Summary of the dielectric process conditions
Abstract
The mobility of carriers in the channel of silicon carbide is significantly lower than in equivalent silicon devices. This results in a significant increase in on-state resistance in comparison to theoretical predictions and is hindering the uptake of silicon carbide technology in commercial circuits. The density of interface traps at the interface between silicon carbide and the dielectric film is higher and this is often considered to be the primary reason for the low mobility. In this work, we show that the mobility is dominated by the surface roughness of the silicon carbide, especially when the transistor is operating in the strong inversion regime, by careful examination of the characteristics of lateral transistors designed to form complimentary MOS functions.
Keywords
- Surface roughness
- mobility
- complementary metal–oxide semiconductor
- flat band
- 1/f noise
1. Introduction
The main objective of this study is to aid in the advancement and commercialisation of a CMOS process to enable the production of signal-level 4H-SiC MOSFETs for high-temperature digital and analog applications. Therefore, we report on the electrical characterisation and performance of 4H-SiC n- and p-channel MOSFETs that have been fabricated using different, commercially relevant dielectric process treatments. The samples labelled as HV06, CR25 and CR27 were fabricated using the process conditions detailed in Table 1. The aim of this work is to establish which oxidation process technique provides the best characteristics for a complementary CMOS process.
2. Overview of the theoretical MOSFET
The metal–oxide semiconductor field-effect transistor (MOSFET) is one of the most important devices for integrated circuits in microprocessors and semiconductor memories, as well as being a very important power device. Due to this, it is becoming increasingly important to understand and advance the characteristics of 4H-SiC MOSFETs for both power device applications and signal-level devices. MOSFETs have several attractive features, which make them ideal for use in analog switching, high-input-impedance amplifiers, microwave amplifiers and digital integrated circuits.
The features include the following:
Higher input impedance than bipolar transistors, which allows the input impedance to be more readily matched to the standard microwave system.
Negative temperature coefficient at high current levels – more uniform temperature distribution over the device area and prevents the FET from thermal runaway or second breakdown that can occur in the bipolar transistors.
The device is thermally stable, even when the active area is large or when many devices are connected in parallel.
FETs do not suffer from minority carrier storage as there is no forward-biased p–n junction and consequently have higher large-signal switching speeds.
The MOSFET is usually referred to as a majority carrier or unipolar device because the current in a MOSFET is predominantly transported by carriers of one polarity. As shown in Figure 1, a MOSFET is a four-terminal device made up of a source, drain, gate and substrate or body. Figure 1 shows an n-channel MOSFET, which is made up of a p-type substrate into which two n+ regions are formed, the source and drain and a gate electrode which is usually made of doped polysilicon or metal and is separated from the substrate by a thin insulating film known as the gate dielectric.

