ITS applications on VANETs
\r\n\t
\r\n\tThis book is intended to discuss several aspects, starting from the plate tectonics to the sedimentary basins. Main aspects of the plate tectonics include the continental drift, the palaeo-magnetism and the morphologic setting of the oceans. The continental drift is linked to the name of the German geophysicist Alfred Wegener, who suspected that the continents should move laterally, observing the correspondence between the shorelines of both sides of the Atlantic Ocean.
\r\n\t
\r\n\tHe hypothesized that a great continent, namely the Pangea, broke up and was divided into great blocks, which after started to drift on the earth's surface. The isostatic adjustments of the earth's crust necessarily require vertical movements of the continental blocks in order to compensate the variations of loading on the earth's crust.The oceanic expansion has been supported by the polarity reversals, recognized for the first time in the lava flows by having directions of the palaeomagnetic field divergent of 180°. This allowed a chronological scale generation of the geomagnetic reversals, based on a uniform rate of expansion in the southern Atlantic Ocean. The topography of the oceans is characterized by three main physiographic provinces, including the oceanic ridge surrounding the oceanic basins, adjacent to the continental margins. The earth's crust is the part of the earth overlying the Moho discontinuity and may be divided in oceanic crust, transitional crust, and continental crust. This book intends to provide new insights concerning the geological implications of plate tectonics, including the sequence stratigraphy of passive continental margins, the sedimentological and palaeoceanographic aspects and the marine geology of the continental margins. New contributions on the continental margins (passive, active and transcurrent) are also acknowledged. Another main topic of this book is represented by the ophiolites, a sequence characterized by the vertical association of pillow lavas, radiolarites, and peridotites. The ophiolitic sequence is often overlain by sedimentary rocks (radiolarites, pelagic limestones) and may be associated with chromite bodies and rocky bodies, both intrusive and effusive. They represent allochtonous fragments of old oceanic crust. Also, contributions in terms of sedimentation and tectonics and their general concepts are also welcome. Finally, a basic topic of this book is represented by the sedimentary basins in different geodynamic settings, including the spreading related settings, the subduction related settings and the continental collision related settings.
Although nowadays wireless networks are a regular and familiar framework for sharing information among devices, the way in which these nets are organized and managed is evolving day by day due to the requirements of the scenarios in which they are deployed. Since those first experiments carried out by the WECA (Wireless Ethernet Compatibility) association in late 90s, the application areas and use cases in where wireless communications are applied has been changing.
Many of the wireless networks that we use daily at home, at the office or when se use a cellular are based on those first approaches, in which an Access Point is needed to have connectivity. These setups are called ‘Infrastructure Mode’ and use a fixed and wired backbone to address information from the source AP to the destination AP. But in some situations these networks are limited by their own nature due to their need for an AP, a base station, some routers or switches and so on. It is in these scenarios where a ‘’Infrastructure-less Mode’’ can overcome these drawbacks, allowing the nodes of a network to routing and forwarding information for other nodes, without relying on centralized administrator. These types of networks are called wireless ad hoc networks [1].
Infrastructure based networks (left) and Ad hoc networks (right)
Now, if we have into consideration the current trends in technology, it can be said that mobility and ubiquity are common characteristics to all the new gadgets launched to the market. Users want to be online anytime and everywhere and to obtain information from all the surrounding elements. Then, we talk about Mobile Ad hoc Networks (MANETs), that is, wireless networks with a dynamic shape, a shifting number of nodes, a defined bandwidth and other characteristics, where the nodes can be any kind of devices with communications and networking capability that communicate with each other without a centralized coordinator [2]. In this scenario, each node can play the role of a router, hosting the network topology dynamically, because as it was mentioned above, the shape and the topology of the net can change as well as the nodes on it. The main characteristics of MANETs can be summarized as follows [3]:
Dynamic topologies: network topology can change quickly due to the nodes can move freely in the net.
Bandwidth constrains: compare with wired networks, the capacity of a MANET is relatively small and also it is sensitive to interferences, noise, and signal fading effect.
Energy constrains: although many of the nodes can be plugged to the power line or they can be equipped with big batteries, some of them use small power supplies, so during the network design it is necessary to consider how to save power in order to assure the stability and longevity of the network.
Limited physical security: although the decentralized nature of MANETs provides robustness against the single points of failure, these nets must be protected against eavesdropping, spoofing, and the injection of malicious data attacks.
In this context, thanks to the rapid increase and improvement of the mobile computing a wide set of wireless devices have proliferated, making possible that traditional hardware as digital cameras, thermostats, cooking ovens or washing machines are provided with communications and computing functionalities so they can be part of a MANET. This new paradigm is known as Internet of Things [4], that is, a scenario in which all the objects beyond computers, mobiles or touch screens have the ability of generating, sharing and processing information in a pervasive manner [5]. With all of this, technologies must have evolved to new standards, architectures, protocols, hardware, services and facilities that will make possible a control of the way in with all the nodes access to the net to share their information.
One scenario that represents perfectly the characteristics and it is a perfect case of study of MANETs is the Vehicular Ad hoc Networks (VANETs), a subset of MANETs, which creates wireless networks between vehicles [6]. In a VANET each vehicle is a moving node which creates wireless networks with surrounding vehicles [7], thanks to the On-Board Unit (OBU), a hardware with communications and computing capabilities that allows drivers to receive information about events that can affect his driving. Then, the main function of the OBU is to exchange information with other vehicles or Road Side Units (RSUs), elements located at the infrastructure that act as gateways between the VANET and other networks or agents as Traffic Management Centers (TMC). These centers are placed far away the VANET and play an important role in the applications developed in the area of VANETs, coordinating the information that is shared among VANETs that are deployed in different geographical areas.
In VANETs they can be distinguish two types of links: vehicular-to-vehicular communication (V2V), based on an Ad hoc architecture, vehicles exchange directly messages without a central coordinator; and vehicle-to-infrastructure or infrastructure-to-vehicle (V2I or I2V), where the messages are shared between the vehicles and the RSUs. VANETs are designed for a huge range of cooperative applications, that is, services that provide information to the drivers thanks to the data shared among all the vehicles on the net. These can be safety and non-safety applications, which allow several added services as infotainment, traffic management, toll payment, and geographical based services and so on [8]. That is, VANETs make possible to deploy applications that help to improving the transport services and traffic conditions using collaborative systems based on V2X Ad hoc networks.
Vehicular Ad hoc Network Scenario
This introduces the definition of Intelligent Transport Systems, where each vehicle is a sender, a receiver and a router at the same time, so it can broadcast the information to the VANET, which uses this information to provide these safety and non-safety services to the drivers. The OBU is the hardware in charge of processing these data and it also enables these short range wireless ad hoc networks (the coverage area is around 300 meters) but it also must dispose other systems that permit to report position information such as Global Positioning System (GPS) or a Differential Global Positioning System (DGPS) receiver if more accuracy position information is required. This information is quite important because most of the services that are available in a VANET depend on the geographical position of the source and the destination. Table 1 presents a classification of ITS applications that can be deployed using the VANET architecture [9].
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Active safety applications | \n\t\t\tCooperative driving assistance applications | \n\t\t\tEmergency vehicle warning Slow vehicle indication Intersection collision warning Motorcycle approaching indication Emergency electronic brake lights Wrong way driving warning Stationary vehicle - accident Stationary vehicle - vehicle problem Traffic condition warning Signal violation warning Roadwork warning Collision risk warning | \n\t\t
Efficiency applications | \n\t\t\tTraffic management Road monitoring | \n\t\t\tRegulatory / contextual speed limits notification Traffic light optimal speed advisory Enhance routing Road conditions sensing (rain, visibility, wind, hazardous location, road adhesion) | \n\t\t
Infotainment applications | \n\t\t\tContextual information Entertainment | \n\t\t\tPoint of Interest notification Automatic access control and parking management ITS local electronic commerce Media downloading Insurance and financial services Fleet management Loading zone management | \n\t\t
ITS applications on VANETs
These applications can be deployed on urban or motorway scenarios, each one with its own particularities. In an urban scenario, many of the times there is not line of sight between the nodes so fading and communication disruptions are frequents. In a motorway, the high density of vehicles can overload the radio channels in which the VANETs work. Yes, although maybe users are not aware about that, the radio spectrum (the physical interface used by wireless communications networks) is a limited resource that it must be shared among all OBUs and RSUs that shape the VANET. Commonly, ISM (Industrial Scientific Medical) radio bands with frequency ranges 2.40–2.4835 GHz and 5.15–5.875 GHz are used by wireless networks for license-free communications [10]. The definition of these standards is crucial in order to attend the increase on the demand of the spectrum channels and to make possible that different networks can coexist in the same radio band.
Although WLAN (IEEE 802.11a/b/g/n) could be the technology used in VANETs, most of the applications included at Table 1 require time-critical communications, a continuous handover among different RSU in V2I/I2V links, and as these standards use CSMA (Carrier Sense Multiple Access), so many of the nodes cannot have success in channel access due to the high density of some scenarios. Due to the limitations of these standards in mobile scenarios as VANETs, a new extension has been developed: IEEE 802.11p, designed specifically for vehicular environment in which high reliability and low delay characteristics are mandatory. This new standard, known as Dedicated Short Range Communication (DSRC) uses the physical layer of IEEE 802.11a working on the 5.9 GHz band and quality of service enhancements of IEEE 802.11e. Network and transport layers are in the scope of WAVE (Wireless Access in the Vehicular Environment) standard which defines the protocols and services that support multi-channel wireless connectivity between IEEE 802.11 Wireless Access in Vehicular Environments devices [11].
Once the access to the medium is defined under the frame of the IEEE 802.11p standard, in a situation in which many nodes have information to transmit to different destinations in a network that is geographically distributed, it is quite important to determine the protocols that allow to organize the addressing of the information and to assure that all the nodes have the chance of transmitting and receiving data. The nature of MANETs, and specifically of VANETs implies that the maintenance, management and routing task of the network must be done by all the nodes, making these kind of networks more difficult or more complex to other wireless networks. Therefore, advances techniques of management and arrangement should be applied to organize the network and assure its effective implementation and its fairness and reliability for all the nodes.
In the next sections of these chapter are analyzed the main techniques used to disseminate data in VANETs, with an special emphasis in clustering, a control scheme that can take into consideration the speed and distance difference among neighboring nodes in the VANET to group them in order to assure a stable cluster structure and then enhance the stability of the network topology.
Data dissemination in VANETs has recently received considerable attention. Due to the unique characteristics of VANET, the implementation of reliable data dissemination among vehicles has encountered many challenges. Information dissemination in VANETs provides drivers a way to be aware in real-time of everything that is happening in their surroundings. A wide range of information can be disseminated, including traffic and road conditions, closure and detour information, incident information, emergency alerts, and driver advisories.
Information dissemination schemes in VANETs are commonly categorized into two different groups, according to the type of ITS application: safety and non-safety. During the last years, research community has focused their studies more on safety applications which are highly demanding in terms of message delay and present a challenging field of study. Although in safety applications the frequency of messages is low, the message delay is a key factor because a safety message, e.g., an emergency vehicle warning, has to reach a maximum number of nodes in a given area within a very short time interval, because after this time interval, the message essentially becomes useless.
However, in non-safety applications the message delay loses importance since the message could be useful for a longer time interval, even up to several minutes, e.g., for disseminating traffic road conditions. On the other hand, the frequency of these messages is much higher in this type of applications.
Therefore, data dissemination in VANET is a challenge for the deployment of cooperative services and applications because the dissemination routing protocol has to be suitable both for safety and non-safety applications, and it also has to be aware of the vehicular environment challenges as the high mobility of nodes and the extremely dynamic network topology. Therefore, the design of an efficient information dissemination routing protocol for VANETs is very crucial.
