\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"7975",leadTitle:null,fullTitle:"Limb Amputation",title:"Limb Amputation",subtitle:null,reviewType:"peer-reviewed",abstract:"Patients often need to have limbs amputated to save them from advanced malignant neoplasms and severe limb infections, or due to the failure to repair severe limb trauma. However, efforts should be made to maintain limbs where possible, and to minimize loss of function if amputation is required. We provide the latest developments in limb amputation for this purpose. This book provides expert commentary on the following issues: cutting to prevent large-scale amputations in peripheral arterial disease and diabetes, optimal wound treatment in severe trauma, troubles of prostheses due to stump overgrowth in amputation in children.We hope this book will help physicians dealing with limb illness and trauma, and all amputee patients.",isbn:"978-1-78984-406-1",printIsbn:"978-1-78984-405-4",pdfIsbn:"978-1-83880-763-4",doi:"10.5772/intechopen.77805",price:100,priceEur:109,priceUsd:129,slug:"limb-amputation",numberOfPages:78,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"4cf345d93bc54587899c69ce6d3b07f2",bookSignature:"Masaki Fujioka",publishedDate:"February 26th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/7975.jpg",numberOfDownloads:4364,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:1,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:2,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 18th 2018",dateEndSecondStepPublish:"December 21st 2018",dateEndThirdStepPublish:"February 19th 2019",dateEndFourthStepPublish:"May 10th 2019",dateEndFifthStepPublish:"July 9th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"53197",title:"Prof.",name:"Masaki",middleName:null,surname:"Fujioka",slug:"masaki-fujioka",fullName:"Masaki Fujioka",profilePictureURL:"https://mts.intechopen.com/storage/users/53197/images/system/53197.png",biography:"Prof. Masaki Fujioka graduated from the Jichi Medical School-Six Year Medical Program in 1985. In 1998 he earned his Ph.D. degree from Nagasaki University, Graduate School of Medicine, Specialized in Plastic and Reconstructive Surgery. \n\nFrom 2005 to 2010 he served as a Senior Assistant Professor of Plastic Surgery at Nagasaki University and from 2003 to 2011 as a research fellow at the Clinical Research Center, National Nagasaki Medical Center. Since 2011 he has been serving as a Clinical Professor of Department of Plastic and Reconstructive Surgery, Nagasaki University and Director of Department of Surgical Therapeutics, Division of Functional Reconstructive Surgery at the National Hospital Organization Nagasaki Medical Center. Since 2003 he is also a Director of the Department of Plastic and Reconstructive Surgery, National Nagasaki Medical Center.\n\nHe is a member of the Japanese Society of Burn Injuries, Japan Society of Plastic and Reconstructive Surgery, Japan Society of Craniomaxillofacial Surgery, American Association for the Advancement of Science, Japan Society of pressure Ulcer, Japan Society of Wound Surgery, Wound healing Society.\n\nHis research interests include: Clinical research of skin substitute, Clinical treatment of compromised wound healing, Treatment of severe burn injury, Repair of maxillofacial deformity, Microsurgery\n \nIn 1989\the received the First Prize of Investigators Award, Japan Community Medicine Association, in 1996 First Prize of Investigators Award, Japan Community Medicine Association, in 2008 Best Investigator Award, the Japanese Society of Pressure Ulcer, Oura Award, in 2010 Ohtsuka Award, the Japanese Society of Pressure Ulcer, and in 2011 Speaker’s Award: An appreciation for the best oral presentation-Clinics. First International Symposium. Pediatric Wound Care.",institutionString:"National Hospital Organization Nagasaki Medical Center",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1150",title:"Orthopedics",slug:"orthopedics"}],chapters:[{id:"65986",title:"Introductory Chapter: General Remarks Regarding Limb Amputations",doi:"10.5772/intechopen.84673",slug:"introductory-chapter-general-remarks-regarding-limb-amputations",totalDownloads:671,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Masaki Fujioka",downloadPdfUrl:"/chapter/pdf-download/65986",previewPdfUrl:"/chapter/pdf-preview/65986",authors:[{id:"53197",title:"Prof.",name:"Masaki",surname:"Fujioka",slug:"masaki-fujioka",fullName:"Masaki Fujioka"}],corrections:null},{id:"68374",title:"A Retrospective Analysis of Amputation Risk Due to Diabetic Foot and Angioplasty and Free Flap Transfer to Reduce Major Amputation",doi:"10.5772/intechopen.88351",slug:"a-retrospective-analysis-of-amputation-risk-due-to-diabetic-foot-and-angioplasty-and-free-flap-trans",totalDownloads:1043,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Foot ulceration in persons with diabetes is the most frequent precursor to amputation, which impairs their activities. The aim of this chapter is to describe factors that lead to amputation of a diabetic foot, and propose a management strategy to prevent major amputation. I analyzed 233 patients who were admitted at the National Nagasaki Medical Center between 2008 and 2017 with foot ulcer and/or infection. We divided them into two groups: 152 patients with diabetes mellitus (DM) and 81 without DM. We analyzed their laboratory data, and evaluated the wound severity, complications of peripheral artery disease (PAD) and renal failure, and infection. Patients with DM ulcer were significantly more likely to receive amputation. Patients with DM were significantly more likely to develop infection, and tended to undergo emergency debridement. Among the patients with DM, the amputation group (85) showed significantly higher levels of CRP and WBC, and was more likely to develop infection, PAD, and renal failure. My results suggest that risk factors leading to leg amputation are severe infection and reduction of arterial blood flow. Early debridement to reduce infectious inflammation and angioplasty following free flap transfer are recommended to preserve legs.",signatures:"Masaki Fujioka",downloadPdfUrl:"/chapter/pdf-download/68374",previewPdfUrl:"/chapter/pdf-preview/68374",authors:[{id:"53197",title:"Prof.",name:"Masaki",surname:"Fujioka",slug:"masaki-fujioka",fullName:"Masaki Fujioka"}],corrections:null},{id:"66499",title:"Multidisciplinary Management of Severe Extremity Injuries",doi:"10.5772/intechopen.85544",slug:"multidisciplinary-management-of-severe-extremity-injuries",totalDownloads:1037,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Management of severe extremity injuries begins with controlling bleeding and stabilizing hemodynamics. There is no agreement regarding the selection of amputation or limb salvage for severe extremity injuries. The injury severity scoring system should be carefully and judiciously used. The important factor for the management of open fractures is how early the injured area of soft tissues is covered. Inappropriate management would increase complications and prolong the treatment period. Multidisciplinary management by specialists, in the emergency department, orthopedics, plastic surgery, vascular surgery, and rehabilitation, insisting on employing their own individual abilities as much as possible, would not only help to salvage limbs in severe extremity injuries but also provide highly satisfactory functional and aesthetic outcomes for patients.",signatures:"Mitsuru Nemoto",downloadPdfUrl:"/chapter/pdf-download/66499",previewPdfUrl:"/chapter/pdf-preview/66499",authors:[null],corrections:null},{id:"70383",title:"Scoring Systems in Major Extremity Traumas",doi:"10.5772/intechopen.85290",slug:"scoring-systems-in-major-extremity-traumas",totalDownloads:845,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In the emergency room, every mangled extremity presents with its unique features. Each case requires a different approach and special care, while a surgeon has almost always the same facilities and armamentarium in her/his own setting. Thanks to the advancements in the bone fixation technologies and microsurgical field, the attempts to salvage mangled or even amputated limbs have increased. However, it is still controversial how the decision should be made for salvage or amputation. That is why several scoring systems have been proposed based on retrospective analysis of this group of patients in order to generate a systematic approach and to optimize the outcome. Although they help the surgeon to decide salvation over amputation, or vice versa, the same scores in different patient populations should be interpreted meticulously, and the treatment plan should be established accordingly. The ultimate success is being able to make the most accurate decision possible, and this can be only achieved with experience and extensive knowledge along with sufficient surgical skills.",signatures:"Isil Akgun Demir and Semra Karsidag",downloadPdfUrl:"/chapter/pdf-download/70383",previewPdfUrl:"/chapter/pdf-preview/70383",authors:[null],corrections:null},{id:"70643",title:"Stump Overgrowth after Limb Amputation in Children",doi:"10.5772/intechopen.90532",slug:"stump-overgrowth-after-limb-amputation-in-children",totalDownloads:768,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Stump overgrowth is the most common complication after limb amputation in children. Its morbidity is relatively high, that required frequent revisions of the stump and prosthesis. The incidence of stump overgrowth varies in the literature; depending on different factors. The exact pathogenesis is unclear, many hypotheses have been suggested. The treatment is a challenge; simple excision of the bone is associated with recurrence and further shorting of the stump. Many options of treatment have been used. This paper is an up-to date literature review that includes the definition, incidence, pathogenesis, clinical presentation, radiographic diagnosis, and treatment options of stump overgrowth in children.",signatures:"Rami Jahmani and Dror Paley",downloadPdfUrl:"/chapter/pdf-download/70643",previewPdfUrl:"/chapter/pdf-preview/70643",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"938",title:"Recent Advances in Arthroplasty",subtitle:null,isOpenForSubmission:!1,hash:"617e868a5450ec0c9d233121177ca61e",slug:"recent-advances-in-arthroplasty",bookSignature:"Samo K. Fokter",coverURL:"https://cdn.intechopen.com/books/images_new/938.jpg",editedByType:"Edited by",editors:[{id:"68181",title:"Dr.",name:"Samo",surname:"Fokter",slug:"samo-fokter",fullName:"Samo Fokter"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5164",title:"Advanced Techniques in Bone Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"e99f852544eefac23fb5fe0697c2096d",slug:"advanced-techniques-in-bone-regeneration",bookSignature:"Alessandro Rozim Zorzi and Joao Batista de Miranda",coverURL:"https://cdn.intechopen.com/books/images_new/5164.jpg",editedByType:"Edited by",editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3394",title:"Arthroplasty",subtitle:"Update",isOpenForSubmission:!1,hash:"672aa53986638f5846f76ee8c8a1ea9e",slug:"arthroplasty-update",bookSignature:"Plamen Kinov",coverURL:"https://cdn.intechopen.com/books/images_new/3394.jpg",editedByType:"Edited by",editors:[{id:"64690",title:"Prof.",name:"Plamen",surname:"Kinov",slug:"plamen-kinov",fullName:"Plamen Kinov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5724",title:"Frailty and Sarcopenia",subtitle:"Onset, Development and Clinical Challenges",isOpenForSubmission:!1,hash:"3bddbdef3183cb7745a66525d1f93515",slug:"frailty-and-sarcopenia-onset-development-and-clinical-challenges",bookSignature:"Yannis Dionyssiotis",coverURL:"https://cdn.intechopen.com/books/images_new/5724.jpg",editedByType:"Edited by",editors:[{id:"76883",title:"PhD.",name:"Yannis",surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2088",title:"Recent Advances in Scoliosis",subtitle:null,isOpenForSubmission:!1,hash:"83cd4ebc741a8c3eb6dd08e5a6957181",slug:"recent-advances-in-scoliosis",bookSignature:"Theodoros B. Grivas",coverURL:"https://cdn.intechopen.com/books/images_new/2088.jpg",editedByType:"Edited by",editors:[{id:"35180",title:"Dr.",name:"Theodoros",surname:"Grivas",slug:"theodoros-grivas",fullName:"Theodoros Grivas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2012",title:"Recent Advances in Hip and Knee Arthroplasty",subtitle:null,isOpenForSubmission:!1,hash:"20ffb4ff9f89a7537b335291c94cda13",slug:"recent-advances-in-hip-and-knee-arthroplasty",bookSignature:"Samo K. Fokter",coverURL:"https://cdn.intechopen.com/books/images_new/2012.jpg",editedByType:"Edited by",editors:[{id:"68181",title:"Dr.",name:"Samo",surname:"Fokter",slug:"samo-fokter",fullName:"Samo Fokter"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"640",title:"Modern Arthroscopy",subtitle:null,isOpenForSubmission:!1,hash:"ad9afcdcfadbb0f3150016589356d633",slug:"modern-arthroscopy",bookSignature:"Jason L. Dragoo",coverURL:"https://cdn.intechopen.com/books/images_new/640.jpg",editedByType:"Edited by",editors:[{id:"77223",title:"Dr.",name:"Jason L.",surname:"Dragoo",slug:"jason-l.-dragoo",fullName:"Jason L. Dragoo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"535",title:"Achilles Tendon",subtitle:null,isOpenForSubmission:!1,hash:"afb551afd8adf63d63a7c0a2b9513652",slug:"achilles-tendon",bookSignature:"Andrej Čretnik",coverURL:"https://cdn.intechopen.com/books/images_new/535.jpg",editedByType:"Edited by",editors:[{id:"91518",title:"Prof.",name:"Andrej",surname:"Cretnik",slug:"andrej-cretnik",fullName:"Andrej Cretnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5228",title:"Pain Management",subtitle:null,isOpenForSubmission:!1,hash:"fff27606077f643a636f40d3bff7757b",slug:"pain-management",bookSignature:"Milica Prostran",coverURL:"https://cdn.intechopen.com/books/images_new/5228.jpg",editedByType:"Edited by",editors:[{id:"43919",title:"Prof.",name:"Milica",surname:"Prostran",slug:"milica-prostran",fullName:"Milica Prostran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4583",title:"Arthroplasty",subtitle:"A Comprehensive Review",isOpenForSubmission:!1,hash:"4246797b31dee20bcc75d12756ef97ba",slug:"arthroplasty-a-comprehensive-review",bookSignature:"Vaibhav Bagaria",coverURL:"https://cdn.intechopen.com/books/images_new/4583.jpg",editedByType:"Edited by",editors:[{id:"37266",title:"Dr.",name:"Vaibhav",surname:"Bagaria",slug:"vaibhav-bagaria",fullName:"Vaibhav Bagaria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-hypoxia-angiogenesis-and-atherogenesis",title:"Corrigendum to: Hypoxia, Angiogenesis and Atherogenesis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79243.pdf\r\n",downloadPdfUrl:"/chapter/pdf-download/79243",previewPdfUrl:"/chapter/pdf-preview/79243",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79243",risUrl:"/chapter/ris/79243",chapter:{id:"53523",slug:"hypoxia-angiogenesis-and-atherogenesis",signatures:"Lamia Heikal and Gordon Ferns",dateSubmitted:"September 6th 2016",dateReviewed:"November 3rd 2016",datePrePublished:null,datePublished:"April 5th 2017",book:{id:"5682",title:"Physiologic and Pathologic Angiogenesis",subtitle:"Signaling Mechanisms and Targeted Therapy",fullTitle:"Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy",slug:"physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy",publishedDate:"April 5th 2017",bookSignature:"Dan Simionescu and Agneta Simionescu",coverURL:"https://cdn.intechopen.com/books/images_new/5682.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"66196",title:"Dr.",name:"Dan",middleName:"T.",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"195461",title:"Dr.",name:"Lamia",middleName:null,surname:"Heikal",fullName:"Lamia Heikal",slug:"lamia-heikal",email:"l.heikal@bsms.ac.uk",position:null,institution:{name:"Brighton and Sussex Medical School",institutionURL:null,country:{name:"United Kingdom"}}},{id:"199995",title:"Prof.",name:"Gordon",middleName:null,surname:"Ferns",fullName:"Gordon Ferns",slug:"gordon-ferns",email:"g.ferns@bsms.ac.uk",position:null,institution:{name:"University of Sussex",institutionURL:null,country:{name:"United Kingdom"}}}]}},chapter:{id:"53523",slug:"hypoxia-angiogenesis-and-atherogenesis",signatures:"Lamia Heikal and Gordon Ferns",dateSubmitted:"September 6th 2016",dateReviewed:"November 3rd 2016",datePrePublished:null,datePublished:"April 5th 2017",book:{id:"5682",title:"Physiologic and Pathologic Angiogenesis",subtitle:"Signaling Mechanisms and Targeted Therapy",fullTitle:"Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy",slug:"physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy",publishedDate:"April 5th 2017",bookSignature:"Dan Simionescu and Agneta Simionescu",coverURL:"https://cdn.intechopen.com/books/images_new/5682.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"66196",title:"Dr.",name:"Dan",middleName:"T.",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"195461",title:"Dr.",name:"Lamia",middleName:null,surname:"Heikal",fullName:"Lamia Heikal",slug:"lamia-heikal",email:"l.heikal@bsms.ac.uk",position:null,institution:{name:"Brighton and Sussex Medical School",institutionURL:null,country:{name:"United Kingdom"}}},{id:"199995",title:"Prof.",name:"Gordon",middleName:null,surname:"Ferns",fullName:"Gordon Ferns",slug:"gordon-ferns",email:"g.ferns@bsms.ac.uk",position:null,institution:{name:"University of Sussex",institutionURL:null,country:{name:"United Kingdom"}}}]},book:{id:"5682",title:"Physiologic and Pathologic Angiogenesis",subtitle:"Signaling Mechanisms and Targeted Therapy",fullTitle:"Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy",slug:"physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy",publishedDate:"April 5th 2017",bookSignature:"Dan Simionescu and Agneta Simionescu",coverURL:"https://cdn.intechopen.com/books/images_new/5682.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"66196",title:"Dr.",name:"Dan",middleName:"T.",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11478",leadTitle:null,title:"Recent Advances in the Study of Dyslexia",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book will focus on the implications of dyslexia for teacher education and schools. Existing research demonstrates that many pre-service teachers experience discrimination during periods of practical training in schools. Educational standards tend to be defined by high standards in literacy and therefore dyslexic pre-service teachers are often perceived as being a risk to schools, particularly when overall school effectiveness is determined based on learners' attainment in reading and writing. There is an ableist discourse in education that results in the marginalisation of those with disabilities. However, rather than being a threat to standards, teachers with dyslexia bring unique strengths to the classroom. They are often creative, they think laterally and they can adapt lessons and tasks automatically to meet the needs of learners with special educational needs, disabilities, and those with English as an additional language. This book explores the challenges associated with being a dyslexic pre-service teacher, both in the university context and school contexts. It considers the implications for teacher education providers in relation to the teacher education curriculum, mentoring, and school placements. In addition, it considers evidence-based strategies to support dyslexic children and young people in schools.
