Abstract
Interdisciplinary concept of dissipative soliton is unfolded in connection with ultrafast fibre lasers. The different mode-locking techniques as well as experimental realizations of dissipative soliton fibre lasers are surveyed briefly with an emphasis on their energy scalability. Basic topics of the dissipative soliton theory are elucidated in connection with concepts of energy scalability and stability. It is shown that the parametric space of dissipative soliton has reduced dimension and comparatively simple structure that simplifies the analysis and optimization of ultrafast fibre lasers. The main destabilization scenarios are described and the limits of energy scalability are connected with impact of optical turbulence and stimulated Raman scattering. The fast and slow dynamics of vector dissipative solitons are exposed.
Keywords
- Ultrafast fibre laser
- mode-locking
- dissipative soliton
- non-linear dynamics
- vector solitons
- optical turbulence
- stimulated Raman scattering
1. Introduction
Over the last decades, ultrafast fibre laser technologies have demonstrated a remarkable progress. By definition [1–4], these technologies concern generation, manipulation and application of optical pulses from a fibre laser or a laser-amplifier system with (i) peak power
Another aspect of the ultrafast laser applications is connected with studying non-linear phenomena [30]. Ultrafast lasers became an effective platform for investigation of general non-linear processes such as instabilities and rogue waves [31,32], self-similarity [33] and turbulence [34]. A coherent self-organization in such non-linear systems [35,36] is the keystone of this review, and it will be considered below in detail. But here, we have to point at the multidisciplinary context of our topic. The ultrafast fibre lasers can be treated as an ideal playground for exploring of non-linear system phenomenology as a whole [37]. Such a playground spans gravity and cosmology [38], condensed-matter physics and quantum field theory [39–41], biology, neurosciences and informatics [42,43]. The advance of ultrafast laser technology is that the theoretical insights promise to become directly testable, controllable and, on the other part, the theory can be urged by new precise measurable experimental challenges.
To date, the solid-state lasers allowed generating shortest pulses with highest peak powers directly from an oscillator with high repetition rates ( The width of a gain band is not a decisive factor per se because both pulse width and its spectrum are affected by various factors including higher-order dispersions, non-linearity, etc. [53,54].
In this review, we will concern the concepts of a mode-locking and a dissipative soliton in a nutshell.
2. Mode-Locking
The concept of mode-locking is universal and closely connected with a principle of synchronisation of coupled oscillators [57–64]. A laser is, in fact, the interferometer which possesses a set of eigenmodes (longitudinal modes) separated by
In the case of
which is the classical equation for an oscillator in the potential defined by
Using the non-linear processes such as SPM, loss and gain saturation allows generating the ultrashort pulses due to mechanism of the so-called
where a four-wave non-linear process defined by non-linear susceptibility χ3 mixes the frequencies
Both active and passive mode-locking concepts can be easily united from the point of view of spice-time duality [64,67–69]. For instance, let’s consider
where a heat radiated at
Eq. (4) is clearly understandable in the Fourier domain:
The space-time duality can be extended further with the help of
where k and β2 are the wave number and group-delay dispersion coefficients, respectively. Both processes describe the beam/pulse spreading with propagation which is accompanied by phase
(compare with (4)) looking as
The transition to a
which is the famous
It is appropriate to mention here that the space-time duality
Following the same procedure for Eq. (4), describing the active amplitude mode-locking results in the simplest version of equation for a passive mode-locking, so-called
This equation describes a combined action of saturated net-gain (σ), spectral dissipation (α) and non-linear gain (κ). The last term results from loss saturation in a non-linear absorber with the response time much lesser than the pulse width. As will be shown below, such an assumption is valid for a broad class of fibre mode-locking mechanisms. Physics of passive mode-locking resembles that of active one: self-focusing in time domain causes a spectrum broadening which is balanced by spectral dissipation. Loss and energy-dependent gain are required for developing and stabilizing the mode-locking (all these factors are included in
which is a playground for study of DSs. Equation (9) allows a number of further generalizations such as: (i) description of non-distributed evolution due to dependence of the equation coefficients on
Now let us consider the mode-locking mechanisms for fibre lasers in more detail. Active mode-locking can be utilized for DS generation from a fibre laser [82–84], but the widespread mechanism is based on the
It is known [70] that an ideal single-mode fibre supports two degenerate orthogonally polarized modes. However, a real fibre has inherent birefringence caused by core asymmetry or mechanical stress (Figure 2).
Since SPM as well as cross-phase modulation (XPM) contribute to refractivity index with the strength defined by field intensity, such a contribution will change the state of polarization (SOP, Figure 3) [60,70,89] that can be described by coupled equations for two orthogonal (
where the dissipative factors from Eq. (9) are taken into account and
Despite its relative simplicity in principle as well as possibility of all-fibre-integrity of a laser, NPR in the form presented in Figure 3 is too sensitive to laser setup, uncontrollable perturbations and requires a precise manual tuning. The modified SAM setup, which can utilize both NPR and scalar SPM, is shown in Figure 4. It is the so-called
The unique property of this SAM setup is its ability to utilize different types of non-linearities for mode-locking (e.g. see [115–118]). Different modifications of this mode-locking mechanism have been used in DS fibre lasers [119–125]. Nevertheless, a fibre loop defining SAM remains environment- and tuning-sensitive.
There is a class of alternative approaches utilizing non-fibre well-controllable non-linearities for mode-locking by the cost of broken fibre-integrity of a laser. Such an alternative was provided by development of high-non-linear
Akin mode-locking methods providing full fibre-integrity, broadband absorption, sub-picosecond response time and avoiding a complex multi-layer mirror weaving use nanotube and graphene saturable absorbers [30,137–143] and other low-dimensional structures [144].
From the theoretical point of view, the response of saturable absorber (SESAM or other quantum-size structures) to a laser field can be very complicate. In principle, one has to take into account finite loss bandwidth, its dispersion, dependence of refractive index on carrier’s (or exciton’s) density (so-called linewidth enhancement), complex kinetics of excitation and relaxation, etc. However, the praxis demonstrated that a simple model of two-level absorber is well working [145]:
with some possible modifications (e.g. see [146]). Since DSs, as a rule, have over-picosecond widths (see next section), one may use an adiabatic approximation for (11) so that the expression for SAM coefficient in the last term in Eq. (9) has to be replaced:
where
One may propose a hypothesis that an analogue of Kerr-lens mode-locking, which is a basic mechanism for generation of femtosecond pulses from solid-state lasers [60,85,147], can be realized in a fibre laser as well. Such an insight is based on possible enhancement of the laser beam spatial-trapping induced by non-linearity in a medium with spatially inhomogeneous gain/loss or refractivity [148–152]. The model for analysis of such phenomena can be based on extension of dimensionality of Eq. (9), with taking into account the diffraction and transverse inhomogeneity of gain, loss or/and refractive index (the last can work as SAM due to the waveguide leaking loss) [153]:
where cylindrical symmetry is assumed,
All these mode-locking techniques are realizable for both soliton proper and DS fibre lasers (excluding the Kerr-lens mode-locking which requires sufficiently high pulse energies provided by only a DS laser). Now let’s consider the DSs fibre lasers proper.
3. DS concept: Theory and experiment
A ‘classical’ soliton can be formally defined as a solution of non-linear evolution equation belonging to discrete spectrum of the inverse scattering transform [71,76,154]. The non-linear equations, which can be solved by inverse scattering transform, are ‘exactly integrable’. This means that they are akin to linear equations in some sense. In particular, they obey the superposition principle and, as a result, can be canonically quantized [155,156]. One has to note that integrability of a non-linear evolution equation and non-dissipative (non-Hamiltonian) character of the latter are not equivalent because there are both non-integrable Hamiltonian systems and integrable dissipative ones [36]. The point is that the DS concept is not connected with ‘integrability’; therefore, DSs are not ‘true’ solitons in a mathematical sense. However, many properties of DSs, in particular, their stable localization, robustness in the processes of scattering and interaction, well-organized internal structure, etc., resemble the properties of ‘true’ solitons. Formally, one may define
Stability of a DS under condition of strong non-equilibrium can be achieved only due to well-organized energy exchange with environment and subsequent energy redistribution within a DS. It results in energy flux inside a DS and, thereby, in DS phase inhomogeneity [36]. For a simplest case of Eq. (9), which has a DS solution in the form of
as well as the spectrum
Thus, an additional mechanism of SAM (in addition to mechanisms considered in the previous section) appears, which provides unique robustness of DSs (i.e. DS exists within a broad range of laser parameters [163,164]).
Below, we will consider a chirp as the essential characteristic of DS [210]. One of the reasons is that the chirp allows DS to accumulate energy However, namely LMA and photonic-crystal fibres could realize a Kerr-lens mode-locking in a fibre laser [152,153].
