EN process chemicals and their functions.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"763",leadTitle:null,fullTitle:"Pancreatic Cancer - Molecular Mechanism and Targets",title:"Pancreatic Cancer",subtitle:"Molecular Mechanism and Targets",reviewType:"peer-reviewed",abstract:"This book provides the reader with an overall understanding of the biology of pancreatic cancer, hereditary, complex signaling pathways and alternative therapies. The book explains nutrigenomics and epigenetics mechanisms such as DNA methylation, which may explain the etiology or progression of pancreatic cancer. Book also summarizes the molecular control of oncogenic pathways such as K-Ras and KLF4. Since pancreatic cancer metastasizes to vital organs resulting in poor prognosis, special emphasis is given to the mechanism of tumor cell invasion and metastasis. Role of nitric oxide and Syk kinase in tumor metastasis is discussed in detail. Prevention strategies for pancreatic cancer are also described. The molecular mechanisms of the anti-cancer effects of curcumin, benzyl isothiocyante and vitamin D are discussed in detail. Furthermore, this book covers the basic mechanisms of resistance of pancreatic cancer to chemotherapy drugs such as gemcitabine and 5-flourouracil.",isbn:null,printIsbn:"978-953-51-0410-0",pdfIsbn:"978-953-51-6935-2",doi:"10.5772/1271",price:139,priceEur:155,priceUsd:179,slug:"pancreatic-cancer-molecular-mechanism-and-targets",numberOfPages:446,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"580ba59e1d406efa850f806203741251",bookSignature:"Sanjay K. Srivastava",publishedDate:"March 23rd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/763.jpg",numberOfDownloads:62116,numberOfWosCitations:11,numberOfCrossrefCitations:7,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:18,numberOfDimensionsCitationsByBook:1,hasAltmetrics:0,numberOfTotalCitations:36,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 15th 2011",dateEndSecondStepPublish:"March 15th 2011",dateEndThirdStepPublish:"July 20th 2011",dateEndFourthStepPublish:"August 19th 2011",dateEndFifthStepPublish:"December 17th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"69661",title:"Prof.",name:"Sanjay",middleName:"K",surname:"Srivastava",slug:"sanjay-srivastava",fullName:"Sanjay Srivastava",profilePictureURL:"https://mts.intechopen.com/storage/users/69661/images/2415_n.jpg",biography:"Dr. Sanjay K. Srivastava is a Professor of Biomedical Sciences at Texas Tech University Health Sciences Center (TTUHSC), Amarillo, Texas, specializing in cancer biology, cell signaling and nutritional chemoprevention. Dr. Srivastava served as an Assistant Professor in the Department of Pharmacology, University of Pittsburgh School of Medicine, and did his post-doc from University of Texas Medical Branch at Galveston, Texas. He received a M.S. in Biochemistry from Lucknow University and a Ph.D. in Biochemical Toxicology from Industrial Toxicology Research Center, India. Dr. Srivastava is funded by grants from the National Cancer Institute, NIH. He has authored/co-authored more than 100 research papers and book chapters and is in the editorial board of several journals. Dr. Srivastava has been the recipient of several awards including TTUHSC “President’s Excellence in Research Award”. His research has been featured by news agencies including BBC, MSNBC, CBS, ABC, Science News etc.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1078",title:"Gastrointestinal Oncology",slug:"gastrointestinal-oncology"}],chapters:[{id:"33487",title:"Risk Factors in Pancreatic Cancer",doi:"10.5772/27107",slug:"risk-factors-in-pancreatic-cancer",totalDownloads:2543,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Andrada Seicean and Radu Seicean",downloadPdfUrl:"/chapter/pdf-download/33487",previewPdfUrl:"/chapter/pdf-preview/33487",authors:[{id:"68858",title:"Dr.",name:"Andrada",surname:"Seicean",slug:"andrada-seicean",fullName:"Andrada Seicean"},{id:"77513",title:"Dr.",name:"Radu",surname:"Seicean",slug:"radu-seicean",fullName:"Radu Seicean"}],corrections:null},{id:"33488",title:"Epigenetics and Pancreatic Cancer: The Role of Nutrigenomics",doi:"10.5772/27832",slug:"epigenetics-and-pancreatic-cancer-the-role-of-nutriogenomics",totalDownloads:2730,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Beverly D. Lyn-Cook",downloadPdfUrl:"/chapter/pdf-download/33488",previewPdfUrl:"/chapter/pdf-preview/33488",authors:[{id:"71755",title:"Dr.",name:"Beverly",surname:"Lyn-Cook",slug:"beverly-lyn-cook",fullName:"Beverly Lyn-Cook"}],corrections:null},{id:"33489",title:"Characterization of the Molecular Genetic Mechanisms that Contribute to Pancreatic Cancer Carcinogenesis",doi:"10.5772/28982",slug:"molecular-genetics-understanding-of-pathway-in-pancreatic-cancer",totalDownloads:2421,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jiaming Qian, Hong Yang, Jingnan Li and Jian Wang",downloadPdfUrl:"/chapter/pdf-download/33489",previewPdfUrl:"/chapter/pdf-preview/33489",authors:[{id:"49915",title:"Dr.",name:"Yinhua",surname:"Yu",slug:"yinhua-yu",fullName:"Yinhua Yu"},{id:"76083",title:"Prof.",name:"Jiaming",surname:"Qian",slug:"jiaming-qian",fullName:"Jiaming Qian"},{id:"81966",title:"Dr.",name:"Hong",surname:"Yang",slug:"hong-yang",fullName:"Hong Yang"}],corrections:null},{id:"33490",title:"Pancreatic Cancer: Current Concepts in Invasion and Metastasis",doi:"10.5772/28175",slug:"pancreatic-cancer-current-concepts-in-invasion-and-metastasis",totalDownloads:3785,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Sara Chiblak and Amir Abdollahi",downloadPdfUrl:"/chapter/pdf-download/33490",previewPdfUrl:"/chapter/pdf-preview/33490",authors:[{id:"72963",title:"Dr.",name:"Amir",surname:"Abdollahi",slug:"amir-abdollahi",fullName:"Amir Abdollahi"},{id:"78504",title:"Dr.",name:"Sara",surname:"Chiblak",slug:"sara-chiblak",fullName:"Sara Chiblak"}],corrections:null},{id:"33491",title:"Nitric Oxide Regulates Growth Factor Signaling in Pancreatic Cancer Cells",doi:"10.5772/27606",slug:"nitric-oxide-regulates-growth-factor-signalings-in-pancreatic-cancer-cells",totalDownloads:2385,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Hiroki Sugita, Satoshi Furuhashi and Hideo Baba",downloadPdfUrl:"/chapter/pdf-download/33491",previewPdfUrl:"/chapter/pdf-preview/33491",authors:[{id:"70805",title:"Dr.",name:"Hiroki",surname:"Sugita",slug:"hiroki-sugita",fullName:"Hiroki Sugita"}],corrections:null},{id:"33492",title:"Kinase Activity is Required for Growth Regulation but not Invasion Suppression by Syk Kinase in Pancreatic Adenocarcinoma Cells",doi:"10.5772/30030",slug:"kinase-activity-is-required-for-growth-regulation-but-not-invasion-suppression-by-syk-kinase-in-panc",totalDownloads:1941,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Tracy Layton, Felizza Gunderson, Chia-Yao Lee, Cristel Stalens and Steve Silletti",downloadPdfUrl:"/chapter/pdf-download/33492",previewPdfUrl:"/chapter/pdf-preview/33492",authors:[{id:"80491",title:"Dr.",name:"Steve",surname:"Silletti",slug:"steve-silletti",fullName:"Steve Silletti"}],corrections:null},{id:"33493",title:"New Targets for Therapy in Pancreatic Cancer",doi:"10.5772/27344",slug:"new-targets-in-pancreatic-cancer-",totalDownloads:1874,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Nicola Tinari, Michele De Tursi, Antonino Grassadonia, Marinella Zilli, Stefano Iacobelli and Clara Natoli",downloadPdfUrl:"/chapter/pdf-download/33493",previewPdfUrl:"/chapter/pdf-preview/33493",authors:[{id:"69752",title:"Prof.",name:"Clara",surname:"Natoli",slug:"clara-natoli",fullName:"Clara Natoli"}],corrections:null},{id:"33494",title:"Failure of Pancreatic Cancer Chemotherapy: Consequences of Drug Resistance Mechanisms",doi:"10.5772/27122",slug:"failure-of-pancreatic-cancer-chemotherapy-consequences-of-drug-resistance-mechanisms",totalDownloads:3723,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Vikas Bhardwaj, Satya Murthy Tadinada, James C.K. Lai and Alok Bhushan",downloadPdfUrl:"/chapter/pdf-download/33494",previewPdfUrl:"/chapter/pdf-preview/33494",authors:[{id:"41595",title:"Prof.",name:"Alok",surname:"Bhushan",slug:"alok-bhushan",fullName:"Alok Bhushan"}],corrections:null},{id:"33495",title:"Prevention of Pancreatic Cancer",doi:"10.5772/29690",slug:"prevention-of-pancreatic-cancer",totalDownloads:1879,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Xia Jiang, Shigeru Sugaya, Qian Ren, Tetsuo Sato, Takeshi Tanaka, Fujii Katsunori, Kazuko Kita and Nobuo Suzuki",downloadPdfUrl:"/chapter/pdf-download/33495",previewPdfUrl:"/chapter/pdf-preview/33495",authors:[{id:"78944",title:"Dr",name:null,surname:"Suzuki",slug:"suzuki",fullName:"Suzuki"}],corrections:null},{id:"33496",title:"Vitamin D for the Prevention and Treatment of Pancreatic Cancer",doi:"10.5772/27949",slug:"vitamin-d-in-the-prevention-and-treatment-of-pancreatic-cancer",totalDownloads:1904,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Kun-Chun Chiang and Tai C. Chen",downloadPdfUrl:"/chapter/pdf-download/33496",previewPdfUrl:"/chapter/pdf-preview/33496",authors:[{id:"72169",title:"Prof.",name:"Tai",surname:"Chen",slug:"tai-chen",fullName:"Tai Chen"},{id:"72331",title:"Dr.",name:"Kun-Chun",surname:"Chiang",slug:"kun-chun-chiang",fullName:"Kun-Chun Chiang"}],corrections:null},{id:"33497",title:"Molecular Targets of Benzyl Isothiocyanates in Pancreatic Cancer",doi:"10.5772/45596",slug:"molecular-targets-of-benzyl-isothiocyanates-in-pancreatic-cancer-",totalDownloads:2290,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Srinivas Reddy Boreddy, Kartick C. Pramanik and Sanjay K. Srivastava",downloadPdfUrl:"/chapter/pdf-download/33497",previewPdfUrl:"/chapter/pdf-preview/33497",authors:[{id:"69661",title:"Prof.",name:"Sanjay",surname:"Srivastava",slug:"sanjay-srivastava",fullName:"Sanjay Srivastava"}],corrections:null},{id:"33498",title:"The Potential Role of Curcumin for Treatment of Pancreatic Cancer",doi:"10.5772/27874",slug:"the-potential-role-of-curcumin-for-treatment-of-pancreatic-cancer",totalDownloads:4829,totalCrossrefCites:4,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Masashi Kanai, Sushovan Guha and Bharat B. Aggarwal",downloadPdfUrl:"/chapter/pdf-download/33498",previewPdfUrl:"/chapter/pdf-preview/33498",authors:[{id:"32460",title:"Dr.",name:"Sushovan",surname:"Guha",slug:"sushovan-guha",fullName:"Sushovan Guha"},{id:"71917",title:"Dr.",name:"Masashi",surname:"Kanai",slug:"masashi-kanai",fullName:"Masashi Kanai"},{id:"121063",title:"Prof.",name:"Bharat B",surname:"Aggarwal",slug:"bharat-b-aggarwal",fullName:"Bharat B Aggarwal"}],corrections:null},{id:"33499",title:"Immunotherapy for Pancreatic Cancer",doi:"10.5772/28880",slug:"immunotherapy-for-pancreatic-cancer",totalDownloads:2645,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Shigeo Koido, Sadamu Homma, Akitaka Takahara, Yoshihisa Namiki, Hideo Komita, Kan Uchiyama, Toshifumi Ohkusa and Hisao Tajiri",downloadPdfUrl:"/chapter/pdf-download/33499",previewPdfUrl:"/chapter/pdf-preview/33499",authors:[{id:"75721",title:"Prof.",name:"Shigeo",surname:"Koido",slug:"shigeo-koido",fullName:"Shigeo Koido"},{id:"76360",title:"Prof.",name:"Sadamu",surname:"Homma",slug:"sadamu-homma",fullName:"Sadamu Homma"},{id:"78628",title:"Dr.",name:"Akitaka",surname:"Takahara",slug:"akitaka-takahara",fullName:"Akitaka Takahara"},{id:"78630",title:"Prof.",name:"Yoshihisa",surname:"Namiki",slug:"yoshihisa-namiki",fullName:"Yoshihisa Namiki"},{id:"78633",title:"Dr.",name:"Hideo",surname:"Komita",slug:"hideo-komita",fullName:"Hideo Komita"},{id:"78637",title:"Dr.",name:"Kan",surname:"Uchiyama",slug:"kan-uchiyama",fullName:"Kan Uchiyama"},{id:"78638",title:"Prof.",name:"Toshifumi",surname:"Ohkusa",slug:"toshifumi-ohkusa",fullName:"Toshifumi Ohkusa"},{id:"78639",title:"Prof.",name:"Hisao",surname:"Tajiri",slug:"hisao-tajiri",fullName:"Hisao Tajiri"}],corrections:null},{id:"33500",title:"The Role of Mesothelin in Pancreatic Cancer",doi:"10.5772/28672",slug:"the-role-of-mesothelin-in-pancreatic-cancer",totalDownloads:2949,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Christian Marin-Muller, Changyi Chen and Qizhi Yao",downloadPdfUrl:"/chapter/pdf-download/33500",previewPdfUrl:"/chapter/pdf-preview/33500",authors:[{id:"74932",title:"Prof.",name:"Qizhi Cathy",surname:"Yao",slug:"qizhi-cathy-yao",fullName:"Qizhi Cathy Yao"}],corrections:null},{id:"33501",title:"Establishment of Primary Cell Lines in Pancreatic Cancer",doi:"10.5772/30884",slug:"establishment-of-primary-cell-lines-in-pancreatic-cancer",totalDownloads:5541,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Felix Rückert, Christian Pilarsky and Robert Grützmann",downloadPdfUrl:"/chapter/pdf-download/33501",previewPdfUrl:"/chapter/pdf-preview/33501",authors:[{id:"84622",title:"Dr.",name:"Felix",surname:"Ruckert",slug:"felix-ruckert",fullName:"Felix Ruckert"}],corrections:null},{id:"33502",title:"Disruption of Cell Cycle Machinery in Pancreatic Cancer",doi:"10.5772/28660",slug:"disruption-of-cell-cycle-machinery-in-pancreatic-cancer",totalDownloads:3706,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Steven Kennedy, Hannah Berrett and Robert J. Sheaff",downloadPdfUrl:"/chapter/pdf-download/33502",previewPdfUrl:"/chapter/pdf-preview/33502",authors:[{id:"74877",title:"Prof.",name:"Robert Joseph",surname:"Sheaff",slug:"robert-joseph-sheaff",fullName:"Robert Joseph