",isbn:"978-1-83969-551-3",printIsbn:"978-1-83969-550-6",pdfIsbn:"978-1-83969-552-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"26764a18c6b776698823e0e1c3022d2f",bookSignature:"Prof. Jonathan Glazzard",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",keywords:"Dyslexia, Learning Disabilities, Inclusivity, Inclusive Teaching, Pre-service Teacher, Teaching Practice, Mentors, University Education, Student–Teacher, Schools, Impact, Evidence-Based Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 26th 2022",dateEndSecondStepPublish:"June 30th 2022",dateEndThirdStepPublish:"August 29th 2022",dateEndFourthStepPublish:"November 17th 2022",dateEndFifthStepPublish:"January 16th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Professor Glazzard has been recognised as a National Teaching Fellow for his contribution to UK higher education. He is a co-convenor of the British Educational Research Association (BERA) Special Interest Group, Mental Health and Wellbeing in Education.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"294281",title:"Prof.",name:"Jonathan",middleName:null,surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard",profilePictureURL:"https://mts.intechopen.com/storage/users/294281/images/system/294281.png",biography:"Professor Jonathan Glazzard’s research focuses on mental health, well-being and inclusion in education. He is a qualitative researcher and uses a broad range of approaches, including narrative methodology, visual/participatory methods and more traditional interviews and focus groups. Jonathan’s recent projects include exploration of head teacher resilience, teacher and child mental health and the experiences of teachers who identify as LGBTQ+. Jonathan is a co-convenor of the British Educational Research Association (BERA) Special Interest Group, Mental Health and Wellbeing in Education. He is also a member of the Excellence in International Transitions Research, which is led by Professor Divya Jindal-Snape. Jonathan is deeply committed to research that advances social justice. He has widely published on aspects of inclusion and social justice for marginalised groups and individuals, and he is deeply committed to research that improves the lives of individuals and research-informed teaching.",institutionString:"Edge Hill University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Edge Hill University",institutionURL:null,country:{name:"United Kingdom"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10228",title:"Dyslexia",subtitle:null,isOpenForSubmission:!1,hash:"6b4060d23ac02fcb4a11313ec1c911c6",slug:"dyslexia",bookSignature:"Jonathan Glazzard and Samuel Stones",coverURL:"https://cdn.intechopen.com/books/images_new/10228.jpg",editedByType:"Edited by",editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde Dorthea Grindvik",surname:"Nielsen",slug:"hilde-dorthea-grindvik-nielsen",fullName:"Hilde Dorthea Grindvik Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"50169",title:"The Role of Immune Reactivity in Bone Regeneration",doi:"10.5772/62476",slug:"the-role-of-immune-reactivity-in-bone-regeneration",body:'\nBone injuries are frequent occurrences in daily life. Considering Germany as an example for a country with a health system guaranteeing treatment for fracture patients at a high standard, fractures of the extremities ranged between 560,000 and 640,000 cases per year over the past 10 years, with around 150,000 fractures of the femur and tibia, respectively (Figure 1). The statistical federal ministry recorded 802,662 fractures in Germany in the year 2014 (Statistisches Bundes-amt, Wiesbaden, 2016-01-11). These numbers can be split up even further by age, where 38% of the patients with fractures of the extremities were older than 75 years, 33% between the age of 50 and 75 years, 16% between 25 and 50 years, and only 13% were younger than 25 years (Figure 2A, B).
\nFracture incidence in Germany (Gesundheitsberichterstattung des Bundes, 2016-01-11)—fractures of hand, arm, shoulder, leg and foot—incidence for 2004–2014.
Even in an environment with a good healthcare system and the normally very good healing potential of bone, 10–20% of all fracture patients still experience a delayed or nonunion after osseous injury [1–3] (Figure 2C). To overcome these delays in healing or reduce the nonhealing ratio, further research to gain understanding on the causes of healing delay or lack of healing is essential to enable new treatment strategies that support bone regeneration even under compromised conditions. With respect to the development of our population, the research into fracture treatment strategies becomes even more important as demography predicts an aging of the population. In Europe, it is Germany with the highest percentage of people over 65 years of age, and this percentage is rising (Figure 2A). In 1990, about 15% of the Germans were older than 65 years, and in 2011, this percentage had grown to 21% of people being over 65 years old (Statistisches Bundesamt, Eurostat 2011). This is important because the fracture incidence is higher in elderly people (Figure 2B). The demographic projection of the UN World Population Projections for the years up to 2025 foresees an increase of over 50-year-old people of 20%, which equals 219 million people in 2025. Further stratifying this by age groups, the highest growth of 32% is expected for people aged 80 years or older. Consequently, the fracture incidence in elderly will increase by 28% of the 4.5 million fractures estimated for 2025. With this high number of fracture patients with an advanced age, it is eminent to consider age-related alterations that might influence the capacity of osseous tissue to regenerate normally. With increasing age, it is the immune system that undergoes major transformation influencing bone regeneration considerably. To provide adequate treatment options, it is essential to unravel the interactions of the immune and skeletal system.
\n(A) Age distribution in Germany 2014 and (B) fracture incidence according to designated age groups. (C) Unsatisfactory healing results in fracture patients in corresponding age groups are shown, this includes malalignment, delayed healing and pseudarthrosis (nonunion) (M84 classification) (based on Statistisches Bundesamt, Wiesbaden 2016).
Bone is a remarkable organ because it is capable of regeneration and complete restoration of the osseous integrity both in form and function. Bone repair and fracture healing are unique because they recapitulate many of the ontological events that occur during the embryological development of the skeleton [4, 5]. To reach the “restitutio ad integrum,” bone provides two mechanisms of scarless healing and regeneration: primary and secondary bone healing. Primary bone healing is only possible when the bone fragments are realigned anatomically, and the fracture zone is held under compression by an adequate fixation without a gap between the bony ends (Figure 3A). Stable fixation and no relative movement are required when basic multicellular units consisting of cutting cones with osteoclasts and following bone-forming osteoblasts cross the fracture line to directly rebuild bone and thus re-establishing the osseous integrity at the fracture side [6, 7]. During this process, the new bone is directly organized as osteons and oriented along the dominant mechanical loading direction [8, 9]. Primary bone healing was for a long time considered as the best possible healing process and thus was the aim when fractured bone was clinically treated [10].
\nX-ray images from fracture patients: (A) fracture treated with an open reposition and internal fixation (ORIP) procedure with correct anatomical reconstruction of the fracture ends without fracture gap consistency—the bone will heal without callus formation through primary bone healing. (B) Comminuted fracture treated with an internal nail. Several gaps between the fractured bone ends remain and healing takes place by secondary bone healing as the callus visible in the image B2 taken 3 months after treatment clearly shows.
Secondary bone healing occurs whenever a gap persists between the fractured ends or when there is instability and thus interfragmentary movement (Figure 3B). This for example is the case if anatomical repositioning is not possible due to comminuted fractures or large bone defects. In secondary bone healing, a substitute tissue is formed to regain stability as fast as possible: an intermediate cartilage callus ensues. While intramembranous bone formation starts to consolidate the injured bone in the periosteal regions of the fracture gap, endochondral ossification processes start with the formation of cartilage islands in the gap between the fracture ends, forming an intermediate soft callus. Cartilage mineralization starts the woven bone formation process, which results in a hard callus. The final remodeling then restores the form of the continuous bone [11]. The intermediate cartilage step that provides a fast regaining of stability and reduces any interfragmentary movements often has a larger diameter than the original bone, especially if, as it would occur in nature, the bone remains untreated. It provides an increased polar moment of inertia against torsion and also withstands bending loads [12, 13]. While the large callus provides an evolutionary advantage to quickly regain mobility, it can be prevented in clinical settings by a stable fixation of the fractured bone [14].
\nIn the wild, a fractured long bone often leads to death of the injured animal. However, it seems that the younger the animal is when the fracture occurs, the higher are the chances of survival [15]. If an animal survives a long bone fracture, the bones most likely heals with a severe misalignment. The potent remodeling capacity of the bones will however strive to restore the mechanically defined form of the bone, which is dictated by the surface strains the bone sense during physiological activities.
\nIn our society, most fractures are treated in such an efficient way that only in rare cases bone fractures lead to death. Fracture treatment in the form of stabilizing the fractured bone goes back at least to 2400 years before Christ as excavated mummies from an Egyptian tomb proved. Prof. G. Elliott Smith discovered the splintered bones during the Hearst Egyptian expedition at Naga-ed-Der in 1903 on two mummies [16]. Both died shortly after the fracture because no healing signs were observed on the bones even though the Egyptians seemed to have reached some proficiency in fracture treatment as other relicts with healed fractures, found later on, could prove. In most cases, healed femoral fractures showed limb shortening or deformation, whereas forearm fractures healed well, demonstrating the challenge of reestablishing weight bearing capacity with the fracture treatment. An Arab surgeon, El Zahrawi (936–1013 AD) described in his treatise “The Surgery” a splinting technique, which was used for a long time, consisting of several layers of bandages combined with splints to provide stability for the fractured limb [17]—a fracture treatment also described by Hippocrates and Celsus [18] and one that is to an extend still valid today.
\nIn the early 1770, first records on internal fracture fixation using ligatures or wire fixation are reported from France [19]. This was followed by the introduction of screws around 1850, again in France [20], and the development of plate fixation reported in 1886 by Hansmann [21] of Hamburg.
\nRobert Danis (1880–1962) furthered the development of the concept of internal fixation to permit functional rehabilitation. He stated that an osteosynthesis is not entirely successful until it provides immediate mobilization, complete restoration of the form of the bone, and enables primary bone healing without the formation of a callus. This thesis was published in “Danis R.:
Even with these tremendous progresses in fracture treatment, there are still several open questions concerning the treatment regimen: mal-fixation with too stable or too unstable fixation [22–25], critical gap size [26, 27], a deficit in angiogenesis together with the formation of atrophic pseudarthrosis [28–31], and deficits in the control of the inflammatory cascades [32–34] are challenging clinical situations that still lead to unsatisfactory healing results for patients and surgeons as well.
\nBone is not simply a hard nonorganic material that functions as an anchor for muscles and tendons providing stability and form for our bodies and enabling movement through the interplay of our musculoskeletal system; it is also protecting vital organs, such as the brain, lungs, and heart, and it is a living organ regulating homeostasis. Additionally, it is an organ that is essential for our immune system, as these cells arise and/or mature from stem cells in the bone marrow, it is also an organ that interacts with our hormonal balance through a multitude of factors, including the hormone osteocalcin [35], and acts as a storage not only for calcium, phosphate, and magnesium but also for growth factors, as for example transforming growth factor-β (TGF-β).