In the terms of space-time duality (see above), the mechanism of formation of time window, within which a DS is localized, resembles a phenomenon of total internal reflection from some ‘borders’ created by phase discontinuity. Such borders are formally defined by the equivalence of the wave number of out-/in-going radiation
where
This ideology of energy scaling by the pulse stretching goes back to the so-called wave-breaking-free or stretched pulse fibre lasers where the propagation within the anomalous-dispersion fibre sectors alternates with the propagation under normal GDD action [96,101,185–187]. As a result of pulse stretching, the non-linear effects in such systems are reduced, which allows increasing an energy and suppressing a noise. As an alternative approach, one can exclude an anomalous GDD at all and to realize a so-called
The advantage of the
The diversity of the results obtained (Figure 8) needs a comprehension from a
As was emphasized repeatedly, both linear and non-linear dissipations are crucial for the DS formation. The simplest and most studied models for such a type of phenomena are based on the different versions of CNGLE (e.g. Eq. (9)).
Extensive
As was mentioned above, the evolution equations describing DSs are not-integrable. The efforts based on the algebraic techniques [62,213,214] and aimed to finding the generalized DS solutions of CNGLE were not successful to date. Nevertheless, few exact partial DS-solutions are known. For instance,
where
The crucial shortcoming of the approach based on few exact DS solutions of evolution equations is that the strict restrictions are imposed on the equation parameters. As a result, the DS cannot be traced within a broad multidimensional parametric range and the picture obtained is rather sporadic and is of interest only in the close relation with the numerical results and experiment. Some additional information can be obtained on the basis of perturbation theory which provides with a quite accurate approximation for a low-energy DS [215–217].
Most powerful approaches to the theory of DSs have been developed in the framework of
Both AM and VA demonstrate two-dimensional representation of DS parametric space in the form of master diagram. Dimensionality can grow with complication of CNGLE non-linearity when SPM becomes saturable so that the cubic non-linear term in Eq. (9) has to be replaced by
The master diagram is a manifold of isogains (i.e. curves with Energy-non-scalable branch has two distinguishing characteristics: it turns into solution of Eq. (9) with
which agrees with experimental observations of linear growth of DS energy with bandwidth [107,108] as well with a rule
In the case of unsaturable SAM corresponding to SESAM, some nanotube and graphene absorbers, Kerr-lensing, etc. (see Eq. (12)), the energy scaling requires scaling of the control parameter
The spectral properties of DS are described clearly in the frameworks of AM [44,167]. In the simplest case of cubic-quintic CNGLE, the DS spectrum
where H is a Heaviside function. The DS energy is
and
Here, we trace the zero-isogain σ = 0. The DS time-profile is defined by an implicit expression:
with the DS width of
It is clear that in this ‘low-energy’ sector the DS time-profile is bell-like and its spectrum has tabletop form (
that is, a DS in the DSR sector has a flattop temporal profile and a Lorenzian spectrum (
4. DS spectrum and stability
As was explained, the dual balances in frequency domain:
are formative for DS existence and stabilization. No wonder that the spectrum of DS is benchmark of its inherent properties.
Prior to consider the aspects of interweaving of spectral and stability properties of DSs, one has to point to a possibility of multi-wavelength multi-pulsing DSs provided by DS robustness. As was demonstrated in [234] theoretically, the multi-DSs compounds in a mode-locked laser can be stabilized at multiple frequencies. Experimentally, such multi-frequency DS compounds can be realized by birefringence filters with a periodical (interference-like) dependence of transmission on wavelength under conditions of sufficiently broad gainband and powerful pump [235–239] A multi-porting configuration of a DS laser supports even simultaneous generation of conventional and dissipative wavelength-separated solitons [240].
As was demonstrated in previous section, DS has non-trivial internal structure due to energy fluxes inside it. The elements of this structure (
For sufficiently large energies in the vicinity of stability border (point
The numerical simulations of cubic-quintic CNGLE with taking into account a quantum noise validated the fact of inconsistency of spectral condensation and absence of temporal thermolization that breaks the DS energy scalability (see previous section) [243]. As a result, the DS stability region breaks abruptly with energy growth (dashed curve in Figure 10) and multitude of turbulent scenarios of DSs evolution develops (Figure 15) [34,243].
Serious limitations on power and energy scalability of DSs in fibre lasers arise from stimulated Raman scattering (SRS) [2,109]. The stability border of DS under action of SRS is shown in Figure 10 by dot blue curve (DS is stable on the left of this curve) [260]. As was found, SRS enhances the tendency to multi-pulsing with energy growth caused by enhancement of spectral dissipation due to SRS [260]. Simultaneously, generation of anti-Stokes radiation causes chaotization of DS dynamics and irregular modulation of DS temporal and spectral profiles [261] (Figure 16). DS profile remains localized, but it is strongly cut by colliding dark and grey soliton-like structures [34].
As was shown, the DS dynamics can be regularized by formation of
5. Vector DSs
As was pointed above, SOP can play leading role in a fibre laser dynamics. In particular, it can contribute to mode-locking or/and spectral filtering. However, diapason of polarization phenomena in a DS fibre laser spreads essentially broader. As was found, intrinsic fibre birefringence (Figure 2) can lead to DS splitting into two independent SOPs [78]. This phenomenon is used to realize the NPR mode-locking mechanism where a DS SOP evolves (or remains locked) as a whole during propagation [265-269]. The polarization dynamics can be fast (
The specific multiple pulse instability of vector dissipative solitons (VDSs) leads to generation of the bound states of DSs with different SOPs (
The important breakthrough in the recent theory of VDSs is the demonstration of insufficiency of approaches based on the coupled CNGLEs (like (10)) for adequate description of DS polarization dynamics. It was demonstrated that an active medium polarizability contributes to DS dynamics substantially [277]. As was shown, the SOP-sensitive interaction between DS and a slowly relaxing active medium with taking into account the birefringence of fibre laser elements and light-induced anisotropy caused by elliptically polarised pump field change the SOP at a long time scale that results in fast and slowly evolving SOPs of VDSs (Figure 19).
The non-trivial contribution of active medium kinetics and polarizability with taking into account the pump SOP and SPM demonstrates a complex dynamics including spiral attractors and dynamic chaos (Figure 20) [278]. One may assume that such a non-trivial polarization dynamics is of great importance for DS energy scaling, in particular, due to vector nature of SRS [279]. These topics remain unexplored to date.
6. Conclusion
The recent progress in development of ultrafast fibre lasers and advances in exploring of DS are interrelated. DSs allowed scoring a great success in ultrashort pulse energy scalability that is defined by unprecedented stability and robustness of DS. At this moment, it is possible to achieve over-MW peak powers for sub-100 fs pulses directly from a fibre laser at over-MHz repetition rates. New spectral diapasons became reachable owing to development of mid-IR active fibres and using the frequency-conversion directly in a laser. Development of new mode-locking techniques, especially based on using of SESAMs, graphene and another quantum-sized structure allowed improving a laser stability, integrity and environment insensitivity. A great advance has been achieved in the theory of DSs. New powerful analytical techniques based on extensive numerical simulations and experimental advances extended understanding of the DS fundamental properties and revealed new prospects in improvement of characteristics of ultrafast fibre lasers. Based on achieved results, one may outline some unresolved problems. As was found, there are stability limits for a DS energy scaling imposed by optical turbulence and SRS. Deeper insight into the nature of these phenomena could allow to overcome these limits without substantial complication of laser setup. Simultaneously, control of intra-laser spectral conversion is a direct way to broadening of spectral range. Then, the dynamics and properties of VDSs remain scantily explored. Recent studies demonstrated a multitude of polarization phenomena, which cannot be grasped in frameworks of existing models. In particular, polarizability and kinetics of an active fibre in combination with birefringence of a laser in a whole can contribute non-trivially to a laser dynamics. As an additional aspect of further development, one may point at the development of new mode-locking techniques, which could improve DS stability and integrity of a fibre laser, decrease pulse width and extend a diapason of pulse repetition rates. At last, one has to remember that a fibre laser is an ideal playground for study of complex non-linear phenomena and, undoubtedly, new bridges between different fields of science will be built with a further progress of ultrafast fibre lasers.
Acknowledgments
This work was supported by FP7-PEOPLE-2012-IAPP (project GRIFFON, No. 324391).
References
- 1.
Fermann ME, Hartl I. Ultrafast fiber laser technology. IEEE J Sel Topics in Quantum Electron 2009;15(1):191–206. DOI: 10.1109/JSTQE.2008.2010246. - 2.
Fermann ME, Galvanauskas A, Sucha G, Harter D. Fiber-lasers for ultrafast optics. Appl Physics B 1997;65:259–75. - 3.
Fermann ME, Hartl I. Ultrafast fiber lasers. Nature Photonics 2013;7:868–74. DOI: 10.1038/NPHOTON.2013.280. - 4.
Limpert J, Röser F, Schreiber Th, Tünnermann A. High-power ultrafast fiber laser systems. IEEE J Sel Top Quantum Electron 2006;12(2):233–44. DOI: 10.1109/JSTQE.2006.872729. - 5.
Lamb WE. Theory of an optical laser. Phys Rev 1964;134:A1429–50. - 6.
Siegman AE. Lasers. Sausalito: University Science Book; 1986. 1283 p. - 7.
Lefranҫois S, Kieu K, Deng Y, Kafka JD, Wise FW. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber. Opt Lett 2010;35(10):1569–71. - 8.
