Ideal bioprinting hydrogel properties. Reproduced from ref. [68] © Wang et al., under the terms of Creative Commons Attribution-Non-commercial 4.0 International License.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"924",leadTitle:null,fullTitle:"Heat and Mass Transfer - Modeling and Simulation",title:"Heat and Mass Transfer",subtitle:"Modeling and Simulation",reviewType:"peer-reviewed",abstract:"This book covers a number of topics in heat and mass transfer processes for a variety of industrial applications. The research papers provide advances in knowledge and design guidelines in terms of theory, mathematical modeling and experimental findings in multiple research areas relevant to many industrial processes and related equipment design. The design of equipment includes air heaters, cooling towers, chemical system vaporization, high temperature polymerization and hydrogen production by steam reforming. Nine chapters of the book will serve as an important reference for scientists and academics working in the research areas mentioned above, especially in the aspects of heat and mass transfer, analytical/numerical solutions and optimization of the processes.",isbn:null,printIsbn:"978-953-307-604-1",pdfIsbn:"978-953-51-6060-1",doi:"10.5772/1431",price:119,priceEur:129,priceUsd:155,slug:"heat-and-mass-transfer-modeling-and-simulation",numberOfPages:228,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"671686ebedf504b399b01e0a9f8ecfd3",bookSignature:"Monwar Hossain",publishedDate:"September 22nd 2011",coverURL:"https://cdn.intechopen.com/books/images_new/924.jpg",numberOfDownloads:48032,numberOfWosCitations:39,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:3,numberOfDimensionsCitations:34,numberOfDimensionsCitationsByBook:2,hasAltmetrics:0,numberOfTotalCitations:83,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 4th 2010",dateEndSecondStepPublish:"December 2nd 2010",dateEndThirdStepPublish:"April 8th 2011",dateEndFourthStepPublish:"May 8th 2011",dateEndFifthStepPublish:"July 7th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"18207",title:"Prof.",name:"Md Monwar",middleName:null,surname:"Hossain",slug:"md-monwar-hossain",fullName:"Md Monwar Hossain",profilePictureURL:"https://mts.intechopen.com/storage/users/18207/images/1831_n.jpg",biography:"Dr. Monwar Hossain graduated from the Department of Chemical Engineering, Bangladesh University of Engineering & Technology (BUET) in 1977. He worked as a lecturer at the same department before joining the Department of Chemical Engineering at the University of Queensland, Brisbane, Australia as a postgraduate student. Dr. Hossain obtained his MEngSci in 1985, and PhD in 1988. After his post-doctoral fellowships at Massey University, New Zealand and at the University of Queensland, Australia, he joined the Industrial Research Limited (IRL), New Zealand as a research scientist. After several years of research at IRL, he then joined the Department of Chemical & Materials Engineering of University of Auckland, New Zealand as a senior lecturer. Dr Hossain moved to the Department of Chemical & Petroleum Engineering, United Arab Emirates University (UAEU), Al Ain in 2007, and has been working as an associate professor since then. He is involved in teaching Chemical Engineering (Thermodynamics, Mass transfer and Reactor design), Biochemical Engineering (Introduction to Biotechnology and Bioseparations), Water Desalination and Water Treatment. He has supervised 14 postgraduate students (3 PhD and 11 Masters), 3 post-doctoral fellows and many undergraduate research students during his career. He has published more than 60 research papers in international journals and presented 65 articles at the international/national professional conferences. His current research interest are: (I) applications of membrane technology to chemical & biochemical processes, (II) removal of ions (inorganic and organic ions) from water and waste-waters and (III) separation of bioactive compounds (proteins, amino acids and peptides) from food and dairy sources.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"United Arab Emirates University",institutionURL:null,country:{name:"United Arab Emirates"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"814",title:"Fluid Dynamics",slug:"mechanical-engineering-fluid-dynamics"}],chapters:[{id:"20404",title:"Modeling of Batch and Continuous Adsorption Systems by Kinetic Mechanisms",doi:"10.5772/19766",slug:"modeling-of-batch-and-continuous-adsorption-systems-by-kinetic-mechanisms",totalDownloads:8952,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Alice F. Souza, Leôncio Diógenes T. Câmara and Antônio J. Silva Neto",downloadPdfUrl:"/chapter/pdf-download/20404",previewPdfUrl:"/chapter/pdf-preview/20404",authors:[{id:"11756",title:"Prof.",name:"Antônio Jose",surname:"Silva Neto",slug:"antonio-jose-silva-neto",fullName:"Antônio Jose Silva Neto"},{id:"36129",title:"Prof.",name:"Leôncio Diógenes",surname:"Câmara",slug:"leoncio-diogenes-camara",fullName:"Leôncio Diógenes Câmara"},{id:"39778",title:"MSc",name:"Alice",surname:"Souza",slug:"alice-souza",fullName:"Alice Souza"}],corrections:null},{id:"20405",title:"The Gas Diffusion Layer in High Temperature Polymer Electrolyte Membrane Fuel Cells",doi:"10.5772/21157",slug:"the-gas-diffusion-layer-in-high-temperature-polymer-electrolyte-membrane-fuel-cells",totalDownloads:3286,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Justo Lobato, Pablo Cañizares, Manuel A. Rodrigo and José J. Linares",downloadPdfUrl:"/chapter/pdf-download/20405",previewPdfUrl:"/chapter/pdf-preview/20405",authors:[{id:"42019",title:"Prof.",name:"Justo",surname:"Lobato",slug:"justo-lobato",fullName:"Justo Lobato"},{id:"53310",title:"Dr.",name:"Pablo",surname:"Cañizares",slug:"pablo-canizares",fullName:"Pablo Cañizares"},{id:"53311",title:"Dr.",name:"Manuel A.",surname:"Rodrigo",slug:"manuel-a.-rodrigo",fullName:"Manuel A. Rodrigo"},{id:"53312",title:"Dr.",name:"Jose J.",surname:"Linares",slug:"jose-j.-linares",fullName:"Jose J. Linares"}],corrections:null},{id:"20406",title:"Numerical Analysis of Heat and Mass Transfer in a Fin-and-Tube Air Heat Exchanger under Full and Partial Dehumidification Conditions",doi:"10.5772/20136",slug:"numerical-analysis-of-heat-and-mass-transfer-in-a-fin-and-tube-air-heat-exchanger-under-full-and-par",totalDownloads:4295,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Riad Benelmir and Junhua Yang",downloadPdfUrl:"/chapter/pdf-download/20406",previewPdfUrl:"/chapter/pdf-preview/20406",authors:[{id:"37568",title:"Prof.",name:"Riad",surname:"Benelmir",slug:"riad-benelmir",fullName:"Riad Benelmir"},{id:"136482",title:"Prof.",name:"Junhua",surname:"Yang",slug:"junhua-yang",fullName:"Junhua Yang"}],corrections:null},{id:"20407",title:"Process Intensification of Steam Reforming for Hydrogen Production",doi:"10.5772/21223",slug:"process-intensification-of-steam-reforming-for-hydrogen-production",totalDownloads:4246,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Feng Wang, Guoqiang Wang and Jing Zhou",downloadPdfUrl:"/chapter/pdf-download/20407",previewPdfUrl:"/chapter/pdf-preview/20407",authors:[{id:"42331",title:"Dr.",name:"Feng",surname:"Wang",slug:"feng-wang",fullName:"Feng Wang"},{id:"54531",title:"Dr.",name:"Guoqiang",surname:"Wang",slug:"guoqiang-wang",fullName:"Guoqiang Wang"},{id:"90509",title:"Ms.",name:"Jing",surname:"Zhou",slug:"jing-zhou",fullName:"Jing Zhou"}],corrections:null},{id:"20408",title:"Heat and Mass Transfer in External Boundary Layer Flows Using Nanofluids",doi:"10.5772/21264",slug:"heat-and-mass-transfer-in-external-boundary-layer-flows-using-nanofluids",totalDownloads:4395,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Catalin Popa, Guillaume Polidori, Ahlem Arfaoui and Stéphane Fohanno",downloadPdfUrl:"/chapter/pdf-download/20408",previewPdfUrl:"/chapter/pdf-preview/20408",authors:[{id:"42496",title:"Prof.",name:"Guillaume",surname:"Polidori",slug:"guillaume-polidori",fullName:"Guillaume Polidori"},{id:"55942",title:"Dr.",name:"Ahlem",surname:"Arfaoui",slug:"ahlem-arfaoui",fullName:"Ahlem Arfaoui"},{id:"55943",title:"Dr.",name:"Catalin",surname:"Popa",slug:"catalin-popa",fullName:"Catalin Popa"},{id:"55944",title:"Dr.",name:"Stephane",surname:"Fohanno",slug:"stephane-fohanno",fullName:"Stephane Fohanno"}],corrections:null},{id:"20409",title:"Optimal Design of Cooling Towers",doi:"10.5772/22383",slug:"optimal-design-of-cooling-towers",totalDownloads:16724,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Eusiel Rubio-Castro, Medardo Serna-González, José M. Ponce-Ortega and Arturo Jiménez-Gutiérrez",downloadPdfUrl:"/chapter/pdf-download/20409",previewPdfUrl:"/chapter/pdf-preview/20409",authors:[{id:"47538",title:"Prof.",name:"Arturo",surname:"Jiménez-Gutiérrez",slug:"arturo-jimenez-gutierrez",fullName:"Arturo Jiménez-Gutiérrez"},{id:"48111",title:"Mr.",name:"Eusiel",surname:"Rubio-Castro",slug:"eusiel-rubio-castro",fullName:"Eusiel Rubio-Castro"},{id:"48112",title:"Mr.",name:"Medardo",surname:"Serna-González",slug:"medardo-serna-gonzalez",fullName:"Medardo Serna-González"},{id:"48113",title:"Mr.",name:"José María",surname:"Ponce-Ortega",slug:"jose-maria-ponce-ortega",fullName:"José María Ponce-Ortega"}],corrections:null},{id:"20410",title:"Some Problems Related to Mathematical Modelling of Mass Transfer Exemplified of Convection Drying of Biological Materials",doi:"10.5772/20564",slug:"some-problems-related-to-mathematical-modelling-of-mass-transfer-exemplified-of-convection-drying-of",totalDownloads:2319,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Krzysztof Górnicki and Agnieszka Kaleta",downloadPdfUrl:"/chapter/pdf-download/20410",previewPdfUrl:"/chapter/pdf-preview/20410",authors:[{id:"39519",title:"Dr.",name:"Krzysztof",surname:"Górnicki",slug:"krzysztof-gornicki",fullName:"Krzysztof Górnicki"},{id:"75295",title:"Prof.",name:"Agnieszka",surname:"Kaleta",slug:"agnieszka-kaleta",fullName:"Agnieszka Kaleta"}],corrections:null},{id:"20411",title:"Modeling and Simulation of Chemical System Vaporization at High Temperature: Application to the Vitrification of Fly Ashes and Radioactive Wastes by Thermal Plasma",doi:"10.5772/22562",slug:"modeling-and-simulation-of-chemical-system-vaporization-at-high-temperature-application-to-the-vitri",totalDownloads:2063,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Imed Ghiloufi",downloadPdfUrl:"/chapter/pdf-download/20411",previewPdfUrl:"/chapter/pdf-preview/20411",authors:[{id:"48227",title:"Dr.",name:"Imed",surname:"Ghiloufi",slug:"imed-ghiloufi",fullName:"Imed Ghiloufi"}],corrections:null},{id:"20412",title:"Nonequilibrium Fluctuations in Micro-MHD Effects on Electrodeposition",doi:"10.5772/21230",slug:"nonequilibrium-fluctuations-in-micro-mhd-effects-on-electrodeposition",totalDownloads:1753,totalCrossrefCites:5,totalDimensionsCites:18,hasAltmetrics:0,abstract:null,signatures:"Ryoichi Aogaki and Ryoichi Morimoto",downloadPdfUrl:"/chapter/pdf-download/20412",previewPdfUrl:"/chapter/pdf-preview/20412",authors:[{id:"42360",title:"Prof.",name:"Ryoichi",surname:"Aogaki",slug:"ryoichi-aogaki",fullName:"Ryoichi Aogaki"},{id:"54508",title:"Mr.",name:"Ryoichi",surname:"Morimoto",slug:"ryoichi-morimoto",fullName:"Ryoichi Morimoto"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"530",title:"Convection and Conduction Heat Transfer",subtitle:null,isOpenForSubmission:!1,hash:"d7473a9763ff4ee9a4f8bb5a1ba9cd5e",slug:"convection-and-conduction-heat-transfer",bookSignature:"Amimul Ahsan",coverURL:"https://cdn.intechopen.com/books/images_new/530.jpg",editedByType:"Edited by",editors:[{id:"36782",title:"Associate Prof.",name:"Amimul",surname:"Ahsan",slug:"amimul-ahsan",fullName:"Amimul Ahsan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1955",title:"Hydrodynamics",subtitle:"Advanced Topics",isOpenForSubmission:!1,hash:"a2f5fb60944543c693da3c7aa4f07dae",slug:"hydrodynamics-advanced-topics",bookSignature:"Harry Edmar Schulz, André Luiz Andrade Simões and Raquel Jahara Lobosco",coverURL:"https://cdn.intechopen.com/books/images_new/1955.jpg",editedByType:"Edited by",editors:[{id:"20241",title:"Prof.",name:"Harry",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"228",title:"Waves in Fluids and Solids",subtitle:null,isOpenForSubmission:!1,hash:"91a31715c4cb38a9c947a519163c45fc",slug:"waves-in-fluids-and-solids",bookSignature:"Ruben Pico Vila",coverURL:"https://cdn.intechopen.com/books/images_new/228.jpg",editedByType:"Edited by",editors:[{id:"49934",title:"Prof.",name:"Ruben",surname:"Picó Vila",slug:"ruben-pico-vila",fullName:"Ruben Picó Vila"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1954",title:"Hydrodynamics",subtitle:"Optimizing Methods and Tools",isOpenForSubmission:!1,hash:"502818cd3f53e68a788a01c693a29e5d",slug:"hydrodynamics-optimizing-methods-and-tools",bookSignature:"Harry Edmar Schulz, André Luiz Andrade Simões and Raquel Jahara Lobosco",coverURL:"https://cdn.intechopen.com/books/images_new/1954.jpg",editedByType:"Edited by",editors:[{id:"20241",title:"Prof.",name:"Harry",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1659",title:"The Particle Image Velocimetry",subtitle:"Characteristics, Limits and Possible Applications",isOpenForSubmission:!1,hash:"64321309762b4a1b34529238e32ac638",slug:"the-particle-image-velocimetry-characteristics-limits-and-possible-applications",bookSignature:"Giovanna Cavazzini",coverURL:"https://cdn.intechopen.com/books/images_new/1659.jpg",editedByType:"Edited by",editors:[{id:"111606",title:"PhD.",name:"Giovanna",surname:"Cavazzini",slug:"giovanna-cavazzini",fullName:"Giovanna Cavazzini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4690",title:"Mass Transfer",subtitle:"Advancement in Process Modelling",isOpenForSubmission:!1,hash:"6a48c13966c5b7c9ecf0af315f87048b",slug:"mass-transfer-advancement-in-process-modelling",bookSignature:"Marek Solecki",coverURL:"https://cdn.intechopen.com/books/images_new/4690.jpg",editedByType:"Edited by",editors:[{id:"43535",title:"Dr.",name:"Marek",surname:"Solecki",slug:"marek-solecki",fullName:"Marek Solecki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"615",title:"Advanced Methods for Practical Applications in Fluid Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"779d768a546af1ba3f0aa171d0c5a9ee",slug:"advanced-methods-for-practical-applications-in-fluid-mechanics",bookSignature:"Steven A. Jones",coverURL:"https://cdn.intechopen.com/books/images_new/615.jpg",editedByType:"Edited by",editors:[{id:"64477",title:"Dr.",name:"Steven",surname:"Jones",slug:"steven-jones",fullName:"Steven Jones"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-review-of-liquid-filled-optical-fibre-based-temperature-sensing",title:"Corrigendum to Review of Liquid-Filled Optical Fibre-Based Temperature Sensing",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65367.pdf",downloadPdfUrl:"/chapter/pdf-download/65367",previewPdfUrl:"/chapter/pdf-preview/65367",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65367",risUrl:"/chapter/ris/65367",chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}}]}},chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}}]},book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11863",leadTitle:null,title:"Inverse Problems - Recent Advances and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tAn inverse problem, which starts with the causes and then calculates the effects, covers many fields of science. In many cases, models of given inverse problems can be linearized which allows the use of methods of linear algebra for their solutions. Effective tools of linear algebra in linear inverse problems are, in particular, generalized inverse matrices as one of the ways to represent (pseudo)solutions to singular (differential) matrix equations. Nowadays, the theory of generalized inverses is one of the hot topics of linear algebra in various aspects, such as elements of the ring, operators of Hilbert space, or matrices with real, complex, and quaternion entries. Matrices over quaternion algebra are also useful tools in a lot of applied inverse problems, among them in signal and color image processing, quantum physics, etc. In recent years, methods of simultaneous decompositions for tensors have been actively used in different inverse problems. In particular, a product singular value decomposition of a quaternion tensor triplet (higher-order PSVD) has various applications in digital watermarking technology. The main goals of this book are both to give the last achievements in various areas of linear algebra, such as generalized inverses and their applications in solving matrix equations and matrix minimization problems, decompositions of matrices and tensors, new developments in theories of quaternion matrices, and operators of Hilbert space, etc. It is also important to consider new applying models of inverse problems that can be linearized.