The function of a routing protocol in Ad-Hoc network is to establish routes between different nodes and the main requirement is to achieve minimal communication time with minimum consumption of network resources. The main reasons that make so difficult the design of these routing protocols are the highly dynamic nature of VANETs due to the high mobility of the nodes, and the need to operate efficiently with limited resources, such as network bandwidth. Moreover, routing protocols in VANETs, and generally in every Ad-hoc Networks, are not so good in scalability due to frequently changing network topology, lack of predefined infrastructure and limited radio communication range. In the literature, four categories of dissemination routing protocols for VANETs which are presented: position-based, broadcast, geocast and cluster-based.
Broadcast routing is commonly used in ITS applications in VANETS because it guarantees that every vehicle will receive the message. The simplest way to implement a broadcast service is flooding in which each node re-broadcasts messages to all of its neighbors except the one it got this message from. Flooding performs relatively well for a limited small number of vehicles and is easy to be implemented. Furthermore, this protocol is very reliable in safety applications but it consumes high bandwidth and resources, and it can also provoke a broadcast storm when the number of nodes in the network increases. If multi-hop communications are implemented as each node receives and broadcasts the message almost at the same time, this routing protocol generates contentions and collisions and high bandwidth consumption.
However, there are many studies where they use broadcast, but they design an approach to avoid broadcast storm. In [12], Yang et. al propose a V2V communication protocol for Cooperative Collision Warning application. In this approach when a vehicle has an incident, it becomes an abnormal vehicle (AV) and starts broadcasting periodically Emergency Warning Messages (EWMs), with its geographical position, speed and direction to its surrounding vehicles. If this incident provokes that more vehicles have to stop and, therefore, they become also AV, only one of them is going to send the EWMs to avoid the broadcast storm. In [13], Ferrari et. al use broadcasting protocol with multi-hop communication but to avoid the broadcast storm not every vehicle forward the received messages, only the farthest vehicles from the source forward it.
Broadcasting routing protocol
In the position-based routing protocol the forwarding dissemination decisions are based on location information. This approach makes sense because in VANETs the movements of the vehicles are usually restricted in just bidirectional movements constrained along roads and streets, and the geographical location information of vehicles is taken from street maps, traffic models or even more prevalent navigational systems on-board the vehicles. This protocol is commonly used with multi-hop communications and therefore, nodes usually forward the packet to a node that is geographically closest to the destination. The main advantages of this routing protocol are:
It does not require routing tables
Traffic overhead may be small
Supports delivery of packets to a geographical area, called geocasting
For example, as it is shown in Figure 4, if one vehicle has an accident the information will be only be necessary for the vehicles that are behind the damaged vehicle, not for the ones that are not going to drive again though the point the accident has happened.
Position-based routing protocol
However, to use this location-based routing protocol in a built-up city environment is very challenging, due to vehicles are distributed in an irregularly way because they usually are more concentrated on some principal roads than others and the road patterns define their mobility and add difficulty in the signal reception because of the radio obstacles such as high-rise buildings which may lead VANETs unconnected. Furthermore, in general, topology-based routing protocols are considered not to scale in networks with more than several hundred nodes [14].
In order to position-based routing protocol could work, vehicles should send periodically beacon messages to announce their position and enable other nodes to maintain a one-hop neighbor table. This approach is scalable and resilient to topology changes since it does not need routing discovery and maintenance; however, periodic beaconing creates a lot of congestion in the network [15]. This beaconing frequency can be configured according to different scenarios or traffic situations, but if this beaconing frequency is not enough the inaccuracy of position information is higher and a neighbor selected as a next hop may no longer be in transmission range implying to a significant decrease in the packet delivery rate.
Therefore, the key ideas we have to take into account to select one position-based routing protocol are:
Loop-freedom: routing protocols should be inherently loop-free and should avoid recovery strategies using timeouts of old packets and memorizing packets that have been seen before
Distributed operation
Path strategy
Metrics
Memorization
Guaranteed delivery
Scalability
Robustness
There are three different kinds of position-based protocols which are restricted directional flooding, greedy and hierarchical routing protocols. The most used routing position-based protocol is the greedy in which they use forwarding to route packets from a source to the destination. This strategy do not establish and maintain the routes between the source and the destination; on the other hand, a source node define the approximate position of the destination and add this data in the data packet and selects the next hop depending on the optimization criteria of the algorithm; for example, as it is shown in Figure 5, one criteria could be the closest neighbor to the destination [16],[17]. In the same way, each intermediate node selects a next hop node until the packet reaches the destination, as it is shown in Figure 4 Position-based routing protocol.
Greedy routing protocol
The main characteristics of Greedy algorithms are:
Loop free
Localized information
Single path strategy
Metric: Hop count
No memory
No guarantee of delivery
Scalable
Somewhat robust
In restricted directional flooding, the sender will broadcast the packet to all single hop neighbors towards the destination. The node which receives the packet checks whether it is within the set of nodes that should forward the packet (according to the used criteria). If it is, it will forward the packet. Otherwise the packet will be dropped. In restricted directional flooding, instead of selecting a single node as the next hop, several nodes participate in forwarding the packet in order to increase the probability of finding the shortest path and to be robust against the failure of individual nodes and position inaccuracy.
Restricted directional flooding routing protocol
The main characteristics of Restricted Directional Flooding are:
Not loop free
Localized operation
Path strategy: flooding / multipath
Metric: Hop count
Memory
No guarantee of delivery
Not scalable
Not robust
The third forwarding strategy is to form a hierarchy in order to scale to a large number of mobile nodes. This strategy tries to reduce the complexity of the information each vehicle has to handle and also improves the scalability of the network. The two main strategies used to combine nodes location and hierarchical network structures are the zone-based routing and the dominating set routing [18].
Geocast routing is a location-based routing but in a multicast way, so each message is broadcasted to every vehicle inside a defined area. In Figure 7 it is shown that the defined area are the vehicles which receive the yellow messages. Geocast can be implemented with a multicast service by simply defining the multicast group to be the certain geographic region.
Geocast routing protocol
Most geocast routing methods are based on directed flooding, which tries to limit the message overhead and network congestion of simple flooding by defining a forwarding zone and restricting the flooding inside it. With this routing protocol we consume less network resources than broadcast routing but we also guarantee that every vehicle will receive the message. However, we continue having the broadcast storm problem unless we only use one-hop communications. Geocast routing is divided into three types which are: Routing with simple flooding, direct flooding and no flooding [19].
The Geocast routing based on simple flooding was not created for geocast routing but it is used as a basic unit and for the comparison with other protocols. In this method, the source vehicle delivers the packet to all other nodes in the network and all receivers have to check whether they are within the destination area. This is a very straightforward approach but is not a well-organized approach. In this approach, information of location is not used.
In the Geocast routing based on direct flooding the packet is forwarded to a defining region called “forwarding zone”. In this approach a packet is only forwarded to forwarding zone by the source node and not to all nodes in the network. In other words, this protocol is based on flooding but avoids flooding the whole network by defining a forwarding zone, and therefore, outside the forwarding zone the packet is discarded. There are two types of forwarding zone, the first one is the rectangular forwarding zone and the other one is distance-based forwarding zone.
The Geocast routing without Flooding is a simple geocast routing protocol that uses a regular unicast routing protocol between the sender and the destination region. Inside the destination region, flooding can be used, as well as any other routing protocol that can be independent of the protocol used outside the destination region, but the main difference is that it does not use flooding outside the forwarding zone.
But the most used routing protocol for vehicular environment is the cluster-based, where vehicles are grouped into different clusters according to some parameters. These parameters differ from one algorithm to another and are the key factor to build stable clusters. Some of those parameters could be the location, speed or inter-vehicle distance. Other parameters, as the IEEE 802.11p wireless coverage area of each vehicle, could affect in the size of clusters which could vary from one cluster to another in the same network depending on the location of nodes.
Therefore, clusters are virtual groups selected by a clustering algorithm where at least there is Cluster Head (CH) and some Cluster Members (CMs). The main advantage of cluster-based solution is that it can achieve good scalability for large networks, but, on the other hand, the delay and overhead involved in the formation and maintenance of clusters has to be taken into consideration.
The highway, urban, city and intersection scenarios require different characteristics for selection of CHs and for formation of clusters.
Clustering routing protocol
The cluster-based routing solution could be designed in three different ways depending on how vehicles discover the CH. It could be in a proactive, reactive or hybrid way. In the proactive solution beacon messages are constantly broadcast and flooded among vehicles since every vehicle should maintain updated their neighbor table to know which the next hop node toward a certain destination is. The advantage of the proactive routing protocols is that there is no route discovery since route to the destination is maintained in the background and is always available upon lookup. Despite its good property of providing low latency for real-time applications, the periodically beacon sending for the maintenance of the neighbor table requires a significant part of the available bandwidth, especially in highly mobile VANETs.
In the reactive approach the configuration phase is initiated by the vehicle because it starts a communication when it needs to communicate with another vehicle. It maintains only the routes that are currently in use, thereby reducing the burden on the network. Reactive routings typically have a route discovery phase where query packets are flooded into the network in search of a path. The phase completes when a route is found.
In a mixed approach vehicles also send periodic proactive beacon messages to have the neighbor table updated but they are also able to create a new communications on demand when they need to send any message to another vehicle.
To sum up, it is not very obvious which is best routing protocol for data dissemination in VANETs because it depends on application and the characteristics of the scenario like the position of the vehicles, speed, direction of movement, potential communication duration and potential number of communication neighbours, among others. Therefore, research community should continue researching on the development of new dissemination data routing protocols.
Clustering is a technique for grouping vehicles in the geographical vicinity together, making the network more robust and scalable. Under a cluster structure from Figure 9, vehicles may be assigned a different status or function, such as cluster head (CH), gateway (GV), or cluster member (CM). A CH normally serves as a local coordinator for its cluster, performing intra-cluster transmission arrangement, data forwarding, and so on. A GV is a non-CH vehicle with inter-cluster links, so it can access neighboring clusters and forward information between clusters an RSUs. A CM is usually called an ordinary vehicle, which is a non-CH vehicle without any inter-cluster links.
(a) Highway and (b) City scenario.
Cluster-based solutions may be a realistic approach in supporting reliable and scalable multi-hop communication for VANETs [20]. Clustering has been shown to effectively reduce data congestion [26], and can support Quality of service (QoS) requirements [21] for both delay-tolerant (e.g. road/weather information) and delay-intolerant (e.g. safety messages). According to [22] clustering provides three basic benefits.
Spatial reuse of network resources.
Emergence of a virtual backbone.
Improved network stability and scalability from the viewpoint of regular CMs.
Clustering can be done in a centralized or decentralized way. In centralized way, RSU elect CHs and forms clusters based on periodic message. As a fixed infrastructure, the RSU should be fully utilized to collect information and use this information to perform central control. It acts as backbone of all data transmissions. However, it does not work in network where there are no RSUs. Decentralized clustering is based on the ”hello message” exchange between the vehicle and it forms clusters and elects its CHs. Additionally, most protocols only use peer to peer communication to gather and transmit information, so those data can hardly be converged and processed in centralization. This is further discussed in detail in coming section.
Infrastructure based clustering is a centralized clustering where it gathers information from all the vehicles in the road, including speed, direction, positions, and further traffic related information. Infrastructure divides vehicles in the road into different cluster groups, it coordinates in the election of CH, routing of packets and allocation of the channel to its CMs. As a fixed infrastructure, it computes the collected information to perform central control. Moreover, using V2V clustering some algorithms require additional devices for computation to fulfill the aim, which will raise the vehicles cost and reduce the feasibility of algorithms. Infrastructure based clustering is used to solve the above-mentioned shortcomings and to achieve high stability. Overall, the amount of data to be sent is comparatively small (the position, speed, direction of each vehicle), but the communication reliability is vital.