Sheaff"},{id:"77865",title:"BSc.",name:"Steven",surname:"Kennedy",slug:"steven-kennedy",fullName:"Steven Kennedy"},{id:"77866",title:"Ms.",name:"Hannah",surname:"Berrett",slug:"hannah-berrett",fullName:"Hannah Berrett"}],corrections:null},{id:"33503",title:"Glycans and Galectins: Sweet New Approaches in Pancreatic Cancer Diagnosis and Treatment",doi:"10.5772/28832",slug:"glycans-and-galectins-sweet-new-approaches-in-pancreatic-cancer-diagnosis-and-treatment-",totalDownloads:2212,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Neus Martínez-Bosch and Pilar Navarro",downloadPdfUrl:"/chapter/pdf-download/33503",previewPdfUrl:"/chapter/pdf-preview/33503",authors:[{id:"75531",title:"Dr.",name:"Pilar",surname:"Navarro",slug:"pilar-navarro",fullName:"Pilar Navarro"},{id:"75535",title:"Dr.",name:"Neus",surname:"Martinez-Bosch",slug:"neus-martinez-bosch",fullName:"Neus Martinez-Bosch"}],corrections:null},{id:"33504",title:"The Adhesion Molecule L1CAM as a Novel Therapeutic Target for Treatment of Pancreatic Cancer Patients?",doi:"10.5772/30146",slug:"the-adhesion-molecule-l1cam-as-novel-therapeutic-target-for-treatment-of-pancreatic-cancer-patients-",totalDownloads:3074,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Susanne Sebens and Heiner Schäfer",downloadPdfUrl:"/chapter/pdf-download/33504",previewPdfUrl:"/chapter/pdf-preview/33504",authors:[{id:"81078",title:"Prof.",name:"Susanne",surname:"Sebens",slug:"susanne-sebens",fullName:"Susanne Sebens"},{id:"81125",title:"Prof.",name:"Heiner",surname:"Schäfer",slug:"heiner-schafer",fullName:"Heiner Schäfer"}],corrections:null},{id:"33505",title:"p53 Re-Activating Small Molecule Inhibitors for the Treatment of Pancreatic Cancer",doi:"10.5772/27849",slug:"emerging-small-molecule-inhibitors-for-the-treatment-of-pancreatic-cancer",totalDownloads:2486,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Asfar S. Azmi, Minsig Choi and Ramzi M. Mohammad",downloadPdfUrl:"/chapter/pdf-download/33505",previewPdfUrl:"/chapter/pdf-preview/33505",authors:[{id:"40173",title:"Dr.",name:"Asfar",surname:"Azmi",slug:"asfar-azmi",fullName:"Asfar Azmi"},{id:"40174",title:"Prof.",name:"Ramzi",surname:"Mohammad",slug:"ramzi-mohammad",fullName:"Ramzi Mohammad"}],corrections:null},{id:"33506",title:"Toll-Like Receptors as Novel Therapeutic Targets for the Treatment of Pancreatic Cancer",doi:"10.5772/27263",slug:"toll-like-receptors-as-novel-therapeutic-targets-for-the-treatment-of-pancreatic-cancer",totalDownloads:3276,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Kelly D. McCall, Fabian Benencia, Leonard D. Kohn, Ramiro Malgor, Anthony Schwartz and Frank L. Schwartz",downloadPdfUrl:"/chapter/pdf-download/33506",previewPdfUrl:"/chapter/pdf-preview/33506",authors:[{id:"69494",title:"Dr.",name:"Kelly D.",surname:"McCall",slug:"kelly-d.-mccall",fullName:"Kelly D. McCall"},{id:"76544",title:"Dr.",name:"Fabian",surname:"Benencia",slug:"fabian-benencia",fullName:"Fabian Benencia"},{id:"76546",title:"Dr.",name:"Ramiro",surname:"Malgor",slug:"ramiro-malgor",fullName:"Ramiro Malgor"},{id:"76549",title:"Dr.",name:"Anthony",surname:"Schwartz",slug:"anthony-schwartz",fullName:"Anthony Schwartz"},{id:"76550",title:"Dr.",name:"Leonard",surname:"Kohn",slug:"leonard-kohn",fullName:"Leonard Kohn"},{id:"76572",title:"Dr.",name:"Frank",surname:"Schwartz",slug:"frank-schwartz",fullName:"Frank Schwartz"}],corrections:null},{id:"33507",title:"Grb7 - A Newly Emerging Target in Pancreatic Cancer",doi:"10.5772/29871",slug:"grb7-a-newly-emerging-target-in-pancreatic-cancer",totalDownloads:2162,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Nigus D. Ambaye and Jacqueline A. Wilce",downloadPdfUrl:"/chapter/pdf-download/33507",previewPdfUrl:"/chapter/pdf-preview/33507",authors:[{id:"79717",title:"Prof.",name:"Jackie",surname:"Wilce",slug:"jackie-wilce",fullName:"Jackie Wilce"},{id:"80694",title:"Dr.",name:"Nigus",surname:"Ambaye",slug:"nigus-ambaye",fullName:"Nigus Ambaye"}],corrections:null},{id:"33508",title:"Human Telomerase Reverse Transcriptase Gene Antisense Oligonucleotide Increases the Sensitivity of Pancreatic Cancer Cells to Gemcitabine In Vitro",doi:"10.5772/28128",slug:"human-telomerase-reverse-transcriptase-gene-antisense-oligonucleotide-increases-the-sensitivity-of-p",totalDownloads:1764,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Yong-ping Liu, Yang Ling, Yue-di Hu, Ying-ze Kong, Feng Wang and Peng Li",downloadPdfUrl:"/chapter/pdf-download/33508",previewPdfUrl:"/chapter/pdf-preview/33508",authors:[{id:"72827",title:"Dr.",name:"Yongping",surname:"Liu",slug:"yongping-liu",fullName:"Yongping Liu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2072",title:"Pancreatic Cancer",subtitle:"Clinical Management",isOpenForSubmission:!1,hash:"1eaea9764553491039fbf9054ad50f5b",slug:"pancreatic-cancer-clinical-management",bookSignature:"Sanjay K. Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/2072.jpg",editedByType:"Edited by",editors:[{id:"69661",title:"Prof.",name:"Sanjay",surname:"Srivastava",slug:"sanjay-srivastava",fullName:"Sanjay Srivastava"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"655",title:"Colorectal Cancer Biology",subtitle:"From Genes to Tumor",isOpenForSubmission:!1,hash:"9395fca282ee086f4d33451bca1eadbc",slug:"colorectal-cancer-biology-from-genes-to-tumor",bookSignature:"Rajunor Ettarh",coverURL:"https://cdn.intechopen.com/books/images_new/655.jpg",editedByType:"Edited by",editors:[{id:"78549",title:"Dr.",name:"Rajunor",surname:"Ettarh",slug:"rajunor-ettarh",fullName:"Rajunor Ettarh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"744",title:"Neuroblastoma",subtitle:"Present and Future",isOpenForSubmission:!1,hash:"771ff9574ef2d155e663e4af7244d5ce",slug:"neuroblastoma-present-and-future",bookSignature:"Hiroyuki Shimada",coverURL:"https://cdn.intechopen.com/books/images_new/744.jpg",editedByType:"Edited by",editors:[{id:"77693",title:"Prof.",name:"Hiroyuki",surname:"Shimada",slug:"hiroyuki-shimada",fullName:"Hiroyuki Shimada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"696",title:"Hepatocellular Carcinoma",subtitle:"Basic Research",isOpenForSubmission:!1,hash:"893673ea2bfb1c196266aa55ae52f1f0",slug:"hepatocellular-carcinoma-basic-research",bookSignature:"Wan-Yee Lau",coverURL:"https://cdn.intechopen.com/books/images_new/696.jpg",editedByType:"Edited by",editors:[{id:"73356",title:"Dr.",name:"Joseph W.Y.",surname:"Lau",slug:"joseph-w.y.-lau",fullName:"Joseph W.Y. Lau"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"968",title:"Liver Tumors",subtitle:null,isOpenForSubmission:!1,hash:"c355dccfbd1d32c73d4574411deb20b5",slug:"liver-tumors",bookSignature:"Alexander Julianov",coverURL:"https://cdn.intechopen.com/books/images_new/968.jpg",editedByType:"Edited by",editors:[{id:"94330",title:"Dr.",name:"Alexander",surname:"Julianov, M.D., Ph.D., F.A.C.S.",slug:"alexander-julianov-m.d.-ph.d.-f.a.c.s.",fullName:"Alexander Julianov, M.D., Ph.D., F.A.C.S."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2074",title:"Hepatocellular Carcinoma",subtitle:"Clinical Research",isOpenForSubmission:!1,hash:"8e44ea288d672335fae678cae2a26f36",slug:"hepatocellular-carcinoma-clinical-research",bookSignature:"Wan-Yee Lau",coverURL:"https://cdn.intechopen.com/books/images_new/2074.jpg",editedByType:"Edited by",editors:[{id:"73356",title:"Dr.",name:"Joseph W.Y.",surname:"Lau",slug:"joseph-w.y.-lau",fullName:"Joseph W.Y. Lau"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"426",title:"Management of Gastric Cancer",subtitle:null,isOpenForSubmission:!1,hash:"50917471fa400fb3c0d29d04c5855cf6",slug:"management-of-gastric-cancer",bookSignature:"Nabil Ismaili",coverURL:"https://cdn.intechopen.com/books/images_new/426.jpg",editedByType:"Edited by",editors:[{id:"68661",title:"Dr.",name:"Nabil",surname:"Ismaili",slug:"nabil-ismaili",fullName:"Nabil Ismaili"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"184",title:"Gastric Carcinoma",subtitle:"Molecular Aspects and Current Advances",isOpenForSubmission:!1,hash:"b9049d6b6738d15c2bfb94d32b8e7780",slug:"gastric-carcinoma-molecular-aspects-and-current-advances",bookSignature:"Dr.Mahmoud Lotfy",coverURL:"https://cdn.intechopen.com/books/images_new/184.jpg",editedByType:"Edited by",editors:[{id:"44863",title:"Prof.",name:"Mahmoud",surname:"Lotfy",slug:"mahmoud-lotfy",fullName:"Mahmoud Lotfy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3520",title:"Hepatocellular Carcinoma",subtitle:"Future Outlook",isOpenForSubmission:!1,hash:"32ad39a83fad1d2adde008eb058d32cf",slug:"hepatocellular-carcinoma-future-outlook",bookSignature:"Ahmed O. Kaseb",coverURL:"https://cdn.intechopen.com/books/images_new/3520.jpg",editedByType:"Edited by",editors:[{id:"159941",title:"Dr.",name:"Ahmed",surname:"Kaseb",slug:"ahmed-kaseb",fullName:"Ahmed Kaseb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3401",title:"Advances in the Scientific Evaluation of Bladder Cancer and Molecular Basis for Diagnosis and Treatment",subtitle:null,isOpenForSubmission:!1,hash:"db12d9fb9793bf86edb8b4dfa03e388a",slug:"advances-in-the-scientific-evaluation-of-bladder-cancer-and-molecular-basis-for-diagnosis-and-treatment",bookSignature:"Raj Persad and Weranja Ranasinghe",coverURL:"https://cdn.intechopen.com/books/images_new/3401.jpg",editedByType:"Edited by",editors:[{id:"70414",title:"Mr.",name:"Raj",surname:"Persad",slug:"raj-persad",fullName:"Raj Persad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73312",slug:"corrigendum-to-the-generalized-weierstrass-system-in-three-dimensional-euclidean-space",title:"Corrigendum to: The Generalized Weierstrass System in Three-Dimensional Euclidean Space",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73312.pdf",downloadPdfUrl:"/chapter/pdf-download/73312",previewPdfUrl:"/chapter/pdf-preview/73312",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73312",risUrl:"/chapter/ris/73312",chapter:{id:"65349",slug:"the-generalized-weierstrass-system-in-three-dimensional-euclidean-space",signatures:"Paul Bracken",dateSubmitted:"July 13th 2018",dateReviewed:"November 21st 2018",datePrePublished:"January 25th 2019",datePublished:"May 22nd 2019",book:{id:"7342",title:"Manifolds II",subtitle:"Theory and Applications",fullTitle:"Manifolds II - Theory and Applications",slug:"manifolds-ii-theory-and-applications",publishedDate:"May 22nd 2019",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7342.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",fullName:"Paul Bracken",slug:"paul-bracken",email:"paul.bracken@utrgv.edu",position:null,institution:{name:"The University of Texas Rio Grande Valley",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"65349",slug:"the-generalized-weierstrass-system-in-three-dimensional-euclidean-space",signatures:"Paul Bracken",dateSubmitted:"July 13th 2018",dateReviewed:"November 21st 2018",datePrePublished:"January 25th 2019",datePublished:"May 22nd 2019",book:{id:"7342",title:"Manifolds II",subtitle:"Theory and Applications",fullTitle:"Manifolds II - Theory and Applications",slug:"manifolds-ii-theory-and-applications",publishedDate:"May 22nd 2019",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7342.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",fullName:"Paul Bracken",slug:"paul-bracken",email:"paul.bracken@utrgv.edu",position:null,institution:{name:"The University of Texas Rio Grande Valley",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"7342",title:"Manifolds II",subtitle:"Theory and Applications",fullTitle:"Manifolds II - Theory and Applications",slug:"manifolds-ii-theory-and-applications",publishedDate:"May 22nd 2019",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7342.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12030",leadTitle:null,title:"Remote Sensing",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"4c72e8ef86d70bb4f35a3b70ff698427",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12030.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 28th 2022",dateEndSecondStepPublish:"March 21st 2022",dateEndThirdStepPublish:"May 20th 2022",dateEndFourthStepPublish:"August 8th 2022",dateEndFifthStepPublish:"October 7th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48088",title:"A Comprehensive Research of Atmospheric Haze by Optical Remote Sensing in Central China Region (CCR)",doi:"10.5772/59753",slug:"a-comprehensive-research-of-atmospheric-haze-by-optical-remote-sensing-in-central-china-region-ccr-",body:'With the changing pollution scenario, the task of improving air quality is now faced with increasingly serious challenges. Aerosols and gaseous pollutants have great impact on the radiative balance of the Earth, and thus on climatic changes. Furthermore, the radiative forcing of natural and anthropogenic aerosols exhibits a strong seasonal and geographical variability, which can affect the diffusion of atmospheric pollution locally [1]. The increase of aerosols or gaseous pollutants results in impairment of visibility. Besides, high aerosol concentration is deleterious to human health. The Chinese Academy on Environmental Planning considers that air pollution is responsible for 411,000 premature deaths in China in 2003, primarily from respiratory problems and heart diseases [2]. Therefore, obtaining information on the vertical distribution of aerosols and gaseous pollutants in the pollution haze is crucial to understanding their optical characteristics as well as their impact on air quality and on human health.