",isbn:"978-1-80355-223-1",printIsbn:"978-1-80355-222-4",pdfIsbn:"978-1-80355-224-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"778be380846c917e320eceaf5d7a5983",bookSignature:"Dr. Ivan Kyrchei",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11863.jpg",keywords:"Generalized Inverse Matrix, Singular Value Decomposition, Quaternion Matrix, Tenzor, Pseudoinverse Solution, Matrix Equation, Matrix Minimization Problem, Linear Operator Equation, Regularization Method, Tomographic Method, Iterative Reconstruction Method, Convolution",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 26th 2022",dateEndSecondStepPublish:"June 29th 2022",dateEndThirdStepPublish:"August 28th 2022",dateEndFourthStepPublish:"November 16th 2022",dateEndFifthStepPublish:"January 15th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A Leading Researcher of Pidstryhach Institute for Applied Problems in Mechanics and Mathematics of NAS, Ukraine. Dr. Kyrchei is an Editorial Board Member of the Journal ‘’Advances in Linear Algebra & Matrix Theory’’ and is a member of the International Linear Algebra Society.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"226980",title:"Dr.",name:"Ivan",middleName:null,surname:"Kyrchei",slug:"ivan-kyrchei",fullName:"Ivan Kyrchei",profilePictureURL:"https://mts.intechopen.com/storage/users/226980/images/system/226980.jpg",biography:'Ivan Kyrchei was born in 1964 in Lviv region, Ukraine. In 1992, he was awarded a Master of Science in Mathematics from Ivan Franko National University (Lviv, Ukraine). After that, he worked a high school teacher, studied in graduate school of Pidstryhach Institute for Applied Problems in Mechanics and Mathematics of NAS of Ukraine in Lviv and started his jobs in this institute in junior research positions. In 2008, he held a Doctor of Philosophy (Candidate of Science) degree from Taras Shevchenko National University of Kyiv in specialty of Algebra and the Theory of Numbers. His PhD thesis "Theory of the column and row determinants and inverse matrix over a skew field with involution" introduces and develops the theory of new column and row determinants for matrices with noncommutative entries. In 2021, he was awarded a Doctor of Physical and Mathematical Sciences degree from Institute of Mathematics of NAS of Ukraine in Kyiv. His habilitation ScD thesis " Generalized inverse matrices over the quaternion skew field and their applications" is devoted to generalized inverse matrices over the quaternion skew field, first of all to their determinantal representations, and their applications to solving quaternion matrix equations, some differential matrix equations, and problems of quaternion matrix minimizations and approximations. Now, he is working as the Leading Researcher of PIAPMM of NAS of Ukraine. In 2014, he held an academic degree of Senior Research Fellow (Algebra and the Theory of Numbers) from Ministry of Education and Science of Ukraine that is equivalent to Associate Professor. He obtained the award for significant achievements in the field of science from the Lviv Regional State Administration and Regional Council (2019, 2021). His research interests are mostly in Algebra, Linear Algebra and their Applications. He has more than 80 scientific publications, from them more than 60 are papers with the high science citation index that have been published in well-known professional scientific journals and editor\'s books. He serves also as Editorial Board Member and reviewer in several SCI-journals.',institutionString:"National Academy of Sciences of Ukraine",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Academy of Sciences of Ukraine",institutionURL:null,country:{name:"Ukraine"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49720",title:"Hydrogels for Regenerative Medicine",doi:"10.5772/62044",slug:"hydrogels-for-regenerative-medicine",body:'Two-dimensional (2D) substrates such as tissue culture polystyrene (TCPS), thin films, and other flat surfaces have traditionally been used to culture mammalian cells
In this chapter, we will review the classification of natural and synthetic polymer-based hydrogels in terms of their cross-linking. Recent advances in the application of novel hydrogels for regenerative medicine areas such as their use in peripheral nerve regeneration, tooth regeneration, and 3-D printed scaffolds would also be addressed.
One way of classifying the hydrogels is through the type of cross-linking [8]. Cross-linking maintains the hydrogel network structure and prevents dissolution of the hydrophilic chains.
Physically cross-linked gels, also known as reversible gels, are networks that are held together by attractive noncovalent forces between the polymer chains (Figure 1). These hydrogels have a tendency of going through a transition from a three-dimensional stable state to eventually degrade and dissolve as a polymer solution. These forces that hold these polymer networks together to form a hydrogel, which includes hydrophobic interactions, hydrogen bonding, or ionic interactions [9, 10].
Physical cross-linking in hydrogels, in which the cross-links are formed via noncovalent interaction. Reproduced from ref. [
Physically cross-linked hydrogels have found their use as matrices for cells/drug encapsulation and release, as scaffolds for cell growth, proliferation, and adhesion. Collagen, gelatin, hyaluronic acid (HA), and alginate are the most commonly used natural polymers, which form physical hydrogels. However, these physically cross-linked hydrogels are prone to premature degradation by proteolytic enzymes such as gelatinase for gelatin, collagenases for collagen, and hyaluronidase for HA [12]. On the other hand, physically cross-linked gels such as pure non-modified HA exhibits poor biomechanical properties [13] and gelatin dissolves into a solution at higher temperatures. Many researchers have therefore tried to formulate physically cross-linked hydrogels with improved mechanical properties and better cell adhesion properties. For example, a composite hydrogel of HA and gelatin was formulated by intercalating the polymer chains into laponite clay by ion exchange. The resulting hydrogel had improved mechanical properties and cell-adhesive surface [7, 14]. Another example of cross-linking by ionic interactions is that of dextran, which forms a hydrogel in the presence of potassium ions [15]. Alginate, a polysaccharide, can also be cross-linked with divalent calcium ions to form a hydrogel [8].
Synthetic polymers such as the triblock copolymer poly(ethylene oxide)99–poly(propylene oxide)67–poly(ethylene oxide)99 (PEO99-PPO67-PEO99, Pluronic F127) can also form a physical hydrogel via hydrogen bonding. Pluronic F127 is unique for its hydrophobic interactions between triblock copolymer chains. At low temperatures, both PPO and PEO chains are soluble in water. Above the critical solution temperature (CST) at which gelation occurs, the polymers dissolve due to the breaking of hydrogen bonds between water molecules and the chains, and PPO becomes hydrophobic PPO core and PEO corona, forming a face-centered cubic nanostructured hydrogel. At even higher temperatures, the micelles aggregate together into hexagonally packed cylinders [16, 17]. Blends and interpenetrating networks of two dissimilar polymers can also form physical hydrogels through noncovalent cross-links. The pure F-127 hydrogel has reduced mechanical properties and, therefore, it has been blended with HA and gelatin to improve its mechanical properties [6]. Other synthetic polymers such as poly(acrylic acid) and poly(methacrylic acid) form physical hydrogels by forming hydrogen bonds with poly(ethylene glycol). This kind of hydrogel formation is pH-dependent since the hydrogen bonds are formed only when the acid groups are protonated [18, 19].
Chemically cross-linked hydrogels, also known as “permanent” gels, were cross-linked networks formed due to covalent bonds. These gels are usually more stable than the physically cross-linked hydrogels and have a permanent structure [8, 20, 21]. Polymerizing monomers in the presence of cross-linking agents typically forms chemically cross-linked gels. Poly(2- hydroxyethyl methacrylate) is a well-known hydrogel-forming polymer which is generally synthesized by radical polymerization of HEMA in the presence of a suitable cross-linking agent (e.g., ethylene glycol dimethacrylate) [8]. Figure 2 shows a schematic example of the formation of a chemically cross-linked hydrogel via radical polymerization. Hydrogels can also be formed by cross-linking of the various functional groups present in the polymer backbone. Polymers containing hydroxy, amine, or hydrazide groups can be cross-linked by using glutaraldehyde, which forms covalent bonds with each of these functionalities [4]. The swelling, mechanical strength, elastic modulus, diffusional, and other physical properties of these chemical hydrogels are mainly dependent upon their degree of cross-linking, method of preparation, polymer volume fraction, temperature, and swelling agent [22].
Schematic of methods for formation of cross-linked hydrogels by free radical reactions, including a variety of polymerizations and cross-linking of water-soluble polymers. Examples include cross-linked PHEMA and PEG hydrogels. Reproduced with permission from ref. [
Covalently cross-linked hydrogels can also be formed via enzymatic cross-linking. For example, gelatin, which is chemically cross-linked using glutaraldehyde and formaldehyde to form a stable hydrogel, can also be cross-linked with microbial transglutaminase (mTG) to form an enzymatically cross-linked system. Transglutaminases are a class of natural enzymes that catalyze the acyl-transfer reaction between the ε-amino group of lysine and the γ-carboxyamide group of glutamine in proteins [23, 24]. Microbial transglutaminase (mTG) catalyzes the formation of N-ε-(γ-glutamyl) lysine amide bonds between individual gelatin strands to form a permanent network of cross-linked gelatin [25]. This permanent network of gelatin offers multiple focal adhesion sites for cell attachment, proliferation, and migration.
Another class of hydrogels is the stimuli-responsive hydrogels. These hydrogels can show significant changes in their swelling behavior owing to subtle changes in the pH, temperature, electric–magnetic field, and light [21]. The behavior of these stimuli-sensitive hydrogels depends on the type of the polymer used in making the gel and/or any post-polymerization modifications that are made [26, 27]. pH-responsive hydrogels are swollen ionic networks containing either acidic or basic pendant groups which in an aqueous environment of appropriate pH, ionize developing fixed charges on the gel and thus increasing the swelling forces [22]. The use of stimuli-sensitive polymers in fabricating hydrogels has led to many interesting applications. Poly(N-isopropylacrylamide) (pNIPAm) is the most widely studied stimuli-responsive polymer. It is formed from the monomer N-isopropylacrylamide (H2C=CHCONHCH(CH3)2) that exhibits temperature-sensitive swelling behavior over a temperature range of interest. pNIPAm has a lower critical solution temperature (LCST), below which the polymer is soluble. This is attributed to its coil-to-globule transition [28, 29]. Researchers have shown that it is possible to form a strong, thermally responsive nanocomposite hydrogel within a physiological temperature range by initiating free radical polymerization of NIPA from the clay surface [30–32]. Unique properties of cross-linked nanocomposite PNIPA hydrogels has enabled its use as drug delivery systems, rapid release cell culture substrates (Figure 3), and as wound healing dressings.
Schematic representation of the structural model with organic/inorganic networks in the NC gel.
Field of regenerative medicine works with a common goal of repairing and regenerating damaged tissues and organs. The regenerative process encompasses isolating living cells from patients, expanding them
Peripheral nervous system (PNS) can repair itself after an injury, but this process has its limitations beyond the critical size gap. Nerve grafts are an alternative to repairing severe peripheral nerve injuries. Nerve autograft and allografts are often used for nerve injuries that cannot be repaired by direct coaptation. However, nerve autografts have several limitations including donor site morbidity, limited availability of the donor tissue, and limited functional recovery. On the other hand, allografts require the use of immunosuppressants for over 18 months and hence, have a significant drawback in their applicability [36]. Nerve guidance tubes (NGTs) fabricated from natural or synthetic biomaterials, for this reason, have become an attractive alternative to repairing critical size nerve defects. NGTs act as a connecting bridge between the proximal and distal ends of the severed nerve, where the nerve stumps are inserted into the ends of the tube and sutured together. A protein-rich fluid containing growth-promoting substances is released into the NGTs. Within days, a fibrin cable is formed that supports the migration of Schwann cells (SCs) and facilitates axonal regeneration from the proximal to the distal stump (Figure 4) [37].
Principle of nerve entubulization and the sequence of events leading to the growth of a new nerve cable: (A) chamber walls with a protein-rich fluid (containing neurotrophic factors); (B) generation of a fibrin-rich scaffold; (C) cell migration (perineural, endothelial, and Schwann cells); (D) axonal cables elongation. Reproduced with permission from ref. [
Various hydrogels alone or supplemented with small molecules, growth factors, neurotrophic factors, and cellular components have been used as luminal fillers for nerve conduits. For example, agarose hydrogels containing gradients of laminin-1 and nerve growth factor (NGF) molecules have been used in polysulfone (PSU) tubes [55]. Various researchers have also investigated the role of collagen as a luminal filler [53]. However, just the mere presence of these hydrogels sometimes is insufficient to achieve enhanced functional recovery. Therefore, luminal collagen fillers have been supplemented with laminin, NGF, fibroblast growth factor (FGF), etc. to promote better nerve regeneration. Similarly, fibrin gel has also been used to enhance SC migration, myelination, and rate of regeneration inside silicone tubes in a 1 cm rat sciatic nerve model [53].
Hydrogels promote axonal regeneration after a peripheral nerve lesion. (A) After a lesion where peripheral nerves are severed, inhibitory elements for axonal regeneration arise either in proximal or in distal segments. Although there can be regeneration to unite both stumps, it is common that mismatches are formed. (B) When the lesion area is connected with a rigid tubular structure, and this is filled with a hydrogel, there is a mechanical support and a suitable substrate for axonal growth. In addition, the hydrogel can serve as a carrier of molecules that promote axonal regeneration and ultimately functional recovery. Reproduced from ref. [
Seckel et al. used hyaluronic acid gel in the conduits to produce better conduction velocity, higher axon counts, and myelination [56, 57]. They postulated that HA improves fibrin matrix formation and decreases scarring that might interfere with nerve regeneration. Mohammad et al. [58] showed that when HA was used with NGF, there was a 45% increase in the myelinated axon count. Most recently, keratin-based hydrogels that were used to fill commercial nerve tubes showed an improved axonal area and myelination compared to the empty tube. Electrophysiological analysis such as conduction delay and impulse amplitude were also better than the hollow tube and comparable to the autografts [59, 60]. Luminal fillers in nerve conduits supplemented with essential growth factors are promising ways to achieve nerve regeneration at par with autologous grafts. With an appropriate nerve conduit designed for long nerve gap, bioactive luminal fillers can aid in enhanced functional recovery.
Hydrogels have an added advantage in the field of peripheral nerve regeneration, as they can serve as a support system inside the conduit and also as a mode of delivery of various growth factors necessary for nerve regeneration. However, if the mechanical properties of the hydrogels are not adjusted appropriately, they can hinder the nerve regeneration. Therefore, the limitation of using hydrogels as luminal fillers is primarily their cross-linking. Highly cross-linked viscous gels can be disadvantageous for nerve regeneration. At the same time, the rate of degradation of hydrogels plays an important role if they are used as conduit materials. Hence, it is essential to tune the mechanical and chemical properties of the hydrogels for their best use in peripheral nerve regeneration.
