The major targets of gene therapy of cancer
\r\n\tGlobalization does not represent a pure and generous process for humanity or other species, but rather it implies social exclusion and also provokes situations of vulnerability in groups of people, forced exclusion, and apartheid: poor job opportunities, lack of access to education, worse socio-sanitary conditions. Specifically, it can be said that social segregation entails the apartheid of social groups of different ages, genders, and ethnicities; these groups live a reality manifested through the deepening of poverty, in terms of increased vulnerability of the poor and groups with little economic, social, cultural, labor and health stability.
\r\n\r\n\tThis book aims to talk about some topics that are neglected in the discourses of academic communities and political elites. The inequality process is deeply rooted among humans and is part of many people's lives in the form of modern apartheid, gender segregation, lack of health access, and cultural gap. All those structural inequality processes are the product of the biopower perpetuated and produced in the macrosystem, exosystem, mesosystem, and microsystem. For many people from the academy, the information-consuming public, and the society in general, it is a problem to talk about these processes, since they have either lost interest or have normalized the structural and social inequity. For this reason, we see it as transcendental to explain how this situation occurs from the most internal fibers to the most evident processes, intending to make it more visible and thus expose the situation for possible solutions.
",isbn:"978-1-83768-406-9",printIsbn:"978-1-83768-405-2",pdfIsbn:"978-1-83768-407-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"cefab077e403fd1695fb2946e7914942",bookSignature:"Ph.D. Yaroslava Robles-Bykbaev",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",keywords:"Wage Gap, Gender Segregation, Fundamental Human Rights, Health Access, Social Inequity Processes, Modern Apartheid, Resilience, Cultural Gaps, Globalization, Geopolitics of Social Inequality, Public Policies, Social Vulnerability",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 15th 2022",dateEndSecondStepPublish:"July 13th 2022",dateEndThirdStepPublish:"September 11th 2022",dateEndFourthStepPublish:"November 30th 2022",dateEndFifthStepPublish:"January 29th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Bykbaev is a member of the UNESCO Chair of Politecnica Salesiana University. She has contributed as co-author and author to approximately thirty scientific publications in the field of statistics, inclusive education, and social and cultural anthropology. These publications focus on the visibility of problems in the field of public health and focus on the creation of proposals to improve community health. Dr. Bykbaev is an active member of the NODO Ecuadorian Network of Women Scientists (REMCI).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",middleName:null,surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev",profilePictureURL:"https://mts.intechopen.com/storage/users/313341/images/system/313341.jpg",biography:null,institutionString:"Politecnica Salesiana University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Politecnica Salesiana University",institutionURL:null,country:{name:"Ecuador"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444316",firstName:"Blanka",lastName:"Gugic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444316/images/20016_n.jpg",email:"blanka@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6926",title:"Biological Anthropology",subtitle:"Applications and Case Studies",isOpenForSubmission:!1,hash:"5bbb192dffd37a257febf4acfde73bb8",slug:"biological-anthropology-applications-and-case-studies",bookSignature:"Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:"Edited by",editors:[{id:"313084",title:"Dr.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49480",title:"Cancer Gene Therapy",doi:"10.5772/61775",slug:"cancer-gene-therapy",body:'The improvements in the past 20 years in the molecular biology have evoked optimism in the treatment of cancer and yielded a number of targeted drugs in the market. However, the curative treatment of the cancer has still been possible with only the early diagnosis and early intervention in the vast majority of the solid tumors. Almost half of the cancer patients diagnosed each year have been dying of the disease throughout the world. In particular, the patients with distant metastasis have no hope of cure with the current treatment modalities.
It has long been suggested that the cancer has evolved from a single cell transformed by the influence of the environmental factors such as physical, chemical factors, and viruses. Changes in hundreds of genes, so-called mutations, are required to transform a normal cell into a cancer cell. The major functional changes that transform a cell are mainly the activation of oncogenes or inactivation of tumor suppressor genes.
The overexpression of oncogenes and loss of function of tumor suppressor genes usually induce malignant transformation. Those changes are also required for further growth of tumor cells.
A transformed cell usually gains some important biological properties to establish a malignant disease. Those properties, including uncontrolled proliferation, evasion of growth suppressors, inhibition of apoptosis, replicative immortality, angiogenesis, proliferative signals, invasion, and metastasis, are discussed in detail in a recent review of Hanahan and Weinberg [1]. Although the conventional chemotherapy has mainly focused on direct tumor cell killing, a vast majority of current targeted therapies have aimed to eliminate one or more of the above-mentioned properties of cancer cells.
The targeting of angiogenesis, proliferation pathways, and immune system has yielded a number of drugs that are already in the market. Nodules of cancer cells cannot grow beyond 1–2 mm without expanding their blood supply to access every increasing need for oxygen and nutrients. In order to generate the additional blood supply, the tumor tissue stimulates the elaboration of its own vessel network, through a process called angiogenesis [2]. If one could cut the blood supply of the tumor, it cannot grow beyond 1–2 mm, which means that they cannot grow enough to be diagnosed by the current diagnostic technology and cannot cause a clinical disease. The tumor vascular targeting therapy or antiangiogenetic therapies like bevacizumab and aflibercept targeting ligands of angiogenesis or small tyrosine kinase inhibitors of angiogenesis pathway receptors or signaling molecules have already emerged as standard therapeutic drugs in various tumors [3].
The overexpression of oncogenes and the loss of function of tumor suppressor genes are usually involved in both malignant conversion of the cells and further growth of tumor cells. A new generation of small molecules targeting proliferation pathways, like gefitinib, erlotinib, and imatinib, has been developed to block the cancer-causing signals within cancer cells and become standard treatments in those patients with mutations of EGFR or c-KIT [4]. Antibody molecules, targeting the EGFR family of receptors like trastuzumab, cetuximab, and panitumumab also block the growth-promoting signals that push cancer cells into an unregulated pattern of growth [5]. In contrast to standard chemotherapy, which is quite damaging to the normal tissues of the body as well as the cancer tissue, the targeted drugs are quite specific for the cancer cells and therefore relatively free of side effects.
Although majority of the cancer patients has a fairly intact immune system, the cells of the immune system do not usually respond to tumor cells because the immune system cannot differentiate the normal and cancer cells and therefore cannot fight against them. Immunotherapy or cancer vaccine therapy aims to activate immune system against tumors. Recently, ipilumumab/tremelimumab and pembrolizumab/nivolumumab targeting checkpoints of immune response such as CTLA-4 or PD1 have also been approved [6]. Likewise, a dendritic cell-based vaccine, sipuleucel T, for the treatment of metastatic prostate cancer has been approved 2 years ago [7].
Hundreds of genes have been involved in the action and regulation of those pathways. The generation of cancer through a series of changes in the normal cellular genes makes the disease a genetic disease at the cellular base. The involvement of genes in the development of the disease also makes the disease a good candidate for gene therapy. Therefore, gene therapy has emerged as the hope of curative treatment modality in cancer.
Gene therapy can be defined as the delivery of genetic elements to the cancer cell or to the cells of the immune response in order to correct the abnormalities in the cancer tissue or to induce an immune response against the cancer cells. The corrective strategies can involve replacing missing or defective genes, i.e., tumor suppressor genes [8], suppressing the action of cancer promoting oncogenes [9], or programming normal or cancer cells to release into the systemic circulation molecules which suppress the growth of cancer cells or their vasculature [10].
There are some prerequisites for a successful gene therapy program in cancer, such as a suitable target to be replaced or modified, a carrier to reach the interest of gene to the cell, a successful targeting of the vector, and a sufficient expression of the therapeutic genes in the target cells. Besides a strong therapeutic efficacy, safety is also mandatory for the success of the treatment.
Unraveling the mystery of the genetic changes in the development of cancer has been proposed many genes as targets for gene therapy studies. The second step in gene therapy following the identification of a suitable gene is to introduce it into the target cell. Different vehicles (vectors) have been used to introduce the genes into the cells, such as viral vectors, nonviral vectors, and cell-based carriers. The mainly used viral vectors in cancer gene therapy are retroviruses, adenoviruses, and adeno-associated viruses. The gene therapist uses the capability of the virus to enter and reprogram the action of cells for purposes of therapy. The therapeutic genetic element is first placed into a viral backbone to produce a complete therapeutic viral vector. Alternatively, the therapeutic genetic elements can be delivered into the cancer cells through droplets of fat called liposomes or nanoparticles. The genes themselves, in the form of naked DNA or DNA packed into particles can be administered locally or systemically.
A third way of delivering genes to the target tissues is accomplished by using living cells such as irradiated tumor cells, blood cells, and mesenchymal or neuronal stem cells. All of these cells have the capability to home to particular types of target tissue through the blood stream. In this way, the therapeutic genes can be placed into the brain or other target tissues because of the homing properties of those cells.
For the safety of the procedure and the increased therapeutic efficacy, the genes of interest should be expressed in only target cells or tissues. Sparing of the normal cells and tissues is one of the keystones in their clinical use. The target specificity of the vectors could be achieved by the targeting of those specific to the tumor cells or tissues.
There are three main ways of transferring genes into the tumor cells: nonviral vectors, viral vectors, and cell-based vehicles. For most of the tumors, a relatively short-term expression of therapeutic genes may be sufficient to kill the tumor cells. Rapid clearance of viral vectors from the blood stream has enabled the development of synthetic gene delivery vectors. However, an important drawback for these approaches is to carry the DNA of interest to the distant metastatic deposits. The nonviral gene delivery vectors have usually been injected locally to the tumors. Although local injection is reasonable for tumors as melanoma, head and neck cancers, or peritoneal carcinomatosis; it is not suitable in patients with hematogenous metastases. The limitations of the viral vectors are also valid for the nonviral vectors for gene therapy. They have to survive through the blood stream to be arrested in the target tumor tissue, to extravasate, and to bind to specific cells and to enter the cells and then to reach the nucleus.
Lipid-based formulations of gene delivery have been predominantly limited to the intratumoral or local applications. The systemic administration carries the potential risk of adverse inflammatory and immune reactions. The development of systemic lipid delivery systems with the modifications to reduce the systemic toxicity could have the potential for clinical use in cancer gene therapy. In an animal model of breast cancer, folate-targeted lipid–protamine DNA complexes (LPD-PEG-folate) have been shown to reduce the tumor volume and increase the survival when administered systemically [14].
Viruses have the natural ability to deliver the nucleic acids within its own genome to specific cell types, including cancer cells. This ability makes those attractive and popular gene-delivery vehicles. Retroviruses, adenoviruses, adeno-associated viruses, herpes simplex virus, poxviruses, and baculoviruses are commonly modified and used as gene therapy vectors in cancer. Additionally, chimeric viral-vector systems combining the properties of two or more virus type are also developed.
The systemic administration of the gene therapy vectors usually failed because of low titer achieved in the target tissue and insufficient transgene expression. The clearance of the vector by the immune system, sequestration, and nonspecific binding to nontarget tissues are the major drawbacks of viral and nonviral vectors [46,47]. In general, in vivo targeting has relied mainly upon the enhanced leakiness of the tumor vessels, allowing the extravasation and access to tumor cells. Besides, the target tropism, extravasations in tumor site, and poor penetration of the vectors into the tumor tissue are the major problems for the vectors to eradicate the metastatic tumor deposits.
Cell carriers have the potential of eliminating those problems. They are stable and most of them have tumor homing properties and can be administered locally, such as intraperitoneal or intratumoral injections or systemically. In case of the use of autologous cells, they will not be cleared by the immune system. Macrophages, bone marrow mesenchymal stem cells (MSC), T cells, NK cells, and eosinophils are the known cells infiltrating the tumor tissues. Also, the tumor cells themselves naturally have the potential of homing to the tumor deposits throughout the body.
Macrophages have been used to deliver therapeutic genes because of their naturally trafficking ability to sites of neoplastic diseases [48]. Further refinement of the targeting of these cells by using transcriptional promoters could avoid the transgene expression in other parts of the body where the macrophages naturally traveled [49].
T cells can be used to transfer the therapeutic genes to target tissues because of their ability to circulate through the body and arrest in tumor tissues [50]. T cells have the advantage of the release of vectors that they carry in an antigen-binding-specific manner. The T cells could also provide further antitumoral activity by their cytotoxic effects. Tumor infiltrating lymphocytes (TIL) are the first example of cell-based carriers in cancer therapy in which they were transfected with cytokine genes [51].
Mesenchymal progenitor cells from either bone marrow (MSC) or adipose tissue (PLA) have the potential to expand in culture and the differentiation along the adipogenic, osteogenic, chondrogenic, and myogenic lineages [52,53]. It has been shown that lentivirally transfected mesenchymal progenitors from the adipose tissue have sustained transgene expression, even after the differentiation into adipogenic and osteogenic lineages [54]. Further modifications of PLA cells transfected ex vivo in order to target tumor tissues of their natural potential differentiation would provide an efficient gene delivery vehicle.
Some other cells such as fibroblasts and allogeneic cells have also been used as cell carriers for gene therapy vectors [55,56]. Because of their homing properties to the tumor cell deposits, tumor cells could be good candidates to target the established metastases. An animal model of MDA-MB-231 cells, transduced ex vivo by a CD carrying Ad vector, has been shown to reduce the tumor volumes in the established metastases of the tumor [57].
