Initial values of the numerical model.^{ a} Main properties of the medium grid are shown in Table 2.
1. Introduction
Aquaculture is expanding all over the world, and the net cage is becoming prevalent in the aquaculture industry. Good knowledge of the hydrodynamic characteristics of the net cage has important significance to the design of the net cage and the welfare of the fish. An important component of a net cage is the fishing net, where the fish are kept and grown. The fishing net is completely submerged and infinitely flexible. When exposed to current, the fishing net changes its shape to reduce the hydrodynamic force acting on it, and the deformed net in turn affects the flow field around the fishing net. In this way, the flow field and the deformation of the fishing net interact and mutually influence each other. Therefore, it is very necessary to consider the fluidstructure interaction between flow and the fishing net when calculating the hydrodynamic characteristics of the net cage.
To investigate the hydrodynamic characteristics of net cages, much progress has been made by both experimental measurements and numerical simulations. Aarsnes et al. [1] conducted a series of physical model tests to measure the flowvelocity reduction, fishingnet deformation and the drag force acting on net cages. Lader and Enerhaug [2] performed experiments to investigate the forces and geometry of a net cage in uniform flow, and the flowvelocity reduction in the centre of the net cage was given as 20%. It was found that the global forces acting on a flexible fishing net were not proportional to the square of the flow velocity for all currents. Fredriksson et al. [3] conducted a numerical study on mooring tensions of a large fish farm containing 20 net cages while the flowvelocity reduction was estimated using a simplified control volume approach. DeCew et al. [4] investigated the submergence behavior of a fish cage in a singlepoint mooring system under currents by a numerical model and a reduction of 12.7% of the current velocity was applied to the aft portion of the net chamber. Huang et al. [5] and Xu et al. [6] analyzed the hydrodynamic behaviors of net cages in waves and a reduction factor of 0.85 was adopted in the numerical model to represent the retardation effect on the water particle speed after passing through each previous net.
Based on the above analysis, the reduction in current downstream from the fishing net has been taken into consideration in studying the hydrodynamic force and the effective volume of the net cage. However, only a reduction factor was estimated to represent the shielding effect of the fishing net for most of the numerical works. There has not been a numerical model focusing on the fluidstructure interaction between flow and a flexible net. As an extension of our previous works [78], a coupled fluidstructure model is developed based on a joint use of the porousmedia fluid model and the lumpedmass mechanical model. Using an appropriate iterative scheme, the fluidstructure interaction between flow and fishing net can be solved.
2. Model descriptions
The coupled model includes two numerical models: the porousmedia fluid model and the lumpedmass mechanical model. The porousmedia fluid model can simulate the flow field around a plane net with no deformation, and the lumpedmass mechanical model can simulate the deformation of fishing net in certain current. The joint use of the above two models is presented to solve the fluidnet interaction problem in current. The steady flow field around fishing net can be obtained by using an appropriate iterative scheme as explained later in Section 2.3. This model has been introduced detailed in our previous studies [910].
2.1. The porousmedia fluid model
The flow field around a plane net is simulated using a commercial computational fluid dynamics (CFD) software FLUENT from ANSYS Inc. The porousmedia fluid model is introduced to model the plane net, and the finite volume method is used to solve the governing equations of the numerical model. Thus, a brief review of the porousmedia fluid model is given here.
The governing equations of the porousmedia fluid model are mainly the NavierStokes equations as follows:
where
The porousmedia fluid model is a hypothetical model which produces the same waterblocking effect as the fish net by setting the coefficients of the hypothetical porous media. For flow through porous media, a pressure gradient exists:
where a and b are constant coefficients and
Outside the porous media, the source term for the momentum equation is given by
where
where
For flow through the porous media, the drag force (
where
The porous coefficients in Eqs. (6) and (7) can be calculated from the drag and lift forces, while the drag and lift forces acting on a fishing net have strong relationship with the features of the net. So the connection between net features and flow field is built by the porous coefficients in the numerical model. Generally, the drag and lift forces of the plane net are obtained from laboratory experiments. These forces can also be calculated from the Morison equation:
where
The porous coefficient
where
When a plane net is oriented at an arbitrary position (see Figure 1b), the porous coefficients should be transformed using Eq. (11):
where
2.2. The lumpedmass mechanical model
The lumpedmass mechanical model is introduced to simplify the fishing net, and the motion equations can be established mainly based on Newton's Second Law. Given an initial net configuration, the motion equations can be solved numerically for each lumpedmass point. Finally, the configuration of the net in current can be simulated. The calculation method for the model has been explained fully in our previous studies [1617]. Here only a brief outline is described.