Tooth regeneration similar to the construction of other tissues also requires an appropriate cell source, a biodegradable scaffold that can mimic the natural extracellular matrix (ECM) and bioactive molecules. Tooth organ is composed of enamel, dentin, cementum, and dental pulp. Cells such as ameloblasts form the enamel, odontoblasts form the dentin, cementoblasts form the cementum, and mesenchymal, fibroblastic, vascular, and neural cells form the dental pulp [61]. Scaffold materials play a critical role in determining how cells proliferate and differentiate. Those that mimic the characteristics of natural ECM can best promote appropriate cell and tissue maturation. The tooth scaffolds should be such that they provide chemical and mechanical integrity, are biocompatible, are able to restore the normal functioning of the tooth, and are able to integrate with the surrounding tissues [25]. For dentin-pulp tissue engineering, in particular, hydrogels come across as a favorable choice because they are injectable and have a 3D morphology that helps in the encapsulation of cells and growth factors. Hydrogel scaffolds made from natural biopolymers such as collagen, chitosan, hyaluronic acid, gelatin, fibrin, and alginate have been used quite extensively since they are readily cross-linkable and can be easily combined with various bioactive molecules [62]. Kim et al. [63] loaded collagen gels with a series of growth factors and injected them into pulp chambers and root canals of endodontically treated human teeth. They found that on
Collagen gels have also been used to deliver dental pulp stem cells (DPSCs) and dentin matrix protein-1 (DMP-1)
(A) Cross-section of a non-induced hard gel (H (−)) after 35 days of DPSCs culture showing a self-supporting sheet of biomineralized deposits present inside the gel. EDX spectra (inset in (A)) confirm the hydroxyapatite mineral. A cross-sectional view of the alizarin red-stained calcified biomineralized deposits in the (B) hard (+) and (C) hard (−) gel. Top view of the alizarin red-stained calcified deposits and their corresponding SEM images after 35 days of DPSCs cultured on: (D, H) hard (+); (E, I) hard (−); (F, J) soft (+); (G, K) soft (−) gels. The calcified deposits laid by the cells are stained dark red and have a defined pattern. Reproduced from ref. [
Hydrogels have shown their potential in regenerating dentin-pulp tissue. Researchers have demonstrated the successful use of hydrogel scaffolds for dentin-pulp matrix regeneration. However, hydrogels have a limitation when it comes to regenerating the whole tooth organ. Not much research has been done in the field of using hydrogel scaffolds for regenerating the whole tooth structure.
3D printing is emerging as a potential tool in regenerative medicine for building complex 3D structures across length scales ranging from micrometers to millimeters. 3D printing represents a way to pattern and assemble the cells with materials in a controlled and functional 3D architecture. The only limitation that arises is due to the materials being printed and necessitates a need for new inks to expand the utility of 3D printed structures [67]. 3D printing techniques generally comprises of: (a) extrusion-based printing that requires a material to be extruded through an orifice, (b) ink-jet based printing that requires a material to be ejected as droplets onto a substrate, and (c) laser based printing where a material is cured using a laser [67].
Hydrogels for 3D printing should be printable, biocompatible, have desired mechanical properties, shape, and structure (Table 2) [68]. Collagen has been extensively used for 3D printing where in one case, sodium hydrogen carbonate (NaHCO3) vapor was applied to gel the printed collagen layer and in another instance, NaHCO3 was mixed with collagen and cells and then printed using laser-assisted bioprinting [68]. Several researchers have utilized the temperature-responsive hydrogels, particularly pluronic F127 that gels in the temperature range of 10 to 40oC. Pluronics have been combined with collagen and cross-linked gelatin methacrylate (GelMa) to form bioinks. Kolesky et al. printed pluronic F127 as a sacrificial vascular network embedded in GelMa matrix that mimic natural fine capillaries [69].
\n\t\t\t\t | \n\t\t|
Printability | \n\t\t\tViscosity Shear-thinning property Response and transition time Sol–gel transition stimulus | \n\t\t
Biocompatibility | \n\t\t\tDegradability Cell-binding motifs Non-toxic Non-immunogenic | \n\t\t
Mechanical Properties | \n\t\t\tStiffness Elasticity Strength | \n\t\t
Shape and structure | \n\t\t\tPore size Micro/Nanostructure | \n\t\t
Ideal bioprinting hydrogel properties. Reproduced from ref. [68] © Wang et al., under the terms of Creative Commons Attribution-Non-commercial 4.0 International License.
Photocross-linking property of the hydrogels has been utilized to bioprint tough and rigid hydrogel constructs with cells. For example, partially photocross-linking gelatin methacrylate (GelMA) was combined with hyaluronic acid methacrylate (HAMA) to form a gel-like fluid which was then printed with a defined pattern. This printed layer was further irradiated to obtain a tubular tissue construct [70]. Hong et al. [71] combined sodium alginate and poly (ethylene glycol) (PEG) to constitute an interpenetrating network. Laponite clay was used to form a nanogel. Poly(ethylene glycol) diacrylate (PEGDA) and alginate mixture were combined with laponite clay to form a pre-gel solution. To cross-link PEGDA and alginate, a photoinitiator and calcium sulfate solution were added to the pre-gel solution. The PEGDA–alginate–nanoclay pre-gel solution was 3D printed via extrusion-based printing (Figure 7). The resulting hydrogels were tough and had the potential to encapsulate cells for tissue regeneration.
3D printing of tough and biocompatible PEG–alginate–nanoclay hydrogels. (a) Various 3D constructs printed with the hydrogel (from left to right: hollow cube, hemisphere, pyramid, twisted bundle, the shape of an ear, and a nose. Non-toxic red food dye was added postprint on some samples for visibility). (b) A mesh printed with the tough and biocompatible hydrogel. The mesh was used to host HEK cells. (c) Live–dead assay of HEK cells in a collagen hydrogel infused into the 3D printed mesh of the PEG–alginate–nanoclay hydrogel. (d) The viability of the HEK cells through 7 d. (e) A printed bilayer mesh (top layer red, bottom layer green) is uniaxially stretched to three times its initial length. Relaxation of the sample after stretching shows almost complete recovery of its original shape. (f) A printed pyramid undergoes a compressive strain of 95% while returning to its original form after relaxation. Reproduced with permission from ref. [
Recent developments in 3D printing of hydrogels offer a potential to produce constructs with the higher structural organization, fine-tuned mechanical and chemical properties to control cell behavior and an environment that mimics
Hydrogels have found extensive applicability in various fields of tissue engineering and regenerative medicine due to their underlying similarity to the native ECM. The role of hydrogels in regenerative medicine has progressed remarkably with their widespread use in peripheral nerve regeneration, tooth regeneration, and more recently in 3D printing. Long nerve gap repair, dentin-pulp complex reconstruction, and 3D printing of organs are few of the areas in regenerative medicine that are at the forefront. Understanding and development of functionally bioactive smart hydrogels could help tremendously in these regenerative therapies.
This work was supported by NSF-Inspire Program grant # DMR- 1344267.
Due to the elevated level of population growth, energy consumption has risen over the recent decade [1]. This increase in energy demand over the years has changed the energy scenario through manufacturing [2]. Furthermore, even with the current low oil price, the world’s energy demand is anticipated to continue to rise in the future according to the international energy agency’s new policy situation [3], from 13.2% in 2011 up to 17.6% in 2035 as shown Figure 1.
Primary energy demand in Mtoe (million tonnes of oil equivalent) (a) 2011, (b) 2035 “new policies scenario” and (c) 2035 “450 scenario” (adapted from Ref. [
Currently, dependence on fossil fuels such as petroleum, gas and coal to satisfy energy demand has caused environmental issues owing to anthropogenic greenhouse gas generation. Methane (CH4) and carbon dioxide (CO2) are the most abundant greenhouse gasses and have lately contributed significantly to climate change issues [4]. While the level of methane in the environment is smaller than that of carbon dioxide [5], it is surprising that around 20% of worldwide warming occurs is caused by it [6]. Conventionally, there are two main sources of methane emissions including nature occurring activities and anthropogenic activities. Examples of the first source are termites, grasslands, coal beds, lakes, wetlands and forest fires, while examples from the second source are landfills, oil and gas treatment, wastewater treatment plants, coal mining, rice production, livestock and agricultural activities [7]. According to the US Environmental Protection Agency [8], methane manufacturing from landfill sites accounts for almost one-third of all methane produced in the United States alone, where landfill gas consists of 40–45% methane and 55–60% carbon dioxide by quantity by volume [9]. Notwithstanding, the reality that methane is a significant element of natural gas, a big quantity of natural gas is burned globally owing to technological constraints and the high price of carrying this valuable gas from its reservoirs, which are often far from industrial fields and the prospective market [10]. These actions have wasted an important source of hydrocarbons and contributed to global warming by releasing greenhouse gases into the atmosphere [11]. Carbon dioxide capture and storage (CCS) has been implemented globally to decrease carbon dioxide emissions due to pressure to combat global climate change and guarantee viable power sources [12]. In addition, renewable energy is required instantly to replace oil resources to decrease the heavy dependence on crude oil and its unwanted impacts on the atmosphere [13].
In the last few years, the resources of renewable energy, particularly, biogas, have gained massive attention around the world as a substitute for traditional fossil fuels [14]. In Southeast Asia, palm oil biomass is considered one of the most plentiful renewable resources and has enormous potential for the sustainable production of chemical substances and fuels. Liquid waste, known as palm oil mill effluent (POME) generated along with crude palm oil production, is one of Southeast Asia’s environmental problem due to its high pollution characteristics. Therefore, digestion, an aerobic treatment, is widely adopted in the oil palm industries as a reliable and effective treatment for POME. The biogas generated during POME’s anaerobic decomposition is not restored for use, but can be dissipated into the atmosphere [15]. The biogas produced contains two greenhouse gases: methane (60–70%) and carbon dioxide (30–40%) with traces of hydrogen sulfide which can be utilized after purification for heat generation, electricity production, bio-methane production and of synthesis gas (referred to as syngas, mixture of H2 and CO) [16]. In fact, POME could become a significant source for biogas production due to its high organic content [17]. According to the World Meteorological Organization [18], methane and carbon dioxide levels were reported at 1845 ppm (parts per million) and 400.1 ppm (parts per million) respectively in 2015. Methane levels in the environment have been revealed to be below carbon dioxide levels, but have caused about 20% of worldwide warming [19]. Methane production was estimated at 6875 million metric tons which equals the total amount of carbon dioxide from all anthropogenic sources in 2010 [20]. Methane is frequently considered an important natural gas component with small amounts of other hydrocarbons such as ethane, propane and butane containing inert substances such as molecular oxygen (O2) and carbon dioxide [21]. When monitoring the negative impact of methane and carbon dioxide, it is paramount to reduce their concentrations so that to avoid the high concentration of the greenhouse gases that lead to negative environmental conditions and increased temperature.
A great deal of extensive studies has been conducted to discover efficient methods of converting methane and carbon dioxide into precious products and thus reducing their elevated atmospheric quantity. Because of its comparatively low price and stability relative to other methods, converting carbon dioxide and methane into syngas is one of the most prevalent technologies [22]. It is one of the most important processes to convert hydrocarbons in the chemical industries to produce syngas [23]. In many distinct applications, such as Fischer-Tropsch (F-T) petroleum synthesis and the manufacturing of methanol and other precious fluid fuels and chemicals, syngas can be regarded as a construction block [24].
Recently, there have been many attempts that have prompted interest in producing alternative fuels by using renewable and environmentally friendly sources of energy, one of the few alternative sources is biogas. Even so, it is not entirely greenhouse gas-free; it does not, however, lead to global warming. Biogas is an appealing alternative for converting fuel to transport and generate electricity [25]. The vital route that will be of benefit to the power generation industry is the direct conversion of biogas, composed of methane and carbon dioxide to hydrocarbons under catalytic decomposition processes.
The use of catalysts in the catalytic reaction is essential in growing syngas manufacturing, as they assist to alter and enhance the reaction rate without consumption in the process [26]. Catalysts operate by offering an alternative mechanism that decreases energy activation, which implies the system needs less energy to achieve the state of transition. While catalytic reaction needs elevated temperatures to operate due to its heat-absorbing nature, the existence of catalysts can significantly decrease the reaction temperature [27].
Recently, there have been many attempts to use monometallic catalysts such as Ni, Co, Fe and Cu in the catalytic process because they are cheap and have a strong magnetization ability [28, 29]. Furthermore, bimetallic such as Ni-Co, Ni-Fe, and Ni-Cu have become very attractive to researchers due to their properties and the diversity of applications when compared with their individual mono-metal counterparts. The incorporation of nickel into Co, Fe, and Cu metals decreases the use of expensive noble metals [30]. Bimetallic catalysts success is thought to be due to the synergy of their parent metals they consist of two separate metals that display elevated dispersion and active sites. Moreover, the physical and chemical properties of the bimetallic catalysts are enhanced due to the formation of the solid solution [31]. For example, Pudukudy et al. [32] and Pinilla et al. [33] revealed a greater carbon output from a bimetallic catalyst compared to a monometallic catalyst.
At the moment, the adverse effect on the environment from the burning of fossil fuels, coal and compressed natural gas has become one of the main global issues [34]. Climate change occurs when the greenhouse effect rises, as demonstrated by flash floods, wind storms, heat waves and sudden droughts in a number of nations [35]. In addition, worldwide demand for energy is growing while fossil-fuel energy sources are quickly declining. Fossil fuels are one of the non-renewable energy resources that will be depleted in several decades if large-scale sources of energy are continually used [36]. As shown in Figure 2, the world production of fossil oil is at the peak of the production, and it is expected to diminish by the year 2050 [37]. Because of these situations, it is essential to replace petroleum consumption, minimize future expenses and eliminate the adverse effect on health and the environment. Thus, the replacement of non-renewable energy source with renewable resources is imperative to fulfill the needs of the energy demand without causing harm to the environment and mankind [38]. Due to this crisis, various kinds of energy are used to meet the large demand for petroleum-based fuel such as wind turbines, river dams, solar panels, geothermal power and biofuels [39].
Oil and natural gas production in the NZE (adapted from Ref. [
The conversion of methane into liquid fuels or greater hydrocarbons has been performed extensively. Bradford and Vannice [40] studied the growth of methanol, formaldehyde, propanol, benzene and other aromatics through direct oxidative conversion of methane. Unfortunately, all the aforementioned processes produce low yields or they are not recommended for an industrial scale. Today, various technologies are available for the production of syngas from natural gas. This gas is a component of precious fluid fuels and chemicals like Fischer-Tropsch oil, methanol and dimethyl ether [41].
The most significant renewable energy sources in the globe are biomass and hydropower. However, the use of other renewable resources is necessary to minimize the negative climate impacts caused by the excessive use of fossil fuels. In that sense, biogas will play an important role in the future. The biogas primary energy has increased 70% between 2008 and 2013 [42] and its production is expected to double in 2022 up to 45 × 109 m3. Biogas is a gas consisting primarily of methane and carbon dioxide generated from anaerobic digestion of organic matter from agricultural waste, landfills, urban wastewater and industrial wastewater. It is considered, therefore, a renewable energy source [43].
Based on the residue, biogas can contain traces of other compounds that hinder its use in the production of energy, making it necessary to install costly purification systems. Among them, the most significant are H2S, NH3, halogenated hydrocarbons and siloxanes. Biogas has traditionally been regarded a non-value by-product usually burned in flares to avoid hazards to humans and the environment and then released into the atmosphere. Recently, various options for biogas use such as heat, electricity, mixed heat and energy or the manufacturing of bio-methane have been suggested. Nevertheless, from an economical point of view, all the previous biogas applications depend on government feed in tariff policies. Besides, different countries like Malaysia, Germany, Spain or Italy, have reduced or even removed the cost-based compensation creating an unstable scenario for the renewable energy producers [44]. Therefore, the manufacturing of fresh biogas products is not only interesting but essential in order to reduce the obstacles to profitability.
