequence is the sedimentation of the reservoirs. And the turbidity of the water in reservoirs becomes a major factor impacting the sustainable operation of water supply reservoirs in Taiwan. Landslides have to be recovered and their hazards have to be mitigated. The necessity of landslide survey is obvious.
\n\t\t\tAerial photo interpretation has long been adopted for landslide inventory (Liu et al., 2001). This conventional method is based on visual perception of colour tone and geomorphometric features of landslides on the aerial photographs. Both manual interpretation and automatic recognition of satellite images are also used. Most of the recent automatic classification methods of landslides using images are based on spectral features other than topographic features. Therefore, landslides cannot be correctly recognized. A recent study is to establish an interactive approach with a software interface for assisting visual interpretation of landslides (Lau et al., 2006). Both spectral and spatial parameters are employed for the inputs of the software to assist the interpreter/operator to correctly recognize and delineate landslides. Automatic recognition of landslides solely on basis of spectral information of digital images is efficient in terms of time consumption, whereas the results usually can not meet the requirements for taking engineering measures (Parise, 2001). Nevertheless, manual interpretation is too slow to meet the requirements for emergency response. A hybrid approach is to combine the advantages of automatic processes with manual interpretation. The extraction of gemorphometric parameters from airborne LiDAR data is thus considered for integrating in the interactive interface to assist the interpreter.
\n\t\t\tAirborne LiDAR is the state-of-the-art technology for efficiently taking high density and high resolution elevation data for a wide area. This feature is also suitable for emergency response or quick assessment of landslide disasters. Hsiao et al. (2005& 2006) shows that the integration of multi-temporal airborne LiDAR and aerial photography can give detailed change information of large-scaled deep-seated landslide as demonstrated by the Jiu-fen-er earthquake landslide. For establishing an interactive interface for assisting visual interpretation of landslides, morphometric parameters derived from LiDAR are required for setting the internal defaults (Lau et al., 2006). In this interface, four primary parameters are selected, namely the greenness, the slope angle, the object height model, and surface roughness. Normalized Vegetation Index (NDVI) is taken for denoting the greenness if colour IR digital aerial photography is applied.
\n\t\t\tFor these purposes, surveys were carried out with airborne LiDAR and digital camera to obtain digital terrain models (DTM) and digital surface models (DSM) of 1m grid and colour orthophotos of 50cm grid. DTM, DSM and orthophotos are georeferenced and transformed into the local coordinate system with Taiwan Datum 1997 (TWD97). Subsequently, the geomorphometric features of the landslides are analyzed. In this study, the geomorphometric characteristics of three selected events will be examined and these will be taken as reference values for setting the defaults in the software interface.
\n\t\tRainfall-induced landslides are in majority shallow-seated in the high relief terrains of Taiwan. Techniques of stereoscopic airphoto interpretation have been adopted for landslide inventory in Taiwan since 1973 when an aerial survey team was established under Agricultural Council of the government. Though it is labour intensive, it is believed to be reliable. The core spirit of this approach is the synergy of human perception to include both 2D and 3D features of the target and its environment. Any automated attempt should take this into account. Therefore, geomorphometric features of landslides constitute important ingredients in the automation process.
\n\t\t\tFor practical applications in the physiographic environments of Taiwan, the classification scheme of landslides developed by Varnes (1978) is simplified into five major categories, namely rock falls, shallow-seated landslides, deep-seated landslides, dip-slope and wedge slides, and debris flows. Thus, types of landslides can be differentiated by their physical appearance. It is especially useful for practical applications using remotely-sensed images.
\n\t\t\t\t\n\t\t\t\t\t\t\t | Type of Materials | \n\t\t\t\t\t\t|||
Bed rock | \n\t\t\t\t\t\t\tEngineering Soils | \n\t\t\t\t\t\t|||
Debris | \n\t\t\t\t\t\t\tSoils | \n\t\t\t\t\t\t|||
Falls | \n\t\t\t\t\t\t\tRock falls | \n\t\t\t\t\t\t\tShallow-seated slide | \n\t\t\t\t\t\t||
Topples | \n\t\t\t\t\t\t||||
Slide | \n\t\t\t\t\t\t\tTranslational | \n\t\t\t\t\t\t\tDip-slope and wedge slide | \n\t\t\t\t\t\t||
Rotational | \n\t\t\t\t\t\t\tDeep-seated slide | \n\t\t\t\t\t\t|||
Flows | \n\t\t\t\t\t\t\t(not applicable) | \n\t\t\t\t\t\t\tDebris flow | \n\t\t\t\t\t\t\t(not applicable) | \n\t\t\t\t\t\t
A simplified classification scheme of landslides applied in Taiwan.
There are 270 events of natural disasters in Taiwan in 50 years from 1958 to 2007 including categories of typhoons (71.1%), flooding (15%), earthquakes (8.5%), torrential rainfalls (2.2%), wind-storms (1.5%), mountain flooding (0.7%), and landslides (0.7%) (NFA, 2008). As shown in Figure 1, the frequency of natural disasters is in a trend of increasing. In total, 89% of the events are concerning with rainfall hazards and 97% of them are directly or indirectly concerning with landslides. Rainfall-landslides become a critical issue in managing natural distasters.
