Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\n
Throughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1454",leadTitle:null,fullTitle:"Copper Alloys - Early Applications and Current Performance - Enhancing Processes",title:"Copper Alloys",subtitle:"Early Applications and Current Performance - Enhancing Processes",reviewType:"peer-reviewed",abstract:"Copper has been used for thousands of years. In the centuries, both handicraft and industry have taken advantage of its easy castability and remarkable ductility combined with good mechanical and corrosion resistance. Although its mechanical properties are now well known, the simple f.c.c. structure still makes copper a model material for basic studies of deformation and damage mechanism in metals. On the other hand, its increasing use in many industrial sectors stimulates the development of high-performance and high-efficiency copper-based alloys. After an introduction to classification and casting, this book presents modern techniques and trends in processing copper alloys, such as the developing of lead-free alloys and the role of severe plastic deformation in improving its tensile and fatigue strength. Finally, in a specific section, archaeometallurgy techniques are applied to ancient copper alloys. The book is addressed to engineering professionals, manufacturers and materials scientists.",isbn:null,printIsbn:"978-953-51-0160-4",pdfIsbn:"978-953-51-6134-9",doi:"10.5772/1912",price:119,priceEur:129,priceUsd:155,slug:"copper-alloys-early-applications-and-current-performance-enhancing-processes",numberOfPages:188,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"840e59947793eae925ad769a026b9af8",bookSignature:"Luca Collini",publishedDate:"March 7th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1454.jpg",numberOfDownloads:38948,numberOfWosCitations:64,numberOfCrossrefCitations:26,numberOfCrossrefCitationsByBook:5,numberOfDimensionsCitations:64,numberOfDimensionsCitationsByBook:11,hasAltmetrics:1,numberOfTotalCitations:154,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 12th 2011",dateEndSecondStepPublish:"May 10th 2011",dateEndThirdStepPublish:"September 14th 2011",dateEndFourthStepPublish:"October 14th 2011",dateEndFifthStepPublish:"February 13th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"95686",title:"Dr.",name:"Luca",middleName:null,surname:"Collini",slug:"luca-collini",fullName:"Luca Collini",profilePictureURL:"https://mts.intechopen.com/storage/users/95686/images/343_n.jpg",biography:"Luca Collini\nfrom 2005 is researcher at the Department of Industrial Engineering at the University of Parma. Author of about 60 papers on journals and presented at national and interational conferences, his research activity focuses on the mechanical behavior of materials (fatigue and fracture), and on vibration-based non-destructive techniques applied to materials and structures.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"944",title:"Metallurgy",slug:"metals-and-nonmetals-metallurgy"}],chapters:[{id:"30472",title:"Copper and Copper Alloys: Casting, Classification and Characteristic Microstructures",doi:"10.5772/39014",slug:"copper-and-copper-alloys-casting-classification-and-characteristics-",totalDownloads:6484,totalCrossrefCites:5,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"Radomila Konečná and Stanislava Fintová",downloadPdfUrl:"/chapter/pdf-download/30472",previewPdfUrl:"/chapter/pdf-preview/30472",authors:[{id:"128181",title:"Prof.",name:"Radomila",surname:"Konecna",slug:"radomila-konecna",fullName:"Radomila Konecna"},{id:"129784",title:"PhD.",name:"Stanislava",surname:"Fintova",slug:"stanislava-fintova",fullName:"Stanislava Fintova"}],corrections:null},{id:"30473",title:"Interaction of Copper Alloys with Hydrogen",doi:"10.5772/34469",slug:"interaction-of-copper-alloys-with-hydrogen",totalDownloads:3798,totalCrossrefCites:2,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"I. Peñalva, G. Alberro, F. Legarda,G. A. Esteban and B. Riccardi",downloadPdfUrl:"/chapter/pdf-download/30473",previewPdfUrl:"/chapter/pdf-preview/30473",authors:[{id:"100283",title:"Dr.",name:"Igor",surname:"Peñalva",slug:"igor-penalva",fullName:"Igor Peñalva"},{id:"100685",title:"Mr.",name:"Gorka",surname:"Alberro",slug:"gorka-alberro",fullName:"Gorka Alberro"},{id:"100686",title:"Dr.",name:"Fernando",surname:"Legarda",slug:"fernando-legarda",fullName:"Fernando Legarda"},{id:"100688",title:"Dr.",name:"Gustavo",surname:"Esteban",slug:"gustavo-esteban",fullName:"Gustavo Esteban"},{id:"100888",title:"Dr.",name:"Bruno",surname:"Riccardi",slug:"bruno-riccardi",fullName:"Bruno Riccardi"}],corrections:null},{id:"30474",title:"Properties of High Performance Alloys for Electromechanical Connectors",doi:"10.5772/35148",slug:"properties-of-high-performance-alloys-for-electromechanical-connectors",totalDownloads:5071,totalCrossrefCites:9,totalDimensionsCites:17,hasAltmetrics:0,abstract:null,signatures:"H.-A. Kuhn, I. Altenberger,A. Käufler, H. Hölzl and M. Fünfer",downloadPdfUrl:"/chapter/pdf-download/30474",previewPdfUrl:"/chapter/pdf-preview/30474",authors:[{id:"103167",title:"Dr.",name:"Hans-Achim",surname:"Kuhn",slug:"hans-achim-kuhn",fullName:"Hans-Achim Kuhn"}],corrections:null},{id:"30475",title:"Lead-Free Wrought Copper Alloys for Bushings and Sliding Elements",doi:"10.5772/35270",slug:"lead-free-wrought-copper-alloys-for-bushings-and-sliding-elements",totalDownloads:5904,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Kai Weber and H.-A. Kuhn",downloadPdfUrl:"/chapter/pdf-download/30475",previewPdfUrl:"/chapter/pdf-preview/30475",authors:[{id:"103167",title:"Dr.",name:"Hans-Achim",surname:"Kuhn",slug:"hans-achim-kuhn",fullName:"Hans-Achim Kuhn"}],corrections:null},{id:"30476",title:"Mechanical Properties of Copper Processed by Severe Plastic Deformation",doi:"10.5772/32634",slug:"mechanical-properties-of-copper-processed-by-severe-plastic-deformation",totalDownloads:10510,totalCrossrefCites:4,totalDimensionsCites:8,hasAltmetrics:0,abstract:null,signatures:"Ludvík Kunz",downloadPdfUrl:"/chapter/pdf-download/30476",previewPdfUrl:"/chapter/pdf-preview/30476",authors:[{id:"109957",title:"Prof.",name:"Ludvik",surname:"Kunz",slug:"ludvik-kunz",fullName:"Ludvik Kunz"}],corrections:null},{id:"30477",title:"Fatigue Crack Resistance of Ultrafine-Grained Copper Structures",doi:"10.5772/39035",slug:"fatigue-crack-resistance-of-ultrafine-grained-copper-structure",totalDownloads:2801,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Luca Collini",downloadPdfUrl:"/chapter/pdf-download/30477",previewPdfUrl:"/chapter/pdf-preview/30477",authors:[{id:"95686",title:"Dr.",name:"Luca",surname:"Collini",slug:"luca-collini",fullName:"Luca Collini"}],corrections:null},{id:"30478",title:"Bronze in Archaeology: A Review of the Archaeometallurgy of Bronze in Ancient Iran",doi:"10.5772/32687",slug:"bronze-in-archaeology-a-review-on-archaeometallurgy-of-bronze-in-ancient-iran",totalDownloads:4385,totalCrossrefCites:5,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"Omid Oudbashi, S. Mohammadamin Emami and Parviz Davami",downloadPdfUrl:"/chapter/pdf-download/30478",previewPdfUrl:"/chapter/pdf-preview/30478",authors:[{id:"20207",title:"Prof.",name:"Mohammadamin",surname:"Emami",slug:"mohammadamin-emami",fullName:"Mohammadamin Emami"},{id:"92339",title:"Dr.",name:"Omid",surname:"Oudbashi",slug:"omid-oudbashi",fullName:"Omid Oudbashi"},{id:"103291",title:"Prof.",name:"Parviz",surname:"Davami",slug:"parviz-davami",fullName:"Parviz Davami"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3817",title:"Developments in Corrosion Protection",subtitle:null,isOpenForSubmission:!1,hash:"8ff86fac7ac8bce142fdc3c0e5a79f30",slug:"developments-in-corrosion-protection",bookSignature:"M. Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/3817.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"27",title:"Magnesium Alloys",subtitle:"Design, Processing and Properties",isOpenForSubmission:!1,hash:null,slug:"magnesium-alloys-design-processing-and-properties",bookSignature:"Frank Czerwinski",coverURL:"https://cdn.intechopen.com/books/images_new/27.jpg",editedByType:"Edited by",editors:[{id:"16295",title:"Dr.",name:"Frank",surname:"Czerwinski",slug:"frank-czerwinski",fullName:"Frank Czerwinski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3494",title:"Titanium Alloys",subtitle:"Advances in Properties Control",isOpenForSubmission:!1,hash:"83dc0b49b280c4df33cb4cac06fc3660",slug:"titanium-alloys-advances-in-properties-control",bookSignature:"Jan Sieniawski and Waldemar Ziaja",coverURL:"https://cdn.intechopen.com/books/images_new/3494.jpg",editedByType:"Edited by",editors:[{id:"109232",title:"Prof.",name:"Jan",surname:"Sieniawski",slug:"jan-sieniawski",fullName:"Jan Sieniawski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3844",title:"Light Metal Alloys Applications",subtitle:null,isOpenForSubmission:!1,hash:"6ddeae36c90447289dd3320146d31861",slug:"light-metal-alloys-applications",bookSignature:"Waldemar A. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/3844.jpg",editedByType:"Edited by",editors:[{id:"118821",title:"Dr.",name:"Waldemar Alfredo",surname:"Monteiro",slug:"waldemar-alfredo-monteiro",fullName:"Waldemar Alfredo Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"217",title:"Recent Trends in Processing and Degradation of Aluminium Alloys",subtitle:null,isOpenForSubmission:!1,hash:"6b334709c43320a6e92eb9c574a8d44d",slug:"recent-trends-in-processing-and-degradation-of-aluminium-alloys",bookSignature:"Zaki Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/217.jpg",editedByType:"Edited by",editors:[{id:"52898",title:"Prof.",name:"Zaki",surname:"Ahmad",slug:"zaki-ahmad",fullName:"Zaki Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"920",title:"Magnesium Alloys",subtitle:"Corrosion and Surface Treatments",isOpenForSubmission:!1,hash:"33740111d2545ae64a3b2c3d938fc432",slug:"magnesium-alloys-corrosion-and-surface-treatments",bookSignature:"Frank Czerwinski",coverURL:"https://cdn.intechopen.com/books/images_new/920.jpg",editedByType:"Edited by",editors:[{id:"16295",title:"Dr.",name:"Frank",surname:"Czerwinski",slug:"frank-czerwinski",fullName:"Frank Czerwinski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"44",title:"Aluminium Alloys",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"aluminium-alloys-theory-and-applications",bookSignature:"Tibor Kvackaj",coverURL:"https://cdn.intechopen.com/books/images_new/44.jpg",editedByType:"Edited by",editors:[{id:"17752",title:"Prof.",name:"Tibor",surname:"Kvackaj",slug:"tibor-kvackaj",fullName:"Tibor Kvackaj"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1471",title:"Titanium Alloys",subtitle:"Towards Achieving Enhanced Properties for Diversified Applications",isOpenForSubmission:!1,hash:"dcdcf80b9cadfb4e2797127a5cf85700",slug:"titanium-alloys-towards-achieving-enhanced-properties-for-diversified-applications",bookSignature:"A.K.M. Nurul Amin",coverURL:"https://cdn.intechopen.com/books/images_new/1471.jpg",editedByType:"Edited by",editors:[{id:"112624",title:"Dr.",name:"A.K.M. Nurul",surname:"Amin",slug:"a.k.m.-nurul-amin",fullName:"A.K.M. Nurul Amin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3053",title:"Aluminium Alloys",subtitle:"New Trends in Fabrication and Applications",isOpenForSubmission:!1,hash:"2b3d8fcf0bcf5e05087c7fce9c799ecf",slug:"aluminium-alloys-new-trends-in-fabrication-and-applications",bookSignature:"Zaki Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/3053.jpg",editedByType:"Edited by",editors:[{id:"52898",title:"Prof.",name:"Zaki",surname:"Ahmad",slug:"zaki-ahmad",fullName:"Zaki Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1465",title:"Powder Metallurgy",subtitle:null,isOpenForSubmission:!1,hash:"30724bbd30130a71450f323924aee932",slug:"powder-metallurgy",bookSignature:"Katsuyoshi Kondoh",coverURL:"https://cdn.intechopen.com/books/images_new/1465.jpg",editedByType:"Edited by",editors:[{id:"111029",title:"Dr.",name:"Katsuyoshi",surname:"Kondoh",slug:"katsuyoshi-kondoh",fullName:"Katsuyoshi Kondoh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64730",slug:"erratum-spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",title:"Erratum - Spectrum Decision Framework to Support Cognitive Radio Based IoT in 5G",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64730.pdf",downloadPdfUrl:"/chapter/pdf-download/64730",previewPdfUrl:"/chapter/pdf-preview/64730",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64730",risUrl:"/chapter/ris/64730",chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]}},chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]},book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11958",leadTitle:null,title:"TEST BOOK Tea Jurcic",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tLorem ipsum dolor sit amet, consectetur adipiscing elit. In at mauris lobortis, dapibus justo nec, suscipit lacus. Fusce tincidunt et sapien in congue. Sed rhoncus neque non dapibus auctor. Pellentesque non viverra dui, a tincidunt sapien. Fusce maximus mauris diam, et eleifend neque tincidunt quis. Interdum et malesuada fames ac ante ipsum primis in faucibus. Vestibulum et leo eget nisl varius rutrum sed in nulla. Nullam a finibus enim, nec rhoncus felis. Quisque ut imperdiet nunc, sed facilisis dui. Nulla molestie semper viverra. Aliquam pharetra magna ex, in vestibulum arcu condimentum in. Nulla ut felis porttitor, tincidunt dui at, imperdiet eros. Nam malesuada imperdiet tellus. Etiam id dolor efficitur, elementum tortor vel, eleifend sem.
\r\n
\r\n\tEtiam quis lacus lacinia, ullamcorper massa sed, bibendum arcu. Curabitur tempor lacus at leo cursus sagittis. Nullam eleifend eleifend blandit. Nunc eget neque nisl. Nam nisi dolor, finibus non facilisis non, consequat vitae urna. Nunc non ligula augue. Nullam eros erat, mollis eget mattis id, ornare fringilla tellus.
\r\n
\r\n\tDuis bibendum suscipit purus, eu cursus nisl malesuada sed. Maecenas ornare, magna ac finibus tristique, leo nisl bibendum justo, vel ultrices erat mauris placerat massa. Suspendisse feugiat nunc erat. Integer fringilla vitae lectus eu feugiat. Suspendisse sodales ligula quis nisl tempus, sit amet congue felis commodo. Aliquam erat volutpat. Suspendisse eu libero commodo, dapibus dui ultrices, vehicula nunc. Donec condimentum tortor in nibh pulvinar, quis iaculis augue fringilla.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"720e03f9c8974aa2072144b3543004f8",bookSignature:"",publishedDate:null,coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",keywords:"Lorem, Ipsum, Dolore, Amet",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 14th 2022",dateEndSecondStepPublish:"March 7th 2022",dateEndThirdStepPublish:"May 6th 2022",dateEndFourthStepPublish:"July 25th 2022",dateEndFifthStepPublish:"September 23rd 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:"BE",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:null,chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"46428",title:"Current Use of Thalamic Vim Stimulation in Treating Parkinson’s Disease",doi:"10.5772/57105",slug:"current-use-of-thalamic-vim-stimulation-in-treating-parkinson-s-disease",body:'
1. Introduction
Recent advances in neuroimaging and neurosurgical techniques provide a growing body of evidence suggesting that deep brain stimulation (DBS) is a powerful and safe therapeutic option for medically intractable Parkinson’s disease (PD). For more than half a century, the thalamic ventrolateral (VL) nucleus has been an anatomical target for stereotaxy in treating movement disorders that include PD. It plays a pivotal role in the basal ganglia-thalamo-cortical circuit that is associated with motor brain functions. The entire output of the basal ganglia is directed to the motor cortex via the VL nucleus where the cerebellar and pallidal afferents terminate predominantly in the ventralis intermedius (Vim) nucleus and ventralis oralis (Vo) nucleus, respectively. In accordance with the general concept that the cerebellothalamic fiber connections participate in tremor genesis, thalamic Vim DBS is now used in the treatment of a wide variety of tremor subtypes with different etiologies. Indeed, thalamic Vim DBS can exert a striking therapeutic impact on tremor-dominant PD that exhibits better clinical prognoses and slower disease progression with less cognitive decline as compared to akinesia/rigidity-dominant PD. In patients with tremor-dominant PD, tremor suppression can be achieved irrespective of age, disease duration, or baseline disease severity. Based on recent advances in the understanding of the pathophysiology of tremor-dominant PD, this review introduces the current use of thalamic Vim stimulation in treating patients with PD.
2. Surgical anatomy
The thalamic VL nucleus comprises 2 major functional territories [1-3]. Neurons in the VL thalamus that respond to voluntary movements are located largely within the Vo [4-6], and neurons that respond to kinesthetic/passive movements about a joint are mainly contained within the Vim [5, 7]. The pallidothalamic inhibitory afferents terminate preferentially in the ipsilateral Vo nucleus, with an anterior-to-posterior gradient of terminal densities through the VL nucleus. In contrast, the cerebellothalamic excitatory afferents terminate predominantly in the contralateral Vim nucleus, creating a posterior-to-anterior gradient of terminal densities through the VL nucleus [8-10]. Moreover, a somatotopic arrangement, i.e., a medial-to-lateral distribution of facial-, forelimb-, and hindlimb-receptive fields, also exists in the VL thalamic nucleus [11-14].
The cerebellothalamic pathway plays a role in the fine spatial and temporal tuning of coordinated movements, as well as in the learning and retention of new motor skills. Thus, functional interference might also be achieved in deep cerebellar nuclei and affect activities in the striatum and cerebral cortices via the VL nucleus, thereby affecting ongoing and intended movements [15-17].
3. Pathophysiology of parkinsonian tremor
The clinical heterogeneity of PD is well recognized, and patients can often be divided into tremor-dominant and akinesia/rigidity-dominant subgroups. Accumulating evidence suggests that akinesia/rigidity and tremor may be associated with functional impairments of different motor circuits. Striatal dopamine depletion and dysfunction of the basal ganglia seem to be more important in akinesia/rigidity than in tremor. It is generally thought that tremor is primarily related to the cerebello-thalamo-cortical pathway, while akinesia/rigidity is rooted in the basal ganglia-thalamo-cortical pathway. Recent results from clinicopathological, electrophysiological, and neuroimaging studies on patients with PD are discussed in the following sections.
3.1. Clinicopathological study
Although post-mortem studies are limited, patients with tremor-dominant PD appear to progress slowly despite a poorer therapeutic response to levodopa. A statistical analysis performed using the Unified Parkinson’s Disease Rating Scale (UPDRS) showed that the motor score for tremor is independent of the scores for other motor symptoms in patients with PD [18]. Rajput et al. [19] reported that patients with tremor-dominant PD showed slower disease progression and lower incidence of dementia than did patients with akinesia/rigidity-dominant PD.
Patients with tremor-dominant PD have milder cell loss in the substantia nigra pars compacta and in the locus coeruleus than do patients with non-tremor PD [20]. This suggests that patients with tremor-dominant PD have less dopaminergic dysfunction than do patients with non-tremor PD. On the other hand, patients with tremor-dominant PD have considerably more cell loss in the retrorubral area of the midbrain [21]. The retrorubral area could produce tremor via its dopaminergic projection to the pallidum. Further, Selikhova et al. [22] reported that patients with the non-tremor subtype had more severe cortical Lewy body pathology and were more likely to develop dementia.
3.2. Positron emission tomography (PET) and single photon emission computed tomography (SPECT)
SPECT using Iodine-123 fluoropropyl-carbomethoxy-3 ( [123I]FP-CIT SPECT) targets the dopamine transporter and is used to determine ongoing loss of dopaminergic neurons in patients with PD [23-25]. [123I]FP-CIT SPECT shows that patients with tremor-dominant PD had less striatal dopamine depletion than do patients with non-tremor PD [26-28].
The metabolic rate of glucose measured using (18F)fluoro-2-deoxy-D-glucose PET (FDG-PET) is known as a marker of integrated local synaptic activities and is sensitive to direct neuronal and synaptic damage and to the functional changes in synaptic activity distant from the primary site of pathology [29]. Using FDG-PET, Mure et al. [30] identified and validated that the PD tremor-related pattern is characterized by covarying metabolic increases in the cerebellum, motor cortex, and putamen. This network correlates specifically with clinical tremor ratings, but not with akinesia/rigidity. In patients with PD tremor, high-frequency stimulation of the Vim nucleus reduces regional metabolism and cerebral blood flow (CBF) in the ipsilateral sensorimotor cortex and contralateral dorsal cerebellar nucleus [30-33], and increases both measures in the Vim nucleus ipsilateral to the stimulation site [30, 34-37]. It should be noted that changes in CBF may not reflect the direct effects of DBS but rather may reflect sensory feedback from changes in motor activity [38].
Figure 1.
Schematic representations of the stereotactic targets for Vim-DBS on the axial (A) and sagittal (B) planes. The DBS lead implanted into the Vim nucleus is also shown in (B).
3.3. Functional magnetic resonance imaging (fMRI)
Intrinsic blood oxygen consumption detected by fMRI is correlated with low-frequency electrical amplitude fluctuations [64]. Patients with PD show increased overall activity in networks coupled to the primary motor cortex and cerebellum, and reduced functional connections in the supplementary motor area, dorsolateral prefrontal area, and putamen [65]. A recent study with simultaneous fMRI and EMG recording shows that the basal ganglia are transiently activated at the onset of tremor episodes, whereas tremor amplitude-related activity correlates with the cerebello-thalamo-cortical circuit [26]. The patients with tremor-dominant PD had increased functional connectivity between the basal ganglia and the cerebello-thalamo-cortical circuit.
3.4. Magnetoencephalography (MEG)
PD symptoms are related to alterations of oscillatory activity within the basal ganglia. Such pathologically increased oscillations have been demonstrated at several frequencies [56, 57]. In particular, those below 70 Hz have been shown to be antikinetic [56]. More specifically, oscillations at 4 to 12 Hz have been related to the origin of tremor symptoms in patients with PD [58]. Double tremor oscillations in the β range are not coherent with simultaneously recorded tremors [59-61]. However, a strong coherence in the β range is observed in the primary motor cortex, supplementary motor cortex, premotor cortex, diencephalon, and contralateral cerebellum [58]. Interestingly, this coupling can be successfully reduced by dopamine replacement therapy [62, 63]. These data indicate that PD resting tremor is associated with synchronous oscillatory coupling in a cerebello-thalamo-cortical loop and cortical motor and sensory areas contralateral to the tremor hand [58].
3.5. Cell recordings
So-called “kinesthetic” cells receive afferent inputs from muscle spindles and respond to passive joint movements. These cells are located just anterior to the nucleus ventralis caudalis (VC), which receives tactile sensory inputs [39, 40]. Percheron et al. [8] postulated that the kinesthetic zone is located in the latero-ventral part of the Vim nucleus, a region that sends a majority of its axons to the motor cortex. Vitek et al. [13] reported that in a monkey model of PD produced using 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP), the kinesthetic zone expands anteriorly into regions that contain the active movement-related neurons. Kiss et al. [41] reported that in patients with tremor, there is an anterior expansion in the representation of the kinesthetic neurons without a change in their receptive field sizes. They suggested that tremor activates receptors responsive to deep sensations and, to a lesser degree, superficial sensations. Thus, repetitive tremor activities could result in a gradual increase in the synaptic efficacy of somatosensory inputs to kinesthetic neurons. Cells that respond to both somatosensory inputs and active movements are referred to as “combined” cells [42, 43] and have been identified only in patients with movement disorders.
Cells in the VL thalamic nucleus that demonstrate a discharge pattern with burst frequencies similar to that of tremor are called “tremor cells” [44, 45]. In a monkey model of resting tremor produced by a lesion of the ventral tegmentum, thalamic activity related to tremor frequency is unchanged following the interruption of sensory inputs [46, 47]. This finding has led to the hypothesis that the tremor cells may represent a central pacemaker for generating tremor, independent of sensory feedback [46, 48]. Tremor cells are reportedly located in the Vim nucleus and Vo complex [43, 49, 50]. The distribution of tremor cells is important for thalamic surgery, because tremor has been successfully treated when the radiofrequency lesion was centered within the cluster of tremor cells [39, 51, 52]. However, recent studies show that tremor cells are widely distributed in the Vim, Vo, and VC nuclei, and that they show no apparent differences in proportion within each nucleus [50]. These findings suggest that the ideal surgical target might not be determined by microelectrode recordings of tremor cells alone [49, 53]. The number of tremor cells in patients with PD is much higher than that in patients with other movement disorders, such as essential tremor (ET) and multiple sclerosis. This may play a role in the better surgical outcomes seen in patients with PD [50]. Based on their experiences, Katayama et al. [53] postulated that tremor cells might play a predominant role in the lateral portion of the Vim nucleus, an area that provides the most significant control of PD-associated tremor, in accordance with previous reports [54, 55].
3.6. Local field potentials (LFPs)
DBS procedures enable intraoperative micro-/macrorecordings and postoperative macrorecordings. Local field potentials (LFPs) can be recorded via macro- as well as microrecordings [66]. The oscillatory activity in the β frequency range has clinical relevance to movement disorders. It is widely distributed throughout the motor system and is desynchronized by voluntary movement in both the Vim and subthalamic nucleus (STN) [67-69]. Levodopa and high-frequency STN stimulation reduce β band LFP oscillations. This reduction positively correlates with an improvement of akinesia and rigidity, but not with a decrease of tremor [70-72], and the β range STN stimulation causes further impairment of movement in patients with PD [73-76]. The α range oscillations in patients with tremor-dominant PD show finely segregated muscle-specific subloops that strongly correlate with the tremor-affected muscles, and tremor suppression can be achieved using STN-DBS in areas with pronounced α oscillations [77, 78]. Given that basal ganglia β oscillation correlates with rigidity and akinesia and α oscillation correlates with tremor, these findings further suggest a differential pathophysiology between akinesia-rigidity and tremor.