Figure 1.
Schematic representation of a simple n-MOSFET
When a low voltage is applied to the gate electrode that is insufficient to form an inversion layer at the surface, there is no conduction in the channel, which corresponds to two p–n junctions situated back to back. This results in a high resistance and electrical isolation between the source and drain contacts. If a sufficiently large bias is applied to the gate electrode, a surface inversion layer will be formed between the source and drain, which will form a conductive channel through which a current can flow. The conductance of the channel can be modulated by varying the voltage applied to the gate electrode. Conduction in n-channel devices is based on the flow of electrons, and the channel becomes more conductive with increasing positive bias on the gate, whilst p-channel devices are controlled by hole conduction and are more conductive with a more negative gate bias. Enhancement-mode (or normally off) devices have a low transconductance at zero gate bias and require an applied gate voltage to form a conductive channel. Their counterpart, depletion-mode (or normally on) devices, are conductive when a zero bias is applied to the gate of the device, and a gate voltage must be applied to turn the channel off. Devices can either have a surface inversion channel or a buried channel. Buried channel devices are based on bulk conduction and are, therefore, free of surface effects such as scattering and surface defects resulting in better carrier mobility. The physical distance between the gate and the channel is larger and also dependent on gate bias, leading to lower and variable transconductance.
In a long-channel MOSFET, at low drain voltage and for a given gate voltage, the drain current is given by
where
The field effect mobility
where
In 4H-SiC MOSFETs, the values of the field effect mobility extracted from the
By combining equations 2 and 3, an expression that relates the experimental field effect mobility and the inversion carrier mobility can be derived [2]:
3. Carrier mobility and scattering mechanisms in 4H-SiC
The conductivity
where
The carrier mobility is principally how quickly an electron or hole can move through a semiconductor under the influence of an applied electric field and is affected by the frequency of collisions with lattice defects and impurities. The probability of scattering is inversely proportional to the carrier mean free time and the mobility. A carrier moving through a semiconductor crystal can be scattered by a vibration of the lattice, which increases for high temperatures when the thermal agitation of the lattice becomes higher. Scattering can also be due to lattice defects (e.g. ionised impurities) and is prominent at low temperatures since atoms are less thermally agitated and the thermal motion of the carriers is also slower. Higher scattering arises because a slow moving carrier is likely to be scattered more significantly by an interaction with a charged ion than a carrier with a larger velocity. If the carrier mobility in a material is reduced, the conductivity of the material will reduce and hence the resistivity will increase and channel current will reduce. As it is widely known that 4H-SiC MOSFETs exhibit low channel mobility and hence low current, it is of great importance to analyse the mechanisms that are contributing to the reduced channel mobility.
As previously reported [3-5], the total inversion carrier mobility in 4H-SiC MOSFETs can be described by the sum of four mobility terms using Matthiessen’s rule which is often incorporated in simulation tools, such as the Synopsys suite by means of the Lombardi mobility model [6,7]:
As previously stated, the measured field effect mobility will not correspond to the true inversion mobility due to the presence of interface trapped charges. However, the main interest in silicon carbide technology is in the development of devices with higher functionality, and so the experimental device characteristics of the modelled mobility mechanisms will be equated to the field effect mobility using equation 7. Therefore, each of the scattering mechanisms considered here (
where
At low electric fields, the carrier mobility in a semiconductor is a function of the temperature and the total doping concentration, which is referred to as the bulk or low-field mobility,
where
The second term in equation 7 is the acoustic phonon mobility,
where
Surface roughness scattering is due to the scattering of mobile carriers by imperfections in the SiC surface and is known to cause severe degradation of the surface mobility at high electric fields [8, 15, 16]. The carrier mobility determined from surface roughness scattering may be calculated using equation 10:
wher
Coulomb scattering is a result of carrier interactions with ionised impurities, which are most commonly a product of interface traps at the semiconductor–dielectric interface. Coulomb scattering is believed to dominate carrier mobility at low electric fields and is calculated using equation 11 [4]:
where
wher
Figure 2 shows a schematic plot of the contributions of the three scattering mechanisms that have been discussed here:

Figure 2.
Schematic representation of the field effect mobility in an n-type MOSFET channel
4. Current status of the technology
The current status of MOSFET technology is still plagued by low channel mobility and oxide reliability issues due to issues with the 4H-SiC/dielectric interface, which is believed to be due to an unoptimised dielectric formation and post-oxidation anneal procedure. There has been a significant amount of research into the effects of varying the post-oxidation anneal conditions, including the use of hydrogen, oxygen, nitrogen and phosphorus anneal environments, which have previously been used to passivate interface traps in silicon technology. This has led to advances in the capabilities of the technology, and MOSFET field effect mobilities of over
5. Fabrication techniques and process variations
Complementary metal–oxide semiconductor (CMOS) devices fabricated using the three gate dielectrics summarised in Table 1 were examined using electrical characterisation techniques. The remaining process steps utilised in their fabrication were identical. The main aim of this investigation is to highlight the benefits and potential issues of each processing technique on the electrical performance of the devices under test.
The CMOS test structures reported here were fabricated on a 100 mm, Si face, 4° off axis, 4H SiC n+ wafer with a doped epitaxial layer. N- and p-type regions and the source and drain regions were formed by ion implantation. The implants were annealed at high temperature with the surface protected by a carbon cap. A thick field oxide and a thin gate dielectric region were then formed and doped polysilicon gate electrodes. Nickel-based contacts were then formed on the doped regions and a refractory metal interconnect was deposited and patterned. Next, a thin nickel top layer was applied to protect the pads from oxidation during probe testing at elevated temperatures. Finally, an oxide layer was deposited for final passivation and scratch protection, and openings were made for bond pads. A schematic of the device cross section is shown in Figure 3.
|
|
|
|
HV06 | Dry oxidation at 1200 C | O2 950 C N2 1200 C |
|
CR25 | Dry oxidation at 1200C with phosphorous anneal and strip | Deposited undoped oxide | H2O 875 C N2 1100 C |
CR27 | Dry oxidation stub oxide Deposited phosphorous doped |
Steam 950 C |
Table 1.