During the past 10 years, with its dense population, rapid economic growth, and dramatic rate of urbanization, China has been experiencing elevated levels of air pollution [3-5]. This is particularly so in the case of the Pearl River Delta (PRD), Yangtze River Delta (YRD), and Central China Region (CCR). Among these, the CCR region is where the frequency of occurrence of haze has been increasing rapidly from 2012. In CCR, NOx, SO2 and VOCs discharged by pollution sources are the significant primary pollutants, which greatly influence the formation of particulate matter and ozone because of photochemical reaction. Besides, the prevalence of mild and humid climate throughout the year in CCR leads to transformation and accumulation of particulate matter and gaseous pollutants. In addition, regional transportation contributes to combined pollution problems of atmosphere, manifested by high-concentration fine particulate matter, low visibility, high-concentration NO2 column, etc.
Thus far, extensive studies using different methods have been conducted in China on atmospheric pollution [6-9]. For a better understanding of aerosol properties and their effect on environment, two major aerosol experiments were conducted in mainland China since 2004: (i) East Asian Study of Tropospheric Aerosols -An International Regional Experiment (EAST-AIRE) [10] and (ii) East Asian Study of Tropospheric Aerosols and Impact on Regional Climate (EAST-AIRC) [11]. Information on the properties of aerosols and their temporal and spatial distribution was obtained from studies using both short-term intensive field experiments and long-term operations, as well as modeling studies. Besides these filed experiments, lidar (LIght Ranging and Detection) and DOAS (Differential Absorption Spectroscopy) studies were conducted at several sites in China[12-18]. However, knowledge on the properties of aerosols and trace gases, particularly in the vertical dimension, in CCR China is rather scanty. Also, because of lack of real-time data on the quantum of pollutants discharged by major industrial parks, it is hard to resolve the task of pollution prevention. The present research was designed to take advantage of advanced environmental monitoring technical equipment (including Lidar[19,20], multi-axis DOAS[21,22], vehicle-mounted DOAS /infrared SOF[23-25], and meteorological parameter analyzer, etc.) to establish a stereoscopic observing system for key sources of regional pollution in CCR, China. The campaign was carried out from Dec 2013 to April 2014 in three key cities, namely Anyang (AY), Jiaozuo (JZ) and Sanmenxia (SMX). Continuous and automatic stereoscopic monitoring of primary pollution sources, transportation of pollutants, emission characteristics of pollution from major industrial parks, as well as the transport conditions in the surrounding regions of pollution under specific meteorological conditions was carried out to obtain data that can help in air quality improvement and in development of forecast warning model, besides making up for the deficiency in current ground monitoring system.
The scope of research resolves mainly into two parts:
Real-time monitoring of spatio-temporal distribution of regional haze pollution:
Representative monitoring points were identified in selected cities and surrounding areas along the direction of pollution transportation to measure spatial and temporal distribution characteristics of SO2, NO2 and aerosol particulate matter with lidar, MAX-DOAS, etc.
Real-time monitoring of disorganized pollutant discharge in key industrial park sources:
VOC is an important precursor to the formation of photochemical smog. The type and volume of VOC discharge, as also of SO2 and NO2, play a significant role in pollution. Aiming at the key source areas of elevated discharge, vehicle-mounted DOAS and vehicle-mounted SOF-FTIR were utilized for mobile scanning measurement of discharged smoke plumes. Using the absorption characteristics of pollution gas molecules in infrared and ultraviolet spectrum, the concentration of exhaust gas was qualitatively and quantitatively determined through SOF-FTIR and DOAS spectrum analytical methods.
The Lidar system, used for the study of spatial and temporal distribution of atmospheric particles, is shown in Fig 1; it adopts 532m Mie scattering and 532 polarization channels. Laser transmitter launches linear polarization lasers at 532nm by shooting vertically into atmosphere through beam expander, inversed mirror and quartz skylight. The laser pulse is scattered through air molecules, atmospheric aerosols or cloud, on its transmission route. The backward-scattered light firstly passes through skylight glass and then as parallel light through the diaphragm hole and convergent lens of the telescope. The converged parallel light is split into two beams by dichroic mirror: one is at 532nm, received by photomultiplier C after passing through optical filter; the other is at 355nm, whose vertical and parallel components are received respectively by A and B photomultipliers, after decomposition by an analyzer prism. After the conversion of optical signal into electrical signal by photomultiplier, the signal will be delivered to data acquisition system, where its ASCII code data file will be recorded and saved by main control computer.
System structure of lidar
MAX-DOAS is a special type of DOAS technology, which uses characteristic absorption structure of trace gases (such as NO2, SO2, O3) in visible ultraviolet band for qualitative and quantitative analysis of gas. As a real-time and online measuring method, it is eminently suitable for remote sensing measurement of air pollution. Besides, the data on vertical column density of pollution gases acquired from this method can help in verifying satellite results [26]. MAX-DOAS receives scattered sunlight from telescopes at different elevations, as shown in Fig 2. Based on the characteristic absorption spectrums of pollution gas, it inverses the vertical column density of pollution gas and distribution profile of density. Besides, it acquires data on spatial distribution of pollution gas in atmosphere by measuring atmospheric absorption spectrums in zenith direction and several off-axis directions. During the monitoring process, the reflector orients itself to the north and is then driven by stepper motor to turn to 1°, 2°, 3°, 4°... 90° to finish one measurement cycle, thus realizing measurement of different angles. The schematic diagram of MAX-DOAS is presented below.
Schematic diagram of MAX-DOAS
With zenith-sky scattered light as the light source, vehicle-mounted DOAS technology is a kind of spectrum detection technology, which uses “fingerprint” absorption characteristics of optical radiation by gas molecule for qualitative and quantitative measurements of gas. The system includes mainly a spectrograph, a GPS system and a telescope [27]. As shown in Fig 3, the whole system is put on mobile platform and the telescope gathers solar spectrum along the measurement route. During operation, the band of spectrograph is fixed at 290nm~420nm (spectral region 130nm) as this band has strong SO2 and NO2 absorption structures. After the spectrograph delivers the gathered spectrum to computer for data processing, DOAS method is used to calculate the column density of pollution gas. Finally, density distribution of pollution gas on the measuring route can be acquired by combing the information from GPS on longitude and latitude.
Structure and system of vehicle-mounted DOAS
The spatial resolution of the OMI detector mounted on AURA satellite is 13 km×24 km [28]. NO2 VCD of troposphere, below the satellite orbit, can be obtained through DOAS inversion of measured spectrum. After differential and meshing treatment, NO2 VCD of each acquired orbit is integrated and then NO2 density distribution over the region is obtained. Acquisition of regional density distribution data is significant for investigation of the processes of generation and transportation of pollution. For the present study, OMI Level 2 NO2 VCD data was adopted. From the weekly average between Nov and Dec, it was found that CCR pollution reached its peak in the third week.
Comparison of areal distribution at the three sites
The average of the values obtained during measurement period at the three observation sites (AY, JZ and SMX) were taken as the areal distribution level of NO2 and SO2 in CCR (Fig 4). It can be observed that the average level of NO2 density at AY is 63.4*1015molec./cm2, which is higher than the values at JZ and SMX. Density of NO2 in SMX is the lowest at its average level of 35.3*1015molec./cm2. SO2, density at JZ is the highest at 149*1015molec./cm2, which is higher than that at AY and SMX.
Characteristic contrasts about VCD (vertical column density) of SO2 and NO2 at the three sites
Results of monthly average variation
The results obtained during the measurement period were used to calculate the averages of different months and to analyze variation trends of pollutant concentration. It can be observed from the calculation results (see Fig 5) that NO2 VCD (vertical column density) reached its peak in Dec and Jan, decreased from Feb onward, and then remained low between Mar and June. Monthly average of SO2 VCD at each station is shown in the figure below. It is obvious from VCD of SO2 is high in winter just as NO2; it reached its peak in Dec at AY, in Jan at SMX, and in Feb at JZ. It obviously decreased from Mar and thereafter remained low up to June.
Monthly average variations about VCD (vertical column density) of SO2 and NO2 in observing sites
From an overview of the monthly averages discussed above, it can be concluded that the accumulation of pollutants had been accumulated rapidly and heavily because of high discharge and unfavorable weather conditions in winter. With the end of hot season after February, change of wind direction and increase in rainfall would start favoring diffusion and sedimentation of pollutants, and consequently reduction of pollutant concentration.
Monitoring of aerosols through lidar, from Nov 2013 to April 2014, (Fig 6) revealed that haze pollution was severe mainly from Nov. 2013 to Jan. 2014. Particularly from Dec 12 to Dec 20, and Jan 4 to Jan 17, the pollution lasted for almost half a month at AY and JZ. Overall air quality improved continuously, from Feb to June 2014, at AY, JZ and SMX. However, during wheat harvesting in June, because of straw burning, pollution levels increased at AY, JZ and SMX sites. The highest pollution levels were confined to the middle of June (14th-15th); the peak of aerosol extinction coefficients at AY, JZ and SMX sites are respectively 0.83km-1, 0.91km-1 and 0.66km-1.
Monthly aerosol distributions from lidar observation
Pollution transportation (Nov 25, 2013-Nov 27, 2013) also occurred at AY, JZ and SMX, but the pollution characteristics and sources were different. Among these three sites, sand dust transportation in northwest direction affected SMX the most. Because of sand dust transportation, large particle concentration in air increased and RH decreased rapidly (at SMX, RH=78% on Dec 25 and RH=32% on Dec 27). Repeated monitoring of local pollutions (Dec 12, 2013-Dec 17, 2013; Jan 8, 2014-Jan 11, 2014; Jan 27, 2014-Jan 31, 2014; Feb 16, 2014-Feb 18, 2014; Apr 10, 2014-Apr 13, 2014) reveal that near-ground pollution at these three sites came mainly from local pollution (industrial emission, motor vehicle exhaust and coal combustion) and fire coal transportation from southern cities in the southeast direction. By the end of Jan 2014, local pollution aggravated because of discharge from firecrackers during spring festival. The pollution at higher levels in the air above 1km came mainly from the northwest.
In conclusion, it emerges that particulate pollution occurred almost simultaneously at the three sites AY, JZ and SMX. Local pollution (local source) is typical in AY, and near-ground pollution in JZ is higher due to the local industrial emission. Local pollution was relatively slighter in SMX, but it can be easily aggravated by northwest sand dust transportation. Sand dust pollution at AY manifests as superposed locally raised dust over northwest sand dust. In CCR, the ground weather conditions of uniform-pressure were conducive to pollutant diffusion. This weather had lower ground pressure field, lower ground and low-altitude wind speeds, and even calm wind sometimes. These were often accompanied by stronger radiation inversion or low-altitude temperature inversion that is difficult to eliminate. The structure of lower atmosphere layer was stable and might contribute to higher pollution.
Quantitative modeling was done in some cities to evaluate the influence of key industries and industrial parks on ambient air quality, especially PM10. Vehicle-mounted DOAS system was used for monitoring industrial parks in both winter (Dec 2013) and summer (May-June, 2014) by way of acquiring data on spatial distribution of urban VOD of SO2 and NO2, emission characteristics of SO2 and NO2 in key industrial sources, as well as pollution transportation parameters under specific meteorological conditions.