\nBone healing is a complex process that involves a variety of different cells and signaling molecules, which originate not only from the bone, and here specifically from the periosteum, the cortical or cancellous bone, the endosteum and the bone marrow, but also from surrounding muscle tissue (Figure 4). An important supplier for cells and signals is the vasculature and thus the blood as a carrier. Bone is a very well-vascularized organ. Osteons are tube-shaped structures within the bone with an open space for blood vessels, veins, and nerves in the center. Small capillaries are found in the bone marrow near the endosteum, which continue into arterioles and sinusoids (with fenestrated basal membranes) towards the center where a large artery and central sinusoid transverse longitudinally through the bone marrow space [36]. Through the vessel connectivity, any osseous injury is prone to be influenced by systemic effects and vice versa to influence the systemic homeostasis. For example, the callus formation of injured bone is heightened in patients with traumatic brain injury. In this case, systemic changes caused by the brain injury influence the bone healing, most likely due to a competition for nutrients between the two injury sites and an altered hormone homeostasis [37, 38]. Another systemic effect that is most likely communicated to the bone is a change in the inflammatory state of an injured person—a higher systemic inflammatory reactivity will disturb the bone healing process and prolong the healing time necessary to achieve bridging [39]. Upon fracture, the vascular system of the bone is disrupted at the injury site, and it is imperative that revascularization swiftly occurs in order for a successful healing process. Tissue formation relies on the supply through the vasculature with oxygen, nutrients, signaling molecules and cells [29, 31, 40–42]. Restoration of the vasculature also enables cell recruitment of circulating regenerative cells towards the fracture site [41–44].
\nThe cells partaking in the bone healing process do not only originate from the bone itself, but they also migrate out of different cell sources, which contribute finally to the healing process. A rich cell source for cells contributing to bone healing after injury is the periosteum as well as the bone marrow from where cells are attracted to migrate towards the injury site [45–47]. The muscle surrounding the fractured bone is also a valuable source for growth factors and stem cells, promoting revascularization and thus the bone healing process [48].
\nOn analyzing bone healing, it is important to keep in mind that there are several different compartments involved, including the bone itself, the medullary cavity, the surrounding muscle and connective tissue, the blood supply, the metabolism, and the immune system.
\nThe fracture healing process itself is a strictly controlled complex process composed of consecutive and partly overlapping phases, which progress towards rebuilding bone integrity in form and function. Different cell types (immune cells, progenitor cells, and mesenchymal cells) [11] and their signaling molecules (cytokines, growth factors, and chemokines) [49] are partaking during a successful regenerative process.
\nSeveral growth factors involved in the healing cascade are currently under investigation to develop new therapeutic approaches to enhance bone healing: fibroblast growth factor [50], insulin-like growth factor [51], platelet-derived growth factor [52], transforming growth factor-β [53], vascular endothelial growth factor [50], and growth and differentiation factor 5 [54, 55]. However, the only growth factors so far clinically applied to further bone healing are bone morphogenetic protein 2 and 7 [56, 57].
\nThe bone healing process can be roughly divided according to the healing steps into an inflammatory phase, a soft callus phase, and a hard callus phase (Figure 5). Upon closer observation, however, it becomes apparent that the healing process is more complicated than that. A more in-depth sequence of the healing cascade would be hematoma phase, proinflammatory phase, hypoxic phase, anti-inflammatory phase, revascularization phase, organized connective tissue phase, cartilage phase, hypertrophic cartilage phase, revascularization phase, cartilage mineralization phase, woven bone formation phase and remodeling phase [58].
\nFracture healing cascade: On closer examination, the inflammatory phase can be divided into at least six consecutive and partly overlapping phases showing the transition from the hematoma (red blood cells with some lymphocytes with dark stained nuclei) towards fibrocytes in the organized connective tissue (hematoxylin–eosin staining, different magnifications and an immunohistological staining for alpha smooth muscle for the revascularization phase). Soft callus phase can be divided into three phases (Movat pentachrome staining and Safranin van Kossa staining for the revascularization). The hard callus phase is divided into cartilage mineralization, woven bone formation and remodeling (Movat pentachrome staining).
Due to the complexity of the bone healing cascade with the multitude of different cell types involved and the plethora of tightly interacting and simultaneously highly controlled signaling molecules aiming to rebuild an organ consisting of periosteum, cortical bone, endosteum, and bone marrow in a way that optimally withstands the ruling mechanical strains, the process of bone regeneration is so far not understood. Therefore, research is compelled to use heuristic approaches to gain a more in-depth understanding and in conclusion develop new treatment approaches for patients in need.
\nFor a long time, bone homeostasis was explained with the balanced interaction of bone-forming osteoblasts and bone resorbing osteoclasts (Figure 4), however, this simple concept has changed. The interconnectivity of the skeletal system and the immune system has come into the focus of current research, consecutively leading to the founding of the new research field of “osteoimmunology.” This new research field aims to elucidate the complex interactions between these two systems in health and disease and already more and more knowledge has accumulated [59–63], enabling us to consider new treatment possibilities for regeneration in general and also specifically for bone [64]. The opportunity to control the inflammatory cascade to stimulate successful bone healing has now been confirmed [32–34, 65].
\nBoth cell systems, the skeletal system and the immune system, originate in the bone marrow. They share progenitor cells (e.g. osteoclasts/macrophages) and signaling pathways, and due to their colocalization, which often cross react with each other. This is apparent for example when considering the RANK/RANKL/OPG system, the system controlling osteoclast differentiation/activity and thus bone resorption. Activated T cells and osteoblasts are able to express the membrane-bound and the soluble form of RANKL (receptor activator of nuclear factor kappa-B ligand) promoting osteoclastogenesis. B cells and osteoblasts produce and secrete OPG (osteoprotegerin), a decoy receptor blocking the RANK-RANKL ligation, thus inhibiting osteoclastogenesis [59, 62, 66]. This example illustrates that immune cells are involved in bone homeostatic processes directing either bone resorption or bone apposition.
\nDue to the interdependency of the two systems, any considered treatment option of immune modulation must take into account that by affecting the immune system the skeletal systems could also be targeted unintentionally.
\nVessels are disrupted and bleeding occurs upon injury and the fracturing of bone. The infiltrating blood coagulates and forms the initial hematoma in the fracture gap. The formation of a fracture hematoma in the early healing phase is an indispensable step for successful healing because it develops an angiogenic and osteogenic potential [29, 67]. The removal of the early fracture hematoma can delay bone healing as it has been demonstrated in animal studies, where the transplantation of a fracture hematoma can lead to ectopic bone formation [68, 69], demonstrating its osteogenic potential. The coagulation process and a simultaneous proinflammatory reaction are phylogenetically connected [70]. During evolution, the closure of a breached outer shell and the defense against possible pathogenic intruders were performed by one cell, the amebocytes, capable of clotting and a defensive immune response. This connection has survived evolutionary diversification of the clotting system and the immune system—both reactions still occur simultaneously upon bleeding. The amebocytes can still be found today in living fossils, such as the horse shoe crab [70]. Their immune response is so potent that it is used to monitor endotoxin levels within solutions by pharmaceutical companies. The limulus amebocyte lysate (LAL) test is capable of detecting contaminations as low as one part per trillion [71]. In evolutionary younger organisms, this highly effective immune cell is being replaced by a whole array of immune cells, which can be divided into an innate immunity and an adapted immunity, the latter is only found in vertebrates (Figure 6). Each of these is composed of various different cells: macrophages, neutrophils/granulocytes, mast cells, natural killer cells, dendritic cells and the complement system belong to the innate immune system, whereas T and B cells and the humoral immunity belong to the adaptive immune system. The cells of the adaptive immune system provide their host with a long lasting and protective immunity by maturing from naïve T and B cells to effector cells, when they come in contact with their cognate antigen, and in some cases to memory cells, which allow a rapid immune response upon recurrent infection with an antigen previously encountered by the host. It has to be pointed out that the immune system is not only a barrier for extracellular microbes but also a regulatory system for body homeostasis. The immune system senses alteration in the environment, for instance damaged or aged cells [72, 73], expressing Toll-like receptors and other pattern-recognition receptors (PRRs).
\nDiversity of cells of the immune system. Cells from the bone marrow give rise to the immune cells of the innate and adaptive immune system and also to the osteoblasts and osteoclasts of the skeletal system.
During fracture healing, both the cells of the innate and the adaptive immunity are involved, and immune cells play essential roles during all the fracture healing phases [74–77]. The initial inflammatory reaction ensuing upon hematoma formation initiates the healing cascade and thus can significantly affect the healing outcome [33, 34]. This initial inflammatory reaction is characteristic for bone, tightly controlled and different from other tissue healing with scar formation [32]. In fracture repair, the anti-inflammatory signaling is up-regulated between 24 and 36 hours after injury to terminate the proinflammatory reaction needed to attract necessary cells to the injury side [32, 33]. In parallel, the angiogenic signaling is up-regulated to initiate the essential revascularization process. The timely down-regulation of the initial proinflammatory reaction has been shown to be important as a prolonged proinflammatory reaction delays the bone healing process [29, 33].
\nThe complexity of the initial immune reaction becomes even more apparent when considering cytokines expressed by immune cells during the different stages of the bone healing cascade. Tumor necrosis factor-α (TNF-α) has been reported to peak 24 hours after injury and return to baseline levels afterwards. During the remodeling phase, TNF-α shows a second expression peak during normal bone healing [64]. It is suggested that the first wave is due to activated tissue-resident cells, like macrophages, triggered through PRRs, and the second wave directly and indirectly by activated T cells. Looking closer into the role of this factor during bone healing is has been shown that too little, but also too much TNF-α leads to a delay in bone healing [78–80]. This demonstrates that the cytokine pattern has to be tightly controlled during the regenerative healing cascade to lead to a satisfactory healing outcome. Interleukin (IL)-17 is another cytokine that has been acknowledged to influence bone formation. On one hand, this cytokine has been reported to enable osteoblast formation [81], thus supporting bone formation; on the other hand, in the context of osteoporosis treatment, evidence occurred that IL-17 furthered osteoclastogenesis [82], thus supporting bone degradation. Contradictory reports can also be found for IL-6, which enhances fracture healing [83, 84] but reduces the mechanical strength of noninjured bone [85]. The microenvironment seems to be highly important for determination of the effect the cytokines have on the bone healing process, a fact that indicates the difficulties in using inflammatory cytokines to improve bone healing. The balanced immune response is highly important for a successful bone regenerative cascade [32, 33, 67].
\nUpon injury and disruption of the blood vessels, the nutrient and oxygen supply as well as the transport of metabolic waste is interrupted. The early tissue in the fracture gap consisting of the hematoma becomes hypoxic because oxygen is no longer provided by the vasculature. Therefore, cells trapped in the hematoma have to switch towards an anaerobic energy supply. The use of the remaining glucose in glycolysis to produce adenosine triphosphate (ATP), the energy molecule of the cellular metabolism, without the consecutive citrate cycle, results in lactate, an acid that consecutively lowers the pH value during the initial healing phase. Simultaneously, the sodium and potassium concentrations rise. These conditions present a milieu that is difficult for some cells, such as progenitor cells [86]. However, innate immune cells are well equipped to deal with these conditions and thus can be seen as the first responders to an injury. They express a range of cytokines that attract scavenger cells to clear the detritus that ensued upon tissue disruption and also direct the cells needed for the regenerative process towards the injury side. They readily switch from an aerobic energy supply towards an anaerobic and are often activated upon injury. Not only macrophages but also some T cell subsets are the most important actors during this first response [87, 88]. Hypoxia is a strong inducer of hypoxia inducible factor 1α (HIF1α), a transcription factor that is important for revascularization, cell migration, energy metabolism and growth factor expression, and therefore involved in the regenerative bone healing cascade [89]. HIF1α is expressed by most innate and adaptive immune cells, including macrophages and lymphocytes; they stabilize HIF1α and are being influenced by HIF1α in their immune cell function [90].
\nThe swift up-regulation of a proinflammatory reaction upon injury activates immune cells, which are capable to withstand the unfavorable environment and initiate the healing cascade through a very specific and highly controlled release of cytokines. Hypoxia is an important trigger for the transcription factor HIF1α that in turn initiates gene expression to instigate revascularization. For this process to succeed, effective anti-inflammatory signaling has to begin to terminate the initial proinflammatory reaction. During this initial phase, the track for a successful healing is thus determined, and it becomes apparent that a skewed first reaction leads to a delayed healing by consecutively retarding the following healing steps.
\nThe interdependency of the immune and skeletal system indicates that there is a change in the interaction as the immune system changes with the advancement of age. Due to the memory function of the adaptive immunity in vertebrates, the naïve T and B cell population diminishes upon aging, whereas the compartment of memory T and B cells grows. More and more lymphocytes encounter their antigens and the library of known pathogens enlarges. Recent studies could show that CD8 positive terminally differentiated memory and effector cells (CD8+ TEMRA cells) have a negative impact on bone healing and osteogenic differentiation of stem cells [91, 92]. Elderly people with a longer exposure time to antigens thus are prone to experience delayed healing.
\nMice, a common laboratory animal to investigate bone healing, are mostly kept under sterile conditions. If these animals are housed under less sterile conditions, their immune cell composition changes so that after 4 weeks of semi-sterile housing the percentage of memory and effector (CD8+) T cells was markedly enhanced. If bone healing is compared between sterile raised mice and those exposed mice, our group could show that the regenerative capacity was reduced [91, 93]. This is an important aspect that should be kept in mind during future research questions, which are analyzed in mice.
\nNonsteroidal anti-inflammatory drugs (NSAIDs) offer pain relief and are commonly used also on fracture patients. As the name already indicates, these selective cyclooxygenase-2 (COX-2) inhibitors have anti-inflammatory functions. After reviewing the importance of the initial inflammatory reaction, the question arises whether this pain medication could delay fracture healing or not. Indeed there are numerous reports that state that NSAIDs delay healing [94–98]. The effect, however, depends on the dose and time frame of application and seems to be more pronounced in older nonselective anti–COX-2 agents [99]. Clinically, NSAIDs are a valuable alternative to opioids (painkillers directly addressing the nervous system) and still remain in use also in fracture patients for short-term pain relief.
\nSeveral diseases have also been reported to delay bone healing through a changed immune response. Diabetic-related delay of fracture healing has been linked to higher TNF-α levels [100]. A weakened immune response in diabetic patients results in a dampened chemotactic function and defective macrophage activity—two factors that are needed in a successful bone healing cascade [101]. A systemic disease with a high impact on the immune system is human immunodeficiency virus (HIV), and these patients have a bone phenotype with a high prevalence of osteoporosis and fragility fractures [102]. The impact on fracture healing, however, is unclear and difficult to determine due to the highly active antiretroviral therapy that these patients receive [102, 103]. Transplant patients receiving severe immune suppressive medication also show a higher risk for fractures and delayed healing outcomes. In contrast to these examples – where the immune system is weakened – conditions where a patient has a heightened immune answer or is already in a chronic proinflammatory systemic state, such as rheumatoid and arthritis patients, the prolonged proinflammatory reaction can result in delays in fracture healing [104–106].