Baumgartl M, Lecaplain C, Hideur A, Limpert J, Tünnermann C. 66 W average power from a microjoule-class sub-100 fs fiber oscillator. Opt Lett 2012;37(10):1640–2. DOI: 10.1364/OL.37.001640. - 9.
Chong A, Renninger WH, Wise FW. Route to the minimum pulse duration in normal-dispersion fiber lasers. Opt Lett 2008;33(22):2638–40. DOI: 10.1364/OL.33.002638. - 10.
Sucha G. Overview of industrial and medical applications of ultrashort pulse lasers. In: Fermann ME, Galvanauskas A, Sucha G. (Eds.) Ultrafast Lasers: Technology and Applications. New York: Marcel Dekker, Inc.; 2003. pp. 323–358. - 11.
Xu C, Wise FW. Recent advances in fibre lasers for nonlinear microscopy. Nature Photonics 2013;7:875–82. DOI: 10.1038/NPHOTON.2013.284. - 12.
Müller M, Squier J. Nonlinear microscopy with ultrashort pulse lasers. In: Fermann ME, Galvanauskas A, Sucha G. (Eds.) Ultrafast Lasers: Technology and Applications. New York: Marcel Dekker, Inc.; 2003, pp. 661–97. - 13.
Kalashnikov VL, Sorokin E. Soliton absorption spectroscopy. Phys Rev A 2010;81:033840. DOI: 10.1103/PhysRevA.81.033840. - 14.
Kalashnikov VL, Sorokin E, Sorokina IT. Chirped dissipative soliton absorption spectroscopy. Opt Express 2011;19(18):17480–92. - 15.
Kurtz RM, Sarayba MA, Juhasz T. Ultrafast lasers in ophthalmology. In: Fermann ME, Galvanauskas A, Sucha G. (Eds.) Ultrafast Lasers: Technology and Applications. New York: Marcel Dekker, Inc.; 2003, pp. 745–65. - 16.
Clowes J. Next generation light sources for biomedical applications. Optic Photonic 2011;3(1):36–8. - 17.
Fujimoto JG, Brezinski M, Drexler W, Hartl I, Kärtner F, Li X, Morgner U. Optical coherence tomography. In: Fermann ME, Galvanauskas A, Sucha G. (Eds.) Ultrafast Lasers: Technology and Applications. New York: Marcel Dekker, Inc.; 2003, pp. 699–743. - 18.
Drexler W, Fujimoto JG. (Eds.) Optical Coherence Tomography. Berlin: Springer-Verlag; 2008. 1346 p. - 19.
Lanin AA, Fedotov IV, Sidorov-Biryukov DA, Doronina-Amitonova LV, Ivashkina OI, Zots MA, Sun C-K, Ilday FÖ, Fedotov AB, Anokhin KV, Zheltikov AM. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery. Appl Phys Lett 2012;100:101104. DOI: 10.1063/1.3681777. - 20.
Osellame R, Cerullo G, Ramponi R. (Eds.) Femtosecond Laser Micromachining. Heidelberg: Springer; 2012. 483 p. - 21.
Gattass RR, Mazur E. Femtosecond laser micromachining in transparent materials. Nat Photon. 2008;2:219–25. DOI: 10.1038/nphoton.2008.47. - 22.
Nakazawa M. Ultrahigh bit rate communication system. In: Fermann ME, Galvanauskas A, Sucha G. (Eds.) Ultrafast Lasers: Technology and Applications. New York: Marcel Dekker, Inc.; 2003. pp. 611–660. - 23.
Udem Th, Holzwarth R, Hänsch TW. Optical frequency metrology. Nature 2002;416:233–7. DOI: 10.1038/416233a. - 24.
Liu Y, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J. Strong-field double ionization of Ar below the recollision threshold. Phzs Rev Lett 2008;101:053001. DOI: 10.1103/PhysRevLett.101.053001. - 25.
Sciaini G, Miller RJD. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep Prog Phys 2011;74:096101. DOI: 10.1088/0034-4885/74/9/096101. - 26.
Südmeyer T, Marchese SV, Hashimoto S, Baer CRE, Gingras G, Witzel B, Keller U. Femtosecond laser oscillators for high-field science. Nat Photon 2008;2:599–604. DOI: 10.1038/nphoton.2008.194. - 27.
Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys 2009;81(1):163–234. DOI: 10.1103/RevModPhys.81.163 - 28.
Pfeifer T, Spielmann C, Gerber G. Femtosecond x-ray science. Rep Prog Phys 2006;69(2):443–505. DOI: 10.1088/0034-4885/69/2/R04. - 29.
Mourou GA, Tajima T, Bulanov SV. Optics in the relativistic regime. Rev Mod Phys 2006;78(2):309–71. DOI: 10.1103/RevModPhys.78.309. - 30.
Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat Photon 2013;7:842–5. - 31.
Lecaplain C, Grelu Ph, Soto-Crespo JM, Akhmediev N. Dissipative rogue waves generated by chaotic bunching in a mode-locked laser. Phys Rev Lett 2012;108:233901. - 32.
Dudley JM, Dias F, Erkintalo M, Genty G. Instabilities, breathers and rogue waves in optics. Nat Photon 2014;8:755–64. - 33.
Dudley JM, Finot Ch, Richardson DJ, Millot G. Self-similarity in ultrafast nonlinear optics. Nat Phys 2007;3:597–603. - 34.
Turitsyna EG, Smirnov SV, Sugavanam S, Tarasov N, Shu X, Babin SA, Podivilov EV, Churkin DV, Falkovich G, Turitsyn SK. The laminar–turbulent transition in a fibre laser. Nat Photon 2013;7:783–6. DOI: 10.1038/NPHOTON.2013.246. - 35.
Akhmediev NN, Ankiewicz A. Solitons: Nonlinear Pulses and Beams. London: Chapman & Hall; 1997. - 36.
Akhmediev NN, Ankiewicz A. (Eds.) Dissipative Solitons. Berlin: Springer-Verlag; 2005. - 37.
Grelu Ph, Akhmediev N. Dissipative solitons for mode-locked lasers. Nat Photon 2012;6:84–92. DOI: 10.1038/nphoton.2011.345 - 38.
Faccio D, Belgiorno F, Cacciatori S, Gorini V, Liberati S, Moschella U. (Eds.) Analogue Gravity Phenomenology. Analogue Spacetimes and Horizons, from Theory to Experiment. Heidelberg: Springer; 2013. p. 438. DOI: 10.1007/978-3-319-00266-8. - 39.
Kevrekidis PG, Frantzeskakis DJ, Carretero-González R. (Eds.) Emergent Nonlinear Phenomena in Bose-Einstein Condensates. Berlin: Springer-Verlag; 2008. - 40.
Yang Y. Solitons in Field Theory and Nonlinear Analysis. New York: Springer; 2001. - 41.
Abdulaev FK, Konotop VV. (Eds.) Nonlinear Waves: Classical and Quantum Aspects. Dordrecht: Kluwer Academic Pub.; 2004. - 42.
Akhmediev NN, Ankiewicz A. (Eds.) Dissipative Solitons: From Optics to Biology and Medicine. Berlin: Springer-Verlag; 2008. - 43.
Naruse M, (Ed.) Nanophotonic Information Physics. Berlin: Springer-Verlag; 2014. - 44.
Kalashnikov VL. Chirped-pulse oscillators: route to the energy-scalable femtosecond pulses. In: Al-Khursan A. (Ed.) Solid State Laser. InTech, 2008; pp. 145–184. DOI: 10.5772/37415. - 45.
Baer CRE, Heckl OH, Saraceno CJ, Schriber C, Kränkel C, Südmeyer T, Keller U. Frontiers in passively mode-locked high-power thin-disk laser oscillators. Opt Express 2012;20:7054–65. DOI: 10.1364/OE.20.007054. - 46.
Saraceno CJ, Emaury F, Heckl OH, Baer CRE, Hoffmann M, Schriber C, Golling M, Südmeyer Th, Keller U. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Opt Express 2012;20:23535–41. DOI: 10.1364/OE.20.023535. - 47.
Zhang J, Brons J, Lilienfein N, Fedulova E, Pervak V, Bauer D, Sutter D, Wei Zh, Apolonski A, Pronin O, Krausz F. 260-megahertz, megawatt-level thin-disk oscillator. Opt Lett 2015;40:1627–30. DOI: 10.1364/OL.40.001627. - 48.
Brons J, Pervak V, Fedulova E, Bauer D, Sutter D, Kalashnikov V, Apolonskiy A, Pronin O, Krausz F. Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Opt Lett 2014;39:6442–5. DOI: 10.1364/OL.39.006442. - 49.
Naumov S, Fernandez A, Graf R, Dombi P, Krausz F, Apolonski A. Approaching the microjoule frontier with femtosecond laser oscillators. New J Phys 2005;7:216. DOI: 10.1088/1367-2630/7/1/216. - 50.
Fedulova E, Fritsch K, Brons J, Pronin O, Amotchkina T, Trubetskov M, Krausz F, Pervak V. Highly-dispersive mirrors reach new levels of dispersion. Opt Express 2015;23:13788–93. DOI: 10.1364/OE.23.013788. - 51.