In a uniform current, the motion equations of lumpedmass point
where
To consider the direction of the hydrodynamic forces acting on mesh bars, local coordinates (
where
The meshgrouping method [1819] is used to reduce the computational effort of the net. Each grouped mesh is defined as a planenet element (see Figure 3). The normal vector of the planenet element (
where
Because of the deformation of the net, the area of a planenet element is not constant, thus impacting the solidity of the planenet element. Consequently, the solidity
where
2.3. The coupled fluidstructure interaction model
Based on the above work, the interaction between flow and fishing net can be simulated by dividing the net into many planenet elements (see Figure 4). The main concept of the numerical approach is to combine the porousmedia fluid model and the lumpedmass mechanical model to simulate the interaction between flow and flexible nets. Taking a single flexible net as example, a calculating flow chart for the numerical approach is shown in Figure 5. A more detailed calculation procedure is given as follows.
The calculation procedure includes four steps. Step 1 is to simulate the flow field around a vertical plane net without considering the net deformation using the porousmedia fluid model. Step 2 is to calculate the drag force and the configuration of a flexible net in current using the lumpedmass mechanical model. The given initial flow velocity is the average value exported from the upstream surface of the plane net in last step. In Step 3, according to the configuration of the net, the orientation and the porous coefficients of each planenet element can be obtained, thus obtaining the flow field around the fishing net. In Step 4, the drag force and the configuration of the net are calculated again. The flow velocity acting on each lumpedmass point is the average value exported from the upstream surface of the corresponding planenet element in last step.
The terminal criterion of the calculation procedure is defined as
3. Discussions of model parameters
Due to uncertainties in numerical simulation, convergence studies were performed to analyze the influence of different model parameters, such as thickness of the porous media, grid refinement, timestep size, number of net elements, number of iterations, porous coefficients, etc. When varying one parameter, all other parameters were kept at their initial values as shown in Table 1.


Thickness of porous media  20 mm 
Grid refinement  Grid 2 ^{a} 
Timestep size  0.04 s 
Number of net elements  5×5 
Number of iterations  2 
Porous coefficients 






Grid 1  5  50  413,697 
Grid 2  10  50  117,294 
Grid 3  20  50  49,807 
Grid 4  10  60  34,492 
Grid 5  10  70  21,124 
The modeled net was a 0.3 m×0.3 m knotless polyethylene (PE) net with 15 meshes in width and 15 meshes in height. The twine diameter was 2.6 mm, and the mesh bar length was 20 mm. Mounted as square meshes, the net solidity ratio was 0.243.
3.1. Thickness of the porous media
A study on the thickness of the porous media was performed for a plane net at an attack angle
The thickness of the porous media can affect the distribution of the flow velocity around the fishing net to some extent (see Figure 6). However, the numerical results of the flow velocity are almost the same for the thickness of 5, 10 and 20 mm. It was determined that the thickness of the porous media does not affect the numerical results obviously until the thickness is greater than 20 mm. Therefore, a thickness of 20 mm is adopted hereafter for all the computations considering the total number of cells and computational accuracy. An increase in the thickness of the porous media can effectively reduce the number of cells, thus reducing the computational effort greatly. However, it is suggested that the maximum thickness of the porous media should not be greater than 10% of width or height of the plane net.
3.2. Grid refinement
The influence of grid on the numerical results was investigated by repeating the computations with different levels of refinement. Five grids as shown in Table 2 were taken into account. The minimum cell size was adopted inside the porousmedia region. A growth rate of 1.2 was set around the net model, and the maximum cell size in the computational domain was set to control the distribution of the grid.
Numerical results of flow velocity obtained with different grids were compared (see Figure 7). It is found that numerical results are free of grid influence for Grid 1 and Grid 2. But for the coarser grid models, the numerical results tend to divergence, especially downstream from the fishing net. Therefore, Grid 2 is adopted hereafter for all the computations.
3.3. Timestep size
In order to investigate the influence of the timestep size, the computations were repeated with different timestep sizes: 0.01, 0.02, 0.04, 0.06, 0.08 and 0.10 s. The flow velocity both upstream and downstream from the plane net shows a convergence result for the timestep size smaller than 0.04 s (see Figure 8). Therefore, a timestep size of 0.04 s is adopted for computational effort saving. The computational effort decreases with increasing timestep size. However, it is suggested that the timestep size should not exceed the ratio between the minimum value of the cell size and the incoming velocity. Because the larger the timestep size is, the greater the residual error of each step will be, thus causing a divergence result without meeting the convergence criteria.