In summary, the pathophysiological studies on parkinsonian tremor indicate that resting tremor may result from a pathological interaction between the basal ganglia and the cerebello-thalamo-cortical circuit. Tremor generation in the cerebello-thalamo-cortical circuit is likely triggered by activity in the basal ganglia.
4. Thalamic Vim DBS
4.1. Surgical procedures
The Vim DBS procedure is divided into the following five stages: (i) stereotactic imaging; (ii) thalamic mapping; (iii) electrode implantation; (iv) receiver of pulse generator implantation; and (v) programming. We perform the two successive steps of the procedure in the same operative session. The first step involves fixation of the stereotactic frame, stereotactic imaging, and placement of the thalamic electrode after application of local anesthesia. In the second step, the thalamic electrode is connected to the pulse generator while the patient is under general anesthesia. The intercommissural line-based coordinates for the tentative target in the thalamic Vim are determined 12 mm lateral to the midline, 5 mm anterior to the posterior commissure, and on the intercommissural line. In the operating room, a precoronal burr hole is placed 3 cm lateral to the midline, and a guiding cannula is inserted stereotactically. A quadripolar DBS electrode (Model 3387; Medtronic) is advanced directly through the guiding cannula. The characteristics of the tremor are assessed before, during, and immediately after the insertion of the electrode. Improvement of tremor at the time of insertion of the lead (the “microthalamotomy-like effect”) is considered to indicate good positioning of the electrode. Thresholds for both intrinsic and extrinsic evoked responses are analyzed directly via the implanted electrode with a screening device (Model 3625; Medtronic). When a satisfactory electrode position has been achieved, the stylet of the lead and the guiding cannula are carefully removed. The lead is fixed to the cranium with the burr hole ring and cap. General anesthesia is induced while the stereotactic head frame is removed. The pulse generator is implanted in a subcutaneous infraclavicular pouch after being connected to the DBS electrode with a subcutaneous extension wire. In most patients, an Activa SC implantable pulse generator (Medtronic) is used.
The pulse generator can be programmed immediately after surgery. If a prolonged microthalamotomy-like effect is present, the pulse generator is programmed at the time of reappearance of the tremor. Routine postoperative CT scans are performed to rule out hemorrhage. Patients are instructed on how to switch their device on and off using a handheld magnet, and told to turn their device off at night when possible to maximize battery life. Some teams do not connect the pulse generator immediately and use this period to repeat some external stimulation to confirm that the stimulation improves tremor without side effects. This period can also be used to perform a brain MRI to check the electrode location and possible lesion. Many radiologists prefer this to be done before pulse generator implantation for safety reasons.
4.2. Programming challenges
The optimal stimulating parameters are determined using monopolar or bipolar stimulation. The easiest way to screen the parameters is to study each contact one after the other: the contact studied is programmed as the cathode, and the case is programmed as the anode. For example, first a constant pulse width of 90 μs and a constant frequency of 160 Hz are selected. Then the voltage is progressively increased to find the threshold for symptom suppression without adverse effects, using the contact(s) that gives the best effect. Best results are usually obtained at a pulse frequency of 130–185 Hz (no lower than 100 Hz), pulse width of 60–90 μs, and amplitude of 1.5–3.6 V.
If this screening does not reveal parameters to control tremor, other combinations can be tried. The pulse width and frequency can be increased. Stimulating more than one contact at the same time and using bipolar stimulation can also be tried. Bipolar stimulation is particularly useful if limiting side effects are obtained with a low voltage before reaching the threshold to stop tremor. If these measures are still not helpful, the position of the electrode can be checked using MRI or CT, and re-implantation can be discussed if necessary.
4.3. Mechanism of action
Similarities in the effectiveness of thalamic DBS and thalamotomy have led investigators to suggest that DBS acts as a reversible lesion of the thalamus, but the mechanism of action of thalamic DBS is yet unclear. With respect to tremor suppression, 4 different hypotheses of Vim DBS have been proposed: (1) conduction block—this hypothesis is supported by the fact that Vim thalamotomy has similar effects to Vim DBS [83]; (2) activation of inhibitory axon terminals that synapse onto and inhibit projection neurons [93]; (3) superimposition of continuous stimuli onto rhythmically oscillating subcortical-cortical loops [94]; and (4) inhibition of neuronal activity near the stimulation site while activating axonal elements that leave the target structure [95]. Recent reports have shown that during high-frequency stimulation, glutamate and adenosine are increased [96-99], and this elevated glutamate release could excite local interneurons, thereby increasing the production of inhibitory neurotransmitters (e.g., GABA and glycine) and resulting in a decrease in the firing rates of projection neurons [99].
4.4. Therapeutic impacts
Before the levodopa era, severe tremor was a main indication for surgery [79]. In the 1960s, thousands of patients with PD throughout the world received a thalamotomy [80] or other procedures such as pallidotomy, campotomy, or pedunculotomy [81]. During this period, it was observed that the high-frequency stimulation used for targeting during lesioning of the thalamus significantly reduced tremor [82]. In the 1980s, Benabid et al. demonstrated that DBS of the Vim significantly reduced tremor, and they have treated more than 100 patients with thalamic DBS [83-85]. Several studies have demonstrated that DBS of the thalamus has comparable control of tremor with fewer side effects than does thalamotomy. Vim DBS is highly beneficial for tremor control, but ineffective for the other disabling features of PD, including akinesia, rigidity, and gait and postural disturbances. Benabid et al. [85] showed that chronic Vim stimulation is highly effective for tremor in a group of 117 tremor patients; over 85% of patients had a very good or excellent response with little or no tremor evident in the contralateral arm. With a double-blind multicenter study to assess the efficacy of unilateral Vim DBS against placebo, Koller et al. [86] have shown an 80% reduction in contralateral arm tremor in 24 patients with PD tremor and 29 patients with ET with Vim DBS at the 1-year follow-up.
With respect to the long-term efficacy of Vim DBS, Schuurman et al. [87] reported that 88% of patients showed complete or nearly complete tremor suppression after a mean follow-up period of 5 years. Hariz et al. [88] reported 38 patients with PD who received Vim DBS with a follow-up period of 6 years. The long-term follow-up of Vim DBS revealed effective control of tremor 6 years postoperatively, while axial symptoms worsened. The initial improvement in activities of daily living (ADL) scores at the 1-year follow-up disappeared after 6 years. Hariz et al. [89] showed significant increases in stimulation parameters for up to 1 year; however, after the 1-year stimulation, the parameters seemed to stabilize. By contrast, Kumar et al. [90] reported that it was necessary to increase the current intensity over time to control tremor. This increase in amplitude is undesirable, as it often causes paresthesia and cerebellar adverse effects [83, 91]. During the follow-up, some tolerance (necessity to gradually increase the voltage to control tremor) and a rebound effect (tremor much worse than before when the stimulator is switched off) can develop [86, 89]. This affects an action tremor more frequently. Switching off the stimulator at night can sometimes limit the tolerance effect. Recurrence of tremor is seen in ~5% of patients several weeks or years after surgery [83, 92].
4.5. Adverse events
The stimulation-induced side effects of Vim DBS are reversible, and usually mild and acceptable. Incidences of stimulation-related complications reported at long-term (greater than 5 years) follow-up include paresthesia (4–38%), dysarthria (3–36%), dystonia/hypertonia (3–16%), gait disturbance (11–16%), balance disturbance (5%), and cognitive dysfunction (2%). Among these adverse effects, non-adjustable and long-lasting complications include dysarthria (10–27%), paresthesia (16%), gait disturbance (7%), dystonia (5%), upper limb ataxia (3–4%), and disequilibrium (3–4%) [88, 100, 101]. Pahwa et al. [101] described occurrences of persistent complications, including dysarthria, disequilibrium, and gait disturbance, after bilateral stimulation, even when the stimulus parameters were optimized.
The incidence of infection appears to be 0–11% during the early follow-up periods and 0–8% throughout the postoperative course [87, 88, 100]. Hardware failures are occasionally found in the stimulator (0–3%), the DBS lead (0–8%), or the cable (0–3%); skin erosion (0–4%) and hematoma requiring evacuation of the stimulator (0–3%) have also been reported [87, 88, 100].
5. Conclusions
Vim DBS is an appropriate first-line treatment for medically intractable tremor in patients with PD. Although its therapeutic effects on ADL outcome decreases gradually after the surgery, long-term tremor suppression remains stable. We suggest that Vim DBS is useful for patients with tremor-dominant PD, who manifest slow progression of disease and a good response of non-tremor PD symptoms to dopaminergic therapy.
Acknowledgments
This work was supported in part by the Grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant-in-aid for Scientific Research, 23500428; 21390269; 23659458; 24390223).
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/46428.pdf",chapterXML:"https://mts.intechopen.com/source/xml/46428.xml",downloadPdfUrl:"/chapter/pdf-download/46428",previewPdfUrl:"/chapter/pdf-preview/46428",totalDownloads:2169,totalViews:550,totalCrossrefCites:2,totalDimensionsCites:2,totalAltmetricsMentions:12,impactScore:1,impactScorePercentile:60,impactScoreQuartile:3,hasAltmetrics:1,dateSubmitted:"September 12th 2013",dateReviewed:"September 20th 2013",datePrePublished:null,datePublished:"March 26th 2014",dateFinished:"December 9th 2013",readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/46428",risUrl:"/chapter/ris/46428",book:{id:"3813",slug:"a-synopsis-of-parkinson-s-disease"},signatures:"Naoki Tani, Ryoma Morigaki, Ryuji Kaji and Satoshi Goto",authors:[{id:"31103",title:"Prof.",name:"Satoshi",middleName:null,surname:"Goto",fullName:"Satoshi Goto",slug:"satoshi-goto",email:"sgoto@clin.med.tokushima-u.ac.jp",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Surgical anatomy",level:"1"},{id:"sec_3",title:"3. Pathophysiology of parkinsonian tremor",level:"1"},{id:"sec_3_2",title:"3.1. Clinicopathological study",level:"2"},{id:"sec_4_2",title:"3.2. Positron emission tomography (PET) and single photon emission computed tomography (SPECT)",level:"2"},{id:"sec_5_2",title:"3.3. Functional magnetic resonance imaging (fMRI)",level:"2"},{id:"sec_6_2",title:"3.4. Magnetoencephalography (MEG)",level:"2"},{id:"sec_7_2",title:"3.5. Cell recordings",level:"2"},{id:"sec_8_2",title:"3.6. Local field potentials (LFPs)",level:"2"},{id:"sec_10",title:"4. Thalamic Vim DBS",level:"1"},{id:"sec_10_2",title:"4.1. Surgical procedures",level:"2"},{id:"sec_11_2",title:"4.2. Programming challenges",level:"2"},{id:"sec_12_2",title:"4.3. Mechanism of action",level:"2"},{id:"sec_13_2",title:"4.4. Therapeutic impacts",level:"2"},{id:"sec_14_2",title:"4.5. Adverse events",level:"2"},{id:"sec_16",title:"5. Conclusions",level:"1"},{id:"sec_17",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'Asanuma, C.; Thach, WT. & Jones EG. (1983). Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 286 (3): 237-265.'},{id:"B2",body:'Kultas-Ilinsky, K. & Ilinsky IA. (1991). Fine structure of the ventral lateral nucleus (VL) of the Macaca mulatta thalamus: cell types and synaptology. J Comp Neurol. 314 (2): 319-349.'},{id:"B3",body:'Ilinsky, IA. & Kultas-Ilinsky, K. (2002). Motor thalamic circuits in primates with emphasis on the area targeted in treatment of movement disorders. Mov Disord. 17 (Suppl 3): S9-14.'},{id:"B4",body:'Hassler, R. Anatomy of the thalamus. In: Schaltenbrand G, Bailer, P., editor. An introduction to Stereotaxis With an Atlas of the Human Brain. Stuttgart: Thieme; 1959. p. 230-290.'},{id:"B5",body:'Krack, P.; Dostrovsky, J.; Ilinsky, I.; Kultas-Ilinsky, K.; Lenz, F.; Lozano, A. & Vitek, J. (2002). Surgery of the motor thalamus: problems with the present nomenclatures. Mov Disord. 17 (Suppl 3): S2-S8.'},{id:"B6",body:'Lenz, FA.; Jaeger, CJ.; Seike, MS.; Lin, YC. & Reich, SG. (2002). Single-neuron analysis of human thalamus in patients with intention tremor and other clinical signs of cerebellar disease. J Neurophysiol. 87 (4): 2084-94.'},{id:"B7",body:'Ohye, C.; Maeda, T. & Narabayashi, H. (1976). Physiologically defined VIM nucleus. Its special reference to control of tremor. Appl Neurophysiol. 39 (3-4): 285-295.'},{id:"B8",body:'Percheron, G.; Francois, C.; Talbi, B.; Yelnik, J. & Fenelon, G. (1996). The primate motor thalamus. Brain research Brain research reviews. 22 (2): 93-181.'},{id:"B9",body:'Sakai, ST.; Inase, M. & Tanji, J. (1996). Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol. 368 (2): 215-228.'},{id:"B10",body:'Gallay, MN.; Jeanmonod, D.; Liu, J. & Morel, A. (2008). Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct. 212 (6): 443-463.'},{id:"B11",body:'Strick, PL. (1976). Activity of ventrolateral thalamic neurons during arm movement. Journal of neurophysiology. 39 (5): 1032-1044.'},{id:"B12",body:'Asanuma, C.; Thach, WR.; & Jones, EG. (1983). Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. 286 (3): 267-297.'},{id:"B13",body:'Vitek, JL.; Ashe, J.; DeLong, MR. & Alexander, GE. (1994). Physiologic properties and somatotopic organization of the primate motor thalamus. J Neurophysiol. 71 (4): 1498-1513.'},{id:"B14",body:'Vitek, JL.; Ashe, J,; DeLong, MR. & Kaneoke, Y. (1996). Microstimulation of primate motor thalamus: somatotopic organization and differential distribution of evoked motor responses among subnuclei. J Neurophysiol. 75(6): 2486-95.'},{id:"B15",body:'Rispal-Padel, L.; Harnois, C. & Troiani, D. (1987). Converging cerebellofugal inputs to the thalamus. I. Mapping of monosynaptic field potentials in the ventrolateral nucleus of the thalamus. Exp Brain Res. 68 (1): 47-58.'},{id:"B16",body:'Rispal-Padel, L.; Troiani, D. & Harnois, C. (1987). Converging cerebellofugal inputs to the thalamus. II. Analysis and topography of thalamic EPSPs induced by convergent monosynaptic interpositus and dentate inputs. Exp Brain Res. 68 (1): 59-72.'},{id:"B17",body:'Craig, AD. (2008). Retrograde analyses of spinothalamic projections in the macaque monkey: input to the ventral lateral nucleus. J Comp Neurol. 508 (2): 315-328.'},{id:"B18",body:'Stochl, J.; Boomsma, A.; Ruzicka, E.; Brozova, H. & Blahus, P. (2008). On the structure of motor symptoms of Parkinson\'s disease. Mov Disord. 23 (9): 1307-1312.'},{id:"B19",body:'Rajput, AH.; Voll, A.; Rajput, ML.; Robinson, CA. & Rajput, A. (2009). Course in Parkinson disease subtypes: A 39-year clinicopathologic study. Neurology. 73 (3): 206-212.'},{id:"B20",body:'Paulus, W. & Jellinger, K. (1991). The neuropathologic basis of different clinical subgroups of Parkinson\'s disease. J Neuropathol Exp Neurol. 50 (6): 743-755.'},{id:"B21",body:'Hirsch, EC.; Mouatt, A.; Faucheux, B.; Bonnet, AM.; Javoy-Agid, F.; Graybiel, AM. & Agid, Y. (1992). Dopamine, tremor, and Parkinson\'s disease. Lancet. 340 (8811): 125-126.'},{id:"B22",body:'Selikhova, M.; Williams, DR.; Kempster, PA.; Holton, JL.; Revesz, T. & Lees, AJ. (2009). A clinico-pathological study of subtypes in Parkinson\'s disease. Brain. 132 (Pt 11): 2947-2957.'},{id:"B23",body:'Kaufman, MJ. & Madras, BK. (1991). Severe depletion of cocaine recognition sites associated with the dopamine transporter in Parkinson\'s-diseased striatum. Synapse. 9 (1): 43-49.'},{id:"B24",body:'Niznik, HB.; Fogel, EF.; Fassos, FF. & Seeman, P. (1991). The dopamine transporter is absent in parkinsonian putamen and reduced in the caudate nucleus. J Neurochem. 56 (1): 192-198.'},{id:"B25",body:'Seibyl, JP.; Marek, K.; Sheff, K.; Zoghbi, S.; Baldwin, RM.; Charney, DS., van Dyck, CH. & Innis, RB. (1998). Iodine-123-beta-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporters in healthy subjects and Parkinson\'s patients. J Nucl Med. 39 (9): 1500-1508.'},{id:"B26",body:'Helmich, RC.; Janssen, MJ.; Oyen, WJ.; Bloem, BR. & Toni, I. (2011). Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 69 (2): 269-281.'},{id:"B27",body:'Rossi C, Frosini D, Volterrani D, De Feo P, Unti E, Nicoletti V, et al. Differences in nigro-striatal impairment in clinical variants of early Parkinson\'s disease: evidence from a FP-CIT SPECT study. European journal of neurology : the official journal of the European Federation of Neurological Societies. 2010; 17(4): 626-30.'},{id:"B28",body:'Spiegel J, Hellwig D, Samnick S, Jost W, Mollers MO, Fassbender K, Kirsch, CM. & Dillmann, U. (2007). Striatal FP-CIT uptake differs in the subtypes of early Parkinson\'s disease. J Neural Transm. 114 (3): 331-335.'},{id:"B29",body:'Magistretti, PJ.; Pellerin, L.; Rothman, DL. & Shulman, RG. (1999). Energy on demand. Science. 283 (5401): 496-497.'},{id:"B30",body:'Mure, H.; Hirano, S.; Tang, CC.; Isaias, IU.; Antonini, A.; Ma, Y.; Dhawan, V. & Eidelberg, D. (2011). Parkinson\'s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage. 54 (2): 1244-1253.'},{id:"B31",body:'Parker, F.; Tzourio, N.; Blond, S.; Petit, H. & Mazoyer, B. (1992). Evidence for a common network of brain structures involved in parkinsonian tremor and voluntary repetitive movement. Brain Res. 584 (1-2): 11-17.'},{id:"B32",body:'Boecker, H.; Wills, AJ.; Ceballos-Baumann, A.; Samuel, M.; Thomas, DG.; Marsden, CD. & Brooks, DJ. (1997). Stereotactic thalamotomy in tremor-dominant Parkinson\'s disease: an H2(15)O PET motor activation study. Ann Neurol. 41 (1): 108-111.'},{id:"B33",body:'Wielepp, JP.; Burgunder, JM.; Pohle, T.; Ritter, EP.; Kinser, JA. & Krauss, JK. (2001). Deactivation of thalamocortical activity is responsible for suppression of parkinsonian tremor by thalamic stimulation: a 99mTc-ECD SPECT study. Clin Neurol Neurosurg. 103 (4): 228-231.'},{id:"B34",body:'Rezai, AR.; Lozano, AM.; Crawley, AP.; Joy, ML.; Davis, KD.; Kwan, CL.; Dostrovsky, JO.; Tasker, RR. & Mikulis, DJ. (1999). Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. J Neurosurg. 90 (3): 583-590.'},{id:"B35",body:'Perlmutter, JS.; Mink, JW.; Bastian, AJ.; Zackowski, K.; Hershey, T.; Miyawaki, E.; Koller, W. & Videen, TO. (2002). Blood flow responses to deep brain stimulation of thalamus. Neurology. 58 (9): 1388-1394.'},{id:"B36",body:'Haslinger, B.; Boecker, H.; Buchel, C.; Vesper, J.; Tronnier, VM.; Pfister, R.; Alesch, F.; Moringlane, JR.; Krauss, JK.; Conrad, B.; Schwaiger, M. & Ceballos-Baumann, AO. (2003). Differential modulation of subcortical target and cortex during deep brain stimulation. Neuroimage. 18 (2): 517-524.'},{id:"B37",body:'Fukuda M, Barnes A, Simon ES, Holmes A, Dhawan V, Giladi N, Fodstad H, Ma Y, Eidelberg D. (2004). Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. Neuroimage. 21 (2): 608-615.'},{id:"B38",body:'Perlmutter, JS. & Mink, JW. (2006). Deep brain stimulation. Ann Rev Neurosci. 29: 229-257.'},{id:"B39",body:'Ohye, C. & Narabayashi, H. (1979). Physiological study of presumed ventralis intermedius neurons in the human thalamus. J Neurosurg. 50 (3): 290-297.'},{id:"B40",body:'Ohye, C.; Shibazaki, T.; Hirai, T.; Wada, H.; Hirato, M. & Kawashima, Y. (1989). Further physiological observations on the ventralis intermedius neurons in the human thalamus. J Neurophysiol. 61 (3): 488-500.'},{id:"B41",body:'Kiss, ZH.; Davis, KD.; Tasker, RR.; Lozano, AM.; Hu, B. & Dostrovsky, JO. (2003). Kinaesthetic neurons in thalamus of humans with and without tremor. Exp Brain Res. 150 (1): 85-94.'},{id:"B42",body:'Lenz, FA.; Kwan, HC.; Dostrovsky, JO.; Tasker, RR.; Murphy, JT. & Lenz, YE. (1990). Single unit analysis of the human ventral thalamic nuclear group. Activity correlated with movement. Brain. 113 ( Pt 6): 1795-1821.'},{id:"B43",body:'Lenz, FA.; Kwan, HC.; Martin, RL.; Tasker, RR.; Dostrovsky, JO. & Lenz, YE. (1994). Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain. 117 ( Pt 3): 531-543.'},{id:"B44",body:'Lenz, FA.; Tasker, RR.; Kwan, HC.; Schnider, S.; Kwong, R.; Murayama, Y.; Dostrovsky, JO. & Murphy, JT. (1988). Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic "tremor cells" with the 3-6 Hz component of parkinsonian tremor. J Neurosci. 8 (3): 754-764.'},{id:"B45",body:'Ohye, C.; Saito, U.; Fukamachi, A. & Narabayashi, H. (1974). An analysis of the spontaneous rhythmic and non-rhythmic burst discharges in the human thalamus. J Neurol Sci. 22 (2): 245-259.'},{id:"B46",body:'Lamarre, Y. & Joffroy, A. Experimental tremor in monkey: activity of thalamic and precentral cortical neurons in the absence of peripheral feedback. In: Poirier LJ, Sourkes TI, Bedard P, editors. Adcances in Neurology. New York: Raven Press; 1979. p. 109-122.'},{id:"B47",body:'Ohye, C.; Bouchard, R.; Larochelle, L.; Bedard, P.; Boucher, R.; Raphy, B. & Poirier, LJ. (1970). Effect of dorsal rhizotomy on postural tremor in the monkey. Exp Brain Res. 10 (2): 140-150.'},{id:"B48",body:'Lee, RG. & Stein, RB. (1981). Resetting of tremor by mechanical perturbations: a comparison of essential tremor and parkinsonian tremor. Ann Neurol. 10 (6): 523-531.'},{id:"B49",body:'Kobayashi, K.; Katayama, Y.; Kasai, M.; Oshima, H.; Fukaya, C. & Yamamoto, T. (2003). Localization of thalamic cells with tremor-frequency activity in Parkinson\'s disease and essential tremor. Acta Neurochir. 87 (Suppl): 137-139.'},{id:"B50",body:'Brodkey, JA.; Tasker, RR.; Hamani, C.; McAndrews, MP.; Dostrovsky, JO. & Lozano, AM. (2004). Tremor cells in the human thalamus: differences among neurological disorders. J Neurosurg. 101 (1): 43-47.'},{id:"B51",body:'Hirai, T.; Shibazaki, T.; Nakajima, H.; Imai, S. & Ohye, C. (1979). Minimal effective lesion in the stereotactic treatment of tremor. Appl Neurophysiol. 42 (5): 307-308.'},{id:"B52",body:'Nagaseki, Y.; Shibazaki, T.; Hirai, T.; Kawashima, Y.; Hirato, M.; Wada, H.; Wada, H.; Miyazaki, M. & Ohye, C. (1986). Long-term follow-up results of selective VIM-thalamotomy. J Neurosurg. 65 (3): 296-302.'},{id:"B53",body:'Katayama, Y.; Kano, T.; Kobayashi, K.; Oshima, H.; Fukaya, C. & Yamamoto, T. (2005). Difference in surgical strategies between thalamotomy and thalamic deep brain stimulation for tremor control. Journal of neurology. 252 (Suppl 4): IV17-IV22.'},{id:"B54",body:'Hariz, MI. & Hirabayashi, H. (1997). Is there a relationship between size and site of the stereotactic lesion and symptomatic results of pallidotomy and thalamotomy? Stereotact Funct Neurosurg. 69 (1-4 Pt 2): 28-45.'},{id:"B55",body:'Atkinson, JD.; Collins, DL.; Bertrand, G.; Peters, TM.; Pike, GB. & Sadikot, AF. (2002). Optimal location of thalamotomy lesions for tremor associated with Parkinson disease: a probabilistic analysis based on postoperative magnetic resonance imaging and an integrated digital atlas. J Neurosurg. 96 (5): 854-866.'},{id:"B56",body:'Schnitzler, A. & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci. 6 (4): 285-296.'},{id:"B57",body:'Hutchison, WD.; Dostrovsky, JO.; Walters, JR.; Courtemanche, R.; Boraud, T.; Goldberg, J. & Brown, P. (2004). Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci. 24 (42): 9240-9243.'},{id:"B58",body:'Timmermann, L.; Gross, J.; Dirks, M.; Volkmann, J.; Freund, HJ. & Schnitzler, A. (2003). The cerebral oscillatory network of parkinsonian resting tremor. Brain. 126 (Pt 1): 199-212.'},{id:"B59",body:'Raz, A.; Vaadia, E. & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci. 20 (22): 8559-8571.'