Some approaches shown in Table 2 uses infrastructure for centralized channel allocation in order to reduce channel allotment time and control overhead. It can be seen infrastructure divides the spectrum allocated to a particular area into prefixed overlapping spatial clusters. The medium in each cluster is divided into time slots and each time slot is allocated to a vehicle in accordance to the priority of the message and availability of the time slot. However, due to centralized allotment the reliability and fairness is lowered. In another approach, infrastructure allocates channels to the moving vehicles based on their clusters and enables channel reuse in non-adjacent clusters. The infrastructure broadcast is heard by all the neighboring vehicles in the infrastructure region and this solves the issue of hidden/exposed vehicles. Furthermore, broadcast helps to avoid contention and results in efficient utilization of the allocated bandwidth. The lack of contention for channel acquisition and priority list at the infrastructure allows the protocol to ensure predictable delivery of safety messages. Nevertheless, these types of algorithms may not scale at high density and would not function in ad hoc mode in regions where there are no infrastructures.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
CMAC [23] | \n\t\t\tRSU is CH | \n\t\t\tSpeed, relative distance and direction. | \n\t\t\tFDMA | \n\t\t\tHighway | \n\t\t\tMOVE, SUMO and NS-2 | \n\t\t\tPredictable and reliable. | \n\t\t\tDensity not considered. Require RSUs. Low bandwidth utilization in sparse traffic | \n\t\t
Ranjeet Singh [24] | \n\t\t\tRSU is CH for all clusters | \n\t\t\tStatic cluster formation | \n\t\t\tTDMA | \n\t\t\tIntersections | \n\t\t\tNCTUns | \n\t\t\tEnd to End delay is reduced. | \n\t\t\tRequire RSUs all time. Reliability lowered in high speed scenarios. | \n\t\t
Comparison between various infrastructures based protocols.
Vehicular motion are confined to strait jacket roads and travels at high velocity and the enter/exit infrastructure area in short interim’s of time. At a given period of time, the total number of vehicles in an infrastructure area can vary significantly from a small density of vehicles to a large density of vehicles in a very short interim of time. Algorithms must be distributed or should require partial infrastructure assistance with an efficient hand-off from one infrastructure to another to meet these attributes. The vehicular movement is predetermined to road structure and directional antenna would be suitable for communication via infrastructures. The vehicle broadcast radio frequencies with transmission channels, each one considered as a common medium over which two neighboring vehicles cannot transmit simultaneously because a transmission collision occurs. So, in order to efficiently share the medium, MAC protocol is needed and is beset by contention delay. However, a protocol must ensure that safety messages are delivered within a prescribed time frame. The protocol must not suffer without the hidden/exposed terminal or deafness problem to ensure reliable message delivery. Although the infrastructure is an extra, it will be furnished on the highways extensively and applied in VANET in the near future. Therefore, compared with great and lifelong benefit, the infrastructures expense is of trifling importance at all. The efficient cluster based MAC and routing protocols can provide a more stable communication than a solution using V2V clustering. The optimum protocol should that take the advantages of fixed infrastructure and optimize the problem.
V2V based clustering is a decentralized clustering where clusters are formed based on communication between vehicles. Additionally, the CH election will be based on V2V communication. There are several advantages of using V2V-centric clustering as compared with the infrastructure-centric VANETs. V2V-centric clustering can avoid the short communication link period, high frequent hand-offs, fast channel fading, etc., that are caused by the high relative-speed difference between the fixed infrastructure and the fast-moving vehicles. Finally, the V2V-centric clustering performs better in active safety applications, which only requires exchanging messages among one hop vehicles within their transmission range.
V2V communications are expected to significantly improve transportation safety and mobility on the road. Several applications of V2V communications have been identified, from safety and warning applications, up to traffic control and driver assistance applications. In infrastructure centric clustering, all the communications is done via the infrastructure which causes a lot of control overhead and additional delay. Furthermore, it would be very cost intensive to build an infrastructure based communication all along the road structure. The V2V based clustering technique avoids the use of stationary base stations by building up VANETs, where all vehicles in a common transmission radius can exchange messages. However, CH selection carried out through V2V communications has some shortcomings, e.g., highly complex protocols, large computation and communication cost, need of additional devices and so on. Another important issue is that the connection between two adjacent CHs may be lost due to vehicles high speed, which drastically reduces the link quality. The hidden terminal problem where two vehicles are outside of each other’s transmission radius, but both attempt to transmit to a vehicle that is within the radius of both. This issue is likely in pure V2V scenarios where there is no centralized communication system. The result of the hidden terminal problem is data collisions. By enabling vehicles to transmit/receive messages with each other via V2V as well as with infrastructure communications, VANETs could contribute to more safer and congestion free roads by providing correct and timely message to neighboring vehicles and other related departments.
Clustering can simplify essential functions like bandwidth utilization, routing, and channel access. In MAC layer, it can provide a fairer and reliable channel access to all vehicles in network. This can lead to increase in the reliability of packets and scalability of the network. In network layer, clustering for routing can find the closest vehicles to intended destination. Furthermore, it reduces the number of broadcast and flooding messages in the network. In addition, the overhead for clustering is reduced if the same scheme is used for MAC and routing.
Introducing a cluster scheme already on the MAC layer additionally provides the possibility of a fairer medium access. When clustering applied in VANETs, it brings interesting research point such as broadcast storm that occurs when several vehicles are passing at a specific region at the same time, causing network congestion, packet collisions and delays in the medium access layer. A cluster-based MAC scheme is needed in V2V communication to overcome the lack of specialized hardware for infrastructure and the mobility to support network stability and channel utilization. In this case the CH can take over the responsibility to assign bandwidth to the CMs and therefore even QoS support can be improved. As the bandwidth can be assigned centrally fewer collisions have to be expected which consequently increases the reliability.
Many researchers have proposed cluster based multi-channel medium access control protocols to improve the performance and reliability of VANETs. In these protocols, clustering is used to limit channel contention and provide fair channel access within the cluster. On the other hand, multi-channel is used to increase the network capacity by the spatial reuse of the network resources and reduce the effect of the hidden terminal problem. Moreover, to optimize the communication range and the cluster size is very difficult especially in a highly dynamic environment such as VANETs. However, in order to overcome this situation some approaches divide the service area into a set of region units, and limit the number of vehicles in each region unit for the contentions of radio channels. Each region unit is then associated with a non-overlapping radio channel pool. Since the number of vehicles in each region unit is limited, the contention period is reduced and the throughput is increased. However, these types of approach have low bandwidth utilization in case of sparse traffic. Some of clustering algorithms try to minimize the total number of clusters by creating hierarchical clusters with a diameter of at most four hops. In this section of the chapter, we compare well known cluster based MAC protocols in Table 3.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
HCA [25] | \n\t\t\tMaximum number of messages received from cluster relays is the CH. | \n\t\t\tMaximal distance between a CH and CM is two hops. | \n\t\t\tTDMA | \n\t\t\tCity | \n\t\t\tOMNeT++, SUMO | \n\t\t\tEnd to End delay reduced. | \n\t\t\tOverhead and packet loss is increased. Do not consider the direction of movement. | \n\t\t
Zaydoun [26] | \n\t\t\tVehicle nearer to middle of the cluster is the CH. | \n\t\t\tNot Specified | \n\t\t\tTDMA | \n\t\t\tCity | \n\t\t\tC++ with graphical interface. | \n\t\t\tSupport both safety and non-safety applications. | \n\t\t\tNot suitable for high traffic. High overhead. | \n\t\t
Xi Zhang [27] | \n\t\t\tNo reception of a message longer than a particular time units from a CH, then it elects itself as CH. | \n\t\t\tRSS > threshold. | \n\tTDMA in CMs- CHs, CSMA/CA CHs- CHs | \n\tHighway | \n\tSimone 2000 | \n\tReduces data-congestion and supports safety messages. | \n\tHigh overhead and complex algorithm. Require two transceivers | \n
CBMAC [28] | \n\tCH is based on waiting period of Hello messages to neighbors. | \n\tUndecided state to CM based on reception of one CH messages. | \n\tTDMA | \n\tCity | \n\tI-V Communication Based on Traffic Modeling. | \n\tMinimizes the hidden terminal problem. | \n\tDoes not select a stable CH during initial CH election. | \n
RCM [29] | \n\tNo CH | \n\tGeographical area. Vehicles are assigned to different channel pools. | \n\tTDMA | \n\tHighway | \n\tA. law el al | \n\tReduced contention and throughput is increased. | \n\tLow bandwidth utilization in sparse scenarios. | \n
TCMAC [30] | \n\tLane weight, average distance, maximum number of neighbors, and average distance level. | \n\tNot specified | \n\tTDMA | \n\tHighway | \n\tNs-3 | \n\tChannel utilization, scalability, avoids hidden terminal problem, decreases collisions and packet drops. | \n\tCannot be used for safety applications, it is delay intolerant. | \n
CFIVC [31] | \n\tRandom after relaying one packet to ordinary node. | \n\tAccording to speed. | \n\tCDMA, MCSCDMA | \n\tNot simulated | \n\tNot simulated | \n\tAvoids data collisions. | \n\tIt neglects any condition that might affect the maximum speed achievable by the vehicle nodes. | \n
Comparison between various cluster based MAC protocols.
The MAC layer is divided into different cycles and each cycle is divided into contention based or contention free. In the current literature, several MAC protocols have been proposed to VANETs. Some of the well-known MAC protocols are ADHOC MAC [32], SDMA [33], VeMAC [34], DMMAC [35], STDMA [36], VeSOMAC [37] etc. These protocols are proposed for various scenarios and have many drawbacks such as hidden terminal problem, time unbounded, unreliability etc. There is a need for new MAC protocol in VANETs that can provide mobility (i.e., the MAC protocol should support vehicles to leave and join inter-vehicle communications at high speed), delay bounded (i.e., the communication must be delay bounded and real-time), scalability (i.e., VANET should scale itself according to the number of vehicles present), bandwidth efficiency (i.e., the radio resource should be utilized in an efficient and fair manner), cost (i.e., for cost-efficient and reliable communications, VANET should be fully decentralized), and fairness (i.e., every vehicle should get a fair chance to get the radio channel).The challenge of successfully deploying VANET services is to ensure timely and reliable data delivery for mobile vehicles.
In network layer clustering, a virtual network infrastructure must be created through the clustering of vehicles sharing similar characteristics in order to provide scalability. Routing protocols for VANETs mostly based on periodical broadcast messages to reveal their positions and traffic information to neighbors. Nevertheless, deterioration of routing performance is anticipated in urban areas due to high density of vehicles in the network. Basically, excessive broadcast messages as well as broadcast overhead may increase, resulting packet losses (due to collision) and significant routing performance deterioration. Information transfer or dissemination needs multi hop communications. When exchanging information between vehicles, there are network issues that must be addressed, including the hidden terminal problem, high density, high node mobility, and data rate limitations.
In multi-hop data forwarding method, the key problem is selecting the relay/CH for data routing. Most of the relay/CH selection method presented is more suitable for highway scenarios. In a city environment, the widely adopted method is the store-carry-forward scheme. Reactive protocols find routes on-demand. If a node wants to communicate with a node to which it has no route, the routing protocol will try to establish the shortest route between them. Here there is significant delay in determining the route. Proactive (table-driven) protocol, which is based on the exchange of control packets and it is continuously updating the reachability information in the routing table, so routes are immediately available when requested but there is high overhead in maintaining updated periodic routing tables and also maintains the routes that are not going to be used. Hybrid protocol is combination of proactive and reactive protocol. It is also known as cluster based routing. It is a convenient way for developing efficient routing scheme in VANETs. In Table 4 we compare between various cluster based routing protocols proposed in VANETs.