At AY, the results obtained in winter and summer is similar. The concentration of SO2 and NO2 was caused mainly by the discharge from steelworks factories. However, observations during southeast/south winds in summer show that the concentration of SO2, in the southwest-northwest section of the measurement route, was high. This indicates that sporadic small-scale industrial discharge occurred beyond southwest-northwest section (south and southwest of AY), which was not found during observations in winter. Judging from the relative geographic positions of steelworks and urban area at AY, as well as forward track model of wind field (Fig 7), it can be concluded that during northwest winds, discharge of AY steelworks had great influence on the air quality of urban area in AY.
Spatial distribution of SO2 and wind field track superposition at AY under northwest wind field
Mean values per hour (MV/H), obtained from ground monitoring of SO2 at monitoring point of environmental protection agency in AY from May 18 to May 20 are shown in Fig 8. From these results, it can be observed that ground concentration of SO2 in urban area increased during northwest winds. At the same time, it is also found that during southeast winds, ground concentration of SO2 in urban area was high at about 11a.m. on May 18, when the observation time was just the same as that of third auxiliary chart in Figure 9. It is concluded that, under southeast wind field, sporadic pollution in the southwest and south, beyond measurement area, had great influence on the air quality of main urban area in AY.
MV/H about ground concentration of SO2 in monitoring point at AY
Spatial distribution changes of SO2 during the wind filed transformation process at AY steelworks
Haze episode (Dec 12, 2013-Dec, 16, 2013)
From Dec 12, 2013 to Dec 16, 2013, a typical haze phenomenon was observed at AY, JZ and SMX, when the pollution was mainly local. Under the influence of regional weak wind field, the distribution range of local pollution was large and the duration long, but intermittent. Besides, the extinction coefficient of aerosol and concentration of NO2 reflect a completely accumulative, rising, sustaining and stable process. Based on the distribution range and strength, two main phases were identified: generation phase of local pollution and pollution stabilization phase.
AY city: Since the afternoon of Dec 12, 2013, the pollutants gradually rose to 1.9 km and then began descending on Dec 13 (Fig 10). In the afternoon of Dec 14, it again started rising, but this time the height was lower than that on Dec 13. During Dec 15-16, near-ground pollution intensified and lasted for a long time, with the maximum value of extinction coefficient reaching 0.87km-1 (see Fig 11).
Formative period of haze (Dec 12-14)
Spatial distributions of aerosols from Dec 12 to Dec 14 at AY, CCR
Stable formation of pollution (Dec 15-16)
Spatial distributions of aerosols from Dec 15 to Dec 16 at AY, CCR
JZ city: The height of pollutants started rising from the afternoon of Dec 12 and the average of extinction coefficient was higher than that at AY (Fig 12). The height of daytime pollutants dropped on Dec 13, but it began rising again in the morning of Dec 14; near-ground pollution continued on Dec 15-16 (Fig 13).
Formative period of haze (Dec 12-14)
Spatial distributions of aerosols from Dec 12 to Dec14 at JZ, CCR
Stable formation of pollution (Dec 15-16)
Spatial distributions of aerosols from Dec 15 to Dec16 at JZ, CCR
SMX city: Local pollution was noticed from the afternoon of Dec 12; the height of the pollutants rose gradually from the evening of Dec 13 and the average of extinction coefficient was 0.39km-1 (Fig 14). High concentration pollution was confined to the period from the evening of Dec 13 to evening of Dec 14. No obvious change of extinction coefficient profile is observed on Dec 15-16; the height of the pollutants was below 1.2km (Fig 15).
Formative period of local pollution (Dec 12-14)
Spatial distributions of aerosols from Dec 12 to Dec 14 at SMX, CCR
Stable formation of pollution (Dec 15-16)
Spatial distributions of aerosols from Dec 15 to Dec16 at SMX, CCR
During the haze period from Dec 14 to Dec 20, the whole process of NO2 accumulation and dispersion, as observed by MAX-DOAS, is depicted in Figs 16 & 17. The changes in pollution concentration are most evident at AY, where the concentrate started rising since Dec 12 and continued until Dec 14; thereafter, it remained at a high level. However, the increase at JZ was relatively slow. The concentration of both NO2 and SMX NO2 increased obviously on Dec 14 and again, and this time is more higher on December 18. On the contrary, the concentrations of NO2 at AY and JZ began decreasing. The haze formation was caused mainly by internal and northern atmosphere transmission; besides, the obstruction to the airflow in the north militated against pollutant diffusion and instead favored accumulation. Air humidity, coupled with the convergence of cold and hot airflows, contributed to the process of haze formation.
NO2 VCD from Dec 10 to 16 in the observing sites
NO2 profiles from Dec 12 to 16 at AY, CCR
On Dec 15, the average wind speed was 4.1 m/s and the temperature was1.8°C at the height of 1000m. The prevailing wind was northwest wind (Fig 18). The high-altitude west wind was affected by the downdraft in leeward slope terrain, leading to the convergence of the regional weak wind field pollutants, and finally to heavy pollution.
Meteorological conditions and wind rose diagram
Backward trajectories from Hysplit
From the HYSPLIT backward trajectory model in Fig 19 [29], the pollution at the three observation points was found to be mainly from the northwest. The main pollution source could be from burning of fossil fuels or bio-fuels, aided by the continental airstream. By noon on Nov 25, there was evident increase in pollutants at both AY and JZ. Subsequently, until the evening on Dec 26, at both the observation points, the pollutants decreased and then again increased and stabilized. The overall aerosol extinction coefficient at AY was higher than that at JZ, and the peal values are 0.87km-1 and 0.51km-1, respectively. The pollution layer was below 1.9 km, corresponding to the pollutant transmission layer in a low level jet (LLJ) [30] of stable or neutral boundary layer. For two days, it was observed that the height of the mixing layer grew linearly over time. When the height of the mixing layer grows to the height of the pollutant transmission belt in the nocturnal boundary layer, the vertical mixing effect would result in rapid concentration of pollutants on the ground. Therefore, there was increase in aerosol values, as well as in local pollutants discharge during the days; the downward transmission from the higher layers was also an important factor. Compared with AY and JZ, the air at SMX was cleaner and the height of pollutants was lower at 1.2 km below, but by the evening of June13 the pollution became serious.
NO2 VCD distribution result chart from Nov 11 to Dec 20 in CCR during haze period
NO2 VCD change chart detected by OMI satellite from Nov 1 to Dec 20
From the satellite results in Fig 20, it can be observed that high NO2 VCD values existed during the haze period. From the daily variations in NO2 VCD values between Nov and Dec at AY, JZ and SMX (seen in Fig 21), it can be seen that the results at AY clearly indicate a relation between NO2 VCD values and haze. For example, at AY, the daily average value of NO2 VCD during Nov 1-20 was 3.32×1016molec./cm2. For the first haze period during Nov 21-23, the daily average value was 8.37×1016 molecule/cm2, which was 2.5 times more than the normal average value. For the second haze period on Dec 8, it was 5.8×1017 molecule/cm2, which was the highest and 18 times more than the normal average value. For the third haze period during Dec 16-17, it was 1.57×1017 molecule/cm2, which was 4.7 times more than the average value. From the values of NO2 during these three haze periods, which were multiple times more than the average value, it clearly follows that there exists certain relation between NO2 and haze, and that high NO2 VCD values contribute to hazy weather.
Wheat harvesting from June 12 to June 16 in early summer of 2014, straw burning contributed to local pollution at all the three observation points in AY, JZ and SMX (Figs 22 & 23). At all these points, pollution was at its peak during June 14-15. And the biomass burning, such as straw burning, which releases particulate matter of small grain size, is confirmed by the depolarization ratio values from lidar observations.
June 13, 2014-June 14, 2014 (initial phase)
Spatial distribution of aerosol from June 13 to June 14, 2014 at AY, CCR
June 15, 2014-June 16, 2014 (serious pollution phase)
Spatial distribution of aerosol from June 15 to June16, 2014 at AY, CCR
During the straw burning period in CCR, the aerosol extinction coefficient fluctuated from 0.69 to 1.23 km-1. The low depolarization peak value of 0.2 confirms the presence of fine particulates. Besides particulates, usually straw burning also releases various gaseous components such as CO2, CO, NOx, VOC, sulfuric acid gas, hydrochloric acid gas, and alkaline gas ammonia. The retention time of ammonia in the air is short, because it quickly reacts with acidic gases or acidic particulate matter, and the resulting components can be precipitated on the particle surfaces of the particulate matter leading to the generation of new condensation nucleus. The aging process will increase the amount of particulate matter, which can lead to the increase in particulate emission factors. The burning of straw near CCR, together with surrounding pollution transmission, aging of particulate matter during long distance transmission, and the emission factors such as diameter aggravated local pollution.
\n\t\t\t\tAerosol and NO2 profiles from June 15 to June16, 2014 at AY, CCR
NO2 and SO2 values were at low level for most of the time, but at some stages during the measurement period from the end of May to the middle of June, they were at high level. According to the results of aerosol and NO2 for the period June 12 to 17 (see Fig 24), high aerosol extinction appeared at 300 m on June 12; it reached the peak on June 14 and diffused on June 15. It appeared on June 16 again and reached the highest level on June 17. NO2 transmission process appeared at the height of 1.8 to 2.7 km on June 12; it weakened on June 13 although the transmission close to the ground was stronger. The transmission process appeared again at the height of 1.5 to 2.2 km on June 14, which reappeared, though as a weaker one, on June 15 and 16 at the height of 2.2 to 3 km. But the transmission remaining at the same height became stronger on June 17.
To identify the sources of pollution transmission, local information was taken as the reference. But during the wheat harvesting season, the burning of straw on the surrounding farmlands was believed to be the main cause for high values of pollution. Therefore, the analysis was made by referring to the satellite fire spots diagram of Ministry of Environmental Protection, which is shown in Fig 25.
Fire spots from May 26 to June 1, June 2 to June 8, and June 9 to June 15
Backward trajectories from Hysplit
From these fire spots [31], it was inferred that multiple fire points existed around AY and JZ since June. However, by the middle of June they increased and many more fresh points appeared in the agricultural area of south CCR in the southeast. The backward trajectories, shown in Fig 26, indicate that concentrated burning of wheat straw brought about peripheral transmission.
From the foregoing results of aerosols and pollution gas, it emerges that the transportation brought by wheat straw burning manifested mainly as rapid increase of PM10, which is related to moisture absorption and expansion of particulate matter during transportation process. NO2 and SO2 were at their peaks on June 13 and 14 respectively; so, the amplification was not as obvious as that of PM10. For evaluating the influence of wheat straw burning on local air pollution, the values of NO2 and SO2 on June 11, before wheat straw burning, were taken as the background values. The NO2 values obtained after wheat straw burning on June 13, and again the SO2values obtained on June 14, were recorded and evaluated. From these evaluation results, it’s concluded that from the end of May to the middle of June, concentration of gaseous pollutants (NO2 and SO2) and particulate matter increased obviously due to straw burning in CCR and surrounding cities.
CCR is an important industrial site in the mid- west region of China. Historical review of satellite data shows that the cities with relatively serious air pollution are confined mainly to the north because of their geographic location, weather conditions and industrial activity. Besides, the “accumulation zone” of pollutants exists in the region east of Tai-hang Mountains. Analysis of the data obtained from stereoscopic monitoring of the selected sites shows that the prevalence of pollution at the three sites, AY, JZ and SMX, was almost simultaneous. However, AY was characterized by local pollution (local source) and JZ by near-ground pollution, where the pollution concentration was also higher due to higher emission of industrial gases. Though local pollution was milder at SMX, it still can be easily aggravated by northwest sand dust transportation. Through statistical analysis of satellite and ground monitoring data, pollution was more serious during the 1st and 4th quarters (winter and spring), followed by the 2nd quarter and the 3rd quarter. During the heating period, the air pollution intensified obviously, because the urban energy consumption structure was still coal-oriented. During late May to mid-June, straw burning in the south CCR and surrounding provinces, such as Anhui and Jiangsu, contributed to the increase of aerosol, NO2 and SO2, in some cities of CCR.
As for the reasons for the complex process of haze formation, it was found that local pollution (local sources) was the main cause, besides the effect of superposition of pollution transportation in some time frames. Near-ground pollution at the three sites was caused mainly by local pollution (industrial emission, motor vehicle exhaust, coal combustion, etc.) and pollution transportation of some northern cities in the southeast direction. AY was more affected by local transportation and emissions from some industrial parks, and JZ by near-ground local pollution. Moreover, pollution concentration was higher at JZ than that at AY because of more industrial emissions. Local pollution at SMX was comparatively less obvious, but was lasting longer due to the unfavorable diffusion condition. In CCR, formation of ground weather situations of uniform-pressure field and North China low pressure, which are bad for pollutant diffusion, is easy. Such weather has lower ground pressure field, and smaller speeds of ground and low-altitude winds, which are sometimes calm. It is often accompanied with stronger radiation inversion or low-altitude temperature inversion that is difficult to eliminate. The structure of lower atmosphere layer is stable and might contribute to higher pollution.
So far many efforts were made from ground based and space borne observations to study aerosol distribution and properties, along with model simulations, but such integrated studies are still limited over the East Asian, especially in CCR region in China. Satellite observations provide time constrained observations of aerosol vertical distributions but ground based lidar can give information on the evolution of the distribution over a location. Thus the optical properties of aerosols or gaseous pollutants obtained from ground-based remote sensing technology, especially lidar and DOAS is being studied to determine the aerosol optical characteristics and source origin. In the future, the more integrated combination of lidar, satellite data, in-situ instruments, and sunphotometer data will help us to improve the characterization of a variety of aerosol events and get deeper insight into the mechanism of long-range transportation of pollution in China. Furthermore, the information of vertical distribution of haze layer during long-range transportation could permit us to make better assessment of the effect of aerosols on the radiative forcing and climate change.
This work was supported by the Funding from Henan Program (Researches on Atmospheric Haze pollution in Henan Province), Major State Basic Research Development Program of China (2014CB447900) and NSFC (41305126). The authors are also thankful to the NOAA Air Resources Laboratory (ARL) for providing the HYSPLIT transport and dispersion model used in this research.