Figure 3.
Schematic cross section of the completed transistor structures
6. Temperature-dependent electrical characteristics of 4H-SiC MOSFETs
In the following subsections, the current-voltage characteristics are extracted and explored for the three different dielectric samples (HV06, CR25 and CR27) on both n-channel and p-channel 4H-SiC MOSFETs. This involved the extraction of the field effect mobility
7. Temperature-dependent electrical characteristics of n-channel 4H-SiC MOSFETs
The data shown in Figures 4, 5 and 6 show the
The increase in current with temperature observed in Figures 4.a, 5.a and 6.a for the three samples is due to the decrease of occupied interface traps with an increasing temperature, which is an agreement with the density of interface traps data extracted from capacitor test structures fabricated monolithically with the MOSFETs. As the density of interface traps decreases with increasing temperature, at a given gate voltage, more carriers are available for conduction in the channel. This finding also supports previous work conducted in the field [14].

Figure 4.
(a)

Figure 5.
(a)

Figure 6.
(a)
The observed reduction in threshold voltage with temperature is also evident for each of the transistors across the temperature range and values extracted using linear interpolation of the
The observed shift in threshold voltage with temperature is due to the reduction in the surface band bending required for inversion, which is due to the increase in intrinsic carrier concentration and the decrease in band gap energy with an increase in temperature as described previously [20].

Figure 7.
Variation of MOSFET threshold voltage with temperature
However, a change at the interface and within the depletion layer can also act to modify the gate voltage as
where
The data in Figure 8 shows the variation in subthreshold slope (
where

Figure 8.
Variation of extracted subthreshold slope with temperature, for 400x1.5 μm n-channel MOSFETs
This observed in subthreshold slope with temperature is in agreement with the change in interface trap density with temperature that was witnessed in capacitor test structures for both the CR25 n-type and p-type MIS capacitors that were analysed using Terman analysis. This change is most likely due to the change in

Figure 9.
Variation of extracted interface trap density (
The data in Figures 10(a),
11(a) and 12(a) show the variation in field effect mobility with electric field

Figure 10.
(a)

Figure 11.
(a)

Figure 12.
(a)
Figures 10(b), 11(b) and 12(b) show the Coulomb mobility values that were fitted to the measured characteristics using equation 11. As shown by the data, all of the devices show an increase in Coulomb mobility with increasing temperature, which suggests that the effect of Coulomb scattering reduces with an increase in temperature. The data sets also show that the electric field at which the mobility increases from zero (the λ parameter in equation 12) does not show a significant variation with temperature; however, the Φ term used to describe the change in mobility with electric field does, especially for the HV06 data.

Figure 13.
Surface roughness mobility (
At high electric fields, the extracted values of

Figure 14.
The data shown in Figure 15 shows the theoretical acoustic phonon mobility

Figure 15.
Predicted
The data in Figure 16 shows the variation in the peak field effect mobility with temperature for the three dielectrics studies. It is apparent that sample HV06 consistently shows the lowest channel mobility, whilst CR27 shows the most significant variation with temperature, giving the highest mobility at temperatures above 350 K. The main limiting factor that is witnessed across all of the samples is that of severely low surface roughness mobility, which acts to dominate the device mobility characteristics from electric fields above 1 MV cm-1. The extracted surface roughness mobility reported here for all three dielectric processes is approximately an order of magnitude lower than other 4H-SiC MOSFETs that have previously been reported, which showed field effect mobility of consistently over 20 cm2 V-1 s-1 at high electric fields [8, 22-25].