One of the alternatives considered is the manufacturing of syngas that consists of a blend of H2 and CO and is the basis of C1 chemistry [45]. Depending on the syngas H2:CO ratio, it can be used to produce methanol, dimethyl ether (DME), liquid hydrocarbons (Fischer-Tropsch process) or H2. Syngas can be acquired from several procedures such as methane steam reforming, partial methane oxidation or dry methane reforming.
Due to overdependence on fossil-based fuels and increasing environmental concerns, the resources of renewable energy, in particular biogas, have gained massive attention around the world as a substitute for traditional fossil fuels. Biogas is obtained from the process of the anaerobic digestion of organic compounds. Methane (40–70%) and carbon dioxide (30–60%) are the primary compounds of biogas [46]. One of its most common applications is the direct combustion for energy recovery through co-generation plants that produce electricity and heat. Nevertheless, the use of renewable sources of methane like the one contained in biogas (bio-methane) for different applications like the production of hydrogen is a more interesting option than the use of fossil methane [47].
In this context, the catalytic decomposition of methane (CDM) (Eq. (1)) is being studied as an alternative to steam reforming of methane (SRM) to produce CO2-free hydrogen. The CDM in a single step produces a mixture of hydrogen and unconverted methane, which can be directly used as fuel in internal combustion engines or, even directly used to power a fuel cell [47].
The catalysts traditionally used in the CDM consist of transition metals belonging to group VIII (Ni, Fe, Co) supported over different metal oxides such as Al2O3, MgO, La2O3, and CeO2 [48, 49]. These catalysts are characterized by promoting the formation of carbon nanostructures (carbon nanofibers or carbon nanotubes) varying their textural and structural properties as a function of the catalyst composition and the operational conditions [50]. These carbon nanostructures have very interesting properties for their use in applications where thermal and electrical conductivity of materials is a key factor. However, one of the problems of the CDM is the deactivation over time of the catalysts due to carbon deposition that encapsulates the metal particles disabling their active sites [51].
Co-feeding with CH4 different oxidizing agents such as H2, H2O or CO2, can increase the life of the catalyst. Co-feeding with H2, inhibits the deactivation of the catalyst at the expense of a desired product, which reduces the efficiency of the process while the use of CO2 as Co-feeding induces Boudouard reaction (Eq. (2)) thereby resulting in gasification of graphitic carbon produced during the CDM reaction.
The use of CO2 in the CDM process has been studied by two approaches: some authors have suggested a cyclical process consisting of a methane decomposition step followed by another stage of gasification of the deposited carbon with CO2. Other authors have studied the decomposition of mixtures CH4:CO2 in conditions that favor the formation of nanostructured carbon. Nagayasu et al. [52] observed a slow deactivation of a Ni based catalyst to be used in the CDM in the presence of CO2. They also noted an increase in carbon accumulation capacity in the form of nanotubes by increasing the partial pressure of CO2 co-fed along with that of CH4.
Asai et al. [53] confirmed the inhibition of the deactivation of the catalyst studied in the decomposition of methane in the presence of CO2, suggesting a mechanism based on the gasification of graphitic carbon layers that encapsulate the catalyst particles, allowing the formation of carbon in the form of nanotubes. Indeed, co-feeding of CH4 and CO2, which are the main components of biogas as previously mentioned, modifies the reaction mechanism of methane decomposition into carbon and H2, to a process called dry reforming, which produces a mixture of H2 and CO. This is a highly endothermic reaction that takes place by way of a catalyst in the temperature range between 600 and 800
This syngas can be used in multiple applications such as fuel for solid oxide fuel cells or Fischer-Tropsch synthesis to produce environmental friendly liquid fuels, when using a renewable source such as biogas [55]. If the aim is to produce H2, then a water gas shift reaction followed by CO2-H2 separation should be accomplished. The practical implementation of the dry reforming of methane (DRM) faces many key challenges, which also apply to the biogas decomposition, and one of the most important is the deactivation of the catalysts due to the formation of carbon during the reactions of CH4 decomposition and CO2 disproportionation [56]. Also, Edwards and Maitra [57] reported that it is convenient to work at high temperatures and low ratios of CH4:CO2 (<1), to minimize carbon formation from a thermodynamic point of view. However, from the industrial point of view it would be much more desirable to work at moderate temperatures and CH4:CO2 ratios close to one, despite these are conditions under which carbon formation is thermodynamically favored.
Another issue that should be addressed is the high sulfur content of the biogas. This can provoke severe metal catalysts deactivation, therefore an exhaustive desulphurization of the biogas fed to the catalytic decomposition of biogas (CDB) reactor would be required when using a real biogas. The most commonly used methods for hydrogen sulphide removal can be found in [58]. The more active catalysts that promote the lower carbon deposition are precious metals, but its high price provokes that the most widely used catalysts for dry reforming are based on Ni, Co and Fe [59], which are the same catalysts traditionally used in the CDM.
Since the typical CH4:CO2 ratio in biogas composition is higher than 1 (CH4 concentration in biogas can be as high as 70% depending on its origin), avoiding carbon deposition in the biogas decomposition reaction is not a task easy to accomplish. Thus, as previously mentioned, the presence of CO2 along with the selection of optimum operating conditions for the deposition of carbon could prevent the rapid deactivation of the catalyst, resulting in a new biogas recovery process in which a gas with a suitable composition for its use in an internal combustion engine and carbon nanofibers (CNF) with multiple applications in sectors such as energy and transport are obtained. Direct decomposition of a gas simulating a typical biogas composition by means of metal catalysts under conditions that are favorable for carbon deposition has been studied by Muradov and Smith [60]. The problem associated to carbon deposition through decomposition of CH4:CO2 mixtures with ratio >1 was solved by adding small amounts of steam, prolonging the catalyst life. Some previous works by De Llobet et al. [61] focused on a study of CDB, conducted at moderate temperatures and using typical catalysts previously used in the CDM, promoting the formation of nanostructured carbon and syngas. As per their report, the Ni/Al2O3 catalyst exhibited high activity as well as stability, allowing them to obtain high CH4 conversion together with the high-yield production of fishbone-like nanocarbon.
Figure 3 illustrates a key aspect of the thermodynamics of any possible CO2 conversion. The figure also demonstrates the free emission of CO2 from Gibbs and its associated substances. It is evident that CO2 is an extremely stable molecule; it therefore requires significant energy input, optimized reaction conditions and (almost invariably) active catalysts for any chemical conversion of CO2 into a carbonaceous fuel.
Gibbs free energies of formation of selected chemicals (adapted from Ref. [
However, it is important to note that chemical reactions (conversions) arise due to the difference in the Gibbs free energy between the reactants and products of a chemical reaction (under certain conditions). This is illustrated by the Gibbs-Helmholtz relationship (Eq. (3)):
Therefore, the comparative stability of the ultimate response products must be taken into consideration in the effort to use CO2 as a chemical feedstock compared to the use of reactants. Both terms (Δ
Freund and Roberts [63] highlighted the significant contribution of CO2 surface chemistry. They claimed that any progress in the use of CO2 as a useful reactant can be achieved in relation to fuel synthesis by using novel catalytic chemistry wisely. They attempted to illustrate that the greatest potential impact lies in this area of material chemistry, physics and engineering. These researchers also pointed out that a positive change in free energy should not be considered as a reason enough not to pursue potentially useful CO2 reactions. This is because, Δ
Since the kinetics are favorable, CO2 decrease to CO (a key step in all conversion reactions), the primary step in all transformation responses, may also be feasible on metal surfaces or other catalytic materials, for instance on nano- and mesoporous metal particles [62]. Presently, a large number of industrial-scale chemical manufacturing processes worldwide operate on the basis of strong endothermic chemicals. The SRM to yield syngas and hydrogen is a classic example (Eq. (5)):
It is important to emphasize that the above-mentioned, highly endothermic reaction is used to produce large quantities of ‘merchant hydrogen’ in the gas, food and fertilizer industries worldwide. The corresponding DRM reflects the important reaction of CO2 with hydrocarbons, which will be central to our idea of converting CO2 into flue gases to produce chemical fuels (Eq. (6)):
The energy input for DRM requires about 20% more energy input than the SRM, but there is definitely no restricted additional energy cost for this chemical reaction. It is important that these two reactions lead to syngas with different H2:CO molar ratios. For the final production of liquid fuels, both are useful for the formation of horns.
Figure 4 shows the enthalpy of the chemical reactions of the CO2 conversion. This means that CO2 is thermodynamically much easier to use as a co-reactant, usually with a higher (i.e. less negative) Gibbs free energy, such as H2 or CH4. These hydrogen-containing energy carriers give their internal chemical energy to promote the conversion of CO2. Therefore, the heat of reaction (enthalpy of reaction) from CO2 to CO production is important and obvious as the individual reactive and CO2 energy as a key factor. Compare the thermal decomposition energies of CO2 (Eqs. (7) and (8)).
The enthalpy of reaction for syngas production and Fischer-Tropsch (FT) synthesis of methanol and dimethyl ether (adapted from Ref. [
With that of the reaction of CO2 with H2 (Eq. (8))
This aspect may be further illustrated by the process of ‘oxyforming’, whereby the amount of oxygen in the dry reforming reaction is increased deliberately. In doing so, the reaction enthalpy of reaction is significantly reduced (Eqs. (9) and (10)):
The fundamental material challenge in this area lies in the fact that, generally, the reaction between CO2 and H2 occurs at high temperatures on multi-component heterogeneous catalysts [64].
Syngas is a blend of carbon monoxide and coal with a tiny quantity of methane and carbon dioxide. In the ever changing energy landscape, it is not only versatile, but also an increasingly important commodity. There are various carbon sources that happen through gasification or catalytic reformation for the manufacturing of syngas. Coal, natural gas (mainly methane), petroleum, and biomass could be the sources of carbon. The primary technical problem with fossil fuel syngas manufacturing is the complicated purification and conditioning procedures of syngas. The main reasons why the world has become more interested in the producing of biomass-derived syngas are therefore to decrease over-dependence on fossil fuels, to impose stricter CO2 emission standards and to verify the accessibility of resources. Roddy [65] claimed that biomass could originate from industrial, domestic, agricultural and urban waste sources as a feedstock for syngas production. The use of biomass or waste as the raw material for syngas manufacturing is theoretically two-pronged: the generation of clean energy and an effective way to reduce waste as reported by Markets and Markets [66], a compound annual growth rate (CAGR) of 8.7% is anticipated to achieve 117,400 MW (Megawatts) heat in 2018. Boerrigter and Rauch [67] estimated the future market for syngas to increase to 50,000 petajoules (PJ) per annum, equivalent to 13.9 × 109 MWh per annum in, 2040. This amounts to replacing an average 30% fossil fuel usage is 10% of the complete world power consumption. They also projected that syngas will be used primarily in gas-to-liquid (GTL) procedures, with 49% for gas-to-product (GTP) procedures and 39% for renewable gas and hydrocarbon manufacturing. In, 1993, Shell Malaysia built the world’s first commercial GTL plant in Bintulu, Sarawak. Since, 2003, as many as for 14,700 barrels of high-quality GTL products have been produced per day. This is clearly an upgrade in the production from its original capacity of 12,500 barrels per day. As reported by the Borneo Post, Shell’s GTL plant plans to invest RM (Malaysian ringgit) 48.36 million to rejuvenate its plant in Bintulu in, 2015. The world’s largest GTL plant is located in Qatar, with a production capacity of 140,000 barrels of product per day.
In short, the development of the market for syngas is accelerating, the important increase in syngas consumption is due to its use as an energy precursor. The presence of CO, H2 and CH4 gases, which possess certain heating value, makes it highly in demand. Syngas also includes approximately 50% of natural gas’s power density. Subramani et al. [68] reported that 1 kg of H2 contains the same amount of energy as 2.6 kg of CH4, which is equivalent to 3.1 kg of gasoline. H2 is used at low temperatures because of its elevated energy content; fuel cells are used to produce electricity, power cars or even in the synthesis of Fischer – Tropsch. In addition to serving as an energy carrier, it has traditionally been used as a feedstock for the mass production of significant chemicals, such as methanol, ammonia or fertilizers.
Carbon nanofilaments are nanometric filaments with diameters between 1 and 200 nm and lengths of up to several microns. These materials are composed mainly of graphite type carbon whose basic structural component is graphene [69]. Graphene can be defined as the combination of carbon atoms with sp2 hybridization, where each carbon atom joins three others forming a flat hexagonal tessellation (basal plane or graphene layer) [70]. The parallel stacking of several of these layers’ outcomes in graphite characterized by an elevated structural order and a distance of 0.3354 nm between the distinct graphene layers (crystalline domain or interplanar distance, d002) (Figure 5).
Representative scheme of crystal structures of graphene (adapted from Ref. [
On the other hand, carbon nanofilaments have a structural order inferior to that of graphite and according to the Franklin classification [72] correspond to turbostratic type materials, that is, they have crystalline domains greater than graphite and smaller than non-graphitic carbons (0.3354 < d002 < 0.344 nm).
Within carbon nanofilaments we can distinguish two types: carbon nanotubes (CNT) and carbon nanofibers (CNF). The CNT can be considered as layers of graphene rolled into hollow tubes [73]. Depending on the number of layers that make up the CNT, they are classified as single wall CNT (SWCNT), formed by a single layer, or multiple wall CNT (MWCNT), formed by 2 or more concentrically coiled layers (Figure 6a) [73]. On the other side, the CNF can be hollow or strong and are categorized with regard to their longitudinal axis according to the angle they form graphene layers (α). The most common types of CNF are platelet, parallel (also named ribbon or tubular) and fishbone (Figure 6b) [73]. Platelet CNF are characterized by the fact that the graphene sheets are arranged perpendicular to the growth axis of the CNF (α ≈ 180°), while in the fishbone type the angle α is between approximately 20–160° [74].
Simplified representation of the different kinds of (a) carbon nanotubes (SWCNT and MWCNT), and (b) carbon nanofibers (platelet, tubular, fishbone) (adapted from Ref. [
They are also called Herringbone. Finally, the parallel types would be those in which the sheets are parallel to the longitudinal axis of the CNF (α ≈ 0°). Unlike Figure 6b, this sort of structure can also be tubular and therefore it is not feasible to distinguish them from MWCNT by using electronic microscopy methods. However, there is some controversy, parallel type CNF tend to present areas along their structure in which the graphene layers are not oriented in parallel (α > 0°) as well as numerous imperfections such as the union of the layers’ graphene inside the nanofiber (loops). Along with these three morphologies, in the CNF world there are other types of less common structures such as bamboo CNF, which are characterized by having internal holes that occur periodically due to the movement of the catalytic particle during the growth of the CNF, or the octopus-type NFCs that are generally produced when a Ni catalyst doped with Cu [75] is employed. Although there is a bibliography related to the formation of carbon filaments since the late nineteenth century, it was the discovery of the transmission electron microscope (TEM) in 1939 that really represented a breakthrough in this field since it allowed the observation in detail the morphology of this type of structures [76]. Initially, the interest in carbon formation derived from the problems that its accumulation caused in the processes of conversion of hydrocarbons (deactivation and destruction of catalysts or plugging of reactors) and therefore, the objective was to understand how and why it was generated in order to avoid their formation [77]. However, since the discovery of CNT by Iijima [78] in the 90s and due to the properties that carbon nanofilaments present (high specific surfaces and high electrical conductivities and thermal, the approach changed and numerous studies were initiated to optimize their production [79].
Numerous reform techniques have been created to fulfill the long list of demands required in downstream chemicals procedures. Dry Reforming of methane is the most prevalent technique used in the syngas sector through one of three reforming procedures: (1) steam reforming of methane (SRM), (2) partial oxidation of methane (POM) and (3) dry reforming of methane (DRM). The difference between the three techniques is based on the oxidant used, the kinetics and reaction energy, and the percentage of syngas produced (H2:CO).