\n\t\t\t | \n\t\t\n\t\t\t | \n\t\t\n\t\t\t | \n\t\t\n\t\t\t | \n\t\t\n\t\t\t | \n\t\t\n\t\t\t | \n\t
TMRC [38] | \n\t\tDirection of vehicle after crossing the intersection | \n\t\tIntersection | \n\t\tNCTUns | \n\t\tComputed optimal length of cluster in an intersection. | \n\t\tCluster overheads and delays are increased. | \n\t
RMAC [39] | \n\t\tSpeed, location, and direction | \n\t\tHighway | \n\t\tNs-2 | \n\t\tStable and less cluster reconfigurations | \n\t\tCollisions and unreliable. | \n\t
VWCA [40] | \n\t\tNumber of neighbors, the direction, the entropy, and the distrust value parameters | \n\t\tNot simulated | \n\t\tNot simulated | \n\t\tPredictability and reliability is increased. | \n\t\tVolatility of dynamic transmission range | \n\t
MOBIC [41] | \n\t\tVariance of relative mobility with each of its neighbour’s. | \n\t\tRandom | \n\t\tNs-2 | \n\t\tReduces the cluster reconfiguration by delaying re-clustering for a certain period of time. To avoid accidental contacts between CHs. | \n\t\tFew neighbour nodes move differently, the method still results in dramatic increase in the variance. | \n\t
AMACAD [42] | \n\t\tRelative distance, speed between neighbour’s and distance between vehicle and destination. | \n\t\tUrban | \n\t\tJava JDeveloper 10G | \n\t\tIncreases the cluster and CH lifetime. | \n\t\tProblem with knowing the final destination a priori as drivers usually do not use navigation system for known routes. | \n\t
MCDRIVE [43] | \n\t\tFirst vehicle in the direction is elected as CH | \n\t\tIntersections | \n\t\tNCTUns | \n\t\tCluster stability is improved in intersections. | \n\t\tIncreased overhead and delay. | \n\t
APROVE [44] | \n\t\tMinimum distance and minimum relative velocity between each CH and its CMs. | \n\t\tHighway | \n\t\tNs-2, VanetMobiSim | \n\t\tCluster overhead and re affiliation are reduced | \n\t\tIt doesn’t consider destination of vehicles. Not mention about CH election. Not suitable for intersections | \n\t
ALM [45] | \n\t\tVariance in relative mobility | \n\t\tBox topology | \n\t\tSUMO, SIDE/ SMURPH | \n\t\tConsiders relative mobility to increase stability. | \n\t\tNo direction of movement and position is considered for cluster formation. Overhead increased. | \n\t
DBC [46] | \n\t\tConnection graph density, link quality, traffic conditions, node reputation and movement prediction. | \n\t\tUrban | \n\t\tJiST/ SWANS++ VanetMobiSim | \n\t\tSuitable for both sparse and dense traffic. | \n\t\tThe destination of vehicles, speed of vehicles is not taken into account that increases the overhead. | \n\t
Maslekar [47] | \n\t\tLocation and direction of vehicles. | \n\t\tIntersections | \n\t\tNCTUns | \n\t\tCluster stability is improved in intersections | \n\t\tOverhead and delay increased. | \n\t
Maslekar [48] | \n\t\tThe direction which the vehicle will take after crossing intersection. The CH is at the front of cluster. | \n\t\tIntersections | \n\t\tNCTUns | \n\t\tImproved the influence of overtaking within the clusters. accurate density estimation within the clusters. | \n\t\tOverhead and delay increased. | \n\t
Comparison between various cluster based routing protocols.
CH selection is important to increase protocol reliability, scalability and delay. In some of CH selection algorithms proposed takes into account the destination of vehicles, including the current location, speed, direction, relative destination and final destination of vehicles as parameter to arrange the clusters. Many researchers have proposed CH election scheme based on ID. Each node is assigned a unique ID, and the node with the lowest ID in its two-hop neighborhood is elected to be the CH. Some algorithms calculate these ID based on the variance of relative mobility of a mobile node with each of its neighbors, where a small value of variance indicates the mobile node is moving relatively less than its neighborhood. Additionally, other approaches consider vehicles having a longer trip are more qualified for being elected as CHs.
A vehicle, which would travel longer time, is assigned higher priority; hence, at the very beginning of starting its travel, the expected travel time of a vehicle is calculated and announced using its desired driving speed and the geographic information system once its driver sets the destination. Te stability of the system is improved by electing the vehicles having a longer trip as the CHs. Furthermore, to avoid elected CHs losing connectivity with their neighbors very soon, the eligibility of a vehicle should decrease quickly when its velocity has big difference from the average speed. Thus, a vehicle with large speed deviation is assigned lower priority.
Another type of CH election scheme is based on connectivity level (estimating graph density), link quality (SNR), relative node position and the prediction of this position in the future, and node reputation. The vehicle which is near to that anchor point is elected as CH. Furthermore, some approaches assign generic weight to vehicles based on the position and other set of vehicle parameters like connectivity, mobility, RSS etc. The vehicle with the highest weight is elected as the CH amongst the neighbors. However, since the vehicles are highly dynamic in nature the position of the vehicles change very fast and hence may induce a computational overhead in calculating the weight associated with the vehicles.
In some of the clustering algorithm first vehicle entering into the cluster region is initialized as the CH. It changes from CH to CM due to the discovery of a closer CH, or until the last member of the cluster passes the intersection. However, CH stability is reduced due to distance between vehicle to intersection and due to different directions of vehicles. In some other schemes, the CH selection should resemble like a natural model of location references. CH re-election only occurs when two CHs move within range of one another for a certain contention interval. When a CM moves out of range of its CH, it joins any current CH in its neighborhood, or forms a new cluster. However, in the case in which few neighbor nodes move differently, the method still results in dramatic increase in the variance.
Cluster formation is really important to avoid cluster reconfigurations. Some of the cluster formation techniques are based on position based clustering. In these types of protocols, each road is divided into cells and in each cell some anchor points are defined. The cluster structure is determined by the geographic position of the vehicle. Another type of position based algorithm is based on hierarchical and geographical data collection and dissemination mechanism. The cluster formation is based on the position of the vehicles at a particular segment instead of the individual positions. However, this type of protocols incurs more overheads for V2V and V2I communication. In some other approaches, each vehicle entering into the network collects the neighbor vehicles information, assuming precedence to each vehicle and polls each vehicle individually (according to precedence) to check whether it is CH or not and then joins the cluster. Also every vehicle in the network collects 2-hop neighbor’s information along with 1-hop neighbor’s information from the CH through periodic polling. These two information collection leads to more overhead in V2V communication.
Some clustering algorithms estimate the future mobility of nodes predicting the probability that the current neighborhood of a mobile node will remain the same. The drawback of the prediction method is the lack of accuracy in some cases. In some of clustering algorithms, the clusters are formed based on mobility metric and the signal power detected at the receiving vehicles on the same directed pathway. Through such method this type of protocol helps in forming stable clusters. However, it does not consider the losses prevalent in the wireless channel. In practical scenario effects of multi path fading are bound to affect the cluster formation method and thus the stability. These effects of multi path fading are taken into account in the density based clustering algorithm. The cluster formation is based on the weight metric which takes into consideration the link quality and the traffic conditions. It can be seen that the stability is improved compared to other approaches.
In some clustering approaches considers the behavior of the vehicles, using the speed and direction parameters.
The cluster formation is based on direction of vehicle at the approaching intersection. In other approach, cluster is formed based on distance and direction of vehicle it takes after crossing the junction. Some of the research enforces a weight cluster mechanism with a backup manager. These algorithms operate in similar way. Algorithms consider the position, direction, speed and range of the nodes to perform the algorithm. On the other hand, some takes into consideration the number of neighbors based on the dynamic transmission range, the direction of vehicles, the entropy, and the distrust value parameters. They works with an adaptive allocation of transmission range (AATR) technique, where hello messages and density of traffic around vehicles are used to adaptively adjust the transmission range among them. The destination of the vehicles is used as a parameter to arrange clusters.
In some approaches, the cluster formation interval is constant, which implies a synchronous creation of clusters. This does not allow for effective cluster reorganization. The directional based clustering algorithm are based on the following mobility metrics (a) moving direction (b) leadership duration (c) projected distance variation of all the neighboring vehicles over time. In practical scenario effects of multi path fading are bound to affect the cluster formation method and thus the stability. Some approaches take into account the destination of the vehicles to arrange the clusters and implements an efficient message mechanism to respond in real time and avoid global re-clustering. There might be a problem with knowing the final destination a priori as drivers usually do not use navigation system for known routes. Some algorithms are proposed for calculating the density of vehicles in a particular region around the junction. Moreover, other algorithms groups vehicles into clusters based on the competitive learning Hebb neural network. A suitable solution to prolong the cluster lifetime, stability, fairness, avoid congestion and overhead considering the vehicular behavior is essential.
One of the numerous challenges clustering algorithms in VANETs is the mobile and dense communication topology. The main problem in clustering is the control overhead introduced to elect the CH and to maintain a stable cluster. The cluster structure assures the scalability of VANETs, where high mobility of the moving vehicles within the road causes lots of challenges to face. Location services might not provide the needed accuracy everywhere or will not be available at all so more work is needed on location independent clustering solutions. Providing highly accurate digital maps that are needed by some solutions presents a challenging task and could slow down the implementation so advantages and disadvantages of map based solutions should be researched.
In many papers the correlations between the transmission range and the VANETs density, packet transmit rate, packet size, data rate and channel conditions have been researched. However, the different network simulators should also be evaluated and presented with all the relevant parameters including MAC, transmission range, packet size, bit rate etc. Since each vehicle in the VANET has its own view of the network density and channel conditions, finding the optimal network parameters is difficult. The research should focus to the optimization of cluster size and transmission range that maintains a high VANET stability and reliability, increases the life time of a connection link, and at the same time decreases the time required for a safety message to reach its intended destination. Presented clustering protocols are designed for different aims e.g. overhead minimization, fast cluster creation, cluster stability, etc. The most important parameter among them is the cluster stability. Their tradeoffs and effects between them should also be analyzed and presented.
The vehicles with relatively high mobility, can pose difficulties for flat networks stability. Many of the presented protocols use metrics derived from the same input parameters where among them position and radio signal strength(RSS) are the most important. More research effort should be put in defining and ranking the aims that clusters and clustering protocols should try to achieve. One of the goals is to optimize the mean number of created clusters and the number of CHs at each time step.
For performance evaluations of clustering protocols common parameters used are cluster stability, CH election, cluster size, cluster delay, cluster reconfiguration and cluster overhead etc. These terms are quite generic so their definition and explanation with VANET specifics is needed to provide consistency between different researches. More focus should be put on evaluation of those common parameters to highlight the most useful ones, merge similar ones etc. This would help researchers to concentrate their research on extending and designing the most prospective ones. Fair comparison of different clustering protocols is a hard task due to non-existent standard testing procedures and scenarios so more work and standardization is needed in this area. The characteristics of different scenarios of VANETs and different parameters are explained in detail in later sections.
In highway scenarios, it is widely recognized that traffic generally follow a platoon pattern according to traffic flow theory. Vehicles in a platoon generally move with similar velocities and are likely to sustain a stable wireless communication in clusters. The clusters are independently controlled and dynamically reconfigured as the vehicles moving. Congestion can occur in highways during an accident so the clustered protocols should be designed to effectively reduce data congestion in high density scenarios, and satisfying QoS requirements. Furthermore, the design of cluster protocol should also consider the market penetration of vehicles enabled with OBU´s. In some cases, there can be a large number of vehicles in road that are not enabled with OBU´s. This creates a large gap between vehicles and resulting in poor communication. The future clustering protocols should consider all the characteristics of highway scenarios.
A large number of the available cluster based MAC and routing protocols are purposed for highway environments and does not address the various requirements of the city and urban traffic environments. In city environments, intersections play important roles for information exchange. The vehicle that crosses the intersection before actually receiving a message is defined as the unstable vehicle. As the intersection area is comparatively small and the probability of change of direction is very high, it will be risky to choose an unstable vehicle as the CH from these clusters. Moreover, during rush hours of day intersections are usually the bottlenecks.
Vehicles in intersection can take any of the direction Straight (S), Right (R), Left (L) and U-Turn (U) respectively. All the incoming vehicles of two road segments of intersection may be blocked by the red signal, whereas vehicles on the other two road segments flow until the green signal is on. When a vehicle crosses the intersection without having another vehicle arrive at the intersection, a disconnection may occur. Such a situation arises only when a fleet of vehicles has crossed the intersection and when another fleet of vehicles has not been arrived at the intersection. Based on the motion of vehicles, some approaches form clusters S, R, L and U on a particular lane. The created clusters consist of vehicles moving in the same direction. Within the same cluster the vehicles communicate with each other and elect a CH that is responsible for calculating the number of vehicles in its cluster. This information will help to avoid constant cluster reconfigurations and overhead by creating another cluster.