Richardson DJ, Nilsson J, Clarkson WA. High power fiber lasers: current status and future prospects. J Opt Soc Am B 2010;27:B63–B92. - 52.
Sraceno CJ, Heckl OH, Baer CRE, Schriber C, Golling M, Beil K, Kränkel ST, Huber G, Keller U. Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser. Appl Phys B 2012;106:559–62. DOI: 10.1007/s00340-012-4900-5. - 53.
Zhang J, Brons J, Seidel M, Pervak V, Kalashnikov V, Wei Z, Apolonski A, Krausz F, Pronin O. 49-fs Yb:YAG thin-disk oscillator with distributed Kerr-lens mode-locking. In: CLEO/Europe-EQEC Scientific Programme; 21–25 June; Munich, Germany. 2015. p. 166 (PD-A.1 WED). - 54.
Sorokin E, Kalashnikov VL, Naumov S, Teipel J, Warken F, Giessen H, Sorokina IT. Intra- and extra-cavity spectral broadening and continuum generation at 1.5 \mu m using compact low energy femtosecond Cr:YAG laser. Applied Phys B 2003;77(2–3):197–204. - 55.
Joly NY, Nold J, Chang W, Hölzer P, Nazarkin A, Wong GKL, Biancalana F, Russel P. St J. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys Rev Lett 2011;106:203901. - 56.
Jackson SD. Towards high-power mid-infrared emission from a fiber laser. Nat Photon 2012;28:423–31. DOI: 10.1038/NPHOTON.2012.149. - 57.
Acerbron JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 2005;77:137–85. - 58.
Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in nonlinear sciences. Cambridge: Cambridge University Press; 2001. - 59.
Kuizenga DJ, Siegman AE. FM and AM mode locking of the homogeneous laser - Part I: Theory. IEEE J Quantum Electron 1970;6(11):694–708. DOI: 10.1109/JQE.1970.1076343. - 60.
Haus HA. Mode-locking of lasers. IEEE J Sel Topic Quantum Electron 2000;6(6):1173–85. - 61.
Haus HA. Short pulse generation. In: Duling IN, III (Ed.) Compact Sources of Ultrashort Pulses. Cambridge: Cambridge University Press; 1995. pp. 1–56. - 62.
Kalashnikov VL. Mathematical Ultrashort-Pulse Laser Physics [Internet]. 15/09/2000 [Updated: 29/03/2002]. Available from: http://lanl.arxiv.org/abs/physics/0009056v3. - 63.
Kuizenga DI, Siegman AE. Modulator frequency detuning effects in the FM mode-locked laser. IEEE J Quantum Electron 1970;QE-6:803–8. - 64.
Akhmanov SA, Vysloukh VA, Chirkin AS. Optics of Femtosecond Laser Pulses. New York: AIP; 1992. - 65.
Haus HA, Silberberg Y. Laser mode locking with addition of nonlinear index. IEEE J Quantum Electron 1986;QE-22(2):325–31. - 66.
Kalashnikov VL, Poloyko IG, Mikhaylov VP. Generation of ultrashort pulses in lasers with external frequency modulation. Quantum Electron 1998;28(3):264–8. - 67.
Kolner BH. Space-time duality and the theory of temporal imaging. IEEE J Quantum Electron 1994;QE-30(8):1951–63. - 68.
van Howe J, Xu Ch. Ultrafast optical signal processing based upon space-time dualities. IEEE J Lightwave Technology 2006;24(7):2649–62. DOI: 10.1109/JLT.2006.875229. - 69.
Salem R, Foster MA, Gaeta AL. Application of space-time duality to ultrahigh-speed optical signal processing. Adv Optics Photon 2013;5:274–317. DOI: 10.1364/AOP.5.000274. - 70.
Agrawal GP. Nonlinear Fiber Optics. Third Edition ed. San Diego: AP; 2001. 466 p. - 71.
Newell AC. Solitons in Mathematics and Physics. Philadelphia: SIAM; 1985. 246 p. - 72.
Lai Y, Haus HA. Quantum theory of solitons in optical fibers. I. Time-dependent Hartree approximation. Phys Rev A 1989;40:844–53. - 73.
Lai Y, Haus HA. Quantum theory of solitons in optical fibers. II. Exact solution. Phys Rev A 1989;40:854–66. - 74.
Yoon B, Negele JW. Time-dependent approximation for a one-dimensional system of bosons with attractive δ-function interactions. Phys Rev A 1977;16:1451. - 75.
Haus HA. Theory of mode-locking with a fast saturable absorber. J Appl Phys 1975; 46:3049–58. - 76.
Ablowitz MJ, Clarkson PA. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press; 1991. 516 p. - 77.
Turitsyn SK, Bale BG, Fedoruk MP. Dispersion-managed solitons in fibre systems and lasers. Phys Rep 2012;521:135–203. DOI: 10.1016/j.physrep.2012.09.004. - 78.
Menyuk CR. Nonlinear pulse propagation in birefringent optical fibers. IEEE J Quantum Electron 1987;23(2):174–6. - 79.
Menyuk GR. Pulse propagation in an elliptically birefringent Kerr medium. IEEE J Quantum Electron 1989;25(12):2674–82. - 80.
Hasegawa A. Optical Solitons in Fibers. Berlin: Springer-Verlag; 1990. 79 p. - 81.
Ding E, Renninger WH, Wise FW, Grelu Ph, Shlizerman E, Kutz JN. High-energy passive mode-locking of fiber lasers. Int J Optics 2012;2012(ID354156):1–17. DOI: 10.1155/2012/354156. - 82.
Wang R, Dai Y, Yan L, Wu J, Xu K, Li Y, Lin J. Dissipative soliton in actively mode-locked fiber laser. Optics Express 2012;20(6):6406–11. - 83.
Koliada NA, Nyushkov BN, Ivanenko AV, Kobtsev SM, Harper P, Turitsyn SK, Denisov VI, Pivtsov VS. Generation of dissipative solitons in an actively mode-locked ultralong fibre laser. Quantum Electron 2013;43(2):95–8. DOI: 10.1070/QE2013v043n02ABEH015041. - 84.
Wang R, Dai Y, Yin F, Xu K, Li J, Lin J. Linear dissipative soliton in an anomalous-dispersion fiber laser. Optics Express 2014;22(24):29314–20. DOI: 10.1364/OE.22.029314. - 85.
Haus HA, Fujimoto JG, Ippen EP. Analytic theory of additive pulse and Kerr lens mode locking. IEEE J. Quantum Electron 1992;28(10):2086–96. - 86.
Fermann ME, Andrejco MJ, Silberberg Y, Stock ML. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber. Optics Lett 1993;18(11):894–6. DOI: 10.1364/OL.18.000894. - 87.
Hofer M, Ober MH, Haberl F, Fermann ME. Characterization of ultrashort pulse formation in passively mode-locked fiber lasers. IEEE J Quantum Electron 1992;28(3)DOI:720–8. - 88.
Fermann ME. Nonlinear polarization evolution in passively modelocked fiber lasers. In: Duling IN, III (Ed.) Compact sources of ultrashort pulses. Cambridge: Cambridge University Press; 1995. pp. 179–207. - 89.
Winful HG. Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices. Optics Lett 1986;11(1):33–5. - 90.
Kalashnikov VL, Kalosha VP, Mikhailov VP. Self-mode locking of continuous-wave solid-state lasers with a nonlinear Kerr polarization modulator. J Opt Soc Am B 1993;10:1443–6. - 91.
Ding E, Kutz JN. Operating regimes, split-step modeling, and the Haus master mode-locking model. J Opt Soc Am B 2009;26(12):2290–300. - 92.
Ding E, Shlizerman E, Kutz JN. Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg-Landau equation. IEEE J Quantum Electron 2011;47(5):705–14. - 93.
Komarov A, Leblond H, Sanchez F. Multistability and hysteresis phenomena in passively mode-locked fiber lasers. Phys Rev A 2005;71(5):053809. - 94.
Komarov A, Leblond H, Sanchez F. Quantic complex Ginzburg-Landau model for ring fiber lasers. Phys Rev E 2005;72(2):025604. - 95.
Matsas VJ, Newson TP, Richardson DJ, Payne DN. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation. Electron Lett 1992;28(15):1391–3. - 96.
Tamura K, Ippen EP, Haus HA, Nelson IE. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Optics Lett 1993;18(13):1080–2. - 97.
Chong A, Buckley J, Renninger W, Wise F. All-normal-dispersion femtosecond fiber laser. Optics Express 2006;14(21):10096–100. - 98.
Zhao LM, Tang DY, Wu J. Gain-guided soliton in a positive group-dispersion fiber laser. Optics Lett 2006;31(12):1788–90. - 99.
Cabasse A, Ortac B, Martel G, Hideur A, Limpert J. Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion. Optics Express 2008;16(23):19323–9. - 100.
Kieu K, Renninger WH, Chong A, Wise FW. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Optics Lett 2009;34(5):593–5. - 101.