\nCurrently, the patient’s immune status is not being evaluated when a fracture treatment is considered. However, this could help in the future to stratify patients who would benefit from an immune modulatory intervention to prevent a delay in fracture healing. This would especially be true in elderly patients because being bed-ridden for longer periods of time enhances frailty considerably.
\nIn fracture healing, immune cells from the innate immune system and from the adaptive immune system are involved with specific and essential roles. Main cell types of the adaptive immunity are B and T cells with highly specific antigen receptors. Another important aspect of the adaptive immune system is its memory that enables its fast reaction towards recurring pathogen invasion. Adaptive immune cells can be activated not only through their antigen receptors, but also probably more important for the bone healing process through signals released by the innate immune system. From the innate immune system, especially macrophages have been in the current focus of osteoimmunology.
\nMacrophages are an important part of the innate immune system; they are among the first responders in case of an injury. Not only do they prevent pathogen invasion, but they also help in clearing ensuing cell debris [107]. However, their role in bone healing is even more complex and even today we have not yet unraveled their participation completely. Tissue-resident macrophages have been determined as key players in the orchestration of the recovery process towards a re-establishment of tissue integrity [108]. It was only in 1992 that it was recovered that macrophages are capable of a phenotype change from a proinflammatory type towards a prohealing phenotype [109]. The proinflammatory phenotype is named M1 or classically activated macrophage, and the second phenotype is termed M2 or alternatively activated macrophage. Since then, these “M2” macrophages have been associated with the resolution of wound healing
The T cell population is highly divers and probably pleiotropic as well as interchangeable. Among the T cells, there seem to be subpopulations supporting the fracture healing process and also other subpopulations, which have negative effects on the healing process. CD4+ and CD8+ T cell subsets have been addressed in this context. CD4+ T cells have been shown to increase osteogenic differentiation in human mesenchymal stem cell cultures in
The lead cytokine expressed by Th17 (T helper 17) is IL-17. The dual effect of IL-17 on osteoclasts and osteoblasts has been mentioned before. However, these cells are of interest as novel therapeutics targeting IL-12, IL-23, IL-17, and IL-17 receptor and which are now used to successfully treat psoriasis by either repressing Th17 differentiation (IL-12/IL-23) or by directly targeting IL-17. Psoriasis has two manifestations, one in skin (psoriasis vulgaris) and one in bone (psoriasis arthritis), and the immune modulatory treatment shows positive results in both [125]. Th-17 cell differentiation is induced by IL-1β, IL-6 and TGF-β [126, 127], with TGF-β being responsible for an increase in responsiveness of Th17 cells to IL-23. IL-23 is necessary for stabilization, survival and proliferation of Th17 cells [128]. This IL-23/Th17 axis is the target of the immune modulatory therapies currently introduced. For example, a cytokine neutralizing antibody against the p40 subunit of IL-23 inhibiting Th17 differentiation and survival, which in consequence lowers IL-17 concentrations, underwent clinical trials [129, 130].
\nA direct crosstalk between activated T cells and bone-forming cells can be assumed during the healing process. Among these T cells, CD8+ TEMRA cells were confirmed to have a negative effect on the bone regenerative process. High expression levels of TNF-α and interferon-γ (IFN-γ) of CD8+ T cells decreased the osteogenic differentiation capacity
Not only the interaction of the skeletal and immune system in fracture healing is not well understood so far, the immune reaction in itself is also still not unraveled. Aside from the complexity of the cytokine pattern guiding the regenerative process, the plasticity of the immune cells is still a vast challenge: M1 macrophage phenotype changing towards M2, Th1 changing towards Th2 response, regulatory T cells changing into Th17 cells and vice versa, to mention only a few aspects that still have to be understood. First approaches have been successful in influencing the fracture treatment through immune modulation (NSAIDs or IL-23 neutralization antibodies) but the possibilities are far from being exploited. A stratification of patients can help to decide, which treatment is optimal for which patient, especially with respect to the current immune status of these patients. With the numbers of delayed healing fracture patients still vastly unknown and possibly massively underestimated, and the demographic prognostic of a substantial increase in the elderly population during the next years, the need for further treatment options is rising together with the necessity of enhanced basic research in the field of osteoimmunology.
\nThis work has been supported through the German Research Foundation (FG 2195—DFG SCHM2977 and DFG DU298) and the Berlin-Brandenburg Center for Regenerative Therapies. We like to acknowledge Dr. Serafeim Tsitsilonis for providing X-ray images of fracture treatment examples from the orthopedic and trauma department of the Charité – Universitätsmedizin Berlin and Dr. Hanna Schell for providing histological images to visualize bone anatomy.
\nThe most vulnerable portion of the implantable cardiac pacemaker system is the transvenous lead(s), which can dislodge, fracture, experience insulation breach, and may lead to a host of adverse events including perforation, venous occlusion, tricuspid regurgitation, oversensing (with inappropriate device function), and infection. The innovation of a leadless pacemaker offers pacing support through a catheter-delivered device that is situated entirely within the right ventricle. A leadless pacemaker eliminates the need for both a pacemaker pocket and transvenous access. Its main limitations are lack of atrial pacing and sensing capabilities and the inability to provide antitachycardia pacing. For patients who require solely single-chamber ventricular pacing (VVI/R), the leadless pacemaker offers an important new option. Growing experience with these leadless devices shows great promise and expanding applications, even though real-world clinical experience is limited. The Spanish Pacemaker Registry reported about 1.6% leadless pacemakers out of all 12,697 reported devices by 2016 [1]. Despite this slow uptake, leadless pacing systems may be an important “disrupting technology” in cardiac rhythm management.
There are currently two commercially available leadless pacemakers, which are designed to reside entirely within the right ventricle, affixed to the ventricular septum either mid-way or near the apex (see Figure 1). These devices are manufactured by two of the leading pacemaker companies in the world: Medtronic makes the Micra™ leadless pacemaker and Abbott (formerly St. Jude Medical) the Nanostim™ leadless pacemaker. The devices are cylindrical, attach directly to right ventricular septum, and have pacing and sensing electrodes that adhere to the myocardium with a retrieval loop on the other end of the device to facilitate extraction.
The leadless pacemaker is implanted via a catheter into the right ventricle and affixed near the apex or midway on the right-ventricular septum where the operator attains acceptable electrical measurements (capture threshold, R-wave amplitude, and pacing impedance). The integral pacing and sensing electrodes in the device eliminate the need for transvenous pacing leads (illustration by Todd Cooper).
Leadless pacemakers are capable of pacing in the VVI mode with the programmable option of rate response (VVIR). The Medtronic device contains a lithium-silver-vanadium-oxide/carbon monofluoride battery (120 mAh), while the Abbott device utilizes a lithium carbon monofluoride battery with 248 mAh [2]. Both devices weigh about 2 g; the Abbott device (Nanostim™) is longer and thinner (42 mm in length and 5.99 mm diameter), while the Medtronic device (Micra™) is shorter and thicker (25.9 and, 6.7 mm) [2]. The Abbott device is secured via an active-fixation type helix mechanism, while the Medtronic device relies on passive fixation with nitinol tines [3]. Battery longevity in leadless pacemakers is estimated to be about 12–14 years. The Abbott (Nanostim™) leadless pacemaker was the subject of a global alert in late 2016 because of premature battery depletion that could result in loss of output and telemetry. The battery is a proprietary lithium-carbon monofluoride cell. Of 1423 Nanostim™ implantations around the world, 34 batteries failed (about 2%), but without any associated patient injury [4].
Leadless pacemakers at present cannot offer dual-chamber pacing modes or antitachycardia pacing; thus, they are only appropriate for patients who require VVI/VVIR or VOO/VOOR pacing. Electrogram storage is possible but there is limited device memory compared to transvenous pacemaker systems [5].
Leadless pacemakers are typically implanted via right or left femoral venous access into the septal wall of the right ventricle, although a right internal jugular vein approach has been described in the literature [6]. Right femoral access is preferred as the femoral iliac system nothing is less sharply angled on this side at the point where it joins the inferior vena cava [7]. The outer delivery sheath needed to deliver the pacemaker may have a diameter of 27 French (9 mm), which can be accommodated at implant by using a step-up sequence of dilators. Ultrasound with or without micropuncture has been recommended to avoid accidental arterial puncture or suboptimal sites of femoral puncture. As delivery sheaths may be large caliber, a poorly positioned puncture may make hemostasis challenging at the point when the sheath is withdrawn [7]. The proprietary delivery catheter is deflectable and advances with the device via the superior or inferior vena cava into the right atrium, over the tricuspid valve, and then into the right ventricle. The delivery catheter releases the device, which is affixed by active- or passive-fixation mechanisms to the endocardium [7]. Fluoroscopy may be used to confirm appropriate position. On radiography, the implanted devices look like a small cylinder (about the size and shape of a triple-A battery) [8]. Appropriate position is confirmed with acceptable electrical measurements generally defined as capture threshold ≤1.0 V at 0.24–0.4 ms, R-wave >6 mV, and impedance >500 Ω. The introducer sheath is then detached and removed and hemostasis achieved by a closure device, sutures, or manual pressure [7].
Unlike pacing thresholds with transvenous systems, which tend to gradually rise weeks after implant, the capture threshold for a leadless device may be expected to decrease somewhat about 30 min after implant and then stabilize. In two cases reports, threshold values in for a leadless pacemaker (Nanostim™) decreased markedly during the perioperative period. In one case, the pacing threshold was >6.5 V, the initial R-wave was >12.0 mV, and impedance was 1830 Ω. Rather than reposition the system, it was decided to wait for 30 min, at which time the pacing threshold was 2.25 V at 0.4 ms and impedance dropped to 1520 Ω. The same report described another case in which the pacing threshold was >6.5 V and impedance was 1330 Ω, but after allowing 25 min to elapse, the capture threshold decreased to 2.0 V at 0.4 ms and impedance was measured the next day at 800 Ω [9]. In fact, thresholds continued to improve in both cases the day after implant. It has been speculated that acute injury caused by the extension of the active-fixation helix being screwed into the myocardium might cause an increase in threshold that attenuates rapidly [9]. Thus, it may not always be necessary to reposition the device during implant in order to obtain adequate thresholds; instead, it requires a perioperative waiting period.
As with other implanted devices, operator experience may help reduce adverse events at implant. In an analysis of all patients implanted with a leadless pacemaker (Nanostim™) in the LEADLESS and LEADLESS II clinical trials (n = 1439), 6.4% of patients experienced a serious adverse device effect (SADE) in the first 30 days after implant, but SADE rates dropped significantly from 7.4 to 4.5% (p = 0.038), once the operator had more than 10 implants. Over time, the need for device repositioning likewise decreased with operator experience, from the first quartile (26.8%) to the fourth quartile (14.8%), p < 0.001 [10]. This suggests that there is a learning curve for leadless pacemaker implantation, not unlike that for other implantable devices, such as cardiac resynchronization therapy systems and subcutaneous implantable cardioverter defibrillators. The most frequently reported adverse events were cardiac perforation (24 events, 1.7% of patients) followed by device dislodgement (20 events, 1.4%) and tamponade (18 events, 1.3%) [10].
The leadless pacemaker is shipped already programmed to VVI pacing. It is sometimes helpful to switch the device to VOO during implant, for example, to better manage a pacemaker-dependent patient or if electromagnetic devices used during implant could potentially interfere with the pacemaker. A conventional transvenous pacemaker can be set to VOO mode perioperatively with simple magnet application, but this is not possible with some leadless pacemakers. Instead, the manufacturer or other expert team should be consulted in the event that the leadless pacemaker must be implanted in VOO mode [11].
Implant success rates are high with leadless devices. In the LEADLESS study (Nanostim™), the pacemaker could be implanted successfully in 95.8% of patients with a procedural time of 28.6 ± 17.8 min and fluoroscopy time of 13.9 ± 9.1 min [3]. In a study at a Polish single center, 10 patients were successfully implanted with a leadless pacemaker (Micra™), which was implanted with a mean implant duration of 82 min and mean fluoroscopy time of 3.5 min [12]. In a case series of five leadless pacemaker (Micra™) patients, the average duration of implantation procedure was 47 ± 11 min, which appeared to shorten over the series from a peak of 65 (second case) to 38 min for the last case [13]. In this case series, the mean capture threshold was 0.53 ± 0.27 V at 0.24 ms and mean R-wave was 13 ± 5.8 mV with no cases of acute dislodgement [13]. A study of 92 patients with leadless pacemakers (Micra™) at a Swiss single center found median capture thresholds at implant were 0.38 V at 0.24 ms (range 0.13–2.88 V at 0.24 ms), which remained stable throughout 1 year of follow-up [14]. In a case series of five leadless pacemaker patients (Micra™), all of the devices were successfully implanted [13]. A study of leadless pacing (Micra™) in Japan enrolled 38 patients at four sites and reported an implant success rate of 100% and the rate of freedom from major complications at 1 year was 96%. At 6 months, 98.3% had low, stable capture thresholds [15].
A prospective multicenter uncontrolled study enrolled 725 patients with an indication for single-chamber pacing to be implanted with a leadless pacemaker (Micra™). The primary endpoint was the percentage of patients with low, stable electrical capture thresholds at 6 months, defined as ≤2.0 V at 0.24 ms that increased ≤1.5 V from implant. The device could be successfully implanted in 719/725 patients (99.2%), and 96.0% met the primary endpoint at 6 months. At 6 months, the mean capture threshold was 0.54 V at 0.24 ms with an R-wave of 15.3 mV and 627 Ω impedance. The majority of patients (91%) had a pacing output of <1.5 V at 0.24 ms at 6 months, which implies that battery longevity should exceed 12 years [16]. A total of 28 major complications were reported in 25/725 patients, but no devices dislodged. Those complications included cardiac injuries (n = 11), complications at the puncture site in the groin (n = 5), thromboembolism (n = 2), pacing problems (n = 2), and other complications (n = 8). In total, three patients required device revision (two had elevated capture thresholds and one had pacemaker syndrome) and devices were deactivated (OOO mode) and abandoned; a transvenous pacing system was implanted. One patient had the device explanted because of transient loss of capture and a new leadless pacemaker was implanted [16].