In order to maximize the therapeutic index of cancer gene therapy, the expression of therapeutic genes could be restricted to the target tissues. Therefore, the targeting of gene therapy vectors is the major key for the success of those treatments. There are two main targeting strategies: physical targeting and biological targeting.
The first one is physical targeting by means of some physical methods such as local injections, catheters, gene guns, and electroporation. This strategy is usually used for local delivery of gene therapy vectors and is therefore not suitable for most of the cancer patients who may have cancer spread throughout the body. Supercoiled DNA molecules and oligonucleotides are also successfully delivered to the cells of the skin following intradermal injection to the tumor deposits accessible by local injections. However, intratumoral injection might have only the transducing capacity of the cells neighboring the needle. The tumor deposits in the body cavities such as peritoneum, pleura, and meninges and in subcutaneous tissues are the potential targets for the physical targeting of the gene therapy vectors in the clinic [58,59].
In a second strategy, the viral or nonviral carriers of the genes are modified in such a way that they can only bind to tumor cells but not the normal cells. Because of the low transduction efficiency of the currently used gene therapy vectors in distant tissues when administered systemically, the specific transgene expression or viral replication in target tissues could provide an opportunity to achieve sufficient antitumor activity. To achieve this goal,
The clinical utility of a cancer gene therapy program will be dependent on its therapeutic index. In order to maximize the therapeutic index, the expression of therapeutic genes could be restricted to the target tissues. The selective targeting of gene therapy vectors to specific cells enables the delivery of therapeutic genes to the target cancer cells while sparing the normal tissues. This has the potential of the reducing the dose of vectors and toxicity.
Transcriptional targeting, which utilizes DNA regulatory (promoter/enhancer) elements that enable the expression of transgenes within specific cells, would probably decrease the toxicity of the treatment while increasing the specificity. The promoters used to drive the transgenes in viral or nonviral vectors targeted in cancer therapy could be tumor-selective, inducible, or cell cycle regulated. Certain genes have been expressed specifically in tumors such as L-plastin, survivin, telomerase, and midkine [60]. The vector constructs carrying tumor-specific promoters such as L-plastin, survivin, and midkine have been shown to efficiently eradicate tumor cells while sparing normal cells [61–63].
Likewise, the tumor-type-specific group of selective promoters shows a pattern of tumor tissue specificity. The promoters of oncofetal antigens such as carcinoembryonic antigen (CEA) and alpha-feto protein (AFP), mucin 1 (muc1), and oncogenes such as c-erbB2 and MYC have been used widely in the transcriptional targeting of gene therapy vectors to achieve specific transgene expression in tumor tissue [64–68].
The phenotypically heterogeneous expression of certain genes in certain tissues constitutes the basis of tissue-specific promoters in cancer gene therapy. The tissue specificity of those genes is largely regulated at the transcriptional level. Therefore, the promoters of those genes have been used to target cancer gene therapy vectors to specific tumor types in a specific manner of their origin of tissues. The tissue-specific promoters such as PSA in prostatic cancer [69], tyrosinase in melanoma [70], albumin in hepatocellular carcinoma [71], thyroglobulin (TG) in thyroid cancers [72], glial fibrillary acidic protein (GFAP) in glioblastoma [73], and osteocalcin (OC) in osteosarcoma [74] have been used to specifically target those tumors.
The inherent problems of tissue or tumor-specific promoters such as relative weakness and lack of true restriction of gene expression to the tumor tissues have led to the use of new promoters whose activity can be controlled exogenously. These systems also provide temporal control of gene expression. Various stress genes of the body are usually silent under normal conditions, but they are activated during the stress to protect the tissues. The stress genes up-regulated during stress such as heat, hypoxia, glucose deprivation, irradiation, and chemotherapy have opened a new avenue to the development of the tumor-specific targeting of gene therapy. The use of human heat shock protein (HSP)-driven HSV-TK or CD suicide gene therapy vectors has been a significant activity when combined with hyperthermia [75]. The promoter region of the hypoxia-inducible factor (HIF-1), a key regulator of the transcriptional response to oxygen, has been successfully used to target tumor cells [76]. MDR-1 gene encodes a 170-kDa P-glycoprotein and belongs to the ATP-binding cassette (ABC) family of transporters, which mediates the transport of some chemo drugs out of the cells thereby decreasing the efficacy of the treatment [77]. Therefore, the use of vector constructs carrying therapeutic genes under the control of MDR-1 promoter could efficiently target chemo-resistant tumor cells [78].
Uncontrolled cell proliferation is the prominent feature of cancer cells. The retinoblastoma family of proteins and their upstream regulators such as cyclin D, CDK4, and p16/INK4 regulate the G1 checkpoint in the cell cycle. Tumor suppression by Rb has been linked to its ability to repress E2F-responsive promoters such as E2F-1 promoter. It has been shown that Ad vectors that contain transgenes driven by E2F-1 promoter can mediate tumor-selective gene expression in vivo in glioma cells [79]. The promoters of cell cycle genes such as cyclin D, cyclin A, cdc25c, cyclin-dependent kinase inhibitors, p16/INK4, p27, and p14 could be expected to exert cell cycle arrest, thereby increasing the apoptosis when used in vector targeting strategies in proliferating tumor or endothelial cells [80–83]. Additionally, drug-inducible systems such as tat-on/tat-off regulated by tetracycline or rapamycin could provide a wide-dose response range in the treatment [84].
The second strategy of biologic targeting is to engineer the either viral or nonviral vectors in such a way that they can be captured only in tumor tissues, and therapeutic genes are produced only in the environment of the tumor tissue. There have been numerous attempts to modify the vectors with tumor cell-specific ligands that would increase the specific binding to tumor cells and reduce the toxicity. Therefore, targeting DNA complexes to the tumor cell-specific receptors is an attractive strategy. One of the well-known strategies is coating the surface of the complexes with transferrin, an iron-binding plasma protein that is mainly an up-regulated expression on rapidly proliferating cells as tumors [85]. Likewise, coating with EGF has also been reported to cause a 50-fold increase in the transgene expression in hepatocellular carcinoma cells [86]. The suicide gene HSV-TK/PEI complex mixed with a single chain antibody (scFv) against EGFR with a negatively charged oligopeptide tail has exhibited EGFR-specific gene transfer in vitro and in vivo [87].
The nonviral systems usually fail in promoting the delivery of DNA to the nucleus. Almost 99% of the internalized DNA from a nonviral vector is degraded in the cytoplasm [88]. Trafficking of exogenous DNA from cytosol to the nucleus may be improved by using the nuclear localization signal (NLS) found in some nuclear proteins [89]. Dermaseptins, a family of antimicrobial peptides that destabilize the membrane, have been successfully linked to NLS of SV40-T antigen and HIV-1 Rev protein [90]. Likewise, mellitin, which is a membrane-active protein, and viral protein r (vpr) of HIV-1, which binds directly to nucleoporins of the nuclear pore complex, have been successfully bound to PEI/DNA complexes to improve nuclear transport [91].
The selective targeting of viral vectors to specific cells permits the cell-specific expression of transgenes and enables the systemic administration of the vectors. Avoiding the targeting of the native receptor found on immune and inflammatory cell surfaces also reduces the immunity and inflammation to those vectors. Replication-competent retroviral vectors (RCR) based on murine leukemia virus (MLV) represent an attractive system for gene delivery through their ability to replicate and provide long term transgene expression in rapidly proliferating cells [92]. However, the uncontrolled spread of the RCR might cause the infection of nontarget cells. In order to develop tumor-selective RCR vectors, several modifications have been made such as a modification of the envelope protein by inserting single chain antibodies (scFv) [93] and peptide ligands [94]. Also, the specifically targeted entry of replication-deficient retroviral vectors has been accomplished by combining cell-specific monoclonal antibodies [95,96].
The capability of an Ad vector to infect a cell is mainly based on CAR and integrin expression. Following the attachment of an adenoviral vector to the target cell via C-terminal part of the fiber protein (knob) and CAR (Coxsackie’s B adenovirus receptor), the alphaV beta3 and alphaV beta5 integrins mediate the internalization of the vector [97]. The CAR deficiency of the primary tumor cells limits the success of the gene therapy protocols using Ad vectors [98]. Redirecting the Ad vectors to bind other cellular receptors would allow CAR independent virus entry into the tumor cells. There are mainly two strategies to redirect the viral vectors to the cells: conjugate-based and genetically modified viral membranes. Adenoviral vectors have been targeted to different cells by genetic modification of the capsid or by using adapter molecules. In the conjugate-based strategy, it is aimed to complex the vector with the targeting molecule that redirects the vector to the cell-specific receptors. Bispecific molecules containing a first specificity for the fiber knob to block binding to CAR and the second specificity for a cell-specific receptor, such as bispecific fusion proteins (antibodies), bispecific peptides, polymer mediated ligand coupling, and chemical modifications (biotin–avidin bridges), have been utilized to target adenoviral vectors [99–101].
Adeno-associated vectors (AAV) possess a highly favorable safety profile and have the unique potential in certain cancer models. However, they have a restricted range of cells to transduce transgenes to the target tissues. In order to augment the transduction efficiency of AAV in various tissues retargeting strategies such as engineering of viral capsid, monoclonal antibodies and specific peptides have been used to successfully retarget the AAV vectors [102,103].
Current gene therapy studies have mainly focused on introducing the genes into the tumor cells to block the action of oncogene expression and the development of tumor vasculature, or to induce the development of an immune response against the cancer tissue. The major targets of gene therapy are shown on Table 1.
Tumor suppressor genes (p53, RB, APC, BRCA1) | \n\t\t
Oncogenes (RAS, BCL-2, MET, MYC, ERBB2, HPV E6E7, etc.) | \n\t\t
Drug-metabolizing enzymes (cytosine deaminase, HSV-thymidine kinase, cytochrom p450, purine nucleoside phosphorylase, carboxypeptidase A) | \n\t\t
Direct cell killing (oncolytic vectors) | \n\t\t
Angiogenesis (endostatin, angiostatin, VEGF, tissue factor, Tie2, etc.) | \n\t\t
Cytokines (IL-2, IL-12, GM-CSF vb) | \n\t\t
Immune system (T-cell receptor)/cancer vaccines (tumor-specific antigens, polynucleotide vaccines, genetically modified dendritic cell-based vaccines, and adoptive immunotherapies) | \n\t\t
The major targets of gene therapy of cancer
Loss of functions of tumor suppressor genes have crucial role in the development and spread of cancer. Therefore, those genes were among the first targets of gene therapy studies.
RB1 is a tumor suppressor gene involved in cell cycle regulation. Constitutively active RB1 potently inhibits cellular proliferation and induce persistent cell cycle arrest [110]. Since the first cloning of the RB gene at the beginning of the nineties, researchers have tried to activate the tumor suppressor function of the RB pathway. Gene transfer of truncated RB protein, such as RB94, has been shown to restore the RB pathway and to induce potent tumor growth inhibition both in vitro and in vivo [111]. However, these strategies have not been tested in the clinical setting yet.
The restoration of functions of other tumor suppressor genes such as adenomatosis polyposis coli (APC) in colorectal cancer cells [112] and BRCA1 in breast and ovarian cancers [113] has been shown to slow the growth of tumor cells.
The targeting of oncogenes has long been at the focus of drug development studies in cancer. Small molecules of inhibitors of oncogene functions such as tyrosine kinase inhibitors have already been used in the routine treatment of various cancers. Gene therapeutic strategies to suppress oncogene functions are usually focused on the inhibition of those genes at mRNA level. Usually small oligonucleotides or RNA inhibitors such as short-interfering RNA (siRNA), short-hairpin RNA (shRNA), or micro-RNA (miRNA) have been used to interfere the actions of oncogenes [114].
Chemically modified or unmodified small single-stranded DNA molecules, antisense oligonucleotides inhibit protein translation through the disruption of ribosome assembly or utilization of RNase H enzymes to destroy mRNA. Numerous oligonucleotides and RNA inhibitors have been designed to inhibit oncogenes, including RAS, MYC, BCL-2, or cell signaling molecules survivin, IGF, VEGF, and PKCalphfa, have been tested. Although the efficacy of these oligonucleotides has shown a great diversity, some of them have been tested in phase II/III clinical trials in various cancer types [115]. Oblimersen, an antisense oligonucleotide targeting Bcl-2, is one of the oldest agents that have already tested in phase III studies of Chronic Lymphocytic Leukemia CLL and multiple myeloma [116,117]. The members of the RAS family of oncogenes have been found mutated in various solid tumors. Therefore, the targeting of RAS would have been a hot topic in the development of recent therapeutics. Targeting RAS with an anti-RAS mRNA plasmid yielded significant tumor inhibition when used alone or in combination with chemotherapy in hepatoma cells [118]. Antisense oligonucleotides targeting survivin, which are highly expressed in various cancer types, including liver, lung, breast, and prostate, have been employed successfully to inhibit the expression of the gene [119]. The phase I/II clinical trials have also shown some responses in cancers [120].