\n\t\t\t\tStatistics of natural disasters in Taiwan from 1958 to 2007
Remote sensing has been an important tool for landslide inventory. The physical appearance of landslides is the basis of the recognition of the boundary and the type of a landslide. However, the displaced materials of a rainfall-induced landslide are usually washed away from steep slopes. It remains only the fresh scars of the rupture surface. The fresh landslide scars emplacing at various slope gradients and various slope locations would normally include landslide types such as rock falls, debris slides, channel bank failures, and debris flows. In this study, the landslides concerned will cover all these types except debris flows. The exception is due to the reasoning that debris flows are triggered by a different mechanism with more contributions from flowing-water instead of gravity itself. In other words, debris flows can be treated as a transformation of other shallow-seated landslides when high concentration of rainfalls and liquefaction of displaced materials take place.
\n\t\t\tAir photo interpretation (API) is a process of understanding to associate shapes and pattern and other characteristics on vertical images with real features or phenomena on the ground. Interpretation by aerial photographs has been the most efficient and realistic way for identifying landslide topography in a wide area. Currently, researches in automatic extraction of landslides using images and digital elevation data become important topics (Barlow et al., 2003, Chang & Liu, 2004, Fernandes et al., 2004, Parise, 2001, Liu et al., 2008, Mantovani et al., 1996). However, visual interpretation by well-trained personnel is still believed to be more accurate and reliable than by computers. Interpretation process needs high skill and the results largely depend on the expertise of the interpreter. Sense of perception of a specific feature such as landslide can be acquired by practices and by an interpretation key describing visual signature characteristics of the object, including size, shape, pattern, tone, association, and texture. To minimize subjective factors of individual interpreters, cross checks should be implemented for a case covering a wide study area such as a few hundreds of aerial photographs. And, map making should be performed very carefully with, not only aerial photographs, but also site investigation.
\n\t\t\t\tThe procedures of the conventional API adopted for a wide area of landslide inventory usually include steps as follows:
\n\t\t\t\tAcquisition and preparation of aerial photographs of the study area.
. Aerial photograph interpretation (identifying landslide topography) – A stereoscope is used to pick up accurate landslide topography from aerial photographs. The scale of the panchromatic aerial photographs taken by the Aerial Survey Office of Forestry is about 1:20,000. Since 1976, about 20000 aerial photographs are taken every year. Photo index can be used for choosing the particular cloud-free photographs. Landslides with more than 50m in length were identified and their scarp, moving mass, internal structure, and moving direction are drawn with coloured pencils on the paper-printed photographs. A standard legend should be established.
Tracing the identified features on the topographic map – Tracing the features of landslides onto the topographic map by comparing identical landforms both on the photographs and the map. An original map of landslides is thus created.
(Digitization and drawing the final map – The landslide features are then digitized. Subsequently, landslide scarps and lineament structures are compiled and printed with a backdrop of conventional contour map in a GIS environment. These maps were examined and revised by the researchers.
Field check and update the attribute table from field records.
Ancillary materials for interpretation.
Final presentation and backups.
The second step of the API procedures is the most critical one where stereoscope is usually used to perceive the sense of 3D features and a well-trained interpreter should be acquainted with interpretation key for the study area.
The perception of landslides from a bird-eye view of aerial photographs is also largely depending on the scale or spatial resolution of the photographs. Landslides can not be mapped properly when they are smaller than a minimum mapping unit such as 5mm on the paper prints. Before 2008, the aerial photographs taken by Aerial Survey Office had been the conventional panchromatic photographs in a scale around 1:20000. Therefore, the minimum mapping unit of the landslides will be larger than 100m in the real ground. In general, four factors affect the quality of the mapping results, namely the scale, the time lag between the landslide event and the aerial photography, the type of film used, and the overall quality of the photographs. Table 2 shows the criteria used for the recognition of landslides on aerial photographs. The general feature of a rainfall-induced landslide is characterized by the fresh landslide scars in elongated shape and located in a relatively steep slope. It takes place in any kind of geology so long as there are some weathered overburdens. Features on aerial photographs include the bright tone, the bare surface, and the features shown in Table 2. Manual interpretation uses both 2D and 3D features of the landslides for recognition. The 2D features include tone, location, and shape. The 3D features include location, direction, slope, and shadow effects. A sound consideration of the automation of landslide recognition should be able to take care of all these aspects.
\n\t\t\t\tFeature | \n\t\t\t\t\t\t\tDescription | \n\t\t\t\t\t\t\tDiscrimination rule | \n\t\t\t\t\t\t
Tone | \n\t\t\t\t\t\t\tLight, grey light | \n\t\t\t\t\t\t\tBrightness"/Threshold | \n\t\t\t\t\t\t
Location | \n\t\t\t\t\t\t\tNear ridges, cut-off slopes, road-sides | \n\t\t\t\t\t\t\tTrigger events and buffer zone of the feature | \n\t\t\t\t\t\t
Shape | \n\t\t\t\t\t\t\tSpoon-shaped, elongated-oval, dentritic, rectangular, triangular | \n\t\t\t\t\t\t\tLocation-specific and topography-specific | \n\t\t\t\t\t\t
Direction | \n\t\t\t\t\t\t\tThe drop direction of the landslide is the gravitational vector on the ground surface. | \n\t\t\t\t\t\t\tRoughly perpendicular to the streams and t opography-specific | \n\t\t\t\t\t\t
Slope | \n\t\t\t\t\t\t\tDepend on types of landslides. E . G . S hallow-seated landslides "/ 45% ; Deep-seated landslides ~40% ; Debris flows ~10-20% . | \n\t\t\t\t\t\t\tSlope "/ Threshold | \n\t\t\t\t\t\t
Shadow | \n\t\t\t\t\t\t\tDepend on whether the l andslides are in shadow -side or sunny-side | \n\t\t\t\t\t\t\tSolar azimuth in related to slope aspect | \n\t\t\t\t\t\t
The criteria for the recognition of rainfall-induced landslides.