Ruehl A, Wandt D, Morgner U, Kracht D. Normal dispersive ultrafast fiber oscillators. IEEE J Sel Topic Quantum Electron 2009;15(1):170–81. - 102.
Wu X, Tang DY, Zhang H, Zhao LM. Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser. Optics Express 2009;17(7):5580–4. - 103.
Renninger WH, Chong A, Wise F. Self-similar evolution in an all-normal-dispersion laser. Phys Rev A 2010;82:021805(R). - 104.
Zhao L, Tang D, Wu X, Zhang H. Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter. Optics Lett 2010;35(16):2756–8. - 105.
Chichkov NB, Hausmann K, Wandt D, Morgner U, Neumann J, Kracht D. High-power dissipative solitons from an all-normal dispersion erbium fiber oscillator. Optics Lett 2010;35(16):2807–9. - 106.
Baumgartl M, Ortac B, Lecaplain C, Hideur A, Limpert J, Tuenermann A. Sub-80 fs dissipative soliton large-mode-area fiber laser. Optics Lett 2010;35(13):2311–3. - 107.
Lecaplain C, Baumgartl M, Schreiber T, Hideur A. On the mode-locking mechanism of a dissipative-soliton fiber laser. Optics Express 2011;19(27):26742–51. - 108.
Zhang Z, Dai G. All-normal-dispersion dissipative soliton Ytterbium fiber laser without dispersion compensation and additional filter. IEEE Photon J 2011;3(6):1023–9. DOI: 10.1109/JPHOT.2011.2170057. - 109.
Kharenko DS, Podivilov EV, Apolonski AA, Babin SA. 20 nJ 200 fs all-fiber-highly chirped dissipative soliton oscillator. Optics Lett 2012;37(19):4104–6. - 110.
Li X, Wang Y, Zhao W, Liu X, Wang Y, Tsang YH, Zhang W, Hu X, Yang Zh, Gao C, Li Ch, Shen D. All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser. J Lightwave Tech 2012;30(15):2502–7. - 111.
Duan L, Liu X, Mao D, Wang L, Wang G. Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser. Optics Express 2012;20(1):265–70. - 112.
Doran NJ, Wood D. Nonlinear-optical loop mirror. Optics Lett 1988;13(1):56–8. - 113.
Ippen EP, Haus HA, Liu LY. Additive pulse modelocking. J Opt Soc Am B 1989;6:1736–45. - 114.
Duling IN III, Dennis ML. Modelocking of all-fiiber lasers. In: Duling IN III, (Eds.) Compact Sources of Ultrashort Pulses. Cambridge: Cambridge University Press; 1995. pp. 140–178. - 115.
Mark J, Liu LY, Hall KL, Haus HA, Ippen EP. Femtosecond pulse generation in a laser with a nonlinear external resonator. Optics Lett 1989;14(1):48–50. - 116.
Kalashnikov VL, Kalosha VP, Mikhailov VP, Poloyko IG. Multi-frequency continuous wave solid-state laser. Optics Commun 1995;116(4–6):383–8. - 117.
Kalashnikov VL, Kalosha VP, Mikhailov VP, Poloyko IG, Demchuk MI. Efficient self-mode locking of continuous-wave solid-state lasers with resonant nonlinearity in an additional cavity. Optics Commun 1994;109:119–25. - 118.
Kalashnikov VL, Kalosha VP, Mikhailov VP, Poloyko IG, Demchuk MI. Self-mode-locking of cw solid-state lasers with a nonlinear antiresonant ring. Quantum Electron 1994;24(1):35–9. - 119.
Richardson DJ, Laming RI, Payne DN, Matsas V, Phillips MW. Selfstarting, passively modelocked Erbium fibre laser based on amplifying Sagnac switch. Electronics Lett 1991;27(6):542–3. - 120.
Nicholson JW, Andrejco M. A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser. Optics Express 2006;14(18):8160–7. - 121.
Yun L, Liu X, Mao D. Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser. Optics Express 2012;20(19):20992–7. - 122.
Wang S-K, Ning Q-Y, Luo A-P, Lin A-B, Luo Z-C, Xu W-C. Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser. Optics Express 2013;21(2):2402–7. - 123.
Zhao LM, Bartnik AC, Tai QQ, Wise FW. Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror. Optics Lett 2013;38(11):1942–4. - 124.
Lin H, Guo Ch, Ruan Sh, Yang J. Dissipative soliton resonance in an all-normal-dispersion Yb-doped figure-eight fibre laser with tunable output. Laser Phys Lett 2014;11:085102. - 125.
Xu Y, Song Y, Du G, Yan P, Guo Ch, Zheng G, Ruan Sh. Dissipative soliton resonance in a wavelength-tunable Thulium-doped fiber laser with net-normal dispersion. IEEE Photonics J 2015;7(3):1502007. DOI: 10.1109/JPHOT.2015.2424855. - 126.
Keller U. Recent developments in compact ultrafast lasers. Nature 2003;424(14):831–8. - 127.
Keller U. Semiconductor Nonlinearities for Solid-State Laser Modelocking and Q-switching. In: Garmire E, Kost A. (Eds.) Nonlinear Optics in Semiconductors II (Semiconductors and Semimetals, Vol. 59). San Diego: AP; 1999. pp. 211–86. - 128.
Keller U, Weingarten KJ, Kaertner FX, Kopf D, Braun B, Jung ID, Fluck R, Hoenninger C, Matuschek N, Aus der Au J. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J Sel Top Quantum Electron 1996;2(3):435–53. - 129.
Kaertner F. Lecture Notes: Introduction to Ultrafast Optics, Chapter 8 [Internet]. 2005. Available from: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-977-ultrafast-optics-spring-2005/lecture-notes/chapter8.pdf. - 130.
Chong A, Renninger WH, Wise FW. Environmentally stable all-normal-dispersion femtosecond fiber laser. Optics Lett 2008;33(10):1071–3. DOI: 10.1364/OL.33.001071. - 131.
Cabasse A, Martel G, Oudar JL. High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror. Optics Express 2009;17(12):9537–42. - 132.
Tang M, Wang H, Becheker R, Oudar J-L, Gaponov D, Godin T, Hideur A. High-energy dissipative solitons generation from a large normal dispersion Er-fiber laser. Optics Lett 2015;40(7):1414–7. - 133.
Gumenyuk R, Vartianen I, Tuovinen H, Okhotnikov OG. Dissipative dispersion-managed soliton 2mm thulium/holmium fiber laser. Optics Lett 2011;36(5):609–11. - 134.
Lecourt J-B, Duterte C, Narbonneau F, Kinet D, Hernandez Y, Giannone D. All-normal dispersion, all-fibered PM laser mode-locked by SESAM. Optics Express 2012;20(11):11918–23. DOI: 10.1364/OE.20.011918. - 135.
Jiang K, Ouyang C, Wu K, Wong JH. High-energy dissipative soliton with MHz repetition rate from an all-fiber passively mode-locked laser. Optics Commun 2012;285(9):2422–5. DOI: 10.1016/j.optcom.2012.01.033. - 136.
Poloyko IG, Kalashnikov VL. Semiconductor saturable absorber mirrors as mode-locking device for femtosecond lasers: nonlinear Fabri-Perot resonator approach. Optics Commun 1999;168:167–75. - 137.
Sun Z, Hasan T, Ferrari AC. Ultrafast lasers mode-locked by nanotubes and graphene. Physica E 2012;44:1082–91. DOI: 10.1016/j.physe.2012.01.012. - 138.
Zhang H, Tang D, Knize RJ, Zhao L, Bao Q, Loh KP. Graphene mode locked, wavelength tunable, dissipative soliton fiber laser. Appl Phys Lett 2010;96:111112. - 139.
Zhao LM, Tang DY, Zhang H, Wu X, Bao Q, Loh KP. Dissipative soliton operation of an Ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Optics Lett 2010;35(21):3622–4. - 140.
Cui YD, Liu XM, Zeng C. Conventional and dissipative solitons in a CFBG-based fiber laser mode-locked with a graphene-nanotube mixture. Laser Phys Lett 2014;11:055106. - 141.
Cheng Zh, Li H, Shi H, Ren J, Yang Q-H, Wang P. Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser. Optics Express 2015;23(6):7000–6. DOI: 10.1364/OE.23.007000. - 142.
Liu X, Cui Y, Han D, Yao X, Sun Zh. Distributed ultrafast laser. Sci Rep2014;5:9101. DOI: 10.1038/srep9101. - 143.
Im JH, Choi SY, Rotermund F, Yeom D-I. All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber. Optics Express 2010;18(21):22141–6. - 144.
Du J, Wang Q, Jiang G, Xu Ch, Zhao Ch, Xiang Y, Chen Y, Wen Sh, Zhang H. Ytterbium-doped fiber passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with enhanced field interaction. Sci Rep 2014;4:6346. DOI: 10.1038/srep06346. - 145.
Paschotta R, Keller U. Passive mode locking with slow saturable absorbers. Appl Phys B 2001;73:653–62. DOI: 10.1007/s003400100726. - 146.