A worldwide postapproval registry of the Micra™ device reported 99.1% rate of successful implantations in 1817 patients with a one-year major complication rate of 2.7% (95% confidence interval [CI], 2.0–3.7%), 63% lower than the rate of major complications for transvenous pacemaker patients (hazard ratio 0.37, 95% CI, 0.27–0.52, p < 0.001). In this study, there were three instances of device infection, none of which required device extraction [17].
A single-center registry of 66 patients undergoing leadless pacemaker implantation (Micra™) reported that the indications in this population were third-degree atrioventricular block, sinus node dysfunction, or permanent atrial fibrillation with bradycardia (30.3, 21.2, and 45.5%, respectively). Implant success was achieved in 65/66 patients, and electrical measurements were stable over the follow-up period of 10.4 ± 6.1 months. At the last follow-up, the mean capture threshold was 0.57 ± 0.32 V, the mean R-wave was measured at 10.62 ± 4.36 mV, and the mean impedance was 580 ± 103 Ω. In this study, one patient experienced a major adverse event (loss of device function) and there were three minor adverse events [18].
A single-arm observational study based on a postapproval registry of Micra™ leadless pacemakers reported a 99.6% success rate in device implants (792/795 patients) at 96 centers in 20 countries. At 30 days after implantation, 13 major complications were reported in 12 patients (1.51% complication rate, 95% CI, 0.78–2.62%) [19]. In a Swiss retrospective observational study of 92 Micra™ patients, the serious adverse event rate was 6.5% (n = 6), resulting in extended hospitalization for five patients and one death; three other adverse events occurred over the one-year follow-up (3.3% of patients, n = 3), resulting in revision to a conventional transvenous pacemaker in two patients and extraction of the pacemaker in the third because of ventricular tachycardia [14].
Physician acceptance of leadless pacing appears to be high. A study of leadless pacing (Micra™) in Japan enrolled 38 patients, and most of the implanting physicians said the leadless pacemaker was “extremely easy” or “easy” to implant (91.6%) and deploy (94.4%) [15].
The prospective, single-arm, multicenter LEADLESS observational study (n = 470) evaluated the freedom from serious adverse device events at 6 months as the primary endpoint. The study had to be interrupted owing to the occurrence of cardiac perforation events that required changes in the protocol and training. In the 300 patients enrolled after the study interruption, freedom from serious adverse device events was 94.6% (95% CI, 91.0–97.2%), although 18 serious adverse device events were observed in 6.6% of patients (n = 16), the most frequent of which were perforation (1.3%), vascular complications (1.3%), and dislodgement of the device (0.3%). When all 470 patients were included (before and after the interruption), 6.6% of all patients experienced a serious adverse device-related event [20].
The LEADLESS clinical trial retrospectively evaluated safety and efficacy of the Nanostim™ leadless pacemaker over a minimum of 3 years of follow-up. A total of 33 patients (mean age 77 ± 8 years) were enrolled, of whom 31 received a leadless pacemaker [21]. Two patients could not be implanted (one procedure was aborted and the other was revised to an ICD.) At 3 years, 74% (23/31) of patients were alive and no deaths were attributable to the leadless pacemaker. Most patients (89.9%) reported freedom from serious adverse events (95% CI, 79.5–100%), and 9% experienced device-related complications, of whom two had procedure-related serious adverse events. One suffered perforation leading to tamponade and the other had inadvertent implantation of the leadless pacemaker into the left ventricle by way of a patent foramen ovale, which was successfully retrieved and a new device implanted into the right ventricle. A third complication was reported after 37 months attributed to battery malfunction and necessitating device revision, which involved the successful removal of the leadless pacemaker and replacement with a new one. Up to 35 months, the electrical parameters of the leadless pacemakers were appropriate [21]. A retrospective assessment of 31 of the 33 patients from the LEADLESS study was conducted to evaluate the complication rates, device performance, and rate response features at 1 year. No pacemaker-related adverse events occurred from 3 months postimplant to 12 months. At 12 months, the mean pacing threshold was 0.43 ± 0.30 V at 0.4 ms, the mean R-wave was 10.3 ± 2.2 mV, and 61% had rate response features activated, of whom adequate results were achieved by all [22].
The LEADLESS II study is a premarket, nonrandomized, prospective, multicenter study of 526 patients with a leadless pacemaker (Nanostim™) who were followed for safety and efficacy for 6 months [3]. Inclusion criterion was a single-chamber ventricular pacing indication (which included patients with persistent or permanent atrial fibrillation). The primary efficacy outcome was achievement of a therapeutic capture threshold (defined as ≤2.0 V at 0.4 ms) and appropriate sensing (≥5.0 mV R-wave or an R-wave that exceeded the R-wave value at implant). By an intention-to-treat analysis, 90.0% of patients in the primary cohort achieved this at implant. At 12 months, the mean capture threshold was 0.58 ± 0.31 V at 0.4 ms and the mean R-wave was 9.2 ± 2.9 mV. At 12 months, the mean percentage of ventricular pacing was 51.6 ± 39.1%. The primary safety outcome was freedom from device-related adverse events in the first 6 months after implant, which was achieved by 93.3% of patients. Over 6 months, a total of 22 serious adverse events related to the device occurred in 20 patients (6.7%) in the primary cohort. In the total cohort, the rate of serious adverse events related to the device was 6.5%. Devices migrated from the heart into the pulmonary artery or right femoral vein in four and two patients, respectively, and all devices were successfully retrieved percutaneously [3]. The majority of patients did not require revision to reposition the pacemaker (70.2%), but 4.4% of patients required two or more attempts to reposition the device. The mean duration of hospital stay was 1.1 ± 1.7 days (range 0–33) [3]. Over the course of the study, 28 patients died (5.3%) but no deaths were related to the device.
The LEADLESS II patient cohort (n = 718) was compared retrospectively to 1436 transvenous pacemaker patients (historical data) with the results that leadless pacemaker patients had fewer complications (hazard ratio 0.44, 95% CI, 0.23–0.60, p < 0.001) broken down as short-term complications (5.8 vs. 9.4%, p = 0.01) and mid-term complications (0.56 vs. 4.9%, p < 0.001). Specifically, leadless pacemaker patients had more pericardial effusions (1.53 vs. 0.35%, p = 0.005), but similar rates of vascular events (1.11 vs. 0.42%, p = 0.085), dislodgements (0.97 vs. 1.39%, p = 0.54), and generator complications (0.70 vs. 0.28%, p = 0.17). Leadless pacemaker patients had no cases of thoracic trauma compared to 3.27% of transvenous patients [23].
In October 2016, an advisory was issued for the Nanostim™ device regarding premature battery depletion [24]. A prospective, observational, single-center study was conducted in Germany with patients implanted early (up until April 2014) or late (starting December 2015 and thereafter). The cohort included 14 consecutive patients (77 ± 9 years, 57% male) with a mean follow-up of 29.5 ± 11.5 months (range 11.9–44.6 months). Most were “early” patients (n = 9, 64%) implanted before the implantation suspension and five were implanted “late” (36%). From data obtained at the last follow-up, 57% had permanent atrial fibrillation with complete heart block, 21% were considered pacemaker dependent, and 36% had a mean regular escape rhythm of 37 ± 2 beats per minute (bpm). Almost half of the patients had signs of battery malfunction (43%, n = 6), all of whom had “early” implants. Using the Kaplan-Meier method, the mean time calculated from implant to device failure was 39.0 months (standard error 1.85 months, 95% CI, 35.4–42.7 months). Device parameters fell within the normal range for all patients (100%) at the last follow-up before battery malfunction was detected. Devices were explanted and analysis showed reduced electrolytes in the lithium carbon monofluoride battery, which caused high internal battery resistance, reducing the available current for device function. While a report from 2016 showed Nanostim™ battery malfunction occurred at a global rate of 2.4%, the rate at this particular institution was much higher, possibly owing to the fact that the observation period was longer [24].
In a meta-analysis of lead and device dislodgement (n = 18 studies, 17,321 patients) involving conventional transvenous pacemakers and leadless pacemakers (both Micra™ and Nanostim™), the weighted mean incidence of lead dislodgement in transvenous devices was 1.71%. Atrial leads had a higher dislodgement rate than ventricular leads (odds ratio 3.56, 95% CI, 1.96–6.70). The dislodgement rate for leadless devices was reported in three studies (n = 2116) and was 0, 0.13, and 1.0%, respectively, showing an overall lower dislodgement rate than conventional systems [25].
In a propensity score-matched study, 440 pacemaker patients were matched based on whether they had a leadless system (n = 220) or a transvenous system (n = 220). The complication rate at 800 days of follow-up was significantly lower in the leadless pacemaker group (0.9 vs. 4.7%, 95% CI, p = 0.02) [26].
Ventricular arrhythmias after the implantation of a leadless pacemaker should be considered as potential side effect secondary to leadless pacemaker implantation. A case report in the literature describes a patient who experienced short episodes of polymorphic ventricular tachycardia (VT) in the perioperative period and high ventricular rates with short-long-short runs of polymorphic VT induced by premature ventricular contractions. The system was extracted successfully, revised with a new device of the same type successfully implanted at a different position in the right ventricle, and the VT resolved. The pro-arrhythmic effect of the leadless pacemaker remains to be elucidated, but it may involve the irritation of the right-ventricular myocardium at the site of implantation [27].
Both commercially available systems offer rate response. The Micra™ device utilizes a programmable accelerometer that works on three axes. Rate response is set up based on three activity vectors. The accelerometer can be programmed following a five-minute exercise test, which should be conducted before hospital discharge and then at an in-clinic visit later. While Vector 1 can be programmed as the nominal setting, an early study in 51 patients (278 tests, 818 vector measurements) found the manual selection of a vector produced better results than opting for the default Vector 1 setting. In initial testing, Vector 1 was found to be adequate in 74.5% of patients but in in-clinic testing, Vector 1 was adequate for 64.7%, while Vector 3 was adequate in 68.6% (and Vector 2 was adequate in 51.0%) [28]. The Nanostim™ device utilizes blood temperature for its rate response [2].
In the LEADLESS clinical trial (n = 31), rate response was turned on in 61% of patients at 12 months, 42% at 24 months, and 39% at 36 months [21].
The Micra™ leadless pacemaker offers a capture management system, while the Nanostim™ does not.
Application of a magnet over the implant site of a conventional transvenous pacemaker will cause it to behave in highly specific ways (for example, asynchronous fixed-rate pacing) in response in a function known as magnet mode. The Micra™ device does not offer magnet mode, but the Nanostim™ will pace at 100 bpm for eight beats and then go to asynchronous pacing at 90 bpm (or 65 bpm if the device is at the elective replacement indicator) [5].
The MIMICRY study (Monocenter Investigation Micra™ MRI Study) examined magnetic resonance imaging (MRI) compatibility in 15 leadless pacemaker patients undergoing either a 1.5 Tesla (T) or 3.0 T cardiac MRI scan; one patient was excluded from the study because severe claustrophobia precluded an MRI. Device parameters remained stable during the MRI and over the one and three-month observation points nothing showed MRI scans were safe and feasible [29]. In an
A case report describes an 85-year-old woman with bradycardia and atrial fibrillation who received a leadless pacemaker (Micra™) and underwent external electrical cardioversion with three shocks at 100, 200, and 360 J. The three cardioversion shocks had no observable effect on the implanted leadless pacemaker [31].
To date, there is limited experience with normal, expected end-of-life device revision. Revision may be accomplished by retrieving the old device and implanting a new one, or by simply inactivating the exhausted device and adding a new device nearby. In theory at least, device retrieval seems preferable, in that it limits the amount of hardware in the body and might reduce long-term complications or device-device interference [32]. Successful acute and chronic device retrievals have been reported in the literature. A study on human cadaver hearts has demonstrated that it is feasible to simply implant a new leadless pacemaker without removing the old one [33]. Successful device extraction in a porcine model was reported using a single-loop retrieval snare and a superior vena cava approach [34].
In a study of Micra™ pacemaker revisions, 989 implants were analyzed and compared to 2667 control patients with a transvenous ventricular single-chamber pacemaker. The actuarial rate for device revision at 24 months following implant was 1.4% for leadless pacemakers (11 revisions in 10 patients) compared to 5.3% in the transvenous pacemaker group (123 revisions in 117 patients), that is, 75% lower for leadless pacemakers (95% CI, 53–87%, p < 0.001). The main reasons for extracting a leadless device were a need for a different device therapy, pacemaker syndrome, and prosthetic valve endocarditis. No leadless pacemaker was extracted because of device dislodgement or device-related infection. In seven cases, the device was deactivated and abandoned; in three cases, the device was extracted percutaneously; and in one case, the device was removed during aortic valve surgery. Overall, 64% of deactivated leadless pacemakers were left
In a retrospective study of 40 successful retrievals of leadless pacemakers (Micra™), 73% (n = 29) consented to supplying procedural details to a research study by Afzal and colleagues. This largest retrieval study to date differentiated between “immediate retrievals” (n = 11) in which the original device was retrieved perioperatively and “delayed retrieval” (n = 18) in which the retrieval involved a new procedure at a later date. The median duration between implant and retrieval in the delayed retrieval group was 46 days (range 1–95 days). The most commonly reported reasons for leadless pacemaker retrieval were elevated pacing threshold upon tether removal (immediate retrieval) and elevated threshold, endovascular infection, or need to switch to transvenous system (delayed retrieval) [36]. The mean duration for a retrieval procedure was 63.11 ± 56 min with a mean fluoroscopy exposure of 16.7 ± 9.8 min. Retrieval was accomplished using a snaring system deployed via a delivery catheter or steerable sheath. No serious complications were reported [36].
In the LEADLESS II trial, the implantable device was retrieved successfully and without complications in seven patients at 160 ± 180 days (median 100 days, 1–413 range). Of these patients, three were implanted with a new leadless pacemaker, two were implanted with a conventional transvenous pacing system, and two patients were implanted with a cardiac resynchronization therapy (CRT) device for heart failure. In a study composed of leadless pacemaker patients who required leadless pacemaker removal from three other multicenter studies, 5/5 patients who required acute extraction (within 6 weeks of implant) and 10/11 of patients who required chronic extraction (≥6 weeks after implant) experienced successful device retrieval with no procedure-related adverse events [37].