Conventional chemotherapeutic drugs are mainly directed to nonspecific direct cell killing. However, dose-limiting toxicities avoid the use of higher doses of those drugs to eradicate the disseminated cancer. However, if the drug was synthesized within the tumor tissue, then the toxicity level would only increase in tumor cells but not other parts of the body. The tumor-specific targeting of drug-metabolizing genes and the systemic use of a prodrug that is converted to a cytotoxic agent by the action of transduced enzyme called gene-directed enzyme/prodrug therapy (GDEPT) enable the achievement of that aim. GDEPT is also known as suicide gene therapy. A lot of drug-metabolizing genes have been used to develop suicide gene therapy/prodrug systems. Cytosine deaminase (CD) and herpes simplex virus 1 thymidine kinase (HSV1-TK) are the most widely studied ones in cancer gene therapy [121,122]. CD, an enzyme found in fungi and bacteria, converts the nontoxic 5-fluorocyotsine into a toxic chemotherapy drug of 5-fluorouracil. The lack of this enzyme in mammalian cells makes it a convenient gene therapy tool to achieve intaratumoral chemotherapy. Others and we have designed suicide gene therapy vectors to avoid systemic toxicity of 5-FU. We have shown that Lp-driven CD carrying adenoviral vectors (AdLpCD) specifically target the epithelial cancers, including breast, ovary, prostate, and lung [123]. It is possible to achieve a 5-FU dose in tumor tissue as much as 200-fold of the dose when the drug is used intravenously at the standard dose [123]. The 5-FU produced in the infected tumor cells can diffuse into the neighboring tumor cells and kill them even not infected by the vector, which is called bystander effect [124]. Likewise, the combination of CD carrying vectors with conventional chemotherapy or radiotherapy yields synergistic efficacy [125–127].
TK, one of the immediate early (IE) genes of HSV, converts ganciclovir (GCV) into a triphosphated form of GCV, which is an analogue of purine and inhibits DNA polymerase [128]. HSV1-TK suicide gene therapy loaded onto either adenoviral vectors or retroviral vectors has been used to treat various tumors, including pancreatic cancer, hepatocellular carcinoma, lung cancer, glioma, and leukemia [129–133]. Although the exact mechanism of HSV-TK carrying vectors to kill tumor cells is not completely understood, they can induce apoptosis sensitizing the TNF-related ligands or the sensitization of CD95-L, TNF-related apoptosis inducing ligands may contribute to cell death [134]. The transcriptional targeting of HSV1-TK vectors using tumor-specific promoters has decreased the potential side effects [130]. HSV-TK/GCV prodrug systems have also been modified with other genes such as addition of E-cadherin to increase the bystander effect of the vector [129].
Other prodrug-activating enzymes such as purine nucleoside phosphorylase to convert 6-methylpurine-2-deoxyriboside to 6-methyl purine, cytochrome p450 cyclophosphamide and ifosfamide to active metabolites of phosphoramide mustard and acrolein cyanide, and carboxypeptidase methotrexate-alpha peptides to methotrexate have also been reported to decrease tumor burden in various preclinical models [135–137].
Dying tumor cells during suicide gene therapy could induce a tumor-specific immune response. Therefore, combining prodrug/enzyme systems with an immnuomodulating cytokine would further improve the efficacy. The addition of an IL-2 gene to the HSV-TK has yielded more potent antitumoral activity when compared the each strategy alone [138]. Similarly, GM-CSF, IL-12, and IL-18 have also been used to increase the antitumoral activity of suicide gene therapy [139,140]. Suicide gene therapy also successfully combines with other strategies such as targeting tumor angiogenesis or adoptive transfer [141,142].
Viruses have long been recognized tumor cell lytic agents and tried to treat cancer patients. However, the use of unmodified oncolytic viruses usually failed in the clinic. The engineering of those viruses to increase their therapeutic index have been possible in the last two decades. Herpes simplex virus (HSV), adenoviruses, parvoviruses, Newcastle disease virus, and retroviruses have been modified as oncolytic viral vectors.
HSV with its high infective capacity of a large number of cell types has been one of the popular oncolytic agents in the treatment of cancers. By deleting the genes thymidine kinase (TK), ribonucleotide reductase (RR), or ICP34.5 alone or in combination, HSV vectors could be selectively targeted many cancer types [143,144]. In order to further increase the cancer cell specificity of the replicating vector, engineering of the expression of surface glycoproteins, attachment of a novel receptor, or other macromolecules such as bispecific antibodies have been tested [145]. Likewise, tumor cell-specific promoters to drive the immediate–early gene expression, which is essential for viral replication, has been another effective strategy to obtain tumor-selective HSV [146].
Adenoviruses can infect a wide variety of dividing and nondividing normal and tumor cells. They can be engineered to have tumor-selective oncotropic properties or to be conditionally replicative (CRAds) for selective cancer gene therapy.
In type I CRAds, usually a mutant Ad vector that replicates specifically in tumor cells with aberrant cell cycle regulation has been developed. A deletion in the E1B 55-kDa region abrogates the p53 binding of the vector, and therefore, the vector cannot replicate in cells with intact p53 [147]. Therefore, this mutant Ad vector (dl1520) could replicate in only p53-deficient tumor cells. However, further studies revealed that E1B 55-kDa mutant CRAds could also replicate in p53 intact tumor cells [148,149]. The CRAds are already tested in phase II/III clinical trials with some success in patients with p53-deficient tumors [150]. Accordingly, the combination of CRAds with conventional treatment modalities provided better tumor control [151]. Although the combination of E1B-55kD mutant Ad vector with chemotherapy has yielded a promising result of 63% partial response in patients with head and neck cancer administered intratumorally [151], no objective responses were seen when the vector used alone [152,153].
Another way to achieve tumor-specific adenoviral replication is to take the advantage of altered cell cycle regulation at G1-S phase checkpoint in which the retinoblastoma 1 (RB1] gene functions. In most of the cancer cells, there is a mutation in RB1 gene. Therefore, an Ad vector having a mutation in the RB-binding site of E1A cannot induce the quiescent cells to pass the checkpoint. A mutant CRAd carrying an E1A deletion, Ad5-∆24, is unable to replicate in normal cells with the wild-type RB1 gene [154]. It has been shown that this E1A mutant Ad vector has strong oncolytic activity in in vitro experiments of glioblastoma cells. Also, a similar vector with E1A mutations at RB-binding sites (dl922-947) has also been shown to have strong antitumor activity in other tumor models such as breast and colon cancer [155]. An additional promising strategy to achieve specific oncolytic activity to the CRAds is the use of tumor-specific promoters that drive the genes of the vector responsible for the replication, referred to as type II CRAds. There have been many replication-competent vectors carrying tumor- or tissue-specific promoters such as prostate-specific antigen (PSA), alphafeto protein (AFP), Tcf4, MUC1, and CEA that have been developed [156–160]. We have designed replication-competent adenoviral vectors carrying Lp-driven E1A, which are specifically replicated in various tumor cell lines but not in normal cells [161]. We have also constructed a bicistronic CRAd vector carrying both cytosine deaminase (CD) gene and E1A linked by an IRES component driven by the Lp promoter (AdLpCDIRESE1A) [162]. The new bicistronic construct also has been shown to have significant oncolytic activity in the colon (HTB-38), breast (MCF-7), ovary (Ovcar 5], and prostate (LNCaP) cancer cell lines but not in normal human mammary epithelial cells [162]. Also, the combination of the construct, AdLpCDIRESE1A/5flourocytosine system, and chemotherapy has shown synergistic activity [163].
Different replication-competent viruses are currently being studied for their potential use in cancer gene therapy. The naturally occurring tumor-selective viruses in their replication and cytolysis might have the potential in cancer treatment. Autonomous parvoviruses (APV) have been shown to replicate more efficiently in transformed cells than normal cells [164]. The members of the rodent group of APVs such as LuIII, MVM (minute virus of mice), and H1, which can infect human cells, are currently being studied as vectors for cancer gene therapy. The replication of APV depends on cellular functions expressed during the S phase of the cell cycle. The oncogenic transformation of cells favor the replication of APVs and therefore makes them as oncolytic viruses [165]. The overexpression of the RAS signaling pathway [166] and the defects in the interferon pathway of the transformed cells [167] could possibly enhance the oncolytic activity of the APVs. Further manipulation of the specific targeting of those vectors to achieve tumor-specific transgene expression such as inserting binding sites for the heterodimer beta-catenin/Tcf transcription factor to the MVM P4 promoter to make it responsive to wnt signaling would make those attractive vectors for cancer gene therapy [168].
Newcastle disease virus (NDV) is an animal virus showing oncolytic activity in transformed cells. In murine tumor xenograft models, the intratumoral administration of NDV has caused significant tumor reduction [169]. Also, the intraperitoneal injection of the virus has resulted in complete regressions of tumor xenografts. A replication-competent strain of NDV, PV701, has been shown to replicate in tumor tissues of patients with solid tumors when administered intravenously [170]. In that phase, trial objective responses have also been achieved at higher and repeated doses of the virus.
The murine hepatitis coronavirus (MHV), an oncolytic virus, is a positive-strand RNA virus displaying strong species specificity with a replication cycle of 10–15 h and efficiently kills cells by fusion of the infected cells with their neighboring cells [171]. Substituting its spike protein by the other species such as porcine amino peptidase could change the host cell tropism of the MHV. The resulting recombinant corona virus pMHV thus only infects porcine cells via the porcine amino peptide N (pAPN) receptor. In vitro studies have shown that the tumor cells could be more susceptible to that recombinant corona virus [172]. It is also likely to further manipulate those vectors by using specific antibodies.
Unraveling the mechanisms of tumor-induced angiogenesis, which is a key event in tumor growth and metastasis, has opened a new therapeutic era in cancer treatment. The antiangiogenic gene therapy approaches have been reported to inhibit the tumor-induced angiogenesis and therefore tumor growth. The main strategies in antiangiogenic gene therapy are targeting specifically the endothelial cells (direct antiangiogenic gene therapy) and interfering with a tumor-derived angiogenic factor or the receptor for it or delivery of genes that encode angiogenesis inhibitors (indirect antiangiogenic therapy).
Proangiogenic cytokines such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) mainly secreted from tumor cells are required for the new vessel formation. The indirect strategies were mainly focused on the inhibition of proangiogenic cytokines or receptors involved in VEGF pathway or basic fibroblast growth factor (bFGF). VEGF binds two high affinity receptors (VEGFR1/FLT-1 and VEGFR-2/KDR) that are expressed on endothelial cells. An adenovirus-mediated transfer of a secreted form of the extracellular domain of the FLT-1 (AdsFLT) has been shown to inhibit the growth of metastatic tumor deposits when administered intravenously to preestablished splenic and liver metastases from a murine colon carcinoma cell line in syngeneic mice [173].
Likewise, the delivery of genes encoding antiangiogenic proteins such as endostatin, angiostatin, platelet factor 4, interferon alpha, and thrombospondins have also been tested [174]. The intratumoral administration of a plasmid encoding murine endostatin under the control of a CMV promoter has provided elevated concentrations of endostatin high enough to obtain growth arrest of murine renal carcinoma cells and breast cancer model [175]. Likewise, an adenoviral vector carrying human endostatin gene markedly reduced the blood vessel density of the tumor in an orthotopic liver tumor model [176].
The viral vector constructs of other angiogenesis inhibitors such as angiostatitn, thrombospondin, platelet factor 4, and hepatocyte growth factor antagonists have also been shown to successfully inhibit endothelial cell proliferation and tumor growth [177–180]. However, there are conflicting results regarding the tumor inhibiting activity of antiangiogenic gene therapy modality in experimental models. The combination of antiangiogenic gene therapy with chemotherapy or radiation could be an efficient way of the inhibition of tumor growth [181].
Many vector constructs carrying therapeutic or reporter genes driven by endothelium-specific promoters such as preproproendothelin-1 (PPE-1), VEGFR kinase insert domain receptor (KDR), VEGF, E-selectin, and endoglin/CD105 have been reported to specifically target endothelial cells [182,183]. The replication-competent adenoviral vectors driven by the regulatory elements of FLK-1 and endoglin have successfully been targeted to the dividing endothelial cells, and therefore, this strategy could be used as an antiangiogenic treatment for cancer [184]. The activation of proapoptotic caspases such as caspase 9, driven by endothelium-specific promoters such as VEGF and FGF, could be another strategy to destroy endothelial cells [185].
Antisense approaches also are being tested for the inhibition of VEGF. A recombinant adeno-associated virus (rAAV) vector encoding an antisense mRNA against VEGF has been shown to inhibit the production of endogenous tumor cell VEGF [186]. The adenovirus-mediated delivery of an uPA uPAR antagonist, which inhibits FGF, has been shown to inhibit angiogenesis-dependent tumor growth and metastasis in mice [187].
The immune system is the most important defense mechanism of the body against cancer. Recent developments in gene therapy have suggested to many cancer therapists that cytokine–chemokine-based gene therapies, tumor antigen-specific vaccination strategies, and gene-modified cellular therapies have great potential for future use either in the treatment of an established disease or in the prevention of cancer in people having high risk of developing cancer.