Haus HA, Silberberg Y. Theory of mode locking of a laser diode with a multiple-quantum-well structure. J Opt Soc Am B 1985;2(7):1237–43. - 147.
Kaertner F. Lecture Notes: Introduction to Ultrafast Optics. Chapter 7 [Internet]. 2005. Available from: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-977-ultrafast-optics-spring-2005/lecture-notes/chapter7.pdf. - 148.
Lam C-K, Malomed BA, Chow KW, Wai PKA. Spatial solitons supported by localized gain in nonlinear optical waveguides. Eur Phys J Special Topics 2009;173:233–43. DOI: 10.1140/epjst/e2009-01076-8. - 149.
Sakaguchi H, Malomed BA. Stable two-dimensional solitons supported by radially inhomogeneous self-focusing nonlinearity. Optics Lett 2012;37(6):1035–7. DOI: 10.1364/OL.37.001035. - 150.
Borovkova OV, Kartashov YV, Vysloukh VA, Lobanov VE, Malomed BA, Torner L. Solitons supported by spatially inhomogeneous nonlinear losses. Optics Express 2012;20(3):2657–67. DOI: 10.1364/OE.20.002657. - 151.
Kartashov YV, Konotop VV, Vysloukh VA. Two-dimensional dissipative solitons supported by localized gain. Optics Lett 2011;36(1):82–4. DOI: 10.1364/OL.36.000082. - 152.
Kalosha VP, Chen L, Bao X. Feasibility of Kerr-lens mode locking in fiber lasers. In: Vallée R, Piché M, Mascher P, Cheben P, Côté D, LaRochelle S, Schriemer HP, Albert J, Ozaki T. (Eds.) Proc SPIE 7099, Photonics North 2008; 2–4 June 2008; Montréal, Canada. Bellingham: SPIE; 2008. p. 70990S. DOI: 10.1117/12.807415. - 153.
Kalashnikov V, Apolonski A. Simulation of a Kerr fiber laser. In: Proc. Meeting on Russian Fiber Lasers; 27–30 March; Novosibirsk, Russia. 2012. pp. 113–114. - 154.
Shaw JK. Mathematical Principles of Optical Fiber communications. Philadelphia: SIAM; 2004. p. 93. - 155.
Kaup DJ. Exact quantization of the nonlinear Schroedinger equation. J Math Phys 1975;16:2036–41. - 156.
Thacker HB, Wilkinson D. Inverse scattering transform as an operator method in quantum field theory. Phys Rev D 1979;19:3660–5. - 157.
Akhmediev NN, Ankiewicz A. Solitons around us: integrable, Hamiltonian and dissipative systems. In: Porsezian K, Kuriakose VC. (Eds.) Optical Solitons: Theoretical and Experimental Challanges. Berlin: Springer-Verlag; 2002. pp. 105–126. - 158.
Kuszelewicz R, Barbay S, Tissoni G, Almuneau G. Editorial on dissipative optical solitons. Eur Phys JD 2010;59:1–2. DOI: 10.1140/epjd/e2010-00167-7. - 159.
Martinez OE, Fork RL, Gordon JP. Theory of passively mode-locked lasers for the case of a nonlinear complex-propagation coefficient. J Opt Soc Am B 1985;2(5):753–60. DOI: 10.1364/JOSAB.2.000753. - 160.
Haus HA, Fujimoto JG, Ippen EP. Structures for additive pulse mode locking. J Opt Soc Am B 1991;8(10):2068–76. - 161.
Kalashnikov VL, Sorokin E, Sorokina IT. Multipulse operation and limits of the Kerr-lens mode locking stability. IEEE J Quantum Electron 2003;39(2):323–36. - 162.
Proctor B, Westwig E, Wise F. Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion. Optics Lett 1993;18(19):1654–6. DOI: 10.1364/OL.18.001654. - 163.
Chen S, Liu Y, Mysyrowicz A. Unusual stability of one-parameter family of dissipative solitons due to spectral filtering and nonlinearity saturation. Phys Rev A 2010;81:061806(R). - 164.
Kalashnikov VL. Chirped-pulse oscillators: route to the energy-scalable femtosecond pulses. In: Al-Khursan AH. (Ed.) Solid State Laser. InTech; 2012. pp. 145–184. DOI: 10.5772/37415. - 165.
Kalashnikov VL, Apolonski A. Chirped-pulse oscillators: a unified standpoint. Phys Rev A 2009;79:043829. - 166.
Akhmediev N, Soto-Crespo JM, Grelu Ph. Roadmap to ultra-short record high-energy pulses out of laser oscillators. Phys Lett A 2008;372:3124–8. DOI: 10.1016/j.physleta.2008.01.027. - 167.
Kalashnikov VL. Chirped dissipative solitons. In: Babichev LF, Kuvshinov VI. (Eds.) Nonlinear Dynamics and Applications. Minsk: 2010. pp. 58–67. - 168.
Brons J, Pervak V, Fedulova E, Bauer D, Sutter D, Kalashnikov V, Apolonskiy A, Pronin O, Krausz F. Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Lett 2014;39(22):6442–5. DOI: 10.1364/OL.39.006442. - 169.
Hu M-L, Wang Ch-L, Tian Zh, Xing Q-R, Chai L, Wang Ch-Y. Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime. IEEE Photon Technol Lett 2008;20(13):1088–90. DOI: 10.1109/LPT.2008.924300. - 170.
Ramachandran S, Fini JM, Mermelstein M, Nicholson JW, Ghalmi S, Yan MF. Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers. Laser Photon Rev 2008;2:429–48. DOI: 10.1002/lpor.200810016. - 171.
Vukovic N, Healy N, Peacock AC. Guiding properties of large mode area silicon microstructured fibers: a route to effective single mode operation. J Opt Soc Am B 2011;28(6):1529–33. DOI: 10.1364/JOSAB.28.001529. - 172.
Jansen F, Stutzki F, Otto H-J, Eidam T, Liem A, Jauregui C, Limpert J, Tünnermann A. Thermally induced waveguide changes in active fibers. Optics Express 2012;20(4):3997–4008. DOI: 10.1364/OE.20.003997. - 173.
Kalashnikov VL, Sorokin E. Dissipative Raman soliton. Optics Express 2014;22(24):30118–26. DOI: 10.1364/OE.22.030118. - 174.
Chernykh AI, Turitsyn SK. Soliton and collapse regimes of pulse generation in passively mode-locking laser systems. Optics Lett 1995;20(4):398–400. DOI: 10.1364/OL.20.000398. - 175.
Chang W, Ankiewicz A, Soto-Crespo JM, Akhmediev N. Disssipative soliton resonances. Phys Rev A 2008;78:023830. DOI: 10.1103/PhysRevA.78.023830. - 176.
Chang W, Ankiewicz A, Soto-Crespo JM, Akhmediev N. Dissipative soliton resonances in laser models with parameter management. J Opt Soc Am B 2008;25(12):1972–7. - 177.
Kalashnikov VL, Apolonski A. Energy scalability of mode-locked oscillators: a completely analytical approach to analysis. Optics Express 2010;18(25):25757–70. - 178.
Grelu Ph, Chang W, Ankiewicz A, Soto-Crespo JM, Akhmediev N. Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators. J Opt Soc Am B 2010;27(11):2336–41. - 179.
Ding E, Grelu Ph, Kutz JN. Dissipative soliton resonance in a passively mode-locked fiber laser. Optics Lett 2011;36(7):1146–8. - 180.
Kharenko DS, Shtyrina OV, Yarutkina IA, Podivilov EP, Fedoruk MP, Babin SA. Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser. Laser Phys Lett 2012;9(9):662–8. DOI: 10.7452/Japl.201210060. - 181.
Cheng Zh, Li H, Wang P. Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers. Optics Express 2015;23(5):5972–81. DOI: 10.1364/OE.23.005972. - 182.
Chang W, Soto-Crespo JM, Ankiewicz A, Akhmediev N. Dissipative soliton resonances in the anomalous dispersion regime. Phys Rev A 2009;79:033840. DOI: 10.1103/PhysRevA.79.033840. - 183.
Zh-Ch, Ning Q-Y, Mo H-L, Cui H, Liu J, Wu L-J, Luo A-P, Xu W-Ch. Vector dissipative soliton resonance in a fiber laser. Optics Express 2013;21(8):109910204. DOI: 10.1364/OE.21.010199. - 184.
Smirnov SV, Kobtsev SM, Kukarin SV, Turitsyn SK. Mode-locked fibre lasers with high-energy pulses. In: Jakubczak K. (Ed.) Laser Systems for Applications. InTech; 2011. pp. 39–58. - 185.
Wise FW, Chong A, Renninger WH. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photon Rev 2008;2(1–2):58–73. DOI: 10.1002/lpor.200710041. - 186.
Renninger WH, Chong A, Wise FW. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers. IEEE J Sel Top Quantum Electron 2012;18(1):389–98. DOI: 10.1109/JSTQE.2011.2157462. - 187.
Nelson LE, Fleischer SB, Lenz G, Ippen EP. Efficient frequency doubling of a femtosecond fiber laser. Optics Lett 1996;21(21):1759–61. DOI: 10.1364/OL.21.001759. - 188.