Figure 16.
Variation of peak field effect mobility (
The data in Table 2 shows the fitting parameters used to generate the mobility plots for the n-channel FETs reported here.
|
|
|
|
||
|
|
|
|
|
|
298 | 1×107 | 3.2×106 | 3.0×1017 | 2.81 | 3.20 |
348 | 1×107 | 3.2×106 | 5.0×1022 | 3.67 | 3.40 |
398 | 1×107 | 3.2×106 | 1.9×1022 | 3.58 | 3.58 |
448 | 1×107 | 3.2×106 | 7.4×1024 | 4.00 | 3.70 |
498 | 1×107 | 3.2×106 | 5.8×1022 | 3.65 | 4.28 |
|
|
|
|
||
|
|
|
|
|
|
298 | 1×107 | 3.2×106 | 2.3×1062 | 9.84 | 5.88 |
348 | 1×107 | 3.2×106 | 2.5×1070 | 11.1 | 7.00 |
398 | 1×107 | 3.2×106 | 9.3×1070 | 11.2 | 7.92 |
448 | 1×107 | 3.2×106 | 8.8×1065 | 10.4 | 6.32 |
498 | 1×107 | 3.2×106 | 4.1×1062 | 9.84 | 8.23 |
|
|
|
|
||
|
|
|
|
|
|
298 | 1×107 | 3.2×106 | 1.9×1020 | 3.29 | 5.11 |
348 | 1×107 | 3.2×106 | 6.1×1024 | 4.02 | 5.65 |
398 | 1×107 | 3.2×106 | 5.8×1030 | 4.99 | 6.42 |
448 | 1×107 | 3.2×106 | 1.5×1034 | 5.54 | 6.23 |
498 | 1×107 | 3.2×106 | 1.3×1034 | 5.53 | 8.98 |
Table 2.
Fitting parameters to the mobility models used to describe the behaviour of n-channel MOSFET structures
8. Temperature-dependent electrical characteristics of p-channel 4H-SiC MOSFETs
The data in Figures 17, 18 and 19 show the

Figure 17.
(a)

Figure 18.
(a)

Figure 19.
(a)
The change in threshold voltage with temperature is also shown for each of the transistors across the temperature range by the data in Figure 20. The threshold voltage of a MOSFET can be calculated using equation 13 [21], and as with the n-channel devices, CR27 shows a reduction (i.e. becoming closer to zero) in

Figure 20.
Threshold voltage as a function of temperature for 1.5 μm gate length p-channel MOSFETs
The increase in current with temperature that can be observed from the data shown in Figures 17(a),
18(a) and 19(a) for the three dielectrics studied is due to the decrease of occupied interface traps with an increase in temperature, which is an agreement with
The data in Figure 21 shows the variation in subthreshold slope (

Figure 21.
Subthreshold slope as a function of temperature for 1.5 μm gate length p-channel MOSFETs
The data shown in Figures 22, 23 and 24 show the variation of

Figure 22.
(a)

Figure 23.
(a)

Figure 24.
(a)
The data in Figures 22, 23 and 24 show the

Figure 25.
Peak field effect mobility (
The data in Figures 22(b), 23(b) and 24(b) show the Coulomb mobility mechanism that was fitted to the measured characteristics using equation 11. As shown by the data in the figures, all of the devices (HV06, CR25 and CR27) show an increase in mobility with increasing temperature, which suggests that the effect of Coulomb scattering reduces with increasing temperature due to the reduction of interface trapping effects with increasing temperature. The same phenomenon was also witnessed in the equivalent n-channel MOSFETs, which suggest that the dominant mobility mechanisms are dominated by the processing of the gate dielectric for both the n- and p-channel devices.