},{id:"B60",body:'Lemstra, AW.; Verhagen-Metman, L.; Lee, JI.; Dougherty, PM. & Lenz, FA. (1999). Tremor-frequency (3-6 Hz) activity in the sensorimotor arm representation of the internal segment of the globus pallidus in patients with Parkinson\'s disease. Neurosci Lett. 267 (2): 1291-32.'},{id:"B61",body:'Hurtado, JM.; Rubchinsky, LL.; Sigvardt, KA.; Wheelock, VL. & Pappas, CT. (2005). Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson\'s disease. J Neurophysiol. 93 (3): 1569-1584.'},{id:"B62",body:'Salenius, S.; Avikainen, S.; Kaakkola, S.; Hari, R. & Brown, P. (2002). Defective cortical drive to muscle in Parkinson\'s disease and its improvement with levodopa. Brain. 125 (Pt 3): 491-500.'},{id:"B63",body:'Pollok, B.; Makhloufi, H.; Butz, M.; Gross, J.; Timmermann, L.; Wojtecki, L. & Schnitzler, A. (2009). Levodopa affects functional brain networks in Parkinsonian resting tremor. Mov Disord. 24 (1): 91-98.'},{id:"B64",body:'Logothetis, NK. & Wandell, BA. (2004). Interpreting the BOLD signal. Annu Rev Physiol. 66: 735-769.'},{id:"B65",body:'Wu, T.; Chan, P. & Hallett, M. (2010). Effective connectivity of neural networks in automatic movements in Parkinson\'s disease. Neuroimage. 49 (3): 2581-2587.'},{id:"B66",body:'Brown, P. (2003). Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson\'s disease. Mov Disord. 18 (4): 357-363.'},{id:"B67",body:'Klostermann, F.; Nikulin, VV.; Kuhn, AA.; Marzinzik, F.; Wahl, M.; Pogosyan, A.; Kupsch, A.; Schneider, GH.; Brown, P. & Curio, G. (2007). Task-related differential dynamics of EEG alpha- and beta-band synchronization in cortico-basal motor structures. Eur J Neurosci. 25 (5): 1604-1615.'},{id:"B68",body:'Paradiso, G.; Cunic, D.; Saint-Cyr, JA.; Hoque, T.; Lozano, AM.; Lang, AE. & Chen, R. (2004). Involvement of human thalamus in the preparation of self-paced movement. Brain. 127 (Pt 12): 2717-2731.'},{id:"B69",body:'Kühn, AA.; Williams, D.; Kupsch, A.; Limousin, P.; Hariz, M.; Schneider, GH.; Yarrow, K. & Brown, P. (2004). Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain. 127 (Pt 4): 735-746.'},{id:"B70",body:'Bronte-Stewart, H.; Barberini, C.; Koop, MM.; Hill, BC.; Henderson, JM. & Wingeier, B. (2009). The STN beta-band profile in Parkinson\'s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol. 215 (1): 20-28.'},{id:"B71",body:'Ray, NJ.; Jenkinson, N.; Wang, S.; Holland, P.; Brittain, JS.; Joint, C.; Stein, JF. & Aziz, T. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson\'s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol. 213 (1): 108-113.'},{id:"B72",body:'Kühn, AA.; Kupsch, A.; Schneider, GH. & Brown, P. (2006). Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson\'s disease. Eur J Neurosci. 23 (7): 1956-1960.'},{id:"B73",body:'Brown, P.; Oliviero, A.; Mazzone, P.; Insola, A.: Tonali, P. & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson\'s disease. J Neurosci. 21 (3): 1033-1038.'},{id:"B74",body:'Fogelson, N.; Kuhn, AA.; Silberstein, P.; Limousin, PD.; Hariz, M.; Trottenberg, T.; Kupsch, A. & Brown, P. (2005). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson\'s disease. Neurosci Lett. 382 (1-2): 5-9.'},{id:"B75",body:'Chen, CC.; Litvak, V.; Gilbertson, T.; Kuhn, A.; Lu, CS.; Lee, ST.; Tsai, CH.; Tisch, S.; Limousin, P.; Hariz, M. & Brown, P. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson\'s disease. Exp Neurol. 205 (1): 214-221.'},{id:"B76",body:'Eusebio, A.; Chen, CC.; Lu, CS.; Lee, ST.; Tsai, CH.; Limousin, P.; Hariz, M. & Brown, P. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson\'s disease. Exp Neurol. 209 (1): 125-130.'},{id:"B77",body:'Reck, C.; Florin, E.; Wojtecki, L.; Krause, H.; Groiss, S.; Voges, J.; Maarouf, M.; Sturm, V.; Schnitzler, A. & Timmermann, L. (2009). Characterisation of tremor-associated local field potentials in the subthalamic nucleus in Parkinson\'s disease. Eur J Neurosci. 29 (3): 599-612.'},{id:"B78",body:'Reck, C.; Himmel, M.; Florin, E.; Maarouf, M.; Sturm, V.; Wojtecki, L.; Schnitzler, A.; Fink, GR. & Timmermann, L. (2010). Coherence analysis of local field potentials in the subthalamic nucleus: differences in parkinsonian rest and postural tremor. Eur J Neurosci. 32 (7): 1202-1214.'},{id:"B79",body:'Gildenberg, PL. History of Movement Disorder Surgery. In: Lozano A, editor. Movement Disorder Surgery Prog Neurol Surg. Basel: Karger; 2000. p. 1-20.'},{id:"B80",body:'Kelly PJ. Stereotactic thalamotomies. In: Koller W, Pulson G, editors. Therapy of Parkinson\'s Disease. 2nd ed. New York: Mecel Dekker; 1995. p. 331-351.'},{id:"B81",body:'Guridi, J. & Lozano, AM. (1997). A brief history of pallidotomy. Neurosurgery. 41(5): 1169-80.'},{id:"B82",body:'Hassler, R.; Riechert, T.; Mundinger, F.; Umbach, W. & Ganglberger, JA. (1960). Physiological observations in stereotaxic operations in extrapyramidal motor disturbances. Brain. 83: 337-350.'},{id:"B83",body:'Benabid, AL.; Pollak, P.; Gao, D.; Hoffmann, D.; Limousin, P.; Gay, E.; Payen, I. & Benazzouz, A. (1996). Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. 84 (2): 203-214.'},{id:"B84",body:'Benabid, AL.; Pollak, P.; Gervason, C.; Hoffmann, D.; Gao, DM.; Hommel, M.; Perret, JE. & de Rougemont, J. (1991). Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 337 (8738): 403-406.'},{id:"B85",body:'Pollak, P.; Benabid, AL.; Limousin, P. & Benazzouz, A. (1997). Chronic intracerebral stimulation in Parkinson\'s disease. Adv Neurol. 74: 213-20.'},{id:"B86",body:'Koller, W.; Pahwa, R.; Busenbark, K.; Hubble, J.; Wilkinson, S.; Lang, A.; Tuite, P.; Sime, E.; Lozano, A.; Hauser, R.; Malapira, T.; Smith, D.; Tarsy, D.; Miyawaki, E.; Norregaard, T.; Kormos, T. & Olanow, CW. (1997). High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol. 42 (3): 292-299.'},{id:"B87",body:'Schuurman, PR.; Bosch, DA.; Merkus, MP. & Speelman, JD. (2008). Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression. Mov Disord. 23 (8): 1146-1153.'},{id:"B88",body:'Hariz, MI.; Krack, P.; Alesch, F.; Augustinsson, LE.; Bosch, A.; Ekberg, L.; Johansson, F.; Johnels, B.; Meyerson, BA.; N\'Guyen, JP.; Pinter, M.; Pollak, P.; von Raison, F.; Rehncrona, S.; Speelman, JD.; Sydow, O. & Benabid, AL. (2008). Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up. J Neurol Neurosurg Psychiatry. 79 (6): 694-699.'},{id:"B89",body:'Hariz, MI.; Shamsgovara, P.; Johansson, F.; Hariz, G. & Fodstad, H. (1999). Tolerance and tremor rebound following long-term chronic thalamic stimulation for Parkinsonian and essential tremor. Stereotact Funct Neurosurg. 72 (2-4): 208-218.'},{id:"B90",body:'Kumar, K.; Kelly, M. & Toth, C. (1999). Deep brain stimulation of the ventral intermediate nucleus of the thalamus for control of tremors in Parkinson\'s disease and essential tremor. Stereotact Funct Neurosurg. 72 (1): 47-61.'},{id:"B91",body:'Yamamoto, T.; Katayama, Y.; Kano, T.; Kobayashi, K.; Oshima, H. & Fukaya, C. (2004). Deep brain stimulation for the treatment of parkinsonian, essential, and poststroke tremor: a suitable stimulation method and changes in effective stimulation intensity. J Neurosurg. 101 (2): 201-209.'},{id:"B92",body:'Tasker, RR. (1998). Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol. 49 (2): 145-153.'},{id:"B93",body:'Wu, YR.; Levy, R.; Ashby, P.; Tasker, RR. & Dostrovsky, JO. (2001). Does stimulation of the GPi control dyskinesia by activating inhibitory axons? Mov Disord. 16 (2): 208-216.'},{id:"B94",body:'Montgomery, EBJr. & Baker, KB. (2000). Mechanisms of deep brain stimulation and future technical developments. Neurol Res. ogical research. 22 (3): 259-266.'},{id:"B95",body:'Vitek, JL. (2002). Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord. 17 (Suppl 3): S69-S72.'},{id:"B96",body:'Anderson, TR.; Hu, B.; Iremonger, K. & Kiss, ZH. (2006). Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest. J Neurosci. 26 (3): 841-850.'},{id:"B97",body:'Anderson, T.; Hu, B.; Pittman, Q. & Kiss, ZH. (2004). Mechanisms of deep brain stimulation: an intracellular study in rat thalamus. J Physiol. 559 (Pt 1): 301-313.'},{id:"B98",body:'Bekar, L.; Libionka, W.; Tian, GF.; Xu, Q.; Torres, A.; Wang, X.; Lovatt, D.; Williams, E.; Takano, T.; Schnermann, J.; Bakos, R. & Nedergaard, M. (2008). Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med. 14 (1): 75-80.'},{id:"B99",body:'Tawfik, VL.; Chang, SY.; Hitti, FL.; Roberts, DW.; Leiter, JC.; Jovanovic, S. & Lee, KH. (2010). Deep brain stimulation results in local glutamate and adenosine release: investigation into the role of astrocytes. Neurosurgery. 67 (2): 367-375.'},{id:"B100",body:'Rehncrona, S.; Johnels, B.; Widner, H.; Tornqvist, AL.; Hariz, M. & Sydow, O. (2003). Long-term efficacy of thalamic deep brain stimulation for tremor: double-blind assessments. Mov Disord. 18 (2): 163-170.'},{id:"B101",body:'Pahwa, R.; Lyons, KE.; Wilkinson, SB.; Simpson, RKJr.; Ondo, WG.; Tarsy, D.; Norregaard, T.; Hubble, JP.; Smith, DA.; Hauser, RA. & Jankovic J. (2006). Long-term evaluation of deep brain stimulation of the thalamus. J Neurosurg. 104 (4): 506-512.'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Naoki Tani",address:null,affiliation:'
Department of Neurosurgery, Otemae Hospital, Osaka, Japan
Department of Motor Neuroscience and Neurotherapeutics, Institute of Health Biosciences, Graduate School of Medical Sciences, University of Tokushima, Tokushima, Japan
Department of Motor Neuroscience and Neurotherapeutics, Institute of Health Biosciences, Graduate School of Medical Sciences, University of Tokushima, Tokushima, Japan
'}],corrections:null},book:{id:"3813",type:"book",title:"A Synopsis of Parkinson's Disease",subtitle:null,fullTitle:"A Synopsis of Parkinson's Disease",slug:"a-synopsis-of-parkinson-s-disease",publishedDate:"March 26th 2014",bookSignature:"Abdul Qayyum Rana",coverURL:"https://cdn.intechopen.com/books/images_new/3813.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-51-1229-7",pdfIsbn:"978-953-51-7198-0",reviewType:"peer-reviewed",numberOfWosCitations:7,isAvailableForWebshopOrdering:!0,editors:[{id:"32584",title:"Dr.",name:"Abdul Qayyum",middleName:null,surname:"Rana, Md, Frcpc, Frcp (hon)",slug:"abdul-qayyum-rana-md-frcpc-frcp-(hon)",fullName:"Abdul Qayyum Rana, Md, Frcpc, Frcp (hon)"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1056"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"46430",type:"chapter",title:"Mutations of PARK Genes and Alpha-Synuclein and Parkin Concentrations in Parkinson’s Disease",slug:"mutations-of-park-genes-and-alpha-synuclein-and-parkin-concentrations-in-parkinson-s-disease",totalDownloads:1872,totalCrossrefCites:1,signatures:"Anna Oczkowska, Margarita Lianeri, Wojciech Kozubski and Jolanta\nDorszewska",reviewType:"peer-reviewed",authors:[{id:"31962",title:"Dr.",name:"Jolanta",middleName:null,surname:"Dorszewska",fullName:"Jolanta Dorszewska",slug:"jolanta-dorszewska"}]},{id:"46431",type:"chapter",title:"Sleep Disturbances in Patients with Parkinson’s Disease",slug:"sleep-disturbances-in-patients-with-parkinson-s-disease",totalDownloads:2888,totalCrossrefCites:2,signatures:"Keisuke Suzuki, Tomoyuki Miyamoto, Masayuki Miyamoto, Ayaka\nNumao, Hideki Sakuta, Hiroaki Fujita, Yuji Watanabe, Masaoki\nIwanami and Koichi Hirata",reviewType:"peer-reviewed",authors:[{id:"32999",title:"Prof.",name:"Tomoyuki",middleName:null,surname:"Miyamoto",fullName:"Tomoyuki Miyamoto",slug:"tomoyuki-miyamoto"},{id:"41714",title:"Dr.",name:"Masayuki",middleName:null,surname:"Miyamoto",fullName:"Masayuki Miyamoto",slug:"masayuki-miyamoto"},{id:"43228",title:"Dr.",name:"Keisuke",middleName:null,surname:"Suzuki",fullName:"Keisuke Suzuki",slug:"keisuke-suzuki"},{id:"43230",title:"Prof.",name:"Koichi",middleName:null,surname:"Hirata",fullName:"Koichi Hirata",slug:"koichi-hirata"},{id:"170355",title:"Dr.",name:"Ayaka",middleName:null,surname:"Numao",fullName:"Ayaka Numao",slug:"ayaka-numao"},{id:"170356",title:"Dr.",name:"Hideki",middleName:null,surname:"Sakuta",fullName:"Hideki Sakuta",slug:"hideki-sakuta"},{id:"170357",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Fujita",fullName:"Hiroaki Fujita",slug:"hiroaki-fujita"},{id:"170358",title:"Dr.",name:"Yuji",middleName:null,surname:"Watanabe",fullName:"Yuji Watanabe",slug:"yuji-watanabe"},{id:"170359",title:"Dr.",name:"Masaoki",middleName:null,surname:"Iwanami",fullName:"Masaoki Iwanami",slug:"masaoki-iwanami"}]},{id:"46433",type:"chapter",title:"Melatonin in Parkinson’s Disease",slug:"melatonin-in-parkinson-s-disease",totalDownloads:2106,totalCrossrefCites:3,signatures:"Alessia Carocci, Maria Stefania Sinicropi, Alessia Catalano,\nGraziantonio Lauria and Giuseppe Genchi",reviewType:"peer-reviewed",authors:[{id:"35771",title:"Prof.",name:"Maria Stefania",middleName:null,surname:"Sinicropi",fullName:"Maria Stefania Sinicropi",slug:"maria-stefania-sinicropi"}]},{id:"46429",type:"chapter",title:"Parkinson’s Disease and Peripheral Neuropathy",slug:"parkinson-s-disease-and-peripheral-neuropathy",totalDownloads:3999,totalCrossrefCites:3,signatures:"Peter Podgorny and Cory Toth",reviewType:"peer-reviewed",authors:[{id:"26229",title:"Dr.",name:"Cory",middleName:null,surname:"Toth",fullName:"Cory Toth",slug:"cory-toth"}]},{id:"46425",type:"chapter",title:"Pathophysiology of L-Dopa Induced Dyskinesia — Changes in D1/D3 Receptors and Their Signaling Pathway",slug:"pathophysiology-of-l-dopa-induced-dyskinesia-changes-in-d1-d3-receptors-and-their-signaling-pathway",totalDownloads:3512,totalCrossrefCites:0,signatures:"Sacnité Albarran Bravo, Claudia Rangel-Barajas and Benjamín\nFlorán Garduño",reviewType:"peer-reviewed",authors:[{id:"158882",title:"Dr.",name:"Benjamín",middleName:null,surname:"Florán-Garduño",fullName:"Benjamín Florán-Garduño",slug:"benjamin-floran-garduno"}]},{id:"46427",type:"chapter",title:"Long-Term Multimodal Exercise Program Improves Motor and Non-Motor Parameters of People with Parkinson’s Disease",slug:"long-term-multimodal-exercise-program-improves-motor-and-non-motor-parameters-of-people-with-parkins",totalDownloads:1706,totalCrossrefCites:0,signatures:"L.T.B. Gobbi, F.A. Barbieri, R. Vitório, M.P. Pereira, C. Teixeira-Arroyo,\nP.C.R. Santos, L.C. Morais, P.H.S. Pelicioni, L. Simieli, D. Orcioli-Silva, J.\nLahr, A.Y.Y. Hamanaka, A.C. Salles, A.P.T. Alves, C.B. Takaki, E. Lirani-\nSilva, F.A. Cezar, F. Stella, M.D.T.O. Ferreira, M.J.D. Caetano, N.M.\nRinaldi, P.M. Formaggio, R.A. Batistela and V. Raile",reviewType:"peer-reviewed",authors:[{id:"29151",title:"Prof.",name:"Lilian",middleName:null,surname:"Gobbi",fullName:"Lilian Gobbi",slug:"lilian-gobbi"}]},{id:"46432",type:"chapter",title:"The Potential of Targeting LRRK2 in Parkinson’s Disease",slug:"the-potential-of-targeting-lrrk2-in-parkinson-s-disease",totalDownloads:2712,totalCrossrefCites:0,signatures:"F.Y. Ho, K.E. Rosenbusch and A. Kortholt",reviewType:"peer-reviewed",authors:[{id:"40511",title:"Dr",name:"Arjan",middleName:null,surname:"Kortholt",fullName:"Arjan Kortholt",slug:"arjan-kortholt"},{id:"170519",title:"Dr.",name:"Franz Y",middleName:null,surname:"Ho",fullName:"Franz Y Ho",slug:"franz-y-ho"},{id:"170520",title:"Dr.",name:"K.E.",middleName:null,surname:"Rosenbusch",fullName:"K.E. Rosenbusch",slug:"k.e.-rosenbusch"}]},{id:"46428",type:"chapter",title:"Current Use of Thalamic Vim Stimulation in Treating Parkinson’s Disease",slug:"current-use-of-thalamic-vim-stimulation-in-treating-parkinson-s-disease",totalDownloads:2169,totalCrossrefCites:2,signatures:"Naoki Tani, Ryoma Morigaki, Ryuji Kaji and Satoshi Goto",reviewType:"peer-reviewed",authors:[{id:"31103",title:"Prof.",name:"Satoshi",middleName:null,surname:"Goto",fullName:"Satoshi Goto",slug:"satoshi-goto"}]},{id:"46426",type:"chapter",title:"Deep Brain Stimulation for Camptocormia Associated with Parkinson’s Disease",slug:"deep-brain-stimulation-for-camptocormia-associated-with-parkinson-s-disease",totalDownloads:1885,totalCrossrefCites:1,signatures:"Naoki Tani, Ryuji Kaji and Satoshi Goto",reviewType:"peer-reviewed",authors:[{id:"31103",title:"Prof.",name:"Satoshi",middleName:null,surname:"Goto",fullName:"Satoshi Goto",slug:"satoshi-goto"}]}]},relatedBooks:[{type:"book",id:"435",title:"Diagnosis and Treatment of Parkinson's Disease",subtitle:null,isOpenForSubmission:!1,hash:"ead2d09d678e2b48f9c6f072ddf1f4b3",slug:"diagnosis-and-treatment-of-parkinson-s-disease",bookSignature:"Abdul Qayyum Rana",coverURL:"https://cdn.intechopen.com/books/images_new/435.jpg",editedByType:"Edited by",editors:[{id:"32584",title:"Dr.",name:"Abdul Qayyum",surname:"Rana, Md, Frcpc, Frcp (hon)",slug:"abdul-qayyum-rana-md-frcpc-frcp-(hon)",fullName:"Abdul Qayyum Rana, Md, Frcpc, Frcp (hon)"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"20327",title:"Diagnosis and Differential Diagnosis of Parkinson’s Disease",slug:"diagnosis-and-differential-diagnosis-of-parkinson-s-disease",signatures:"Paul Lingor, Jan Liman, Kai Kallenberg, Carsten-Oliver Sahlmann and Mathias Bähr",authors:[{id:"33238",title:"Dr.",name:"Paul",middleName:null,surname:"Lingor",fullName:"Paul Lingor",slug:"paul-lingor"},{id:"81845",title:"Dr.",name:"Jan",middleName:null,surname:"Liman",fullName:"Jan Liman",slug:"jan-liman"},{id:"81846",title:"Prof.",name:"Mathias",middleName:null,surname:"Bähr",fullName:"Mathias Bähr",slug:"mathias-bahr"},{id:"85743",title:"Dr.",name:"Kai",middleName:null,surname:"Kallenberg",fullName:"Kai Kallenberg",slug:"kai-kallenberg"},{id:"85744",title:"Dr.",name:"Carsten-Oliver",middleName:null,surname:"Sahlmann",fullName:"Carsten-Oliver Sahlmann",slug:"carsten-oliver-sahlmann"}]},{id:"20328",title:"Impact of Dopamine Transporter Scan in Parkinson ́s Disease",slug:"impact-of-dopamine-transporter-scan-in-parkinson-s-disease",signatures:"Jörg Spiegel",authors:[{id:"29037",title:"Dr.",name:"Jörg",middleName:null,surname:"Spiegel",fullName:"Jörg Spiegel",slug:"jorg-spiegel"}]},{id:"20329",title:"CFS Biomarkers in Parkinson’s Disease",slug:"cfs-biomarkers-in-parkinson-s-disease",signatures:"Lucilla Parnetti, Anna Castrioto, Claudia De Carlo, Davide Chiasserini, Nicola Tambasco, Aroldo Rossi, Chiara Balducci, Tommaso Beccari and Paolo Calabresi",authors:[{id:"25957",title:"Prof.",name:"Lucilla",middleName:null,surname:"Parnetti",fullName:"Lucilla Parnetti",slug:"lucilla-parnetti"},{id:"52154",title:"Dr.",name:"Davide",middleName:null,surname:"Chiasserini",fullName:"Davide Chiasserini",slug:"davide-chiasserini"},{id:"52514",title:"Prof.",name:"Tommaso",middleName:null,surname:"Beccari",fullName:"Tommaso Beccari",slug:"tommaso-beccari"},{id:"52515",title:"BSc",name:"Chiara",middleName:null,surname:"Balducci",fullName:"Chiara Balducci",slug:"chiara-balducci"},{id:"52516",title:"Dr.",name:"Anna",middleName:null,surname:"Castrioto",fullName:"Anna Castrioto",slug:"anna-castrioto"},{id:"52517",title:"Dr.",name:"Nicola",middleName:null,surname:"Tambasco",fullName:"Nicola Tambasco",slug:"nicola-tambasco"},{id:"52518",title:"Prof.",name:"Aroldo",middleName:null,surname:"Rossi",fullName:"Aroldo Rossi",slug:"aroldo-rossi"},{id:"52519",title:"Prof.",name:"Paolo",middleName:null,surname:"Calabresi",fullName:"Paolo Calabresi",slug:"paolo-calabresi"},{id:"82792",title:"Dr.",name:"Claudia",middleName:null,surname:"De Carlo",fullName:"Claudia De Carlo",slug:"claudia-de-carlo"}]},{id:"20330",title:"Neuropsychological Functions and SPECT Neuroimaging in Parkinson’s Disease",slug:"neuropsychological-functions-and-spect-neuroimaging-in-parkinson-s-disease",signatures:"Lambros Messinis, Athanasios Papathanasiou, Epameinondas Lyros, George Gatzounis and Panagiotis Papathanasopoulos",authors:[{id:"29923",title:"Dr.",name:"Lambros",middleName:null,surname:"Messinis",fullName:"Lambros Messinis",slug:"lambros-messinis"},{id:"39190",title:"Dr.",name:"Athanasios",middleName:null,surname:"Papathanasiou",fullName:"Athanasios Papathanasiou",slug:"athanasios-papathanasiou"},{id:"39191",title:"Dr.",name:"Epameinondas",middleName:null,surname:"Lyros",fullName:"Epameinondas Lyros",slug:"epameinondas-lyros"},{id:"39192",title:"Prof.",name:"Panagiotis",middleName:null,surname:"Papathanasopoulos",fullName:"Panagiotis Papathanasopoulos",slug:"panagiotis-papathanasopoulos"},{id:"80510",title:"Prof.",name:"George",middleName:null,surname:"Gatzounis",fullName:"George Gatzounis",slug:"george-gatzounis"}]},{id:"20331",title:"Imaging Dyskinesias in Parkinson’s Disease",slug:"imaging-dyskinesias-in-parkinson-s-disease",signatures:"Marios Politis and Clare Loane",authors:[{id:"26817",title:"Dr.",name:"Marios",middleName:null,surname:"Politis",fullName:"Marios Politis",slug:"marios-politis"},{id:"40494",title:"MSc",name:"Clare",middleName:null,surname:"Loane",fullName:"Clare Loane",slug:"clare-loane"}]},{id:"20332",title:"Combinations of Markers Provide Clues to the Underlying Neurodegenerative Disorder in REM Sleep Behavior Disorder",slug:"combinations-of-markers-provide-clues-to-the-underlying-neurodegenerative-disorder-in-rem-sleep-beha",signatures:"Tomoyuki Miyamoto and Masayuki Miyamoto",authors:[{id:"32999",title:"Prof.",name:"Tomoyuki",middleName:null,surname:"Miyamoto",fullName:"Tomoyuki Miyamoto",slug:"tomoyuki-miyamoto"},{id:"41714",title:"Dr.",name:"Masayuki",middleName:null,surname:"Miyamoto",fullName:"Masayuki Miyamoto",slug:"masayuki-miyamoto"}]},{id:"20333",title:"Advances in Drug Therapy: Alternative Treatments for the Control of Motor Fluctuations and Dyskinesias",slug:"advances-in-drug-therapy-alternative-treatments-for-the-control-of-motor-fluctuations-and-dyskinesia",signatures:"José Matías Arbelo González and Rocío Malo de Molina Zamora",authors:[{id:"35346",title:"Dr.",name:"José-Matías",middleName:null,surname:"Arbelo",fullName:"José-Matías Arbelo",slug:"jose-matias-arbelo"},{id:"136479",title:"Dr.",name:"Rocío",middleName:null,surname:"Malo De Molina Zamora",fullName:"Rocío Malo De Molina Zamora",slug:"rocio-malo-de-molina-zamora"}]},{id:"20334",title:"The Role of Feedback in Decision Making",slug:"the-role-of-feedback-in-decision-making",signatures:"Magda Osman",authors:[{id:"25975",title:"Dr.",name:"Magda",middleName:null,surname:"OSman",fullName:"Magda OSman",slug:"magda-osman"}]},{id:"20335",title:"Balance and Gait Rehabilitation in Patients with Parkinson’s Disease",slug:"balance-and-gait-rehabilitation-in-patients-with-parkinson-s-disease",signatures:"Nicola Smania, Alessandro Picelli, Christian Geroin, Patrizia Ianes, Elisabetta La Marchina, Andrea Zenorini and Marialuisa Gandolfi",authors:[{id:"48223",title:"Prof.",name:"Nicola",middleName:null,surname:"Smania",fullName:"Nicola Smania",slug:"nicola-smania"},{id:"48224",title:"Dr.",name:"Alessandro",middleName:null,surname:"Picelli",fullName:"Alessandro Picelli",slug:"alessandro-picelli"},{id:"48225",title:"Dr.",name:"Marialuisa",middleName:null,surname:"Gandolfi",fullName:"Marialuisa Gandolfi",slug:"marialuisa-gandolfi"},{id:"96546",title:"BSc.",name:"Christian",middleName:null,surname:"Geroin",fullName:"Christian Geroin",slug:"christian-geroin"},{id:"96547",title:"BSc.",name:"Patrizia",middleName:null,surname:"Ianes",fullName:"Patrizia Ianes",slug:"patrizia-ianes"},{id:"126701",title:"Dr.",name:"Elisabetta",middleName:null,surname:"La Marchina",fullName:"Elisabetta La Marchina",slug:"elisabetta-la-marchina"},{id:"126702",title:"Dr.",name:"Andrea",middleName:null,surname:"Zenorini",fullName:"Andrea Zenorini",slug:"andrea-zenorini"}]},{id:"20336",title:"How to Stay Active with Parkinson’s Disease",slug:"how-to-stay-active-with-parkinson-s-disease",signatures:"Abu Qutubuddin",authors:[{id:"27713",title:"Prof.",name:"Abu",middleName:null,surname:"Qutubuddin",fullName:"Abu Qutubuddin",slug:"abu-qutubuddin"}]},{id:"20337",title:"Invasive and Non-Invasive Stimulation in Parkinson’s Disease",slug:"invasive-and-non-invasive-stimulation-in-parkinson-s-disease",signatures:"Caspar Stephani",authors:[{id:"42080",title:"Dr.",name:"Caspar",middleName:null,surname:"Stephani",fullName:"Caspar Stephani",slug:"caspar-stephani"}]},{id:"20338",title:"Mechanisms of High Frequency Stimulation of the Subthalamic Nucleus in Parkinson's Disease: From Local to Distal Effects on the Basal Ganglia Network",slug:"mechanisms-of-high-frequency-stimulation-of-the-subthalamic-nucleus-in-parkinson-s-disease-from-loca",signatures:"Marc Savasta, Carole Carcenac and Sabrina Boulet",authors:[{id:"26561",title:"Dr.",name:"Marc",middleName:null,surname:"Savasta",fullName:"Marc Savasta",slug:"marc-savasta"},{id:"39295",title:"Dr.",name:"Carole",middleName:null,surname:"Carcenac",fullName:"Carole Carcenac",slug:"carole-carcenac"},{id:"39296",title:"Dr.",name:"Sabrina",middleName:null,surname:"Boulet",fullName:"Sabrina Boulet",slug:"sabrina-boulet"}]},{id:"20339",title:"Thalamic Deep Brain Stimulation for Parkinson’s Disease",slug:"thalamic-deep-brain-stimulation-for-parkinson-s-disease",signatures:"Ryoma Morigaki, Shinji Nagahiro, Ryuji Kaji and Satoshi Goto",authors:[{id:"31103",title:"Prof.",name:"Satoshi",middleName:null,surname:"Goto",fullName:"Satoshi Goto",slug:"satoshi-goto"}]},{id:"20340",title:"Post-Operative Management of Parkinson Patients with Deep Brain Stimulation",slug:"post-operative-management-of-parkinson-patients-with-deep-brain-stimulation",signatures:"Niels Allert and Volker Arnd Coenen",authors:[{id:"27963",title:"Dr.",name:"Niels",middleName:null,surname:"Allert",fullName:"Niels Allert",slug:"niels-allert"},{id:"40727",title:"Prof.",name:"Volker Arnd",middleName:null,surname:"Coenen",fullName:"Volker Arnd Coenen",slug:"volker-arnd-coenen"}]}]}],publishedBooks:[{type:"book",id:"434",title:"Alzheimer's Disease Pathogenesis",subtitle:"Core Concepts, Shifting Paradigms and Therapeutic Targets",isOpenForSubmission:!1,hash:"49f4c7dbf69e8a9eaf780e37f4aae1ab",slug:"alzheimer-s-disease-pathogenesis-core-concepts-shifting-paradigms-and-therapeutic-targets",bookSignature:"Suzanne De La Monte",coverURL:"https://cdn.intechopen.com/books/images_new/434.jpg",editedByType:"Edited by",editors:[{id:"29111",title:"Dr.",name:"Suzanne",surname:"De La Monte",slug:"suzanne-de-la-monte",fullName:"Suzanne De La Monte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3393",title:"Current Advances in Amyotrophic Lateral Sclerosis",subtitle:null,isOpenForSubmission:!1,hash:"070e10ef61935de43d68e3d6bd918abb",slug:"current-advances-in-amyotrophic-lateral-sclerosis",bookSignature:"Alvaro G. Estévez",coverURL:"https://cdn.intechopen.com/books/images_new/3393.jpg",editedByType:"Edited by",editors:[{id:"82021",title:"Prof.",name:"Alvaro",surname:"Estévez",slug:"alvaro-estevez",fullName:"Alvaro Estévez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7160",title:"Selected Topics in Myasthenia Gravis",subtitle:null,isOpenForSubmission:!1,hash:"eeda0ab67d079aaaef6c71f9d7f1bb26",slug:"selected-topics-in-myasthenia-gravis",bookSignature:"Isam Jaber Al-Zwaini and Ali AL-Mayahi",coverURL:"https://cdn.intechopen.com/books/images_new/7160.jpg",editedByType:"Edited by",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10334",title:"Dementia in Parkinson’s Disease",subtitle:"Everything you Need to Know",isOpenForSubmission:!1,hash:"3368e4a78022792496a7a727ac408f3a",slug:"dementia-in-parkinson-s-disease-everything-you-need-to-know",bookSignature:"Lin Zhang and John M. Olichney",coverURL:"https://cdn.intechopen.com/books/images_new/10334.jpg",editedByType:"Edited by",editors:[{id:"182291",title:"Prof.",name:"Lin",surname:"Zhang",slug:"lin-zhang",fullName:"Lin Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"627",title:"Novel Aspects on Epilepsy",subtitle:null,isOpenForSubmission:!1,hash:"cb58d1e3b33663ecd8ea6e86816c3117",slug:"novel-aspects-on-epilepsy",bookSignature:"Humberto Foyaca-Sibat",coverURL:"https://cdn.intechopen.com/books/images_new/627.jpg",editedByType:"Edited by",editors:[{id:"142346",title:"Prof.",name:"Humberto",surname:"Foyaca Sibat",slug:"humberto-foyaca-sibat",fullName:"Humberto Foyaca Sibat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"72651",title:"Glyphosate Residues in Soil and Air: An Integrated Review",doi:"10.5772/intechopen.93066",slug:"glyphosate-residues-in-soil-and-air-an-integrated-review",body:'\n