Oktem B, Ülgüdür C, Ilday FÖ. Soliton–similariton fibre laser. Nat Photon 2010;4:307–11. DOI: 10.1038/nphoton.2010.33. - 189.
Renninger WH, Chong A, Wise FW. Dissipative solitons in normal-dispersion fiber lasers. Phys Rev A 2008;77:023814. DOI: 10.1103/PhysRevA.77.023814. - 190.
Chong A, Renninger WH, Wise FW. Properties of normal-dispersion femtosecond fiber lasers. J Opt Soc Am B 2008;25(2):140–8. - 191.
Schultz M, Karow H, Prochnow O, Wandt D, Morgner U, Kracht D. Optics Express 2008;16(24):19562–7. DOI: 10.1364/OE.16.019562. - 192.
Im JH, Choi SY, Rotermund F, Yeom D-I. All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber. Optics Express 2010;18(21):22141–6. DOI: 10.1364/OE.18.022141. - 193.
Kieu K, Wise FW. All-fiber normal-dispersion femtosecond laser. Optics Express 2008;16(15):11453–8. DOI: 10.1364/OE.16.011453. - 194.
Yang H, Wang A, Zhang Zh. Efficient femtosecond pulse generation in an all-normal-dispersion Yb:fiber ring laser at 605 MHz repetition rate. Optics Lett 2012;37(5):954–6. DOI: 10.1364/OL.37.000954. - 195.
Chichkov NB, Hausmann K, Wandt D, Morgner U, Neumann J, Kracht D. 50 fs pulses from an all-normal dispersion erbium fiber oscillator. Optics Lett 2010;35(18):3081–3. DOI: 10.1364/OL.35.003081. - 196.
Ruehl A, Kuhn V, Wandt D, Kracht D. Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ. Optics Express 2008;16(5):3130–5. DOI: 10.1364/OE.16.003130. - 197.
Lhermite J, Machinet G, Lecaplain C, Boullet J, Traynor N, Hideur A, Cormier E. High-energy femtosecond fiber laser at 976 nm. Optics Express 2010;35(20):3459–61. DOI: 10.1364/OL.35.003459. - 198.
Buckley J, Chong A, Zhou Sh, Renninger W, Wise FW. Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter. J Opt Soc Am B 2007;24(8):1803–6. DOI: 10.1364/JOSAB.24.001803. - 199.
Buckley JR, Wise FW, Ilday FÖ, Sosnowski T. Femtosecond fiber lasers with pulse energies above 10 nJ. Optics Lett 2005;30(14):1888–90. DOI: 10.1364/OL.30.001888. - 200.
Renninger WH, Chong A, Wise FW. Giant-chirp oscillators for short-pulse fiber amplifiers. Optics Lett 2008;33(24):3025–7. DOI: 10.1364/OL.33.003025. - 201.
Chong A, Renninger WH, Wise FW. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. Optics Lett 2007;32(16):2408–10. DOI: 10.1364/OL.32.002408. - 202.
Ortaç B, Lecaplain C, Hideur A, Schreiber T, Limpert J, Tünnermann A. Passively mode-locked single-polarization microstructure fiber laser. Optics Express 2008;16(3):2122–8. DOI: 10.1364/OE.16.002122. - 203.
Lefrancois S, Sosnowski ThS, Liu Ch-H, Galvanauskas A, Wise FW. Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber. Optics Express 2011;19(4):3464–70. DOI: 10.1364/OE.19.003464. - 204.
Lecaplain C, Ortaç B, Hideur A. High-energy femtosecond pulses from a dissipative soliton fiber laser. Optics Lett 2009;34(23):3731–3. DOI: 10.1364/OL.34.003731. - 205.
Lecaplain C, Chédot C, Hideur A, Ortaç B, Limpert J. High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser. Optics Lett 2007;32(18):2738–40. DOI: 10.1364/OL.32.002738. - 206.
Ortaç B, Schmidt O, Schreiber T, Limpert J, Tünnermann A, Hideur A. High-energy femtosecond Yb-doped dispersion compensation free fiber laser. Optics Express 2007;15(17):10725–32. DOI: 10.1364/OE.15.010725. - 207.
Lhermite J, Lecaplain C, Machinet G, Royon R, Hideur A, Cormier E. Mode-locked 0.5 μJ fiber laser at 976 nm. Optics Lett 2011;36(19):3819–21. DOI: 10.1364/OL.36.003819. - 208.
Lecaplain C, Ortaç B, Machinet G, Boullet J, Baumgartl M, Schreiber T, Cormier E, Hideur A. High-energy femtosecond photonic crystal fiber laser. Optics Lett 2010;35(19):3156–8. DOI: 10.1364/OL.35.003156. - 209.
Ortaç B, Baumgartl M, Limpert J, Tünnermann A. Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers. Optics Lett 2009;34(10):1585–7. DOI: 10.1364/OL.34.001585. - 210.
Ankiewicz A, Devine N, Akhmediev N, Soto-Crespo JM. Dissipative solitons and antisolitons. Phys Lett A 2007;370:454–8. DOI: 10.1016/j.physleta.2007.06.001. - 211.
van Saarlos W, Hohenberg PC. Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations. Physica D 1992;56:303–67. - 212.
Soto-Crespo JM, Akhmediev NN, Afanasjev VV, Wabnitz S. Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion. Phys Rev E 55;4:4783–96. - 213.
Conte R. (Ed.) The Painlevé Property: One Century Later. New York: Springer-Verlag; 1999. 810 p. - 214.
Greco AM. (Ed.) Direct and Inverse Methods in Nonlinear Evolution Equations. Berlin: Springer; 2003. 282 p. - 215.
Kivshar YS, Malomed BA. Dynamics of solitons in nearly integrable systems. Rev Mod Phys 1989;61(4):763. DOI: http://dx.doi.org/10.1103/RevModPhys.61.763. - 216.
Malomed BA, Nepomnyashchy AA. Kinks and solitons in the generalized Ginzburg-Landau equation. Phys Rev A 1990;42:6009. - 217.
Kalashnikov VL. Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation. Phys Rev E 2009;80:046606. - 218.
Podivilov E, Kalashnikov VL. Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation. JETP Lett 2005;82(8):467–71. - 219.
Kalashnikov VL, Podivilov E, Chernykh A, Apolonski A. Chirped-pulse oscillators: theory and experiment. Appl Phys B 2006;83(4):503–10. - 220.
Ablowitz MJ, Horikis ThP. Solitons in normally dispersive mode-locked lasers. Phys Rev A 2009;79:063845. - 221.
Kharenko DS, Shtyrina OV, Yarutkina IA, Podivilov EV, Fedoruk MP, Babin SA. Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation. J Opt Soc Am B 2011;28(10):2314–9. - 222.
Malomed BA. Variational methods in nonlinear fiber optics and related fields. In: Wolf E. (Ed.) Progress in Optics, Vol. 43. North-Holland: Elsevier; 2002. pp. 71–193. - 223.
Ankiewicz A, Akhmediev N, Devine N. Dissipative solitons with a Lagrangian approach. Optical Fiber Technol 2007;13(2):91–7. - 224.
Bale BG, Boscolo S, Kutz JN, Turitsyn SK. Intracavity dynamics in high-power mode-locked fiber lasers. Phys Rev A 2010;81:033828. - 225.
Bale BG, Kutz JN. Variational method for mode-locked lasers. J Opt Soc Am B 2008;25(7):1193–202. DOI: 10.1364/JOSAB.25.001193. - 226.
Tsoy EN, Ankiewicz A, Akhmediev N. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Phys Rev E 2006;73:036621. - 227.
Bale BG, Kutz JN, Chong A, Renninger WH, Wise FW. Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers. J Opt Soc Am B 2008;25(10):1763–70. DOI: 10.1364/JOSAB.25.001763. - 228.
Bale BG, Boscolo S, Turitsyn SK. Dissipative dispersion-managed solitons in mode-locked lasers. Optics Lett 2009;34(21):3286–8. DOI: 10.1364/OL.34.003286. - 229.
Ding E, Kutz JN. Stability analysis of the mode-locking dynamics in a laser cavity with a passive polarizer. J Opt Soc Am B 2009;26(7):1400–11. DOI: 10.1364/JOSAB.26.001400. - 230.
Kalashnikov VL. Dissipative soliton energy scaling. Phys. Rev. A. Forthcoming. - 231.
Liu X. Pulse evolution without wave breaking in a strongly dissipative dispersive laser system. Phys Rev A 2010;81(5):053819. - 232.
Shen X, Li W, Zeng H. Polarized dissipative solitons in all-polarization-maintained fiber laser with long-term stable self-started mode-locking. Appl Phys Lett 2014;105:101109. - 233.
Chen Sh, Liu Y, Mysyrowicz A. Unusual stability of one-parameter family of dissipative solitons due to spectral filtering and nonlinearity saturation. Phys Rev Lett 1997;79:4047. - 234.
Farnum ED, Kutz JN. Multifrequency mode-locked lasers. J Opt Soc Am B 2008;25(6):1002–10. - 235.