Figure 26.
At high electric fields, the extracted

Figure 27.
The data in Table 3 shows the fitting parameters used to generate the mobility plots for the p-channel FETs reported here.
This indicates that there is something common to all three dielectric processes that consistently act to reduce the surface roughness mobility. This could be due to the topography of the 4H-SiC epitaxial layer that was used for the fabrication of the devices or could potentially be a contribution of surface damage due to the ion implantation doping or the post-implantation anneal process that was used to form the n-type regions that are employed across all of the p-channel devices. In order to establish if this is the true cause, an investigation of the surface morphology using a technique such as atomic force microscopy is required, with measurements performed after the implantation and anneal process to measure the surface roughness, which could then be correlated to the measured electrical characteristics of the devices. A limited amount of data is available from a similar study conducted on n-channel 4H-SiC MOSFETs to establish the impact of the morphological and electrical properties of the SiO2–4H-SiC interface on the mobility behaviour of 4H-SiC MOSFETs. The results indicated that a higher mobility can be observed in devices with a larger root-mean-square (RMS) roughness of the channel surface, possibly due to lower values of
|
|
|
|
||
|
|
|
|
|
|
298 | 1 ×106 | 3.2 ×106 | 3.7×1034 | 5.9 | 5.0 |
348 | 1 ×106 | 3.2 ×106 | 7.2×1028 | 5.0 | 3.7 |
398 | 1 ×106 | 3.2 ×106 | 6.2×1027 | 4.8 | 2.6 |
448 | 1 ×106 | 3.2 ×106 | 1.5×1027 | 4.7 | 3.3 |
498 | 1 ×106 | 3.2 ×106 | 2.5×1023 | 4.0 | 4.1 |
|
|
|
|
||
|
|
|
|
|
|
298 | 1 ×106 | 3.2 ×106 | 1.2×1019 | 3.6 | 2.7 |
348 | 1 ×106 | 3.2 ×106 | 8.3×1015 | 3.0 | 2.1 |
398 | 1 ×106 | 3.2 ×106 | 3.2×1011 | 2.2 | 2.0 |
448 | 1 ×106 | 3.2 ×106 | 1.1×1015 | 2.8 | 2.1 |
498 | 1 ×106 | 3.2 ×106 | 2.4×1013 | 2.5 | 3.4 |
|
|
|
|
||
|
|
|
|
|
|
298 | 1 ×106 | 3.2 ×106 | 10.0×1021 | 4.1 | 9.1 |
348 | 1 ×106 | 3.2 ×106 | 1.2×1019 | 3.6 | 6.4 |
398 | 1 ×106 | 3.2 ×106 | 2.2×1018 | 3.4 | 6.0 |
448 | 1 ×106 | 3.2 ×106 | 1.4×1018 | 3.4 | 6.2 |
498 | 1 ×106 | 3.2 ×106 | 1.9×1014 | 2.7 | 4.1 |
Table 3.
Fitting parameters to the mobility models used to describe the behaviour of p-channel MOSFET structures
The data in Figure 28 shows the predicted values for the mobility limited by acoustic phonon scattering
|
|
|
|
|
|
|
|
28 | n-FET | SiO2 (pyro) SiO2 (pyro + NO) |
10×150 | 6.2 30.4 |
5.8 2.7 |
47 51 |
7.1×1011 1.3×1011 |
29 | n-FET | SiO2 (dry) SiO2 (dry +NO) |
120×400 | 4 30 |
5 | ||
30 | n-FET | SiO2 (dry + NO) | 320×40 | 34 | 125 | ||
31 | n-FET | SiO2 (POCl3 POA) | 30×200 | 89 | 0 | 56 | 9×1010 |
32 | n-FET | SiO2 (POCl3 PDA) | 108 | 45 | 5×1011 | ||
33 | n-FET | SiO2 (P2O5 POA) | 150×290 | 72 | 3×1011 | ||
34 | n-FET | SiO2 (N2O POA) | 150×290 | 55 | 3×1011 | ||
35 | n-FET | SiO2 (N2O PDA) | 40×16 | 40 | 30 | 7.2×1011 | |
36 | n-FET | SiO2 (N2O POA) | 140×50 | 49 | 54 | ||
37 | n-FET | SiO2 (NO) SiO2 (2hr N plasma) SiO2 (4hr N plasma) |
200×200 | 31 22 34 |
1.6 1.6 2.0 |
65 50 48 |
|
38 | n-FET | SiO2 with Na contam | 400×400 | 90 | 5 | ||
39 | p-FET | SiO2 (pyro) SiO2 (pyro + NO) |
10×150 | 5.5 5.6 |
-8.5 -6.4 |
47 51 |
8.9×1011 1.3×1011 |
40 | p-FET | SiO2 (N2O) | 100×200 | 10 | 47 | 1×1012 | |
41 | p-FET | SiO2 (pyro+wet+Ar) | 100×150 | 15.6 | -4.2 | 45 | 2×1012 |
42 | p-FET | SiO2 (N2O) | 4×150 | 5 | -6 | 38 | 1×1012 |
Table 4.
Comparison of 4H-SiC MOSFET characteristics

Figure 28.
9. Impact of gate dielectric on the 1/f noise characteristics of 4H-SiC MOSFETs
Low-frequency noise (1/