\n
1. Introduction
\n
After World War II, the world was in the need to overcome food scarcity. Therefore, several pest and weed management techniques were adopted by farmers all over the world using various synthetic herbicides. The invention of glyphosate (GLY; N-(phosphonomethyl) glycine) was a big breakthrough in that era. GLY with CAS No. 1071-83-6 is a broad-spectrum, postemergent, nonselective, and synthetic universal herbicide, whose commercial formulations are referred to as glyphosate-based herbicides (GBHs) [1, 2]. Glyphosate was first synthesized in 1950 by Swiss chemist Henry Martin, who worked for the Swiss company Cilag. The work was never published. Its herbicidal activity was not discovered until GBHs were resynthesized and tested in 1970, being used for this purpose since 1974. It was the Monsanto Corporation in 1974 that introduced and made commercially available the herbicidal formulation Roundup containing GLY as active substance. Farmers quickly adopted glyphosate for agricultural weed control, gaining the potential to kill weeds without killing their crops. Indeed, glyphosate proved able to kill weeds without killing their crops, especially annual broadleaf weeds and grasses known to compete with commercial crops grown around the globe by interfering with the synthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan [3].
\n
Since then, its use in agricultural and nonagricultural settings has steadily increased from a total of 0.6 Mg applied in 1974 to a total of 125.5 Mg applied in 2014, and it is currently the most widely used herbicide in the United States and throughout the world [4, 5]. Monsanto’s last commercially relevant US patent expired in 2000. Nowadays, GLY formulations that are used as a broad-spectrum systemic herbicide have been widely applied in agronomic crops and orchards. Furthermore, GLY formulations are currently approved by regulatory bodies and marketed worldwide by many agrochemical companies, such as Bayer, Dow AgroSciences, and Monsanto, in different solution strengths and with various adjuvants.
\n
GLY approval is renewed in the European Union (EU) on 16 December 2017, while its approval expires on 15 December 2022. Therefore, GLY can be used as an active substance in plant protection products (PPPs), until 15 December 2022. GLY has been thoroughly assessed, under an intense debate due to a concern about its effects on the environment and human health, by the Member States, the European Chemicals Agency (ECHA), and the European Food Safety Authority (EFSA) in recent years [6, 7]. An important prerequisite for GLY upcoming renewal as an ingredient in PPPs is that GLY should not adversely affect the environment and human and animal health as delineated by European regulation [8].
\n
\n
\n
2. Glyphosate residues in soil
\n
\n
2.1 Environmental fate of glyphosate
\n
\n
2.1.1 Glyphosate in the soil
\n
Given the widespread use of glyphosate, the investigation of the relationship between glyphosate and soil ecosystem is critical and has great significance for its valid application and environmental safety evaluation. Although herbicides containing glyphosate are not intentionally applied directly to the soil, they may contaminate soils in and around the treated areas, via spray drift during their application and after being washed off from leaf surfaces with rainfall.
\n
The fate of glyphosate in soil is complex and attributed to mineralization, degradation, immobilization, and leaching. Several studies trying to identify and understand the mechanisms that control the fate of chemicals as a source of environmental contamination have been published in previous years, especially in soils and water. Some were conducted with the acid form of glyphosate and others with formulated products, since glyphosate is not introduced into the environment as pure active ingredients but as formulated products containing co-formulant chemicals (adjuvants) and other additives. In a recent review, Mesnage et al. presented an overview of the most common surfactants containing co-formulants in glyphosate-based herbicides and explained whether the presence of such surfactant (e.g., Triton CG-110) has the potential to affect adsorption, leaching, and mineralization of glyphosate in the soil [9].
\n
The fate of glyphosate depends on soil composition, its physicochemical properties (texture, organic matter content, pH), its biological properties (microbial community, climatic conditions), the chemical properties of the specific pesticide, as well as the timing between precipitation and pesticide application [10, 11, 12, 13]. A recent study by Muskus et al. showed that temperature, pH, and total organic carbon (TOC) variations influenced the mineralization kinetics of glyphosate as well as the amount of extractable glyphosate and the extent of bio-NER formation over time in a German soil [14].
\n
Glyphosate degrades at a relatively rapid rate in most soils, with a half-life estimated to be between 7 and 60 days. The relatively rapid degradation of glyphosate has the advantage of limiting its role in polluting the environment, especially soil and water resources. However, its degradation could increase the pollution risk by its metabolites: aminomethylphosphonic acid (AMPA) and/or sarcosine. The degradation of the herbicide molecule as described in the literature (Figure 1) can follow two paths: the first is based on the breakdown of the carbon-nitrogen bond and leads to the formation of AMPA (main metabolite of glyphosate) via glyphosate oxidoreductase which is further degraded to carbon dioxide, while the second way is based on the splitting of the carbon-phosphorus (C-P) bond that is mediated by C-P lyase enzyme and results in the formation of sarcosine and glycine [15, 16, 17, 18, 19, 20]. However, AMPA also exists in the environment as a photodegradation product of aminopolyphosphonates in water [21].
\n
Figure 1.
Main glyphosate biodegradation pathways in the environment [5].
\n
Glyphosate is a small, amphoteric molecule characterized by three polar functional groups. These are the phosphonomethyl, amine, and carboxymethyl groups arranged in a linear manner. As a result of the presence of those groups in its structure, glyphosate is an ionic compound (log KOW = −3.20), highly polar and soluble in water (10.5 g L−1 at 20°C). GPS is a polyprotic acid with four pKa values, 0.7, 2.2, 5.9, and 10.6, 8 meaning that the speciation of the molecule is dependent upon the pH value of the solution. Three pKa values, 0.9, 5.6, and 10.2, characterize AMPA. Over the pH values commonly found in soils, mono- and divalent anions are the predominant species present [6, 22].
\n
Glyphosate is soluble in water, but it also binds onto soil particles under certain conditions, particularly in clays. Numerous laboratory studies have shown that the absorption constant of the molecule in the soil varies between 8 and 377 dm3/kg. This coefficient value indicates a high absorption in the soil. Glyphosate adsorption to soil, and later release from soil, varies depending on the characteristics and composition of the soil (clay, sand, or gravel), temperature, and soil moisture. So it may quickly wash out of sandy soils or last for more than a year in soils with a high clay content. Even when bound to soil particles, it may dissolve back into soil water later on, for example, in the presence of phosphates. Glyphosate can also form complexes with metal ions, potentially affecting the availability of nutrients in the soil.
\n
The mechanism of glyphosate sorption to soil is similar to that of phosphate fertilizers, the presence of which can reduce glyphosate sorption [23]. Glyphosate compared to most other pesticides strongly absorbs to soil and is not expected to move vertically below the six-inch soil layer, exception made of a colloid-facilitated transport. Its soluble residues are expected to be poorly mobile in the free pore water of soils. The mobility of glyphosate in soil is very low because, as a strong chelating agent through the carboxyl, phosphonate, and amino groups, it creates the complexes that immobilize the mineral micronutrients of the soil (calcium, iron, magnesium, manganese, nickel, zinc, etc.) making them unavailable to plants [11, 24]. Similar to glyphosate, AMPA accumulates in soil and adsorbs in soils with high mineralization rates. Where strong sorption is demonstrated, glyphosate accumulation in soils can be expected. The interaction of pesticide-soil and the diffusion process lead to the formation of non-extractable residues trapped in areas not accessible to water flowing through the soil. The contamination of the environment is therefore considered to be relatively limited.
\n
Nevertheless, this adsorption is not permanent because glyphosate can also be found in lower soil layers. Many studies suggest the possibility of a slow remobilization of these residues, which could explain the low pollution level of groundwater by some pesticides at a long term. Glyphosate does have the potential to contaminate surface waters through erosion, as it adsorbs to soil particles suspended in runoff. Rain events can trigger dissolved glyphosate loss in transport-prone soils [25, 26].
\n
\n
\n
\n
2.2 Glyphosate occurrence in soil
\n
The increase of glyphosate-based herbicides has raised concerns about the occurrence of GLY and AMPA in the environment. Reports of GLY presence in the environment from other parts of the world are numerous. A considerable attention has been given to Argentina [27, 28, 29, 30], Canada [31], across the United States [32], Mexico [33], and Portugal [34] as well to Spain [35], New Zealand [36], Austria [37], and French [38].
\n
However, although GLY is the most sold herbicide in Europe, a combined approach on the occurrence and levels of glyphosate residues in European soils and air, in conjunction with analytical methods used for this scope, is still scarce, compared to the magnitude of its use though some research articles and reviews (not only focusing on soil) started to appear (indicatively see [39, 40, 41]).
\n
The first large-scale assessment of distribution of GLY and AMPA in soils from agricultural topsoils of the European Union was recently published by Silva, where glyphosate and its metabolite AMPA were tested in 317 EU agricultural topsoils; 21% of the tested EU topsoils contained glyphosate and 42% contained AMPA, while both glyphosate and AMPA displayed a maximum concentration in soil of 2 mg kg−1. Both compounds were present at higher frequencies in northern soils, while eastern and southern regions generally had the most glyphosate- and AMPA-free soils (<0.05 mg kg−1), respectively. In addition, some contaminated soils were observed in areas highly susceptible to water and wind erosion [42]. Therefore, residue threshold values in soils are urgently needed to define potential risks for soil health and off-site effects related to export by wind and water erosion.
\n
\n
\n
2.3 Analytical methods for quantification of GLY and AMPA
\n
In order to detect the presence and quantity of GLY dispersed in the environment, various laboratory analyses are performed on samples taken in situ.
\n
One of the key problems for obtaining reliable results from field samples is the use of the best suitable extraction solution, since sorption and desorption of glyphosate in soils are extremely pH dependent. Some reports showed that humic substances (substances and heterogenic mixtures dispersed and abundant in soils and sediments) adsorb glyphosate strongly due to the hydrogen bonding interactions between the two matrices. Another important aspect is that GLY is a highly polar herbicide, very soluble in water and insoluble in most organic solvents, which does not allow extraction with organic solvents and makes the extraction difficult and the preconcentration step quite lengthy. However, due to the amphoteric character of GLY and AMPA, both anionic and cationic resins have been used for preconcentration and cleanup purposes (commented in the below sections).
\n
\n
2.3.1 Extraction procedure
\n
As already mentioned, GLY has been shown to bind strongly to soils, especially to soils with high amounts of organic matter, iron, and aluminum [43, 44]. There is also evidence that glyphosate binds to clay minerals in a manner similar to inorganic phosphate [44, 45, 46]. The strength of the interactions of the phosphonate, carboxyl, and amino groups with iron oxides, silica, alumina, and organic matter depends on factors such as pH, metal cations, phosphate from fertilizers, etc. Therefore, it is hard to detect GLY without a pretreatment method [47].
\n
The choice of the best suitable extraction solution remains a problem that must be addressed accordingly.
\n
Several authors in the past reported different extraction methods of these compounds from soil, mainly using alkaline solutions with different recovery rates [48, 49, 50, 51] and most times applicable for one type of soil. In 1980 the FDA’s “Pesticide Analytical Manual” (PAM) including a procedure for the analysis of glyphosate residues in soil is published. However low and irreproducible recoveries in soil samples have been reported using this method. Later, Glass in 1983–1984 analyzed soils by alkaline extraction, followed by cleanup using flocculation with CaCl2 and anion exchange [52, 53, 54]. Yet, recoveries were still remained poor and ranged from 19 to 55%. Many extractants for soil have been tested in the years that followed with the most commonly used being aqueous bases KOH or NaOH, aqueous NH4OH or NH3, or triethylamine. Other extractants include NaHCO3, KH2PO4, mixed solutions of KH2PO4 and NH3 or NH4OH and HPO4, sodium borate buffers [55, 56, 57, 58, 59, 60], or even weak acids such as 10% phosphoric acid buffers [13, 61].
\n
Moreover, it is vital to adjust the concentration of the extraction media in such a way that high recovery rates can be obtained while avoiding matrix problems provoked by excessively aggressive alkaline media, which may enrich the dissolved humic substances in the extraction solution [49]. Humic acids interfere, for example, with the derivatization and suppress the ionization in ESI-MS/MS detectors.
\n
\n
\n
2.3.2 Analytical methods
\n
Although GLY is the most widely used agrochemical in the world, it is also the most cumbersome in its determination in analytical methods, a fact known as the “glyphosate paradox.” The challenge to detect GLY using a simple analytical method is an outcome of its ionic character, low volatility and low mass, high polarity and solubility in water, poor solubility in common organic solvents, high boiling points, difficult evaporation, and poor retention on traditional analysis columns. The quantitative and qualitative analyses of GLY (and AMPA) are extremely difficult due to the absence of fluorophores or chromophores in their structure. Furthermore, its determination at the low concentration levels required for residue analysis in different matrices is very difficult. In soil its determination is even more difficult due to the complexity of this matrix and subsequent matrix effects. The derivatization process using different derivatization reagents has been extensively used to overcome some of the above problems [62].
\n
Prior to any attempt, it is important that all analysts to work with a glass that is not silanized to avoid the typical pitfall of GLY analysis. GLY has a profound affinity to glass, and any analytical solution prepared by this way will deviate substantially from its nominal concentration.
\n
Chromatography is the most used and powerful method for the determination of GLY and its main metabolite AMPA, utilizing gas chromatography (GC) and liquid chromatography (LC) after derivatization or directly and capillary electrophoresis (CE). Conventional detectors are difficult to be used (especially for a straightforward analysis) due to the lack of chromophore and fluorophore groups in GLY. Usually, the limits of detection for GLY in soil vary between 0.01 and 0.3 mg/kg.
\n
In all cases, the analytical methodology is practically exclusive for this analyte, since the working conditions cannot be applied to the determination of pesticides different from glyphosate, except for some organophosphorus, such as glufosinate and other polar compounds, and this chemical is difficult to incorporate in the vast majority of multiresidue methods. However, many of the methods published for the determination of GLY are also suitable and report results for the determination of AMPA. The majority of developed analytical methods concerned a single matrix (most often water) and may not be suitable for other matrices. Therefore, the last decade, numerous revised methods have been published on the analysis of glyphosate and AMPA in different matrices such as water, plants, or soils. Many of them just modify several parameters of previously published methods, as the pH of the water in the extraction, cleanup procedure, and derivatization step (volume and/or concentration of the samples or reagents). Other modifications include the use of different separation techniques or detection systems or even new matrices. Fewer new methods have been reported in the past 5 years for more complex matrices such as soil. Very few articles have been published on multimatrix methods.
\n
In Table 1 numerous analytical methods that have been used for the determination of GLY and AMPA in soil matrices are summarized. Based on the given information, at present LC is the most used method since it is considered the most suitable technique for the detection of phosphonic and amino acid-type herbicides at low concentrations. Hence, the lack of chromophore or fluorophore groups makes it difficult to use conventional detection methods such as ultraviolet (UV) absorption or fluorimetry. LC–MS/MS is currently the method of choice for polar analytes due to its high selectivity and sensitivity.
Concerning soil organic matter and clay contents, the LOQ can reach 0.01 μg/g for both analytes for sandy samples, and for soil samples with a high organic matter and clay contents, LOQ is of 0.04 μg/g for glyphosate and 0.1 μg/g for AMPA
Pre-column conversion: 1. of glyphosate to glycine by Ca(ClO)2; 2. followed by reaction with OPA/ME in borate buffer (pH 9.5) to produce the fluorescent 1-(2′-hydroxyethylthio)-2-N-alkylisoindole
Pre-column conversion: 1. of glyphosate to glycine by Ca(ClO)2; 2. followed by reaction with OPA/ME in borate buffer (pH 9.5) to produce the fluorescent 1-(2′-hydroxyethylthio)-2-N-alkylisoindole
Gas chromatography methods are used after derivatization by simultaneous acylation, esterification, or trialkylsilylation reactions to convert the analytes into volatile compounds [69, 91, 92]. Typically used derivatization reagents are the mixture of trifluoroacetic anhydride (TFAA) and trifluoroethanol (TFE) or N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) containing 1% tertbutyldimethylchlorosilane (TBDMCS) in excess producing sufficiently volatile derivatives for GC analysis. These derivatization approaches can be applied not only to soil (or sediment) but to other commodities as well [91].
\n
GLY as a compound permits its detection (in conjunction with GC) by several detectors such as the flame photometric detector (FPD), flame ionization detector (FID), electron capture detector (ECD), nitrogen-phosphorus detector (NPD),and also the more sensitive and selective mass spectrometer detector (MSD). The quantification of GLY in the soil through NPD has reached an limit of quantification (LOQ) equivalent of 0.02 mg/kg [93, 94]. GC analytical methods are reliable, sensitive, and selective, but the sample preparation is very time-consuming, complicated, and tedious as all ionic groups must be derivatized. In addition, they involve anhydrous conditions, extensive cleanup using solvent partitioning steps, charcoal elimination of pigments, and a large-volume anion of cation exchange.
\n
\n
2.3.3.1 GC-MS
\n
Borjesson and Torstensson using GC-MS managed to sensitively detect GLY and AMPA in soil [48]. One point that should have been addressed was the content of humic acids a problem mentioned above as well. Extraction was tedious, involving extraction under basic conditions, adjustment of the pH to acidic, and then subjected to column purifications to achieve ligand-anion exchanges. To derivatize GLY and AMPA TFE and TFAA were used. By this way the respective ester and acetyl derivative are formed suitable for GC analysis.
\n
Utilizing the S/N approach, they presented one of the lower LOQs of the bibliography for GLY, established at 0.006 mg/kg. The application of the method in soils collected from Swedish embankments after being treated with GLY revealed the gradual degradation of GLY along with the presence of AMPA.