For intersection collision avoidance, the amount of traffic generated by vehicles can be determined by a number of factors such as the cluster size, the number of intersection per cluster, the number of vehicles per intersection per cluster, the size of messages, and the transmission interval.
The size of the cluster is a crucial parameter. To optimize the cluster size is very difficult especially in a highly mobile environment such as VANETs. One of the goals of optimal protocol is to optimize the number of CMs to decrease the end to end delay of messages. If the cluster size is decreased, the channel contention within each cluster decreases. However, the number of CHs is increased, so that the resulting virtual network formed by these CHs will become more complex. There is then a tradeoff between the cluster size and the number of CHs. Cluster size is variable according to vehicle density, speed and required minimum bandwidth or QoS where parameters can be predefined or provided on the fly from vehicle sensors and application profiles.
The cluster size can be controlled by a predefined transmission range between a CH and its CMs. Optimal cluster size and hence the transmission range that maintains a high VANET reliability, stability and scalability, increases the life time of a communication link, and at the same time reduces the end to end delay for a safety message to reach its intended destination. Optimal cluster size is both related to the radio transmission power and vehicle traffic density. Therefore, cluster size may limit radio efficiency and throughput. For the cluster protocols, we have so far assumed that transmission power is fixed and is uniform across the VANET. There are different methods to reduce the cluster size by reducing transmission power. There is different power control protocols proposed but most of them are oscillating because of the fast varying vehicles densities in VANETs. Selection of optimal power control algorithm and vehicular densities will reduce the end to end delay, reliability and fairness.
Optimal cluster size is also determined by the correlation between spatial reuse of the medium (which leads to small numbers) and end to end delay minimization (which lead to large numbers). Other parameters also apply, such as geographical area and power consumption.
Stable clusters are important for a reliable and efficient information exchange. Stable clustering techniques decrease the control overhead of cluster reconfigurations and led to an efficient hierarchical VANET topology. The main condition for stability is the duration of residence´s times of a cluster and its CHs. Stability is also defined by long CH lifetime, and long CM lifetime.
Cluster stability is based on the selection of suitable CMs to ensure greater cluster lifetimes by reducing cluster re-configuration events. Cluster stability also depends on the different vehicle densities. To be able to form stable clusters of one hop vehicles, vehicular movements should be taken in to account. Speed and location data transfer is a usual procedure in most of the cluster-based routing protocols. Nevertheless, this needs two additional communication rounds (for speed, location and relative stability data transfer) and stationary assumption of vehicles prior to cluster creation. Cluster stability can be defined as the average number of cluster changes throughout the simulation and the percentage of time in which vehicles were CMs, represented as association time. In practical environment effects of multi path fading are bound to affect the cluster creation method and thus stability. In some cases, nodes in cluster are linked to cluster rather than CH. This increase furthers the cluster stability.
The time during which a node is in the state of a CH determines stability. It is the mean time duration of the nodes, remaining its leadership role as CHs. Long CH lifetime implies, few changes and good stability. The information is disseminated by groups enhancing the communication delay, reliability, low data delivery and congestion issues, making the vehicular networks accurate and efficient. CH stability can be affected by different factors such as merging, distance between CHs, exit from the road etc. In VANETs, merging collisions can happen among vehicles moving in the same direction due to acceleration or deceleration, it is more likely to occur among vehicles moving in opposite directions (approaching each other) or between a vehicle and a stationary RSU since they approach each other with a much higher relative velocity as compared to vehicles moving in the same direction. The high mobility of the shifting nodes within the networks causes lots of challenges to face and affects stability.
If vehicles are changing their state very often in intersection scenarios and stay only for short times in the CH state, CH stability is low. In some of intersection based approaches the first vehicle to enter the intersection region in a particular direction is elected as CH to improve stability. Furthermore, some cluster-based routing algorithms, the selection of CH are based on willingness factor which defines the relative stability of a node. CH stability is also based on the threshold distance between the two CHs. Optimal distance between two CHs should be obtained.
Cluster delay means the time required for sending one message from source to destination (it can be here from CM to the RSU or vice versa). The delay parameter is very crucial for safety applications. The end to end delay can be minimized by selecting proper cluster size, selection of proper MAC protocol to reduce the channel access time, selection of stable CH nearer to the RSU, a selection of proper routing algorithm between CH transmissions. The number of the formed clusters is important to reduce the end to end delay for message transmission.
The frequent cluster reconfiguration generates tremendous communication load, which significantly reduces available bandwidth for message dissemination. Cluster reconfiguration is needed in some cases when the CH leaves the group or numbers of CMs are below the threshold or the distance between two CH is below the threshold. In some approaches, if the distance between two CH nodes is detected less than the particular threshold, the cluster with fewer CMs is dismissed to reduce communication overheads while it’s CMs join other clusters. One can expect that a larger dismiss threshold leads to a higher rate of CH changes and higher probability of cluster reconfiguration. The threshold determines the rate of cluster reconfiguration, and also, depends on the radio transmission range and vehicular densities. Larger transmission provides longer distance for CHs to detect each other, and therefore, more frequent cluster reconfigurations occur. Additionally, some algorithm elects backup CH to avoid cluster reconfigurations. However, most of the protocols are not fit for different traffic situations. The aim should be to design protocol with less cluster reconfiguration in various scenarios.
Data rate transfer that gives the total number of received packets at the destination out of total transmitted packets. An access collision happens when two or more CHs within two hops of each other attempt to acquire the same available time slot.
Clustering requires explicit clustering-related information exchanged between node pairs. Clusters cannot be formed or maintained by non-clustering-related messages, such as routing information or data packets. The main challenge in clustering is the communication overhead introduced to formation and maintenance of a stable cluster, and elects its stable CH. Most of the recently proposed protocols discuss mainly on how CHs are selected. The control overhead for the creation and reconfigurations of clusters have not been considered completely. There have been not many papers that analyze analytically the control overhead incurred in hierarchical routing. Furthermore, the overhead is bound by a constant per vehicle per time step, avoiding expensive re-clustering chain reactions; hence, this overhead increases with the number of nodes. Since a CH acts as a coordinator in a cluster, if it is absent for any reason, the clustering architecture has to be reconfigured; this will significantly increase the message overhead.
Communication complexity represents the total amount of clustering-related message exchanged for the cluster formation. For clustering schemes with ripple effect, the communication complexity for the re-clustering in the cluster maintenance phase may be the same as that in the cluster formation phase. But for those with no ripple effect, the communication complexity of re-clustering should be much lower. From analysis of different clustering protocols, we believe that a more efficient way to form a stable network structure, with reduced overhead, are that a vehicle should be associated to a cluster and not to a CH. Indeed, replacing CH is considered only as an incremental update and does not require a whole reconfiguration of the cluster structure; this will definitively increase the lifetime of the clustering architecture. The resulting clusters are stable and exhibit long average CM duration, long average CH duration, and low average rate of CH changes. The cluster creation and maintenance overhead should be calculated to be compared with non-clustering algorithms in terms of the reliability, fairness, and scalability of the algorithms. By optimizing cluster stability, cluster reconfiguration, number of clusters and cluster size can reduce the overhead caused in clustering.
In this chapter, we have surveyed in-depth of the challenges of reliable communication for cooperative ad hoc networks especially VANETS. First we have provided state of the art of ad hoc networks and various types of ad hoc networks.
In a scenario where nodes are moving fast and the topology of the network is changing continuously, the big challenge is to keep connected all the nodes and give all of the them resources to transmit and receive information in real time. In VANETs, dissemination algorithms provide to the drivers mechanisms to be aware in real-time of events that are happening in their surroundings: traffic and road conditions, closure and detour information, incident information, emergency alerts, and driver advisories. Clustering is an approach that divides the nodes of the network in groups of vehicles according to common characteristics as their position or speed, in order to create a more robust and scalable network. This structure can be a realistic approach to support reliable and scalable multihop communications in a mobile network as a VANET
This chapter focused on identifying the research trend of the cluster based MAC and routing techniques that have been recently proposed for V2I and V2V communications. Furthermore, we discussed the advantages and disadvantages of various MAC protocols that have been developed recently. Moreover, we have presented a comprehensive review of the cluster based routing protocols for inter-vehicle and vehicle-to-infrastructure communication. Cluster based routing protocol is the most appropriate technique for developing reliable, scalable and predictable routing protocols in VANETs. However, due to the distinctive attributes of V2V and V2I communications, it raises several open issues and areas for research, such as fairer usage of network resources and channel access. Because of varying vehicle density and varying speed of vehicles makes communication reliability, a challenging issue.
Our research group is focusing on developing data dissemination and cluster based protocols by identifying common characteristics and parameters to improve cluster lifetime, communication link among vehicles, and channel access. We have also discussed some important issues that must be addressed for safety and non-safety applications. Future protocols need to effectively consider these problems while fully exploiting the distinctive distributive and ad hoc nature of these networks to meet real time applications.
The authors would like to thank the EU Intelligent Cooperative Sensing for Improved traffic efficiency (ICSI) project (FP7-ICT-2011-8) for its support in the development of this work.
The economic recession in developing countries especially in sub-Saharan region has affected various sectors of the economy. This includes the health sector, leading to low productivity, poor service delivery and poor health outcome [1]. In some of these countries, home services are not available. The health sector is still trying to deliver basic health care services with the collective efforts of government but efforts to accomplish this seem not achievable due to the present state of the economy. Holistic health care is good, both ethically and practically but it is hard to find as any obvious expression of what holistic health care is or any plain explanation of its realistic usefulness especially in terminally ill patients in need of palliative care, which may require home care.
In most developing countries, patients generally report late to health facility due to a sequence response to event: improper health-seeking behaviour, economy and ignorance of the disease, treatment by unqualified and unorthodox medication, non-availability of personnel, equipment, culture/belief and family decisions [2]. Terminal diseases have often been linked with having one of the worst effects on the quality of life among affected patients and their families.
This chapter, therefore, considers what holism is and then what a holistic approach to illness might be, and how this might improve health care at home in a depressed economy.
By the end of this chapter you should be able to:
review holistic care and identify its principles
understand palliative care and its principles
recognise the relevance of spirituality in health care
assess the impact of economic depression on health
assess the home care situation in a depressed economy
discuss the integration of palliative/holistic care in clinical and home-based care in terminally ill patients and the elderly.
Holistic care means reflection of the whole person, physically, psychologically, socially and spiritually, in the care and prevention of disease. These different conditions can be similarly important. They should be managed together so that a person is cared for as a whole. A holistic approach means that the health care providers are well versed with a patient’s whole life situation. Maintaining one’s health requires continuous effort to attain a balance of all aspects of life. To accomplish this balance, an amount of consistent factors must be considered when providing health care to patients/clients. Such factors include age, sex, family relationship, cultural influences and economic status. This broad approach to health care is recognised as holistic health care [3]. In order to have a good understanding of holistic nursing, Katie Eriksson, who is a nurse, came up with the theory of Caritative care that helps distinguish the relationship between a nurse and a patient and the concept of caring principles, which guide the nurses in decision-making. The theory of Caritative care comprises love, which is known as caritas. It shows the significance of regarding the self-esteem of a human being and holiness [4].
Almost all health care professionals would assert to put into practice holistic health care. It is obvious that; no one would declare or have the same opinion that their individual, professional or organisational practice was not holistic. Consequently, few if any of these professions, people or organisations make it apparent what they mean by ‘being holistic’. They do not provide any explanation, or examples of how they manifest their holism. It is difficult to discover any criteria against which their success at being holistic could be measured. I doubt that many of the people, professions or organisations have any comprehensible conceptual understanding of what they mean by ‘being holistic’.
The word holism has its foundation in two Greek words, both of which denote ‘whole’. This first ‘holos’ is the base for holism and the second ‘hale’ is the base for healing and health [5]. Health in general is believed to be concerned with the state of a person’s mind and body, commonly meaning free from illness, injury or pain. Healing is the process of re-establishing health to a diseased, injured or damaged individual. Mariano defines healing as the consolidation of total human being in body, mind, feeling and spirit [6]. Therefore, it is an associate to holism.