3.4. Number of planenet elements
In the numerical model, each mesh is defined as a planenet element. In order to reduce the computational effort, the meshgrouping method was used to reduce the number of planenet elements. The original model of the fishing net was a 15×15 model with 15 meshes in width and 15 meshes in height. Two grouped models were used to simplify the original model. For the original model, nine meshes were grouped into one mesh, thus obtaining a 5×5 model with a total of 25 elements. A 3×3 model with 9 elements can be obtained by grouping 25 meshes into one mesh.
The calculated net configuration of the 5×5 model is almost coincided with that of the original 15×15 model (see Figure 9). The result of the 3×3 model agrees well with that of the original model except for a slight discrepancy at the bottom of the net. There is no significant difference between the results of flow velocity obtained with the grouped models and the original model (see Figure 10). Therefore, the meshgrouping method can be used to reduce the number of planenet elements without affecting the calculation accuracy. Because of better agreement on net configuration, the 5×5 model is chosen for further numerical simulations.
3.5. Number of iterations
The interaction between flow and fishing net can be solved after several iterations. Taking a single net as example, the calculation precision reached the terminal criterion, Δ
Comparing the net configurations after different iterations, there is a little discrepancy between the 1st iteration and the 2nd iteration. However, the calculated net configuration of the 3rd iteration is almost coincided with that of the 2nd iteration (see Figure 11). The flow velocity upstream of the flexible net is greater than that of the plane net with no deformation, while the flow velocity downstream from the flexible net is smaller (see Figure 12). It was determined that the deformed net has more obvious shielding effect than the plane net with no deformation. There exists rather obvious discrepancy of the flowvelocity distribution between the 1st iteration and the 2nd iteration (see Figure 12), and the maximum discrepancy is approximately 6.3%. The result of the 2nd iteration is almost the same as that of the 3rd iteration, and the maximum discrepancy is approximately 0.17%. Therefore, two iterations is adopted to model a single net for computational effort saving.
3.6. Porous coefficients
A set of porous coefficients,

0.058  0.113  0.170  0.226 

0.082  0.395  0.968  1.678 

0.058  0.113  0.170  0.226 

0.032  0.131  0.321  0.534 
When
3.7. Brief conclusion
In summary, numerical results depends on the different model parameters to some extent. Appropriate values of the thickness of the porous media, the grid refinement and the timestep size are beneficial to reducing the computational effort and keeping high calculation accuracy. The meshgrouping method can be used to reduce the number of planenet elements and the computational effort. Two iterations are sufficient to achieve a converged solution of a flexible fishing net. The porous coefficients have a significant effect on the flow velocity around the fishing net and the relationship between each coefficient and the flow velocity is approximately linear. In addition, the influence of the coefficient
4. The advantage of the coupled model
In present numerical model, the fluidstructure interaction (FSI) between flow and fishing net is taken into consideration. Because of the shielding effect of the fishing net, there exist the flowvelocityreduction regions upstream of and downstream from the fishing net (see Figure 14). According to the numerical simulation, the reduction regions become smaller when considering FSI due to the decrease in height of the fishing net. However, the flowvelocity reduction is larger than that without considering FSI downstream from the fishing net. In the numerical results, the streamlines present the flow direction (see Figure 14). It was determined that the diversion of flow direction around the fishing net is relatively small but more obvious than that without considering FSI.
Comparing the flowvelocity distribution along the
As shown in Figure 16, the deformation of the fishing net is less serious than that without considering FSI. This is because that the net configuration is calculated based on the actual velocity acting on the flexible net instead of the incoming velocity in present numerical model. The actual velocity is slightly smaller than the incoming velocity due to the blockage effect of the net. As a result, the drag force is a bit smaller at approximately 78% than that without considering FSI for different incoming velocities (see Figure 17).
According to the analyses above, there are obvious difference between the flow field, the hydrodynamic force and the deformation of the fishing net with and without considering FSI. For multiple nets, the influence of FSI on the hydrodynamic characteristics of the fishing net will become more obvious. Therefore, it is necessary to take FSI into consideration in studying the interaction between flow and fishing net.
5. Conclusions
A numerical model is proposed to simulate the interaction between flow and fishing net based on the joint use of the porousmedia fluid model and the lumpedmass mechanical model. Convergence studies are performed to analyze the influence of different model parameters on the numerical results and a set of optimal parameters are obtained for the numerical model. The numerical results of net deformation, drag force and flow velocity around the fishing net agree well with the experimental data. It is indicated that present numerical model can simulate the interaction between flow and fishing net accurately.