\n
Bergstrom et al. investigated at laboratory level GLY and AMPA in sand and clay soils [13]. More specifically, its degradation was monitored using a GC-MS method, after derivatization with TFE and TFAA. The extraction of the soil was accomplished using an alkaline solution. Selected ion monitoring was utilized to enhance selectivity and optimize sensitivity of the method. The LOQ of the method was established at 0.01 mg/kg. The studied kinetics demonstrated that GLY had a very slow degradation rate in the clay soil. Concerning AMPA, though it is more tenacious than GLY (when derived from GLY), it degrades faster than GLY.
\n
\n
\n
2.3.3.2 GC-FPD
\n
A 2019 study on GLY and AMPA analysis in soil showed that still GC-FPD can function as an adequate tool for such demanding analyses [89]. This research was intrigued by the obstacles observed in derivatization in connection with the by-product interferences in high-performance liquid chromatography (HPLC) analysis (when MS/MS mode is not utilized), which lead to inferior selectivity. Consequently, the soil samples were mixed, turned to powder, and then ultrasonic extracted using water assisted by a solid-phase extraction (SPE). After derivatization, the samples were subjected to chemical analysis. A breakthrough of this process was the three-cross derivatization, and the elaborate investigation of its optimization, aided by the orthogonal experimental design. Such design is fundamental in the selection of the optimum conditions, in this case, reaction temperature, time, and ratio of the derivatizing-coupling reagents.
\n
\n
\n
2.3.3.3 GC-NPD
\n
GC-NPD was utilized by Hu and coworkers to analyze GLY in soil, using GC-MS for verification [72]. Extraction was performed in alkaline environment, followed by acidification in the dry extract. The authors stated that NH4OH was the most adequate extractant due to lesser extracted interferences than other alkaline agents, though in other works other agents are selected [48]. Derivatization was accomplished by the use of TFE and TFAA, followed by a liquid extraction using methylene chloride. The method verified the degradation of GLY in soil in apple orchards.
\n
\n
\n
\n
2.3.4 Liquid chromatography and derivatization
\n
\n
2.3.4.1 Fundamentals
\n
The availability of derivatization techniques compatible with an aqueous extract or sample and the chromatographic separation makes LC a more attractive pre-column derivatization [91]. Derivatization approach is used to produce fluorescent derivatives and to enhance their retention in hydrophobic stationary phases prior to detection by fluorescence detection (FLD), UV detection, electrochemical detection (ECD), or tandem mass spectrometry (MS/MS). In post-column procedures, the most known reactions are ninhydrin derivatization accompanied by UV detection and fluorogenic labeling with o-phthalaldehyde (OPA) in mercaptoethanol or N,N-dimethyl-2-mercaptoethylamine after oxidation of glyphosate to glycine.
\n
Although GLY and its derivatives show high sensitivity in LC determination, a laborious cleanup procedure such as ion-exchange column chromatography is required which may result in some sample loss and lower reproducibility, or many laboratories do not have the facilities required for this type of pre- or post-column fluorogenic labeling. The use of either hydrophilic/weak exchange or reversed-phase/weak exchange mixed-mode chromatography without any derivatization, followed by diverse detection techniques including tandem mass spectrometry detection, is gaining interest [77, 95]. HPLC methods are highly sensitive with fluorogenic labeling, but they lack specificity and usually require a laborious cleanup procedure such as ion-exchange column chromatography, which may result in some sample loss and lower reproducibility.
\n
\n
\n
2.3.4.2 Pre-column procedures
\n
\n
2.3.4.2.1 FMOC derivatization
\n
Pre-column procedures are a good alternative to post-column ones, and this has gradually come to play an important role in the analysis of glyphosate. The easier, less demanding and more current popular method to analyze these compounds is derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl) followed by HPLC with FLD or MS/MS. A factorial experimental design was applied by a Chilean group in a critical analysis of this derivatization reaction [78]. The design was studied in aqueous soil extracts, unveiling the proper equilibrium between agents for the successful completion of the reaction. For example, excess of FMOC-Cl is required since there are also other active centers (amine-hydroxy groups) with which FMOC-Cl can react. Isotherm data verified the broad applicability of this method.
\n
Back in the 1990s, Sancho et al. established a method for the analysis of GLY in soil samples that involved a pre-column derivatization step with FMOC-Cl and subsequent estimation by coupled-column liquid chromatography with fluorescence detection (LC–LC/FLD) [68]. However, for the determination of glyphosate in soils based on FMOC derivatization analytics, an extraction procedure including an SPE cleanup step has been used in many studies and considered more efficient [37]. In particular, Todorovic et al. extracted soils using sodium tetraborate. Once again, a group devoted substantial time in the extraction of GLY and AMPA from soil due to the complex sorption and desorption in soil which is also pH dependent. The sodium tetraborate performed better in terms of chromatographic efficiency than KOH extraction (more matrix interferences, more humic substances, etc.). The authors after derivatizing GLY and AMPA with FMOC-Cl cleaned up-enriched the extract with a polymeric SPE cartridge. Overall, the method was fit for purpose based on the analytical results on three different types of soils.
\n
Botero-Coy et al. have established a method based on LC–MS/MS, which was successfully applied to soil samples from Colombia and Argentina [77]. This work was an improvement of the previous work in the same domain [49]. In that work, the soil samples were extracted with potassium hydroxide solution and purified with SPE Oasis HLB cartridges. A pre-column derivatization step was also required in this method for which 9-fluorenylmethylchloroformate (FMOC-Cl) was used and the purification method using SPE cartridges was troublesome and expensive. Despite these difficulties, the analysis was conducted in Spanish soils with success. But, when soil samples from the mentioned countries were analyzed by the specific protocol, their high organic content proved an obstacle in the analysis. For this reason the authors introduced a dilution step of the extract assisted by pH adjustment to 9, before the SPE step. For SPE the polymeric reversed-phase Oasis HLB cartridges proved better in retaining-releasing the FMOC derivative than Oasis MAX used with good results.
\n
Internal standard’s use compensated possible downsides during sample preparation and corrected matrix effects. An additional tool in this work was the use of high-resolution mass spectrometry exploiting the time-of-flight technology. By this way additional interferences that would affect the analysis were further elucidated using the accurate mass full-acquisition data. It is noteworthy that the authors investigated MS ions used in the MS/MS mode. Interestingly, MRM transition containing the m/z 179 was problematic since it is related to FMOC and lacks specificity. In our work (see below), the specific ion was monitored only in AMPA transition, solving this issue [88]. Overall, the analysis verified the presence of GLY and AMPA in the majority of samples.
\n
Another work in the field of GLY analysis in soil/sludge using FMOC-Cl as a derivatizing agent was presented by Sun and coworkers [96]. In this context, an optimized sample preparation protocol was developed, applying extraction with sodium phosphate and trisodium citrate solutions (aqueous) and a purification step using hexane in acidified soil. The rationale behind the use of trisodium citrate was to counteract the effect of other metal ion complexing agents (such as Mg2+, Ca2+, etc.), in which GLY binds. The method was validated in three types of soils (and sludge samples) verifying that it was fit for purpose. The demonstrated LOQ was determined at 0.04 mg/kg.
\n
A pre-column derivatization was applied by Druart and coworkers, embracing glufosinate also in their portfolio [60]. A detailed study was conducted on the parameters governing the extraction of the analytes from the matrix. Accelerated solvent extraction, ultrasonic extraction, and magnetic stirring agitation were tested to achieve optimum conditions. In the end agitation was selected. The group also optimized derivatization by selecting water as the solvent of the reaction, though the previous study showed that an equivalent mixture of H2O:ACN would compromise the solubility of both GLY and FMOC-Cl reagents [97]. In the same study, it was demonstrated that a C18 column of 30 cm superseded other columns tested, even a respective NH2 column broadly used for such separations.
\n
In addition our group has developed a methodology for GLY and AMPA detection in topsoils originating from Greece [88]. The sample preparation was envisaged by previous works (one of our group) [49, 98]. The LC–MS/MS method developed was adequate for the analysis of both active substances, showing that GLY and AMPA were detected in 37 and 45%, respectively, of the samples investigated. A breakthrough of this work was the association of the results with the land use utilizing geographical information system (GIS) databases.
\n
GLY in soil is studied for registering not only its residual prevalence (including AMPA’s) but also its degradation dynamics. With this in view, Zhang et al. investigated its dynamics using an HPLC-FD method, utilizing FMOC derivatization [3]. Results of this study showed that the degradation is dependent on the physicochemical parameters of the soil, exemplified by the pH. The behavior of GLY and AMPA was investigated in compost-amended soils by Erban and colleagues [86]. Soil depth was disclosed as a key factor on the concentrations detected. GLY and AMPA though showed a different behavior when moisture and saturated hydraulic conductivity are considered. More specifically, GLY was affected principally by moisture, whereas AMPA was impacted by this conductivity.
\n
\n
\n
2.3.4.2.2 Other fluorophores
\n
Oliveira-Pereira and colleagues, in the context of adsorption studies, determined GLY and AMPA using a low-cost reversed-phase sequential injection chromatography method [90]. More specifically, GLY was converted (pre-column) to glycine (using hypochlorite). Then, by reaction with o-phthaldialdehyde, the respective fluorescent indole was formed. Expectedly, this reaction reduces the polarity of the indole derivative making it adequate for analysis under reversed-phase conditions (e.g., C18).
\n
\n
\n
\n
\n
2.3.5 Direct analysis: a recent cornerstone
\n
Direct analysis of GLY and AMPA, avoiding the derivatization step, is still a challenge for the analysts. In this context, Marek and Koskinen developed a method for the straightforward analysis of GLY and AMPA in soil using for separation a Bio-Rad cation H exchange column coupled to LC–MS/MS [61]. The sample preparation involved mixing of soil with phosphoric acid solutions and sequential extractions advancing from a specific SPE technology. The combined extracts were purified using IC-Chelate cartridges known for their ability to exchange transition metals and divalent cations. A portion of the end extract was reacidified and passed through an IC-RP SPE cartridge to eliminate hydrophobic interferences prior to analysis. This work managed to provide very high recoveries for both substances regardless of the type of soil, which is a clear advantage.
\n
\n
\n
2.3.6 Hydrophilic interaction liquid chromatography (HILIC) and normal phase, a new frontier for GLY and AMPA in soil analysis
\n
Due to the chemical nature of GLY, its analysis can be pursued under normal phase conditions, utilizing the same framework, the golden standard—HILIC. The latter is used in the efficient separation of a plethora of polar compounds, including pesticides. Despite its application for the separation of challenging polar pesticides, including GLY, in a variety of commodities [99], seldom are the reports for GLY analysis in soil. Marek reported a poor chromatographic performance when HILIC conditions (only one HILIC column was used; data were not shown) were used in the determination of GLY in soil and other matrices [61]. Hence, efforts need to be made in this direction, considering the inherent advantages of analyses of polar compounds under these conditions.
\n
\n
\n
2.3.7 Other methods
\n
Capillary electrophoresis methods have been reported in recent years using detection systems such as contactless conductivity, electrochemiluminescence [100], and laser-induced fluorescence [101, 102], as reviewed by Gauglitz et al. [103]. Ion chromatography [104], electrochemical method, surface resonance-enhanced spectrometry, enzyme-linked immunosorbent assay also called ELISA methods [87], spectrophotometry [73, 85], and fluorescent spectrometry [50, 55, 57, 75, 78, 80, 90, 96] were also reported to detect GLY in current literatures. However, the selectivity of ion chromatography was limited. Unlike other pesticides, the application of immunoanalytical techniques for glyphosate determination has been troublesome, although they have made some improvements.
\n
Indicatively, El-Gendy and coworkers studied GLY in Egyptian soil samples using an optimized and sensitive linker-assisted enzyme-linked immunosorbent assay (L’ELISA) [87]. To derivatize GLY succinic anhydride was used. The method was well correlated with an HPLC-FD method that used sodium tetraborate for the extraction.
\n
The advances in cutting-edge technologies can further hyphen such methods with modern mass spectrometers to provide solutions that currently are disregarded or seem problematic.
\n
\n
\n
\n
\n
3. Glyphosate residues in the atmosphere
\n
\n
3.1 General aspects
\n
The environmental pollution instigated by the use of plant protection products, commonly referred to as pesticides, is one of the most serious problems that facing the world due to their potential toxicity, high persistence, and slow degradation. Pesticide fate in the environment is characterized by a number of complex processes occurring in different environmental compartments, such as air, soils, and plants [105]. A wide variety of pesticides has been detected in different environmental media, including water bodies, soil, and the atmosphere. The extended use of pesticides containing persistent active ingredients can lead to raised concentrations due to the accumulation in the environment and long-term exposure to nontarget organisms.
\n
Since the last decades, there has been an increasing global concern over the human health impacts attributed to the environmental pollution and specifically to air pollution. During applications, a noteworthy segment of applied pesticides ranged from 15 to 40% is dispersed in the atmosphere and can travel with long-range atmospheric transport [106]. Thus, the atmosphere has been considered as an important spread vector at local, regional, and global scales. It has been reported in the international literature that air pesticide contamination was observed both in urban and rural areas with concentration levels ranging from some picograms to several nanograms per cubic meter [107]. However, the contamination of air by pesticides is an aspect of atmospheric pollution that remains less documented than that of other environments.
\n
Worry over the transport of pesticides in air started in the 1960s with the detection of persistent and volatile substances such as DDT, dieldrin, and aldrin far from their application sites. The first legislation to consider air as an exposure route was in the United States in 1971. Since then the issue of pesticides in air has been subject to sporadic regulatory concern, especially in Europe [108].
\n
Milestone legislation in Europe concerning pesticides in the atmosphere occurred in 1996 with the Stockholm convention on persistent organic pollutants (POPs). This regulation covers all chemicals, including pesticides, and lays down principles to identify substances for which aerial transport may be noteworthy [108].
\n
Long-range transport in air and water can result in the exposure of remote and particularly vulnerable ecosystems such as the Arctic [109, 110].
\n
Pesticides enter into the atmosphere, and their residues can move away from the application sites resulting in accidental exposure for humans, animals, and plants, close or distant the treated sites. It is well recognized that the exposure and effect assessment of pesticides should not be constrained to the target area, and its close zone because this does not adequately cover possible hazards associated with their use.
\n
The most common routes of pesticide entry into the atmosphere could be the drift during their application, volatilization from the soil, surface water or crop foliage, as well as wind erosion of deposited residues [111, 112, 113]. Once they enter in the atmosphere, pesticides are distributed between the gaseous and particulate phases depending on parameters such as:
In the atmosphere, pesticides are distributed between particle and vapor phases based on their vapor pressure, the ambient temperature, and the concentration of suspended particulate matter. Taking into account the low volatility of the majority of the most commonly used pesticides; it could be considered that they are often absorbed on the surface of atmospheric particles. In that way they may incur transformation processes resulting in the formation of secondary metabolites which could be even more hazardous than the parent released compounds [106]. Pesticides released into the atmosphere can settle to the ground, be broken down by sunlight and water, or dissipate into the surrounding air.
\n
\n
3.1.1 Transfer processes of pesticides in the air
\n
During and after the application of a pesticide, a considerable portion of the amount applied may enter into the atmosphere through many different routes (the most important will be briefly discussed) and consequently may be transported over shorter and longer distance.
\n
Through spray application of pesticides, a fraction of the spray would exist as pesticides in the gas phase and as small droplets or particles. The latter do not reach their target due to their extremely small size and cannot be captured by drift collectors. This fraction that exists in the gas phase and as aerosol should be taken into account along with drift.
\n
Volatilization is defined as the transfer of pesticide residues into the gas phase after application. Volatilization from treated areas is a constant process and could be the main dissipative route for numerous pesticides [115]. Its extent is governed by the physical and chemical properties of the pesticide such as vapor pressure and Henry’s law constant; the application parameters such as the droplet size and the water volume; and finally the climatic conditions during and after application [108, 116]. Volatilization may be swayed by relative humidity, the atmospheric pressure, and the wind velocity [117]. The compound’s volatility with medium vapor pressure values is significantly influenced by environmental and application factors, whereas substances with high vapor pressure values present high volatilization which does not depend on other factors. It is broadly established in the literature that vapor pressure can be used to categorize pesticides with a very high or with no volatilization potential. Vapor pressure also rules the partitioning of a semi-volatile constituent between the gas and the airborne particle phases. According to Bidleman substances with a vapor pressure value higher than 10−2 Pa are mainly expected in the vapor phase, while those with vapor pressure value lower 10−5 Pa solely exist in the particle-adsorbed phase [118]. Pesticides with vapor pressure between 10−2 and 10−5 Pa values partition between these phases.
\n
A significant amount of pesticides entering into the atmosphere for several days or weeks after pesticide application comprises volatilization from the soil and plant surfaces as well as wind erosion of soil particles containing sorbed pesticides [119, 120]. Many parameters such as the physicochemical properties of the pesticide (vapor pressure, solubility, adsorption coefficient, molecular mass, and chemical nature), the soil properties (water content, soil density, soil organic matter content, clay content/texture, soil pH), the weather conditions (air temperature, solar radiation, rain, air humidity, and wind), and the agricultural practices used (application date and rate and formulation type) may influence the volatilization process [111].
\n
Volatilization from plants is considered up to three times higher than soil volatilization under similar meteorological conditions. The vapor pressure and Henry’s law constant are the physicochemical characteristics of the compound that seem to be related with the degree of volatilization. Additionally, application methods and weather conditions may also play an important role in the volatilization process from plants [121].
\n
The Focus Air group has deemed that vapor pressure is the most significant factor affecting volatilization and deemed that active ingredients applied to soil with vapor pressure values higher than 10−4 Pa and active ingredients applied to plants with vapor pressure values higher than 10−5 Pa have a high possibility to enter in the air and for that reason require a risk assessment evaluation before authorization [108].
\n
Pesticides existing in the aerial phase could be carried by wind and deposited accidentally in untreated areas by dry (gas and particle) and wet (rain and snow) deposition [122].
\n
The atmosphere could be efficiently cleaned of suspended particulate matter to which pesticides might be sorbed by rainfall, and thus gas-phase pesticides can partition directly into a falling raindrop [122].
\n
High pesticide concentrations in the air could be considered seasonal and often associated with local use and thus occur during the spraying months [123]. The physical and chemical properties of each pesticide also play a significant role in determining if a pesticide converts airborne, whether it then exists primarily in the gaseous or particle phase, and how efficiently rainfall removes it from the atmosphere. The period of time that a pesticide is applied, its amount, and the cultivated area play also significant roles in whether a pesticide exists in the atmosphere and at which concentration [113].
\n
\n
\n
3.1.2 Glyphosate occurrence in the air
\n
Glyphosate (N-[phosphonomethyl] glycine), a broad-spectrum, nonselective, and post emergence herbicide, is the most widely used pesticide worldwide.
\n
Although numerous laboratory and field studies have been carried out for the determination of glyphosate and AMPA in the aquatic environment, there are limited studies in field soils. Furthermore, atmospheric concentrations of glyphosate and AMPA are shabbily documented as very few studies have monitored them in the atmosphere [124].
\n
The first report about the atmospheric concentrations of glyphosate and AMPA had been published in 1991 in order to present the results of a study that had been conducted in 1988 in northeastern Finland for measuring the workers’ exposure to glyphosate when they used sprayers connected to brush saws. In that study glyphosate was determined from the breathing zone and from urine samples. Based on the results of this study and at the end of the spraying week, two air samples were found to have measurable levels of glyphosate at concentrations 2.8 and 15.7 μg m−3. AMPA had not been detected in any of the air samples [125].
\n
In 2002, Humphries et al. examined the atmospheric samples at three different sites in east-central Alberta. For the purposes of the study, air samples were collected before the application of glyphosate and after its application and for 24 h time period at regular intervals. Glyphosate was not detected in any of the collected air samples at levels above the method LOQ; however, it was detected in few particulate samples [126]. The nonexistence of glyphosate in the polyurethane foam indicates that glyphosate is not released as the vapor forms into the atmosphere but rather is carried by a particulate matter.
\n
In 2004, glyphosate was examined in 59 atmospheric samples in Hauts-de-France Region in France, with a detection occurrence of 14% and a maximum concentration of 0.19 ng m−3 [124, 127].
\n
Chang et al. reported that both glyphosate and AMPA had been detected in the ambient air of Iowa, Indiana, and Mississippi during two growing seasons of the years 2007 and 2008. Atmospheric concentrations of glyphosate reached 9.1 and 5.4 ngm−3 in Mississippi and Iowa agricultural areas, respectively; however atmospheric concentrations of AMPA touched 0.49 and 0.97 ngm−3 in Mississippi and Iowa, correspondingly. It had been concluded that the existence of glyphosate in air is due to spray drift or wind erosion as it is not a volatile compound whereas AMPA presence is due to wind erosion as it is a glyphosate degradation product and it is formed in soil [128]. The authors provided also measurements in rainwater and estimated that 97% of glyphosate existing in the atmosphere could be removed by weekly rainfall greater than 30 mm [129].
\n
Morshed et al. determined the atmospheric concentrations of glyphosate in treated fields in Malaysia during spray applications by a mist blower [129]. The maximum concentration of 42.96 μgm−3 was measured for glyphosate, and additionally a first modeling attempt for the estimation of glyphosate emission to the atmosphere at regional level was done; however, there were no measurements to confirm the model output.
\n
In 2014, and specifically from July to November, Sousa et al. performed a study in northeastern Brazil, in the municipality of Limoeiro do Norte-Ceará, in urban and rural areas, for the determination of the atmospheric concentrations of glyphosate. Glyphosate detected at concentrations ranged between 0.313 and 2.939 μg m3 in all collected atmospheric samples [130].
\n
During the years 2015–2016, glyphosate and AMPA were searched in 142 air samples during a 2-year field campaign in France. Samples were taken from both nonagricultural and agricultural areas, while atmospheric concentrations of glyphosate were detected at an overall frequency of 7%. AMPA was not detected in any sample. The maximum concentration of 1.04 ng m−3 was measured for glyphosate in the rural site of Cavaillon. As regards the temporal distribution of glyphosate, it had been pointed out that there was no reproducible detection pattern from 2015 to 2016 [125].
\n
\n
\n
3.1.3 Monitoring studies for pesticides in the air
\n
Generally, a few number of monitoring studies have been conducted for the determination of pesticide residues in atmospheric samples. These studies could not provide consistent results due to the variability in experimental conditions, the lack of consistency in sampling methodologies, the variation in collection time and duration, the analytes selected, the analytical methods used [131], as well as the method detection limits. Most of the studies have been performed at the national level, they are short-term as they lasted from 1 to 2 years, and for that reason, the overall conclusion on the long-term trends and the atmospheric movements of pesticides could not been reached [108].
\n
\n
\n
\n
3.2 Determination of glyphosate
\n
\n
3.2.1 Sampling and extraction procedures
\n
Pesticides existing in the atmosphere are usually at very low concentrations, and thus appropriate sampling and techniques are necessary. The most common sampling techniques used for pesticides in the ambient air could be separated into two categories: the active and the passive or diffuse samplers [132].
\n
\n
3.2.1.1 Active sampling
\n
Active samplers allow the pesticides existing in gaseous and particulate phases to be trapped by pumping air through a filter followed by a solid adsorbent. Thus, pesticides standing in the gas phase are stacked by the solid adsorbent, whereas pesticides in the particulate phase are maintained in the filter.
\n
Pesticides present in the atmosphere could be sampled through low-volume or high-volume samplers. As pesticide residues in the atmosphere are at very low concentrations, high-volume samplers are usually used [121].
\n
For sampling of semi-volatile pesticides, the use of diffusion denuder systems, which consist of a series of coaxial glass tubes coated with an appropriate adsorbent through which the air flows, is proposed [121].
\n
\n
\n
3.2.1.2 Passive sampling
\n
Passive air samplers are devices that collect pesticides from the air without the use of pump, and they are comprised of an accumulating intermediate which has a high retention capacity for the target analytes. Passive samplers are able to gather only the free gaseous phase pesticides, while the length of sampling range from few weeks to several months, considerably larger than the usual time required using the active ones [121].
\n
In 1991, Jauhiainen et al. collected air samples for the determination of glyphosate from the breathing zone through a portable pump onto an absorption liquid [125]. The air samples collected were first evaporated to dryness and then dissolved with trifluoroethanol and trifluoroacetic anhydrite.
\n
Chang et al. used high-volume active samplers for collecting air samples for the determination of glyphosate. The glass fiber filters used were baked at 550°C, cooled to the room temperature, and enfolded in aluminum foil before sampling [128, 130]. The glass fiber filters after sampling were slowly grounded in a polypropylene tube and then extracted with hydrochloric acid (pH 2) and further with a potassium hydroxide solution (pH 11). Cellulose nitrate filters were used under vacuum for filtration [128].
\n
Ravier et al. used also high-volume samplers, and the particulate samples were collected on quartz microfiber filters. The filters after sampling were protected from the light and stored at −20°C [124]. Field air blank samples were also collected for the determination of the background contamination through handling and storage. The extraction of all the samples was performed in polytetrafluoroethylene or polypropylene vessels in order to avoid loss of the studied compounds via wall adsorption. According to Ravier et al., filters were extracted with ultrahigh quality water with the addition of appropriate quantities of Borax (0.05 M) and EDTA solutions. Polyethersulfone membranes were used for sample filtration. FMOC-Cl was used as a derivatization agent.
\n
Morshed et al. performed a study for the determination of glyphosate in the atmosphere by using both active and passive sampling methods. For the purposes of the study, three different air samplers were used. Cellulose filter patches and polyurethane foam were used for passive samplers. Active samplers were also used for sampling and were connected to polyurethane foam plug for the determination of glyphosate existing in the vapor phase and a quartz fiber filter for the particulate phase of airborne glyphosate [129]. Sample extraction for both active and passive extraction methods was performed with borate buffer. FMOC-Cl was used as a derivatizing agent.
\n
High-volume air samplers were used to collect suspended, airborne particulates and trap airborne glyphosate vapors in a study conducted in Alberta’s area. A volatile glyphosate was collected on a polyurethane foam plug and particulate glyphosate on a filter paper [126, 133].
\n
Sousa et al. used a glass sample holder in which a polyurethane foam (adsorbent medium) was placed. The particulate material was collected from the glass fiber filters. Glyphosate was determined in the atmosphere after extraction from polyurethane foams with a solution comprising of monobasic potassium phosphate and methanol in ultrapure water while the pH of the solution was maintained at 2 using concentrated phosphoric acid. The samples were concentrated in a C18 solid-phase extraction cartridge.