Cytokine/chemokine-based gene therapy has been widely used to induce immune system against tumors. The delivery of immunomodulatory cytokines by gene therapy vectors has opened a new avenue both to decrease the toxicity of these cytokines when used systemically and to augment antitumor immunity. A wide variety of cytokines such as GM-CSF, IFN-a, IFN-g, IL-2, IL-4, IL-12, IL-18, and IL-24 have been tested so far [188–191]. Also, the vector constructs, including the combination of these cytokines, have also been tested in cancer. The coexpression of IL-12 and GM-CSF has been reported to yield significantly more immune response than the either cytokines alone [192]. In particular, implementing the cytokine genes into oncolytic viruses has great potential for use in clinical trials [193]. Chemokines recruit the immune effector cells to the tumor microenvironment. The delivery of chemokines such as CCL-5 using viral vectors has also resulted in significant tumor reduction through increasing tumor infiltration of DCs, macrophages, and CTLs [194].
Tumor-associated antigens (TAA) loaded on to gene therapy vectors have been tested in cancer treatment (DNA vaccines) [195,196]. However, the efficacy of using TAA alone is not enough to get a sufficient immune response to decrease tumor size. Therefore, researchers have focused on the augmentation of the immune response by combining immune cytokines or costimulatory molecules and TAA. This strategy seems much better than using either gene alone. We have previously shown an increased efficacy of an adenoviral vector encoding a fusion protein of CD40L and MUC1 in preclinical models [197]. The addition of prodrug/enzyme system to DNA vaccination further increased the efficacy [198]. This strategy has also been tested in early clinical trials with some success. Vector vaccinations using cytokines or costimulatory molecules and tumor-associated antigens (TAA) have increased the immune responses and caused antitumor responses in preclinical models and even some responses in earlier clinical trials. In a small clinical trial, an attenuated vaccinia vector carrying IL-2 and MUC1 has been found effective in a small group of patients with advanced prostatic cancer [199]. Likewise, a vector vaccine of canary poxvirus encoding B7.1 and CEA has been tested in a group of patients with epithelial tumors [200]. Hundreds of different DNA vaccines have been tested in clinical trials so far [202]. However, no DNA vaccine is available in the market.
Gene therapy vectors have also been used to transduce either autologous tumor cells or dendritic cells. In the earlier studies, irradiated autologous tumor cells transduced to express immunostimulatory molecules have been tested. In a syngeneic colon cancer model, the subcutaneous injection of CT26 colon cancer cells transduced with an adenoviral vector carrying GM-CSF gene has eliminated both the established tumors and prevented the growth of new tumor nodules when rechallenged with tumor cells [201]. Later on, this strategy has also been tested in human tumors. Autologous tumors transduced with GVAX, an adenovirus carrying GM-CSF, have induced tumor-specific immunity in a variety of tumors, including melanoma, prostate, and lung cancers [203]. Although a slight increase in overall survival has been reported in those trials, no significant tumor responses observed [203,204].
The ex vivo transduction of dendritic cells with gene therapy vectors carrying either immunostimulatory genes or TAAs is another promising strategy. When injected subcutaneously, the dendritic cells exposed to vectors migrate to the lymph nodes where they prime cytotoxic T cells and induce a strong immune response. A number of vectors have been designed to activate dendritic cells for the past two decades. We have tested the use of ex vivo transduced dendritic cells with an adenoviral vector carrying a fusion protein of CD40L and MUC1 in a syngeneic mouse tumor model [205]. The intratumoral injection of activated dendritic cells induced a potent tumor-specific T-cell response. Furthermore, the combination of suicide gene therapy of a CD/5FU system and activated dendritic cells caused a more potent immune response and increased tumor response [205]. Likewise, retroviral vectors and lentiviral vectors are both used to transduce dendritic cells [206]. A dendritic cell vaccine based on the ex vivo activation of mononuclear antigen presenting cells by a fusion protein consisting prostatic acid phosphatase and GM-CSF has extended the progression-free survival of patients with advanced prostatic cancer and approved by FDA in 2010 (Provenge®, Dendreon, USA) [207].
Recently, an adoptive therapy of cancer using genetically modified T cells armed with chimeric antigen receptors (CAR) has gained great popularity with the announcement of success in advanced malignancies [208]. CAR is a fusion receptor of an antibody-derived targeting domain and T-cell signaling domain and expressed on T cells by a retroviral vector [209]. CARs target antigens, including proteins, carbohydrates, and glycolipids without antigen processing or HLA recognition. They can be generated in significant quantities ex vivo and used with the minimal risk of autoimmunity or graft versus host disease [210,211]. However, because of the severe side effects, the most troublesome being cytokine-release syndrome, researchers try to obtain better CAR T cells with further refinement of receptor and better targets [212].
The vast majority of the clinical trials of gene therapy have been devoted to the treatment of cancer so far. The gene therapy agents have been tested in many types of cancer in the clinic. Almost 1200 clinical trials (approximately 64% of all gene therapy trials) in cancer have been started, conducted, or completed [202]. Less than 4% of those are phase II or III and only few of them are phase IV trials [202]. Although the preclinical and experimental studies have yielded highly encouraging results, the progress in the clinic is not so remarkable. There is no gene therapy agent available in the market yet.
The most important factor that has limited the success of clinical gene therapy trials in human subjects is the delivery of the vector genetic elements or their products to the target cancer cells and their vasculature. A second problem has been toxicity. Recent advances on improving the delivery and specificity of gene therapy vectors have suggested these trials may be more successful in the coming years. This is especially true of the attempts to use vectors to activate the immune response against the tumor tissue. Continued testing of these strategies in the context of clinical trials may lead to new opportunities for individuals engaged in a personal struggle with cancer to control their disease.
Indeed, the nature of the distant spread of the disease, which causes the failure of conventional treatment modalities, is also one of the main drawbacks of gene therapy of cancer.
Dealing with complexity and reducing uncertainty during 2020 crisis is a priority, for Countries, Critical Infrastructures, and companies.
Due to the interdependency of Critical Infrastructures, companies, and the civil society their protection and management represent a significant challenge and, somehow, an opportunity.
The present contribution aims to support the understanding of the tangled pandemic scenario, studying the interdependencies between different sectors and their supply chain, proposing a model addressed to the complexity management for ensure the Business Continuity both of Critical Infrastructure and companies.
The Italian response to the crisis generated by the pandemic was observed, from the study of the impact of the crisis on Critical Infrastructures, to the response strategies, the remediation plans, passing through the reference standards on business continuity and supply chain (in the ISO family of standards).
The imposed lockdown has led to a forced acceleration of digitization, with the challenges and opportunities that could be derived from it.
The crisis management, supported by the experience generated by the avian influenza, together with the support tools provided by the Italian government has proved to be effective and efficient, also relaunching several SMEs through their productive conversion.
The human factor has become evident as the cornerstone of any service, from the provision of essential services falling within the competence of the Critical Infrastructures, which have involved a particular attention to the continuous security and business protocols to be followed, to the most disparate production sectors. It is also necessary to remember how the interconnection between the different sectors and services now characterizes our reality, and therefore how the so call “What-If Analysis” s fundamental in the development of decision support tools for crisis management. In this context is clear that resilience is founded on risk analysis and the drawing of recovery plans, together with measures for an increased control over the value chain.
Dealing with complexity and reducing uncertainty during 2020 crisis is a priority for Countries, Critical Infrastructures, and companies.
Complexity could represent a risk but also an opportunity to create a new competitive advantage.
Society is dependent on composed critical networks, becoming more complex as are strong interdependent both within and between infrastructure systems [1].
Nowadays, complexity and uncertainty assess the search for new and effective management strategies and methods. Embracing unpredictability and planning to adapt is crucial to manage the complexity that cannot be eliminated, although, it can be reduced to manageable levels. Complexity and vulnerability of Critical Infrastructure systems has been explored and assessed [2, 3].
Complexity is related with composite systems and problems that are dynamic, unpredictable, and multi-dimensional. It consists of a collection of interconnected relationships and parts. Unlike traditional “cause and effect” or linear thinking, complexity science is characterized by nonlinearity [4]. Complexity management needs to consider several layouts of complexity, in fact an IC or a company internal value chain is strongly dependent on external complexity.
For each area of complexity regulation, as avoidance and reduction related to causes, transfer, and division, exist several theories, approaches and methods.
Effective complexity management aim to develop an appropriate and effective incident response plan. Finally, complexity must be addressed proactively.
In fact, in such complex scenario, different actors (institutional and non) have responded to the crisis in multiple ways, according to the regulations issued. Moreover, these troubled times show how strategic and essential are some sectors.
In the crisis generated by the pandemic it has been confirmed that the daily life of the citizens depends on the reliability of the Critical Infrastructures (CI) to supply essential services such as energy and water. In recent years, Critical Infrastructure control systems have become more complex, with increasingly interconnected devices; a trend that will probably continue with the Internet of Things.
The need for increased resilience to resist extreme events of both natural and malicious origin has become more acute. With Critical Infrastructure continuously exposed to threats, especially cyber-attacks, there are severe security implications, most notably in the energy sector which is ranked as one of the most affected sectors with the highest incident costs [5]. Any attack of this nature is likely to have knock-on effects on a country’s overall economy and the lives of its citizens.
The pandemic, all in all, has had modest effects on the electrical service. Electricity consumption has been reduced by about 10% on average, but with a very uneven distribution on the Italian territory. Fortunately, the phenomenon has been well controlled and there have been no perceptible effects, but it is easy to imagine the consequences of possible inefficiencies. The effect of the pandemic could be very marked on geopolitical balances, in a context of possible tensions deriving from the rebalancing of the primary energy market and the challenge of the Fourth Industrial Revolution (4IR) [6].
The energy issue brings us back to the more general field of critical infrastructures: electricity and energy system, communication networks, infrastructures for the transport of people and goods (air, sea, rail and road), health system, economic-financial circuits, administrative and state organizations and bodies.
What happened on the Istituto Nazionale della Previdenza Sociale (the Italian Social Security), website is a symptom of a strong criticality in the Country System, where technical shortcomings make the fundamental rights of citizens even more vulnerable, and how IC and companies must equip themselves to manage crisis situations that are not predictable. For this reason there have been several episodes in Italy which have triggered the alarm by the Centro Nazionale Anticrimine Informatico per la Protezione delle Infrastrutture Critiche (CNAIPIC - National Anti-Crime Information Centre for the Protection of Critical Infrastructures).
In terms of crisis management, thanks to the experience of avian influenza (H5N1), which has highlighted how the human factor is the most valuable element for any company and as such must be safeguarded and protected, operators of critical infrastructure have been able to develop a series of effective initiatives, as demonstrated by the fact that no essential service, i.e. the supply of gas, water, electricity, transport, etc. has suffered interruptions or dysfunctions in recent months. And this despite the problems related to difficulties in supply, reduced mobility, the presence of staff in quarantine fiduciary and/or infected and considering the commitment of companies to safeguard the health of their workers.
This achievement is the result of an effort which in recent years has seen a significant change in the role of the security managers, which has shifted to the top management in order to bring strategic choices back to specific task forces capable of having a prompt impact on all levels of the company’s organization, being equipped with the financial and decision-making capacity appropriate to the criticality of the situation [7].
2020 long time crisis and consequent lock down were managed asking to every operators of critical services to maintain business continuity and to guarantee services if critical. This means that not only critical infrastructures at national level, but also critical infrastructures at regional or city or province level had to maintain operation, even having the supply chains partly or completely locked and also even having manpower partly or completely in smart working.
The Office of the Military Advisor of the Presidency of the Council, in consideration of the necessity to guarantee the essential services provided by Critical Infrastructures, has provided the precautionary principles, to which Critical Infrastructure Operators are required to comply in order to contain and contrast the spread of the pandemic, while ensuring the continuity of the supply of essential services, the operability of the facilities and the security of the personnel involved.
These lines suggest, first, a reduction in the number of staff working in situ by reducing activities to those that cannot be postponed for business continuity, and to review the maintenance programs, limiting them to those that cannot be postponed and postponing those that are not indispensable, promoting the adoption of smart working at all levels, necessary for the continuity of the service. The Precautionary Principles highlight the need to provide specific training and tools to operators to prevent and combat the threat of cybersecurity, the importance of which is growing today, to equipping all staff with adequate IT support, including the use of dedicated connections, VPN systems and anything else in order to ensure adequate levels of cybersecurity, including the issue of appropriate rules of conduct by staff working in smart working mode.
Furthermore, is required to prepare all the necessary measures related to sanitization.
The Companies are invited to organize the personnel involved in activities that cannot be postponed at the work sites or field operations in teams composed of the minimum number of people necessary for the safe execution of the various activities. The composition of each team, to increase its resilience, must not, where possible, change over time and specific procedural measures must be taken to avoid, or limit to a minimum, physical interaction between several teams.
With regard to the management of the control and management rooms, given that it is necessary to ensure their functionality in all conditions, it is recommended that all useful measures be taken to contain the pandemic; organizing the staff into several teams and adopting specific and more stringent safeguards for this type of personnel, for example, measures and/or adequately equipping several rooms, possibly in different locations, to allow the alternation of shifts in different rooms and/or sanitized each shift change [8]. Another taken measure was the “voluntary segregation”: the provision of temporary accommodation for groups of people who will operate in the control center for a period of not less than 14 days without physical contact with external personnel. The spaces to which such staff have access will be forbidden to those who do not implement voluntary segregation. To guarantee the continuous rotation of the activities, a second team of staff is set up at the same time, already in isolation at their homes.