The SRM approach produces a higher H2:CO ratio of 3:1 compared to the ratio required for Fischer-Tropsch (F-T) synthesis of 2:1 [80]. Due to its endothermic nature, SRM requires an extensive energy input so it is very expensive. In addition, a higher H2O:CH4 ratio is required to achieve a higher H2 output, making the SRM process less favorable and speeding up the activation of catalysis. Moreover, SRM faces corrosion problems and requires a desulfurization unit [81].
In the case of POM approach, this process is suitable for producing larger amounts of hydrocarbons and naphtha. Typically, POM has a very short residence time, high selectivity, and high conversion rates [82]. However, the exothermic nature of the reaction causes the induction of hot spots in the catalyst and makes it difficult to control the process. In addition, POM requires a cryogenic unit to separate oxygen from air. In the case of POM, this process is suitable for producing larger amounts of hydrocarbons and naphtha. POM typically has a very short period of residence, high selectivity and high conversion rates. The exothermic nature of the response, however, allows warm spots in the catalyst to be induced and makes the method hard to regulate and POM requires a cryogenic unit to separate oxygen from air [83].
DRM approach is the most promising of all techniques, as it utilizes two greenhouse gases (CO2 and CH4) to generate industry-significant syngas while at the same moment lowering excessive greenhouse gas emissions. The DRM method is also cheaper than other techniques, as it eliminates the complicated gas separation of finished products. It generates the ratio H2:CO that can be used to synthesize oxidized chemicals and F-T synthesis long-chain hydrocarbons. DRM can also be extended to biogas (CO2, CO, and CH4) as a raw material for cleaner and eco-friendly fuels. DRM syngas is also a solar or nuclear energy storage facility [84]. Since reaction is endothermic, the process is generally carried out at temperatures between 450 and 900°C. In addition, the utilization of a catalyst is required in order to obtain acceptable CH4 conversions. The practical application of the DRM faces many significant obstacles and one of the most significant is the deactivation of the catalysts due to carbon formation during CH4 decomposition and CO2 disproportionate responses. Working at elevated temperatures and low CH4:CO2 ratios (<1) is useful from a thermodynamic point of perspective to prevent carbon formation. From an industrial point of perspective, however, work at mild temperatures and CH4 would be much more desirable: CO2 ratios close to one. Nevertheless, circumstances under which thermodynamic carbon formation is favored [85].
In this context, the DRM’s attempts focus on developing a catalyst that demonstrates elevated activity and stability and low carbon formation and price at the same moment. In one of the first works related to the DRM, Fischer and Tropsch studied different metals belonging to groups 8, 9 and 10 (Ni, Co, Fe, Mo, W, Y, Cu). Among them, only Ni and Co showed a good activity (XCH4 ≈ 90%). Years later, Gadalla et al. [86] tested different commercial Ni-based catalysts, obtaining CH4 conversions near 100% during 70 h of operation. Nonetheless, in order to avoid carbon deposition and catalyst deactivation they used CH4:CO2 ratios below 0.5 and temperatures above 900°C. Due to their high activity and lower carbon formation as compared to Ni, noble metals have been extensively studied as catalysts for the DRM [87]. However, their high cost and low availability make other metals more attractive from an industrial point of view. Due to their reduced cost compared to noble metals, Ni, Co and Fe were also widely researched and in the last years, bimetallic catalysts have stood out.
In order to synthesize an enhanced catalyst, these catalysts aim to potentiate the features of both metals. Ni-Co bimetallic catalysts showed a very healthy conduct among them. In any event, carbon deposition issues are even more important when using biogas. Biogas usually has higher CH4:CO2 ratios than one that ultimately leads to bigger quantities of carbon depositions that quickly deactivate the catalysts. However, distinct types of carbon are created during the decomposition of hydrocarbons and luckily not all of them are directly liable for the deactivation of catalysts. The sort and location of carbon atoms is more important than the amount generated when considering catalytic activity, according to Pinilla et al. [88]. Generally, only carbon encapsulation is directly liable for deactivation of the catalyst owing to active center coverage, while other carbon structures, such as carbon nanofilaments, can only cause operational issues when manufactured in big amounts as reactor blockage.
Studies of DRM’s kinetics and mechanisms were conducted to determine an appropriate reaction rate model, either empirically or on the basis of a theoretical response mechanism to best suit the relevant experimental information and possibly describe the response rate and the chemical process. This understanding can further optimize the design and layout of the chemical system catalysts (the reactor), which can further improve DRM’s overall development with more cost-effective technology [89]. Although, from a mechanistic point of perspective, steam reforming has received much attention, there has been a resurgence of interest in dry reforming over the previous centuries. A series of catalysts for DRM were researched as a consequence. This has resulted in a number of mechanistic measures for DRM being published in the literature. The DRM reaction mechanism was explored by Aldana et al. [90] over a Ni-based catalyst.
Aldana et al. reported that H2 dissociates on Ni0 locations while carbon dioxide is activated on ceria-zirconia assistance to generate carbonates that can be hydrogenated into formats and then into methoxy species. This mechanism includes weak fundamental support sites for carbon dioxide adsorption and includes a stable interface between metal and support. Compared to Ni-silica, which activates both carbon dioxide and hydrogen on Ni0 particles, these characteristics lead in much better operations of these catalysts [90]. This mechanism is also supported by Pan et al. [91]. Meanwhile, Ayodele et al. [92] conducted a DFT analysis of the DRM over Ru nanoparticles supported on TiO2 (101).
Extensive research was carried out to study the impacts of altering process variables on catalyst performance for the DRM reaction. This inquiry is essential as various process factors may result in variable catalyst performance [93]. The notion of activation energy should be considered as it will determine the response rate. Table 1 tabulates the activation energy (
Catalyst | Preparation method | Total flowrate (mg) | Catalyst Amount (kJ/mol) | Ea(CH4) (kJ/mol) | Ea(CO2) (kJ/mol) | Ref. |
---|---|---|---|---|---|---|
Ni/Al2O3 (400–650°C) | Wet impregnation | 28 | 500 | — | 64.4 | [94] |
4.82Ni/Al2O3 (750–850°C) | Incipient wetness | 100–980 | — | 242.67 | 115.86 | [95] |
7Ni/MgO (550–750°C) | Incipient wetness-impregnation | — | 10 | 105 | 99 | [96] |
5Ni/MgAl2O4 (600–800°C) | Co-precipitation | 30 | 20 | 26.39 | 40.43 | [97] |
13.5Ni-2K/5MnO-Al2O3 (550–800°C) | Impregnation | 400 | 50 | 113.8 | — | [98] |
0.3Pt-10Ni/Al2O3 (580–620°C) | Sequential impregnation | 100 | 5 | 112.55 | 98.74 | [99] |
8%Ni/α-Al2O3 (550–750°C) | Wet impregnation | 360 | 40 | 89.1 | 88.6 | [100] |
Ea values over several Ni-based catalysts for DRM reaction.
In the meantime, Cui et al. [100] conducted a thorough study of the DRM mechanism over Ni/α-Al2O3 using steady-state and transient kinetic methods at 550–750°C temperatures. Their results show that the CH4 dissociation and CO2 conversion
According to Kathiraser et al. [93], distinct gas hourly space velocities (GHSVs) need to be tested to eliminate internal mass transport resistance. The aim of this experiment is to verify that the conversions have reached a stable value and that a further shift in GHSV does not influence the conversion of reactants. The contact time, which plays a significant part in CO2 and CH4 conversions, is another consideration. When the contact time value is high, CO2 or CH4 conversions stay unaffected. The particle size of the catalyst should be held as small as possible to eliminate inner mass transport resistance, so that a further reduction in size does not impact conversions.
Kim et al. [101], explored the use of a CO2-photoacoustic signal (PAS) to analyze kinetically the DRM reaction on a Ni catalyst supported on Al2O3 and TiO2. They discovered that the reason why mass flow rates low are used is because this method generates heat periodically because when a material absorbs a modulated laser beam, the photoacoustic signal is produced. It is essential to remember the characteristics of kinetic curves that act as the reaction mechanism’s blueprints. These include the point of inflection, a brief period of induction or breakpoints. No particular GHSV can be found from all the results to eliminate the impacts of constraints on mass transfer. This indicates that the development of inherent kinetic models is critical in preliminary research.
Numerous studies on the development of active and coking-resistant DRM reaction catalysts have been published [102, 103]. Common DRM catalysts are backed by noble metal catalysts like Ru, Rh and Pt and backed by transition metal catalysts like Ni and Co [104, 105, 106]. The calculations for the result showed that noble Ru and Rh metals exhibit greater activity than Ni as long as the particle sizes and dispersion are the same [106]. While noble metals such as Ru, Rh and Pt in the DRM response are very effective and more resistant to coking than other transition metals, they are not readily accessible and are also costly [104].
Ni-based catalysts are the most frequently used for commercial purposes on an industrial scale. In order to commercialize the industrial sector DRM response, the primary focus is on developing inexpensive and cost-effective catalysts with high activity and high carbon deposition resistance. Researchers performed research on the sort of assistance used and the impacts of adding promoters to Ni-based catalysts in order to define the most efficient way to enhance their coking resistance. In addition, latest efforts to enhance catalytic activity and inhibit carbon formation are aimed at combining two or three metals as active locations [105, 107]. Pre-treatment process preparation method and catalyst also play a crucial role in altering structural characteristics, implementing behavior decrease and enhancing catalytic efficiency [108]. Besides establishing the Ni-based catalyst with certain modifying agents in the catalyst preparation, the incorporation of Ni particles in the mesoporous aid could also enhance the conversion of reactants and the yield of products by preventing the sintering of metal particles and improving the metal-supporting connection. This metal produces desirable results due to the high specific region of mesoporous materials which can increase the dispersion of Ni particles on the supported catalyst [109].
In addition, the strong interaction between metal and support stabilizes the Ni particles incorporated in the mesoporous matrix. Multiple contact regions between the Ni particles and the support could improve thermal stability and support metal cooperation and support. The incorporation of Ni-based catalysts into mesoporous supports such as MCM-41, SBA-16, TUD-1, meso-Al2O3 and meso-ZrO2 has, as reported in the literature, demonstrated high catalytic activity and high carbon resistance in DRM. Catalyst supports can also be synthesized from plants, which is crucial for the effectiveness of DRM catalysts. The use of polymers from trees has been an interesting region among scientists in latest years with the aim of increasing the velocity of chemical reactions. In addition to generating high-quality chemicals, catalysts installed on commonly accessible cellulose incur low manufacturing expenses [110].
Abimanyu et al. [111] reported that the main steps to synthesize catalyst supports are pretreatment and hydrolysis. Ni-based catalysts have been used industrially as metal precursors in DRM, but the need to refine the metal to improve catalyst performance has recently attracted the interest of many scientists, as these particles demonstrated promising physical and chemical properties with elevated technological applications potential.
The preparation technique significantly affected a catalyst’s physico-chemical characteristics and efficiency, according to Jang et al. [112]. It has therefore been noted that impregnation and co-precipitation are the most commonly used standard techniques of catalyst preparing. Another less prevalent technique for preparing catalysts is sol-gel, which generates a distribution of fine size. This method reduces the deactivation rate, offers high thermal resistance to agglomeration and creates a product of high quality compared to conventional methods.
A new non-thermal glow discharge plasma method has recently been developed to improve metal support interaction, boost the distribution of Ni particles and improve the activity and stability of the catalyst [113]. However, in comparison with simpler preparation techniques, plasma therapy is comparatively costly. This would improve the activity and stability of the catalyst in the DRM response by combining novel catalytic material and techniques.
Supported bimetallic catalysts demonstrate increased DRM activity and stability based on Zhang et al. [114] study. The preparation technique is one of the main variables responsible for the bimetallic catalyst’s outstanding catalytic results. During catalyst preparing, the use of high calcining temperature outcomes in strong interactions between metal and support, which converts the catalyst into stable frame-like constructions. In particular, carbon formation is efficiently blocked during the catalyst decrease by using Ni-Co alloy compared to using single Ni sites. The synthesis method of different catalysts also affects the reaction effectiveness. For example, the method of co-precipitation may produce smaller sizes of metal particles compared to the use of wet impregnation.
There are focuses on the development of DRM catalysts for catalysts with the following features: greater activity and greater stability towards coke formation, sintering, the formation of inactive chemical species and metal oxidation [115]. The catalytic efficiency could be improved by changing the catalyst’s active sites by adding supports and promoters during catalyst preparing to increase conversion and selectivity [116]. Table 2 shows several catalysts that have been developed recently, including Ni-based catalysts applied to the DRM reaction.
Catalyst | Preparation method | GHSV (mL/gh) | Temperature (°C) | CH4 conversion (%) | CO2 conversion (%) | H2/CO ratio | Ref. |
---|---|---|---|---|---|---|---|
Co-, Cu- and Fe-doped Ni/Al2O3 | Fusion | 12,000 | 650 | 34–40 | NA | NA | [30] |
25–55%Ni/MeOx(Me = Al, Mg, Ti, and Si) | Evaporation-induced self-assembly | 48,000 | 600 | 76 | NA | NA | [50] |
Ni/Ce-Al2O3 and Ni/Ce-Zr-Al2O3 | Wet impregnation | 21,000 | 800 | 66.7–79.5 | 45.2–86.9 | NA | [58] |
5% Ni/MgAl2O4 | Microwave-assisted combustion | NA | 850 | 83 | — | ≈1 | [102] |
5,10,15%Ni/MgAl2O4 | Homogenous precipitation | 12,000 | 700 | 78 | 89 | NA | [103] |
K,Mg,Ce-2,8%Ni/Al2O3 | Wet impregnation | NA | 160 | 31.6 | 22.8 | 2.2 | [107] |
5–100%NiH-Ce | Co-precipitation | 20,000 | 550 | 35–55 | 35–45 | 0.55–1.60 | [115] |
5,10,15%NiMgAlCe | Co-precipitation | 29,000 | 750 | 33–48 | 57–69 | 0.78–0.96 | [116] |
Pd, Pt-55%Ni-Cu/MgO·Al2O3 | Wet impregnation | 48,000 | 675 | 84 | NA | 0.55–1.50 | [103] |
15%Ni/ZrTiAlOx | Sol-gel & impregnation | 45,000 | 600 | 85 | 95 | 0.95 | [117] |
10Ni + 3%Ce/8%PO4 + ZrO2 | Wet impregnation | 28,115.4 | 800 | 95 | 96 | NA | [118] |
Ni-Mo2C/MgO | Sol-gel | 30,000 | 850 | 90 | 85 | NA | [119] |
NiO–10Al2O3–ZrO2 | One-step synthesis method | 48,000 | 700 | 92 | 90 | 0.73 | [120] |
Ni-W/Al2O3-MgO | Co-precipitation | 36,000 | 777.29 | 87.6 | 93.3 | 1 | [121] |
Catalysts developed for the DRM reaction.
Deactivation of catalyst relates to loss of activity of catalyst during the response. It is the significant drawback of metal-based catalysts, as it not only creates product reductions that affect the response rate, but also costs industry millions of cash to replace the catalyst. Catalyst deactivation basically relates to three elements, according to Bartholomew and Farrauto [122] chemical, mechanical and thermal. Catalysts for metal reforming are frequently deactivated by coking, poisoning, fouling and sintering. Table 3 describes the mechanisms of catalyst deactivation.
Poisoning relates to the powerful adsorption in the feed of chemical substances such as impurities. Poisoning of catalysts may be reversible (temporary) or irreversible (permanent) [122]. The catalyst may be retrieved by air oxidation or steaming to wash its surface for reversible toxicity. For irreversible poisoning, however, the toxins cannot be removed, so replacing current catalysts with a fresh batch is essential. Sulfur species such as hydrogen sulfide are common poisons in all catalytic processes with reduced metals as the active site. S-poisoning, as in procedures of F-T synthesis and steam reform, is always a disaster.