\n
\n
\n
\n
3.2.2 Analytical method
\n
The chromatographic analysis of glyphosate and AMPA is considered tough in trace analysis. Due to their low molecular weight, low volatility, thermal lability, and excellent water solubility, their extraction and determination are complex.
\n
The main analytical techniques used for the analysis of glyphosate in atmospheric samples are liquid chromatography equipped with diode array or fluorescence detectors and liquid chromatography interfaced with a quadrupole-time-of-flight mass spectrometer or mass spectrometry. However, gas chromatographic technique with ECD has also been used.
\n
In 1991 Jauhiainen et al. reported that a gas chromatographic system equipped with ECD and fused silica has been used for glyphosate determination in air samples. Additionally a triple-quadrupole mass spectrometer equipped with fused silica was used for identification purposes.
\n
In 2011 a liquid chromatographic method for the determination of glyphosate in air samples was reported [129]. The analytical standards (stock and working) were prepared in a 0.025 M sodium borate buffer (pH 9) solution. Prior to HPLC chromatographic analysis, working standards were pre-column derivatized with a derivatizing agent (0.002 M FMOC-Cl). The liquid chromatographic system consisted of a florescence detector and a Hypersil NH2 chromatographic column, while the mobile phase comprised of 50% phosphate buffer (0.05 M potassium phosphate monobasic KH2PO4 adjusted to pH 6.0 with 7 N KOH). The glyphosate retention time was 5.6 min and the total run time was 10 min. The LOD of the method was 0.015 μg ml−1, while the LOQ was 0.05 μg ml−1 and determined through the linear calibration curve.
\n
Chang et al. reported another method for the determination of glyphosate and AMPA by using a liquid chromatography tandem mass spectrometer. Both glyphosate and AMPA were derivatized with 9-fluorenylmethylchloroformate before analysis. A gradient elution system comprised of 95% of 5 mM ammonium acetate in HPLC-MS-grade water to 100% HPLC-grade acetonitrile was used. The molecular ion and the fragment ion for glyphosate were 390 and 168. In the case of AMPA the molecular ion and the fragment ions were 332, 110, and 136 [128].
\n
Zhang et al. performed the analyses for the determination of glyphosate in the air samples of workplaces by ion chromatography using a conductivity detector. The limit of detection was found to be 0.003 mg/m3. The recovery ranged between 94.8 and 97.4% [134].
\n
According to Maria Gizeuda de F. Sousa et al., glyphosate was determined by liquid chromatography equipped with a diode array detector and a C-18 chromatographic column at 195 nm. The mobile phase consisted of 0.006 mM KH2PO4, and the flow rate set at 1.0 mL/min. Under these conditions glyphosate is eluted at 2.97 min, whereas the total analysis time was 7 min. The analytical method LOD was 0.09 μg mL−1, whereas the LOQ was 0.27 μg mL−1 [130].
\n
For the determination of glyphosate and its major metabolite AMPA, Ravier et al. used an ultra-performance liquid chromatographic (UPLC) system interfaced with a quadrupole-time-of-flight mass spectrometer and equipped with an electrospray ion source and a C18 UPLC column. The elution system consisted of water with 5 mM ammonium formate and acetonitrile. The analyses are performed in the negative ionization mode. Both the LOD and the LOQ were determined by the calibration curve and were 0.05 and 0.14 ngm−3, respectively, for glyphosate and 0.30 and 0.90 ngm−3, respectively, for AMPA [124].
\n
\n
\n
\n
\n
4. Conclusions
\n
HPLC methods are highly sensitive especially with fluorogenic labeling, but they lack specificity and usually require a laborious cleanup procedure such as ion-exchange column chromatography, which may result in some sample loss and lower reproducibility. At present LC-MS in tandem mode (MS/MS) is considered the most suitable technique for the detection of phosphoric and amino acid-type herbicides at low concentrations. Derivatization is the most common way to analyze GLY and AMPA using LC-ESI-MS/MS systems, a procedure that is described in soil matrix as well.
\n
The maximum concentrations of glyphosate in atmospheric samples correspond to the time of its application. Due to the limited number of monitoring studies for monitoring pesticides and specifically glyphosate in the air, a reliable conclusion about its fate could not be reached.
\n
\n
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"glyphosate, AMPA, soil, air, extraction, analytical methods, quantification",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/72651.pdf",chapterXML:"https://mts.intechopen.com/source/xml/72651.xml",downloadPdfUrl:"/chapter/pdf-download/72651",previewPdfUrl:"/chapter/pdf-preview/72651",totalDownloads:957,totalViews:0,totalCrossrefCites:3,dateSubmitted:"November 16th 2019",dateReviewed:"May 29th 2020",datePrePublished:"July 7th 2020",datePublished:"December 23rd 2020",dateFinished:"June 29th 2020",readingETA:"0",abstract:"Glyphosate [N-(phosphonomethyl) glycine] (GPS) is currently the most commonly applied herbicide worldwide. Given the widespread use of glyphosate, the investigation of the relationship between glyphosate and soil ecosystem is critical and has great significance for its valid application and environmental safety evaluation. However, although the occurrence of glyphosate residues in surface and groundwater is rather well documented, only few information are available for soils and even fewer for air. Due to this, the importance of developing methods that are effective and fast to determine and quantify glyphosate and its major degradation product, aminomethylphosphonic acid (AMPA), is emphasized. Based on its structure, the determination of this pesticide using a simple analytical method remains a challenge, a fact known as the “glyphosate paradox.” In this chapter a critical review of the existing literature and data comparison studies regarding the occurrence and the development of analytical methods for the determination of pesticide glyphosate in soil and air is performed.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/72651",risUrl:"/chapter/ris/72651",signatures:"Evagelia Tzanetou and Helen Karasali",book:{id:"9711",type:"book",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,fullTitle:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",publishedDate:"December 23rd 2020",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78923-828-0",printIsbn:"978-1-78923-827-3",pdfIsbn:"978-1-83962-462-9",isAvailableForWebshopOrdering:!0,editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"315500",title:"Dr.",name:"Helen",middleName:null,surname:"Karasali",fullName:"Helen Karasali",slug:"helen-karasali",email:"e.karassali@bpi.gr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"318107",title:"Dr.",name:"Evangelia",middleName:null,surname:"Tzanetou",fullName:"Evangelia Tzanetou",slug:"evangelia-tzanetou",email:"ev.tzanetou@bpi.gr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Benaki Phytopathological Institute",institutionURL:null,country:{name:"Greece"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Glyphosate residues in soil",level:"1"},{id:"sec_2_2",title:"2.1 Environmental fate of glyphosate",level:"2"},{id:"sec_2_3",title:"2.1.1 Glyphosate in the soil",level:"3"},{id:"sec_4_2",title:"2.2 Glyphosate occurrence in soil",level:"2"},{id:"sec_5_2",title:"2.3 Analytical methods for quantification of GLY and AMPA",level:"2"},{id:"sec_5_3",title:"2.3.1 Extraction procedure",level:"3"},{id:"sec_6_3",title:"Table 1.",level:"3"},{id:"sec_7_3",title:"2.3.3 Gas chromatography - Derivatization",level:"3"},{id:"sec_7_4",title:"2.3.3.1 GC-MS",level:"4"},{id:"sec_8_4",title:"2.3.3.2 GC-FPD",level:"4"},{id:"sec_9_4",title:"2.3.3.3 GC-NPD",level:"4"},{id:"sec_11_3",title:"2.3.4 Liquid chromatography and derivatization",level:"3"},{id:"sec_11_4",title:"2.3.4.1 Fundamentals",level:"4"},{id:"sec_12_4",title:"2.3.4.2 Pre-column procedures",level:"4"},{id:"sec_12_5",title:"2.3.4.2.1 FMOC derivatization",level:"5"},{id:"sec_13_5",title:"2.3.4.2.2 Other fluorophores",level:"5"},{id:"sec_16_3",title:"2.3.5 Direct analysis: a recent cornerstone",level:"3"},{id:"sec_17_3",title:"2.3.6 Hydrophilic interaction liquid chromatography (HILIC) and normal phase, a new frontier for GLY and AMPA in soil analysis",level:"3"},{id:"sec_18_3",title:"2.3.7 Other methods",level:"3"},{id:"sec_21",title:"3. Glyphosate residues in the atmosphere",level:"1"},{id:"sec_21_2",title:"3.1 General aspects",level:"2"},{id:"sec_21_3",title:"3.1.1 Transfer processes of pesticides in the air",level:"3"},{id:"sec_22_3",title:"3.1.2 Glyphosate occurrence in the air",level:"3"},{id:"sec_23_3",title:"3.1.3 Monitoring studies for pesticides in the air",level:"3"},{id:"sec_25_2",title:"3.2 Determination of glyphosate",level:"2"},{id:"sec_25_3",title:"3.2.1 Sampling and extraction procedures",level:"3"},{id:"sec_25_4",title:"3.2.1.1 Active sampling",level:"4"},{id:"sec_26_4",title:"3.2.1.2 Passive sampling",level:"4"},{id:"sec_28_3",title:"3.2.2 Analytical method",level:"3"},{id:"sec_31",title:"4. Conclusions",level:"1"},{id:"sec_35",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'\nBlair A, Fritschi L, McLaughlin J, Sergi CM, Calaf GM, Curieux FL, et al. IARC Monographs Volume 112: Evaluation of Five Organophosphate Insecticides and Herbicides. International Agency for Research on Cancer. Lyon-France: World Health Organization; 2015\n'},{id:"B2",body:'\nPanel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. Report of the Joint Committee on Pesticide Residues. Geneva: WHO/FAO; 2016\n'},{id:"B3",body:'\nZhang CP, Hu XQ , Luo JY, Wu ZY, Wang L, Li B, et al. Degradation dynamics of glyphosate in different types of Citrus orchard soils in China. Molecules. 2015;20(1):1161-1175\n'},{id:"B4",body:'\nBenbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe. 2016;28:3. DOI: 10.1186/s12302-016-0070-0\n'},{id:"B5",body:'\nGrandcoin A, Piel S, Baures E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Research. 2017;117:187-197\n'},{id:"B6",body:'\nEFSA-Glyphosate. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA Journal. 2015;13(11):4302\n'},{id:"B7",body:'\nMyers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environmental Health. 2016:19. DOI: 10.1186/s12940-016-0117-0\n'},{id:"B8",body:'\nEuropean-Regulation-1107/2009. Regulation of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/ EEC and 91/414/EEC. Official Journal of the European Union; 2009. OJ L 309, 24 November 2009. pp. 1-50\n'},{id:"B9",body:'\nMesnage R, Benbrook C, Antoniou MN. Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food and Chemical Toxicology. 2019;128:137-145\n'},{id:"B10",body:'\nLaitinen P, Siimes K, Eronen L, Ramo S, Welling L, Oinonen S, et al. Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Management Science. 2006;62(6):473-491\n'},{id:"B11",body:'\nGimsing AL, Szilas C, Borggaard OK. Sorption of glyphosate and phosphate by variable-charge tropical soils from Tanzania. Geoderma. 2007;138(1-2):127-132\n'},{id:"B12",body:'\nSorensen SR, Schultz A, Jacobsen OS, Aamand J. Sorption, desorption and mineralisation of the herbicides glyphosate and MCPA in samples from two Danish soil and subsurface profiles. Environmental Pollution. 2006;141(1):184-194\n'},{id:"B13",body:'\nBergstrom L, Borjesson E, Stenstrom J. Laboratory and lysimeter studies of glyphosate and aminomethylphosphonic acid in a sand and a clay soil. Journal of Environmental Quality. 2011;40(1):98-108\n'},{id:"B14",body:'\nMuskus AM, Krauss M, Miltner A, Hamer U, Nowak KM. Effect of temperature, pH and total organic carbon variations on microbial turnover of (13)CA(3)(15)N-glyphosate in agricultural soil. Science of the Total Environment. 2019;658:697-707\n'},{id:"B15",body:'\nBorggaard OK, Gimsing AL. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Management Science. 2008;64(4):441-456\n'},{id:"B16",body:'\nBandana B, Sharma N, Joshi R, Gulati A, Sondhia S. Dissipation kinetics of glyphosate in tea and tea-field under northwestern mid-hill conditions of India. Journal of Pesticide Science. 2015;40(3-4):82-86\n'},{id:"B17",body:'\nWang S, Seiwert B, Kastner M, Miltner A, Schaffer A, Reemtsma T, et al. (Bio)degradation of glyphosate in water-sediment microcosms—A stable isotope co-labeling approach. Water Research. 2016;99:91-100\n'},{id:"B18",body:'\nPipke R, Amrhein N. Degradation of the phosphonate herbicide glyphosate by Arthrobacter-Atrocyaneus Atcc-13752. Applied and Environmental Microbiology. 1988;54(5):1293-1296\n'},{id:"B19",body:'\nKishore GM, Jacob GS. Degradation of glyphosate by Pseudomonas sp.-Pg2982 via a sarcosine intermediate. The Journal of Biological Chemistry. 1987;262(25):12164-12168\n'},{id:"B20",body:'\nShinabarger DL, Braymer HD. Glyphosate catabolism by Pseudomonas sp. strain-Pg2982. Journal of Bacteriology. 1986;168(2):702-707\n'},{id:"B21",body:'\nLesueur C, Pfeffer M, Fuerhacker M. Photodegradation of phosphonates in water. Chemosphere. 2005;59(5):685-691\n'},{id:"B22",body:'\nSidoli P, Baran N, Angulo-Jaramillo R. Glyphosate and AMPA adsorption in soils: Laboratory experiments and pedotransfer rules. Environemental Science and Pollution Research. 2016;23(6):5733-5742\n'},{id:"B23",body:'\nMunira S, Farenhorst A, Flaten D, Grant C. Phosphate fertilizer impacts on glyphosate sorption by soil. Chemosphere. 2016;153:471-477\n'},{id:"B24",body:'\nOkada E, Costa JL, Bedmar F. Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma. 2016;263:78-85\n'},{id:"B25",body:'\nSaunders LE, Pezeshki R. Glyphosate in runoff waters and in the root-zone: A review. Toxics. 2015;3(4):462-480\n'},{id:"B26",body:'\nRichards BK, Pacenka S, Meyer MT, Dietze JE, Schatz AL, Teuffer K, et al. Antecedent and post-application rain events trigger glyphosate transport from runoff-prone soils. Environmental Science & Technology Letters. 2018;5(5):249-254\n'},{id:"B27",body:'\nAlonso LL, Demetrio PM, Etchegoyen MA, Marino DJ. Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. Science of the Total Environment. 2018;645:89-96\n'},{id:"B28",body:'\nBerman MC, Marino DJG, Quiroga MV, Zagarese H. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina. Chemosphere. 2018;200:513-522\n'},{id:"B29",body:'\nPrimost JE, Marino DJG, Aparicio VC, Costa JL, Carriquiriborde P. Glyphosate and AMPA, “pseudo-persistent” pollutants under real world agricultural management practices in the Mesopotamic pampas agroecosystem, Argentina. Environmental Pollution. 2017;229:771-779\n'},{id:"B30",body:'\nBonansea RI, Filippi I, Wunderlin DA, Marino DJG, Ame MV. The fate of glyphosate and AMPA in a freshwater endorheic basin: An ecotoxicological risk assessment. Toxics. 2018;6:3. DOI: 10.3390/toxics6010003\n'},{id:"B31",body:'\nVan Stempvoort DR, Spoelstra J, Senger ND, Brown SJ, Post R, Struger J. Glyphosate residues in rural groundwater, Nottawasaga River watershed, Ontario, Canada. Pest Management Science. 2016;72(10):1862-1872\n'},{id:"B32",body:'\nBattaglin WA, Meyer MT, Kuivila KM, Dietze JE. Glyphosate and its degradation product AMPA occur frequently and widely in us soils, surface water, groundwater, and precipitation(1). The Journal of the American Water Resources Association. 2014;50(2):275-290\n'},{id:"B33",body:'\nRuiz-Toledo J, Castro R, Rivero-Perez N, Bello-Mendoza R, Sanchez D. Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico. Bulletin of Environmental Contamination and Toxicology. 2014;93(3):289-293\n'},{id:"B34",body:'\nAbrantes N, Pereira R, Goncalves F. Occurrence of pesticides in water, sediments, and fish tissues in a Lake surrounded by agricultural lands: Concerning risks to humans and ecological receptors. Water, Air, and Soil Pollution. 2010;212(1-4):77-88\n'},{id:"B35",body:'\nSanchis J, Kantiani L, Llorca M, Rubio F, Ginebreda A, Fraile J, et al. Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Analytical and Bioanalytical Chemistry. 2012;402(7):2335-2345\n'},{id:"B36",body:'\nStewart M, Olsen G, Hickey CW, Ferreira B, Jelic A, Petrovic M, et al. A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Science of the Total Environment. 2014;468:202-210\n'},{id:"B37",body:'\nTodorovic GR, Mentler A, Popp M, Hann S, Kollensperger G, Rampazzo N, et al. Determination of glyphosate and AMPA in three representative agricultural Austrian soils with a HPLC-MS/MS method. Soil and Sediment Contamination. 2013;22(3):332-350\n'},{id:"B38",body:'\nZgheib S, Moilleron R, Chebbo G. Priority pollutants in urban stormwater: Part 1—Case of separate storm sewers. Water Research. 2012;46(20):6683-6692\n'},{id:"B39",body:'\nKoskinen WC, Marek LJ, Hall KE. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil. Pest Management Science. 2016;72(3):423-432\n'},{id:"B40",body:'\nGrunewald K, Schmidt W, Unger C, Hanschmann G. Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany). Journal of Plant Nutrition and Soil Science. 2001;164(1):65-70\n'},{id:"B41",body:'\nValle AL, Mello FCC, Alves-Balvedi RP, Rodrigues LP, Goulart LR. Glyphosate detection: Methods, needs and challenges. Environmental Chemistry Letters. 2019;17(1):291-317\n'},{id:"B42",body:'\nSilva V, Montanarella L, Jones A, Fernandez-Ugalde O, Mol HGJ, Ritsema CJ, et al. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Science of the Total Environment. 2018;621:1352-1359\n'},{id:"B43",body:'\nSprankle P, Meggitt WF, Penner D. Rapid inactivation of glyphosate in soil. Weed Science. 1975;23(3):224-228\n'},{id:"B44",body:'\nSprankle P, Meggitt WF, Penner D. Adsorption, mobility, and microbial degradation of glyphosate in soil. Weed Science. 1975;23(3):229-234\n'},{id:"B45",body:'\nHance RJ. Adsorption of glyphosate by soils. Pesticide Science. 1976;7(4):363-366\n'},{id:"B46",body:'\nShoval S, Yariv S. Interaction between roundup (glyphosate) and montmorillonite. 1. Infrared study of the sorption of glyphosate by montmorillonite. Clays and Clay Minerals. 1979;27(1):19-28\n'},{id:"B47",body:'\nStalikas CD, Konidari CN. Analytical methods to determine phosphonic and amino acid group-containing pesticides. Journal of Chromatography A. 2001;907(1-2):1-19\n'},{id:"B48",body:'\nBorjesson E, Torstensson L. New methods for determination of glyphosate and (aminomethyl)phosphonic acid in water and soil. Journal of Chromatography A. 2000;886(1-2):207-216\n'},{id:"B49",body:'\nIbanez M, Pozo OJ, Sancho JV, Lopez FJ, Hernandez F. Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. Journal of Chromatography A. 2005;1081(2):145-155\n'},{id:"B50",body:'\nMiles CJ, Moye HA. Extraction of glyphosate herbicide from soil and clay-minerals and determination of residues in soils. Journal of Agricultural and Food Chemistry. 1988;36(3):486-491\n'},{id:"B51",body:'\nAubin AJ, Smith AE. Extraction of [C-14] glyphosate from Saskatchewan soils. Journal of Agricultural and Food Chemistry. 1992;40(7):1163-1165\n'},{id:"B52",body:'\nGlass RL. Metal-complex formation by glyphosate. Journal of Agricultural and Food Chemistry. 1984;32(6):1249-1253\n'},{id:"B53",body:'\nGlass RL. Liquid-chromatographic determination of glyphosate in soil and water samples. Abstracts of Papers of the American Chemical Society. 1983;185(Mar):27\n'},{id:"B54",body:'\nGlass RL. Liquid-chromatographic determination of glyphosate in fortified soil and water samples. Journal of Agricultural and Food Chemistry. 1983;31(2):280-282\n'},{id:"B55",body:'\nLaitinen P, Ramo S, Nikunen U, Jauhiainen L, Siimes K, Turtola E. Glyphosate and phosphorus leaching and residues in boreal sandy soil. Plant and Soil. 2009;323(1-2):267-283\n'},{id:"B56",body:'\nAl-Rajab AJ, Schiavon M. Degradation of C-14-glyphosate and aminomethylphosphonic acid (AMPA) in three agricultural soils. Journal of Environmental Sciences. 2010;22(9):1374-1380\n'},{id:"B57",body:'\nMardian-Jansar K, Ismail BS. Residue determination and levels of glyphosate in surface water, sediments and soils associated with oil palm plantation in Tasik Chini, Pahang, Malaysia. AIP Conference Proceedings. 1614;2014:795-802\n'},{id:"B58",body:'\nGonzalez-Martinez MA, Brun EM, Puchades R, Maquieira A, Ramsey K, Rubio F. Glyphosate immunosensor. Application for water and soil analysis. Analytical Chemistry. 2005;77(13):4219-4227\n'},{id:"B59",body:'\nHuang XJ, Pedersen T, Fischer M, White R, Young TM. Herbicide runoff along highways. 1. Field observations. Environmental Science & Technology. 2004;38(12):3263-3271\n'},{id:"B60",body:'\nDruart C, Delhomme O, de Vaufleury A, Ntcho E, Millet M. Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil. Analytical and Bioanalytical Chemistry. 2011;399(4):1725-1732\n'},{id:"B61",body:'\nMarek LJ, Koskinen WC. Simplified analysis of glyphosate and aminomethylphosphonic acid in water, vegetation and soil by liquid chromatography-tandem mass spectrometry. Pest Management Science. 2014;70(7):1158-1164\n'},{id:"B62",body:'\nArkan T, Molnar-Perl I. The role of derivatization techniques in the analysis of glyphosate and aminomethyl-phosphonic acid by chromatography. Microchemical Journal. 2015;121:99-106\n'},{id:"B63",body:'\nLundgren LN. A new method for the determination of glyphosate and(aminomethyl) phosphonic acid residues in soils. Journal of Agricultural and Food Chemistry. 1986;34:535-538. DOI: 10.1021/jf00069a041\n'},{id:"B64",body:'\nRoy DN, Konar SK. Development of an analytical method for the determination of glyphosate and (aminomethyl) phosphonic acid residues in soils by nitrogen-selective gas chromatography. Journal of Agricultural and Food Chemistry. 1989;37(2):441-443. DOI: 10.1021/jf00086a038\n'},{id:"B65",body:'\nKawai S, Uno B, Tomita M. Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after derivatization with p-toluenesulphonyl chloride. Journal of Chromatography. 1991;540:411-415. DOI: 10.1016/S0021-9673(01)88832-4 411\n'},{id:"B66",body:'\nForlania G, Mangiagallia A, Nielsena E, Suardib CM. Degradation of the phosphonate herbicide glyphosate in soil: Evidence for a possible involvement of unculturable microorganisms. Soil Biology and Biochemistry. 1999;31:991-997. DOI: 10.1016/s0038-0717(99)00010\n'},{id:"B67",body:'\nAlferness PL, Iwata Y. Determination of glyphosate and (Aminomethy1)phosphonic acid in soil, plant and animal matrices, and water by capillary gas chromatography with mass-selective detection. Journal of Agricultural and Food Chemistry. 1994;42:2751-2759\n'},{id:"B68",body:'\nSancho JV, Hidalgo C, Hernandez F, Lopez FJ, Hogendoorn EA, Dijkman E. Rapid determination of glyphosate residues and its main metabolite AMPA in soil samples by liquid chromatography. International Journal of Environmental Science and Technology. 1996;62(1):53-63\n'},{id:"B69",body:'\nKataoka H, Ryu S, Sakiyama N, Makita M. Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. Journal of Chromatography A. 1996;726(1-2):253-258\n'},{id:"B70",body:'\nShao CY, Howe CJ, Porter AJR, Glover LA. Novel cyanobacterial biosensor for detection of herbicides. Applied and Environmental Microbiology. 2002;68(10):5026-5033. DOI: 10.1128/aem.68.10.5026-5033.2002\n'},{id:"B71",body:'\nGhanem A, Bados P, Kerhoas L, Dubroca J, Einhorn J. Glyphosate and AMPA analysis in sewage sludge by LC-ESI-MS/MS after FMOC derivatization on strong anion-exchange resin as solid support. Analytical Chemistry. 2007;79(10):3794-3801. DOI: 10.1021/ac062195k\n'},{id:"B72",body:'\nHu JY, Chen CL, Li JZ. A simple method for the determination of glyphosate residues in soil by capillary gas chromatography with nitrogen phosphorus. Journal of Analytical Chemistry. 2008;63(4):371-375\n'},{id:"B73",body:'\nJan MR, Shah J, Muhammad M, Ara B. Glyphosate herbicide residue determination in samples of environmental importance using spectrophotometric method. Journal of Hazardous Materials. 2009;169(1-3):742-745\n'},{id:"B74",body:'\nIwamuro Y, Iio-Ishimaru R, Chinaka S, Takayama N, Kodama S, Hayakawa K. Analysis of phosphorus-containing amino acid-type herbicides by capillary electrophoresis/mass spectrometry using a chemically modified capillary having amino groups. Journal of Health Science. 2010;56(5):606-612. DOI: 10.1248/jhs.56.606\n'},{id:"B75",body:'\nColombo SD, Masini JC. A sequential-injection reversed-phase chromatography method for fluorimetric determination of glyphosate and aminomethylphosphonic acid. Analytical Methods. 2014;6(2):490-496\n'},{id:"B76",body:'\nTapsoba I, Paré S, Toé AM, et al. SWV determination of glyphosate in Burkina Faso soils using carbon fiber microelectrode. International Journal of Biological and Chemical Sciences. 2012;6:2211-2220\n'},{id:"B77",body:'\nBotero-Coy AM, Ibanez M, Sancho JV, Hernandez F. Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry. Journal of Chromatography A. 2013;1292:132-141\n'},{id:"B78",body:'\nBaez ME, Fuentes E, Espina MJ, Espinoza J. Determination of glyphosate and aminomethylphosphonic acid in aqueous soil matrices: A critical analysis of the 9-fluorenylmethyl chloroformate derivatization reaction and application to adsorption studies. Journal of Separation Science. 2014;37(21):3125-3132\n'},{id:"B79",body:'\nPrasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosensors and Bioelectronics. 2014;59:81-88. DOI: 10.1016/j.bios.2014.03.019\n'},{id:"B80",body:'\nWang D, Lin B, Cao Y, Guo M, Yu Y. A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads. Journal of Agricultural and Food Chemistry. 2016;64(30):6042-6050. DOI: 10.1021/acs.jafc.6b01088\n'},{id:"B81",body:'\nYang X, Wang F, Bento CPM, Xue S, Gai L, van Dam R, et al. Short-term transport of glyphosate with erosion in Chinese loess soil—A flume experiment. Science of the Total Environment. 2015;512-513:406-414. DOI: 10.1016/j.scitotenv.2015.01.071\n'},{id:"B82",body:'\nBento CPM, Yang X, Gort G, Xue S, van Dam R, Zomer P, et al. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Science of the Total Environment. 2016;572:301-311. DOI: 10.1016/j.scitotenv.2016.07.215\n'},{id:"B83",body:'\nBento CPM, van der Hoeven S, Yang X, Riksen MMJPM, Mol HGJ, Ritsema CJ, et al. Dynamics of glyphosate and AMPA in the soil surface layer of glyphosate-resistant crop cultivations in the loess Pampas of Argentina. Environmental Pollution. 2019;244:323-331. DOI: 10.1016/j.envpol.2018.10.046\n'},{id:"B84",body:'\nLarsbo M, Sandin M, Jarvis N, Etana A, Kreuger J. Surface runoff of pesticides from a clay loam field in Sweden. Journal of Environmental Quality. 2016;45(4):1367. DOI: 10.2134/jeq2015.10.0528\n'},{id:"B85",body:'\nFelton DE, Ederer M, Steffens T, Hartzell PL, Waynant KV. UV-Vis spectrophotometric analysis and quantification of glyphosate for an interdisciplinary undergraduate laboratory. Journal of Chemical Education. 2018;95(1):136-140\n'},{id:"B86",body:'\nErban T, Stehlik M, Sopko B, Markovic M, Seifrtova M, Halesova T, et al. The different behaviors of glyphosate and AMPA in compost-amended soil. Chemosphere. 