Obviously, geomorphometry has been applied in manual interpretation. Geomorphometry, the science of quantitative land surface analysis is also known as geomorphological analysis, terrain morphometry, terrain analysis, and land surface analysis (Hengl & Reuter, 2009). The aims of geomorphometry are to extract surface parameters and objects using input digital terrain models. Pike (1988) listed a dozen groups of parameters used as terrain descriptors using manually digitized digital terrain models and he used a resulting "geometric signature or topographic signature" to categorize terrain characteristics and suggested the degree of danger from landslides. Topographic signature of life and their processes are deemed to be strongly influenced by biota (Dietrich & Perron, 2006). Guth (2001& 2003) took terrain fabric as measures of a point property of the digital terrain models and the underlying topographic surface. This study is also known as topographic fingerprints (Densmore & Hovius, 2000) for characterizing the location of a landslide on the slope. The state-of-the-art technology of high resolution satellite images, digital aerial photography, and airborne LiDAR opens a new era in the automation of landslide recognition, especially the possibility of applying geomorphometrics. And, the extraction of land surface parameters becomes more and more attractive for both stochastic and process-based modelling, making use all the level of detailed digital terrain models.
\n\t\t\t\tIt is shown that the topographic-based analyses can be used to objectively delineate landslide features, generate mechanical inferences about landslide behaviour and evaluate relatively the recent activity of slides (McKean & Roering, 2004, Glen et al., 2006). Especially, surface roughness derived from LiDAR DTM allows an objective measurement of landslide topography. Eigenvalues of surface normals can be an effective parameter for differentiating shallow landslides and debris flows (Woodcock, 1977).
\n\t\t\t\tFor establishing an interactive interpretation software interface to assist the interpreter, it is clear that expert knowledge of the morphometric properties of landslides is required. And, data acquisition with the new sensors of aerial digital camera and LiDAR becomes feasible. Therefore, the general properties of slope angles, OHM and roughness of rainfall-induced landslides are included in this study.
\n\t\t\t\n\t\t\t\tFigure 2 shows some typical rainfall-induced landslides in Taiwan. Landslides are bare in high relief terrains with densely-vegetated surroundings. Typical modernized aerial survey system nowadays is equipped with a digital camera and a LiDAR sensor. The procedures of landslide inventory are subjected to change to adopt the new types of high resolution digital data. Thus, an interactive system for manual interpretation under a digital environment is required. Standard products generated by the new survey system include orthophoto, DTM and DSM. In addition to the functions for data management and manipulation in the interactive system, algorithms for automatic recognition of landslides are also required to assist or guide the interpreter for improving the efficiency.
\n\t\t\tTypical rainfall-induced landslides in Taiwan,
On basis of the experiences in airphoto interpretation and national landslide inventory, a man-machine interface is developed using windows software development tools including Visual Studio.NET, Borland C++ Builder, and OpenGL. Figure 3 is the flowchart of the interactive system which includes three data entries and four parameters. The entries and parameters will be modifies when more standard products are available. Parameters of roughness, OHM and Slope are derived from LiDAR data. Parameter 4 the greenness is derived from color orthophoto. These four parameters are used for highlighting potential areas of landslides by default settings of threshold for the parameters. Another option is to manually define training areas to obtain the threshold from the training sample.
\n\t\t\t\tThe visualization on the screen shows both 2D and 3D perspectives of the results (Figure 4). Final setting of parameter thresholds can be optimized visually. And finally, the interpreter can further edit the results of automated detection. Or, the interpreter can even carry out all the interpretation discarding the automated results. Finally, ground truth can be imported to compare with the results for accuracy assessment.
\n\t\t\t\tFor practical reasons, only four major parameters which can be easily derived from the standard aerial products available by a national agency are used for the automatic back-processing in the interactive system (Figure 3). Simple thresholds are used to highlight the potential landslides. For example, roughness < 5m, OHM < 10m, slope > 40 degrees, and greenness < -0.40. Default settings of thresholds are set on basis of geomorphometric analysis of rainfall-induced landslides for the specific area in related to physiographic conditions and the triggering event. Another option is to obtain the thresholds from the training sample. In this system, a landslide seed is located on the screen by the interpreter. The values of 25 pixels extracted from a 5x5 window centred at the assigned seed are used to calculate statistical means and standard deviations. Three times of the standard deviations are taken as the thresholds. Any pixel with a value within three standard deviations of the means will be assigned as a pixel of landslide. Thus, the omission and commission errors of landslide recognition can be minimized. In addition, the thresholds can be tuned interactively to see the correctness of matching between the landslide feature on the colour orthophoto and the highlighted area (Figure 4).
\n\t\t\tBecause rainfall-induced landslides of natural slopes are mostly covered by densely-vegetated surroundings, vegetation index will be critical for indicating the areas of bareness. The most popular one is the NDVI (Normalized Vegetation Index).