‘Holism’ in health care is a philosophy that emanates from Florence Nightingale who advocated care that centred on unity, wellness and the interrelationship among human beings, events and the environment [6]. She discerned the importance of such components as the environment, sense of touch, light, smells, music and silent expression in the treatment process [7], hence, reaching patients in fashions that went beyond rendering just physical care. The philosophy behind holistic care is founded on the thought of holism, which stresses that for human beings the whole is greater than the sum of its parts and that mind and spirit affect the body [8]. Holistic nursing has a higher cognizance of self, others, nature and spirit. This is the same approach Florence Nightingale integrated as the first holistic nurse, which centred on harmony, wellness and interrelatedness of human beings, likewise their surroundings. Holistic nurses also have the same self-care and self-awareness of body, mind and spirit as part of their belief structure (Figure 1). Through caring for themselves, it is believed it gives a holistic nurse the capability to have that same consciousness for the care of others [7]. Florence Nightingale once expressed the role of nurses as ‘to put the patient in the best condition for nature to act upon him’ [9]. She thought that touch, kindness and other measures of comfort, provided within the setting of treatment environment, are essential for nursing care. These assumptions are applied nowadays. Even these days, nurses are educated to deal with the environment and use touch, knead, eye contact, voice and other measures to make patients more relaxed. These nursing actions, known as ‘the art of nursing’, constitute the basis of professional nursing [10]. Currently, different fields, such as physics, mathematics, science, philosophy, sociology, medicine, nursing, etc. endorse the opinion that the honesty of an individual is much more complicated and greater than the sum of their individual parts [10].
Diagrammatic presentation of the components of holistic care.
All people have natural healing powers;
The patient is a person, not just a disease;
Suitable healing therapy needs a team approach;
Patient and health care professionals are collaborators in the healing process;
Treatment comprises fixing the cause of the illness, not just reliving the symptoms [5].
The World Health Assembly approved the resolution to integrate hospice and palliative care services into national health services [11]. The body recognises these important health services as an important component of health systems worldwide and therefore calls on national authorities to make sure they be given the awareness they deserve. This is the first time that the World Health Assembly has considered a declaration on palliative care. It endorses that all countries need to take palliative care seriously [11]. The main recommendations to all member states of WHO as seen in the resolution are to integrate palliative care into health care systems, to make sure that palliative care is incorporated into the introductory and continuing education and training for all health care personnel and to make sure that appropriate medications, as well as strong pain medications, are accessible to patients [11].
Many individuals, organisations and bodies including the WHO have suggested different definitions of palliative care. WHO revised the meaning of palliative care to be ‘an approach that improves the quality of life of patients and their families facing the problem associated with life-threatening illness, through the prevention and relief of suffering by means of early identification and impeccable assessment and treatment of pain and other problems, physical, psychosocial and spiritual’ [12]. WHO further listed the following features of palliative care: ‘provides relief from pain and other distressing symptoms; affirms life and regards dying as a normal process; intends neither to hasten nor postpone death; integrates the psychological and spiritual aspects of patient care; offers a support system to help patients live as actively as possible until death; offers a support system to help the family cope during the patients illness and in their own bereavement; uses a team approach to address the needs of patients and their families, including bereavement counselling, if indicated; will enhance quality of life, and may also absolutely influence the progression of illness; is applicable early in the course of illness, in conjunction with other treatments that are aimed to prolong life, such as chemotherapy or radiation therapy, and includes those examinations needed to better understand and manage distressing clinical complications’ [12].
Boltz defined palliative care ‘as expert curative care of patients with severe disorders, and it emphases providing patients with relief from symptoms, discomfort and worry of serious illness, irrespective of the diagnosis’ [13]. She further explained that the word ‘palliative’ has its origin in the Latin word meaning to ‘cloak or cover’. And upheld that, Viewpoint of how cancer, which is one of the terminal diseases is observed and not properly diagnosed, is suitable description because most cancers progress without warning signs for an extensive period before the individual tries to seek help. The National Consensus Project (NCP) and National Quality Forum (NQF) jointly formulated the concept of palliative care so as to separate it from other types of care [14]. And so they came up with eight domains of palliative care: ‘structure and processes of care; physical aspects of care; psychosocial and psychiatric aspects of care; social aspect of care; spiritual, religious, and existential aspects of care; cultural aspects of care; care of the imminently dying patient and ethical and legal aspect of care’ [14].
Palliative care is often misidentified as being the same as care given to the patient approaching death where no cure is expected to be achieved [15]. It is focused on the relief of distress during the advancement of patient’s illness. Even though hospice and palliative care is extensively used in the western world, many patients are seen to register in hospice very close to death, which limits the advantage these services would have obtained.
Rosser and Walsh cited WHO’s principles of palliative care as follows:
“provides relief from pain and other distressing symptoms;
intends neither to hasten nor postpone death;
integrates the psychological and spiritual aspects of patient care;
offers a support system to help patients live as actively as possible until death;
offers a support system to help the family cope during the patient’s illness and in
their own bereavement;
uses a team approach to address the needs of patients and their families, including
bereavement counselling, if indicated;
is applicable early in the course of illness, in conjunction with other therapies that
are intended to prolong life, such as chemotherapy or radiation therapy, and includes complications” [5].
These principles according to Rosser and Walsh focus on a whole, humanistic method of caring for the total being during the course of their illness, instead of concentrating on the ailment or situation [5]. Palliative care answers to the altering wishes of the patient and family, identifying that the illness development and the related involvements are distinctive to each individual. Rosser and Walsh opined that palliative care is seen as supportive care [5]. They see it as care delivered to patients, friends and family during the course of their illness; this includes the period before diagnosis has been made, as soon as patients start undergoing series of examinations, treatment and home care. The purpose of supportive care is to assist the patients and their families to be able to handle their illness and management at home.
Becker also penned principles that are relevant to providing palliative care. These include the following:
Follow-up of all patients diagnosed with terminal illness at any stage of the disease
Competence at putting patients at ease
Listening and attention skills
Questioning techniques [16].
These principles will put humanity back into the care offered by nurses. After physicians, nurses are the most important members of the palliative care team in the sense that they spend 24 hours with the patients and should be able to display the principles [16]. Skill is an important characteristic for ensuring quality, safety and cost-effective health care. The term competence according to the Royal College of Nursing “(RCN) comprises the skills, knowledge, practices, qualities and manners essential for an individual” so as to execute the work successfully [16]. A nurse is said to be competent when she has the skills and talents vital for lawful, safe and effective professional practice without direct guidance [17]. Competence can be said to be basic features of persons that result in effective performance. They can be described as a mixture of knowledge, skills, purposes and personal character traits. It can also be seen as the way someone behaves or acts.
Areas of competency include verbal message, written communication, enquiring skills and team skills [17]. Nurses are expected to communicate efficiently, generating talking and listening skills. Nurses should be able to use their knowledge and skills to promote open and honest communication skills to support open and honest interaction that recognises the needs of patients, and also creates a satisfying association in which they are able to apply counselling skills and initiate follow-up programmes to help them to adjust to their illness and care. Their knowledge and skill will also ascertain that patients obtain full evidence-based nursing care. They understand and identify the impact of terminal disease when dealing with clinical or home situation, so that they can be able to assess the outcome of care and give appropriate intervention. Competence also includes the ability of the nurses to use the e11 function health patterns to assess the patient. Gordon Morgan, according to Doenges and Moorhouse, devised 11 functional health patterns to be used by nurses in nursing process to provide more comprehensive nursing assessment of the patient. This will help the nurses to give holistic care to patients [18].
The model of palliative care put together by the Canadian Hospice and Palliative Care Association (CHPCA) [19] is the model that is used to guide this chapter. This model is effective because it was developed to plan, evaluate and develop educational programmes [19]. In adopting this model, the paper considered the prominent position of the hospital management, without which it would be impossible to develop a programme for home care. The key role played by nurses as members of the palliative care team begins as soon as diagnosis is confirmed by the physician. Based on gaps identified after confirmation of diagnosis, the model provides guidance in tracking and tracing each patient, and planning home care. Communicating the true position of diagnoses at this stage is very important as it will help to reduce anxiety—after which, follow-up and home care measures will then be put in place.
Two fundamental elements in the framework as utilised are the ‘square of care’ and the ‘square of organization’. As set out in the model [19], the ‘square of care’ has six components and the ‘square of organization’ has six stages that are relevant to palliative care integration. The composition of the conceptual framework is shown in Figure 2 covers all phases of a palliative care programme, service or group. The patient and family are at the middle of the joint square, and their needs decide the concerns to be covered, the care necessary and the purposes and means to deliver care [20].
Square of care and organisation (Source: adopted from CHPCA).
The Square of Care refers to the six important phases during the process of rendering care to patients and family. The phases of square of care include:
assessment
information sharing
decision-making
care planning
care delivery and
confirmation, and demonstration that they relate to the concerns (or areas) that patients and families usually encounter.
Square of organisation also has six stages, which comprise:
governance and administration
planning
operation
quality improvement communication/marketing
collection and use of data.
The main concepts of the model are the standards and regulatory beliefs that were established and decided upon through a national consensus-based practice [20].
There should be plans for both the health care professional and patients/families to manage physical and psychosocial suffering and to get ready for the likelihood of advanced disease. This aspect of palliative care involves ways to provide physical and emotional care that will help patients to get through treatments. It enhances patients’ compliance with disease management, helps them accept changes in care and prepares patients and their families for the tasks ahead if the disease eventually does not lead to a cure.
Based on the model of palliative care as developed by CHPCA, the model takes into consideration the prominent position of the hospital management without which it will be impossible to develop any programme of such magnitude [19, 20]. This is because, a lot of things will be considered, especially, developing human resources example training of palliative care nurses, setting up palliative care team, providing other means of integrating palliative care into daily care of patients. Again, patients and families should also be seen at the centre of developing this programme as compliance is the key to success of any programme.
A nurse as an important member of palliative care team has an important role to play as soon as a patient is indicated for home care. Based on the gaps identified, after confirmation of diagnosis, tools that are going to be adapted will be used to track each patient; communication of the true position of diagnoses at this level is very important as this will help to reduce anxiety and follow-up measures will then be put in place. Studies conducted by Temel et al. indicate that patients who had palliative care integrated into normal treatment had a better outcome even when they were diagnosed at the advanced stage of the disease than patients who managed with only normal treatments [21].
Spirituality is a part of holistic care for clients and families. Patients getting palliative care benefit much from the special care that is devoted to physical, personal and social needs [22]. Spiritual care is seen as very significant for a lot of terminally ill patients, but professionals have trouble determining what such care they could embrace. From the viewpoints of the patients/clients at the end of life, their family caregivers and health care workers, the main aims are: to search the notion of spirituality and the meaning of this term; to discover beliefs, understandings and prospects with respect to spirituality, spiritual needs, pain or distress and spiritual care and, eventually, to see how spiritual care can best be provided for patients at home in a depressed economy.
Spirituality and health is an increasing new area of health care; the first textbook on spirituality and health was published by Oxford University Press [23]. Puchalski et al. established that patients would like their spirituality to be addressed in their health care. As the trends and research developed, ethical queries began to come up as to the definition of spirituality within medical care, its role in patient care and the implementation of spiritual care in the clinical setting.
Rosser and Walsh are of the opinion that spirituality takes account of an individual’s beliefs, values, identity, a sense of meaning and purpose [5]. Some people see religion as being a component of spirituality. Wright and Neuberger designate spirituality to be pertained to how we see ourselves in the pattern of things, how we relate to other human beings and the wider world and how we ascertain meaning, purpose and association in life [24]. By its very nature, spirituality is often subjective, absolute and personal. In addition to the suggested principles for health care professionals to take care of the whole person, together with the patient’s spirituality, studies have established that patients appreciate a more whole-person emphasis on care and value health care professional’s probe into their spiritual beliefs [25].