In 2011, Bartholomew and Farrauto illustrated the mechanism of sulfur poisoning [122]. Firstly, the S atom adsorbs or blocks the reaction or active sites of the catalyst physically (geometric effect). Then, the S atom alters the metal atoms electronically. The metal ions subsequently alter their adsorbability or their capacity to dissociate with reactant molecules like H2 and CO. The S atom also alters the surface area and creates major catalytic characteristics alterations. This hinders the accessibility of adsorbed reactants to each other and thus slows down the adsorbed reactants’ surface propagation. Table 4 describes the typical poisons of industrial catalysts for different types of reaction. The avoidance of sulfur toxicity and sulfur strength can be improved by modifying the structure of the catalysts by incorporating certain additives, such as molybdenum and boron, which adsorb sulfur selectively or change the response circumstances. According to Bartholomew and Farrauto [122], reduction in the temperature of steam reforming over Ni/Al2O3 catalysts from 800 to 500
Mechanism | Type | Definition |
---|---|---|
Poisoning | Chemical | Strong chemisorption of species on catalytic sites, thereby blocking sites for catalytic reaction |
Fouling | Mechanical | Physical deposition of species from fluid phase onto the catalytic surface and in catalyst pores |
Thermal degradation (Sintering) | Thermal | Thermally induced loss of the catalytic surface area due to crystalline growth, support area and active phase support reactions |
Vapor formation | Chemical | Reaction of gas with catalyst phase to produce volatile compound |
Vapor-solid and solid-solid reactions | Chemical | Reaction of fluid, support, or promoter with catalytic phase to produce inactive phase |
Attrition/crushing | Mechanical | Loss of catalytic material due to abrasion Loss of internal surface area due to mechanical induced crushing of the catalyst particle |
Mechanisms of catalyst deactivation.
Reactions | Catalyst | Poisons |
---|---|---|
Steam reforming | Ni/Al2O3, Ni | H2S, As, HCl |
CO hydrogenation | Ni, CO, Fe | H2S, As, COS, NH3, HCN, metal carbonyls |
Automotive catalytic converters | Pt, Pd | Pb, P, Zn, S |
Ammonia synthesis | Fe | CO, CO2, H2O, O2, S, C2H2, Bi, Se, Te, P, VSO4 |
Catalytic cracking | SiO2-Al2O3, Zeolites | Organic bases, NH3, hydrocarbon, Na, heavy metals |
Poisons of the industrial catalysts.
Bartholomew and Farrauto [122], Christensen et al. [123], and Argyle and Bartholomew [124] describe the sintering of a heterogeneous catalyst as the loss of the catalytic layer, which is generally irreversible owing to the development of crystallite either on the supporting material or after thermal degradation in the active stage. Bartholomew and Farrauto [122] revealed two significant sintering parameters. The first is the sintering of temperature, including above the catalyst atmospheric temperature. The next is the sintering rate, which is impacted by the support structure and morphology, the metal particle size distribution, and the support’s phase transition. These two catalyst sintering processes are crystallite migration (coalescence) and nuclear or vapor transport (ripening of Ostwald). Christensen et al. [123] outlined that crystallite migration involves entire crystallite migration followed by collision and coalescence. In the meantime, Argyle and Bartholomew [124] addressed that Ostwald ripening relates to the migration of metal transport species emitted from one crystallite over the assistance or through the gas phase and caught by another crystallite. The author also stated that the sintering method is due to elevated temperatures and that owing to the presence of water vapor there is an increase in the sintering speed. Due to sintering impacts, Figure 7 demonstrates the conceptual models of crystallite development.
Conceptual models for crystallite growth due to sintering by (A) Ostwald ripening and (B) crystallite migration (adapted from Ref. [
Lif and Skoglundh [125] found that the co-impregnation of nickel catalysts with the oxides of alkali metals, alkaline earths or lanthanides suppresses the sintering effect. In addition, it was also shown that the catalyst preparation sequential impregnation technique improves the catalyst’s stability towards sintering. To conclude, it is extremely desirable that it possesses the following characteristics for the growth of a fresh catalyst: heat resistance, coking resistance and stability in syngas manufacturing.
Fouling is a physical (mechanical) deactivation that causes the loss of catalyst activity owing to coke deposition that blocks the reactive sites. Steam reforming utilizes catalysts primarily based on Ni. Coke deposition is a prevalent cause of deactivation of Ni-based catalysts. Temperature-programmed hydrogenation (TPH) and Temperature-programmed oxidation (TPO) methods are used to analyze carbon deposition on the used catalyst. The methods of TPH and TPO are used to define the features of the kinds of carbon species created during reaction on the catalysts [126]. According to Bartholomew and Farrauto [122], the types of carbon that may be formed during reforming are
No. | Structural type | Designation | Temperature of formation (K) | Peak temperature (K) for reaction with H2 | Ref. |
---|---|---|---|---|---|
1 | Adsorbed, atomic (dispersed, surface carbide) | Cα | 473–673 | 473 | [127, 128] |
2 | Polymeric, amorphous films or filament | Cβ | 523–773 | 673 | [127, 129, 130] |
3 | Vermicular (polymeric amorphous)
| Cν | 573–1273 | 673–873 | [127, 131, 132, 133] |
4 | Nickel carbide (bulk) | Cγ | 423–523 | 548 | [127] |
5 | Graphitic (crystalline)
| CC | 773–823 | 823–1123 | [127, 128, 131, 132, 134] |
Forms and reactivity of carbon formed by decomposition of CO on Ni.
CH4 cracking (Eq. (1)) and CO disproportionation are the two primary reasons for coke deposition during DRM (Eq. (6)). There are three possible carbon fouling mechanisms for the metal catalyst. The first mechanism is carbon, which deposits reactive sites on the catalyst and impedes binding of the reactants to the active locations. The carbon would otherwise encapsulate the catalyst’s reactive site and deactivate the catalysts. Another deactivation option resides in the coke being deposited in the catalyst pores, thereby stopping the reactants from crystallizing on it. The third mechanism involves carbon-forming needle-like filaments in the active site of the nickel catalyst, to some extent breaking the catalysts. Figure 8 shows the conceptual model of the mechanisms of carbon fouling of a catalyst.
Conceptual models of fouling, crystalline encapsulation and pore plugging of a supported metal catalyst (adapted from Ref [
Quincoces et al. [135] used DRM catalyst Ni/γ-Al2O3. They found that there were no rises in carbon deposition while the molar ratio of the reactants, CH4/CO2, was maintained in unity. This finding shows that by changing the response circumstances, such as the molar ratio of reactant feed, carbon deposition can be minimized. In their research, they discovered that a filamentous or whisker-like morphology was shown by the carbon deposit on Ni/γ-Al2O3. This finding is comparable to Kępiński et al. [136] reporting. Meanwhile, on a backed metal catalyst, Toebes et al. [137] recorded carbon formation with metal crystallites in addition to carbon filaments. The growth of carbon filaments has pushed the metal crystallites from the surface of the catalyst support.
Ito et al. [138] also proposed that CO2 could reduce the impacts of the fouling system. While the increasing carbon filaments remove the Ni metal, the introduced CO2 responds to CO through a reverse-Boudouard response with the carbon whiskers. One of the findings of their study was that after the removal of the carbon whisker, there is a decrease in bulk Ni. This renders the catalyst to be inactive for carbon deposition. However, there is an increase in the reforming activity of CH4, which is due to the newly exposed Ni active sites from the bulk Ni.
Cheng et al. [139] report a reduction in the Brunauer-Emmett-Teller (BET) surface area and the amount of pore used carbon catalyst. As a result of this phenomenon, catalyst activity is lost. Wagner et al. [140] noted that a vapor reforming catalyst’s acidity is proportional to its coke formation tendency. They also asserted that using basic support or basic mixed oxide support named K, the coking strength of the reforming catalysts could be improved. Li et al. [141] and Zanganeh et al. [142] also endorsed this argument, whereby nickel catalyst deactivation can be weakened if the nickel is backed by a strong Lewis base oxide like MgO, CaO, SrO or BaO.
Subsequently, the present research project introduces DRM to investigate the level of resistance of the catalyst towards carbon formation. Zanganeh et al. [142] suggested that an increase in the CO2/CH4 ratio during DRM and increasing the temperature to a high level may minimize carbon formation thermodynamically.
Ito et al. [138] also agreed that the increased CO2-to-CH4 feed ratio would eliminate the CH4 decomposition reaction. Koo et al. [143] found that introducing less than 1wt percent of Mg into the Ni catalyst would enhance their coking strength. Adding promoter like Mo could therefore allay the coke formation phenomenon on the Ni catalyst. Another proposal to reduce the carbon deposition of a catalyst with a small surface area is to reduce the Ni load of the assistance. A CO2/CH4 molar ratio of more than 3.0 should be used to prevent the boudouard reaction.
Throughout this work, it has been shown that biogas is a very interesting source of renewable energy. Because of its elevated CH4 content, biogas has excellent potential, as reflected in its year-over-year rise in production. This is because its manufacturing promotes the use of organic waste, prevents uncontrolled dumping and minimizes atmospheric CH4 and CO2 emissions. In addition, its use as an energy source is in some cases an alternative to fossil fuels and can help to minimize energy dependence. Another aspect of interest is that it can be used insitu, allowing agro-livestock farms or small industrial plants to achieve energy self-sufficiency. A lot of studies on DRM over Ni-based catalysts has been carried out in latest decades to better comprehend the mechanism and techniques of response to improve carbon deposition resistance. Several methods were suggested to minimize the trend of Ni-based catalyst coke formation. One is the use of the appropriate catalyst preparation technique. Another is the use of metal oxides with strong Lewis basicity as supports or promoters (since Lewis acidity is identified to encourage coke buildup). Future study in this area is likely to focus on the use of catalysts based on bimetallic nickel, such as the incorporation of Co with Ni catalyst.
The bimetallic catalysts showed stable activity and elevated inactivation resistance, although carbon deposition occurs. Catalyst activity should be considered, as the primary reason for catalytic inactivation is the encapsulating carbon, which is deposited directly in the catalyst’s active places instead of the carrier’s surface. Also, when it is generated in large quantities, it can cause clogging of the reactor. The problem of carbon formation is exacerbated when biogas is used for this process, because the CH4:CO2 ratio of biogas is greater than that which can lead to the formation of large carbon deposits in a short time. However, carbon atoms are more essential in type and place than the quantity of carbon generated. Averting the deposition of carbon is therefore a challenging task. Also, this problem can be addressed from a completely different perspective. Rather than trying to avert carbon formation, it can be promoted as carbon filamentous. Previously, many researchers have effectively accomplished the synthesis of carbon filamentous thru electric arc-discharge and laser ablation and chemical vapor deposition techniques. Nevertheless, the cost-efficient and the controlled synthesis of carbon filamentous with varies morphologies by those techniques has not been reported.
Given the broad range of applications and the growing demand for biogas in different areas, the superb characteristics of biogas indicate its growing potential as a source of syngas for a broad range of renewable energies, where high purity and low manufacturing costs are significant factors. Thus, producing high-purity syngas and the controlled production of value-added carbon filamentous over cheap, efficient, tunable and simply synthesized catalysts is very important and is the main interest in this subject.
The authors would like to acknowledge UKM, grant number (FRGS/1/2019/TK02/UKM/01/2), for financial support and for material analysis.
The authors declare no conflict of interest.