\n\t\t\t\twhere R stands for the grey value of Red band, and NIR stands for grey value of Near Infrared band. Theoretically, if the image digital values are calibrated to stand for the reflectance of the target, the NDVI can be widely applicable. However, the digital numbers of Red band and NIR band of digital aerial camera are not calibrated for this purpose. Therefore, the NDVI value is a relative indicator of biomass. NDVI can be applied for recent digital aerial cameras which usually includes an NIR band. If the colour aerial photographs include only RGB bands, an alternative of greenness parameter can be used. Greenness is also a relative indicator, of which the radiometric values are not normalized.
\n\t\t\t\twhere G is the grey value of Green band, and R is the grey value of Red band. The range of the values of NDVI and Greenness is between -1 and 1. Nevertheless, the range for those of landslides may change with natural weather, terrain conditions and type and settings of the camera sensor. A relative low value implies that the area of the pixel is low-vegetated or bare.
\n\t\t\t\tFlowchart of the interactive system.
Screen shots of the interactive system. (Left) Parameter settings; (Right) Accuracy assessment by comparing classified result with ground truth.
Three parameters are derived from airborne LiDAR DTM and DSM, namely the slope, the object height model (OHM) and the surface roughness. The factors in the mechanism of slope stability usually include slope angle, strength of materials, and pore water pressure (Turner & Schuster, 1996). If the slope gradient is high, the slope can be unstable. Slope is thus selected as the first parameter due to its importance and that it can be easily derived from DTM. There are two surfaces which can be easily defined by LiDAR-derived data. One is the digital terrain model (DTM) standing for the bare ground surface. The other is the digital surface model (DSM) standing for the upper envelope of all the objects above the bare ground surface. For an area of rainfall-induced landslide, the difference between these two well-defined surfaces can be minimal. Therefore, the OHM defined as the difference of these two surfaces can be a good parameter for automatic landslide recognition. It is straightforward that, due to the wash out or sliding, the surface of landslides in nature should be smoother than their surroundings. Surface roughness has been proved to be an objective and useful measurement of landslide topography (McKean & Roering, 2004, Woodcock, 1977, Glen et al., 2006).
\n\t\t\t\t(a) Slope
\n\t\t\t\tSlope angle of a landslide is the angle between the horizontal and the ground surface of the longitudinal axis of the landslide. Slope angle for each of the landslides can be determined by the slope angles derived from LiDAR DTM. If the surface of the ground is
\n\t\t\t\tthe slope (in radian) can be defined as.
\n\t\t\t\tIn common practice, the DTM is stored in grid form. The slope of a grid element such as Z5 in Figure 5 is computed by using a 3x3 moving window.
\n\t\t\t\tSlope calculation by a kernel of 3x3 moving window.
If the fluctuation of local height becomes too large due to the nature of LiDAR data or due to the nature of local relief, the resulted slope angles will be subjected to heavy noises with discontinuities of slope angles. It is therefore necessary to introduce an image processing method to resolve the problem. The first order of differentiation is applied for convolution operation with DTM. In the principle of image processing, a 2D (x, y) convolution is equivalent to two passes of 1D convolution of both (x) and (y). This simplification can be implemented more efficiently (Sharpnack & Akin, 1969, Parker, 1997). For example, formula (5) is a 1D Gaussian function and formula (6) is the first order of its derivative. Therefore, the slope formula in (4) can be implemented by convolution operations in both x and y directions with DTM grid.
\n\t\t\t\t(b) OHM
\n\t\t\t\tOHM is obtained by simply subtracting DTM from DSM for describing the height of objects above the bare ground. DTM is also referred to nDSM, i.e. normalized DSM, denoting the significance of the surface is tightly related to DSM. DTM is the bare ground surface excluding all objects above the ground. In forestry land, the difference between DSM and DTM can be referred to CHM (Canopy Height Model), denoting the general heights of the trees. The surface objects especially in forests are generally depleted in areas of landslides. Therefore, a minimal value of OHM can be expected in landslide areas.
\n\t\t\t\t(c) Surface Roughness
\n\t\t\t\tSurface roughness can be described by either the variance of DSM or OHM in a local window area. In this study, roughness is defined as one standard deviation in a 5x5 moving window on OHM for describing the relief variation in the local area. This can partly diminish the effects of landscape undulation. A 5x5 window is used for extraction the variance of the OHM values in the moving window and then the value of one standard deviation is used to stand for the surface roughness of the central pixel. In the areas of rainfall-induced landslides, the roughness will be lower than other areas due to the depletion of surface materials.
\n\t\t\tBecause slope angle, OHM, and roughness are generated from DTM, they are subject to the change of DTM grid-size. This poses a requirement to understand the possible scale effect due to the change of DTM grid-size for landslide areas (Claessens et al., 2005). A contraction of 1m grid is carried out to obtain grids of 5m, 10m, and 40m for comparison. A pixel on the grid will cover a larger area when the scale is smaller. There are two approaches for the contraction, namely pixel thinning and pixel aggregation. With pixel thinning, every nth pixel is kept. With pixel aggregation, the new pixels represent averages of the n pixels specified by the contracting factor. In Taiwan, DTMs of 5m, 10m and 40m grids are created on bases of photogrammetry. Therefore, pixel aggregation approach is used in this study for its comparability to image matching.
\n\t\t\tThe landslides induced by rainfall events in Shimen, Alishan and Ilan of northern, middle and eastern Taiwan are selected for this study. Figure 6 is the location map of the three study areas and the landslides of these areas due to the relevant events. Surveys were carried out with both sensors of airborne LiDAR and digital camera to DTM and DSM of 1m grid and orthophotos of 50cm grid. DTM, DSM and orthophotos are georeferenced, co-registered and transformed to the local coordinate system with Taiwan Datum 1997 (TWD97) for the analyses of the induced landslides.