Boron is a very useful element that exists in compounds such as borates. Generally, boron is a non-metallic element and can be extracted into pure crystalline boron that is black in colour and conduct electricity at higher temperature and insulator at low temperature. It is as hard as carborundum but too brittle to be used as a tool. Boron is used in medicine, agriculture, decarbonisation purposes and industrial uses.
One of the outstanding compounds of boron is Cubic Boron Nitride (CBN). CBN is a synthetic abrasive material made of Cubic Boron Nitride grains bonded in ceramic material and is commonly known as Borazon™ [1]. CBN is an allotropic crystal of boron nitride (B4N) and has a hexagonal crystal. It is the second hardest material after diamond but more chemically and thermally stable than diamond and is extensively used in cutting tools [2]. CBN has excellent thermal stability, with oxidation starting at 1000°C and finishing around 1500°C. This is aided by the presence of boron oxide layer, which allows the use of high speed of 30.5–61 ms−1 [3]. Polycrystalline cubic boron nitride (PCBN), an extended version of CBN, is developed for machining, superalloys, and high-temperature alloys. Besides having high-temperature resistance, it has a low coefficient of friction but low fracture toughness [4].
Cubic boron nitride (CBN) is very well known in many machining industries. CBN is man-made material that having a hardness that is second to diamond [5]. Since CBN has hardness after diamond, it has outstanding mechanical and thermal properties, for examples, having high temperatures strength and wear resistance. Multilayer CBN coatings represent a new deposition method that can improve adhesion on metal substrates. Even with high residual stress, this multilayer CBN structure showed outstanding adhesion in atmospheric conditions. A study found that the multilayer CBN films in comparison to monolayer CBN, has lower elastic moduli, but twice as high to their critical loads [6]. In recent years, the performance of CBN tools has been researched [7, 8].
Instead of pure CBN, composite coating of CBN-TiN also being used as machine cutting tools [9]. It is found that, this composite has outstanding CBN-to-TiN as well as the adhesion of composite coating-to-carbide substrate. The characterisation analysis indicates an evenly distributed CBN particles in TiN matrix [10].
Electroless nickel (EN) is an in-situ chemical reaction process where a metallic nickel is deposited onto a surface. This process is different from nickel electroplating that uses an applied current in the electrolytic bath which has effect on the current density, electrolyte composition, pH, bath agitation on the physicochemical and mechanical properties of the deposits [11, 12]. The main ingredients of EN are electroless bath, reducing agents, complexing agents, bath stabilisers and accelerators. Table 1 describes the function and type of each EN ingredients.
Ingredients | Functions | Types | ||
---|---|---|---|---|
Pure nickel | Acid-based | Alkali-based | ||
EN bath | Provide metallic ion sources | Ni acetate | Nickel sulfate, Nickel chloride | Nickel sulfate, Nickel chloride |
Reducing agents | Reduce metallic ion into metal deposit | Hydrazine | Sodium hypophosphite, sodium borohydride, dimethylamine (DMAB) | Sodium hypophosphite, sodium borohydride, dimethylamine (DMAB), hydrazine |
Complexing agents | Prevent decomposition of solutions and control reaction onto the catalytic surfaces | Tetrasodium salt, glycolic acid | Citric, lactic, glycolic, propionic acids, sodium citrate, succinic acid | Citric, lactic, glycolic, propionic acids, sodium citrate, sodium acetate, sodium pyrophosphate |
Bath stabilisers | Act as inhibitors, increase deposition rate and deposit brightness | — | Thiourea, lead acetate, heavy metal salts, thioorganic compound | Thiourea, lead acetate, heavy metal salts, thioorganic compound, thallium, selenium |
Catalyst | Increase the deposition speed and plating rate to be economically high | — | Sodium hydroxide, sulphuric acid | Sodium hydroxide, sulphuric acid, ammonium hydroxide |
EN process chemicals and their functions.
Table 1 lists the three types of available EN baths, pure nickel, acid-based and alkali-based chemicals. The pure nickel bath provides pure nickel metallic deposition for semiconductor application purposes. The acid and alkali-based chemicals either produce Ni-P or Ni-B alloy deposition depending on the reducing agent used. The properties of the EN deposits strongly depend on the content of phosphorus or boron in the alloys. As seen in Table 2, the deposit structure changes because the phosphorus or boron content changes. EN bath concentration, temperature, pH, agitation, and bath loading effect the EN process [14].
EN bath type | Reducing agent | Deposit alloys | Phosphorus/Boron content (%) | Structure | Properties |
---|---|---|---|---|---|
Acid-based | Sodium hypophosphite | Ni-P | 3–5 | Crystalline | Excellent wear resistance. |
6–9 | Mixed Crystalline and amorphous | Good corrosion protection and abrasion resistance. | |||
10–14 | Amorphous | Very ductile and corrosion resistant | |||
Dimethylamine (DMAB) | Ni-B | 0.1–4 | Crystalline | High melting point of approx. 1350°C for wear application. | |
Alkali-based | Sodium hypophosphite | Ni-P | 3–6 | Crystalline | Good solderability for the electronic industry. However, lower corrosion resistance and lower adhesion to steel. Suitable for plating plastics and non-metals. |
Sodium borohydride | Ni-B | 4–7 | Mixed Crystalline and amorphous | Low hardness and average wear resistance. | |
Dimethylamine (DMAB) | Ni-B | 0.2–4 | Crystalline | Hardness and superior wear resistance. |
Summary of EN baths, reducing agents and their properties [13].
It is known that the EN process provides exceptional standardisation and impenetrable deposition even with a coating thickness of fewer than 10 μm [15]. In manufacturing, EN deposition has been widely used for it provides excellent corrosion, lubricity, ductility, wear and abrasion resistance, high hardness, and electrical properties [16].
When incorporated with particles or powders of different materials, EN deposition becomes an EN composite and the process is called EN co-deposition. This incorporation of particles or powders in the EN deposit has remained extensively explored. Similar to the EN deposit, there are two EN composites upon particles incorporation, either Ni-P or Ni-B, depending on the EN reducing agent used. The particles that have been studied include ceramic, polymer and metal particles. Table 3 summarises the particles that have been investigated for various applications. Incorporating ceramic particles into EN deposit produces a composite name cermet, which is the current issue discussed by using CBN particles for cutting tool applications.
Particle | Composites | Applications | References |
---|---|---|---|
Diamond | Ni-P-C | Cutting tool/Applied to reamers for highly abrasive applications | [17] |
Ni-B-nanodiamond | Wear & friction resistance | [18] | |
Silicon carbide | Ni-P-SiC | Wear resistance | [19] |
Silicon oxide | Ni-P-SiO2 | Corrosion resistance | [20] |
Silicon nitride | Ni-P-Si3N4 | Water lubricated application for corrosion and wear resistance | [21] |
Boron carbide | Ni-P-B4C | Magnetic field application | [22] |
Boron nitride | Ni-P-BN | Elastic–plastic behaviour | [23] |
Alumina | Ni-P-Al2O3 | Corrosion resistance | [24] |
Cerium | Ni-P-CeO2 | Corrosion resistance | [25] |
Titanium oxide | Ni-P-TiO2 | Surgical instrument | [26] |
Iron oxide | Ni–P–Fe3O4 | High-temperature oxidation application | [27] |
Yttria-stabilised zirconia | Ni-P-YSZ | Cutting tool | [28] |
PTFE | Ni-P-PTFE | Dry lubrication of valve for cryogenic applications | [29] |
PVP | Ni-P-PVP | Corrosion resistance | [30] |
Investigation of various particles for EN composites and their applications.
The coating technology is more demanding due to the increase in productivity rates for industry consumption, especially for cutting tool purposes. It shows the growing market of cutting tools has been developed [31]. The coated tools application is becoming more important in the machining process. These tools are produced using thermal spraying processes such as physical vapour deposition (PVD) and chemical vapour deposition (CVD). Thermal spraying processes are very reliable; however, they are costly, and the high temperature causes materials properties to degrade [32].
In hard milling, the most acceptable significant representation is the cutting tool’s thermal property of the material, such as thermal conductivity. The cutting tool’s function ability can only be estimated via temperature tool measurements. For ferrous materials, cubic boron nitride (CBN) is one of the most demanding cutting tools. Multilayer CBN coatings provide a unique deposition method when applied to metal surfaces. Even under extreme conditions of high residual stress, the adhesion of this multilayer CBN structure was remarkable. Their heavy loads were twice as extraordinary compared to the monolayer CBN coatings, which had lower elastic moduli. It showed that stress relaxation significantly impacts the multilayer CBN structure [33]. This type of cutting tool is essential for cutting ferrous materials in a wide range of industries because of the advantages of suitable coating materials. Some of the most challenging materials to mill, such as aerospace alloys, die steels, and toughened steels, required the employment of CBN cutting tools [34, 35].
The diamond’s remarkable mechanical and thermal capabilities, such as strength at elevated temperatures, abrasion resistance, and hardness, are the second property that the diamond possesses. Thus, numerous sorts of research have been undertaken in the last few years on the performance of CBN tools [36, 37]. The application of CBN as a cutting substance is a suitable method that may affect production. Nonetheless, the presentation of machining, such as progression solidity, tool wear and live performance, and surface finish quality, is significantly affected by differences in high-performance machining, which commonly requires a high material removal rate (MMR) [38, 39]. However, CBN coatings’ application speeds and tool life are still lower than those of some other tools. Certain adjustments and upgrades are required, including raising the coating thickness and a rotational mechanism during the coating process. Hard coatings are typically more fragile and less lasting, whereas reinforced coatings lack strength. For real-world industrial operations, it is more critical to have coatings with a high hardness without sacrificing too much toughness.
Milling is the most common method of cutting metal. There are a variety of milling operations, but the ultimate shape and condition of the raw material dictate which ones are used. Adding features like slots or threaded holes necessitates using a milling machine. The cutting tool quality is directly proportional to the cutting process performance. In order to cut a tough workpiece materials, a harder cutting materials are needed [5]. Due to high process forces and temperatures, the first tool wear occurs in complex machining. The initial tool wear occurs in complex machining due to the high process of forces and temperatures. The machining market offers a wide variety of cutting tools, classified as coated or uncoated. Coated cutting tools typically perform better than uncoated cutting tools. Commercially available coated cutting tools include aluminium nitride (AlN), titanium nitride (TiN), titanium aluminium nitride (TiAlN), and others [28].
Due to the availability of suitable coating materials for cutting tools, this ferrous cutting material is indispensable in various industry disciplines. Certain heat-resistant CBN cutting tools are typically used on difficult-to-machine materials, such as aerospace, die steel, or hardened steel [34, 35]. CBN cutting tools have remarkable mechanical and thermal properties, including high-temperature strength, abrasion resistance, and hardness comparable to diamond. Thus, it has been demonstrated recently that CBN instruments produce excellent results in various sorts of research [37, 38]. The use of CBN as a cutting substance is a beneficial strategy that may significantly impact productivity.
CBN-based materials with bonding capabilities are frequently used to improve the machining process, which pushes researchers to continue improving coatings by utilising appropriate materials and procedures. For example, Ni-reinforced vitrified bonds are created in a high magnetic field for CBN grinding wheels. The addition of Ni does not affect the vitrified bond’s refractoriness but enhances its fluidity and bending strength [40].
Additionally, CBN composites have poor machinability characteristics, such as brittleness. One way to mitigate this difficulty is to combine CBN and graphene oxide (GO) composites with the inclusion of Al-SiC at elevated temperatures and a high-pressure sintering procedure, which results in a 27.5% increase in fracture toughness compared to monolithic CBN composites. Besides this, the composites’ bending strength increased from 564.2 MPa to 696.9 MPa [41]. Other studies discovered the use of ultrasonic probe sonication and spark plasma sintering (SPS) to investigate the microstructural, thermomechanical. Tribological properties of low-temperature sintered CBN and Ni-coated CBN reinforced bearing steel composites. It showed that these newly developed CBN and Ni-coated CBN-reinforced conducting steel composites sintered at a temperature of 1000 C resulted in increased wear resistance with high wear and fatigue resistance [42].
This study [28] found that an electroless nickel co-deposition technique successfully coated the HSS cutting tool with Ni/YSZ composite. In another study, TiN coated surfaces with mean thickness of 59 μm shows smooth and uniform surface demonstrating consistent surface roughness measurements. For Al/SiC metal matrix composites cutting tool, the surface roughness decreased from 1.3 μm to 0.6 μm m over time when the cutting speed is increased from 300 to 450 mm/min [43].
This study was conducted to investigate the effects of a new electroless Ni-CBN composite evenly coated onto an HSS and carbide substrate. This ceramic-metal surface coating is well-known for its superior resistance to thermal wear [44]. Additionally, the layer was produced using electroless nickel co-deposition, which is more straightforward, requires less energy, and is less expensive than typical thermal spraying procedures [45].
The methodology consists of three sections: Process of EN coating, machining process, and cutting feasibility.
In this experiment, 50 g/l CBN powder was inserted into the bath plus the substrate. Then, suspended particles near the surface were co-deposited onto the substrate surface through the agitation process. It was found that the EN solution pH range was between pH 4.9 and pH 5.4. The bath temperature was maintained at 89 ± 20°C throughout the coating process. The coating time was kept constant at 60 min. Mechanical stirring was performed with a Jenway hot plate equipped with a magnetic stirrer, and the air bubbling was supplied at 1.2 W pressure. The entire coating process is summarised in Figure 1.
Electroless nickel coating process.
The composite Ni-CBN deposition was carried out on a Carbide and HSS substrate with a dimension standard of ∅10 x 7.8 mm. Chemical etching and mechanical blasting were used to prepare the substrate sample’s surfaces. CBN powder reinforcement ceramic particles were used. CBN powders offer superior heat conductivity and increased surface integrity when it comes to hardened alloys, nickel, cobalt-based superalloys, and tool steels. Figure 2 displays the 7.8 mm diameter sample as a substrate for EN co-deposition.