Compared with the numerical results without considering FSI, present numerical model is considered to present more accurate results: (i) the flowvelocity reduction is larger downstream from the fishing net, (ii) the diversion of flow direction around the fishing net is more obvious, (iii) the deformation of the fishing net is less serious and (iv) the drag force is a bit smaller at approximately 78% for different incoming velocities.
This study forms a foundation for studying the flow field and hydrodynamic characteristics of net cages and offers some valuable information for the aquaculture industry.
Acknowledgments
This work was financially supported by the National Natural Science Foundation (NSFC) Project Nos. 51239002, 51221961 and 51109022 and the Fundamental Research Funds for the Central Universities (DUT13LK55).
References
 1.
Aarsnes JV, Rudi H, Løland G. Current forces on cage, net deflection. In: Engineering for Offshore Fish Farming, Oct 1718, Thomas Telford, London, 1990. pp. 137–152.  2.
Lader PF, Enerhaug B. Experimental investigation of forces and geometry of a net cage in uniform flow. IEEE Journal of Oceanic Engineering 2005; 30 (1): 79–84.  3.
Fredriksson DW, DeCew JC, Tsukrov I, Swift MR, Irish JD. Development of large fish farm numerical modeling techniques with in situ mooring tension comparisons. Aquacultural Engineering 2007; 36 (2): 137–148.  4.
DeCew J, Tsukrov I, Risso A, Swift MR, Celikkol B. Modeling of dynamic behavior of a singlepoint moored submersible fish cage under currents. Aquacultural Engineering 2010; 43 (2): 38–45.  5.
Huang CC, Tang HJ, Pan JY. Numerical modeling of a singlepoint mooring cage with a frontal rigid frame. IEEE Journal of Oceanic Engineering 2009; 34 (2): 113–122.  6.
Xu TJ, Zhao YP, Dong GH, Li YC, Gui FK. Analysis of hydrodynamic behaviors of multiple net cages in combined wavecurrent flow. Journal of Fluids and Structures 2013; 39: 222–236.  7.
Zhao YP, Bi CW, Dong GH, Gui FK, Cui Y, Guan CT, Xu TJ. Numerical simulation of the flow around fishing plane nets using the porousmedia model. Ocean Engineering 2013; 62: 25–37.  8.
Zhao YP, Bi CW, Dong GH, Gui FK, Cui Y, Xu TJ. Numerical simulation of the flow field inside and around gravity cages. Aquacultural Engineering 2013; 52: 1–13.  9.
Bi CW, Zhao YP, Dong GH, Xu TJ, Gui FK. Numerical simulation of the interaction between flow and flexible nets. Journal of Fluids and Structures 2014; 45:180–201.  10.
Bi CW, Zhao YP, Dong GH, Zheng YN, Gui FK. A numerical analysis on the hydrodynamic characteristics of net cages using coupled fluid–structure interaction model. Aquacultural Engineering 2014; 19: 1–12.  11.
Burcharth HF, Andersen OH. On the onedimensional steady and unsteady porous flow equations. Coastal Engineering 1995; 24 (3–4): 233–257.  12.
Balash C, Colbourne B, Bose N, RamanNair W. Aquaculture net drag force and added mass. Aquacultural Engineering 2009; 41 (1): 14–21.  13.
Tsukrov I, Drach A, DeCew J, Swift MR, Celikkol B. Characterization of geometry and normal drag coefficients of copper nets. Ocean Engineering 2011; 38 (1718): 1979–1988.  14.
Zhan JM, Jia XP, Li YS, Sun MG, Guo GX, Hu YZ. Analytical and experimental investigation of drag on nets of fish cages, Aquacultural Engineering 2006; 35 (1): 91–101.  15.
Bear J. Dynamics of fluids in porous media. America Elsevier Publishing Company, Inc., New York, USA, 1972.  16.
Li YC, Zhao YP, Gui FK, Teng B. Numerical simulation of the hydrodynamic behaviour of submerged plane nets in current. Ocean Engineering 2006; 33(1718): 2352–2368.  17.
Zhao YP, Li YC, Gui FK, Dong GH. Numerical simulation of the effects of weight system on the hydrodynamic behavior of 3D net of gravity cage in current. Journal of Hydrodynamics, Series B 2007; 19 (4): 442–452.  18.
Tsukrov I, Eroshkin O, Fredriksson DW, Swift MR, Celikkol B. Finite element modeling of net panels using a consistent net element. Ocean Engineering 2003; 30 (2): 251–270.  19.
Zhao YP, Li YC, Dong GH, Gui FK, Teng B. Numerical simulation of the effects of structure size ratio and mesh type on threedimensional deformation of the fishingnet gravity cage in current. Aquacultural Engineering 2007; 36 (3): 285–301.