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"14"},books:[{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11467",title:"Bismuth-Based Nanostructured Materials",subtitle:null,isOpenForSubmission:!0,hash:"951c872d9d90e13cfe7d97c0af91845e",slug:null,bookSignature:"Dr. William Wilson Anku",coverURL:"https://cdn.intechopen.com/books/images_new/11467.jpg",editedByType:null,editors:[{id:"196465",title:"Dr.",name:"William Wilson",surname:"Anku",slug:"william-wilson-anku",fullName:"William Wilson Anku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11758",title:"Glass-Ceramics - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"e03ff7760e0aaea457f259ab63153846",slug:null,bookSignature:" Uday M. Basheer",coverURL:"https://cdn.intechopen.com/books/images_new/11758.jpg",editedByType:null,editors:[{id:"182041",title:null,name:"Uday",surname:"Basheer",slug:"uday-basheer",fullName:"Uday Basheer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11761",title:"New Advances in Powder Technology",subtitle:null,isOpenForSubmission:!0,hash:"bd8063ae11e4fdd8626f5a095012c628",slug:null,bookSignature:"Dr. Shashanka Rajendrachari and Dr. Baris Avar",coverURL:"https://cdn.intechopen.com/books/images_new/11761.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11764",title:"Electrodeposition - Modern Methods and Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"dd7b08197c3dcfef54b5e636795a67f7",slug:null,bookSignature:"Prof. Keith J. Stine",coverURL:"https://cdn.intechopen.com/books/images_new/11764.jpg",editedByType:null,editors:[{id:"192643",title:"Prof.",name:"Keith J.",surname:"Stine",slug:"keith-j.-stine",fullName:"Keith J. Stine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11765",title:"Pyrometallurgy - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"b0ed96047d5aadd003e16ab2884bb2f6",slug:null,bookSignature:"Dr. Swamini Chopra",coverURL:"https://cdn.intechopen.com/books/images_new/11765.jpg",editedByType:null,editors:[{id:"325912",title:"Dr.",name:"Swamini",surname:"Chopra",slug:"swamini-chopra",fullName:"Swamini Chopra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11766",title:"Cast Iron - Production, Properties, Characterization, and Casting Defects Analysis",subtitle:null,isOpenForSubmission:!0,hash:"821766a37d38da743321864be6b2334a",slug:null,bookSignature:"Prof. Thoguluva Raghavan Vijayaram",coverURL:"https://cdn.intechopen.com/books/images_new/11766.jpg",editedByType:null,editors:[{id:"139338",title:"Prof.",name:"Thoguluva",surname:"Vijayaram",slug:"thoguluva-vijayaram",fullName:"Thoguluva Vijayaram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11768",title:"Superplastic Materials - Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"16f7495ac63d4d02d103acc8485d9e4e",slug:null,bookSignature:"Dr. Jibran Khaliq",coverURL:"https://cdn.intechopen.com/books/images_new/11768.jpg",editedByType:null,editors:[{id:"458264",title:"Dr.",name:"Jibran",surname:"Khaliq",slug:"jibran-khaliq",fullName:"Jibran Khaliq"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11817",title:"Next Generation Fiber-Reinforced Composites - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"bdff63f3c5e98fc95d76217516cb1420",slug:null,bookSignature:"Dr. Longbiao Li",coverURL:"https://cdn.intechopen.com/books/images_new/11817.jpg",editedByType:null,editors:[{id:"302409",title:"Dr.",name:"Longbiao",surname:"Li",slug:"longbiao-li",fullName:"Longbiao Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11819",title:"Adhesives - Science, Technology, Recent Advances, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"c58b7d4c17e2a202af1dc4b906b7becb",slug:null,bookSignature:"Prof. António Bastos Pereira and Dr. Alexandre Luiz Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/11819.jpg",editedByType:null,editors:[{id:"211131",title:"Prof.",name:"António",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11826",title:"Trends in the Development of Flame Retardants",subtitle:null,isOpenForSubmission:!0,hash:"a26eddafa7c826ce88dec81b1088f533",slug:null,bookSignature:"Dr. Fahmina Zafar, Prof. Nahid Nishat and Dr. Anujit Ghosal",coverURL:"https://cdn.intechopen.com/books/images_new/11826.jpg",editedByType:null,editors:[{id:"89672",title:"Dr.",name:"Fahmina",surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11828",title:"Lubrication - Thermal Management and Friction Reduction",subtitle:null,isOpenForSubmission:!0,hash:"b900201d5e8a4b13100f49e7c1019447",slug:null,bookSignature:"Dr. Hafiz Muhammad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/11828.jpg",editedByType:null,editors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:24},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"20",title:"Physics",slug:"physics",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:156,numberOfSeries:0,numberOfAuthorsAndEditors:3657,numberOfWosCitations:4735,numberOfCrossrefCitations:2329,numberOfDimensionsCitations:5096,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"20",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11002",title:"Colorimetry",subtitle:null,isOpenForSubmission:!1,hash:"4d1a97ef4f3979a9d08d56f8f034dc3c",slug:"colorimetry",bookSignature:"Ashis Kumar Samanta",coverURL:"https://cdn.intechopen.com/books/images_new/11002.jpg",editedByType:"Edited by",editors:[{id:"42763",title:"Prof.",name:"Ashis Kumar",middleName:null,surname:"Samanta",slug:"ashis-kumar-samanta",fullName:"Ashis Kumar Samanta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10966",title:"Acoustic Emission",subtitle:"New Perspectives and Applications",isOpenForSubmission:!1,hash:"e4cbf5fe77dcf581393247bd9ac4277a",slug:"acoustic-emission-new-perspectives-and-applications",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10966.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:"Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics",isOpenForSubmission:!1,hash:"cfe87b713a8bee22c19361b86b03d506",slug:"nonlinear-optics-nonlinear-nanophotonics-and-novel-materials-for-nonlinear-optics",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris I.",middleName:"I.",surname:"Lembrikov",slug:"boris-i.-lembrikov",fullName:"Boris I. Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:"plasma-science-and-technology",bookSignature:"Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10209",title:"Quantum Computing and Communications",subtitle:null,isOpenForSubmission:!1,hash:"588d044631767881b7490cd9cb2c052b",slug:"quantum-computing-and-communications",bookSignature:"Yongli Zhao",coverURL:"https://cdn.intechopen.com/books/images_new/10209.jpg",editedByType:"Edited by",editors:[{id:"199527",title:"Associate Prof.",name:"Yongli",middleName:null,surname:"Zhao",slug:"yongli-zhao",fullName:"Yongli Zhao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10168",title:"Electromagnetic and Acoustic Waves in Bioengineering Applications",subtitle:null,isOpenForSubmission:!1,hash:"fab55a6aa34e666274aabfdd3dc7f32d",slug:"electromagnetic-and-acoustic-waves-in-bioengineering-applications",bookSignature:"Ivo Čáp, Klára Čápová, Milan Smetana and Štefan Borik",coverURL:"https://cdn.intechopen.com/books/images_new/10168.jpg",editedByType:"Authored by",editors:[{id:"314791",title:"Dr.",name:"Ivo",middleName:null,surname:"Čáp",slug:"ivo-cap",fullName:"Ivo Čáp"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"9655",title:"Bioluminescence",subtitle:"Technology and Biology",isOpenForSubmission:!1,hash:"26b9e7dade717a5ffdc2dbcfaa1ea43d",slug:"bioluminescence-technology-and-biology",bookSignature:"Hirobumi Suzuki and Katsunori Ogoh",coverURL:"https://cdn.intechopen.com/books/images_new/9655.jpg",editedByType:"Edited by",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!1,hash:"d7481712cff0157cd8f849cba865727d",slug:"topics-on-quantum-information-science",bookSignature:"Sergio Curilef and Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:"Edited by",editors:[{id:"125424",title:"Prof.",name:"Sergio",middleName:null,surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10205",title:"Quantum Chromodynamic",subtitle:null,isOpenForSubmission:!1,hash:"0d9403b5c874f6e63b0686cd7c432e00",slug:"quantum-chromodynamic",bookSignature:"Zbigniew Piotr Szadkowski",coverURL:"https://cdn.intechopen.com/books/images_new/10205.jpg",editedByType:"Edited by",editors:[{id:"67836",title:"Prof.",name:"Zbigniew Piotr",middleName:null,surname:"Szadkowski",slug:"zbigniew-piotr-szadkowski",fullName:"Zbigniew Piotr Szadkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10767",title:"Fiber Optics",subtitle:"Technology and Applications",isOpenForSubmission:!1,hash:"f6624b8ef72a4a369383a4b719bba2a4",slug:"fiber-optics-technology-and-applications",bookSignature:"Guillermo Huerta-Cuellar",coverURL:"https://cdn.intechopen.com/books/images_new/10767.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",middleName:null,surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10481",title:"Practical Applications of Laser Ablation",subtitle:null,isOpenForSubmission:!1,hash:"e9f235e98a88813c08a9dba80525b195",slug:"practical-applications-of-laser-ablation",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/10481.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",middleName:null,surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10017",title:"Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"e20f25706d03f0c52ac852f7fa2375e7",slug:"optoelectronics",bookSignature:"Mike Haidar Shahine",coverURL:"https://cdn.intechopen.com/books/images_new/10017.jpg",editedByType:"Edited by",editors:[{id:"102474",title:"Dr.",name:"Mike Haidar",middleName:null,surname:"Shahine",slug:"mike-haidar-shahine",fullName:"Mike Haidar Shahine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:156,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32842",doi:"10.5772/34901",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:74823,totalCrossrefCites:37,totalDimensionsCites:85,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"49652",doi:"10.5772/61720",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:8761,totalCrossrefCites:37,totalDimensionsCites:84,abstract:"Sample preparations are essential in scanning electron microscopy. Flawed sample preparations can undermine the quality of results and lead to false conclusions. Thus, the aim of this chapter is to equip researchers, post graduate students and technicians with essential knowledge required to prepare samples for scanning electron microscopy (SEM) investigations in the life sciences.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",middleName:null,surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}]},{id:"26791",doi:"10.5772/28067",title:"Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging",slug:"optical-vortices-in-a-fiber-mode-division-multiplexing-and-multimode-self-reproducing",totalDownloads:4552,totalCrossrefCites:30,totalDimensionsCites:49,abstract:null,book:{id:"2018",slug:"recent-progress-in-optical-fiber-research",title:"Recent Progress in Optical Fiber Research",fullTitle:"Recent Progress in Optical Fiber Research"},signatures:"S.N. Khonina, N.L. Kazanskiy and V.A. Soifer",authors:[{id:"72613",title:"Prof.",name:"Svetlana",middleName:null,surname:"Khonina",slug:"svetlana-khonina",fullName:"Svetlana Khonina"}]},{id:"30963",doi:"10.5772/34176",title:"Microstructural and Mineralogical Characterization of Clay Stabilized Using Calcium-Based Stabilizers",slug:"microstructural-and-mineralogical-characterization-of-clay-stabilized-using-calcium-based-stabilizer",totalDownloads:6804,totalCrossrefCites:29,totalDimensionsCites:48,abstract:null,book:{id:"1505",slug:"scanning-electron-microscopy",title:"Scanning Electron Microscopy",fullTitle:"Scanning Electron Microscopy"},signatures:"Pranshoo Solanki and Musharraf Zaman",authors:[{id:"20942",title:"Prof.",name:"Pranshoo",middleName:null,surname:"Solanki",slug:"pranshoo-solanki",fullName:"Pranshoo Solanki"},{id:"20945",title:"Prof.",name:"Musharraf",middleName:null,surname:"Zaman",slug:"musharraf-zaman",fullName:"Musharraf Zaman"}]},{id:"49655",doi:"10.5772/61830",title:"Electrical Discharge in Water Treatment Technology for Micropollutant Decomposition",slug:"electrical-discharge-in-water-treatment-technology-for-micropollutant-decomposition",totalDownloads:5027,totalCrossrefCites:32,totalDimensionsCites:44,abstract:"Hazardous micropollutants are increasingly detected worldwide in wastewater treatment plant effluent. As this indicates, their removal is insufficient by means of conventional modern water treatment techniques. In the search for a cost-effective solution, advanced oxidation processes have recently gained more attention since they are the most effective available techniques to decompose biorecalcitrant organics. As a main drawback, however, their energy costs are high up to now, preventing their implementation on large scale. For the specific case of water treatment by means of electrical discharge, further optimization is a complex task due to the wide variety in reactor design and materials, discharge types, and operational parameters. In this chapter, an extended overview is given on plasma reactor types, based on their design and materials. Influence of design and materials on energy efficiency is investigated, as well as the influence of operational parameters. The collected data can be used for the optimization of existing reactor types and for development of novel reactors.",book:{id:"5093",slug:"plasma-science-and-technology-progress-in-physical-states-and-chemical-reactions",title:"Plasma Science and Technology",fullTitle:"Plasma Science and Technology - Progress in Physical States and Chemical Reactions"},signatures:"Patrick Vanraes, Anton Y. Nikiforov and Christophe Leys",authors:[{id:"49112",title:"Prof.",name:"Christophe",middleName:null,surname:"Leys",slug:"christophe-leys",fullName:"Christophe Leys"},{id:"176861",title:"Dr.",name:"Anton",middleName:null,surname:"Nikiforov",slug:"anton-nikiforov",fullName:"Anton Nikiforov"},{id:"176862",title:"Mr.",name:"Patrick",middleName:null,surname:"Vanraes",slug:"patrick-vanraes",fullName:"Patrick Vanraes"}]}],mostDownloadedChaptersLast30Days:[{id:"49562",title:"Laser-Induced Plasma and its Applications",slug:"laser-induced-plasma-and-its-applications",totalDownloads:4805,totalCrossrefCites:12,totalDimensionsCites:26,abstract:"The laser irradiation have shown a range of applications from fabricating, melting, and evaporating nanoparticles to changing their shape, structure, size, and size distribution. Laser induced plasma has used for different diagnostic and technological applications as detection, thin film deposition, and elemental identification. The possible interferences of atomic or molecular species are used to specify organic, inorganic or biological materials which allows critical applications in defense (landmines, explosive, forensic (trace of explosive or organic materials), public health (toxic substances pharmaceutical products), or environment (organic wastes). Laser induced plasma for organic material potentially provide fast sensor systems for explosive trace and pathogen biological agent detection and analysis. The laser ablation process starts with electronic energy absorption (~fs) and ends at particle recondensation (~ms). Then, the ablation process can be governed by thermal, non-thermal processes or a combination of both. There are several types of models, i.e., thermal, mechanical, photophysical, photochemical and defect models, which describe the ablation process by one dominant mechanism only. Plasma ignition process includes bond breaking and plasma shielding during the laser pulse. Bond breaking mechanisms influence the quantity and form of energy (kinetic, ionization and excitation) that atoms and ions can acquire. Plasma expansion depends on the initial mass and energy in the plume. The process is governed by initial plasma properties (electron density, temperature, velocity) after the laser pulse and the expansion medium. During first microsecond after the laser pulse, plume expansion is adiabatic afterwards line radiation becomes the dominant mechanism of energy loss.",book:{id:"5093",slug:"plasma-science-and-technology-progress-in-physical-states-and-chemical-reactions",title:"Plasma Science and Technology",fullTitle:"Plasma Science and Technology - Progress in Physical States and Chemical Reactions"},signatures:"Kashif Chaudhary, Syed Zuhaib Haider Rizvi and Jalil Ali",authors:[{id:"176684",title:"Dr.",name:"Kashif Tufail",middleName:null,surname:"Chaudhary",slug:"kashif-tufail-chaudhary",fullName:"Kashif Tufail Chaudhary"},{id:"176867",title:"Dr.",name:"Syed Zuhaib",middleName:null,surname:"Haider Rizivi",slug:"syed-zuhaib-haider-rizivi",fullName:"Syed Zuhaib Haider Rizivi"},{id:"176868",title:"Prof.",name:"Jalil",middleName:null,surname:"Ali",slug:"jalil-ali",fullName:"Jalil Ali"}]},{id:"52164",title:"An Overview on Quantum Cascade Lasers: Origins and Development",slug:"an-overview-on-quantum-cascade-lasers-origins-and-development",totalDownloads:3255,totalCrossrefCites:2,totalDimensionsCites:11,abstract:"This chapter presents an introductory review on quantum cascade lasers (QCLs). An overview is prefaced, including a brief description of their beginnings and operating basics. Materials used, as well as growth methods, are also described. The possibility of developing GaN-based QCLs is also shown. Summarizing, the applications of these structures cover a broad range, including spectroscopy, free-space communication, as well as applications to near-space radar and chemical/biological detection. Furthermore, a number of state-of-the-art applications are described in different fields, and finally a brief assessment of the possibilities of volume production and the overall state of the art in QCLs research are elaborated.",book:{id:"5389",slug:"quantum-cascade-lasers",title:"Quantum Cascade Lasers",fullTitle:"Quantum Cascade Lasers"},signatures:"Raúl Pecharromán-Gallego",authors:[{id:"188866",title:"Dr.",name:"Raúl",middleName:null,surname:"Pecharromán-Gallego",slug:"raul-pecharroman-gallego",fullName:"Raúl Pecharromán-Gallego"}]},{id:"49526",title:"Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences",slug:"focused-ion-beams-fib-novel-methodologies-and-recent-applications-for-multidisciplinary-sciences",totalDownloads:4325,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Considered as the newest field of electron microscopy, focused ion beam (FIB) technologies are used in many fields of science for site-specific analysis, imaging, milling, deposition, micromachining, and manipulation. Dual-beam platforms, combining a high-resolution scanning electron microscope (HR-SEM) and an FIB column, additionally equipped with precursor-based gas injection systems (GIS), micromanipulators, and chemical analysis tools (such as energy-dispersive spectra (EDS) or wavelength-dispersive spectra (WDS)), serve as multifunctional tools for direct lithography in terms of nano-machining and nano-prototyping, while advanced specimen preparation for transmission electron microscopy (TEM) can practically be carried out with ultrahigh precision. Especially, when hard materials and material systems with hard substrates are concerned, FIB is the only technique for site-specific micro- and nanostructuring. Moreover, FIB sectioning and sampling techniques are frequently used for revealing the structural and morphological distribution of material systems with three-dimensional (3D) network at micro-/nanoscale.This book chapter includes many examples on conventional and novel processes of FIB technologies, ranging from analysis of semiconductors to electron tomography-based imaging of hard materials such as nanoporous ceramics and composites. In addition, recent studies concerning the active use of dual-beam platforms are mentioned",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Meltem Sezen",authors:[{id:"176338",title:"Associate Prof.",name:"Meltem",middleName:null,surname:"Sezen",slug:"meltem-sezen",fullName:"Meltem Sezen"}]},{id:"50866",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:6112,totalCrossrefCites:11,totalDimensionsCites:36,abstract:"Ultra-short laser pulse interaction with materials has received much attention from researchers in micro- and nanomachining, especially for the generation of nanoparticles in liquid environments, because of the straightforward method and direct application for organic solvents. In addition, the colloidal nanoparticles produced by laser ablation have very high purity—they are free from surfactants and reaction products or by-products. In this chapter, nanosecond, picosecond and femtosecond laser pulse durations are compared in laser material processing. Due to the unique properties of the short and ultra-short laser pulse durations in material processing, they are more apparent in the production of precision material processing and generation of nanoparticles in liquid environments.