Acute explantation of the leadless device was reported in the literature when the device migrated into the pulmonary artery a few days after implantation in a 34-year-old patient with infective endocarditis. A single-loop snare guided by a steerable sheath was used to retrieve the migrated device, and a second leadless pacemaker was successfully implanted with no further complications [38]. A case report describes a 62-year-old pacemaker patient who had a leadless pacemaker implanted (to replace an infected transvenous system) and then revised with a second leadless pacemaker because of failure to capture at maximum output settings. The procedure was conducted by implanting the new leadless pacemaker into the patient, assuring its proper function, and then extracting the original underperforming leadless device using a triple-loop snare system [39]. A single-center case series reported extraction of leadless pacemakers (Nanostim™) in three cases with 100% success rate and fluoroscopic exposure times of 12, 16, and 19 min. Each extraction was preceded by a transesophageal 3D echocardiogram to assess the device’s mobility with the heart and possible endothelialization. Retrieval was carried out using the proprietary catheter system from the manufacturer [40].
A novel extraction technique using a cryoballoon steerable sheath together with a snare was reported for the successful retrieval of a leadless pacemaker (Micra™), which was securely positioned in the patient but had an unusual subacute rise in pacing threshold [41]. The pacemaker was first implanted at the right-ventricular apex, but pacing thresholds were too high there (1.63 V at 0.24 ms), so the device was repositioned to a site on the right-ventricular septum with acceptable thresholds (0.75 V at 0.24 ms). The threshold increased unexpectedly over the next 30 min to 2.2 V at 0.24 ms with no radiographic proof of dislodgement. Using a 15 French steerable cryoballoon sheath in an introducer to the right atrium, the sheath could be navigated over the tricuspid valve and into the right ventricle. A 7 French 20 mm snare was then introduced into the steerable sheath. The retrieval loop on the leadless pacemaker was successfully snared and could be extracted along with the introducer and sheath. No blood clot or visible defect was found on the extracted device. A second leadless pacemaker was implanted at the mid-septum of the right ventricle with good electrical measurements (capture threshold 0.5 V at 0.24 ms), which remained stable over 30 minutes. At 1 month, the patient has a capture threshold of 0.62 V at 0.24 ms, an R-wave of 8.6 mV, and impedance of 600 Ω [41].
Of 1423 leadless Nanostim™ pacemakers implanted around the world, there were 34 reported cases of premature battery depletion with a 90.4% successful retrieval rate even though these were chronic implants (battery depletion occurred at 2.9 ± 0.4 years). Of the seven patients in whom retrieval was not possible, most cases were caused by an inaccessible or otherwise nonfunctional retrieval loop on the device [4].
In a study of health-related quality of life using the Short-Form 36 (SF-36) questionnaire at baseline, 3 months, and 12 months in 720 Micra™ patients, all domains improved significantly at 3 and 12 months compared to baseline values and 96% were “satisfied” or “very satisfied” with the aesthetic appearance of the system, 91% with their recovery, and 74% with their current activity level [42]. Leadless pacemakers were associated with fewer restrictions on activity than leadless pacemakers in a survey of 720 patients [42].
In a study of leadless pacemaker (Micra™) patients, some national differences emerged. In this study, 35 Japanese patients were reviewed compared to 658 similar patients outside of Japan. Fewer Japanese-only patients compared to outside-Japan patients were “very satisfied” or “satisfied” with their recovery (74.3 vs. 91.8%, p = 0.002), but those who reported themselves “very satisfied” or “satisfied” with the device’s cosmetic appearance were similar (91.4 Japanese vs. 96.2% outside Japan). All implants in the Japanese patients were successful [15].
Leadless pacemakers are indicated for patients with symptomatic bradycardia requiring single-chamber ventricular bradycardia pacing support; persistent atrial tachyarrhythmias in such patients are not a contraindication for leadless pacing. In fact, many patients who receive a leadless pacemaker have persistent or permanent atrial fibrillation with slow ventricular response.
The role of leadless pacemakers following removal of an infected conventional transvenous pacing system is debated. Since a leadless device requires no pocket formation and has no transvenous leads, it would appear to be suitable for a revision system for appropriate patients. In a study of patients who required device replacement after a conventional pacemaker system was infected (n = 17), patients were implanted with a Nanostim™ (n = 11) or Micra™ (n = 6) device [43]. In six patients, the leadless pacemaker was implanted within a week or less while in 11 patients, the leadless pacemakers was implanted after at least 1 week. In all patients, there was no infection over the course of a mean follow-up of 16 ± 12 months. This patient population included seven patients with a history of recurrent device infections (mean follow-up of 20 ± 14 months). This study suggests that a leadless pacemaker may be a viable revision pacing system for selected patients who experienced device infection with a conventional pacemaker [43].
The French Working Group on Cardiac Pacing and Electrophysiology of the French Society of Cardiology has issued specific guidelines on leadless pacing [44]. Currently, the indication for leadless pacing is a patient indicated for VVIR pacing and the patient’s life, as well as device service life must be taken into account as device retrieval may not always be possible. They consider that leadless devices should be implanted only in centers that also perform cardiac surgery, because of the higher incidence of tamponade, vascular complications, perforations caused by large-diameter sheaths, or other complications associated with leadless pacemakers [44].
It has been recommended that anesthesiologists familiarize themselves with all implantable device technologies, including leadless pacemakers [5]. A challenge to these devices is that interrogation software may not be readily available and that implantation should be coordinated with device manufacturer representatives or cardiologists, for example, if the device should be programmed to an asynchronous pacing mode during implant [5].
In 64% of patients enrolled in one of the pivotal trials for leadless pacemakers (Micra™), the pacing indication was managing persistent or permanent atrial fibrillation with slow ventricular response [16]. In that pivotal trial, only 6% of patients had a clear-cut medical reason that limited or contraindicated them from a transvenous system. However, there are many emerging groups who may derive benefits from leadless pacemakers.
Leadless pacemakers may be an important alternative to conventional devices in patients with thromboses, venous obstruction, tortuous or abnormal venous anatomy, superior vena cava syndrome, or other conditions may be contraindicated for a conventional transvenous pacemaker. A case report describes a patient with third-degree atrioventricular (AV) block who experienced an occlusive thrombosis of the superior vena cava and had her conventional VDD transvenous pacemaker replaced with a leadless device [45]. Limited venous access as an anatomical challenge may be overcome with a leadless pacemaker as in a case study of a bradycardic hemodialysis patient who suffered from skin erosion in the chest area due to radiation treatments for esophageal carcinoma. The leadless pacemaker was implanted successfully, but the patient developed ventricular tachyarrhythmias, necessitating the implantation of a subcutaneous implantable cardioverter-defibrillator. At 1 month, both devices were performing adequately with no device-device interactions [46].
A 72-year-old man with a thrombosed venous stent, renal failure, and myelodysplastic syndrome presented with second-degree AV block. A leadless pacemaker was preferred (Micra™) because of limited venous access and a high risk of infection due to his immunocompromised condition [47].
When it is necessary to extract transvenous leads in a pacemaker-dependent patient, a common approach is to utilize a temporary pacemaker with active-fixation lead as a bridge to a contralateral pacemaker implantation. A case report describes the use of a leadless pacemaker in a pacemaker-dependent patient with dextrocardia who required lead extraction following endocarditis. The implantation procedure was uneventful and the leadless pacemaker performed well with stable measurements taken 1 year postimplant [48].
The literature reports on successful implantation of a leadless pacemaker in a transplanted heart [49].
The permanent position of a transvenous lead over the tricuspid valve may cause damage to the valve. In patients with a prosthetic tricuspid valve, locating a transvenous lead over the tricuspid valve must be considered carefully. The literature reports a case in which a 67-year-old woman with three valve replacements (an aortic mechanical valve, a mitral mechanical valve, and a tricuspid prosthesis) underwent successful implantation of a leadless pacemaker (Micra™) for high-degree AV block with permanent atrial fibrillation. She had previously had an epicardial pacemaker, which experienced lead dysfunction and transient loss of capture [50].
In a study of 23 leadless pacemaker patients (both Micra™ and Nanostim™), devices were implanted in the septal-apical area or the mid-septal region of the right ventricle. No observed changes in heart structure or heart function, such as changes to the tricuspid valve, were found. One patient in this study developed increased tricuspid valve regurgitation but without abnormal leaflet motion or any changes in annulus size, suggesting it was caused by changes in right ventricular pressure [51].
It is not difficult to imagine the possibilities of combining a subcutaneous ICD (S-ICD) with a leadless pacemaker to allow for bradycardia pacing support and rescue defibrillation in a patient without the need for any transvenous leads. In an experimental study (n = 40, animal models were ovine, porcine, and canine), the dual devices were successfully implanted in 39/40 and 23 animals were followed for 90 days. Appropriate pacing was observed in 100% of animals by the leadless pacemaker, and the ICD could communicate unidirectionally with the pacemaker in 99% of cases. When triggered, the leadless pacemaker could deliver antitachycardia pacing (10 beats at 81% of the coupling interval) in 100% of attempts, while the S-ICD was able to maintain appropriate sensing [52]. While this is a preliminary animal study, it demonstrates the potential of utilizing these two leadless systems in tandem. For an S-ICD and a leadless pacemaker to work effectively together, they require the ability to communicate with each other, which, in turn, depends on the device orientation within the subject. In a canine study (n = 23), it was found that communication could occur in 100% of the implanted dogs although the median angle of the leadless pacemaker was 29°, and the median distance of the S-ICD to the leadless pacemaker was 0.8 cm. While these are not optimal values, communication was effective. A retrospective study of 72 leadless pacemaker patients found the median angle of the leadless pacemaker was 56 degrees; in a retrospective analysis of 100 S-ICD patients, the median distance between the coil and the position of the leadless pacemaker was 4.6 cm [53]. Thus, it appears that communication between devices is possible and that humans offer a better theoretical positioning opportunity for such communication than dogs.
Dual device implantation was performed in an 81-year-old man who received an S-ICD in 2012 after explant of three transvenous ICDs due to infection [54]. At the time of S-ICD implant, the patient had no indication for bradycardia pacing, but that changed in 2015 when he developed sinus bradycardia with a daytime heart rate of about 20 bpm. Both subclavian veins were occluded, and it was decided to implant a leadless pacemaker (Micra™). The device was successfully implanted with satisfactory electrical measurements (capture threshold was 0.38 V at 0.24 ms capture threshold, the R-wave was 10.4 mV, and impedance was 640 Ω). When programmed to high outputs, the leadless pacemaker did not appear to interact with the S-ICD, even at its most sensitive settings. The patient was doing well with improved function at 4 months. At 6 months, the patient had a VT that was appropriately sensed and converted at first shock. The threshold of the leadless pacemaker following the shock remained stable [54].
For patients with chronic renal disease, a leadless pacemaker may allow preservation for central veins, necessary for permanent dialysis vascular access [55]. In patients with end-stage renal disease and the need for an implantable pacemaker, it is best to avoid transvenous leads if possible. Since kidney disease can progress rapidly, patients with a high risk for renal failure (for example, glomerular filtration rate < 20 mL/min/1.73 m2); it may be helpful to consider these patients for leadless pacemakers or S-ICD systems rather than transvenous devices when possible [56].
Leadless pacemakers are contraindicated in patients with an indwelling inferior vena cava (IVC) filter, but as IVC filters become more common, the role of leadless pacemakers in this population will be explored. In some cases, an IVC filter might block passage of a catheter entering the femoral vein and routing toward the heart, but there are cases reported in the literature in which the catheter with the leadless pacemaker has been able to navigate around the indwelling IVC device. However, large studies of leadless pacemakers exclude IVC filter patients, so there is not much data on how a leadless pacemaker might be deployed in this population. A few cases in the literature suggest it is feasible, at least in selected cases, to implant a leadless pacemaker in the presence of an IVC filter.
A case report in the literature describes the successful implant of a Micra™ device via a collateral branch of the right common femoral vein through a previously implanted IVC filter in a 68-year-old man with a history of pulmonary embolism and recent development of AV block [57].
There is a report in the literature of a dual implant of a left-atrial-appendage occluder (Watchman™, Boston Scientific, Natick, Massachusetts, USA) and a leadless pacemaker (Micra™) in a single procedure. The patient was a 73-year-old woman with persistent atrial fibrillation. Both devices were implanted via right femoral access with no complications and good results at 1 month postimplant [58].
The idea that this miniaturized pacemaker might be appropriate in smaller patients has been explored in a few case studies. The literature reports a successful implantation of a leadless device (Micra™) in an 11-year-old patient with recurrent syncopal episodes and prolonged sinus pauses [59]. A 71-year-old man with achondroplastic dwarfism had a transvenous pacemaker for decades for third-degree AV block; in 2010, a pocket infection with endocarditis of the tricuspid valve necessitated the extraction of the conventional pacemaker and placement of an epicardial dual-chamber pacemaker with tunneling of leads. The patient was pacemaker dependent with permanent atrial fibrillation and developed an untreatable pocket infection. He was implanted with a leadless pacemaker (Micra™) via standard implantation technique, which was complicated by the fact that the delivery catheter was much longer than the patient’s inferior limb. The device was successfully implanted and showed good electrical results. The epicardial device was then removed via a mini-thoracotomy [60]. A leadless pacemaker (Micra™) could be successfully implanted in a small-frame geriatric patient with third-degree AV block and a history of pacemaker implantations and infections [61].
A leadless pacemaker was successfully implanted in a 17-year-old male patient with cardioinhibitory syncope. The patient had vasovagal syncope with episodes of bradycardia and drops in arterial blood pressure. An implantable loop recorder documented a pause of 9 s, whereupon he was implanted with the leadless pacemaker [62]. Cardioinhibitory syncope may be a temporary condition.
For rate control in patients with symptomatic atrial fibrillation (AF), atrioventricular (AV) nodal ablation with subsequent pacemaker implantation (the so-called “ablate and pace” procedure) is an established course of treatment. In a multicenter observational study of 127 such patients, 60 received a leadless pacemaker and 67 a conventional transvenous pacemaker. The primary efficacy endpoint of this study was acceptable sensing thresholds (R wave ≥5.0 mV and pacing threshold ≤2.0 V at 0.4 ms). Nearly all patients (95% in leadless and 97% in conventional groups) met the primary endpoint. Five early and one late minor adverse events occurred in the leadless pacemaker group and three early adverse events occurred in the conventional pacemaker group (not statistically significantly different). Thus, it appears that leadless pacemakers may be a viable option for “ablate and pace” patients [63]. In another study in a similar population, 21 patients with permanent atrial fibrillation underwent implantation of a leadless pacemaker (Micra™) followed by AV junctional ablation; these patients were followed over 12 months with no major device-related complications. Two patients in this study died over the course of the 12 month follow-up of noncardiac causes [64]. Short- and long-term outcomes of patients undergoing a simultaneous leadless pacemaker implantation were reported from an observational study of 137 patients (mean age 77.9 ± 10.5 years) in which 19.7% (n = 37) underwent simultaneous AV nodal ablation. The complication rate was 5.5% in patients who just had leadless pacemaker insertion and 11% in those who underwent both ablation and pacemaker implant. There were no cases of device dislodgement in either group. Over the mean follow-up of 123 ± 48 days, 3.6% patients (n = 3) died, but all deaths were unrelated to cardiovascular causes. There were no significant differences between groups in terms of pacing and sensing threshold values [65].