Substrates for EN co-deposition: Solid carbide and HSS.
The end mill cutting tool using carbide and high-speed steel (HSS) with a dimension of 6 mm was used as a substrate of Ni-CBN coating as shown in Figure 3. Before EN co-deposition process done on both cutting tools, chemical etching and mechanical blasting were used to modify the surface of the substrate sample to ensure better substrate-coating bonding.
End mill cutting tool.
Sensitising the HSS and Carbide cutting tool substrates is needed to activate the surfaces. Because of this, all non-proprietary solutions were produced using AR-grade chemicals and high purity deionised water. The EN co-deposition of Ni-CBN was conducted within 3 hours of the pre-treatment process, as shown in Table 4, to reduce the impacts of chemical degradation [46]. The EN chemicals produced a bright nickel deposit with a mid-phosphorous content between 6 to 9 wt.%. The optimum temperature for electroless nickel solution is at 89°C and was heated using a Jenway hotplate.
Trade name | Soaking time (min) | Temperature (°C) |
---|---|---|
Coprolite X96DP | 15 | 60 |
Uniphase PHP Pre-catalyst | 15 | 20 |
Uniphase PHP Catalyst | 15 | 40 |
Niplast AT78 | 15 | 40 |
Electroless Nickel SLOTONIP | 60 | 89 |
EN Co-deposition materials and procedure [46].
The composition of the Ni-CBN composite is controlled during deposition to achieve the preferred properties. It is required to obtain a high ceramic-to-metal ratio for erosion, heat, and wear resistance. The influence of process parameters to obtain a high particle ratio was analysed. The surface characterisation and elemental composition of EN co-deposition on the substrates was performed through JSM-7800F Field Emission Scanning Electron Microscope (FESEM) in conjunction with energy dispersive X-rays (EDX) shown in Figure 4.
Field emission scanning electron microscope (FESEM)—JSM-7800F.
Surface roughness was measured every 0.2 mm, and each pocket had a pitch of 0.2 mm. Figure 5 shows the Mitutoyo surface roughness tester SJ-301, a tool used to test surface roughness. The tool wear was measured using the Zeiss Stemi 20,000-C Microscope Profile optical video measuring system, as shown in Figure 6. Tool life is measured by the number of cuts taken by the end mill to reach average flank wear criterion 0.3 mm. All the tools failed primarily on the plank face. For all machining conditions, the machining was stopped when the flank wear land reached about 0.3 mm to ensure that the tool life data is more reliable. The flank wear was measure using Zeiss Stemi 20,000-C Microscope Profile optical video measuring system. The effect of interaction between high cutting speed and feed rate is most significant in shorten tool life. This is claimed by J.P. Urbanski et al. found that tool life decrease drastically as cutting speed is increased because at high cutting speed high temperature will be generated, which accelerates tool wear and consequently shortens tool life [47].
Mitutoyo surface roughness tester SJ-301.
Zeiss Stemi 20,000-C microscope profile optical video measuring system.
MINITAB 14 software was used to study the influence and range of parameters’ effect on the surface roughness of 7075 Aluminium Alloy. The experiments, based on Taguchi L9, selected spindle speed, depth of cut, and feed rate as the process variables and were conducted at three different levels. The machining parameters are listed in Table 5.
Machining parameters | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Spindle speed (RPM) | 1860 | 2650 | 3450 |
Feed Rate (mm/min) | 180 | 257 | 334 |
Depth of cut (mm) | 1 | 2 | 3 |
Level of machining cutting parameters.
Table 6 illustrates the Orthogonal Array (OA) L9 for each substrate was determined using the Taguchi method of experimental design (DOE) with three parameters at three levels. The Ni-CBN HSS coated end mill, and uncoated cutting tools were analysed via 18 tests in this study. The preferences of the end mill manufacturer determined the feed rate and depth of cut and had moved the experiment to the “high cutting speed” category [48, 49].
Experiment number | Spindle speed (rpm) | Feed rate (mm/min) | Depth of cut (mm) |
---|---|---|---|
1 | 1860 | 180 | 1 |
2 | 1860 | 257 | 2 |
3 | 1860 | 334 | 3 |
4 | 2650 | 180 | 2 |
5 | 2650 | 257 | 3 |
6 | 2650 | 334 | 1 |
7 | 3450 | 180 | 3 |
8 | 3450 | 257 | 1 |
9 | 3450 | 334 | 2 |
The OA arrangement of the machining process.
The DMU 50 CNC machine was utilised in the machining process. After coating the HSS end mills with CBN composite material, the Mitotuyo digital micrometre was used to measure the thickness of the cutting tool. The average thickness was determined through the three measures taken from each tooltip.
The workpiece is an aerospace material Aluminium Alloy 7075 to determine machining performance. The cutting tools were then examined for their machining capabilities. The profile was machined with 18 pockets and two cutting tools. Both coated and uncoated HSS end mills (Figure 7) were used to machine nine pockets each. Figure 8 shows the machining profile of the machine pockets with 40 mm x 35 mm dimension on the workpiece.
Cutting tool image for HSS end mill cutting tool (a) uncoated; and (b) coated.
Machining profile on aluminium alloy 7075 material.
Figures 9 and 10 shows the surface morphology using Field Emission Scanning Electron Microscope (FESEM) of the Ni-CBN coating captured at different magnifications. Both figures depict microstructure with cauliflower pattern. In Figure 9, the coating does not display micro-cracked, coarse erection and covers the entire exterior of the substrate. HSS has a high thermal shock resistance, making it resistant to sudden and rapid temperature changes [50]. In addition, HSS can withstand large temperature fluctuations.
Ni-CBN microstructure on HSS substrate (a) 5000X; (b) 10,000X; and (c) 15,000X.
Ni-CBN microstructure on carbide substrate (a) 5000X; (b) 10,000X; and (c) 15,000X.
Figure 10 illustrates a micro-crack on the surface layer of the carbide substrate coating due to carbide low thermal resistance. High internal stress levels can cause various problems during coating use, including premature disintegration of the part due to substrate fatigue, fracture formation in the coating, and loss of deposit adhesion [50].
Overall, both figures demonstrate rough surface of the coatings. The coating was mainly composed of ceramic CBN powders (white areas), metallic Ni matrix (grey areas), and pores (dark spots). The HSS coating surfaces generally showed a uniform distribution of the ceramic particles compared to the carbide substrate. The carbide substrate shows cracks on the coating surface due to thermal gradient. It is because the roughness of the EN-CBN coatings depends on the roughness of the substrate. It is also due to the growth mechanism of the coating, which forms columns locally perpendicular to the surface. The columns are parallel when the substrate is smooth, and the coating is even softer than the substrate [51].
The as-deposited Ni-CBN coatings were subjected to energy dispersive X-ray analysis (EDX) to determine the composition of the co-deposited CBN elements in the EN matrix, as shown in Table 7 for HSS substrate and Table 8 for carbide substrate.
Element | B | C | N | O | P | Ni | Totals |
---|---|---|---|---|---|---|---|
Weight (%) | 20.69 | 16.71 | 9.16 | 15.01 | 4.20 | 34.22 | 100.00 |
Elemental composition in weight % of electroless Ni-CBN coating on HSS substrate.
Element | B | C | N | O | P | Ni | Totals |
---|---|---|---|---|---|---|---|
Weight (%) | 11.65 | 21.81 | 4.40 | 21.34 | 7.07 | 33.73 | 100.00 |
Elemental composition in weight % of electroless Ni-CBN coating on carbide substrate.
The EDX spectrum obtained for the Ni-CBN deposited on the HSS and Carbide substrate is depicted in Figures 11 and 12. It displays the peaks corresponding to the CBN, approving the standard deposition of elements in the Ni matrix. There is evidence of significant peak elements of nickel (Ni), boron (B), and phosphorous (P). This proves that metallic nickel and ceramic CBN are exist. The phosphorus element in the composite indicates as one of the most critical elements in the EN hypophosphite-based bath solution [45].
EDX spectrum of as-deposited electroless Ni-CBN coating on HSS substrate.
EDX Spectrum of as-deposited electroless Ni-CBN coating on carbide substrate.
The most critical factor in improving surface roughness analysis is the quality of the cutting tools. Table 9 compares the Ra results of machined 7075 Aluminium Alloy for coated and uncoated cutting tools. The data indicates Test 8 of HSS coated tools; high level of cutting speed and a medium level of feed rate produced a good surface finish, Ra 0.251 μm. In comparison, the combination of feed rate at high level and cutting speed at low level in Test 3 give a high surface roughness of Ra 1.22 μm. This finding demonstrates the combination of high-value feed rate and spindle obtaining a better surface finish [52, 53]. According to Mohammed [54], the interaction between cutting speed and feed rate will significantly impact the surface finish.
Surface roughness (Ra) | |||||
---|---|---|---|---|---|
Test No. | Spindle speed (rpm) | Feed rate (mm/min) | Depth of cut (mm) | Coated (μm) | Uncoated (μm) |
1 | 1860 | 180 | 1 | 0.576 | 0.695 |
2 | 1860 | 257 | 2 | 0.787 | 1.154 |
3 | 1860 | 334 | 3 | 0.890 | 1.220 |
4 | 2560 | 180 | 2 | 0.481 | 0.534 |
5 | 2560 | 257 | 3 | 0.301 | 0.586 |
6 | 2560 | 334 | 1 | 0.412 | 0.619 |
7 | 3450 | 180 | 3 | 0.296 | 0.485 |
8 | 3450 | 257 | 1 | 0.251 | 0.421 |
9 | 3450 | 334 | 2 | 0.527 | 0.729 |
Data of design experiment and surface roughness.
Tool wear for every 0.2 mm of machining was examined using Zeiss Stemi 20,000-C Profile Optical. In accordance to ISO 8688-21:1989, the end mill cutting tool with the lowest tool wear is the best and most durable. Figure 13 shows the tool wear on the cutting tool before and after the machining process.
Flank wear on HSS cutting tool on machining (test 9): (a) before; and (b) after.
Comparing the flank wear trends in Figures 14 and 15, the coated cutting end mill tool performed better in terms of both cutting time and tool life. Test 3 and Test 5 produced the most extended tool life, 195 min. Figure 15 depicts an uncoated end mill’s cutting time-based flank wear trend. The substrates performed better than the coated end mills in terms of scattering. Test 3 yielded the most extended tool life for the uncoated tools at 143 min. High-value of feed rate, spindle speed and depth of cut and cutting time will cause significant tool wear. The previous studies found that the cutting speed and feed rate interaction is significantly affecting the tool wear [52, 55, 56].
Flank wear versus cutting time of uncoated HSS.
Flank wear versus cutting time of coated HSS.
The Taguchi L9 (33) Orthogonal Array (OA) was applied. The OA was generated by Minitab 14 consists of 9 runs with 3 factors at 3 levels. Table 10 shows the Orthogonal Array (OA) of the coated HSS end mills experiment and the combinations of conditions for each control factor (A-C).
Surface roughness equations were generated using machining parameters such as spindle speed, feed rate, and depth of cut. Eq. (1) outline the main effects of surface roughness and Ra response. Figure 16 shows the normal probability plot for Ra response based on Eq. (1).
Normal probability plot for Ra response.
The OA L9 (33) contains nine tests of ANOVA investigation that identify the effects of the different parameters on the response variables. A significance level of 95% was chosen in the ANOVA analysis, and the factor was considered adequate if the P-value was less than 0.05 [53]. In this study, the relation of spindle speed (A), feed rate (B), and depth of cut (C) factors on the surface roughness Ra responses are identified using ANOVA analysis. The model was formulated for a 95% confidence level. The P-value shows that the model is significant and has no influence on noise. The experiment result of surface roughness (Ra) formed the first-order model using the Minitab software.
The ANOVA results depicted in Table 11 is the estimation for machining parameters, with a selected ᾳ-level of 0.05. The outcomes show that the spindle speed factor has the lowest p-value. This reveals that the consequence of spindle speed is significant as p-value factors that are above 0.05 are considered as insignificant [57].
Parameters | Response | ||||
---|---|---|---|---|---|
Test No. | Spindle speed (rpm) (A) | Feed rate (mm/min) (B) | Depth of cut (mm) (C) | Surface roughness Ra (μm) | S/N ratio, d/B |
1 | 1860 | 180 | 1 | 0.576 | 4.7916 |
2 | 1860 | 257 | 2 | 0.787 | 2.0805 |
3 | 1860 | 334 | 3 | 0.890 | 1.0122 |
4 | 2650 | 180 | 2 | 0.481 | 6.3571 |
5 | 2650 | 257 | 3 | 0.301 | 10.4287 |
6 | 2650 | 334 | 1 | 0.412 | 7.7021 |
7 | 3450 | 180 | 3 | 0.296 | 10.5742 |
8 | 3450 | 257 | 1 | 0.251 | 12.0065 |
9 | 3450 | 334 | 2 | 0.527 | 5.5638 |
An investigation via L9 OA of Ni-CBN HSS coated end mills.
Parameters | DOF | Sum of squares | Mean square | F-value | P-value |
---|---|---|---|---|---|
Spindle speed | 2 | 0.280658 | 0.140329 | 35.11 | 0.028 |
Feed rate | 2 | 0.051875 | 0.025937 | 6.49 | 0.134 |
Depth of cut | 2 | 0.051723 | 0.025861 | 6.47 | 0.134 |
Residual error | 2 | 0.007993 | 0.0033996 | — | — |
Total | 8 | 0.392248 | — | — |
ANOVA table for Ra response.
Based on the rank in Table 12, spindle speed ranks first, followed by the depth of cut and feed rate. This demonstrates spindle speed as the significant factor that affects surface roughness. Spindle speed is the most critical machining parameter affecting surface roughness because it is substantially influenced [56]. The table also represents the Taguchi response to determine the optimal factors affecting surface roughness. According to Signal to Noise (smaller is better), the optimum machining settings are 1860 RPM for spindle speed, 334 mm/min for feed rate, and 2 mm for depth of cut are. The experiment was confirmed through the S/N ratio using the optimum parameter level A1B3C2.