Telespazio has set up a three-level system for its Space Center which, before entering the control room, requires a further period of voluntary quarantine within a camp facility located at the Fucino site [9].
The theme of cyber-security is particularly relevant in an increasingly interconnected world where threat vectors multiply and can affect the vulnerabilities of Critical Infrastructures. Moreover, the low level of cybersecurity preparedness of the country system is also reflected in low awareness among citizen-users.
In view of the above, we can say that for the management of emergencies and crises first of all it is necessary to develop a culture of security, supported by the necessary tools and strategies, also considering that we are moving towards the increasing digitalization of any area of the country. In order to do this we can combine the creation of high potential and distributed networks, to avoid in case of stress of infrastructure use, domino effects. It is not possible today to imagine an area of the country that is not covered by essential infrastructures and services that respond to adequate minimum levels of service delivery and security, especially cybersecurity.
It is therefore also essential to start a training process in line with the needs of the world of work and thus adapt to the new professions, together with a plan for the conversion of skills towards new professional qualifications [10].
A fundamental and new aspect of this crisis, which has led to a rethinking of the management of Critical Infrastructures, is that there was a clear “ day before” (in Italy between 10th and 11st March) and a lack of clarity in the “day after”. There is still the sensation of a prolonged crisis and the passage to a remote working that has reduced social relations. This situation has also led to a discontinuity in the visibility that the employer has towards his employees (with respect to how he is and what he feels) that had never been experienced before, while the knowledge of the human model is crucial.
When we make a reading of complexity, we consider a company (or a CI) and analyze it in all that is the flow of its value chain and we retrace all the places and moments of a not physiological complexity.
One type of challenge for Critical Infrastructure Protection is about the dependencies and interdependencies among different Critical Infrastructures [11].
In the context of this extremely long lock-down we had an enormous complexity of relations with suppliers and with those who had to remain in continuity and we would find in the re-opening a strong discontinuity, also in understanding for example the rules with which it was possible to re-open and the responsibilities (in fact, the provision of a suitable team that knows how to interpret the rules is also part of crisis management).
Italian SMEs have worked out an appropriate response strategy to the crisis caused by the 2020 pandemic.
Starting from the importance of the role of each individual entrepreneur, through the constant and daily collection of information on a formal and informal basis, it was possible to identify the strategic levers and focus on new core businesses, based on corporate liquidity, assets and resources.
It emerged that the creation of balanced strategic levers, the make/buy balance, together with the dialog with the stakeholders represented a fundamental element for the conception of a response strategy that represented an example of business resilience.
The crisis has certainly been, and still is, an opportunity to examine which lessons are learning for the future creation of resilience-oriented protocols [12].
There are many Italian companies that have reacted to the crisis by reconverting their production.
Phase two, co-existence with the pandemic, began on 4th May 2020. The Prime Minister’s Decree issued by the Government has made mandatory the use of the mask in closed places accessible to the public, such as public transport and shops. Wearing the mask is mandatory in all situations where “it is not possible to continuously guarantee a safe distance” [13].
Given the emergency and lack of access to this personal protective equipment, more and more companies have chosen to make a concrete contribution and boost their activities after the lockdown by aiming at the reconversion of production chains to manufacture masks. Initiatives that are born to make available the expertise and skills of entire sectors forced by the emergency and the upheaval of daily habits to rebuild their missions and restructure their short, medium- and long-term objectives.
Siare Engineering, an Emilian company specialized in the manufacture of lung ventilators (the unique company in Italy), at the outbreak of the emergency increased its production and changed its export market. In mid-March the company delivered 300 machines to the Civil Protection, originally destined for countries such as South Korea, India, the Philippines and Vietnam, its traditional clients. The company was supported by specialized Army technicians with the aim of producing over 2300 machines, tripling production. Siare Engineering’s efforts were supported by companies such as Ferrari, FCA and Magneti Marelli [14].
Grafica Veneta, a Paduan company active in the printing sector, has reconverted its production to produce 2 million masks. These products, even though they could not be intended for healthcare workers, provided (at a time of dramatic shortage) an initial protection to the population, and were distributed free of charge to the population by the Civil Protection and the Alpini (Italian Army’s mountain infantry).
Mestel Safety, a specialist in snorkeling and diving masks, deposited a patent at the beginning of March to transform this diving equipment into protective masks against contagion [15].
On 23rd March Confindustria Moda launched an adhesion campaign to make masks and PPE, to which 200 companies have immediately joined. A similar initiative was taken by CNA Federmoda. Some of the most important Italian fashion companies responded to the call, such as Armani, Calzedonia, Fendi, Gucci and Valentino.
Prada, on request of the Tuscany Region, has started the production of 80,000 white coats and 110,000 masks [16].
Toscano Alta Sartoria (ex Mabro) has promptly reconfigured its production starting, from March, to produce 3000–4000 masks per day [17].
A choice made also by Valigeria Roncato, a leading company in the sector in the production of luggage made in Italy, which has decided to make a strong contribution to the enduring battle at pandemic by converting its production lines for the production of long-lasting, non-disposable, washable and therefore reusable masks [18]. The core business of the Veneto industry responds to the urgent demand for protective masks that are becoming more and more indispensable.
These solidarity initiatives have been stimulated by the possibility to access incentives to activate the production and supply of medical devices and personal protective equipment (PPE) for the containment and fight against the epidemiological emergency.
And more: to deal with the pandemic, numerous measures have been taken to prevent and contain its expansion and its effects on the economic system. These are emergency measures issued at short distance from each other and linked to each other.
The financial support to SMEs has gone through interventions on the fiscal side, the suspension of the refund of loans, the public guarantee on those granted to companies that have suffered decreases in turnover, a fund for the promotion of Made in Italy, financing.
The objective was to prevent SMEs from shutting down due to lack of liquidity because of the emergency: according to Cerved the system could lose up to 650 billion in revenue between this year and the next.
In this picture, are extremely important the interventions to support the liquidity of the productive network, strongly strengthened by the Legislative Decree n. 23/2020 (so-called Liquidity Decree). This last measure has on one hand modified and on the other hand implemented the extraordinary measures introduced by Decree Law no. 18/2020. This is also thanks to the new regulatory framework for State aid, the EU Commission’s “State Aid Temporary Framework” [19], which has intervened in the meantime. On 14th April 2020, the European Commission authorized the extraordinary support aid schemes provided by Decree Law no. 23/2020. Further interventions to support the liquidity of companies are also contained in Decree-Law No 34 of the 2020.
The economic support measures for businesses adopted with the decrees of March–May 2020 (Decree-Law No 18/2020, Decree-Law No 23/2020 and Decree-Law No 34/2020) are essentially attributable to the following main lines of intervention: liquidity support; export and internationalization support; capitalization support and non-repayable grants; suspension of certain obligations and tax payments, as well as temporary relief on the fixed costs of electricity bills for low-voltage non-domestic users; interventions for companies in crisis, industrial reconversion and development contracts; protection of the national economic and business fabric through changes, some of which are temporary, to the exercise of special powers in sectors of strategic importance (so-called golden power).
Among the measures for companies in crisis, industrial reconversion and development contracts, the following interventions are highly important.
Decree Law No. 18/2020 refinanced the measure of development contracts by €400 million for 2020 (Article 80). The Ministero dello Sviluppo Economico (MISE) Directive of April 15th, 2020 provided for the allocation of resources.
Finally, it should be noted that Law Decree no. 18/2020 authorized the Extraordinary Commissioner for the Epidemiological Emergency to provide funding to companies producing medical devices and personal protective equipment, using INVITALIA as the entity managing the measure. To this end, expenditure of EUR 50 million for 2020 has been authorized (Article 5). The aid scheme was authorized by the EU Commission (on 22nd March 2020). The Ordinance of the Extraordinary Commissioner of 23rd March 2020 (published in the Official Journal on 24 March 2020) implemented the measure.
The resources were assigned to the granting of aid to investment programs aimed at increasing the availability of medical devices and personal protection equipment in the national territory through the expansion of the capacity and/or the reconversion of an existing production unit. The facilities consist of subsidized financing of up to 75% of eligible expenditure. The maximum amount of the facilities that can be granted, in terms of aid (intended as Gross Grant Equivalent), may not exceed 800,000 euros, in accordance with the European Commission Communication of 19th March 2020 - COM (2020) 1863 final - “Temporary Framework for State aid measures to support the economy in the current COVID-19 outbreak”.
Manufacturing masks, gowns, gels and disinfection products, plexiglass spacers, medical devices. These are some of the production reconversions following the pandemic of companies in most of the textile-fashion sector, but also plastics, chemicals, cosmetics, manufacturing, medical, graphics and printing [20].
For some sectors, textiles and chemicals, the new production is opening stable business opportunities in the post 2020 long time crisis, through new channels, which also open opportunities for professional integration.
More than two thirds of companies in the chemical sector, which in the emergency produced alcohol-based disinfectant gels for the hospital sector, are planning to permanently convert, but now intend to extend to direct sales to consumers.
And two thirds of the companies in the plastics sector, which have taken the opportunity to make plexiglass spacers to be installed in the companies, will not stop production. By virtue of a demand that is still expected to be sustained, moreover, more than half of the companies in the textile sector, which are now also aiming to create joint ventures with fashion companies, and almost all the companies in the print sector, which have activated new channels, will maintain active production of masks.
Not all companies, however, are planning to maintain the conversion once the normality is restored, with profound differences between sectors, due to the specificities of the productions.
These are mainly temporary reconversions, on the other hand, for fashion companies that have turned for a few weeks to the production of masks and gowns, as for those in the automotive, cosmetics, medical devices, and manufacturing sectors.
In addition to interventions aimed solely at conversion, the whole world of work has had to face the need to change and adapt to the new situation. Another example of resilience, together with the reconversion of the production of different companies, was the adoption of smart working.
There are data on the transition to remote working collected by Associazione Italiana Esperti Infrastrutture Critiche (AIIC) with the help of other companies. It became clear that before the crisis and therefore until 2019 in companies 71% of employees did not even know what remote working was. During the pandemic 97% of people said they had been working remotely all the time and 43% of people interviewed said they would continue to work remotely.
Regarding the impact on the IT budget: 30% of companies said that investments on the 2020 roadmap projects reset and/or moved to 2021 or suspended.
In contrast, 30% of companies stated that investments will continue without any impact on the 2020 roadmap projects.
Finally, 60% of companies say they still do not know how to proceed with the investments.
The company management, however, has the advantage of being able to provide incentives for sanitization and safety at work: for companies are introduced incentives for sanitization and increased safety at work, through the granting of a tax credit equal to 50% of expenses up to a maximum of 20 thousand euros, and contributions through the establishment of an Inail fund.
The pandemic emergency has not only produced a strong acceleration of digital transformation, smart working and strong demands related to logistics, but also interesting productive reconversions, together with the consciousness of the complex interrelation through different sectors and their supply chain.
For SMEs, the introduction of new products has often meant a real revolution in the business, but able to ensure continuity in production that would otherwise have stopped. Moreover, in case the reconversions are expected to be permanent, are requiring new professional figures to support the activity.
And, most of all, the emergency confirmed the relevance of the human factor.
Supply Chain Continuity Management (SCCM) must be considered as a necessary evolution of Business Continuity Management (BCM) models. SCCM is outlined in the ISO 22318 standard which is part of the group of standards for continuity management including ISO 22301, ISO 22313 Security and resilience (ISO 22318), and ISO 28000, which specifies the requirements for a security management system, including those aspects critical to security assurance of the supply chain. SCCM defines continuity in relation to external supplies, third parties or internal entities that play a supplier role in the context of the organization.
The simplified representation of the supply chain therefore provides a composite structure of internal and external suppliers (considering also the flexibility applicable to the relationships between the suppliers) that contribute to the operations of an organization and consequently of its customers.
If the relationship with suppliers is characterized by assets that are mainly intangible and movable and therefore related, for example, to the exchange of information or movable consumer goods, there will be greater control. An example in this sense, during the pandemic emergency management consisted in the possibility of maintaining relationships with suppliers through forms of smart working. This form of collaboration and coordination has been possible mainly between entities operating in sectors consisting of intangible assets such as professional, scientific and technical activities, financial and insurance activities, the activities of extraterritorial organizations, public administration and most professional services and, in general, all sectors that have not been affected by the suspension decrees.
In any case it will be necessary to have a management plan in case of crisis or incidents involving the supply chain.
The adoption of such measures will result in increasing control over the value chain in relation to an organization. In particular, the analysis carried out on the supply chain gives visibility to the mapping of interdependencies between different sectors allowing an analysis that goes beyond the single organization. Network analysis techniques could be combined with criticality and reliability metrics in order to produce composite methods that provide useful information to stakeholders [21].
As for ISO 22301, to plan the SCCM it will be necessary to carry out Impact Analysis activities with the individual suppliers involved, distinguishing critical suppliers from non-critical suppliers. For all relationships with critical suppliers, the guarantee of continuity can be determined by identifying a SCCM strategy to be agreed in transparency with these suppliers. Some strategic approaches may be:
Reducing dependence on a supplier: direct engagement of substitute suppliers for a specific service; increasing on-site stock holding; establishing alternative solutions.