Figure 29.
Schematic diagram of the low-frequency noise measurement set-up
The low-frequency noise measurements were conducted using a Stanford Research 760 FFT at 298 K, and the current-voltage characteristics that were used to normalise the characteristics were conducted on a Keithley 4200 SCS semiconductor analyser. A schematic of the measurement set-up is shown in Figure 29.
The normalised 1/
Figures 30(b), 31(b) and 32(b) show the variation of normalised noise power spectrum (NNPSD) at 10 Hz as a function of
CR27 exhibits the lowest noise characteristics of the three samples, which suggests that CR27 has the highest quality interface as there is a very low noise contribution from carrier mobility fluctuations at the interface, which suggests that the oxide also has the lowest trap density in the oxide out of the three dielectric samples. This is also in agreement with the findings of the

Figure 30.
(a) NNPSD–f characteristics and (b) NNPSD at 10 Hz as a function of
In general, the frequency dependence of the NNPSD is described by equation 16:
where

Figure 31.
(a) NNPSD–f characteristics and (b) NNPSD at 10 Hz as a function of

Figure 32.
(a) NNPSD–f characteristics and (b) NNPSD at 10 Hz as a function of

Figure 33.
Variation of the frequency exponent as a function of gate overdrive for 400×1.5 μm n-channel MOSFETs
The 1/

Figure 34.
(a) NNPSD–f characteristics and (b) NNPSD at 10 Hz as a function of

Figure 35.
(a) NNPSD–f characteristics and (b) NNPSD at 10 Hz as a function of

Figure 36.
(a) NNPSD–f characteristics and (b) NNPSD at 10 Hz as a function of
As with the n-channel devices, CR27 exhibits the lowest noise characteristics of the three p-channel samples, supporting the hypothesis that the quality of the silicon carbide–oxide interface is highest in this sample.