The literature reports on a 66-year-old female with rheumatic heart disease, permanent atrial fibrillation with slow ventricular response, and renal failure. She was admitted for mitral valve replacement and tricuspid valve repair, at which time a
The literature reports a case in which a 91-year-old man underwent a successful transcatheter aortic valve implantation (TAVI) but experienced the not uncommon side effect of conduction disturbances. As the patient was frail and elderly, it was decided to implant a leadless pacemaker to help manage the arrhythmias rather than a transvenous system. The procedure was successful and the patient was discharged without complications [67].
Patients with congenital heart disorders are at an elevated risk for arrhythmias and anatomical anomalies, which may complicate venous access and device implantation. In fact, congenital heart disease patients have a rate for pacemaker-related complications that approaches 40% compared to about 5% in the general population [68]. A case study in the literature reports on a 47-year-old female pacemaker-dependent patient with congenital heart disease who had experienced complications with a transvenous pacemaker (lead malfunction followed by occlusion of the superior vena cava and innominate veins). The transvenous lead was abandoned, and the patient was revised to an epicardial system. She presented with dizzy spells, and it was found her epicardial system was nearing end of service and had elevated thresholds. As there was no viable vascular access, it was decided to revise her pacemaker to a leadless system (Micra™). The leadless pacemaker was implanted via left femoral venous access and a steerable catheter to the right ventricular apical septal region where it was successfully positioned with good electrical values (1.0 V at 0.4 ms with an R-wave of 8 mV) [69].
At present, leadless pacemakers cost significantly more than a conventional transvenous device without the expense of two transvenous leads. The question of cost effectiveness in medical devices is always complicated, but it must be taken into account that even with a higher upfront cost, leadless pacemakers have substantially longer expected longevity (up to twice as long as a conventional transvenous pacemaker) and fewer complications [13]. In an online survey conducted by the European Heart Rhythm Association (EHRA) of 52 centers who participate in the EHRA Research Network, most of the 52 centers who reported said they implanted leadless pacemakers (86%) but at a small volume (82% said they implanted fewer than 30 such devices in the past 12 months). The main reasons for the low volume were device costs (91%) and lack of reimbursement for these systems (55%) [50].
Currently, leadless pacing is limited to right-ventricular pacing only. The vast majority of pacemaker patients depend on AV synchronization and may even benefit from additional cardiac resynchronization for heart failure. One way to solve the AV-sequential issue is to employ VDD mode that would allow for atrial sensing; a subcutaneous ECG integrated into the circuit would be an option.
Systems that are able to communicate between devices are being developed, i.e., integration of a leadless pacemaker with an S-ICD. Ideally, this combination would offer reliable sensing/pacing in the right ventricle including antitachycardia pacing in order to terminate VT without shock therapy. Moreover, combining intracardiac signals from the leadless pacemaker with the subcutaneous ECG from the S-ICD may improve the system’s ability to discriminate arrhythmias.
Another concern is handling of the device at the end of its service life. Likely, the devices will be encapsulated and could be programmed off (OOO mode), and up to three devices can reasonably be accommodated within the right ventricle [33]. However, many pacemaker patients are old with a shorter life expectancy than projected batter longevity and will only need one device.
Extraction will be necessary in the event of an infection, and the development of safe catheter-based tools would be helpful even in the situation of complete device encapsulation. More data are needed about safety of leadless pacemakers with regard to infection, device migration, and RV failure in long-term follow-up.
A leadless ultrasound-based technology used by the WiCS™ system (Wireless Cardiac Stimulation, EBR Systems) has been developed for endocardial pacing of the left ventricle [70]. The ultrasound energy is transmitted from a subcutaneous transmitter to an endocardial receiver unit in the endocardium. This device is fixed by three self-expanding nitinol tines on the device. Thus, this cardiac resynchronization therapy (CRT) system comprises three parts: the left-ventricular endocardial unit (using ultrasound for conversion of electrical energy), the subcutaneous pulse generator, and a conventional pacing device. The subcutaneously implanted pulse generator consists of a battery connected by a cable to a transmitter. The system detects right-ventricular stimulation provided by the concomitant pacemaker, CRT device, or ICD.
The technology of leadless pacing is a disruptive innovation with the potential to usher in a new era of cardiac pacing and solve problems related to the transvenous leads and pocket. The first-generation leadless pacemakers are limited to single-chamber pacing, typically VVIR pacing, but further innovations may expand that. Battery longevity is supposed to be excellent, but real-world clinical data are needed from long-term use to confirm this. The extraction of a leadless pacemaker remains a challenge. Future directions include integration of leadless pacing with S-ICDs, dual-chamber devices, and a leadless version of CRT pacing.
Todd Cooper of Coyote Studios in Los Angeles, California, provided the original illustration. The authors acknowledge editorial assistance provided by John Bisney who proofed the final manuscript. Trademarks and registered trademarks in this chapter are the property of their respective owners.
The authors have no relevant conflicts to disclose.
IntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11698",title:"Pigmentation Disorders",subtitle:null,isOpenForSubmission:!0,hash:"2ac6c9f424eec37ed85232c2c97ef6f6",slug:null,bookSignature:"Associate Prof. Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/11698.jpg",editedByType:null,editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11701",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ba8e8f4710bed414568846f8162a4942",slug:null,bookSignature:"Prof. Ahmet Mesrur Halefoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/11701.jpg",editedByType:null,editors:[{id:"51736",title:"Prof.",name:"Ahmet Mesrur",surname:"Halefoğlu",slug:"ahmet-mesrur-halefoglu",fullName:"Ahmet Mesrur Halefoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11599",title:"Leukemia - From Biology to Diagnosis and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"30b431385424f0b84aee499d839f46cc",slug:null,bookSignature:"Prof. Margarita Guenova and Prof. Gueorgui Balatzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11599.jpg",editedByType:null,editors:[{id:"52938",title:"Prof.",name:"Margarita",surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11651",title:"Bone Tumors - Recent Updates",subtitle:null,isOpenForSubmission:!0,hash:"cf7dd688b160a1ba07e3179613684f16",slug:null,bookSignature:"Dr. Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/11651.jpg",editedByType:null,editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11717",title:"Gastroesophageal Reflux Disease - A Growing Concern",subtitle:null,isOpenForSubmission:!0,hash:"0396d89369495b63682157e938f788fa",slug:null,bookSignature:"Dr. Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/11717.jpg",editedByType:null,editors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11874",title:"Craniofacial Surgery - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"91dd1465d7b60e227877563c5f978c16",slug:null,bookSignature:"Dr. Belma Işik Aslan and Prof. Ayşe Gülşen",coverURL:"https://cdn.intechopen.com/books/images_new/11874.jpg",editedByType:null,editors:[{id:"42847",title:"Dr.",name:"Belma",surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11591",title:"The Wounds of Our Mother Psychoanalysis - New Models for a Psychoanalysis in Crisis",subtitle:null,isOpenForSubmission:!0,hash:"c6a104ee38fec8d9ba8aa139a33003ce",slug:null,bookSignature:"Dr. Paolo Azzone",coverURL:"https://cdn.intechopen.com/books/images_new/11591.jpg",editedByType:null,editors:[{id:"324882",title:"Dr.",name:"Paolo",surname:"Azzone",slug:"paolo-azzone",fullName:"Paolo Azzone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12107",title:"Contemporary Topics in Patient Safety - Volume 2",subtitle:null,isOpenForSubmission:!0,hash:"3fe674b93710773f0db746ca96d6e048",slug:null,bookSignature:"Dr. Philip Salen and Dr. Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/12107.jpg",editedByType:null,editors:[{id:"217603",title:"Dr.",name:"Philip",surname:"Salen",slug:"philip-salen",fullName:"Philip Salen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:76},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"994",title:"Traumatology",slug:"traumatology",parent:{id:"173",title:"Critical Care Medicine",slug:"critical-care-medicine"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:153,numberOfWosCitations:115,numberOfCrossrefCitations:118,numberOfDimensionsCitations:240,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"994",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10713",title:"Trauma and Emergency Surgery",subtitle:null,isOpenForSubmission:!1,hash:"a07902d256cd9902e2291fa7bf2322af",slug:"trauma-and-emergency-surgery",bookSignature:"Selim Sözen and Burhan Hakan Kanat",coverURL:"https://cdn.intechopen.com/books/images_new/10713.jpg",editedByType:"Edited by",editors:[{id:"90616",title:"Associate Prof.",name:"Selim",middleName:null,surname:"Sözen",slug:"selim-sozen",fullName:"Selim Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9066",title:"Wound Healing",subtitle:null,isOpenForSubmission:!1,hash:"a293ecd8c2655a402321dc30e0ffbf9a",slug:"wound-healing",bookSignature:"Muhammad Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/9066.jpg",editedByType:"Edited by",editors:[{id:"204257",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ahmad",slug:"muhammad-ahmad",fullName:"Muhammad Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7046",title:"Wound Healing",subtitle:"Current Perspectives",isOpenForSubmission:!1,hash:"fa7b870ad29ce1dfcf6faeafdc060309",slug:"wound-healing-current-perspectives",bookSignature:"Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/7046.jpg",editedByType:"Edited by",editors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6662",title:"Trauma Surgery",subtitle:null,isOpenForSubmission:!1,hash:"9721b9ac98bf237058cafd0a0303bdbc",slug:"trauma-surgery",bookSignature:"Ozgur Karcioglu and Hakan Topacoglu",coverURL:"https://cdn.intechopen.com/books/images_new/6662.jpg",editedByType:"Edited by",editors:[{id:"221195",title:"Prof.",name:"Ozgur",middleName:null,surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6069",title:"Essentials of Spinal Cord Injury Medicine",subtitle:null,isOpenForSubmission:!1,hash:"f0a49e24ebfbb9ed7d02f7daab9b30f6",slug:"essentials-of-spinal-cord-injury-medicine",bookSignature:"Yannis Dionyssiotis",coverURL:"https://cdn.intechopen.com/books/images_new/6069.jpg",editedByType:"Edited by",editors:[{id:"76883",title:"PhD.",name:"Yannis",middleName:null,surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5290",title:"Wound Healing",subtitle:"New insights into Ancient Challenges",isOpenForSubmission:!1,hash:"a6c479ab3fea0a9b7051d2a8478c91c3",slug:"wound-healing-new-insights-into-ancient-challenges",bookSignature:"Vlad Adrian Alexandrescu",coverURL:"https://cdn.intechopen.com/books/images_new/5290.jpg",editedByType:"Edited by",editors:[{id:"66358",title:"Ph.D.",name:"Vlad",middleName:"Adrian",surname:"Alexandrescu",slug:"vlad-alexandrescu",fullName:"Vlad Alexandrescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50983",doi:"10.5772/63961",title:"Antimicrobial Dressings for Improving Wound Healing",slug:"antimicrobial-dressings-for-improving-wound-healing",totalDownloads:4296,totalCrossrefCites:16,totalDimensionsCites:44,abstract:"Wound healing occurs by a series of interrelated molecular events which work together to restore tissue integrity and cellular function. These physiological events occur smoothly in normal healthy individual and/or under normal conditions. However, in certain cases, these molecular events are retarded resulting in hard-to-heal or chronic wounds arising from several factors such as poor venous return, underlying physiological or metabolic conditions such as diabetes as well as external factors such as poor nutrition. In most cases, such wounds are infected and infection also presents as another complicating phenomenon which triggers inflammatory reactions, therefore delaying wound healing. There has therefore been recent interests and significant efforts in preventing and actively treating wound infections by directly targeting infection causative agents through direct application of antimicrobial agents either alone or loaded into dressings (medicated). These have the advantage of overcoming challenges such as poor circulation in diabetic and leg ulcers when administered systemically and also require lower amounts to be applied compared to that required via oral or iv administration. This chapter will review and evaluate various antimicrobial agents used to target infected wounds, the means of delivery, and current state of the art, including commercially available dressings. Data sources will include mainly peer-reviewed literature, clinical trials and reports, patents as well as government reports where available.",book:{id:"5290",slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Omar Sarheed, Asif Ahmed, Douha Shouqair and Joshua Boateng",authors:[{id:"183108",title:"Dr.",name:"Joshua",middleName:null,surname:"Boateng",slug:"joshua-boateng",fullName:"Joshua Boateng"},{id:"183399",title:"Dr.",name:"Omar",middleName:null,surname:"Sarheed",slug:"omar-sarheed",fullName:"Omar Sarheed"},{id:"188082",title:"Mr.",name:"Asif",middleName:null,surname:"Ahmed",slug:"asif-ahmed",fullName:"Asif Ahmed"},{id:"188083",title:"Ms.",name:"Douha",middleName:null,surname:"Shouqair",slug:"douha-shouqair",fullName:"Douha Shouqair"}]},{id:"51825",doi:"10.5772/64611",title:"Roles of Matrix Metalloproteinases in Cutaneous Wound Healing",slug:"roles-of-matrix-metalloproteinases-in-cutaneous-wound-healing",totalDownloads:3625,totalCrossrefCites:20,totalDimensionsCites:37,abstract:"Wound healing is a complex process that consists of hemostasis and inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Matrix metalloproteinases (MMPs) play important roles in wound healing, and their dysregulation leads to prolonged inflammation and delayed wound healing. There are 24 MMPs in humans, and each MMP exists in three forms, of which only the active MMPs play a role in the pathology or repair of wounds. The current methodology does not distinguish between the three forms of MMPs, making it challenging to investigate the roles of MMPs in pathology and wound repair. We used a novel MMP-inhibitor-tethered affinity resin that binds only the active form of MMPs, from which we identified and quantified active MMP-8 and active MMP-9 in a murine diabetic model with delayed wound healing. We showed that up-regulation of active MMP-9 plays a detrimental role whereas active MMP-8 is involved in repairing the wound in diabetic mice. These studies identified MMP-9 as a novel target for therapeutic intervention in the treatment of chronic wounds. A selective inhibitor of MMP-9 that leaves MMP-8 unaffected would provide the most effective therapy and represents a promising strategy for therapeutic intervention in the treatment of diabetic foot ulcers.",book:{id:"5290",slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Trung T. Nguyen, Shahriar Mobashery and Mayland Chang",authors:[{id:"183405",title:"Prof.",name:"Mayland",middleName:null,surname:"Chang",slug:"mayland-chang",fullName:"Mayland Chang"},{id:"191152",title:"Mr.",name:"Trung",middleName:null,surname:"Nguyen",slug:"trung-nguyen",fullName:"Trung Nguyen"},{id:"191153",title:"Prof.",name:"Shahriar",middleName:null,surname:"Mobashery",slug:"shahriar-mobashery",fullName:"Shahriar Mobashery"}]},{id:"63675",doi:"10.5772/intechopen.81208",title:"Wound Healing: Contributions from Plant Secondary Metabolite Antioxidants",slug:"wound-healing-contributions-from-plant-secondary-metabolite-antioxidants",totalDownloads:1328,totalCrossrefCites:7,totalDimensionsCites:20,abstract:"Plants by their genetic makeup possess an innate ability to synthesize a wide variety of phytochemicals that help them to perform their normal physiological functions and/or to protect themselves from microbial pathogens and animal herbivores. The synthesis of these phytochemicals presents the plants their natural tendency to respond to environmental stress conditions. These phytochemicals are classified either as primary or secondary metabolites. The secondary metabolites have been identified in plants as alkaloids, terpenoids, phenolics, anthraquinones, and triterpenes. These plant-based compounds are believed to have diverse medicinal properties including antioxidant properties. Plants have therefore been a potential source of antioxidants which have received a great deal of attention since increased oxidative stress has been identified as a major causative factor in the development and progression of several life-threatening diseases, including neurodegenerative and cardiovascular diseases and wound infection. Consequently, many medicinal plants have been cited and known to effect wound healing and antioxidant properties. This chapter briefly reviews antioxidant properties of medicinal plants to highlight the important roles medicinal plants play in wound healing.",book:{id:"7046",slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Victor Y.A. Barku",authors:[{id:"261027",title:"Prof.",name:"Victor Y. A.",middleName:null,surname:"Barku",slug:"victor-y.