\n\t\t\tThe location map of the study areas and the landslides of these areas.
Aerial surveys were conducted after rainfall events as shown in Table 3. Although the maximum rainfall in the period of Typhoon Longwang in Shimen was as small as 208 mm, this event was the one followed three larger events in three months of the same year, i.e. Haitang (504mm) on July 16, Matsa (818mm) on August 3, and Talim (384mm) on September 1. The event in Alishan was just a concentrated torrential rainfall. On 9th June 2006, the cumulative rainfall had reached 811mm in 24 hours and 1200 mm in 48 hours. Enormous amount of debris flows and slides took places. LiDAR data and aerial photographs were taken right after the event on 22nd June of 2006. There had been no records of heavy rainfall events one year prior to this event. The landslides observed with these datasets can be solely attributed to this rainfall event. Typhoon Kalmaegi on July 17 took place nine month after Typhoon Krosa on October 4 of 2007 in Ilan area. The rainfall took place after a dry and hot summer season. The occurrences of the three selected study areas are different.
\n\t\t\tName and size of s tudy area | \n\t\t\t\t\t\tDate of data acquisition | \n\t\t\t\t\t\tRainfall event | \n\t\t\t\t\t\tDate of the event | \n\t\t\t\t\t\tMaximum rainfall (mm) | \n\t\t\t\t\t
Shimen (48 sq. km) | \n\t\t\t\t\t\tJun. 17, 2006 | \n\t\t\t\t\t\tTyphoon Longwang | \n\t\t\t\t\t\tSept. 30, 2005 | \n\t\t\t\t\t\t208 | \n\t\t\t\t\t
Alishan (36 sq. km) | \n\t\t\t\t\t\tJun. 22, 2006 | \n\t\t\t\t\t\tTorrential rainfall | \n\t\t\t\t\t\tJun. 9, 2006 | \n\t\t\t\t\t\t1200 | \n\t\t\t\t\t
Ilan (4 sq. km) | \n\t\t\t\t\t\tNov. 4, 2008 | \n\t\t\t\t\t\tTyphoon Kalmaegi | \n\t\t\t\t\t\tJul. 17, 2008 | \n\t\t\t\t\t\t1100 | \n\t\t\t\t\t
Rainfall events related to the study areas
The orthophotos were then generated by the aerial photographs taken by direct-georeferencing technique and ortho-rectified by LiDAR DSM without using ground control points. Photography and laser scanning are synchronized. Because airborne LiDAR is equipped with GPS and IMU, an event mark is given when photography system triggers a transistor-transistor logic pulse. Thus, the instantaneous GPS and IMU information can be used to resolve the exterior orientation of the photo frame, i.e. x, y, z, ω, ψ, κ. Subsequently, the true-ortho ground surface model, i.e. LiDAR DSM, is used for the ortho-rectification of the central projected photograph.
\n\t\t\tLeica ALS50 airborne LiDAR system used in this study is consisted of 2 major parts, i.e. a laser scanning assembly and a Position and Orientation System (POS). The former one is for triggering laser pulses, controlling the range, the swath, the FOV, the scan rate and the pulse rate. These parameters decide how fast we can make a complete coverage of the survey area. The second part is critical to the positioning accuracy.
\n\t\t\tPoint density is an important indicator for the spatial resolution of LiDAR DTM and DSM. An understanding of the forest closure and crown density can be obtained by preliminary inspection of the point-density distribution of point clouds (Means et al., 2000; Naesset, 2002). In Alishan study area, the point density in average is around 2.3 points/m2 with ground point density of 0.6 points/m2. The upper envelope of the point clouds is interpolated to form DSM of 1m grid, whereas the point clouds that hit the bare ground or that are filtered to eliminate off-ground points are interpolated to form DTM. In other words, DTM denotes the bare ground surface. The accuracy of the DTM and DSM can be varied due to the change of land-cover types and density of vegetation. For assuring the accuracy, ground survey with total stations was carried out for 347 selected sample points. The RMSE is 0.82m, and mean error is 0.73m (Table 4). The error actually is a bias verified in the field check because this is due to the dense low bushes underneath the tree-canopies. This over-estimation of DTM is noteworthy especially for tropical and sub-tropical forest. In general, the accuracy of bare grounds is about 0.15m. Similarly, Shimen and Ilan areas were flown with looser point density of 1.5 points/m2 with ground point density of 0.45 points/m2.
\n\t\t\t\n\t\t\t\tFigure 7 is an example of a blown up of 1 square km of the Alishan study area. It is clearly shown that the landslide area can be enhanced on the OHM image where the landslide areas are with low OHM values.
\n\t\t\tLocations | \n\t\t\t\t\t\tSample size | \n\t\t\t\t\t\tAverage error (m) | \n\t\t\t\t\t\tRMSE (m) | \n\t\t\t\t\t\tStandard Error (m) | \n\t\t\t\t\t
Tree base | \n\t\t\t\t\t\t219 | \n\t\t\t\t\t\t0.70 | \n\t\t\t\t\t\t0.77 | \n\t\t\t\t\t\t0.33 | \n\t\t\t\t\t
Open Ground | \n\t\t\t\t\t\t128 | \n\t\t\t\t\t\t0.79 | \n\t\t\t\t\t\t0.90 | \n\t\t\t\t\t\t0.43 | \n\t\t\t\t\t
Total | \n\t\t\t\t\t\t347 | \n\t\t\t\t\t\t0. 73 | \n\t\t\t\t\t\t0.82 | \n\t\t\t\t\t\t0.37 | \n\t\t\t\t\t
Accuracy assessment of the DTM in forest lands.