Spirituality according to some schools of thought covers the confidence in self and others and this may include a belief in a divine being or higher authority [26]. The RCN also describes the following as factors of spirituality:
hope
strength
trust
forgiveness
love
relationships
creativity
self-expression [26].
If patients’ needs could be recognised early and their care adequately planned to include (but not limiting to) follow-up of all patients diagnosed with terminal illness through telephone calls, home visiting, advanced care planning, assessment and treatment of physical, psychosocial and spiritual aspect of patient’s needs, etc., there will be better outcome when the condition reaches advanced stage. Some may reason that because spirituality is so personal, it has no relationship in health care but when the perception of total pain is looked into, it is obvious that spiritual care is a vital element of care [5].
Economic depression is a period of time of economic slowdown presenting low output, not having enough funds and unemployment. It is considered by its length, abnormal upsurges in unemployment, falls in the obtainability of adequate health services, shrinking output and investment, etc.
The major causes of economic depression in any given economy (lessons from great depressions, 1981, 1991, 2008 economic recession) may include:
High inflation, a general rise in price of goods and services—leading to low purchasing power.
Accumulation of debt servicing especially foreign debt.
High-interest rate—discouraging investors.
Fall in aggregate demand; fall in wages, income etc.
Mass unemployment and general loss of confidence in the government [27]
Health is an essential part of man’s existence even in the midst of economic depression. Before the current economic crisis, most present-day societies especially in the developing countries were still suffering disease epidemics while other nations incessantly experienced the endemic diseases affecting millions of lives. The global economic crisis persists to worsen the structure and purpose of the health sector. The economic depression has affected several segments of the economy including the health sector, contributing to low output, poor service delivery and poor health outcome. This has led so many people to resort to home care where so much will not be required from them.
The health sector is still struggling to provide rudimentary health care services with the collaborative efforts of government and individuals but determinations to realise this seem unfeasible due to the current state of the economy especially in the developing countries. The current economic position has affected health care funding and the level of support of the public and private health care services particularly among the rural poor is reduced due to increased proportion of poverty [28]. The economic predicament has contributed essentially to poor health outcome; it offers the occasion for careful government health modifications to improve the health system operation [28]. Health is directly or indirectly connected to other sectors such as food security and nutrition, family income generation, housing, education, employment status and other social security services.
Following initial treatment for terminal diseases or elderly patients, they are usually given dates for followed-up appointment in hospital outpatient departments at steady intervals for routine checking in order to assess the patient and timely discovery of recurring of the ailment [29]. This method of follow-up places anxiety on the patient and their family members and most of them defaulted due to religious and cultural beliefs. Secondly, they may complain of inability to travel to the hospital, especially patients living in the rural communities. Most of these patients present late in the hospital either because of poor knowledge, cultural/spiritual beliefs and non-availability of resources for prevention, diagnosis and treatment [28]. Patients and families are not well prepared after diagnosis about the diseases or palliation; this has led to most of the patients not responding to check-up appointments because they are not well informed and no form of follow-up programmes are put in place to track these patients [29].
Based on the above premise, several countries have been able to put in place measures for providing home care services to a lot of their citizenry so as to alleviate the suffering of the poor masses. Most of the developing countries are still struggling as a result of poor economic position of these nations. Home care cannot be instituted without adequate resources.
From a nursing viewpoint, it is imperative to have information about the type of care needed, the explanations of care needed and quality of life among the elderly people and those diagnosed with terminal illnesses living in their own homes, in order to sustain their independence and make best use of their quality of life.
At several stages during our lives, we are each dependent on the care of others [30]. For many, that need comes with old age, chronic illness or ill health. In some occasions, the care is provided by a family member or a friend; in other cases, it comes from a paid care worker such as a registered nurse, a registered practical nurse or a personal support worker. Sometimes, the care is given by a combination of both [30].
This chapter describes the involvements of these three care beneficiaries, their family caregivers and their paid care workers in our survey of the direction of the substantial practices of care associations in home care. Current reorganisation of health and social care services means the home is gradually the site of long-term care and is a place where implications of both home and care must be discussed [31]. The focus on the familiar care points up the diverse forces at work of care through which caregivers, care recipients and home space are established.
Most nurses have their own individual principles and morals, and there are certain professional standards on which all nurses are anticipated to establish their care. Nurses have a duty to make the care of patients their major concern and to practise care giving without harm and efficiently. They must be ethical and truthful [1]. Patients trust their nurses because they believe that, in addition to being experienced, their nurses will not take advantage of them and will demonstrate character traits such as honesty, straightforwardness, reliability and empathy. Good professional decision and behaviour in clinical practice should be patient-centred. It involves nurses understanding that each patient at the end stage of his or her disorder is exceptional, and working in partnership with their patients to discourse the needs and realistic prospects of each patient. The moral pronouncement as proposed by Plato and Aristotle highlighted the part of purpose both in observing what is fair and in permitting us to act reasonably rather than give in to conflicting desires and feelings [32].
Hellström and Hallberg examined people aged 75 years and older dependent on care from professionals and/or a next of kin, their functional health, diseases and complaints in relation to quality of life as perceived by themselves [32]. The study revealed that the number of elderly persons in need of support ranged from 18.5 to 79.1% in the different age groups, and that aid came mostly from informal caregivers [32]. The authors also discovered that assistance from formal caregivers was given in combination with that from a next of kin in 38.8% of the cases. Furthermore, next of kin function more than formal carers; they assisted in all Contributory Activities of Daily Living (CADL) and Personal Activities of Daily Living (PADL) chores, with the exclusion of house cleaning and rendering a bath/shower. Although the respondents had supported themselves, they were also of assistance to another person in 6.5% of circumstances [1].
From the above study, it is seen that care giving at home is mostly carried out by informal caregivers, than the professionals. Patients, therefore, would see care at home more acceptable during this critical period of their lives. Most patients resolved to care at home because their financial status cannot cope with hospital bills, transportation, waiting time in the health care facilities among other reasons that promote home care.
Nurses are the most valuable member of the palliative care team who are in the best position to look into the physical, purposeful, social and spiritual needs of the patients, but in most situations, they (nurses) are not well-prepared to give the adequate care, especially to elderly and terminally ill patients. The main focus of nursing care as observed is curative approach without taking into consideration effective communication between them and patients/families the truth about diagnosis/prognosis of the disease, lack of patient and family readiness as a result of inadequate training/discharge planning and lack of follow-up [33].
Specifically, since there are no functional palliative care programmes in most health care facilities, the phases being addressed are:
Outpatient clinics
Hospital service
Home care service
Approach to care
Staff: Palliative care physician and nurse to be identified
Terminally ill patients identified after diagnosis is confirmed
Visit: To plan routine visit as necessary
Symptom assessment in clinic: Routine assessment during every visit by the nurse and physician
Psychosocial assessment in clinic: Routine assessment and discussion of goal with patient and family, support system, psychosocial distress and discussion on advance care planning according to their willingness
Telephone follow-up: Routine by the nurse after each visit
On-call service: 24 hours on-call service to be clarify during first visit after diagnosis has been established.
In-patient care: access to palliative care for symptom management
In-patient staff training for nurses: identification of nurses, physician and family caregivers for continued education and training in palliative and home care
Palliative care in-patient follow-up: follow-up by palliative care team when the patient is admitted to other unit of the hospital.
Community care contact health centre service: health centre closer to the patient will be identified for care continuation and this would be reassessed at each visit.
Communication with the family and community health centre: this should be done routinely.
All care providers: Multidisciplinary, this is hope to address physical, psychological, social and spiritual needs of both the patient and the family identifying other specialist. The approach to care takes cognizance of the fact that the economic depression affects the type of care the less privileged members of the population attained. This may affect proper access to good health care services and as such provision of home care will be beneficial to them where they will be taken care of in their familiar environment.
Nurses should strive to always make the most of the short time they have with each patient. As nurses, we need to promote a patient’s psychological and emotional well-being in order to facilitate physical healing, especially in a poor economic situation. When we do this, our relationship with the patient alters and develops into something more encouraging than it was before. This contributes to better patient outcomes and can heighten the happiness and perseverance in our work as nurses. By doing this, informal caregivers would emulate and continue home care.
There are many easy ways to develop relationships with patients and encourage a sound psychological, emotional and spiritual environment.
Learn the patient’s name and use it
Make good, strong eye contact
Ask how a patient is feeling and honestly care
Smile and laugh when suitable
Use relaxing touch
Assist the patient to see themselves as someone who merits self-esteem
Maintain their self-worth
Educate patients on the significance of self-care
Ask the patient how you can decrease their anxiety or pain
Holistic nursing is the concept of caring for a person as a whole. The purpose is to return the patient as a whole to as close to normal as possible even when receiving care at home. Holistic nursing highlights on the nurses considering the link between minds, body, emotion, spirit, social, cultural, environmental and past relationships in order to return the patient to a whole. This however has not always been likely to attain. The idea of caring for the whole person, not just their physical body, is one that dates back to Florence Nightingale. Florence Nightingale devotedness was to care for those who could not care for themselves. Florence Nightingale herself advocated holistic care by recognising the importance of environment touch, light, scents, music and silent reflection in treatment process.
There is a direct relationship between economy and health and by implication of nursing profession. The present economic depression places an enormous threat as its end is not sure. This chapter therefore tried to bridge the gap between holistic care, palliative care, which embodied all the components of spirituality, and the terminally ill patients needing home care. This has a lot to do with economic situation of the populace, especially in the low- and middle-class countries of the world. Since the elderly and the terminally ill patients preferred home care, it is pertinent that all the components of care be provided to take care of the total man.
The authors are grateful to all the authors whose work were cited in this chapter without which it could have been impossible to support the original ideas conceived by the authors.
The authors declare no conflict of interest.