Increasing resilience: loss mitigation; establishing mutual support policies with competitors.
Working with suppliers: creating partnerships with suppliers; setting performance standard; monitoring and dealing with suppliers to increase their resilience; including SCCM requirements in supplier contracts.
The direct effects of the suspension decrees concerned the sectors directly involved and all those sectors that had to sustain the labor shortage caused by the lockdown. While other sectors not directly involved in the suspension decrees, such as financial services or wholesale trade, or sectors more prone to targeted reconversions and the adoption of smart working strategies such as online trade or the fashion sector, were able to stem the direct impact of the emergency or even profit from it.
The Italian National Institute of Statistics in May 2020 has provided a wide range of data and information about the positioning and contribution of the sectors within the Italian production system.
The database is based on the Extended Statistical Register on Economic Performance of Enterprises (Frame-SBS), which contains individual data on all industrial and service enterprises active in the country (about 4.4 million units), supplemented with additional statistical registers that provide detailed information on the characteristics of the employment, as well as import and export enterprises. The data have been further integrated with indicators taken from Italian Accounting.
Considering the enterprises that are part of the universe of reference of the system of Structural Business Statistics (SBS), those that from May 4 are operating in sectors still formally suspended are about 800 thousand (19.1% of the total), with an employment weight of 15.7% on the total of the sectors of industry and market services (excluding the financial sector) [22].
By revising and analyzing the Istat dataset updated in May 2020 [23] with regard to the pandemic, it can be observed in the Figure 1 below that the unavailability of manpower has most directly affected the following sectors in percentage terms:
Other mining and quarrying activities; creative, artistic and entertainment activities; travel agency, tour operator and reservation services and related activities; libraries, archives, museums and other cultural activities; rental and operative leasing activities; real estate activities; activities concerning lotteries, betting, gambling houses; Sports, entertainment and leisure activities; construction of buildings; Mining of metal ores; Manufacture of other transport equipment; Manufacture of leather and related products; Manufacture of motor vehicles, trailers and semi-trailers; Manufacture of furniture; Tobacco industry; Metallurgy; Advertising and market research: 100%
Manufacture of clothing, manufacture of leather and fur articles: 98,48%
Manufacture of fabricated metal products (except machinery and equipment): 93,98%
Manufacture of other non-metallic mineral products: 92,85%
Food service activities: 90,91%
Manufacture of machinery and equipment NCA: 89,48%
Textile industries: 86,77%
Other personal service activities: 83,46%
Wholesale trade (except of motor vehicles and motorcycles): 67,23%
Manufacture of rubber and plastic products: 63,67%.
Unavailability of manpower.
Considering the analyses and remediation plans structured to protect the SCC, it is possible to structure What If models oriented to predict the consequences linked to the lack of a supply.
In relation to the manpower issue, for example, it is possible to structure time-oriented models that consider the negative effects of the manpower.
The Domino Effect methodology applied to manpower aims to study and quantify the consequences of a negative event that causes a lack of personnel and/or supply chain. The model is configured as a visualization of the propagation over time of the negative effects caused by the unavailability of a certain percentage of company personnel.
Such a predictive model can allow the decision maker to simulate different crisis scenarios resulting from the loss of personnel based on the formal organizational structure of the company. In order for the model to be effective, however, it will be essential to feed the model and the collection of information starting from the analysis of the organizational chart and the company function chart.
Information is needed that can be traced back to the following organizational areas:
Administration (ADM)
Actors in charge of Crisis Management (CM)
Functions that have relationships with critical suppliers (SUP)
Business (BSS)
Commercial (COM).
The holistic evolution of this model consists in describing the interdependencies between different sectors starting from the simulation of a disservice concerning a sector. The generic example below can be applied to a single reality in order to understand what long-term effects the lack of manpower, considered as a distinguished sector, could have on the operational continuity of the organization itself (Figure 2).
Manpower cascading effect on organizational areas.
The severity of the dependency corresponds to the extent to which the Quality of Service (QoS) perceived by the user is deteriorated. Depending on the item, the degradation can be measured by the variation of some specific parameters (coverage, signal reception, delivery time, etc.) with respect to the normal QoS values. In general, the measures that allow to characterize the QoS can be traced back to the general concepts of availability and capacity: the quality with which the service is provided can be described by quantifying the quantity of items provided in comparison to the demand and the time in which the service is actually available. The choice of the temporal moments in which to sample the phenomenon varies according to the item represented.
Metrics commonly agreed to in these cases include: Abandonment Rate; ASA (Average Speed to Answer); TSF (Time Service Factor); FCR (First-Call Resolution); TAT (Turn-Around Time); TRT (total resolution time); MTTR (Mean Time To Recover).
Starting from the elaboration of matrices that consider dependency relations, to represent a domino effect map it is necessary to apply a “filter” based on the degradation level of the service. an item will be considered compromised (and therefore will be represented in the domino effect map) only if the QoS degradation will be higher than a certain threshold, so the service is not considered acceptable (outage).
Various methods are described in the literature to perform this assessment. In general, the most common approaches consist in identifying some indicators that describe the various aspects of the consequences caused by an out of service event.
These indicators can fall into the following categories:
number of people (evaluated in terms of people impacted by the disruption)
economic damage (assessed in terms of the extent of economic losses and/or deterioration of products or services)
effects on public opinion (assessed in terms of impact on public confidence, physical suffering, and disruption of daily life).
Simulation of interdependencies and graph-based model to understand critical infrastructure interdependencies are proposed in literature [24, 25, 26, 27].
The graphical output here proposed (Figure 3) from the described model consists of dependency trees, time-oriented, that describe the collapse of the internal structure of an organization following the manpower “sector” unavailability. This model can be applied to a single organization based on its SC analysis starting considering one or more products and services sectors.
Manpower dependency tree.
By re-analyzing the ISTAT indices and considering the main sectors activated by the sectors impacted by the manpower shortage, it is possible to identify which related sectors have been most impacted by service interruptions than those listed above.
The sectors impacted indirectly by the shortage of manpower compared with the interruptions of those impacted directly are as follows:
Rental and management of owned or leased properties
Legal and accounting activities
Road freight transport, removal and pipeline transport
Financial service activities (except insurance and pension funding)
Wholesale
Manufacture of fabricated metal products (except machinery and equipment)
As we can see in Figure 4, some sectors such as Financial Services Activities that did not undergo significant effects during the first phase of the lockdown, are subject to an indirect impact due to the activity suspension of their main suppliers.
Index of indirect impact on SCC for other sectors not highly affected by unavailability of manpower.
The Augustus method can be considered as another concrete approaches to Critical Infrastructure protection.
The Method is a tool used by the Civil Protection Department of the Italian Republic for emergency planning. The Augustus Method was created in order to equip the Italian Civil Protection Service with a unified strategy for planning the Civil Protection assistance at various levels of competence.
This method is named after the Roman Emperor Augustus (27 B.C. to 14 A.D.), who affirmed that: “
This approach to the complexity of modern reality was structured and adapted by Elvezio Galanti, who considers the “emergency” (a public situation of particular difficulty and danger) an “organism” with its own life and composed by physiological functions (endocrine system, cardiology, etc.), each one specialized in its own field in which normally carries out its ordinary activity. In the context of civil protection, the “organism” is defined as the territory in which they normally act, and each one because of its specific functions (municipal, regional, health, transport, etc.). In the event of a disaster, these activities must all work together and in synergy.
The Augustus Methodology highlights, therefore, a fundamental aspect of the functioning of the Italian Civil Protection: its systemic nature. A complex apparatus made up of different elements and different organizations, resulting from the functioning of different systems in interaction with each other and with the other organizational systems [28].
In the preventive design phase, the Civil Protection, first of all, must work to collect information (time of occurrence of an event, geological conformation, productive fabric, urban fabric, etc.), then it must proceed with basic examinations (hazard analysis, vulnerability analysis, etc.) and finally a first diagnosis will be made (scenario, i.e. what I expect to happen) and for this reason, facilities will be arranged (monitoring networks, cleaning of riverbeds, seismic adaptation of structures, etc.).
In the absence or in the impossibility of activating these protocols, minimum measures of confrontation will be taken through the constitution of a “resilient cell” to manage the “big 5”, i.e. five macro-areas in which the operational approach is divided into “acute emergency”. These are:
identification of sites per control room;
entry points for expected rescue;
reception areas and first assistance to the population;
identification of proximity sites to coordinate local interventions;
assistance to the population (health and management of any temporary camps for reception and stay).
In the “acute” emergency scenario the Augustus Method becomes a good practice to manage the situation through the identification of 14 basic support functions, or support, that match all the competent and specific institutional figures for each function at territorial level and that contribute to its ordinary and extraordinary functioning. These functions are usually involved during the emergency itself, while in the study phases prior to the emergency, such as forecasting and prevention, they are deactivated and delivered to their specific and ordinary institutional functioning. These functions are: F 1 - Technology and planning; F 2 - Health, social and veterinary assistance; F 3 - Mass-media and information; F 4 - Volunteering; F 5 - Materials and means; F 6 - Transport, traffic and roads; F 7 - Telecommunications; F 8 - Essential services; F 9 - Census of damage to persons and property; F 10 - Operational facilities; F 11 - Local authorities; F 12 - Hazardous materials; F 13 - Assistance to the population; F 14 - Coordination of operational centres.
The design of all coordinated activities and procedures of Civil Protection to respond to any disaster event that is expected in a specific territory is called “Emergency Plan”. The Emergency Plan must be implemented:
Forecasting and Prevention Programs
Information related to:
physical processes causing the risk conditions and their assessments
precursors
events
scenarios
available resources.
Therefore, it is necessary to represent graphically the information necessary for the characterization of possible risk scenarios for the implementation of intervention strategies for the rescue and management of the emergency, rationalizing and targeting the use of men and means.
According to the Method, the following conditions determine the success of a civil protection operation [29]:
unitary direction: the unitary direction of emergency operations is implemented through the coordination of a complex system and not in a sectoral vision of the intervention.
communication: constant exchange of information between the central and peripheral Civil Protection system.
resources: rational and timely use of the resources really available and the availability of the men and means suitable for intervention.
The Emergency Plan structured according to the Augustus Method must be able to answer the following questions:
what calamitous events may reasonably affect the municipality?
which people, facilities and services will be affected or damaged?
what operational organization is necessary to minimize the effects of the event with particular attention to the protection of human life?
to whom are the different responsibilities at the various levels of command and control for emergency management assigned?
To satisfy these needs, it is first of all necessary to define the risk scenarios on the basis of the vulnerability of the portion of the territory concerned (areas, population involved, damaged structures, etc.) in order to have a global and reliable picture of the expected event and therefore to be able to dimension in advance the operational response necessary to overcome the disaster with particular attention to the protection of human life (how many firefighters, how many volunteers, which command and control structures, which roads or escape routes, which shelter structures, health areas, etc.).
The Emergency Plan is therefore a working tool calibrated on a likely situation based on scientific knowledge of the state of risk of the territory, which can be updated and integrated with reference to the list of men and means, but especially when new knowledge is acquired on the conditions of risk involving different assessments of the scenarios, or even when new or additional monitoring and warning systems to the population are available [30].
On the provincial level, the Emergency Plan will identify, at an inter-municipal or provincial scale: on the one side the situations that can configure a more extensive emergency of the single municipality, on the other side the situations, even localized, of greater risk, pointing out, when necessary, the need for an in-depth study of some aspects related to the Municipal scale.
On municipal level, a more detailed level of information is needed to allow the operators of the various components of the Civil Protection to have a reference framework corresponding to the size of the expected event, the population involved, the alternative road system, possible escape routes, waiting areas, shelter, storage areas and so on. Considering that the risk present in a given territory may refer to different types of events (floods, earthquakes, landslides, etc.), the Emergency Plan must provide for one or more “risk scenarios”, which must or may correspond to different types of intervention.
The Italian Civil Protection assumes primary and decisive roles on the institutional scene of civil protection in Italy. This body sums up three fundamental structures at national level:
the Civil Protection Department at the Presidency of the Council of Ministers
the General Directorate of Civil Protection and Firefighting Services at the Ministry of the Interior
the National Seismic Service at the Department of National Technical Services (currently dependent on the Ministry of Public Works).
The Civil Protection plays a key role in the management of national emergencies but not only: the possibility of being activated by the Prefect (Prefetto) for emergencies and in particular cases also for events at local level, makes the Civil Protection an entity that can operate de facto across the board. The Prefect is the cornerstone of the command and coordination structure of the civil protection operational system.
Another key player is represented by the Mayor. He is the determining element in the operational chain of civil protection at municipal level in the assumption of all responsibilities related to civil protection tasks: from the preventive organization of control and monitoring activities to the adoption of emergency measures aimed primarily at safeguarding human life.
It is appropriate, at this point, to make one final consideration: the Emergency Plan is drawn up in any case on the basis of the scientific knowledge possessed at the time of writing, without waiting for studies in progress or future assignments or improvements. An “expeditious” plan, even if imprecise and precautionary, is better than no plan at all. As soon as possible, the Emergency Plan will be reviewed, improved, and completed with more data and more scientific bases.
The key concept of contingency planning is to try to predict all possible variables, however, it is necessary to be aware that it will always be possible, in any emergency, to face something unforeseen.