Blown-up of a 1x1 km area of Alishan study area.
Greenness can be extracted from RBG orthophoto where the landslide area exhibits lower value (Figure 8C). Local slope can be calculated using 3rd finite difference algorithm (Figure 8D). OHM is a normalized height of objects above the bare ground surface. Because terrain effect has been removed, OHM exhibits a good appearance of landslides (Figure 8E). The roughness of landslide area is obviously lower than that of the environment (Figure 8F). In other words, the smoothness of landslide area is obviously higher than that of the environment.
\n\t\t\t\tIt also can be observed that the shaded-relief image of DSM gives a better contrast between landslides and their environments than that of DTM due to the contribution of the shading effect of the trees and other above-ground objects (Figure8A and B). In addition, The DSM-shaded image in nature is a true ortho-image, possessing the advantage of no occlusion of object shading when compared with orthophoto of the same area (Figure 7D). It is costly to process an orthophoto to a true orthophoto which needs to incorporate the correction of objects along with the terrain correction. Therefore, if airborne LiDAR survey is carried out alone without an integrated digital camera, the DSM-shaded image can be a good surrogate of panchromatic photograph for manual interpretation.
\n\t\t\tLandslides of the study areas (Figure 6) are obtained by manual interpretation of colour orthophotos of 50 cm grid and DSM-shaded images of 1m grid using the criteria of expert knowledge for conventional aerial photo interpretation.
\n\t\t\t\tThe total number of the rainfall-induced landslides in the 36 km2 in Alishan of middle Taiwan is 106 with a total coverage area around 1.29 km2. The landslide occurrence rate is around 4%. Statistically, 8% of the landslides have a longitudinal length of less than 30m; 36% between 30~60m; 67% less than 100m; 86% less than 150m. If more than 5 pixels are the minimum mapping unit for visual interpretation, usually more than 36% of the landslides will not be mapped using remotely-sensed images in medium resolution. The total number of landslides in Shimen of northern Taiwan is 200 with landslide coverage of 0.76 km2 in 48 km2 of study area. The landslide occurrence rate is around 1.4%, which is only one third of the rate in Alishan although the total number of landslides is more than that in Alishan. This implies that smaller consecutive rainfall events in Shimen area trigger more small landslides than that in Alishan area. This assertion can be further supported by the evidence observed in Ilan area of eastern Taiwan. The total number of landslides in Ilan area is 12 in 2 km2 of study area with landslide coverage of 0.14 km2. The landslide occurrence rate is around 7.0%. The average area of a landslide in Ilan area is also larger than that of Shimen area, yet comparable with that in Alishan area (Table 5).
\n\t\t\t\tResultant images.
Study area | \n\t\t\t\t\t\t\tTotal area (km 2 ) | \n\t\t\t\t\t\t\tTotal landslide area (km 2 ) | \n\t\t\t\t\t\t\tTotla number of landslides | \n\t\t\t\t\t\t\tLandslide occurrence rate (%) | \n\t\t\t\t\t\t\tAverage area of a landslide (m 2 ) | \n\t\t\t\t\t\t
Alishan | \n\t\t\t\t\t\t\t36 | \n\t\t\t\t\t\t\t1.29 | \n\t\t\t\t\t\t\t106 | \n\t\t\t\t\t\t\t4.0 | \n\t\t\t\t\t\t\t122 | \n\t\t\t\t\t\t
Shihmen | \n\t\t\t\t\t\t\t48 | \n\t\t\t\t\t\t\t0.76 | \n\t\t\t\t\t\t\t200 | \n\t\t\t\t\t\t\t1.4 | \n\t\t\t\t\t\t\t38 | \n\t\t\t\t\t\t
Ilan | \n\t\t\t\t\t\t\t2 | \n\t\t\t\t\t\t\t0.14 | \n\t\t\t\t\t\t\t12 | \n\t\t\t\t\t\t\t7.0 | \n\t\t\t\t\t\t\t117 | \n\t\t\t\t\t\t
Average | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t4.1 | \n\t\t\t\t\t\t\t92 | \n\t\t\t\t\t\t
Statistics of the landslide distribution of the study areas
Manually-interpreted landslides are overlaid with DTM/DSM derivatives to extract the selected geomorphometric parameters including slope angle of landslides, object height models, and surface roughness. Statistics of the landslides in Alishan area (Table 6) show that the mean slope angle of the areas covered by landslides is 40.99 degrees with one standard deviation of 14.14 degrees. In contrast, the mean slope of the whole study area is 33.97 degrees with a standard deviation of 15.71 degrees. Generally, average slope angle in landslide areas is higher than that of the whole area. Figure 9 shows that the peak of the curve of slopes of landslide areas is higher and when the slopes are more than 31 degrees the faction of landslide slopes is more than that of the general slopes. This tendency holds true for both Shimen and Ilan areas.