S. No | Level | Spindle speed (A) | Feed rate (B) | Depth of cut (C) |
---|---|---|---|---|
1 | 1 | 2.628 | 7.241 | 8.167 |
2 | 2 | 8.163 | 8.172 | 4.667 |
3 | 3 | 9.381 | 4.759 | 7.338 |
4 | Delta | 6.753 | 3.413 | 3.500 |
5 | Rank | 1 | 3 | 2 |
Response table for S/N ratio (smaller is better).
The surface finish was the most important influence on spindle speed and feed rate, as shown in Figures 17 and 18. The slope between the horizontal line and spindle speed is more pronounced than the depth of cut and feed. The changes in spindle speed significantly affect the surface roughness [56]. The optimum machining settings are determined at spindle speed value of 1860 RPM, feed rate of 334 mm/min, and depth of cut of 2 mm.
Main effects plot for SN ratios.
Main effects plot for means.
Figure 19 shows the interaction plot for surface roughness, Ra in the machining process. When the lines are more non-parallel, an interaction occurs, resulting in higher strength of the interaction. The factors of spindle speed affect the surface roughness more than other factors for machining Aluminium Alloy 7075 with a Ni- CBN HSS coated end mill.
Interaction plot for Ra.
This study investigates the process of electroless and machinability of Ni-CBN on HSS and Carbide substrate. The electroless Ni-CBN coating has been successfully performed on the substrate and proven using the EDX Analysis. The EDX analysis revealed the presence of major peak for nickel (Ni), carbon (C), oxygen (O), boron (B), and phosphorous (P) elements on the HSS carbide substrate. According to the stability of the coating, 6 mm diameter HSS end mill was chosen. The coated HSS end mill thickness is 15 μm on average.
For machinability, Taguchi L9 (33) was used in this research to produce a Design of Experiment (DOE) using 18 runs number of experiments with three factors and three levels. The factors were spindle speed, feed rate, and depth of cut. The outcome of machining for surface roughness, tool wear and tool life was analysed by comparing the results between HSS coated and uncoated end mill. The comparison showed Ni-CBN HSS end mill produce good performance on the surface finish and is able to slightly reduce the tool wear and extend tool life.
Analysis of variance (ANOVA) was used for the optimisation parameters of the Ni-CBN HSS end mill tool. The Spindle speed is a significant factor compared to the other factors as it had the lowest P-value, that is below 0.05. For determination of optimum parameters, 1860 RPM for spindle speed, 334 mm/min for feed rate, and 2 mm for depth of cut were identified as the optimum machining settings. The experiment was validated through the S/N ratio using the optimal parameter level A1B3C2.
The authors would like to acknowledge University College TATI for financially support the research through the UC TATI Short Term Grant (STG) 9001-1808 under the Advanced Manufacturing Cluster.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11566",title:"Periodontology - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"75ef2eae3087ec0c7f2076cc64e2cfc3",slug:null,bookSignature:"Dr. Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",editedByType:null,editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"92c881664d1921c7f2d0fee34b78cd08",slug:null,bookSignature:"Dr. Jaime Bustos-Martínez and Dr. Juan José Valdez-Alarcón",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",editedByType:null,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",subtitle:null,isOpenForSubmission:!0,hash:"069d6142ecb0d46d14920102d48c0e9d",slug:null,bookSignature:"Dr. Mihaela Laura Vica",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",editedByType:null,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11570",title:"Influenza - New Approaches",subtitle:null,isOpenForSubmission:!0,hash:"157b379b9d7a4bf5e2cc7a742f155a44",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11583",title:"Parkinson’s Disease - Animal Models, Current Therapies and Clinical Trials",subtitle:null,isOpenForSubmission:!0,hash:"99788a4a7f9ee0b4de55de293a2ed3d0",slug:null,bookSignature:"Prof. Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/11583.jpg",editedByType:null,editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11584",title:"Recent Advances in Distinctive Migraine Syndromes",subtitle:null,isOpenForSubmission:!0,hash:"44a6090845f971a215ddf013f1dc2027",slug:null,bookSignature:"Dr. Theodoros Mavridis, Dr. Georgios Vavougios and Associate Prof. Dimos-Dimitrios Mitsikostas",coverURL:"https://cdn.intechopen.com/books/images_new/11584.jpg",editedByType:null,editors:[{id:"320230",title:"Dr.",name:"Theodoros",surname:"Mavridis",slug:"theodoros-mavridis",fullName:"Theodoros Mavridis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11587",title:"Updates on ADHD - New Approaches to Assessment and Intervention",subtitle:null,isOpenForSubmission:!0,hash:"e0718a84e5fda7ed4287095c3ef27dae",slug:null,bookSignature:"Dr. Celestino Rodríguez Pérez and Mrs. Debora Areces",coverURL:"https://cdn.intechopen.com/books/images_new/11587.jpg",editedByType:null,editors:[{id:"85114",title:"Dr.",name:"Celestino",surname:"Rodríguez Pérez",slug:"celestino-rodriguez-perez",fullName:"Celestino Rodríguez Pérez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism Spectrum Disorders - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"934f063be3eacb5dd0902ae8bc622392",slug:null,bookSignature:"Associate Prof. Marco Carotenuto",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:[{id:"305627",title:"Associate Prof.",name:"Marco",surname:"Carotenuto",slug:"marco-carotenuto",fullName:"Marco Carotenuto"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11590",title:"Updates in Anorexia and Bulimia Nervosa",subtitle:null,isOpenForSubmission:!0,hash:"c8f5d69fff84a3687e5511bade9cc261",slug:null,bookSignature:"Prof. Ignacio Jáuregui-Lobera and Dr. José V Martínez Quiñones",coverURL:"https://cdn.intechopen.com/books/images_new/11590.jpg",editedByType:null,editors:[{id:"323887",title:"Prof.",name:"Ignacio",surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:199},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"307",title:"Agroecology",slug:"agroecology",parent:{id:"29",title:"Agronomy",slug:"agronomy"},numberOfBooks:9,numberOfSeries:0,numberOfAuthorsAndEditors:234,numberOfWosCitations:116,numberOfCrossrefCitations:171,numberOfDimensionsCitations:350,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"307",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10499",title:"Next-Generation Greenhouses for Food Security",subtitle:null,isOpenForSubmission:!1,hash:"456f82c97eafad5734cd36c48e167781",slug:"next-generation-greenhouses-for-food-security",bookSignature:"Redmond R. Shamshiri",coverURL:"https://cdn.intechopen.com/books/images_new/10499.jpg",editedByType:"Edited by",editors:[{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10134",title:"Organic Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"a9866f9df52191cc505b27fb2abdc687",slug:"organic-agriculture",bookSignature:"Shaon Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/10134.jpg",editedByType:"Edited by",editors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",middleName:null,surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9345",title:"Sustainable Crop Production",subtitle:null,isOpenForSubmission:!1,hash:"5135c48a58f18229b288f2c690257bcb",slug:"sustainable-crop-production",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6952",title:"Irrigation in Agroecosystems",subtitle:null,isOpenForSubmission:!1,hash:"1afe3f365612ea9b4f35942c69792f63",slug:"irrigation-in-agroecosystems",bookSignature:"Gabrijel Ondrašek",coverURL:"https://cdn.intechopen.com/books/images_new/6952.jpg",editedByType:"Edited by",editors:[{id:"46939",title:"Prof.",name:"Gabrijel",middleName:null,surname:"Ondrasek",slug:"gabrijel-ondrasek",fullName:"Gabrijel Ondrasek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6560",title:"Plant Competition in Cropping Systems",subtitle:null,isOpenForSubmission:!1,hash:"664e0a97f4494932f6c0461f9a6e7bd6",slug:"plant-competition-in-cropping-systems",bookSignature:"Daniel Dunea",coverURL:"https://cdn.intechopen.com/books/images_new/6560.jpg",editedByType:"Edited by",editors:[{id:"180202",title:"Associate Prof.",name:"Daniel",middleName:null,surname:"Dunea",slug:"daniel-dunea",fullName:"Daniel Dunea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6485",title:"Sustainability of Agroecosystems",subtitle:null,isOpenForSubmission:!1,hash:"4ed7b8c6bce44bfaddb83c0365793742",slug:"sustainability-of-agroecosystems",bookSignature:"Alexandre Bosco de Oliveira",coverURL:"https://cdn.intechopen.com/books/images_new/6485.jpg",editedByType:"Edited by",editors:[{id:"77880",title:"Dr.",name:"Alexandre",middleName:"Bosco",surname:"De Oliveira",slug:"alexandre-de-oliveira",fullName:"Alexandre De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6301",title:"Vegetation",subtitle:null,isOpenForSubmission:!1,hash:"5c1b7f22f2f926f8d59ea56f2fe84c6f",slug:"vegetation",bookSignature:"Allan Sebata",coverURL:"https://cdn.intechopen.com/books/images_new/6301.jpg",editedByType:"Edited by",editors:[{id:"143409",title:"Dr.",name:"Allan",middleName:null,surname:"Sebata",slug:"allan-sebata",fullName:"Allan Sebata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4566",title:"Agroecology",subtitle:null,isOpenForSubmission:!1,hash:"9e35a4ff7bee4ab82eab2c6b3f441789",slug:"agroecology",bookSignature:"Vytautas Pilipavičius",coverURL:"https://cdn.intechopen.com/books/images_new/4566.jpg",editedByType:"Edited by",editors:[{id:"169359",title:"Dr.",name:"Vytautas",middleName:null,surname:"Pilipavicius",slug:"vytautas-pilipavicius",fullName:"Vytautas Pilipavicius"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:9,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"68945",doi:"10.5772/intechopen.88434",title:"Effect of Abiotic Stress on Crops",slug:"effect-of-abiotic-stress-on-crops",totalDownloads:1496,totalCrossrefCites:28,totalDimensionsCites:46,abstract:"Crop yield is mainly influenced by climatic factors, agronomic factors, pests and nutrient availability in the soil. Stress is any adverse environmental condition that hampers proper growth of plant. Abiotic stress creates adverse effect on multiple procedures of morphology, biochemistry and physiology that are directly connected with growth and yield of plant. Abiotic stress are quantitative trait hence genes linked to these traits can be identified and used to select desirable alleles responsible for tolerance in plant. Plants can initiate a number of molecular, cellular and physiological modifications to react to and adapt to abiotic stress. Crop productivity is significantly affected by drought, salinity and cold. Abiotic stress reduce water availability to plant roots by increasing water soluble salts in soil and plants suffer from increased osmotic pressure outside the root. Physiological changes include lowering of leaf osmotic potential, water potential and relative water content, creation of nutritional imbalance, enhancing relative stress injury or one or more combination of these factors. Morphological and biochemical changes include changes in root and shoot length, number of leaves, secondary metabolite (glycine betaine, proline, MDA, abscisic acid) accumulation in plant, source and sink ratio. Proposed chapter will concentrate on enhancing plant response to abiotic stress and contemporary breeding application to increasing stress tolerance.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Summy Yadav, Payal Modi, Akanksha Dave, Akdasbanu Vijapura, Disha Patel and Mohini Patel",authors:[{id:"186963",title:"Dr.",name:"Summy",middleName:null,surname:"Yadav",slug:"summy-yadav",fullName:"Summy Yadav"},{id:"308004",title:"Ms.",name:"Payal",middleName:null,surname:"Modi",slug:"payal-modi",fullName:"Payal Modi"},{id:"308005",title:"Ms.",name:"Akanksha",middleName:null,surname:"Dave",slug:"akanksha-dave",fullName:"Akanksha Dave"},{id:"308006",title:"Ms.",name:"Akdasbanu",middleName:null,surname:"Vijapara",slug:"akdasbanu-vijapara",fullName:"Akdasbanu Vijapara"},{id:"308007",title:"Ms.",name:"Disha",middleName:null,surname:"Patel",slug:"disha-patel",fullName:"Disha Patel"},{id:"308008",title:"Ms.",name:"Mohini",middleName:null,surname:"Patel",slug:"mohini-patel",fullName:"Mohini Patel"}]},{id:"68927",doi:"10.5772/intechopen.89089",title:"Nano-Fertilizers for Sustainable Crop Production under Changing Climate: A Global Perspective",slug:"nano-fertilizers-for-sustainable-crop-production-under-changing-climate-a-global-perspective",totalDownloads:2088,totalCrossrefCites:9,totalDimensionsCites:33,abstract:"Since green revolution, chemical fertilizers are deemed an indispensable input of modern crop production systems, but these have associated environmental and ecological consequences. Loss of nutrients from agricultural fields in the form of leaching and gaseous emissions has been the leading cause of environmental pollution and climate change. Ensuring the sustainability of crop production necessitates exploring other sources of nutrients and modifying prevalent nutrient sources. Nanotechnology, which utilizes nanomaterials of less than 100 nm size, may offer an unprecedented opportunity to develop concentrated sources of plant nutrients having higher-absorption rate, utilization efficacy, and minimum losses. Nanofertilizers are being prepared by encapsulating plant nutrients into nanomaterials, employing thin coating of nanomaterials on plant nutrients, and delivering in the form of nano-sized emulsions. Nano-pores and stomatal openings in plant leaves facilitate nanomaterial uptake and their penetration deep inside leaves leading to higher nutrient use efficiency (NUE). Nanofertilizers have higher transport and delivery of nutrients through plasmodesmata, which are nanosized (50–60 nm) channels between cells. The higher NUE and significantly lesser nutrient losses of nanofertilizers lead to higher productivity (6–17%) and nutritional quality of field crops. However, production and availability, their sufficient effective legislation, and associated risk management are the prime limiting factors in their general adoption as plant nutrient sources.