The coordination of the members of the National Service of Civil Protection is happening according to the provisions of the Augustus Method thanks to the synchronism of the representatives of each operational function (Health, Volunteering, Telecommunications, etc..) to interact directly with each other.
The intervention model adopted by civil protection for the management of the epidemiological emergency [31] based on the definition of the chain of command and control, the communication flow and the procedures to be activated in relation to the emergency state determined by the spread of the pandemic.
The chain of command and control includes the following levels of coordination:
National level: the Head of the Civil Protection Department ensures the coordination of the necessary interventions, making use of the Department, the components, and operational structures of the National Civil Protection Service, as well as implementing entities. At the Department of Civil Protection is active the Civil Protection Operational Committee, with the task of ensuring the contribution and support of the National Civil Protection System on the basis of the health indications defined by the Ministry of Health, which makes use of the ISS (Istituto Superiore Sanità) and the Scientific Technical Committee specifically established with the OCDPC 630/2020 at the Department.
Regional level: at all Regions must be activated a regional crisis unit, which operates in close connection with the SOR - Regional Operations Room, which must provide for the participation of the Regional Health Contact, which operates in connection with the Health Director of the local health agencies, and in constant contact with a representative of the Chief Prefecture, in order to ensure the connection with the other Prefectures - UTG of the regional territory.
Provincial level: in the provinces in which at least one person is positive for whom the source of transmission is unknown or in any case where there is a case not attributable to a person from an area already affected by the virus, as provided by art. 1, paragraph 1 of Decree-Law no. 6 of 23.02.2020, the Prefect or his delegate provides for the activation of the CCS - Rescue Coordination Centre
Municipal level: in the municipalities or areas in which at least one person is positive for whom the source of transmission is unknown or in any case where there is a case not attributable to a person from an area already affected by the aforementioned virus, as provided by art. 1 paragraph 1 of Decree-Law no. 6 of 23.02.2020, the Mayor or his delegate provides for the activation of the Municipal Operations Centre - COC of the municipality involved and neighboring municipalities in order to implement possible preventive actions.
Therefore, in order to cope with the pandemic and in accordance with the provisions of the Augustus Method, collaborative decision-making processes have been initiated in real time in the operational rooms of the various levels such as:
Centro Coordinamento dei Soccorsi (CCS) - Rescue Coordination Centre
Centro Operativo Comunale (COC) - Municipal Operations Centre
Centro Operativo Misto (COM) - Mixed Operations Centre.
The CCS is the main body at provincial level and is chaired by the Prefect or his delegate. By COC is meant the Municipal Operations Centre, responsible for the activities at municipal-local level, whose maximum point of reference is the Mayor or his delegate (Law 225/1992 - Art. 15). Finally, the COM is the Mixed Operations Centre. They can be more than one and set up ad hoc to be as close as possible to the place of the event.
Originally established as emergency operational centres (i.e. support and operational coordination structures set up and organized exclusively in the full management phase of the emergency following catastrophic events), over time the term has moved to a broader interpretation of the term which also involves structures and organizational divisions of one or more local administrations in the construction of the local civil protection system as well as emergency planning activities to be carried out in ordinary time.
In this emergency caused by the pandemic, a key role is played by the COC, which have been activated in many Italian municipalities [32].
Specifically, the Mayor makes use of the COC to ensure the direction and coordination of rescue and assistance services to the population within his municipal territory in relation to the declaration of the state of emergency issued by the Italian Government. The choice of the location of this Centre must be in earthquake-proof structures, in areas with easy access and not vulnerable to any kind of risk. These facilities must be equipped with a square of enough size to accommodate heavy vehicles and anything else needed in a state of emergency. The COC is responsible for the decision-making levels of the entire municipal structure, summarized in the trade union responsibilities referred to in the previous paragraphs; as a rule, the decision-making level is taken by the Mayor who, through a municipal civil protection system, identifies the actions and strategies necessary to try to keep the infection curve and morbidity index under control. The COC operates in a place of coordination called “operations room” where all the news related to the event converge and where decisions are taken to overcome it. In many municipalities, the COC has been activated by the Mayor as an immediate consequence of the increase in infections within the national territory, and not necessarily in the municipal one, and it will remain operational until the resolution of the pandemic crisis [33].
According to the Civil Protection Operational Measures for the management of the epidemiological emergency [31] actions and operational measures identified for each level of coordination, without prejudice to the provisions issued by the Ministry of Health, are as follows:
information to the population
activation of local volunteering, in connection with the levels of coordination above
organization of actions at the municipal level, in connection with the regional and provincial level, actions to ensure the continuity of essential services, as well as the collection of waste in areas affected, or that may be affected, by urgent measures of containment
organization of actions at the municipal level, in connection with what has been prepared at the regional level, actions aimed at ensuring the continuity of the supply of basic necessities (including fuel supplies) in the areas concerned, or that could be affected by urgent containment measures;
planning, or possible activation, of the actions of assistance to the population of the municipalities concerned, or that could be affected by urgent containment measures
planning and organization of home care services for persons in home quarantine (e.g., basic necessities, medicines, pre-packaged meals…), possibly carried out by personnel of volunteer organizations, appropriately trained.
At this point, it can be stated that the success of a civil protection operation can be achieved if three parameters are satisfied: coordination, communication, and resource management.
As with any crisis management strategy, resilience strategies must be planned and prepared during the “peace” period and then implemented, appropriately adapted, during crisis situations. The variable structure, and a proactive response, is what succeeds in giving us a continuity and dealing successfully with the complexity.
Labor shortages directly affected all those sectors that had to close due to the impossibility to convert their business using smart working. Some activities, although part of sectors not directly involved in the lockdown, were indirectly affected by labor shortages caused by the inability of seasonal and commuting staff to move. Finally, the indirect repercussions that have affected those activities that, while remaining operational, have suffered significant economic repercussions due to the interruption of their supply chain caused by the shortage of labor in other sectors.
To be considered in the degree of dependence that an organization might have on its suppliers, beyond its intrinsic resilience, is the degree of flexibility applicable to relations with the various suppliers.
To plan the SCCM it will be necessary to carry out Impact Analysis activities with the individual suppliers involved, distinguishing critical suppliers from non-critical suppliers. For all relationships with critical suppliers continuity can be determined by identifying a SCCM strategy to be agreed transparently with these suppliers. Some strategic approaches may be:
Reducing dependence on a supplier: direct engagement of alternative suppliers for a given service; increasing on-site stock holding; establishing alternative solutions.
Increased resilience: mitigation of losses; identification of a set of alternative suppliers; establishing mutual support policies with competitors.
Working with suppliers: creating partnerships with suppliers; setting performance standards (including through SLAs); monitoring and dealing with suppliers to increase their resilience; including SCCM requirements in supplier contracts.
The adoption of these measures will result in increasing control over the value chain in relation to an organization. In particular, the analysis carried out on the supplier chain gives visibility to the mapping of the interdependencies between the different sectors enabling an analysis that goes beyond the single organization.
Therefore, maximum flexibility and, at the same time, the ability to create the preconditions (e.g. through exercises) is needed to ensure that the best conditions for success are in place in these cases as well.
Moreover, most of all, the 2020 crisis confirmed the relevance of the human factor.
The Italian case is an example of how the set of private initiatives, the support of adequate policies of incentives and support from the State, together with a strong sense of solidarity with the population, can represent a positive reaction to a negative event, and that business strategies oriented towards business continuity are the basis for the development of resilience in the productive sector, and the resilience of the Critical Infrastructures.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"12'A=0"},books:[{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12222",title:"Advances and Challenges in Microplastics",subtitle:null,isOpenForSubmission:!0,hash:"a36734a551e0997d2255f6ce99eff818",slug:null,bookSignature:"Prof. El-Sayed Salama",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",editedByType:null,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12223",title:"Sustainable Management of Natural Resources",subtitle:null,isOpenForSubmission:!0,hash:"1881a08bbd8f5dc1102c5cb7c635bc35",slug:null,bookSignature:"Dr. Mohd Nazip Suratman and Dr. Engku Azlin Rahayu Engku Ariff",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",editedByType:null,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"760",title:"Telecommunication",slug:"electrical-and-electronic-engineering-telecommunication",parent:{id:"116",title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:88,numberOfWosCitations:34,numberOfCrossrefCitations:40,numberOfDimensionsCitations:62,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"760",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7414",title:"Modulation in Electronics and Telecommunications",subtitle:null,isOpenForSubmission:!1,hash:"5066fa20239d3de3ca87b3c45c680d01",slug:"modulation-in-electronics-and-telecommunications",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/7414.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6771",title:"RF Systems, Circuits and Components",subtitle:null,isOpenForSubmission:!1,hash:"c5659bd3ce7141b314b5f0d1077187aa",slug:"rf-systems-circuits-and-components",bookSignature:"Mamun Bin Ibne Reaz and Mohammad Arif Sobhan Bhuiyan",coverURL:"https://cdn.intechopen.com/books/images_new/6771.jpg",editedByType:"Edited by",editors:[{id:"129681",title:"Dr.",name:"Mamun Bin Ibne",middleName:null,surname:"Reaz",slug:"mamun-bin-ibne-reaz",fullName:"Mamun Bin Ibne Reaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7417",title:"The Future of Television",subtitle:"Convergence of Content and Technology",isOpenForSubmission:!1,hash:"e9ae7433daa77973fd72130df6622c68",slug:"the-future-of-television-convergence-of-content-and-technology",bookSignature:"Ioannis Deliyannis",coverURL:"https://cdn.intechopen.com/books/images_new/7417.jpg",editedByType:"Edited by",editors:[{id:"103622",title:"Dr.",name:"Ioannis",middleName:null,surname:"Deliyannis",slug:"ioannis-deliyannis",fullName:"Ioannis Deliyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5833",title:"Microstrip Antennas",subtitle:"Trends in Research on",isOpenForSubmission:!1,hash:"351227e37c8525ecf982ef45c2dea655",slug:"trends-in-research-on-microstrip-antennas",bookSignature:"Sudipta Chattopadhyay",coverURL:"https://cdn.intechopen.com/books/images_new/5833.jpg",editedByType:"Edited by",editors:[{id:"188270",title:"Dr.",name:"Sudipta",middleName:null,surname:"Chattopadhyay",slug:"sudipta-chattopadhyay",fullName:"Sudipta Chattopadhyay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2044",title:"Quality of Service and Resource Allocation in WiMAX",subtitle:null,isOpenForSubmission:!1,hash:"372438e4e660a3d4955bc8eb679a6990",slug:"quality-of-service-and-resource-allocation-in-wimax",bookSignature:"Roberto C. Hincapie and Javier E. Sierra",coverURL:"https://cdn.intechopen.com/books/images_new/2044.jpg",editedByType:"Edited by",editors:[{id:"72042",title:"Dr.",name:"Roberto",middleName:null,surname:"Hincapie",slug:"roberto-hincapie",fullName:"Roberto Hincapie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"56272",doi:"10.5772/intechopen.69766",title:"Bio-Inspired Microstrip Antenna",slug:"bio-inspired-microstrip-antenna",totalDownloads:1896,totalCrossrefCites:8,totalDimensionsCites:11,abstract:"In the last few years, bio‐inspired solutions have attracted the attention of the scientific community. Several world‐renowned institutions have sponsored and created laboratories in order to understand the forms, functions and behavior of living organisms. Some methods can be highlighted in the search for geometric representation of the shapes found in the nature, the fractal geometry, the polar geometry, and the superformula of Gielis. This chapter is focusing on bio‐inspired microstrip antennas, especially on leaf‐shaped antennas from the Gielis superformula that open a vast research field for more compact antennas with low visual impact.",book:{id:"5833",slug:"trends-in-research-on-microstrip-antennas",title:"Microstrip Antennas",fullTitle:"Trends in Research on Microstrip Antennas"},signatures:"Alexandre Jean René Serres, Georgina Karla de Freitas Serres, Paulo\nFernandes da Silva Júnior, Raimundo Carlos Silvério Freire, Josiel do\nNascimento Cruz, Tulio Chaves de Albuquerque, Maciel Alves\nOliveira and Paulo Henrique da Fonseca