-a.-barku",fullName:"Victor Y. A. Barku"}]},{id:"66793",doi:"10.5772/intechopen.85020",title:"The Impact of Biofilm Formation on Wound Healing",slug:"the-impact-of-biofilm-formation-on-wound-healing",totalDownloads:1424,totalCrossrefCites:7,totalDimensionsCites:16,abstract:"Chronic wounds represent an important challenge for wound care and are universally colonized by bacteria. These bacteria can form biofilm as a survival mechanism that confers the ability to resist environmental stressors and antimicrobials due to a variety of reasons, including low metabolic activity. Additionally, the exopolymeric substance (EPS) contained in biofilm acts as a mechanical barrier to immune system cells, leading to collateral damage in the surrounding tissue as well as chronic inflammation, which eventually will delay healing of the wound. This chapter will discuss current knowledge on biofilm formation, its presence in acute and chronic wounds, how biofilm affects antibiotic resistance and tolerance, as well as the wound healing process. We will also discuss proposed methods to eliminate biofilm and improve wound healing despite its presence, including basic science and clinical studies regarding these matters.",book:{id:"7046",slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Rafael A. Mendoza, Ji-Cheng Hsieh and Robert D. Galiano",authors:[{id:"253607",title:"M.D.",name:"Rafael",middleName:null,surname:"Mendoza",slug:"rafael-mendoza",fullName:"Rafael Mendoza"},{id:"254018",title:"Dr.",name:"Robert",middleName:null,surname:"Galiano",slug:"robert-galiano",fullName:"Robert Galiano"},{id:"271116",title:"Mr.",name:"Ji-Cheng",middleName:null,surname:"Hsieh",slug:"ji-cheng-hsieh",fullName:"Ji-Cheng Hsieh"}]},{id:"63086",doi:"10.5772/intechopen.80215",title:"Medicinal Plants in Wound Healing",slug:"medicinal-plants-in-wound-healing",totalDownloads:2888,totalCrossrefCites:7,totalDimensionsCites:15,abstract:"Wound healing process is known as interdependent cellular and biochemical stages which are in trying to improve the wound. Wound healing can be defined as stages which is done by body and delayed in wound healing increases chance of microbial infection. Improved wound healing process can be performed by shortening the time needed for healing or lowering the inappropriate happens. The drugs were locally or systemically administrated in order to help wound healing. Antibiotics, antiseptics, desloughing agents, extracts, etc. have been used in order to wound healing. Some synthetic drugs are faced with limitations because of their side effects. Plants or combinations derived from plants are needed to investigate identify and formulate for treatment and management of wound healing. There is increasing interest to use the medicinal plants in wound healing because of lower side effects and management of wounds over the years. Studies have shown that medicinal plants improve wound healing in diabetic, infected and opened wounds. The different mechanisms have been reported to improve the wound healing by medicinal plants. In this chapter, some medicinal plants and the reported mechanisms will be discussed.",book:{id:"7046",slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Mohammad Reza Farahpour",authors:[{id:"253340",title:"Prof.",name:"Mohammadreza",middleName:null,surname:"Farahpour",slug:"mohammadreza-farahpour",fullName:"Mohammadreza Farahpour"}]}],mostDownloadedChaptersLast30Days:[{id:"51825",title:"Roles of Matrix Metalloproteinases in Cutaneous Wound Healing",slug:"roles-of-matrix-metalloproteinases-in-cutaneous-wound-healing",totalDownloads:3628,totalCrossrefCites:20,totalDimensionsCites:37,abstract:"Wound healing is a complex process that consists of hemostasis and inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Matrix metalloproteinases (MMPs) play important roles in wound healing, and their dysregulation leads to prolonged inflammation and delayed wound healing. There are 24 MMPs in humans, and each MMP exists in three forms, of which only the active MMPs play a role in the pathology or repair of wounds. The current methodology does not distinguish between the three forms of MMPs, making it challenging to investigate the roles of MMPs in pathology and wound repair. We used a novel MMP-inhibitor-tethered affinity resin that binds only the active form of MMPs, from which we identified and quantified active MMP-8 and active MMP-9 in a murine diabetic model with delayed wound healing. We showed that up-regulation of active MMP-9 plays a detrimental role whereas active MMP-8 is involved in repairing the wound in diabetic mice. These studies identified MMP-9 as a novel target for therapeutic intervention in the treatment of chronic wounds. A selective inhibitor of MMP-9 that leaves MMP-8 unaffected would provide the most effective therapy and represents a promising strategy for therapeutic intervention in the treatment of diabetic foot ulcers.",book:{id:"5290",slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Trung T. Nguyen, Shahriar Mobashery and Mayland Chang",authors:[{id:"183405",title:"Prof.",name:"Mayland",middleName:null,surname:"Chang",slug:"mayland-chang",fullName:"Mayland Chang"},{id:"191152",title:"Mr.",name:"Trung",middleName:null,surname:"Nguyen",slug:"trung-nguyen",fullName:"Trung Nguyen"},{id:"191153",title:"Prof.",name:"Shahriar",middleName:null,surname:"Mobashery",slug:"shahriar-mobashery",fullName:"Shahriar Mobashery"}]},{id:"63086",title:"Medicinal Plants in Wound Healing",slug:"medicinal-plants-in-wound-healing",totalDownloads:2898,totalCrossrefCites:7,totalDimensionsCites:15,abstract:"Wound healing process is known as interdependent cellular and biochemical stages which are in trying to improve the wound. Wound healing can be defined as stages which is done by body and delayed in wound healing increases chance of microbial infection. Improved wound healing process can be performed by shortening the time needed for healing or lowering the inappropriate happens. The drugs were locally or systemically administrated in order to help wound healing. Antibiotics, antiseptics, desloughing agents, extracts, etc. have been used in order to wound healing. Some synthetic drugs are faced with limitations because of their side effects. Plants or combinations derived from plants are needed to investigate identify and formulate for treatment and management of wound healing. There is increasing interest to use the medicinal plants in wound healing because of lower side effects and management of wounds over the years. Studies have shown that medicinal plants improve wound healing in diabetic, infected and opened wounds. The different mechanisms have been reported to improve the wound healing by medicinal plants. In this chapter, some medicinal plants and the reported mechanisms will be discussed.",book:{id:"7046",slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Mohammad Reza Farahpour",authors:[{id:"253340",title:"Prof.",name:"Mohammadreza",middleName:null,surname:"Farahpour",slug:"mohammadreza-farahpour",fullName:"Mohammadreza Farahpour"}]},{id:"63082",title:"Abdominal Trauma",slug:"abdominal-trauma",totalDownloads:1391,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Abdominal injuries may be life threatening and should be approached cautiously. After trauma, the abdomen may be sanctuary for occult bleeding that, if not discovered and corrected expeditiously, may lead to deleterious consequences. Patients with abdominal trauma should have rapid assessment, stabilization, and early surgical consultation to maximize the chances of a successful outcome. Deaths from abdominal trauma result principally from hemorrhage or sepsis. Most deaths from abdominal trauma are preventable. Patients at risk of abdominal injury should undergo prompt and thorough evaluation. In some cases, dramatic physical findings may be due to abdominal wall injury in the absence of intraperitoneal injury. If the results of diagnostic studies are equivocal, diagnostic laparoscopy or exploratory laparotomy should be considered, since they may be lifesaving if serious injuries are identified early.",book:{id:"6662",slug:"trauma-surgery",title:"Trauma Surgery",fullTitle:"Trauma Surgery"},signatures:"Göksu Afacan",authors:[{id:"236854",title:"M.D.",name:"Göksu",middleName:null,surname:"Afacan",slug:"goksu-afacan",fullName:"Göksu Afacan"}]},{id:"50840",title:"Alternative Approaches to Wound Healing",slug:"alternative-approaches-to-wound-healing",totalDownloads:2817,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"The history of wound healing across the globe abounds with usage of various herbs for treating simple cuts and bruises to serious burns. Wound healing is a complex and dynamic process and, moreover, depends a lot on the wound bearing person’s immunity and mental status. Synthetic medicine may give rise to side effects of allergy and resistance with usually higher cost of treatment. Whereas the alternative and complementary medicine such as Ayurveda, Siddha, Unani, Chinese medicine, and ozone therapy can lessen these side effects considerably and offer treatment at lower costs, thus elevating the overall quality of life of the patient. In today’s times the patient is more demanding and has the ability to partake in treatment decisions. It is then the moral responsibility of the scientists to apply modern up-to-date scientific acumen to provide evidenced-based concept to alternative therapies of wound healing to ensure that these practices are safe and efficacious.",book:{id:"5290",slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Anuradha Majumdar and Prajakta Sangole",authors:[{id:"182027",title:"Dr.",name:"Anuradha",middleName:null,surname:"Majumdar",slug:"anuradha-majumdar",fullName:"Anuradha Majumdar"}]},{id:"66286",title:"From Tissue Repair to Tissue Regeneration",slug:"from-tissue-repair-to-tissue-regeneration",totalDownloads:1934,totalCrossrefCites:5,totalDimensionsCites:6,abstract:"In Regeneration 3.0, the priority is to combine the anti-inflammatory activity of the nine proteins acting as growth factors in the bovine colostrum, the homeostatic, angiogenic and reorganizational activities of the matrix, the modulation of collagen synthesis and the remodeling of the epithelium. The choice of bovine colostrum and its associated properties was the basis for the design of devices that could also offer those properties: barrier action, anti-inflammatory action and pain reduction, reduction and absorption of exudates, combating of bacterial and fungal proliferation, antioxidant action and hydration and protection against skin diseases and dermatosis. We now know the key players in the wound healing process and we have new molecules available to act on them, but the future must necessarily lie in the transfer of molecules and information between the endothelium, ECM and cell membrane, which can be directed toward tissue regeneration if the resident stem cells have the chance of communicating and interacting with new therapeutic models, all this without forgetting that the human being is at the center of research and scientific evolution.",book:{id:"7046",slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Aragona Salvatore Emanuele, Mereghetti Giada, Ferrari Alessio and\nGiorgio Ciprandi",authors:[{id:"247667",title:"Prof.",name:"Emanuele Salvatore",middleName:null,surname:"Aragona",slug:"emanuele-salvatore-aragona",fullName:"Emanuele Salvatore Aragona"}]}],onlineFirstChaptersFilter:{topicId:"994",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!0,editor:{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",slug:"tomas-jarzembowski",fullName:"Tomas Jarzembowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKriQAG/Profile_Picture_2022-06-16T11:01:31.jpg",biography:"Tomasz Jarzembowski was born in 1968 in Gdansk, Poland. He obtained his Ph.D. degree in 2000 from the Medical University of Gdańsk (UG). After specialization in clinical microbiology in 2003, he started studying biofilm formation and antibiotic resistance at the single-cell level. In 2015, he obtained his D.Sc. degree. His later study in cooperation with experts in nephrology and immunology resulted in the designation of the new diagnostic method of UTI, patented in 2017. He is currently working at the Department of Microbiology, Medical University of Gdańsk (GUMed), Poland. Since many years, he is a member of steering committee of Gdańsk branch of Polish Society of Microbiologists, a member of ESCMID. He is also a reviewer and a member of editorial boards of a number of international journals.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorTwo:{id:"484980",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Garbacz",slug:"katarzyna-garbacz",fullName:"Katarzyna Garbacz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003St8TAQAZ/Profile_Picture_2022-07-07T09:45:16.jpg",biography:"Katarzyna Maria Garbacz, MD, is an Associate Professor at the Medical University of Gdańsk, Poland and she is head of the Department of Oral Microbiology of the Medical University of Gdańsk. She has published more than 50 scientific publications in peer-reviewed journals. She has been a project leader funded by the National Science Centre of Poland. Prof. Garbacz is a microbiologist working on applied and fundamental questions in microbial epidemiology and pathogenesis. Her research interest is in antibiotic resistance, host-pathogen interaction, and therapeutics development for staphylococcal pathogens, mainly Staphylococcus aureus, which causes hospital-acquired infections. Currently, her research is mostly focused on the study of oral pathogens, particularly Staphylococcus spp.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82388",title:"Epigenetics: Science of Changes without Change in DNA Sequences",doi:"10.5772/intechopen.105039",signatures:"Jayisha Dhargawe, Rita Lakkakul and Pradip Hirapure",slug:"epigenetics-science-of-changes-without-change-in-dna-sequences",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Chemical Biology",value:15,count:2,group:"subseries"},{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:302,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}}]}},subseries:{item:{id:"3",type:"subseries",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"