AN, EO and BN designed the study, compiled and wrote the manuscript. All the authors reviewed the manuscript and provided critical comments, read and approved the final version of the manuscript.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{regionId:"4",sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17574}],offset:12,limit:12,total:12563},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-T-0-T1"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"6c00637f80ef05f5f46217dcbeaaa6e9",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11606",title:"Asteraceae - Characterization, Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"910ecf8411098a42bb250c87a978f1b9",slug:null,bookSignature:"Dr. Mohamed A. El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/11606.jpg",editedByType:null,editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11857",title:"Updates on Excitons",subtitle:null,isOpenForSubmission:!0,hash:"8a2fd9bbbbae283bf115881d9d5cc47a",slug:null,bookSignature:"Dr. Ashim Kumar Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11857.jpg",editedByType:null,editors:[{id:"277477",title:"Dr.",name:"Ashim",surname:"Dutta",slug:"ashim-dutta",fullName:"Ashim Dutta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11559",title:"Photocatalysts - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fc9a28dbceaeccb8991b24aec1decd32",slug:null,bookSignature:"Prof. Nasser S Awwad and Dr. Ahmed Alomary",coverURL:"https://cdn.intechopen.com/books/images_new/11559.jpg",editedByType:null,editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12006",title:"Advances in Clay Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"64e16abe1a29e6bf30c582970a5bc1ed",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/12006.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11464",title:"Carbon Nanotubes - Recent Advances, New Perspectives and Potential Applications",subtitle:null,isOpenForSubmission:!0,hash:"ce526ec78ed00c4f5f08ffb4548ff388",slug:null,bookSignature:"Prof. Mohammed Muzibur Rahman, Dr. Abdullah Mohammed Ahmed Asiri and Prof. Mohammad Asaduzzaman Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/11464.jpg",editedByType:null,editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:431},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"813",title:"Engineering Mechanics",slug:"mechanical-engineering-engineering-mechanics",parent:{id:"121",title:"Mechanical Engineering",slug:"mechanical-engineering"},numberOfBooks:19,numberOfSeries:0,numberOfAuthorsAndEditors:466,numberOfWosCitations:752,numberOfCrossrefCitations:429,numberOfDimensionsCitations:976,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"813",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9865",title:"Tribology in Materials and Manufacturing",subtitle:"Wear, Friction and Lubrication",isOpenForSubmission:!1,hash:"45fdde7e24f08a4734017cfa4948ba94",slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",bookSignature:"Amar Patnaik, Tej Singh and Vikas Kukshal",coverURL:"https://cdn.intechopen.com/books/images_new/9865.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",middleName:null,surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7615",title:"Fracture Mechanics Applications",subtitle:null,isOpenForSubmission:!1,hash:"eadc6edddc10fbeac471e10ff7921b75",slug:"fracture-mechanics-applications",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6595",title:"Ballistics",subtitle:null,isOpenForSubmission:!1,hash:"3e7fa96253ce890c092b37a8678e4d03",slug:"ballistics",bookSignature:"Charles Osheku",coverURL:"https://cdn.intechopen.com/books/images_new/6595.jpg",editedByType:"Edited by",editors:[{id:"148660",title:"Dr.",name:"Charles",middleName:"Attah",surname:"Osheku",slug:"charles-osheku",fullName:"Charles Osheku"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7231",title:"Advanced Engineering Testing",subtitle:null,isOpenForSubmission:!1,hash:"9283b3b88964a6fe002fa37431414ac7",slug:"advanced-engineering-testing",bookSignature:"Aidy Ali",coverURL:"https://cdn.intechopen.com/books/images_new/7231.jpg",editedByType:"Edited by",editors:[{id:"13626",title:"Prof.",name:"Aidy",middleName:null,surname:"Ali",slug:"aidy-ali",fullName:"Aidy Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6368",title:"Tribology, Lubricants and Additives",subtitle:null,isOpenForSubmission:!1,hash:"5c3d14346e656a204a188be6e9bbbea1",slug:"lubrication-tribology-lubricants-and-additives",bookSignature:"David W. Johnson",coverURL:"https://cdn.intechopen.com/books/images_new/6368.jpg",editedByType:"Edited by",editors:[{id:"178441",title:"Dr.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6228",title:"Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems",subtitle:null,isOpenForSubmission:!1,hash:"7c08aadadb9857994b1df9abf871c112",slug:"vibration-analysis-and-control-in-mechanical-structures-and-wind-energy-conversion-systems",bookSignature:"Francisco Beltran-Carbajal",coverURL:"https://cdn.intechopen.com/books/images_new/6228.jpg",editedByType:"Edited by",editors:[{id:"10444",title:"Dr.",name:"Francisco",middleName:null,surname:"Beltran-Carbajal",slug:"francisco-beltran-carbajal",fullName:"Francisco Beltran-Carbajal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5495",title:"Lagrangian Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"cd340676a371f5e196f6e8089f5e8b28",slug:"lagrangian-mechanics",bookSignature:"Hüseyin Canbolat",coverURL:"https://cdn.intechopen.com/books/images_new/5495.jpg",editedByType:"Edited by",editors:[{id:"5887",title:"Dr.",name:"Hüseyin",middleName:null,surname:"Canbolat",slug:"huseyin-canbolat",fullName:"Hüseyin Canbolat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5226",title:"Fracture Mechanics",subtitle:"Properties, Patterns and Behaviours",isOpenForSubmission:!1,hash:"3d418575458d688abbe40125240ece3e",slug:"fracture-mechanics-properties-patterns-and-behaviours",bookSignature:"Lucas Maximo Alves",coverURL:"https://cdn.intechopen.com/books/images_new/5226.jpg",editedByType:"Edited by",editors:[{id:"147011",title:"Dr.",name:"Lucas",middleName:"Maximo",surname:"Alves",slug:"lucas-alves",fullName:"Lucas Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4614",title:"Surface Energy",subtitle:null,isOpenForSubmission:!1,hash:"0e17cd77d2616f544522495c30285475",slug:"surface-energy",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/4614.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",middleName:null,surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3128",title:"Tribology",subtitle:"Fundamentals and Advancements",isOpenForSubmission:!1,hash:"77f3ee5568b737c8d26a5eee991c9d34",slug:"tribology-fundamentals-and-advancements",bookSignature:"Jürgen Gegner",coverURL:"https://cdn.intechopen.com/books/images_new/3128.jpg",editedByType:"Edited by",editors:[{id:"40520",title:"Dr.",name:"Jürgen",middleName:null,surname:"Gegner",slug:"jurgen-gegner",fullName:"Jürgen Gegner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2982",title:"Tribology in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"1b4719e20d06efe207620debfaf9f6e0",slug:"tribology-in-engineering",bookSignature:"Haşim Pihtili",coverURL:"https://cdn.intechopen.com/books/images_new/2982.jpg",editedByType:"Edited by",editors:[{id:"10340",title:"Dr.",name:"Hasim",middleName:null,surname:"Pihtili",slug:"hasim-pihtili",fullName:"Hasim Pihtili"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2794",title:"Applied Fracture Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"ef0b0a40b0306e7172636781a24cfb27",slug:"applied-fracture-mechanics",bookSignature:"Alexander Belov",coverURL:"https://cdn.intechopen.com/books/images_new/2794.jpg",editedByType:"Edited by",editors:[{id:"141319",title:"Dr.",name:"Alexander",middleName:null,surname:"Belov",slug:"alexander-belov",fullName:"Alexander Belov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:19,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"44858",doi:"10.5772/55860",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:7133,totalCrossrefCites:32,totalDimensionsCites:72,abstract:null,book:{id:"3128",slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]},{id:"21928",doi:"10.5772/20790",title:"Tribological Aspects of Rolling Bearing Failures",slug:"tribological-aspects-of-rolling-bearing-failures",totalDownloads:18177,totalCrossrefCites:37,totalDimensionsCites:69,abstract:null,book:{id:"348",slug:"tribology-lubricants-and-lubrication",title:"Tribology",fullTitle:"Tribology - Lubricants and Lubrication"},signatures:"Jürgen Gegner",authors:[{id:"40520",title:"Dr.",name:"Jürgen",middleName:null,surname:"Gegner",slug:"jurgen-gegner",fullName:"Jürgen Gegner"}]},{id:"44864",doi:"10.5772/55470",title:"Introduction of the Ratio of the Hardness to the Reduced Elastic Modulus for Abrasion",slug:"introduction-of-the-ratio-of-the-hardness-to-the-reduced-elastic-modulus-for-abrasion",totalDownloads:5893,totalCrossrefCites:13,totalDimensionsCites:46,abstract:null,book:{id:"3128",slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Giuseppe Pintaude",authors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}]},{id:"14670",doi:"10.5772/15638",title:"Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems - On the use of the Harmonic Balance Methods",slug:"non-linear-periodic-and-quasi-periodic-vibrations-in-mechanical-systems-on-the-use-of-the-harmonic-b",totalDownloads:3112,totalCrossrefCites:24,totalDimensionsCites:38,abstract:null,book:{id:"111",slug:"advances-in-vibration-analysis-research",title:"Advances in Vibration Analysis Research",fullTitle:"Advances in Vibration Analysis Research"},signatures:"Emmanuelle Sarrouy and Jean-Jacques Sinou",authors:[{id:"21474",title:"Prof.",name:"Jean-Jacques",middleName:null,surname:"Sinou",slug:"jean-jacques-sinou",fullName:"Jean-Jacques Sinou"},{id:"45297",title:"Dr.",name:"Emmanuelle",middleName:null,surname:"Sarrouy",slug:"emmanuelle-sarrouy",fullName:"Emmanuelle Sarrouy"}]},{id:"44506",doi:"10.5772/51568",title:"Friction in Automotive Engines",slug:"friction-in-automotive-engines",totalDownloads:3744,totalCrossrefCites:12,totalDimensionsCites:27,abstract:null,book:{id:"2982",slug:"tribology-in-engineering",title:"Tribology in Engineering",fullTitle:"Tribology in Engineering"},signatures:"H. Allmaier, C. Priestner, D.E. Sander and F.M. Reich",authors:[{id:"151052",title:"Dr.",name:"Hannes",middleName:null,surname:"Allmaier",slug:"hannes-allmaier",fullName:"Hannes Allmaier"},{id:"151316",title:"Mr.",name:"Christoph",middleName:null,surname:"Priestner",slug:"christoph-priestner",fullName:"Christoph Priestner"},{id:"151317",title:"Mr.",name:"David",middleName:"E.",surname:"Sander",slug:"david-sander",fullName:"David Sander"},{id:"151318",title:"MSc.",name:"Franz",middleName:null,surname:"Reich",slug:"franz-reich",fullName:"Franz Reich"}]}],mostDownloadedChaptersLast30Days:[{id:"44858",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:7133,totalCrossrefCites:32,totalDimensionsCites:72,abstract:null,book:{id:"3128",slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]},{id:"64567",title:"State-Space Modeling of a Rocket for Optimal Control System Design",slug:"state-space-modeling-of-a-rocket-for-optimal-control-system-design",totalDownloads:1980,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"This chapter is the first of two others that will follow (a three-chapter series). Here we present the derivation of the mathematical model for a rocket’s autopilots in state space. The basic equations defining the airframe dynamics of a typical six degrees of freedom (6DoFs) are nonlinear and coupled. Separation of these nonlinear coupled dynamics is presented in this chapter to isolate the lateral dynamics from the longitudinal dynamics. Also, the need to determine aerodynamic coefficients and their derivative components is brought to light here. This is the crux of the equation. Methods of obtaining such coefficients and their derivatives in a sequential form are also put forward. After the aerodynamic coefficients and their derivatives are obtained, the next step is to trim and linearize the decoupled nonlinear 6DoFs. In a novel way, we presented the linearization of the decoupled 6DoF equations in a generalized form. This should provide a lucid and easy way to implement trim and linearization in a computer program. The longitudinal model of a rocket presented in this chapter will serve as the main mathematical model in two other chapters that follow in this book.",book:{id:"6595",slug:"ballistics",title:"Ballistics",fullTitle:"Ballistics"},signatures:"Aliyu Bhar Kisabo and Aliyu Funmilayo Adebimpe",authors:[{id:"200807",title:"M.Sc.",name:"Bhar",middleName:"Kisabo",surname:"Aliyu",slug:"bhar-aliyu",fullName:"Bhar Aliyu"}]},{id:"44639",title:"Fundamentals of Lubricants and Lubrication",slug:"fundamentals-of-lubricants-and-lubrication",totalDownloads:5842,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3128",slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Walter Holweger",authors:[{id:"157019",title:"Dr.",name:"Walter",middleName:null,surname:"Holweger",slug:"walter-holweger",fullName:"Walter Holweger"}]},{id:"39699",title:"Radial Ball Bearings with Angular Contact in Machine Tools",slug:"radial-ball-bearings-with-angular-contact-in-machine-tools",totalDownloads:7783,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2010",slug:"performance-evaluation-of-bearings",title:"Performance Evaluation of Bearings",fullTitle:"Performance Evaluation of Bearings"},signatures:"Ľubomír Šooš",authors:[{id:"141212",title:"Prof.",name:"Ľubomír",middleName:null,surname:"Šooš",slug:"lubomir-soos",fullName:"Ľubomír Šooš"}]},{id:"41468",title:"Evaluating the Integrity of Pressure Pipelines by Fracture Mechanics",slug:"evaluating-the-integrity-of-pressure-pipelines-by-fracture-mechanics",totalDownloads:4483,totalCrossrefCites:2,totalDimensionsCites:18,abstract:null,book:{id:"2794",slug:"applied-fracture-mechanics",title:"Applied Fracture Mechanics",fullTitle:"Applied Fracture Mechanics"},signatures:"Ľubomír Gajdoš and Martin Šperl",authors:[{id:"143453",title:"Dr.",name:"Lubomir",middleName:null,surname:"Gajdos",slug:"lubomir-gajdos",fullName:"Lubomir Gajdos"},{id:"144548",title:"Dr.",name:"Martin",middleName:null,surname:"Šperl",slug:"martin-sperl",fullName:"Martin Šperl"}]}],onlineFirstChaptersFilter:{topicId:"813",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:51,paginationItems:[{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"38",type:"subseries",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Artificial Intelligence",id:"14"},selectedSubseries:null},seriesLanding:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",annualVolume:11966,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",annualVolume:11967,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation",scope:"