Silva",authors:[{id:"107092",title:"Dr.",name:"Paulo",middleName:null,surname:"Silva",slug:"paulo-silva",fullName:"Paulo Silva"},{id:"199230",title:"Dr.",name:"Alexandre Jean René",middleName:null,surname:"Serres",slug:"alexandre-jean-rene-serres",fullName:"Alexandre Jean René Serres"},{id:"199961",title:"BSc.",name:"Maciel Alves de",middleName:null,surname:"Oliveira",slug:"maciel-alves-de-oliveira",fullName:"Maciel Alves de Oliveira"},{id:"199963",title:"MSc.",name:"Josiel",middleName:null,surname:"Cruz",slug:"josiel-cruz",fullName:"Josiel Cruz"},{id:"205094",title:"Dr.",name:"Georgina Karla",middleName:null,surname:"Freitas Serres",slug:"georgina-karla-freitas-serres",fullName:"Georgina Karla Freitas Serres"},{id:"205095",title:"Ph.D.",name:"Paulo",middleName:"Fernandes",surname:"Fernandes da Silva Junior",slug:"paulo-fernandes-da-silva-junior",fullName:"Paulo Fernandes da Silva Junior"},{id:"205097",title:"Dr.",name:"Raimundo Carlos",middleName:null,surname:"Silvério Freire",slug:"raimundo-carlos-silverio-freire",fullName:"Raimundo Carlos Silvério Freire"},{id:"205098",title:"M.Sc.",name:"Tulio Chaves",middleName:null,surname:"Albuquerque",slug:"tulio-chaves-albuquerque",fullName:"Tulio Chaves Albuquerque"}]},{id:"27693",doi:"10.5772/29971",title:"A Comprehensive Survey on WiMAX Scheduling Approaches",slug:"a-comprehensive-survey-on-wimax-scheduling-approaches-",totalDownloads:3300,totalCrossrefCites:6,totalDimensionsCites:9,abstract:null,book:{id:"2044",slug:"quality-of-service-and-resource-allocation-in-wimax",title:"Quality of Service and Resource Allocation in WiMAX",fullTitle:"Quality of Service and Resource Allocation in WiMAX"},signatures:"Lamia Chaari, Ahlem Saddoud, Rihab Maaloul and Lotfi Kamoun",authors:[{id:"80143",title:"Dr.",name:"Lamia",middleName:null,surname:"Chaari",slug:"lamia-chaari",fullName:"Lamia Chaari"},{id:"80302",title:"PhD.",name:"Ahlem",middleName:null,surname:"Saddoud",slug:"ahlem-saddoud",fullName:"Ahlem Saddoud"},{id:"80303",title:"Prof.",name:"Lotfi",middleName:null,surname:"Kamoun",slug:"lotfi-kamoun",fullName:"Lotfi Kamoun"},{id:"81658",title:"MSc.",name:"Rihab",middleName:null,surname:"Maaloul",slug:"rihab-maaloul",fullName:"Rihab Maaloul"}]},{id:"57320",doi:"10.5772/intechopen.70173",title:"Bandwidth Enhancement Techniques",slug:"bandwidth-enhancement-techniques",totalDownloads:4890,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"In this chapter, a variety of procedures proposed in the literature to increase the impedance bandwidth of microstrip patch antennas are presented and discussed. Intrinsic techniques, proximity coupled and aperture-coupled patches, applying horizontally coupled patches to driven patch on a single layer and stacked patches are discussed. Beside the linear polarised solutions, some techniques for designing wideband circular polarised patch antennas are also presented. Furthermore, some other techniques proposed in the literature including log-periodic array of patches, E-shaped patch, L-shaped feeding, microstrip monopole slotted antenna, defected ground/patch technique and the latest works during the recent years are introduced and investigated. It is tried to make a comparison between different methods giving a typical bandwidth that can be obtained using each method, beside discussing about the benefits or limitations that each method has.",book:{id:"5833",slug:"trends-in-research-on-microstrip-antennas",title:"Microstrip Antennas",fullTitle:"Trends in Research on Microstrip Antennas"},signatures:"Seyed Ali Razavi Parizi",authors:[{id:"198931",title:"Dr.",name:"Seyed Ali",middleName:null,surname:"Razavi Parizi",slug:"seyed-ali-razavi-parizi",fullName:"Seyed Ali Razavi Parizi"}]},{id:"55913",doi:"10.5772/intechopen.69522",title:"Design and Analysis of Microstrip Patch Antennas Using Artificial Neural Network",slug:"design-and-analysis-of-microstrip-patch-antennas-using-artificial-neural-network",totalDownloads:1980,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"The microstrip patch antenna can also be designed using an artificial neural network (ANN) modeling technique where size of the antenna is major limitation especially in mobile and wireless applications. In this chapter, analysis and synthesis problems for designing of microstrip patch antennas were discussed using the artificial neural network technique. An analysis problem refers to calculation of resonant frequency of microstrip patch antenna whereas a synthesis problem refers to calculation of dimensions of patch antenna. Both problems are reciprocal of each other. Results are implemented using graphical user interface (GUI) tools of MATLAB programming language. Back‐propagation training algorithm of artificial neural network is used to train the network for minimization of error and computation time. Therefore, the geometric dimensions of patch are obtained with high accuracy in less computation time as compared to simulation software.",book:{id:"5833",slug:"trends-in-research-on-microstrip-antennas",title:"Microstrip Antennas",fullTitle:"Trends in Research on Microstrip Antennas"},signatures:"Vivek Singh Kushwah and Geetam Singh Tomar",authors:[{id:"198433",title:"Dr.",name:"Vivek",middleName:"Singh",surname:"Kushwah",slug:"vivek-kushwah",fullName:"Vivek Kushwah"},{id:"198435",title:"Dr.",name:"Geetam Singh",middleName:null,surname:"Tomar",slug:"geetam-singh-tomar",fullName:"Geetam Singh Tomar"}]},{id:"63230",doi:"10.5772/intechopen.79299",title:"Integration of Hybrid Passive Optical Networks (PON) with Radio over Fiber (RoF)",slug:"integration-of-hybrid-passive-optical-networks-pon-with-radio-over-fiber-rof-",totalDownloads:1114,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"A cost effective, robust, and high capacity access network necessitated to meet the mounting customer demands for bandwidth-desirous services. A remarkable evolution of access networks is observed both in wired and wireless, predominantly driven by ever-changing bandwidth requirements. A wireless connection releases the end user from the restrictions of a physical link to a network that results in mobility, flexibleness, and ease of use. Whereas, optical networks offer immense amount of bandwidth that appease the most bandwidth voracious customers compared to bandwidth limited wireless networks. The integration of wired and wireless domains in the access landscape that presents a technical analysis of optical architectures suitable to support radio over fiber (RoF) is the objective of this chapter. Investigate the main trends that drive the merger of fiber and wireless technologies in access networks. Moreover, study the primary terms and the particular transmission features of integrated fiber-radio links to form a well-defined classification of hybrid systems and techniques. This work also recognizes the major problems for realization of RoF systems and examines the limitation, advantages, and diversity of integrated RoF-PON technology.",book:{id:"6771",slug:"rf-systems-circuits-and-components",title:"RF Systems, Circuits and Components",fullTitle:"RF Systems, Circuits and Components"},signatures:"Shahab Ahmad Niazi",authors:[{id:"242458",title:"Dr.",name:"Shahab",middleName:null,surname:"Niazi",slug:"shahab-niazi",fullName:"Shahab Niazi"}]}],mostDownloadedChaptersLast30Days:[{id:"57320",title:"Bandwidth Enhancement Techniques",slug:"bandwidth-enhancement-techniques",totalDownloads:4891,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"In this chapter, a variety of procedures proposed in the literature to increase the impedance bandwidth of microstrip patch antennas are presented and discussed. Intrinsic techniques, proximity coupled and aperture-coupled patches, applying horizontally coupled patches to driven patch on a single layer and stacked patches are discussed. Beside the linear polarised solutions, some techniques for designing wideband circular polarised patch antennas are also presented. Furthermore, some other techniques proposed in the literature including log-periodic array of patches, E-shaped patch, L-shaped feeding, microstrip monopole slotted antenna, defected ground/patch technique and the latest works during the recent years are introduced and investigated. It is tried to make a comparison between different methods giving a typical bandwidth that can be obtained using each method, beside discussing about the benefits or limitations that each method has.",book:{id:"5833",slug:"trends-in-research-on-microstrip-antennas",title:"Microstrip Antennas",fullTitle:"Trends in Research on Microstrip Antennas"},signatures:"Seyed Ali Razavi Parizi",authors:[{id:"198931",title:"Dr.",name:"Seyed Ali",middleName:null,surname:"Razavi Parizi",slug:"seyed-ali-razavi-parizi",fullName:"Seyed Ali Razavi Parizi"}]},{id:"56514",title:"Low-SAR Miniaturized Handset Antenna Using EBG",slug:"low-sar-miniaturized-handset-antenna-using-ebg",totalDownloads:1740,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Advances in wireless communications have paved the way for wide usage of mobile phones in modern society, resulting in mounting concerns surrounding its harmful radiation. Energy absorption in human biological tissues can be characterized by specific absorption rate (SAR). This value refers to the actual amount of electromagnetic energy absorbed in the biological tissues, thus a lower value of SAR indicates a lower radiation exposure risk to the human body. So, our challenge is to introduce mobile handset antennas with low SAR and operating at all mobile and wireless applications. In this chapter, novel configurations of single-element antenna are designed, simulated, fabricated, and measured. The antennas operate for most cellular applications: global system for mobile (GSM)-850/900, digital cellular system (DCS)-1800, personal communication service (PCS)-1900, universal mobile telecommunication system (UMTS)-2100, and long-term evolution (LTE) bands. The antennas also support wireless applications. The proposed antennas have a compact size and low SAR at all bands. Also, this chapter presents a comprehensive study on the performance of the antenna in the different environments. Furthermore, the antenna performance is tested in the presence of head and hand in free space and in a car. The simulation and measurement results are in good agreement.",book:{id:"5833",slug:"trends-in-research-on-microstrip-antennas",title:"Microstrip Antennas",fullTitle:"Trends in Research on Microstrip Antennas"},signatures:"Kamel Salah Sultan, Haythem Hussien Abdullah and Esmat Abdel-\nFatah Abdallah",authors:[{id:"214874",title:"Dr.",name:"Kamel",middleName:null,surname:"Sultan",slug:"kamel-sultan",fullName:"Kamel Sultan"}]},{id:"62550",title:"Design Concepts of Low-Noise Amplifier for Radio Frequency Receivers",slug:"design-concepts-of-low-noise-amplifier-for-radio-frequency-receivers",totalDownloads:3218,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The development of high-performance radio frequency (RF) transceivers or multi-standard/reconfigurable receivers requires an innovative RF front-end design to ensure the best from a good technology. In general, the performance of front-end and/or building blocks can be improved only by an increase in the supply voltage, width of the transistors or an additional stage at the output of a circuit. This leads to increase the design issues like circuit size and the power consumption. Presently, the wireless market and the need to develop efficient portable electronic systems have pushed the industry to the production of circuit designs with low-voltage power supply. The objective of this work is to introduce an innovative single-stage design structure of low noise amplifier (LNA) to achieve higher performance under low operating voltage. TSMC 0.18 micron CMOS technology scale is utilized for realizing LNA designs and the simulation process is carried out with a supply voltage of 1.8 V. The LNA performance measures are analyzed by using an Intel Core2 duo CPU E7400@2.80GHz processor with Agilent’s Advanced Design System (ADS) 2009 version software.",book:{id:"6771",slug:"rf-systems-circuits-and-components",title:"RF Systems, Circuits and Components",fullTitle:"RF Systems, Circuits and Components"},signatures:"Sumathi Manickam",authors:[{id:"245830",title:"Dr.",name:"Sumathi",middleName:null,surname:"Manickam",slug:"sumathi-manickam",fullName:"Sumathi Manickam"}]},{id:"71296",title:"A Review: Circuit Theory of Microstrip Antennas for Dual-, Multi-, and Ultra-Widebands",slug:"a-review-circuit-theory-of-microstrip-antennas-for-dual-multi-and-ultra-widebands",totalDownloads:1340,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"In this chapter, a review has been presented on dual-band, multiband, and ultra-wideband (UWB). This review has been classified according to antenna feeding and loading of antennas using slots and notch and coplanar structure. Thereafter a comparison of dual-band, multiband, and ultra-wideband antenna has been presented. The basic geometry of patch antenna has been present along with its equivalent circuit diagram. It has been observed that patch antenna geometry for ultra-wideband is difficult to achieve with normal structure. Ultra-wideband antennas are achieved with two or more techniques; mostly UWB antennas are achieved from coplaner structures.",book:{id:"7414",slug:"modulation-in-electronics-and-telecommunications",title:"Modulation in Electronics and Telecommunications",fullTitle:"Modulation in Electronics and Telecommunications"},signatures:"Ashish Singh, Krishnananda Shet, Durga Prasad, Akhilesh Kumar Pandey and Mohammad Aneesh",authors:null},{id:"68080",title:"Polarization Modulation",slug:"polarization-modulation",totalDownloads:979,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Conventional wireless communication systems use amplitude, frequency, and phase of the carrier wave to carry information. However, actual radio waves also have vector parameters, such as polarization and propagation direction. In this chapter, a modulation scheme using polarizations is explained. The polarization modulation provides an additional degree of freedom for the modulation of the carrier waves. Furthermore, the polarization modulation is suitable to realize simple transceivers using RF signal processing. Antennas are the most important key parts of the polarization modulation systems. Polarization agile antennas, active integrated array antenna which integrates an oscillator and modulators, and polarization discrimination antenna are also introduced.",book:{id:"7414",slug:"modulation-in-electronics-and-telecommunications",title:"Modulation in Electronics and Telecommunications",fullTitle:"Modulation in Electronics and Telecommunications"},signatures:"Ichihiko Toyoda",authors:null}],onlineFirstChaptersFilter:{topicId:"760",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:3,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:302,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}}]}},subseries:{item:{id:"90",type:"subseries",title:"Human Development",keywords:"Neuroscientific Research, Brain Functions, Human Development, UN’s Human Development Index, Self-Awareness, Self-development",scope:"