Figure 37.
Variation of the frequency exponent as a function of gate overdrive for 8000×1.5μm p-channel MOSFETs
The data in Figure 37 shows the variation of the frequency exponent as a function of gate overdrive (
The contrast between the distribution of the trapping states extracted from the 1/
10. Summary
The focus of this chapter was on the investigation of the electrical characteristics and device performance parameters of the 4H-SiC n- and p-channel MOSFETs that had undergone a range of dielectric process treatments to establish the suitability of conventional oxidation and deposited dielectrics for the realisation of complementary metal–oxide semiconductor circuits. The investigation into the temperature-dependent electrical characteristics of the devices demonstrated that all of the devices showed similar characteristics across the measured temperature range including an increase in
The CR27 samples for both n- and p-channel MOSFETs exhibit the highest field effect mobility characteristics, suggesting that a thin thermally grown oxide provides improved interfacial characteristics. This was further validated by the 1/
All three dielectrics in both the n- and p-channel devices showed severely high mobility limiting surface roughness scattering during strong inversion and high electric fields, which suggests that a process parameter – which is consistent amongst all three dielectrics and both the n- and p-channel devices – is causing high surface roughness in the channel, which is acting to degrade the channel mobility. In order to improve the device characteristics, a major focus should be given to increasing the surface roughness mobility of the samples. There is a strong trend across all of the examined samples of extremely low surface roughness mobility from applied electric fields of 1 MV cm-1 onwards, which is consistent across all of the processed samples and much lower than other reported devices. This is also consistent between the n- and p-channel devices, which suggests that it is inherent in the process technique used in both devices. This suggests that process contributions that are acting to degrade the surface roughness mobility of the devices is a major factor which is consistent across all of the samples. This suggests that the severely low
An investigation into the 1/
Finally, an investigation into the impact of the threshold voltage-adjust ion implantation procedure on the device characteristics was investigated for the CR27 n-channel MOSFETs. The findings showed that the increasing nitrogen dose was successful in acting to reduce the device threshold voltage; however, the nitrogen implant within the p-well also acts to improve the low electric field mobility characteristics of the n-channel 4H-SiC MOSFETs as an increased dose of nitrogen during the implant acts to reduce the effects of Coulomb scattering and therefore increase Coulomb mobility.
References
- 1.
E. Arnold and D. Alok, IEEE Transactions on Electron Devices, Vol. 48 (2001) pp. 1870–1877. - 2.
A. Perez-Tomas, P. Brosselard, P. Godignon, J. Millan, N. Mestres, M. R. Jennings, J. A. Covington, and P. A. Mawby, Journal of Applied Physics, Vol. 100 (2006) 114508. - 3.
N. S. Saks, A. K. Agarwal, S. S. Mani, and V. S. Hegde, Applied Physics Letters, Vol. 76 (2006) pp. 1896 - 4.
A. Perez-Tomas, P. Brosselard, P. Godignon, J. Millan, N. Mestres, M. R. Jennings, J. A. Covington, and P. A. Mawby, Journal of Applied Physics, Vol. 100 (2006) 114508. - 5.
C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 7 (1988) pp. 1164–1171. - 6.
D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. John Wiley and Sons (Hoboken, New Jersey), 2006. - 7.
H. Linewih, S. Dimitrijev, and K. Y. Cheong, Microelectronics Reliability, Vol. 43 (2003) pp. 405–411. - 8.
D. Caughey and R. Thomas, Proceedings of the IEEE, Vol. 55 (1967) pp. 2192–2193. - 9.
S. Potbhare, N. Goldsman, G. Pennington, A. Lelis, and J. M. McGarrity, Journal of Applied Physics, Vol. 100 (2006) 044515. - 10.
C. J. Scozzie, F. B. McLean, and J. M. McGarrity, Journal of Applied Physics, Vol. 81 (1997) pp. 7687. - 11.
S. K. Powell, N. Goldsman, J. M. McGarrity, J. Bernstein, C. J. Scozzie, and A. Lelis, Journal of Applied Physics, Vol. 92 (2002) 4053. - 12.
J. Cooper, T. Tsuji, J. Williams, K. McDonald, and L. Feldman, IEEE Transactions on Electron Devices, Vol. 50 (2003) pp. 1582–1588. - 13.
S. Potbhare, N. Goldsman, A. Lelis, J. M. McGarrity, F. B. McLean, and D. Habersat, IEEE Transactions on Electron Devices, Vol. 55 (2008) pp. 2029–2040. - 14.
A. Hartstein, T. Ning, and A. Fowler, Surface Science, Vol. 58 (1976) pp. 178–181. - 15.