Zhang H, Tang DY, Wu X, Zhao LM. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser. Optics Express 2009;17(15):12692–7. - 236.
Yun L, Liu X, Mao D. Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser. Optics Express 2012;20(19):20992–7. - 237.
Zhang ZX, Xu Z, Zhang L. Tunable and switching dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter. Optics Express 2012;20(24):26736–42. - 238.
Xu ZW, Zhang ZX. All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser. Laser Phys Lett 2013;10:085105. - 239.
Huang S, Wang Y, Yan P, Zhao J, Li H, Lin R. Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser. Optics Express 2014;22(10):11417–26. - 240.
Mao D, Liu X, Han D, Lu H. Compact all-fiber laser delivering conventional and dissipative solitons. Optics Lett 2013;38(16):3190–3. - 241.
Kalashnikov VL, Chernykh A. Spectral anomalies and stability of chirped-pulse oscillators. Phys Rev A 2007;75:033820. - 242.
Kalashnikov VL. Dissipative solitons: perturbations and chaos formation. In: Skiadas CH, Dimotikalis I, Skiadas C. (Eds.) Chaos Theory: Modeling, Simulation and Applications. Singapore: Worlds Scientific Publishing; 2011. pp. 199–206. - 243.
Kalashnikov VL. Dissipative solitons in presence of quantum noise. Chaotic Model Simulat 2014;(1):29–37. - 244.
Soto-Crespo JM, Akhmediev N, Ankiewicz A. Pulsating, creeping, and erupting solitons in dissipative systems. Phys Rev Lett 2000;85(14):2937–40. - 245.
Soto-Crespo JM, Akhmediev N. Exploding soliton and front solutions of the complex cubic–quintic Ginzburg–Landau equation. Math Computers Simulat 2005;69(5–6):526–36. DOI: 10.1016/j.matcom.2005.03.006. - 246.
Cundiff ST, Soto-Crespo JM, Akhmediev N. Experimental evidence for soliton explosions. Phys Rev Lett 2002;88(7):073903. - 247.
Crtes C, Descalzi O, Brand HR. Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensions. Eur Phys J Special Topics 2014;223:2145–59. DOI: 10.1140/epjst/e2014-02255-2. - 248.
Crtes C, Descalzi O, Brand HR. Noise can induce explosions for dissipative solitons. Phys Rev E 2012;85(015205(R)). DOI: 10.1103/PhysRevE.85.015205. - 249.
Arecchi FT, Bortolozzo U, Montina A, Residori S. Granularity and inhomogenety are the joint generators of optical rogue waves. Phys Rev Lett 2011;106:153901. - 250.
Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi FT. Rogue waves and their generating mechanisms in different physical contexts. Phys Rep 2013;528:47–89. - 251.
Solli DR, Ropers C, Koonath P, Jalali B. Optical rogue waves. Nature 2007;450:1054–7. - 252.
Soto-Crespo JM, Grelu Ph, Akhmediev N. Dissipative rogue waves: Extreme pulses generated by passively mode-locked lasers. Phys Rev E 2011;84(1):016604. - 253.
Zavyalov A, Egorov O, Iliew R, Lederer F. Rogue waves in mode-locked fiber lasers. Phys Rev A 2012;85:013828. - 254.
Komarov A, Sanchez F. Structural dissipative solitons in passive mode-locked fiber lasers. Phys Rev E 2008;77:066201. - 255.
Zakharov V, Dias F, Pushkarev A. One-dimensional wave turbulence. Phys Rep 2004;398:1–65. - 256.
Yun L, Han D. Bound state of dissipative solitons in a nanotube-mode-locked fiber laser. Optics Commun 2014;313:70–3. - 257.
Amrani F, Haboucha A, Salhi M, Leblond H, Komarov A, Sanchez F. Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter. Appl Phys B 2010;99:107–14. DOI: 10.1007/s00340-009-3774-7. - 258.
Kalashnikov VL. Dissipative solitons: structural chaos and chaos of destruction. Chaotic Model Simulat 2011;(1):51–9. - 259.
Zhang L, Pan Zh, Zhuo Zh, Wang Y. Three multiple-pulse operation states of an all-normal-dispersion dissipative soliton fiber laser. Int J Optics 2014;(169379). DOI: 10.1155/2014/169379. - 260.
Kalashnikov VL, Sorokin E. Dissipative Raman solitons. Optics Express 2014;22(24):30118–126. DOI: 10.1364/OE.22.030118. - 261.
Kalashnikov VL. Chaotic dissipative Raman solitons. Chaotic Model Simulat 2014;(4):403–10. - 262.
Babin SA, Podivilov EV, Kharenko DS, Bednyakova AE, Fedoruk MP, Kalashnikov VL, Apolonski A. Multicolour nonlinearly bound chirped dissipative solitons. Nature Commun 2014;5:4653. DOI: 10.1038/ncomms5653. - 263.
Bednyakova AE, Babin SA, Kharenko DS, Podivilov EV, Fedoruk MP, Kalashnikov VL, Apolonski A. Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering. Optics Express 2013;21(18):29556–64. DOI: 10.1364/OE.21.02056. - 264.
Kharenko DS, Bednyakova AE, Podivilov EV, Fedoruk MP, Apolonski A, Babin SA. Feedback-controlled Raman dissipative solitons in a fiber laser. Optics Express 2015;23(2):1857–62. DOI: 10.1364/OE.23.001857. - 265.
Haus JW, Shaulov G, Kuzin EA, Sanchez-Mondragon J. Vector soliton fiber lasers. Optics Lett 1999;24(6):376–8. - 266.
Barad Y, Silberberg Y. Polarization evolution and polarization instability of solitons in a birefringent optical fiber. Phys Rev Lett 1997;78(17):3290–3. - 267.
Lei T, Tu Ch, Lu F, Deng Y, Li E. Numerical study on self-similar pulses in mode-locking fiber laser by coupled Ginzburg-Landau equation model. Optics Express 2009;17(2):585–91. - 268.
Cundiff ST, Collings BC, Akhmediev NN, Soto-Crespo JM, Bergman K, Knox WH. Observation of polarization-locked vector solitons in an optical fiber. Phys Rev Lett 1999;82(20):3988–91. - 269.
Akhmediev N, Buryak A, Soto-Crespo JM. Elliptically polarised solitons in birefringent optical fibers. Optics Commun 1994;112(5–6):278–82. DOI: 10.1016/0030-4018(94)90631-9. - 270.
Wu J, Tang DY, Zhao LM, Chan CC. Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique. Phys Rev E 2006;74:046605. DOI: 10.1103/PhysRevE.74.046605. - 271.
Zhang H, Tang DY, Zhao LM, Wu X, Tam HY. Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion. Optics Express 2009;17(2):455–60. - 272.
Kong L, Xiao X, Yang Ch. Polarization dynamics in dissipative soliton fiber lasers mode-locked by nonlinear polarization rotation. Optics Express 2011;19(19):18339–44. - 273.
Mesentsev VK, Turitsyn SK. Stability of vector solitons in optical fibers. Optics Lett 1992;17(21):1497–9. - 274.
Zhang H, Tang D, Zhao L, Bao Q, Loh KP. Vector dissipative solitons in graphene mode locked fiber lasers. Optics Commun 2010;283:3334–8. DOI: 10.1016/j.optcom.2010.04.064. - 275.
Luo Zh-Ch, Ning Q-Y, Mo H-L, Cui H, Liu L, Wu L-J, Luo A-P, Xu W-Ch. Vector dissipative soliton resonance in a fiber laser. Optics Express 2013;21(8):10199–204. DOI: 10.1364/OE.21.010199. - 276.
Tsatourian V, Sergeyev SV, Mou Ch, Rozhin A, Mikhailov V, Rabin B, Westbrook PS, Turitsyn SK. Polarization dynamics of vector soliton molecules in mode locked fibre laser. Sci Rep 2013;3:3154. DOI: 10.1038/srep03154. - 277.
Sergeyev SV. Fast and slowly evolving vector solitons in mode-locked fibre lasers. Philos Transac Royal Soc A 2014;372:20140006. DOI: 10.1098/rsta.2014.0006. - 278.
Sergeyev SV, Mou Ch, Turitsyna EG, Rozhin A, Turitsyn SK, Blow K. Spiral attractor created by vector solitons. Light Sci Applic 2014;3:e131. DOI: 10.1038/lsa.2014.12. - 279.
Lin Q, Agrawal GP. Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers. J Opt Soc Am B 2003;20(8):1616–31.
Notes
- The width of a gain band is not a decisive factor per se because both pulse width and its spectrum are affected by various factors including higher-order dispersions, non-linearity, etc. [53,54].
- However, namely LMA and photonic-crystal fibres could realize a Kerr-lens mode-locking in a fibre laser [152,153].
- Energy-non-scalable branch has two distinguishing characteristics: it turns into solution of Eq. (9) with ζ, χ→0 (‘Schrödinger limit’ [218]) and is unstable in absence of dynamic gain saturation, i.e. if σ is not energy-dependent [221].
- A multi-porting configuration of a DS laser supports even simultaneous generation of conventional and dissipative wavelength-separated solitons [240].