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"49537",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:10155,totalCrossrefCites:11,totalDimensionsCites:33,abstract:"Electron microscopes are usually supplied with equipment for obtaining diffraction patterns and micrographs from the same area of a specimen and the best results are attained if the complete use is to be made of these combined facilities. Electron diffraction patterns are used to obtain quantitative data including phase identification, orientation relationship and crystal defects in materials, etc. At first, a general introduction including a geometrical and quantitative approach to electron diffraction from a crystalline specimen, the reciprocal lattice and electron diffraction in the electron microscope are presented. The scattering process by an individual atom as well as a crystal, the Bragg law, Laue conditions and structure factor are also discussed. Types of diffraction patterns such as ring pattern, spot pattern and Kikuchi pattern, and general and unique indexing diffraction patterns are explained. The procedure for indexing simple, complicated and imperfect patterns as well as Kikuchi lines and a combination of Kikuchi lines and spots is outlined. The known and unknown materials are identified by indexing patterns. Practical comparisons between various methods of analysing diffraction patterns are also described. The basic diffraction patterns and the fine structure in the patterns including specimen tilting experiments, orientation relationship determination, phase identification, twinning, second phases, crystallographic information, dislocation, preferred orientation and texture, extra spots and streaks are described in detail. Finally, electron diffraction patterns of new materials are investigated.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]}],onlineFirstChaptersFilter:{topicId:"20",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"83061",title:"Dipole Solitons in a Nonlocal Nonlinear Medium with Self-Focusing and Self-Defocusing Quintic Nonlinear Responses",slug:"dipole-solitons-in-a-nonlocal-nonlinear-medium-with-self-focusing-and-self-defocusing-quintic-nonlin",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.106207",abstract:"Stability dynamics of dipole solitons have been numerically investigated in a nonlocal nonlinear medium with self-focusing and self-defocusing quintic nonlinearity by the squared-operator method. It has been demonstrated that solitons can stay nonlinearly stable for a wide range of each parameter, and two nonlinearly stable regions have been found for dipole solitons in the gap domain. Moreover, it has been observed that instability of dipole solitons can be improved or suppressed by modification of the potential depth and strong anisotropy coefficient.",book:{id:"10958",title:"Vortex Dynamics - From Physical to Mathematical Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/10958.jpg"},signatures:"Mahmut Bağcı, Melis Turgut, Nalan Antar and İlkay Bakırtaş"},{id:"82984",title:"Feedback Linearization Control of Interleaved Boost Converter Fed by PV Array",slug:"feedback-linearization-control-of-interleaved-boost-converter-fed-by-pv-array",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.106355",abstract:"One of the powerful methods of nonlinear control is the feedback linearization technique. This technique consists of input state and input-output linearization methods. In this chapter, the feedback linearization technique, including input state and input-output linearization methods, is described. Then, input-output linearization method is used for output voltage control of interleaved boost converter. Firstly, mathematical model of the interleaved boost converter is derived after that the method is applied. Besides, the interleaved boost converter is fed by a PV array under irradiation level and ambient temperature change. As a result of the simulation study, output voltage control of interleaved boost converter under reference voltage change is realized as desired.",book:{id:"11499",title:"Nonlinear Systems - Recent Developments and Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11499.jpg"},signatures:"Erdal Şehirli"},{id:"82973",title:"Compact Incoherent Multidimensional Imaging Systems Using Static Diffractive Coded Apertures",slug:"compact-incoherent-multidimensional-imaging-systems-using-static-diffractive-coded-apertures",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105864",abstract:"Incoherent holographic imaging technologies, in general, involve multiple optical components for beam splitting—combining and shaping—and in most cases, require an active optical device such as a spatial light modulator (SLM) for generating multiple phase-shifted holograms in time. The above requirements made the realization of holography-based products expensive, heavy, large, and slow. To successfully transfer the holography capabilities discussed in research articles to products, it is necessary to find methods to simplify holography architectures. In this book chapter, two important incoherent holography techniques, namely interference-based Fresnel incoherent correlation holography (FINCH) and interferenceless coded aperture correlation holography (I-COACH), have been successfully simplified in space and time using advanced manufacturing methods and nonlinear reconstruction, respectively. Both techniques have been realized in compact optical architectures using a single static diffractive optical element manufactured using lithography technologies. Randomly multiplexed diffractive lenses were manufactured using electron beam lithography for FINCH. A quasi-random lens and a mask containing a quasi-random array of pinholes were manufactured using electron beam lithography and photolithography, respectively, for I-COACH. In both cases, the compactification has been achieved without sacrificing the performances. The design, fabrication, and experiments of FINCH and I-COACH with static diffractive optical elements are presented in details.",book:{id:"11860",title:"Holography - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11860.jpg"},signatures:"Vijayakumar Anand, Soon Hock Ng, Tomas Katkus, Daniel Smith, Vinoth Balasubramani, Denver P. Linklater, Pierre J. Magistretti, Christian Depeursinge, Elena P. Ivanova and Saulius Juodkazis"},{id:"82958",title:"Electromagnetic Relations between Materials and Fields for Microwave Chemistry",slug:"electromagnetic-relations-between-materials-and-fields-for-microwave-chemistry",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.106257",abstract:"We consider the application of microwave energy to a material. The effects of the electromagnetic field on the material and of the material on the electromagnetic field will be described, focusing on the dielectric relaxation phenomenon of the liquid. The dielectric permittivity of mixtures is discussed by extending Debye relaxation to explain how the material behaves with respect to an electric field. We will also consider the energy that the electric field imparts to the material, both thermally and nonthermally. We will develop this relation and describe what form it should take if there is a nonthermal effect in the chemical reaction field under microwave irradiation.",book:{id:"11494",title:"Electric Field in Advancing Science and Technology",coverURL:"https://cdn.intechopen.com/books/images_new/11494.jpg"},signatures:"Sugiyama Jun-ichi, Sugiyama Hayato, Sato Chika and Morizumi Maki"},{id:"82961",title:"Mixed Reality Applications in Business Contexts",slug:"mixed-reality-applications-in-business-contexts",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.106582",abstract:"Mixed reality is becoming increasingly relevant in business. In the corporate environment, such as logistics or maintenance, the use of data glasses allows extensive possibilities for process optimization and quality assurance. In the area of construction, virtual models either as augmentation of reality or mapped in virtual reality offer new approaches to experience ability. The goal of this paper is to show the manifold possibilities of mixed reality in the enterprise environment. For this purpose, selected application scenarios with corresponding realization stages will be shown and analyzed regarding their added value.",book:{id:"11860",title:"Holography - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11860.jpg"},signatures:"Anett Mehler-Bicher, Lothar Steiger and Dirk Weitzel"},{id:"82951",title:"Decoupling Techniques for Coupled PDE Models in Fluid Dynamics",slug:"decoupling-techniques-for-coupled-pde-models-in-fluid-dynamics",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.105997",abstract:"We review decoupling techniques for coupled PDE models in fluid dynamics. In particular, we are interested in the coupled models for fluid flow interacting with porous media flow and the fluid structure interaction (FSI) models. For coupled models for fluid flow interacting with porous media flow, we present decoupled preconditioning techniques, two-level and multilevel methods, Newton-type linearization-based two-level and multilevel algorithms, and partitioned time-stepping methods. The main theory and some numerical experiments are given to illustrate the effectiveness and efficiency of these methods. For the FSI models, partitioned time-stepping algorithms and a multirate time-stepping algorithm are carefully studied and analyzed. Numerical experiments are presented to highlight the advantages of these methods.",book:{id:"11862",title:"The Essence of Large-Eddy Simulations",coverURL:"https://cdn.intechopen.com/books/images_new/11862.jpg"},signatures:"Mingchao Cai, Mo Mu and Lian Zhang"}],onlineFirstChaptersTotal:43},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"23",title:"Education and Human Development",doi:"10.5772/intechopen.100360",issn:null,scope:"
\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"August 12th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA and her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:11,paginationItems:[{id:"83053",title:"Apologies in L2 French in Canadian Context",doi:"10.5772/intechopen.106557",signatures:"Bernard Mulo Farenkia",slug:"apologies-in-l2-french-in-canadian-context",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Bernard",surname:"Mulo Farenkia"}],book:{title:"Second Language Acquisition - Learning Theories and Recent Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11480.jpg",subseries:{id:"89",title:"Education"}}},{id:"82903",title:"Walking Accessibility to Primary Healthcare Services: An Inequity Factor for Olders in the Lisbon Metropolitan Area (Portugal)",doi:"10.5772/intechopen.106265",signatures:"Eduarda Marques da Costa, Ana Louro, Nuno Marques da Costa, Mariana Dias and Marcela Barata",slug:"walking-accessibility-to-primary-healthcare-services-an-inequity-factor-for-olders-in-the-lisbon-met",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82622",title:"Contemporary Geographical Gerontology: Reconciling Space and Place in Population Ageing",doi:"10.5772/intechopen.105863",signatures:"Hamish Robertson",slug:"contemporary-geographical-gerontology-reconciling-space-and-place-in-population-ageing",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hamish",surname:"Robertson"}],book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82610",title:"Perspective Chapter: The Role of Learning Styles in Active Learning",doi:"10.5772/intechopen.105964",signatures:"Armando Lozano-Rodríguez, Fernanda Inez García-Vázquez and José Luis García-Cué",slug:"perspective-chapter-the-role-of-learning-styles-in-active-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:4,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:'"Politechnica" University Timişoara',institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Computational Neuroscience",value:23,count:1},{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:30,paginationItems:[{id:"425474",title:"Mr.",name:"Jasper",middleName:"Okoro Godwin",surname:"Okoro Godwin Elechi",slug:"jasper-okoro-godwin-elechi",fullName:"Jasper Okoro Godwin Elechi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/425474/images/19990_n.jpg",biography:"Mr. Elechi is an innovative and passionate food professional and educator who can collaborate across boundaries with an integrated aspiration of innovation to provide good, sustainable, and healthy food solutions that promote human health and conserve planetary health. He has a special interest in innovative food product development, nutrition, indigenous food products, biotechnology, bioeconmy, sustainable global food systems transformation, food safety Nanotechnology, and Nanomaterials. He has carried out independent research and publications in these areas. He possesses comprehensive knowledge and technical know-how on nutritional formulation and production of healthy and sustainable foods from locally available underutilized Cereal-Legume crops for combating food security and malnutrition in developing communities.",institutionString:null,institution:null},{id:"307387",title:"Dr.",name:"Cecilia",middleName:null,surname:"Camporeale",slug:"cecilia-camporeale",fullName:"Cecilia Camporeale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"296882",title:"Dr.",name:"Mario",middleName:null,surname:"Jorizzo",slug:"mario-jorizzo",fullName:"Mario Jorizzo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"307388",title:"Dr.",name:"ROBERTO",middleName:null,surname:"DEL CIELLO",slug:"roberto-del-ciello",fullName:"ROBERTO DEL CIELLO",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"437647",title:"M.Sc.",name:"Fernando",middleName:null,surname:"Teixeira",slug:"fernando-teixeira",fullName:"Fernando Teixeira",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"423338",title:"Dr.",name:"Harjeet",middleName:null,surname:"Singh",slug:"harjeet-singh",fullName:"Harjeet Singh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Chitkara University",country:{name:"India"}}},{id:"443635",title:"Dr.",name:"Suruchi",middleName:null,surname:"Jindal",slug:"suruchi-jindal",fullName:"Suruchi Jindal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Punjab Agricultural University",country:{name:"India"}}},{id:"426265",title:"Mrs.",name:"Inonge",middleName:null,surname:"Chibua",slug:"inonge-chibua",fullName:"Inonge Chibua",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426266",title:"Ms.",name:"Mesha",middleName:null,surname:"Mbisana",slug:"mesha-mbisana",fullName:"Mesha Mbisana",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426264",title:"Mr.",name:"Samuel",middleName:null,surname:"Raditloko",slug:"samuel-raditloko",fullName:"Samuel Raditloko",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426394",title:"Dr.",name:"Mags",middleName:null,surname:"Adams",slug:"mags-adams",fullName:"Mags Adams",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"United Kingdom"}}},{id:"441182",title:"Dr.",name:"Neil",middleName:null,surname:"Wilson",slug:"neil-wilson",fullName:"Neil Wilson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"United Kingdom"}}},{id:"425171",title:"Ph.D. Student",name:"Tanya",middleName:null,surname:"Zerbian",slug:"tanya-zerbian",fullName:"Tanya Zerbian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"Cyprus"}}},{id:"424714",title:"Prof.",name:"Elke",middleName:null,surname:"Stedefeldt",slug:"elke-stedefeldt",fullName:"Elke Stedefeldt",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Sao Paulo",country:{name:"Brazil"}}},{id:"425244",title:"Dr.",name:"Rayane",middleName:"Stephanie Gomes",surname:"Stephanie Gomes De Freitas",slug:"rayane-stephanie-gomes-de-freitas",fullName:"Rayane Stephanie Gomes De Freitas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Sao Paulo",country:{name:"Brazil"}}},{id:"424688",title:"Dr.",name:"Bart",middleName:null,surname:"de Steenhuijsen Piters",slug:"bart-de-steenhuijsen-piters",fullName:"Bart de Steenhuijsen Piters",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429404",title:"Dr.",name:"Emma",middleName:null,surname:"Termeer",slug:"emma-termeer",fullName:"Emma Termeer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429407",title:"Dr.",name:"Herman",middleName:null,surname:"Brouwer",slug:"herman-brouwer",fullName:"Herman Brouwer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429406",title:"Dr.",name:"Hubert",middleName:null,surname:"Fonteijn",slug:"hubert-fonteijn",fullName:"Hubert Fonteijn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"427504",title:"Dr.",name:"Kriengsak",middleName:null,surname:"Chareonwongsak",slug:"kriengsak-chareonwongsak",fullName:"Kriengsak Chareonwongsak",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423333",title:"Ph.D. Student",name:"Shivani",middleName:null,surname:"Sood",slug:"shivani-sood",fullName:"Shivani Sood",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"452297",title:"Mr.",name:"Cornelius",middleName:null,surname:"Smah Adamu",slug:"cornelius-smah-adamu",fullName:"Cornelius Smah Adamu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"452296",title:"Mr.",name:"Ikechukwu",middleName:null,surname:"U. Nwiyi",slug:"ikechukwu-u.-nwiyi",fullName:"Ikechukwu U. Nwiyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423395",title:"Assistant Prof.",name:"Adane",middleName:null,surname:"Atara Debessa",slug:"adane-atara-debessa",fullName:"Adane Atara Debessa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426267",title:"Mr.",name:"Banyaladzi",middleName:null,surname:"Paphane",slug:"banyaladzi-paphane",fullName:"Banyaladzi Paphane",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"483388",title:"Dr.",name:"Berhanu",middleName:null,surname:"Denu",slug:"berhanu-denu",fullName:"Berhanu Denu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"483387",title:"Dr.",name:"Degefa",middleName:null,surname:"Tolossa",slug:"degefa-tolossa",fullName:"Degefa Tolossa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426059",title:"Dr.",name:"Dikabo",middleName:null,surname:"Mogopodi",slug:"dikabo-mogopodi",fullName:"Dikabo Mogopodi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"422909",title:"Dr.",name:"Dorcas Stella",middleName:null,surname:"Shumba",slug:"dorcas-stella-shumba",fullName:"Dorcas Stella Shumba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"429405",title:"Dr.",name:"Deborah",middleName:null,surname:"Bakker",slug:"deborah-bakker",fullName:"Deborah Bakker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"28",type:"subseries",title:"Animal Reproductive Biology and Technology",keywords:"Animal Reproduction, Artificial Insemination, Embryos, Cryopreservation, Conservation, Breeding, Epigenetics",scope:"The advances of knowledge on animal reproductive biology and technologies revolutionized livestock production. Artificial insemination, for example, was the first technology applied on a large scale, initially in dairy cattle and afterward applied to other species. Nowadays, embryo production and transfer are used commercially along with other technologies to modulate epigenetic regulation. Gene editing is also emerging as an innovative tool. This topic will discuss the potential use of these techniques, novel strategies, and lines of research in progress in the fields mentioned above.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Dr.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:null}]},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80485",title:"Potential Marker for Diagnosis and Screening of Iron Deficiency Anemia in Children",doi:"10.5772/intechopen.102792",signatures:"Yulia Nadar Indrasari, Siti Nurul Hapsari and Muhamad Robiul Fuadi",slug:"potential-marker-for-diagnosis-and-screening-of-iron-deficiency-anemia-in-children",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"79693",title:"Ferroptosis: Can Iron be the Last or Cure for a Cell?",doi:"10.5772/intechopen.101426",signatures:"Asuman Akkaya Fırat",slug:"ferroptosis-can-iron-be-the-last-or-cure-for-a-cell",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:'"Politechnica" University Timişoara',institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/49720",hash:"",query:{},params:{id:"49720"},fullPath:"/chapters/49720",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()