G. Pennington, Journal of Applied Physics, Vol. 95 (2004) 4223. - 16.
J. B. Varzgar, PhD Thesis, University of Newcastle, 2008. - 17.
L. K. Swanson, P. Fiorenza, F. Giannazzo, A. Frazzetto, and F. Roccaforte, Applied Physics Letters, Vol. 101 (2012) 193501. - 18.
P. Fiorenza, F. Giannazzo, M. Vivona, A. La Magna, and F. Roccaforte, Applied Physics Letters, Vol. 103 (2013) 153508. - 19.
E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. New Jersey: John Wiley and Sons, 2002. - 20.
S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. New York: John Wiley and Sons, 2006. - 21.
S. Dhar, S.-H. Ryu, and A. K. Agarwal, IEEE Transactions on Electron Devices, Vol. 57 (2010) pp. 1195–1200. - 22.
Y. K. Sharma, A. C. Ahyi, T. Isaacs-Smith, A. Modic, M. Park, Y. Xu, E. L. Garfunkel, S. Dhar, L. C. Feldman, and J. R. Williams, IEEE Electron Device Letters, Vol. 34 (2013) pp. 175–177. - 23.
S. Dhar, S.-H. Ryu, and A. K. Agarwal, IEEE Transactions on Electron Devices, Vol. 57 (2010) pp. 1195–1200. - 24.
J. Senzaki, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki, and K. Fukuda, IEEE Electron Device Letters, Vol. 23 (2002) pp. 13–15. - 25.
F. Roccaforte, P. Fiorenza, and F. Giannazzo, ECS Journal of Solid State Science and Technology, Vol. 2 (2013) pp. N3006–N3011. - 26.
T. Masuda, S. Harada, T. Tsuno, Y. Namikawa, T. Kimoto, Material Science Forum, Vols. 600-603 (2009) pp. 695-698 - 27.
D. Okamoto, H. Yano, T. Hatayama, Y. Uraoka, and T. Fuyuki, IEEE Transactions on Electron Devices, Vol. 55 (2008) pp. 2013–2020 - 28.
G. Chung, C. Tin, J. Williams, K. McDonald, R. Chanana, R. Weller, S. Pantelides, L. Feldman, O. Holland, M. Das, and J. Palmour, IEEE Electron Device Letters, Vol. 22 (2001) pp. 176–178. - 29.
M. Okamoto, M. Tanaka, T. Yatsuo, and K. Fukuda, Applied Physics Letters, Vol. 89, (2006) 023502. - 30.
D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, IEEE Electron Device Letters, Vol. 31 (2010) pp. 710–712. - 31.
L. K. Swanson, P. Fiorenza, F. Giannazzo, A. Frazzetto, and F. Roccaforte, Applied Physics Letters, Vol. 101 (2012) 193501. - 32.
Y. K. Sharma, C. Ahyi, T. Isaacs-Smith, A. Modic, M. Park, Y. Xu, E. L. Garfunkel, S. Dhar, L. C. Feldman, and J. R. Williams, IEEE Electron Device Letters, Vol. 34 (2013) pp. 175–177 - 33.
J. Rozen, A. C. Ahyi, X. Zhu, J. R. Williams, and L. C. Feldman, IEEE Transactions on Electron Devices, Vol. 58 (2011) pp. 3808–3811. - 34.
A. Frazzetto, F. Giannazzo, P. Fiorenza, V. Raineri, and F. Roccaforte, Applied Physics Letters, Vol. 99 (2011) 072117. - 35.
J. Cooper, T. Tsuji, J. Williams, K. McDonald, and L. Feldman, IEEE Transactions on Electron Devices, Vol. 50 (2013) pp. 1582–1588. - 36.
A. Modic, Y. Sharma, Y. Xu, G. Liu, A. Ahyi, J. Williams, L. Feldman, and S. Dhar, Journal of Electronic Materials, Vol. 43 (2014) pp. 857–862. - 37.
B. R. Tuttle, S. Dhar, S.-H. Ryu, X. Zhu, J. R. Williams, L. C. Feldman, and S. T. Pantelides, Journal of Applied Physics, Vol. 109 (2011) 023702. - 38.
D. Okamoto, H. Yano, T. Hatayama, Y. Uraoka, and T. Fuyuki, IEEE Transactions on Electron Devices, Vol. 55 (2008) pp. 2013–2020. - 39.
M. Noborio, J. Suda, and T. Kimoto, IEEE Transactions on Electron Devices, Vol. 56 (2009) pp. 1953–1958. - 40.
M. Okamoto, M. Tanaka, T. Yatsuo, and K. Fukuda, Applied Physics Letters, Vol. 89 (2006) 023502. - 41.
A. Constant, M. Berthou, M. Florentin, J. Millan, and P. Godignon, Journal of the Electrochemical Society, Vol. 159 (2012) H516. - 42.
S. L. Rumyantsev, M. S. Shur, M. E. Levinshtein, P. A. Ivanov, J. W. Palmour, M. K. Das, and B. A. Hull, Journal of Applied Physics, Vol. 104 (2008) 094505. - 43.
C. X. Zhang, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, S. Dhar, S.-h. Ryu, X. Shen, and S. T. Pantelides, IEEE Electron Device Letters, Vol. 34 (2013) pp. 117–119. - 44.
C. X. Zhang, X. Shen, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, S. A. Francis, T. Roy, S. Dhar, S.-h. Ryu, and S. T. Pantelides, IEEE Transactions on Electron Devices, Vol. 60 (2013) pp. 2361–2367. - 45.
S. L. Rumyantsev, M. S. Shur, M. E. Levinshtein, P. A. Ivanov, J. W. Palmour, A. K. Agarwal, and S. Dhar, Semiconductor Science and Technology, Vol. 26 (2011) 085015. - 46.
R. Voss and J. Clarke, Phys. Rev. B, Vol. 13 (1976) pp. 556–573. - 47.
A. McWhorter, 1/ f Noise and Germanium Surface Properties, R. H. Kingston, Ed. University of Pennsylvania Press (Philadelphia), 1957. - 48.
R. Jayaraman and C. Sodini, IEEE Transactions on Electron Devices, Vol. 36 (1989) pp. 1773–1782. - 49.
N. Lukyanchikova, M. Petrichuk, N. Garbar, E. Simoen, A. Mercha, C. Claeys, H. van Meer, and K. De Meyer, IEEE Transactions on Electron Devices, Vol. 49 (2002) pp. 2367–2370.