2018;207:78-83\n'},{id:"B87",body:'\nEl-Gendy K, Mosallam E, Ahmed N, Aly N. Determination of glyphosate residues in Egyptian soil samples. Analytical Biochemistry. 2018;557:1-6\n'},{id:"B88",body:'\nKarasali H, Pavlidis G, Marousopoulou A. Investigation of the presence of glyphosate and its major metabolite AMPA in Greek soils. Environmental Science and Pollution Research International. 2019;26(36):36308-36321\n'},{id:"B89",body:'\nZhang W, Feng Y, Ma L, An J, Zhang H, Cao M, et al. A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. Journal of Chromatography A. 2019;1589:116-121\n'},{id:"B90",body:'\nPereira EAO, Melo VF, Abate G, Masini JC. Determination of glyphosate and aminomethylphosphonic acid by sequential-injection reversed-phase chromatography: Method improvements and application in adsorption studies. Analytical and Bioanalytical Chemistry. 2019;411(11):2317-2326\n'},{id:"B91",body:'\nSaito T, Miura N, Namera A, Oikawa H, Miyazaki S, Nakamoto A, et al. Mixed-mode C-C-18 monolithic spin-column extraction and GC-MS for simultaneous assay of organophosphorus compounds, glyphosate, and glufosinate in human serum and urine. Forensic Toxicology. 2012;30(1):1-10\n'},{id:"B92",body:'\nDeyrup CL, Chang SM, Weintraub RA, Moye HA. Simultaneous esterification and acylation of pesticides for analysis by gas-chromatography. 1. Derivatization of glyphosate and (aminomethyl)phosphonic acid with fluorinated alcohols-perfluorinated anhydrides. Journal of Agricultural and Food Chemistry. 1985;33(5):944-947\n'},{id:"B93",body:'\nPei MQ , Lai J. Qualitative and quantitative analysis of glyphosate. Chinese Journal Guangdong Police Science Technology. 2004;1:14-15\n'},{id:"B94",body:'\nDing J, Guo H, Liu W-W, Zhang W-W, Wang J-W. Current progress on the detection of glyphosate in environmental samples. Journal of Applied Biomedicine. 2015;3(6):88-95\n'},{id:"B95",body:'\nYoshioka N, Asano M, Kuse A, Mitsuhashi T, Nagasaki Y, Ueno Y. Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography-tandem mass spectrometry using hydrophilic interaction chromatography. Journal of Chromatography A. 2011;1218(23):3675-3680\n'},{id:"B96",body:'\nSun LS, Kong DY, Gu WD, Guo XY, Tao WQ , Shan ZJ, et al. Determination of glyphosate in soil/sludge by high performance liquid chromatography. Journal of Chromatography A. 2017;1502:8-13\n'},{id:"B97",body:'\nNedelkoska TV, Low GKC. High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Analytica Chimica Acta. 2004;511(1):145-153\n'},{id:"B98",body:'\nKaranasios E, Karasali H, Marousopoulou A, Akrivou A, Markellou E. Monitoring of glyphosate and AMPA in soil samples from two olive cultivation areas in Greece: Aspects related to spray operators activities. Environmental Monitoring and Assessment. 2018;190(6):361\n'},{id:"B99",body:'\nVass A, Robles-Molina J, Perez-Ortega P, Gilbert-Lopez B, Dernovics M, Molina-Diaz A, et al. Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides. Analytical and Bioanalytical Chemistry. 2016;408(18):4857-4869\n'},{id:"B100",body:'\nHsu CC, Whang CW. Microscale solid phase extraction of glyphosate and aminomethylphosphonic acid in water and guava fruit extract using alumina-coated iron oxide nanoparticles followed by capillary electrophoresis and electrochemiluminescence detection. Journal of Chromatography A. 2009;1216(49):8575-8580\n'},{id:"B101",body:'\nJiang J, Lucy CA. Determination of glyphosate using off-line ion exchange preconcentration and capillary electrophoresis-laser induced fluorescence detection. Talanta. 2007;72(1):113-118\n'},{id:"B102",body:'\nCao L, Deng T, Liang S, Tan X, Meng J. Determination of herbicides and its metabolite in soil and water samples by capillary electrophoresis-laser induced fluorescence detection using microwave-assisted derivatization. Analytical Sciences. 2014;30(7):759-766\n'},{id:"B103",body:'\nGauglitz G, Wimmer B, Melzer T, Huhn C. Glyphosate analysis using sensors and electromigration separation techniques as alternatives to gas or liquid chromatography. Analytical and Bioanalytical Chemistry. 2018;410(3):725-746\n'},{id:"B104",body:'\nMallat E, Barcelo D. Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection. Journal of Chromatography A. 1998;823(1-2):129-136\n'},{id:"B105",body:'\nÖzkara A, Akyil D, Konuk M. Pesticides, environmental pollution, and health. Environmental Health Risk - Hazardous Factors to Living Species. 2016. Chapter 1. pp. 4-28. DOI: 10.5772/63094\n'},{id:"B106",body:'\nSocorro J, Durand A, Temime-Roussel B, Gligorovski S, Wortham H, Quivet E. The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue. Scientific Reports. 2016;6:33456. DOI: 10.1038/srep33456\n'},{id:"B107",body:'\nDésert M, Ravier S, Gille G, Quinapallo A, Armengaud A, Pochet G, et al. Spatial and temporal distribution of current-use pesticides in ambient air of Provence-Alpes-Côte-d’Azur region and Corsica, France. Atmospheric Environment. 2018;192(439):241-256. DOI: 10.1016/j.atmosenv.2018.08.054\n'},{id:"B108",body:'\nFOCUS. Pesticides in air: Considerations for exposure assessment. Report of the FOCUS Working Group on Pesticides in Air, EC Document Reference SANCO/10553/2006 Rev 2 June 2008. pp. 327\n'},{id:"B109",body:'\nMatthies M, Klasmeier J, Beyer A, Ehling C. Assessing persistence and long-range transport potential of current-use pesticides. Environmental Science & Technology. 2009;43(24):9223-9229. DOI: 10.1021/es900773u\n'},{id:"B110",body:'\nSarigiannis DA, Kontoroupis P, Solomou ES, Nikolaki S, Karabelas AJ. Inventory of pesticide emissions into the air in Europe. Atmospheric Environment. 2013;75:6-14. DOI: 10.1016/j.atmosenv.2013.04.003\n'},{id:"B111",body:'\nVan den Berg F, Kubiak R, Benjey WG, Majewski MS, Yates SR, Reeves GL, et al. Emission of pesticides into the air. Water, Air, and Soil Pollution. 1999;115(1/4):195-218. DOI: 10.1023/a:1005234329622\n'},{id:"B112",body:'\nBedos C, Cellier P, Calvet R, Barriuso E, Gabrielle B. Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: Overview. Agronomie. 2002;22:21-33. DOI: 10.1051/agro:2001003\n'},{id:"B113",body:'\nVoutsas E, Vavva C, Magoulas K, Tassios D. Estimation of the volatilization of organic compounds from soil surfaces. Chemosphere. 2005;58(6):751-758. DOI: 10.1016/j.chemosphere.2004.09.057\n'},{id:"B114",body:'\nSauret N, Wortham H, Strekowski R, Herckès P, Nieto LI. Comparison of annual dry and wet deposition fluxes of selected pesticides in Strasbourg, France. Environmental Pollution. 2009;157(1):303-312. DOI: 10.1016/j.envpol.2008.06.034\n'},{id:"B115",body:'\nPrueger JH, Gish TJ, McConnell LL, Mckee LG, Hatfield JL, Kustas WP. Solar radiation, relative humidity, and soil water effects on metolachlor volatilization. Environmental Science & Technology. 2005;39(14):5219-5226. DOI: 10.1021/es048341q\n'},{id:"B116",body:'\nWienhold BJ, Gish TJ. Effect of formulation and tillage practice on volatilization of atrazine and Alachlor. Journal of Environmental Quality. 1994;23(2):292. DOI: 10.2134/jeq1994.00472425002300020011x\n'},{id:"B117",body:'\nHarper LA, White AW, Bruce RR, Thomas AW, Leonard AA. Soil and microclimate effects on trifluralin volatilisation. Journal of Environmental Quality. 1976;5:236-242\n'},{id:"B118",body:'\nBidleman TF. Atmospheric processes: Wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning. Environmental Science & Technology. 1988;22:361-367\n'},{id:"B119",body:'\nGlotfelty DE, Leech MM, Jersey J, Taylor AW. Volatilization and wind erosion of soil surface applied atrazine, simazine, alachlor, and toxaphene. Journal of Agricultural and Food Chemistry. 1989;37(2):546-551. DOI: 10.1021/jf00086a059\n'},{id:"B120",body:'\nMajewski MS. Micrometeorological methods for measuring the post-application volatilization losses of pesticides. Water, Air, and Soil Pollution. 1999;115:83-113\n'},{id:"B121",body:'\nYusà V, Coscollà C, Mellouki W, Pastor A, de la Guardia M. Sampling and analysis of pesticides in ambient air. Journal of Chromatography A. 2009;1216(15):2972-2983. DOI: 10.1016/j.chroma.2009.02.019\n'},{id:"B122",body:'\nSlinn WGN. Some approximations for the wet and dry removal of particles and gases from the atmosphere. Water, Air, and Soil Pollution. 1977;7(4):513-543. DOI: 10.1007/bf00285550\n'},{id:"B123",body:'\nKuang Z, McConnell LL, Torrents A, Meritt D, Tobash S. Atmospheric deposition of pesticides to an agricultural watershed of the Chesapeake Bay. Journal of Environmental Quality. 2003;32(5):1611. DOI: 10.2134/jeq2003.1611\n'},{id:"B124",body:'\nRavier S, Désert M, Gille G, Armengaud A, Wortham H, et al. Monitoring of Glyphosate, Glufosinate-ammonium and (Aminomethyl)phosphonic acid in ambient air of Provence-Alpes-Côte-d’Azur Region, France. Atmospheric Environment. 2019;204:102-109. DOI: 10.1016/j.atmosenv.2019.02.023hal-02059173\n'},{id:"B125",body:'\nJauhiainen A, Räsänen K, Sarantila R, Nuutinen J, Kangas J. Occupational exposure of forest workers to glyphosate during brush saw spraying work. American Industrial Hygiene Association Journal. 1991;52(2):61-64. DOI: 10.1080/15298669191364334\n'},{id:"B126",body:'\nHumphries D, Byrtus G, Anderson AM. Glyphosate residues. In: Alberta’s Atmospheric Deposition, Soils and Surface Waters. Vegreville, Alberta: Water Research Users Group Alberta Environment; 2005\n'},{id:"B127",body:'\nProuvost H, Declercq C. Exposition de la population aux pesticides dans la region Nord-Pas-de-Calais: Apports du programme PHYTO AIR. 2005:78. Project report. Available from: http://www.orsnpdc.fr/wp-content/uploads/2015/02/05-5.pdf [Assessed: 20 April 2020]\n'},{id:"B128",body:'\nChang F, Simcik MF, Capel PD. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere. Environmental Toxicology and Chemistry. 2011;30(3):548-555. DOI: 10.1002/etc.431\n'},{id:"B129",body:'\nMorshed MM, Dzolkhifli O, Rosli BM, Samsuri BAW. Determination of glyphosate through passive and active sampling methods in a treated field atmosphere. African Journal of Agricultural Research. 2011;6(17):4010-4018. DOI: 10.5897/AJAR11.533\n'},{id:"B130",body:'\nDe F. Sousa MG, da Silva AC, dos Santos Araújo R, Rigotto RM. Evaluation of the atmospheric contamination level for the use of herbicide glyphosate in the northeast region of Brazil. Environmental Monitoring and Assessment. 2019;191:604. DOI: 10.1007/s10661-019-7764-x\n'},{id:"B131",body:'\nVan Dijk HFG, Guicherit R. Atmospheric dispersion of current-use pesticides- a review of the evidence from monitoring studies. Water, Air, & Soil Pollution. 1999;115:21-70\n'},{id:"B132",body:'\nEsteve-Turrillas FA, Pastor A, Yusà V, de la Guardia M. Using semi-permeable membrane devices as passive samplers. TrAC Trends in Analytical Chemistry. 2007;26(7):703-712. DOI: 10.1016/j.trac.2007.05.006\n'},{id:"B133",body:'\nBoethling RS, Howard PH, Meylan WM. Finding and estimating chemical property data for environmental assessment. Environmental Toxicology and Chemistry. 2004;23(10):2290. DOI: 10.1897/03-532\n'},{id:"B134",body:'\nZhang RN, Liu HL, Huo ZL. Determination of glyphosate in air of workplaces by ion chromatography. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2013;31(10):779-782\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Evagelia Tzanetou",address:"ev.tzanetou@bpi.gr",affiliation:'
Laboratory of Chemical Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
Laboratory of Chemical Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
'}],corrections:null},book:{id:"9711",type:"book",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,fullTitle:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",publishedDate:"December 23rd 2020",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78923-828-0",printIsbn:"978-1-78923-827-3",pdfIsbn:"978-1-83962-462-9",isAvailableForWebshopOrdering:!0,editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"55481",title:"Dr.",name:"Zicheng",middleName:null,surname:"Zheng",email:"zichengzheng@yahoo.com.cn",fullName:"Zicheng Zheng",slug:"zicheng-zheng",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"38470",title:"Change of Soil Surface Roughness of Splash Erosion Process",slug:"change-of-soil-surface-roughness-of-splash-erosion-process",abstract:null,signatures:"Zicheng Zheng and Shuqin He",authors:[{id:"55481",title:"Dr.",name:"Zicheng",surname:"Zheng",fullName:"Zicheng Zheng",slug:"zicheng-zheng",email:"zichengzheng@yahoo.com.cn"},{id:"62763",title:"Mrs.",name:"Shuqin",surname:"He",fullName:"Shuqin He",slug:"shuqin-he",email:"angelhsq@163.com"}],book:{id:"3101",title:"Research on Soil Erosion",slug:"research-on-soil-erosion",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"51248",title:"Prof.",name:"Miroslav",surname:"Dumbrovsky",slug:"miroslav-dumbrovsky",fullName:"Miroslav Dumbrovsky",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"55644",title:"Prof.",name:"Adélia",surname:"Nunes",slug:"adelia-nunes",fullName:"Adélia Nunes",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"56177",title:"Dr.",name:"Demetrio Antonio",surname:"Zema",slug:"demetrio-antonio-zema",fullName:"Demetrio Antonio Zema",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"59964",title:"Prof.",name:"Charles",surname:"Igwe",slug:"charles-igwe",fullName:"Charles Igwe",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"62682",title:"Mr.",name:"Adam",surname:"Pike",slug:"adam-pike",fullName:"Adam Pike",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"62763",title:"Mrs.",name:"Shuqin",surname:"He",slug:"shuqin-he",fullName:"Shuqin He",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"94674",title:"Prof.",name:"António",surname:"Bento Gonçalves",slug:"antonio-bento-goncalves",fullName:"António Bento Gonçalves",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Minho",institutionURL:null,country:{name:"Portugal"}}},{id:"103627",title:"Prof.",name:"António",surname:"Vieira",slug:"antonio-vieira",fullName:"António Vieira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/103627/images/system/103627.png",biography:"Antonio Vieira is a geographer with a Ph.D. in Geography from the University of Coimbra, Portugal (2009). He is an assistant professor in the Department of Geography, University of Minho (UM), Portugal, and an integrated member of the Communication and Society Research Centre (CECS), UM. He is a member of several scientific organizations, including the Portuguese Association of Geomorphologists (Chair from 2017 to 2019) and the Portuguese Association of Risk, Prevention and Security (vice-president since 2015). He is also a member of FuegoRED and coordinator of the FESP International Network. Dr. Vieira’s main research includes granitic geomorphology, geomorphological heritage and changes in land use, GIS and remote sensing, and their application to land use, geomorphological heritage, and soil erosion following forest fires and mitigation measures.",institutionString:"University of Minho",institution:{name:"University of Minho",institutionURL:null,country:{name:"Portugal"}}},{id:"151444",title:"Dr.",name:"ALi",surname:"Haghizadeh",slug:"ali-haghizadeh",fullName:"ALi Haghizadeh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"152339",title:"Prof.",name:"Luciano",surname:"Lourenço",slug:"luciano-lourenco",fullName:"Luciano Lourenço",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"open-access-funding-funders-list",title:"List of Funders by Country",intro:"
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
IMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
Wellcome Trust (Funding available only to Wellcome-funded researchers/grantees)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:12563},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11930",title:"Reliability-Based Design in Structure and Geotechnical Engineering",subtitle:null,isOpenForSubmission:!0,hash:"63cb9ce2478d12b0649b47deaab8ab56",slug:null,bookSignature:"Dr. Faham Tahmasebinia",coverURL:"https://cdn.intechopen.com/books/images_new/11930.jpg",editedByType:null,editors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11892",title:"Facial Nerve Palsy - A Practitioner’s Guide",subtitle:null,isOpenForSubmission:!0,hash:"3022a85c51fe3ba1d2cc2a5de4e66072",slug:null,bookSignature:"Dr. Pratap Sanchetee, Dr. Kirti Sachdev and Dr. Rajeswari R.",coverURL:"https://cdn.intechopen.com/books/images_new/11892.jpg",editedByType:null,editors:[{id:"206518",title:"Dr.",name:"Pratap",surname:"Sanchetee",slug:"pratap-sanchetee",fullName:"Pratap Sanchetee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11935",title:"Oil Spills",subtitle:null,isOpenForSubmission:!0,hash:"8ef4f1400c5e99e53d93847aaf92216b",slug:null,bookSignature:"Prof. Prof.Dr. Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/11935.jpg",editedByType:null,editors:[{id:"96666",title:"Prof.",name:"Prof.Dr. Maged",surname:"Marghany",slug:"prof.dr.-maged-marghany",fullName:"Prof.Dr. Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11520",title:"Direct Torque Control",subtitle:null,isOpenForSubmission:!0,hash:"6504dee75dbbfd7792308293a8f1a27f",slug:null,bookSignature:"Prof. Moulay Tahar Lamchich",coverURL:"https://cdn.intechopen.com/books/images_new/11520.jpg",editedByType:null,editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11921",title:"Web Development for User Interface, Data Visualization, and Visual Analytics",subtitle:null,isOpenForSubmission:!0,hash:"03f436c075bce593edf126475e69a478",slug:null,bookSignature:"Dr. Tommy Dang and Dr. Vung Pham",coverURL:"https://cdn.intechopen.com/books/images_new/11921.jpg",editedByType:null,editors:[{id:"335450",title:"Dr.",name:"Tommy",surname:"Dang",slug:"tommy-dang",fullName:"Tommy Dang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:435},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"966",title:"Dynamical Systems Theory",slug:"dynamical-systems-theory",parent:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics"},numberOfBooks:11,numberOfSeries:0,numberOfAuthorsAndEditors:205,numberOfWosCitations:104,numberOfCrossrefCitations:113,numberOfDimensionsCitations:204,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"966",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!1,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:"advances-in-dynamical-systems-theory-models-algorithms-and-applications",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7662",title:"Nonlinear Systems",subtitle:"Theoretical Aspects and Recent Applications",isOpenForSubmission:!1,hash:"fdcb3bf6de1d84506ffc6aa9e5b691b3",slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",bookSignature:"Walter Legnani and Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/7662.jpg",editedByType:"Edited by",editors:[{id:"199059",title:"Dr.",name:"Walter",middleName:"Edgardo",surname:"Legnani",slug:"walter-legnani",fullName:"Walter Legnani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9324",title:"Dynamical Systems Theory",subtitle:null,isOpenForSubmission:!1,hash:"413cbcf9c048bb251eca1b5e32bbc640",slug:"dynamical-systems-theory",bookSignature:"Jan Awrejcewicz and Dariusz Grzelczyk",coverURL:"https://cdn.intechopen.com/books/images_new/9324.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",middleName:null,surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7776",title:"Research Advances in Chaos Theory",subtitle:null,isOpenForSubmission:!1,hash:"e9646ec4b2bff873ce958ed4d5ad7248",slug:"research-advances-in-chaos-theory",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7776.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7293",title:"Fractal Analysis",subtitle:null,isOpenForSubmission:!1,hash:"136b50bd77fedb29057889faaca37947",slug:"fractal-analysis",bookSignature:"Sid-Ali Ouadfeul",coverURL:"https://cdn.intechopen.com/books/images_new/7293.jpg",editedByType:"Edited by",editors:[{id:"103826",title:"Dr.",name:"Sid-Ali",middleName:null,surname:"Ouadfeul",slug:"sid-ali-ouadfeul",fullName:"Sid-Ali Ouadfeul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6651",title:"Nonlinear Systems",subtitle:"Modeling, Estimation, and Stability",isOpenForSubmission:!1,hash:"085cfe19a4bd48a9e8034b2e5cc17172",slug:"nonlinear-systems-modeling-estimation-and-stability",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/6651.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6216",title:"Complexity in Biological and Physical Systems",subtitle:"Bifurcations, Solitons and Fractals",isOpenForSubmission:!1,hash:"c511a26efc1b9c0638c8f9244240cb93",slug:"complexity-in-biological-and-physical-systems-bifurcations-solitons-and-fractals",bookSignature:"Ricardo López-Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/6216.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",middleName:null,surname:"López-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo López-Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5804",title:"Fractal Analysis",subtitle:"Applications in Physics, Engineering and Technology",isOpenForSubmission:!1,hash:"a3d42b4b44ba9d7d72f0e91442da7b4b",slug:"fractal-analysis-applications-in-physics-engineering-and-technology",bookSignature:"Fernando Brambila",coverURL:"https://cdn.intechopen.com/books/images_new/5804.jpg",editedByType:"Edited by",editors:[{id:"60921",title:"Dr.",name:"Fernando",middleName:null,surname:"Brambila",slug:"fernando-brambila",fullName:"Fernando Brambila"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5513",title:"Dynamical Systems",subtitle:"Analytical and Computational Techniques",isOpenForSubmission:!1,hash:"9ba4129f30ef1b92fd4b7ae193781183",slug:"dynamical-systems-analytical-and-computational-techniques",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/5513.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2508",title:"Nonlinearity, Bifurcation and Chaos",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"cce4e2af0e23321e7072373518985b63",slug:"nonlinearity-bifurcation-and-chaos-theory-and-applications",bookSignature:"Jan Awrejcewicz and Peter Hagedorn",coverURL:"https://cdn.intechopen.com/books/images_new/2508.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",middleName:null,surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:11,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"40430",doi:"10.5772/50403",title:"Mathematical Modelling and Numerical Investigations on the Coanda Effect",slug:"mathematical-modelling-and-numerical-investigations-on-the-coanda-effect",totalDownloads:5124,totalCrossrefCites:15,totalDimensionsCites:23,abstract:null,book:{id:"2508",slug:"nonlinearity-bifurcation-and-chaos-theory-and-applications",title:"Nonlinearity, Bifurcation and Chaos",fullTitle:"Nonlinearity, Bifurcation and Chaos - Theory and Applications"},signatures:"A. Dumitrache, F. Frunzulica and T.C. Ionescu",authors:[{id:"151443",title:"Dr.",name:"Dumitrache",middleName:null,surname:"Alexandru",slug:"dumitrache-alexandru",fullName:"Dumitrache Alexandru"},{id:"151449",title:"Dr.",name:"Frunzulica",middleName:null,surname:"Florin",slug:"frunzulica-florin",fullName:"Frunzulica Florin"},{id:"151451",title:"Dr.",name:"Ionescu",middleName:null,surname:"Tudor",slug:"ionescu-tudor",fullName:"Ionescu Tudor"}]},{id:"54899",doi:"10.5772/intechopen.68188",title:"Fractals in Antennas and Metamaterials Applications",slug:"fractals-in-antennas-and-metamaterials-applications",totalDownloads:2319,totalCrossrefCites:12,totalDimensionsCites:14,abstract:"Recently, telecommunication systems have been requiring more advanced features in the design and operation. Among others a smaller size of devices, which can be integrated for multiple mobile communication systems, applied in one user’s device board, such as PDA or smart phone. Moreover, the cost of mass production should be minimized as much as possible. To meet part of that request, the antennas of these devices should have small size, lower weight, operating in multiple frequency bands and/or be broadband. There are many research methods to achieve this goal, one of which is using the fractal geometries for the shape of antenna elements. In recent years, there are many fractal shapes that have been proposed for such applications, and the designed antennas have significantly improved antenna features such as smaller size, operating in multi-frequency bands, with improved power gain and efficiency. In recent years, the new approach for modern antenna the metamaterials, MTM, is adopted, and sometimes that based on the fractal geometry is adopted.",book:{id:"5804",slug:"fractal-analysis-applications-in-physics-engineering-and-technology",title:"Fractal Analysis",fullTitle:"Fractal Analysis - Applications in Physics, Engineering and Technology"},signatures:"Wojciech Jan Krzysztofik",authors:[{id:"198646",title:"Prof.",name:"Wojciech",middleName:"Jan",surname:"Krzysztofik",slug:"wojciech-krzysztofik",fullName:"Wojciech Krzysztofik"}]},{id:"53920",doi:"10.5772/67216",title:"Integral-Equation Formulations of Plasmonic Problems in the Visible Spectrum and Beyond",slug:"integral-equation-formulations-of-plasmonic-problems-in-the-visible-spectrum-and-beyond",totalDownloads:1767,totalCrossrefCites:12,totalDimensionsCites:13,abstract:"Computational modeling of nano-plasmonic structures is essential to understand their electrodynamic responses before experimental efforts in measurement setups. Similar to the other ranges of the electromagnetic spectrum, there are alternative methods for the numerical analysis of nano-plasmonic problems, while the optics literature is dominated by differential equations that require discretizations of the host media with artificial truncations. These approaches often need serious assumptions, such as periodicity, infinity, or self-similarity, in order to reduce the computational load. On the other hand, surface integral equations based on integro-differential operators can bring important advantages for accurate and efficient modeling of nano-plasmonic problems with arbitrary geometries. Electrical properties of materials, which may be obtained either experimentally or via physical modeling, can easily be inserted into integral-equation formulations, leading to accurate predictions of electromagnetic responses of complex structures. This chapter presents the implementation of such accurate, efficient, and reliable solvers based on appropriate combinations of surface integral equations, discretizations, numerical integrations, fast algorithms, and iterative techniques. As a case study, nanowire transmission lines are investigated in wide-frequency ranges, demonstrating the capabilities of the developed implementations.",book:{id:"5513",slug:"dynamical-systems-analytical-and-computational-techniques",title:"Dynamical Systems",fullTitle:"Dynamical Systems - Analytical and Computational Techniques"},signatures:"Abdulkerim Çekinmez, Barişcan Karaosmanoğlu and Özgür Ergül",authors:[{id:"195936",title:"Associate Prof.",name:"Ozgur",middleName:null,surname:"Ergul",slug:"ozgur-ergul",fullName:"Ozgur Ergul"},{id:"203161",title:"Mr.",name:"Abdulkerim",middleName:null,surname:"Cekinmez",slug:"abdulkerim-cekinmez",fullName:"Abdulkerim Cekinmez"},{id:"203162",title:"MSc.",name:"Bariscan",middleName:null,surname:"Karaosmanoglu",slug:"bariscan-karaosmanoglu",fullName:"Bariscan Karaosmanoglu"}]},{id:"57485",doi:"10.5772/intechopen.70870",title:"Small-Angle Scattering from Mass and Surface Fractals",slug:"small-angle-scattering-from-mass-and-surface-fractals",totalDownloads:1388,totalCrossrefCites:3,totalDimensionsCites:11,abstract:"The concepts of mass and surface fractals are introduced, and the corresponding small-angle scattering (SAS; X-rays, neutrons) intensities are computed. It is shown how to resolve the fractal structure of various complex systems from experimental scattering measurements, and how obtained data are related to specific features of the fractal models. We present and discuss various mass and surface fractal structures, including fractals generated from iterated function systems and cellular automata. In addition to the fractal dimension and the overall fractal size, the suggested analysis allows us to obtain the iteration number, the number of basic units which form the fractal and the scaling factor.",book:{id:"6216",slug:"complexity-in-biological-and-physical-systems-bifurcations-solitons-and-fractals",title:"Complexity in Biological and Physical Systems",fullTitle:"Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals"},signatures:"Eugen Mircea Anitas",authors:[{id:"213626",title:"Dr.",name:"Eugen",middleName:null,surname:"Anitas",slug:"eugen-anitas",fullName:"Eugen Anitas"}]},{id:"40437",doi:"10.5772/48811",title:"FSM Scenarios of Laminar-Turbulent Transition in Incompressible Fluids",slug:"fsm-scenarios-of-laminar-turbulent-transition-in-incompressible-fluids",totalDownloads:1762,totalCrossrefCites:5,totalDimensionsCites:9,abstract:null,book:{id:"2508",slug:"nonlinearity-bifurcation-and-chaos-theory-and-applications",title:"Nonlinearity, Bifurcation and Chaos",fullTitle:"Nonlinearity, Bifurcation and Chaos - Theory and Applications"},signatures:"N.M. Evstigneev and N.A. Magnitskii",authors:[{id:"96107",title:"Prof.",name:"Nikolai A.",middleName:"Alexandrovich",surname:"Magnitskii",slug:"nikolai-a.