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Muhammad Aamir Iqbal",authors:[{id:"249866",title:"Dr.",name:"Muhammad Aamir",middleName:null,surname:"Iqbal",slug:"muhammad-aamir-iqbal",fullName:"Muhammad Aamir Iqbal"}]},{id:"67546",doi:"10.5772/intechopen.86339",title:"Application Potentials of Plant Growth Promoting Rhizobacteria and Fungi as an Alternative to Conventional Weed Control Methods",slug:"application-potentials-of-plant-growth-promoting-rhizobacteria-and-fungi-as-an-alternative-to-conven",totalDownloads:1116,totalCrossrefCites:8,totalDimensionsCites:23,abstract:"Weeds are the plants usually grown on unwanted places and are notorious for causing interruptions in agricultural settings. Remarkable yield losses have been reported in fields infested with weeds worldwide. So far, these weeds cause about 34% of losses to yields of major agricultural crops and pose threats to economic condition of the farmers. Conventionally, weed control was achieved by the use of chemical herbicides and traditional agronomic practices. But these methods are no more sustainable as the magnitude of threats imposed by these conventionally outdated methods such as chemical herbicides is greater than the benefits achieved and their continuous use has disturbed biodiversity and weed ecology along with herbicide resistance in some weeds. Herbicide residues are held responsible for human health hazards as well. Therefore the future of weed control is to rely on alternative approaches which may be biological agents such as bacteria and fungi. This chapter highlights the potentials of using bacterial and fungal biocontrol agents against weeds in farmer fields. Moreover, detailed review on merits and demerits of conventional weed control methods is discussed in this chapter.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Adnan Mustafa, Muhammad Naveed, Qudsia Saeed, Muhammad Nadeem Ashraf, Azhar Hussain, Tanveer Abbas, Muhammad Kamran, Nan-Sun and Xu Minggang",authors:[{id:"276041",title:"Dr.",name:"Azhar",middleName:null,surname:"Hussain",slug:"azhar-hussain",fullName:"Azhar Hussain"},{id:"299110",title:"Dr.",name:"Adnan",middleName:null,surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"},{id:"300582",title:"Dr.",name:"Muhammad",middleName:null,surname:"Naveed",slug:"muhammad-naveed",fullName:"Muhammad Naveed"},{id:"300583",title:"Ms.",name:"Qudsia",middleName:null,surname:"Saeed",slug:"qudsia-saeed",fullName:"Qudsia Saeed"},{id:"300584",title:"Dr.",name:"Tanveer",middleName:null,surname:"Abbas",slug:"tanveer-abbas",fullName:"Tanveer Abbas"},{id:"300585",title:"Mr.",name:"Muhammad",middleName:null,surname:"Nadeem Ashraf",slug:"muhammad-nadeem-ashraf",fullName:"Muhammad Nadeem Ashraf"},{id:"300586",title:"Prof.",name:"Xu",middleName:null,surname:"Minggang",slug:"xu-minggang",fullName:"Xu Minggang"},{id:"301223",title:"Mr.",name:"Muhammad",middleName:null,surname:"Kamran",slug:"muhammad-kamran",fullName:"Muhammad Kamran"}]},{id:"48142",doi:"10.5772/59933",title:"Wastes in Building Materials Industry",slug:"wastes-in-building-materials-industry",totalDownloads:4064,totalCrossrefCites:14,totalDimensionsCites:21,abstract:null,book:{id:"4566",slug:"agroecology",title:"Agroecology",fullTitle:"Agroecology"},signatures:"Marinela Barbuta, Roxana Dana Bucur, Sorin Mihai Cimpeanu, Gigel Paraschiv and Daniel Bucur",authors:[{id:"50794",title:"Prof.",name:"Daniel",middleName:"G",surname:"Bucur",slug:"daniel-bucur",fullName:"Daniel Bucur"}]},{id:"64340",doi:"10.5772/intechopen.80365",title:"Deficit Irrigation in Mediterranean Fruit Trees and Grapevines: Water Stress Indicators and Crop Responses",slug:"deficit-irrigation-in-mediterranean-fruit-trees-and-grapevines-water-stress-indicators-and-crop-resp",totalDownloads:1429,totalCrossrefCites:10,totalDimensionsCites:14,abstract:"In regions with Mediterranean climate, water is the major environmental resource that limits growth and production of plants, experiencing a long period of water scarcity during summer. Despite the fact that most plants developed morphological, anatomical, physiological, and biochemical mechanisms that allow to cope with such environments, these harsh summer conditions reduce growth, yield, and fruit quality. Irrigation is implemented to overcome such effects. Conditions of mild water deficit imposed by deficit irrigation strategies, with minimal effects on yield, are particularly suitable for such regions. Efficient irrigation strategies and scheduling techniques require the quantification of crop water requirements but also the identification of pertinent water stress indicators and their threshold. This chapter reviews the scientific information about deficit irrigation recommendations and thresholds concerning water stress indicators on peach trees, olive trees, and grapevines, as case studies.",book:{id:"6952",slug:"irrigation-in-agroecosystems",title:"Irrigation in Agroecosystems",fullTitle:"Irrigation in Agroecosystems"},signatures:"Anabela Fernandes-Silva, Manuel Oliveira, Teresa A. Paço and Isabel\nFerreira",authors:[{id:"81075",title:"Prof.",name:"Anabela",middleName:"Afonso",surname:"Fernandes-Silva",slug:"anabela-fernandes-silva",fullName:"Anabela Fernandes-Silva"},{id:"181227",title:"Dr.",name:"Manuel",middleName:"T.",surname:"Oliveira",slug:"manuel-oliveira",fullName:"Manuel Oliveira"},{id:"245447",title:"Prof.",name:"Teresa",middleName:null,surname:"Paço",slug:"teresa-paco",fullName:"Teresa Paço"},{id:"245449",title:"Prof.",name:"Isabel",middleName:null,surname:"Ferreira",slug:"isabel-ferreira",fullName:"Isabel Ferreira"}]}],mostDownloadedChaptersLast30Days:[{id:"58509",title:"Activity and Variety of Soil Microorganisms Depending on the Diversity of the Soil Tillage System",slug:"activity-and-variety-of-soil-microorganisms-depending-on-the-diversity-of-the-soil-tillage-system",totalDownloads:2175,totalCrossrefCites:8,totalDimensionsCites:11,abstract:"Soil is an ecosystem capable of producing the resources necessary for the development of the living organisms. Soil microorganisms (bacteria and fungi) are responsible for biomass decomposition, biogenic element circulation, which makes nutrients available to plants, biodegradation of impurities, and maintenance of soil structure. The presence of microorganisms in soil depends on their chemical composition, moisture, pH, and structure. Human activity has an indispensable influence on the formation of ecosystems. Soil tillage has an impact on the chemical and physical parameters of the soil, and thus on its biological properties. The use of inappropriate agro-technology can lead to degradation of the soil environment. Changes in soil properties may cause changes in soil abundance, activity, and diversity. Cultivation can affect microorganisms, causing their mortality and reducing the availability of nourishment in the soil. Therefore, it is extremely important to assess the diversity and microbiological activity of soil in relation to soil-tillage technology.",book:{id:"6485",slug:"sustainability-of-agroecosystems",title:"Sustainability of Agroecosystems",fullTitle:"Sustainability of Agroecosystems"},signatures:"Karolina Furtak and Anna Maria Gajda",authors:[{id:"225887",title:"Dr.Ing.",name:"Anna",middleName:null,surname:"Gajda",slug:"anna-gajda",fullName:"Anna Gajda"},{id:"225889",title:"M.Sc.",name:"Karolina",middleName:null,surname:"Furtak",slug:"karolina-furtak",fullName:"Karolina Furtak"}]},{id:"72075",title:"Application and Mechanisms of Plant Growth Promoting Fungi (PGPF) for Phytostimulation",slug:"application-and-mechanisms-of-plant-growth-promoting-fungi-pgpf-for-phytostimulation",totalDownloads:1323,totalCrossrefCites:6,totalDimensionsCites:13,abstract:"Plant growth-promoting fungi (PGPF) constitute diverse genera of nonpathogenic fungi that provide a variety of benefits to their host plants. PGPF show an effective role in sustainable agriculture. Meeting increasing demand for crop production without damage to the environment is the biggest challenge nowadays. The use of PGPF has been recognized as an environmentally friendly way of increasing crop production. These fungi have proven to increase crop yields by improving germination, seedling vigor, plant growth, root morphogenesis, photosynthesis, and flowering through either a direct or indirect mechanism. The mechanisms of PGPF involve solubilizing and mineralizing nutrients for easy uptake by plants, regulating hormonal balance, producing volatile organic compounds and microbial enzyme, suppressing plant pathogens and ameliorating abiotic stresses. Successful colonization is an intrinsic factor for most PGPF to exert their beneficial effects on plants. A certain level of specificity exists in the interactions between plant species and PGPF for root colonization and growth promoting effects. There is a gap between the number of reported efficacious PGPF and the number of PGPF as biofertilizer. Efforts should be strengthened to improve the efficacy and commercialization of PGPF. Hence, this chapter summarizes valuable information regarding the application and mechanisms of PGPF in sustainable agriculture.",book:{id:"10134",slug:"organic-agriculture",title:"Organic Agriculture",fullTitle:"Organic Agriculture"},signatures:"Md. Motaher Hossain and Farjana Sultana",authors:[{id:"318381",title:"Dr.",name:"Md. Motaher",middleName:null,surname:"Hossain",slug:"md.-motaher-hossain",fullName:"Md. Motaher Hossain"},{id:"318383",title:"Dr.",name:"Farjana",middleName:null,surname:"Sultana",slug:"farjana-sultana",fullName:"Farjana Sultana"}]},{id:"72566",title:"Formulations of BGA for Paddy Crop",slug:"formulations-of-bga-for-paddy-crop",totalDownloads:618,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Blue green algae (BGA) are prokaryotic phototrophic organisms that can fix the atmospheric nitrogen biologically, and were directly applied as a biofertilizers in agricultural fields specifically Paddy field. Since they are having the ability to fix nitrogen, they are formulated with various adsorbents for the purpose of enhancing the crop growth along with maintaining the soil fertility and other soil factors responsible for productivity. The present study revealed that the formulations of blue green algae isolated from paddy fields of southern districts with different adsorbents like alluvial soil, sand, charcoal, and powdered paddy straw. All the adsorbents mixed with blue green algae showed significant growth when compared to the control plant. This determined that the adsorbent formulated mixed blue green algae enhanced the paddy plant growth under greenhouse condition.",book:{id:"9685",slug:"agroecosystems-very-complex-environmental-systems",title:"Agroecosystems",fullTitle:"Agroecosystems – Very Complex Environmental Systems"},signatures:"Bagampriyal Selvaraj and Sadhana Balasubramanian",authors:[{id:"316222",title:"Dr.",name:"Sadhana",middleName:null,surname:"Balasubramanian",slug:"sadhana-balasubramanian",fullName:"Sadhana Balasubramanian"},{id:"316448",title:"Mrs.",name:"Bagampriyal",middleName:null,surname:"Selvaraj",slug:"bagampriyal-selvaraj",fullName:"Bagampriyal Selvaraj"}]},{id:"63233",title:"Paddy Fields as Artificial and Temporal Wetland",slug:"paddy-fields-as-artificial-and-temporal-wetland",totalDownloads:1368,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Paddy cultivation plays a significant and vital role on rice production. Most of the global population depends on the 480 million tons of rice produced each year as the basis for their lives. While about 90% of the world’s 160 million hectares of paddy fields are in Asian countries, mainly in monsoon regions, paddies are also seen in North America and Africa, even in dry regions. Most of the paddy fields are flooded naturally or artificially during rice production period. In the case that paddy fields are kept submerged artificially, hydraulic structures are required. Irrigated paddy fields produce traditionally much rice, taking befits of stable water supply and continuous ponding. Paddy fields are simultaneously performing other functions for local environment, including climate mitigation, flood control, groundwater recharge, biodiversity, and ecosystem development. On the other hand, since paddy fields require much water and modify the original and natural hydrological regime, they might cause adverse effect on local environment. Much water supply by irrigation sometimes requires drainage system, which also might alter local water balance. In this chapter, implication of paddy fields as artificial and temporal wetland is reviewed comprehensively with various aspects, focusing mainly on their role for local hydrological environment.",book:{id:"6952",slug:"irrigation-in-agroecosystems",title:"Irrigation in Agroecosystems",fullTitle:"Irrigation in Agroecosystems"},signatures:"Tsugihiro Watanabe",authors:[{id:"243864",title:"Prof.",name:"Tsugihiro",middleName:null,surname:"Watanabe",slug:"tsugihiro-watanabe",fullName:"Tsugihiro Watanabe"}]},{id:"69405",title:"Plant Nutrition and Sustainable Crop Production in Nigeria",slug:"plant-nutrition-and-sustainable-crop-production-in-nigeria",totalDownloads:909,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The aim of this study is to examine the determining factors of plant nutrition and sustainable crop production in Nigeria. The study applied an in-depth review of literature and observed that different biotic and abiotic factors interact together to determine the outcome of plant nutrition and sustainable crop production in Nigeria. These factors include; types of fertilizers applied, atmospheric emissions, level of technological development, infrastructural facilities, climatic conditions, irrigation method, and level of skilled labour force. The study recommended that there should be increased and equal access to credit facilities, social protection incentives, and more innovation and technological involvement in the agricultural sector in order to increase productivity and efficiency.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Romanus Osabohien and Toun Ogunbiyi",authors:[{id:"290879",title:"Mr.",name:"Romanus",middleName:null,surname:"Osabohien",slug:"romanus-osabohien",fullName:"Romanus Osabohien"},{id:"310108",title:"Ms.",name:"Toun",middleName:null,surname:"Ogunbiyi",slug:"toun-ogunbiyi",fullName:"Toun Ogunbiyi"}]}],onlineFirstChaptersFilter:{topicId:"307",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:397,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/48088",hash:"",query:{},params:{id:"48088"},fullPath:"/chapters/48088",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()