\n\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t | Slope (deg) | \n\t\t\t\t\t\t\tOHM (m) | \n\t\t\t\t\t\t\tRoughness (m) | \n\t\t\t\t\t\t|||
\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t | Whole area | \n\t\t\t\t\t\t\tSlide area | \n\t\t\t\t\t\t\tWhole area | \n\t\t\t\t\t\t\tSlide area | \n\t\t\t\t\t\t\tWhole area | \n\t\t\t\t\t\t\tSlide area | \n\t\t\t\t\t\t
Alishan | \n\t\t\t\t\t\t\tMean | \n\t\t\t\t\t\t\t33.97 | \n\t\t\t\t\t\t\t40.99 | \n\t\t\t\t\t\t\t14.31 | \n\t\t\t\t\t\t\t4.4 0 | \n\t\t\t\t\t\t\t3.25 | \n\t\t\t\t\t\t\t2.05 | \n\t\t\t\t\t\t
Std. Dev. | \n\t\t\t\t\t\t\t15.71 | \n\t\t\t\t\t\t\t14.14 | \n\t\t\t\t\t\t\t9.69 | \n\t\t\t\t\t\t\t6.3 0 | \n\t\t\t\t\t\t\t2.69 | \n\t\t\t\t\t\t\t2.56 | \n\t\t\t\t\t\t|
Shimen | \n\t\t\t\t\t\t\tMean | \n\t\t\t\t\t\t\t35.15 | \n\t\t\t\t\t\t\t43.79 | \n\t\t\t\t\t\t\t13.23 | \n\t\t\t\t\t\t\t2.15 0 | \n\t\t\t\t\t\t\t2.37 | \n\t\t\t\t\t\t\t1.48 | \n\t\t\t\t\t\t
Std. Dev. | \n\t\t\t\t\t\t\t14.28 | \n\t\t\t\t\t\t\t12.95 | \n\t\t\t\t\t\t\t8.01 | \n\t\t\t\t\t\t\t4.7 0 | \n\t\t\t\t\t\t\t1.87 | \n\t\t\t\t\t\t\t2.11 | \n\t\t\t\t\t\t|
Ilan | \n\t\t\t\t\t\t\tMean | \n\t\t\t\t\t\t\t29.00 | \n\t\t\t\t\t\t\t40.48 | \n\t\t\t\t\t\t\t10.20 | \n\t\t\t\t\t\t\t6.15 | \n\t\t\t\t\t\t\t2.55 | \n\t\t\t\t\t\t\t0.40 | \n\t\t\t\t\t\t
Std. Dev. | \n\t\t\t\t\t\t\t20.14 | \n\t\t\t\t\t\t\t13.14 | \n\t\t\t\t\t\t\t10.81 | \n\t\t\t\t\t\t\t8.32 | \n\t\t\t\t\t\t\t2.82 | \n\t\t\t\t\t\t\t1.32 | \n\t\t\t\t\t\t|
Average of the means | \n\t\t\t\t\t\t\t32.71 | \n\t\t\t\t\t\t\t41.75 | \n\t\t\t\t\t\t\t12.58 | \n\t\t\t\t\t\t\t4.23 | \n\t\t\t\t\t\t\t2.72 | \n\t\t\t\t\t\t\t1.31 | \n\t\t\t\t\t\t
Statistics of the geomorphommetric parameters of the rainfall-induced landslides.
The mean value of OHM of the landslide areas in Alishan is 4.40 m with one standard deviation of 6.3 m; whereas for the whole study area, they are 14.31 m and 9.69 m, respectively. OHM of landslide areas are obviously smaller than that of the surroundings where are vegetated with high forests (Figure 8E). Figure 9 shows that the distribution of OHM for the whole study area is in bi-modal with one additional peak between 10~31 m. The peak in the right side is a forestry peak representing the concentration of trees. The mean OHM of Shimen area is as small as 2.15m denoting a cleaning ground surface of the sliding areas, whereas the mean OHM of Ilan area is 6.15m denoting the landslide areas remain some tree residues above the ground surface.
\n\t\t\t\tStatistics of the three selected parameters of Alishan area.
The mean roughness of the landslide areas is 2.05 m whereas it is 3.25 m for the whole Alishan area. The cumulative curve of roughness shows that 83% of the landslides have a roughness less than 2m and 88% less than 3m. In general, the means of the landslide areas are less than those of the whole areas. This indicates that ground surface of landslide areas are significantly soother than their surroundings, reflecting the truth of Figure 8(F). The mean surface roughnesses for both of Shimen and Ilan areas are smaller than 2.0m which are even smaller than that of the Alishan area.
\n\t\t\t\tThe significance of these three morphometric parameters can also be perceived from the average of the means in Table 6 that the differences of the parameters of the whole test area are substantially different from that of the landslide areas.
\n\t\t\t\n\t\t\t\t\tTable 7 shows the statistics of slope angles, OHM, and roughness of landslides in DTM grids of 1 m, 5 m, 10 m, and 40 m, respectively. Two features can be observed in the table: (1) statistics of 40 m grid are obviously different from others; (2) the roughness in four different grids gives quite different values. The former one reflects the unreliability of the statistics when grid-size is comparable to the lengths of landslides (see also Figure 10). The later one shows that there is a significant relationship between surface roughness and grid-size. In other words, there is a scale effect for this parameter. The value of the parameter is changed along with the grid-size. These can be further observed from Figure 10. When the dimension of landslides is similar to or less than the dimension of DTM grid-size, the computed slope angles become unstable, maybe too big or too small. The OHM shows similar phenomena that in 40 m grid, the pixels become mixed cells, i.e. trees nearby the landslide give contribution to the OHM. Surface roughness exhibits changes in all different grid-sizes.