-magnitskii",fullName:"Nikolai A. Magnitskii"},{id:"151627",title:"Dr.",name:"N. M.",middleName:null,surname:"Evstigneev",slug:"n.-m.-evstigneev",fullName:"N. M. Evstigneev"}]}],mostDownloadedChaptersLast30Days:[{id:"54366",title:"Solution of Differential Equations with Applications to Engineering Problems",slug:"solution-of-differential-equations-with-applications-to-engineering-problems",totalDownloads:6770,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"Over the last hundred years, many techniques have been developed for the solution of ordinary differential equations and partial differential equations. While quite a major portion of the techniques is only useful for academic purposes, there are some which are important in the solution of real problems arising from science and engineering. In this chapter, only very limited techniques for solving ordinary differential and partial differential equations are discussed, as it is impossible to cover all the available techniques even in a book form. The readers are then suggested to pursue further studies on this issue if necessary. After that, the readers are introduced to two major numerical methods commonly used by the engineers for the solution of real engineering problems.",book:{id:"5513",slug:"dynamical-systems-analytical-and-computational-techniques",title:"Dynamical Systems",fullTitle:"Dynamical Systems - Analytical and Computational Techniques"},signatures:"Cheng Yung Ming",authors:[{id:"191017",title:"Dr.",name:"Cheng",middleName:null,surname:"Y.M.",slug:"cheng-y.m.",fullName:"Cheng Y.M."}]},{id:"64463",title:"Fractal Analysis of Time-Series Data Sets: Methods and Challenges",slug:"fractal-analysis-of-time-series-data-sets-methods-and-challenges",totalDownloads:2923,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"Many methods exist for quantifying the fractal characteristics of a structure via a fractal dimension. As a traditional example, a fractal dimension of a spatial fractal structure may be quantified via a box-counting fractal analysis that probes a manner in which the structure fills space. However, such spatial analyses generally are not well-suited for the analysis of so-called “time-series” fractals, which may exhibit exact or statistical self-affinity but which inherently lack well-defined spatial characteristics. In this chapter, we introduce and investigate a variety of fractal analysis techniques directed to time-series structures. We investigate the fidelity of such techniques by applying each technique to sets of computer-generated time-series data sets with well-defined fractal characteristics. Additionally, we investigate the inherent challenges in quantifying fractal characteristics (and indeed of verifying the presence of such fractal characteristics) in time-series traces modeled to resemble physical data sets.",book:{id:"7293",slug:"fractal-analysis",title:"Fractal Analysis",fullTitle:"Fractal Analysis"},signatures:"Ian Pilgrim and Richard P. Taylor",authors:[{id:"262574",title:"Ph.D.",name:"Ian",middleName:null,surname:"Pilgrim",slug:"ian-pilgrim",fullName:"Ian Pilgrim"},{id:"262816",title:"Prof.",name:"Richard",middleName:null,surname:"Taylor",slug:"richard-taylor",fullName:"Richard Taylor"}]},{id:"64807",title:"Fractal Antennas for Wearable Applications",slug:"fractal-antennas-for-wearable-applications",totalDownloads:1393,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"This chapter focuses on the design and fabrication of different types of flexible and inflexible wearable fractal for modern wireless applications with body-area-networks (BANs). A wearable antenna is intended to be a part of clothing used for modern wireless communication purposes. Fractal technology allowed us to design compact antennas and integrate multiple communication services into one device. The proposed antennas were simulated and measured by CST simulator version 2017 and Agilent N9918A VNA respectively. Furthermore, these antennas were fabricated using folded copper. The measured results agree well with the simulated results.",book:{id:"7293",slug:"fractal-analysis",title:"Fractal Analysis",fullTitle:"Fractal Analysis"},signatures:"Mohamed I. Ahmed and Mai F. Ahmed",authors:[{id:"261304",title:"Dr.",name:"Mohamed Ismail",middleName:null,surname:"Ahmed",slug:"mohamed-ismail-ahmed",fullName:"Mohamed Ismail Ahmed"},{id:"272048",title:"Dr.",name:"M. F.",middleName:null,surname:"Ahmed",slug:"m.-f.-ahmed",fullName:"M. F. Ahmed"}]},{id:"67141",title:"A Review on Fractional Differential Equations and a Numerical Method to Solve Some Boundary Value Problems",slug:"a-review-on-fractional-differential-equations-and-a-numerical-method-to-solve-some-boundary-value-pr",totalDownloads:1872,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"Fractional differential equations can describe the dynamics of several complex and nonlocal systems with memory. They arise in many scientific and engineering areas such as physics, chemistry, biology, biophysics, economics, control theory, signal and image processing, etc. Particularly, nonlinear systems describing different phenomena can be modeled with fractional derivatives. Chaotic behavior has also been reported in some fractional models. There exist theoretical results related to existence and uniqueness of solutions to initial and boundary value problems with fractional differential equations; for the nonlinear case, there are still few of them. In this work we will present a summary of the different definitions of fractional derivatives and show models where they appear, including simple nonlinear systems with chaos. Existing results on the solvability of classical fractional differential equations and numerical approaches are summarized. Finally, we propose a numerical scheme to approximate the solution to linear fractional initial value problems and boundary value problems.",book:{id:"7662",slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",title:"Nonlinear Systems",fullTitle:"Nonlinear Systems -Theoretical Aspects and Recent Applications"},signatures:"María I. Troparevsky, Silvia A. Seminara and Marcela A. Fabio",authors:[{id:"296689",title:"Dr.",name:"Maria Ines",middleName:null,surname:"Troparevsky",slug:"maria-ines-troparevsky",fullName:"Maria Ines Troparevsky"},{id:"296690",title:"Prof.",name:"Silvia Alejandra",middleName:null,surname:"Seminara",slug:"silvia-alejandra-seminara",fullName:"Silvia Alejandra Seminara"},{id:"296691",title:"Prof.",name:"Marcela Antonieta",middleName:null,surname:"Fabio",slug:"marcela-antonieta-fabio",fullName:"Marcela Antonieta Fabio"}]},{id:"54899",title:"Fractals in Antennas and Metamaterials Applications",slug:"fractals-in-antennas-and-metamaterials-applications",totalDownloads:2320,totalCrossrefCites:12,totalDimensionsCites:14,abstract:"Recently, telecommunication systems have been requiring more advanced features in the design and operation. Among others a smaller size of devices, which can be integrated for multiple mobile communication systems, applied in one user’s device board, such as PDA or smart phone. Moreover, the cost of mass production should be minimized as much as possible. To meet part of that request, the antennas of these devices should have small size, lower weight, operating in multiple frequency bands and/or be broadband. There are many research methods to achieve this goal, one of which is using the fractal geometries for the shape of antenna elements. In recent years, there are many fractal shapes that have been proposed for such applications, and the designed antennas have significantly improved antenna features such as smaller size, operating in multi-frequency bands, with improved power gain and efficiency. In recent years, the new approach for modern antenna the metamaterials, MTM, is adopted, and sometimes that based on the fractal geometry is adopted.",book:{id:"5804",slug:"fractal-analysis-applications-in-physics-engineering-and-technology",title:"Fractal Analysis",fullTitle:"Fractal Analysis - Applications in Physics, Engineering and Technology"},signatures:"Wojciech Jan Krzysztofik",authors:[{id:"198646",title:"Prof.",name:"Wojciech",middleName:"Jan",surname:"Krzysztofik",slug:"wojciech-krzysztofik",fullName:"Wojciech Krzysztofik"}]}],onlineFirstChaptersFilter:{topicId:"966",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"
\r\n\tTransforming our World: the 2030 Agenda for Sustainable Development endorsed by United Nations and 193 Member States, came into effect on Jan 1, 2016, to guide decision making and actions to the year 2030 and beyond. Central to this Agenda are 17 Goals, 169 associated targets and over 230 indicators that are reviewed annually. The vision envisaged in the implementation of the SDGs is centered on the five Ps: People, Planet, Prosperity, Peace and Partnership. This call for renewed focused efforts ensure we have a safe and healthy planet for current and future generations.
\r\n
\r\n\t
\r\n
\r\n\tThis Series focuses on covering research and applied research involving the five Ps through the following topics:
\r\n
\r\n\t
\r\n
\r\n\t1. Sustainable Economy and Fair Society that relates to SDG 1 on No Poverty, SDG 2 on Zero Hunger, SDG 8 on Decent Work and Economic Growth, SDG 10 on Reduced Inequalities, SDG 12 on Responsible Consumption and Production, and SDG 17 Partnership for the Goals
\r\n
\r\n\t
\r\n
\r\n\t2. Health and Wellbeing focusing on SDG 3 on Good Health and Wellbeing and SDG 6 on Clean Water and Sanitation
\r\n
\r\n\t
\r\n
\r\n\t3. Inclusivity and Social Equality involving SDG 4 on Quality Education, SDG 5 on Gender Equality, and SDG 16 on Peace, Justice and Strong Institutions
\r\n
\r\n\t
\r\n
\r\n\t4. Climate Change and Environmental Sustainability comprising SDG 13 on Climate Action, SDG 14 on Life Below Water, and SDG 15 on Life on Land
\r\n
\r\n\t
\r\n
\r\n\t5. Urban Planning and Environmental Management embracing SDG 7 on Affordable Clean Energy, SDG 9 on Industry, Innovation and Infrastructure, and SDG 11 on Sustainable Cities and Communities.
\r\n
\r\n\t
\r\n
\r\n\tThe series also seeks to support the use of cross cutting SDGs, as many of the goals listed above, targets and indicators are all interconnected to impact our lives and the decisions we make on a daily basis, making them impossible to tie to a single topic.
",coverUrl:"https://cdn.intechopen.com/series/covers/24.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"262440",title:"Prof.",name:"Usha",middleName:null,surname:"Iyer-Raniga",slug:"usha-iyer-raniga",fullName:"Usha Iyer-Raniga",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRYSXQA4/Profile_Picture_2022-02-28T13:55:36.jpeg",biography:"Usha Iyer-Raniga is a professor in the School of Property and Construction Management at RMIT University. Usha co-leads the One Planet Network’s Sustainable Buildings and Construction Programme (SBC), a United Nations 10 Year Framework of Programmes on Sustainable Consumption and Production (UN 10FYP SCP) aligned with Sustainable Development Goal 12. The work also directly impacts SDG 11 on Sustainable Cities and Communities. She completed her undergraduate degree as an architect before obtaining her Masters degree from Canada and her Doctorate in Australia. Usha has been a keynote speaker as well as an invited speaker at national and international conferences, seminars and workshops. Her teaching experience includes teaching in Asian countries. She has advised Austrade, APEC, national, state and local governments. She serves as a reviewer and a member of the scientific committee for national and international refereed journals and refereed conferences. She is on the editorial board for refereed journals and has worked on Special Issues. Usha has served and continues to serve on the Boards of several not-for-profit organisations and she has also served as panel judge for a number of awards including the Premiers Sustainability Award in Victoria and the International Green Gown Awards. Usha has published over 100 publications, including research and consulting reports. Her publications cover a wide range of scientific and technical research publications that include edited books, book chapters, refereed journals, refereed conference papers and reports for local, state and federal government clients. She has also produced podcasts for various organisations and participated in media interviews. She has received state, national and international funding worth over USD $25 million. Usha has been awarded the Quarterly Franklin Membership by London Journals Press (UK). Her biography has been included in the Marquis Who's Who in the World® 2018, 2016 (33rd Edition), along with approximately 55,000 of the most accomplished men and women from around the world, including luminaries as U.N. Secretary-General Ban Ki-moon. In 2017, Usha was awarded the Marquis Who’s Who Lifetime Achiever Award.",institutionString:null,institution:{name:"RMIT University",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,annualVolume:11975,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,annualVolume:11976,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,annualVolume:11977,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:'Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the "new normal". Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.',institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,annualVolume:null,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,annualVolume:11979,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:12,paginationItems:[{id:"81975",title:"Self-Sustained Communities: Food Security in Times of Crisis",doi:"10.5772/intechopen.104425",signatures:"Kriengsak Chareonwongsak",slug:"self-sustained-communities-food-security-in-times-of-crisis",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81297",title:"Legumes Cropping and Nitrogen Fixation under Mediterranean Climate",doi:"10.5772/intechopen.104473",signatures:"Fernando Teixeira",slug:"legumes-cropping-and-nitrogen-fixation-under-mediterranean-climate",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81493",title:"Rust Disease Classification Using Deep Learning Based Algorithm: The Case of Wheat",doi:"10.5772/intechopen.104426",signatures:"Shivani Sood, Harjeet Singh and Suruchi Jindal",slug:"rust-disease-classification-using-deep-learning-based-algorithm-the-case-of-wheat",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81235",title:"Global Food System Transformation for Resilience",doi:"10.5772/intechopen.102749",signatures:"Jasper Okoro Godwin Elechi, Ikechukwu U. Nwiyi and Cornelius Smah Adamu",slug:"global-food-system-transformation-for-resilience",totalDownloads:44,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80749",title:"Analysis of the Nexus Between Coping Strategies and Resilience to Food Insecurity Shocks: The Case of Rural Households in Boricha Woreda, Sidama National Regional State, Ethiopia",doi:"10.5772/intechopen.102613",signatures:"Adane Atara Debessa, Degefa Tolossa and Berhanu Denu",slug:"analysis-of-the-nexus-between-coping-strategies-and-resilience-to-food-insecurity-shocks-the-case-of",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80753",title:"Toward Safe Food Systems: Analyses of Mycotoxin Contaminants in Food and Preventive Strategies Thereof for Their Formation and Toxicity",doi:"10.5772/intechopen.101461",signatures:"Dikabo Mogopodi, Mesha Mbisana, Samuel Raditloko, Inonge Chibua and Banyaladzi Paphane",slug:"toward-safe-food-systems-analyses-of-mycotoxin-contaminants-in-food-and-preventive-strategies-thereo",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80388",title:"Social Resilience in Local Food Systems: A Foundation for Food Security during a Crisis",doi:"10.5772/intechopen.101998",signatures:"Tanya Zerbian, Mags Adams and Neil Wilson",slug:"social-resilience-in-local-food-systems-a-foundation-for-food-security-during-a-crisis",totalDownloads:53,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80098",title:"Bundling Weather Index Insurance with Microfinance: Trekking the Long Road between Expectations and Reality. A Study on Sub-Saharan Africa",doi:"10.5772/intechopen.101742",signatures:"Dorcas Stella Shumba",slug:"bundling-weather-index-insurance-with-microfinance-trekking-the-long-road-between-expectations-and-r",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},subseriesFiltersForOFChapters:[{caption:"Sustainable Economy and Fair Society",value:91,count:12,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80484",title:"The Use of Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) to Study Ivermectin-Mediated Molecular Pathway Changes in Human Ovarian Cancer Cells",doi:"10.5772/intechopen.102092",signatures:"Na Li and Xianquan Zhan",slug:"the-use-of-stable-isotope-labeling-with-amino-acids-in-cell-culture-silac-to-study-ivermectin-mediat",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:89,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:87,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79031",title:"Isolation and Expansion of Mesenchymal Stem/Stromal Cells, Functional Assays and Long-Term Culture Associated Alterations of Cellular Properties",doi:"10.5772/intechopen.100286",signatures:"Chenghai Li",slug:"isolation-and-expansion-of-mesenchymal-stem-stromal-cells-functional-assays-and-long-term-culture-as",totalDownloads:80,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78960",title:"Two-Dimensional and Three-Dimensional Cell Culture and Their Applications",doi:"10.5772/intechopen.100382",signatures:"Sangeeta Ballav, Ankita Jaywant Deshmukh, Shafina Siddiqui, Jyotirmoi Aich and Soumya Basu",slug:"two-dimensional-and-three-dimensional-cell-culture-and-their-applications",totalDownloads:257,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78812",title:"Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture",doi:"10.5772/intechopen.99146",signatures:"Harikrishnareddy Rachamalla, Anubhab Mukherjee and Manash K. Paul",slug:"nanotechnology-application-and-intellectual-property-right-prospects-of-mammalian-cell-culture",totalDownloads:124,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78274",title:"A Brief Concept of Cell Culture: Challenges, Prospects and Applications",doi:"10.5772/intechopen.99387",signatures:"Md. Salauddin",slug:"a-brief-concept-of-cell-culture-challenges-prospects-and-applications",totalDownloads:179,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:187,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:200,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:190,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems. \r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"April 13th, 2022",hasOnlineFirst:!1,numberOfOpenTopics:4,numberOfPublishedChapters:9,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"38",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",annualVolume:11966,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices",scope:"
\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",annualVolume:11967,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation",scope:"
\r\n\tIn general, the harsher the environmental conditions in an ecosystem, the lower the biodiversity. Changes in the environment caused by human activity accelerate the impoverishment of biodiversity.
\r\n
\r\n\tBiodiversity refers to “the variability of living organisms from any source, including terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; it includes diversity within each species, between species, and that of ecosystems”.
\r\n
\r\n\tBiodiversity provides food security and constitutes a gene pool for biotechnology, especially in the field of agriculture and medicine, and promotes the development of ecotourism.
\r\n
\r\n\tCurrently, biologists admit that we are witnessing the first phases of the seventh mass extinction caused by human intervention. It is estimated that the current rate of extinction is between a hundred and a thousand times faster than it was when man first appeared. The disappearance of species is caused not only by an accelerated rate of extinction, but also by a decrease in the rate of emergence of new species as human activities degrade the natural environment. The conservation of biological diversity is "a common concern of humanity" and an integral part of the development process. Its objectives are “the conservation of biological diversity, the sustainable use of its components, and the fair and equitable sharing of the benefits resulting from the use of genetic resources”.
\r\n
\r\n\tThe following are the main causes of biodiversity loss:
\r\n
\r\n\t• The destruction of natural habitats to expand urban and agricultural areas and to obtain timber, minerals and other natural resources.
\r\n
\r\n\t• The introduction of alien species into a habitat, whether intentionally or unintentionally which has an impact on the fauna and flora of the area, and as a result, they are reduced or become extinct.
\r\n
\r\n\t• Pollution from industrial and agricultural products, which devastate the fauna and flora, especially those in fresh water.
\r\n
\r\n\t• Global warming, which is seen as a threat to biological diversity, and will become increasingly important in the future.
",annualVolume:11968,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorialBoard:[{id:"220987",title:"Dr.",name:"António",middleName:"Onofre",surname:"Soares",fullName:"António Soares",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNtzQAG/Profile_Picture_1644499672340",institutionString:null,institution:{name:"University of the Azores",institutionURL:null,country:{name:"Portugal"}}}]},{id:"41",title:"Water Science",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection",scope:"
\r\n\tWater is not only a crucial substance needed for biological life on Earth, but it is also a basic requirement for the existence and development of the human society. Owing to the importance of water to life on Earth, early researchers conducted numerous studies and analyses on the liquid form of water from the perspectives of chemistry, physics, earth science, and biology, and concluded that Earth is a "water polo". Water covers approximately 71% of Earth's surface. However, 97.2% of this water is seawater, 21.5% is icebergs and glaciers, and only 0.65% is freshwater that can be used directly by humans. As a result, the amount of water reserves available for human consumption is limited. The development, utilization, and protection of freshwater resources has become the focus of water science research for the continued improvement of human livelihoods and society.
\r\n
\r\n\tWater exists as solid, liquid, and gas within Earth’s atmosphere, lithosphere, and biosphere. Liquid water is used for a variety of purposes besides drinking, including power generation, ecology, landscaping, and shipping. Because water is involved in various environmental hydrological processes as well as numerous aspects of the economy and human society, the study of various phenomena in the hydrosphere, the laws governing their occurrence and development, the relationship between the hydrosphere and other spheres of Earth, and the relationship between water and social development, are all part of water science. Knowledge systems for water science are improving continuously. Water science has become a specialized field concerned with the identification of its physical, chemical, and biological properties. In addition, it reveals the laws of water distribution, movement, and circulation, and proposes methods and tools for water development, utilization, planning, management, and protection. Currently, the field of water science covers research related to topics such as hydrology, water resources and water environment. It also includes research on water related issues such as safety, engineering, economy, law, culture, information, and education.
",annualVolume:11969,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"216491",title:"Dr.",name:"Charalampos",middleName:null,surname:"Skoulikaris",fullName:"Charalampos Skoulikaris",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMsbQAG/Profile_Picture_2022-04-21T09:31:55.jpg",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"300124",title:"Prof.",name:"Thomas",middleName:null,surname:"Shahady",fullName:"Thomas Shahady",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002kuIgmQAE/Profile_Picture_2022-03-18T07:32:10.jpg",institutionString:null,institution:{name:"Lynchburg College",institutionURL:null,country:{name:"United States of America"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/46428",hash:"",query:{},params:{id:"46428"},fullPath:"/chapters/46428",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()