\n\t\t\t\tIt is noteworthy that there is no cell with a roughness of more than 22m for the curve of 40m grid. 22m is about the half of the 40m-gridsize. This shows that the distribution of roughness is scale-dependent. In short, DTM with a grid size smaller than 40m will not be suitable for analyzing the rainfall-induced landslides which are usually with an area smaller than 40x40m2 as demonstrated in this study (Table 5). Therefore, it should be carefully treated when applying DTM with different resolution for geomorphometric studies.
\n\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t | grid | \n\t\t\t\t\t\t\tgrid | \n\t\t\t\t\t\t\tgrid | \n\t\t\t\t\t\t\tgrid | \n\t\t\t\t\t\t
Slope | \n\t\t\t\t\t\t\tMean | \n\t\t\t\t\t\t\t40.99 | \n\t\t\t\t\t\t\t40.69 | \n\t\t\t\t\t\t\t40.25 | \n\t\t\t\t\t\t\t37.77 | \n\t\t\t\t\t\t
Std. Dev | \n\t\t\t\t\t\t\t14.14 | \n\t\t\t\t\t\t\t13.77 | \n\t\t\t\t\t\t\t13.44 | \n\t\t\t\t\t\t\t13.20 | \n\t\t\t\t\t\t|
OHM | \n\t\t\t\t\t\t\tMean | \n\t\t\t\t\t\t\t4.40 | \n\t\t\t\t\t\t\t4.86 | \n\t\t\t\t\t\t\t5.01 | \n\t\t\t\t\t\t\t6.61 | \n\t\t\t\t\t\t
Std. Dev | \n\t\t\t\t\t\t\t6.30 | \n\t\t\t\t\t\t\t5.99 | \n\t\t\t\t\t\t\t5.85 | \n\t\t\t\t\t\t\t5.90 | \n\t\t\t\t\t\t|
Roughness | \n\t\t\t\t\t\t\tMean | \n\t\t\t\t\t\t\t2.05 | \n\t\t\t\t\t\t\t7.06 | \n\t\t\t\t\t\t\t13.37 | \n\t\t\t\t\t\t\t33.96 | \n\t\t\t\t\t\t
Std. Dev | \n\t\t\t\t\t\t\t2.56 | \n\t\t\t\t\t\t\t4.66 | \n\t\t\t\t\t\t\t7.39 | \n\t\t\t\t\t\t\t7.38 | \n\t\t\t\t\t\t
Statistics of slope angles, OHM, and roughness of landslides in four grids.
Scale effects of slope, OHM and roughness derived from various grid-sizes
Conventional airphoto interpretation has long been adopted as a standard approach for reliable national mapping of landslides and it is still applied for this purpose in many places of the world including Taiwan. For establishing an interactive interpretation interface to assist the interpreter, expert knowledge of morphometric properties of landslides are required for entries to automatic detection algorithm to highlight the potential areas of landslides in the system. In this study, for understanding these properties, aerial surveys were carried out with airborne LiDAR and digital camera to obtain DTM and DSM of 1m grid and orthophotos of 50cm grid. The landslides induced after torrential rainfalls in middle, northern and eastern Taiwan are selected for this study. It is proved that the morphometric parameters of rainfall-induced landslides are useful in the automatic detection of landslides for highlighting the potential areas in the interactive system. However, they have to be defined in related to local conditions and the specific events triggering the landslides. It is also observed that scale effects are obvious for roughness but not for slope and OHM. The scale effect takes place when the DTM grid is comparable to the average size of landslides, i.e. 40m in this study.
\n\t\tThis study was sponsored by the grant of Council of Agriculture, Taiwan. Project ID is 95COA-12.1.1-S-a1.
\n\t\tThis is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12717},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11636",title:"Neuroplasticity - Visual Cortex Reorganization From Neurons to Maps",subtitle:null,isOpenForSubmission:!0,hash:"b306ce94998737c764d08736e76d60e1",slug:null,bookSignature:"Dr. Alyssa A Brewer and Dr. Brian Barton",coverURL:"https://cdn.intechopen.com/books/images_new/11636.jpg",editedByType:null,editors:[{id:"115304",title:"Dr.",name:"Alyssa",surname:"Brewer",slug:"alyssa-brewer",fullName:"Alyssa Brewer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11607",title:"Aquatic Plants - Biology and Environmental Impacts",subtitle:null,isOpenForSubmission:!0,hash:"9103c1501af58e2c24202646f15f0940",slug:null,bookSignature:"Dr. Abd El-Fatah Abomohra, Dr. Mei Li and Dr. Adel W. Almutairi",coverURL:"https://cdn.intechopen.com/books/images_new/11607.jpg",editedByType:null,editors:[{id:"186114",title:"Dr.",name:"Abdelfatah",surname:"Abomohra",slug:"abdelfatah-abomohra",fullName:"Abdelfatah Abomohra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11475",title:"Food Security Challenges and Approaches",subtitle:null,isOpenForSubmission:!0,hash:"090302a30e461cee643ec49675c811ec",slug:null,bookSignature:"Dr. Muhammad Haseeb Ahmad, Dr. Muhammad Imran and Dr. Muhammad Kamran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",editedByType:null,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",subtitle:null,isOpenForSubmission:!0,hash:"a58c7b02d07903004be70f744f2e1835",slug:null,bookSignature:"Prof. Mohamed Nageeb Rashed and Prof. Wafaa M. Abd El-Rahim",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",editedByType:null,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:81},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4428},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph