Correlation of intrinsic properties and extrinsic factors that affect its functionality and structural conformation
\r\n\tThis book intends to provide the reader with a comprehensive overview of the current state-of-the-art novel imaging techniques by focusing on the most important evidence-based developments in this area.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"d9159ce31733bf78cc2a79b18c225994",bookSignature:"Dr. Gabriel Cismaru",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",keywords:"Hypertrophic Cardiomyopathy, Dilated Cardiomyopathy, Restrictive Cardiomyopathy, Transesophageal Echocardiography, Intracardiac Echocardiography, 3-Dimensional Echocardiography, Adult Congenital Heart Disease, Tetralogy of Fallot, Transposition of the Great Vessels, Coronary Artery Disease, Risk Stratification, Revascularization",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 21st 2022",dateEndSecondStepPublish:"May 19th 2022",dateEndThirdStepPublish:"July 18th 2022",dateEndFourthStepPublish:"October 6th 2022",dateEndFifthStepPublish:"December 5th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Cismaru Gabriel is an Assistant Professor at the University of Medicine and Pharmacy Cluj-Napoca, certified in Cardiology. After completing his certification in cardiology, Dr. Cismaru began his electrophysiology fellowship at the Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu. He has authored or co-authored peer-reviewed articles and book chapters in the field of cardiac pacing, defibrillation, electrophysiological study, and catheter ablation.",coeditorOneBiosketch:"Raluca Tomoaia is an MD, Ph.D. in novel techniques in Echocardiography at the University of Medicine and Pharmacy in Cluj-Napoca, Romania., assistant professor, and a researcher in echocardiography and cardiovascular imaging.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",middleName:null,surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru",profilePictureURL:"https://mts.intechopen.com/storage/users/191888/images/system/191888.png",biography:"Dr. Cismaru Gabriel is an assistant professor at the Cluj-Napoca University of Medicine and Pharmacy, Romania, where he has been qualified in cardiology since 2011. He obtained his Ph.D. in medicine with a research thesis on electrophysiology and pro-arrhythmic drugs in 2016. Dr. Cismaru began his electrophysiology fellowship at the Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, France, after finishing his cardiology certification with stages in Clermont-Ferrand and Dinan, France. He began working at the Rehabilitation Hospital\\'s Electrophysiology Laboratory in Cluj-Napoca in 2011. He is an experienced operator who can implant pacemakers, CRTs, and ICDs, as well as perform catheter ablation of supraventricular and ventricular arrhythmias such as ventricular tachycardia and ventricular fibrillation. He has been qualified in pediatric cardiology since 2022, and he regularly performs device implantation and catheter ablation in children. Dr. Cismaru has authored or co-authored peer-reviewed publications and book chapters on cardiac pacing, defibrillation, electrophysiological studies, and catheter ablation.",institutionString:"Iuliu Hațieganu University of Medicine and Pharmacy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"5970",title:"Bedside Procedures",subtitle:null,isOpenForSubmission:!1,hash:"ba56d3036ac823a7155f40e4a02c030d",slug:"bedside-procedures",bookSignature:"Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/5970.jpg",editedByType:"Edited by",editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9064",title:"Epidemiology and Treatment of Atrial Fibrillation",subtitle:null,isOpenForSubmission:!1,hash:"1cd6bf2b3181eb82446347fbe478a2bc",slug:"epidemiology-and-treatment-of-atrial-fibrillation",bookSignature:"Gabriel Cismaru and Keith Andrew Chan",coverURL:"https://cdn.intechopen.com/books/images_new/9064.jpg",editedByType:"Edited by",editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"46134",title:"Drug Carrier Systems Using Chitosan for Non Parenteral Routes",doi:"10.5772/57235",slug:"drug-carrier-systems-using-chitosan-for-non-parenteral-routes",body:'A safe and efficient drug carrier must offer protection to human tissues in which it is administered as well as protection to the drugs against degradation, improve therapeutic effect, prolong biological activity, control drug release rate, and decrease the frequency of administration. These characteristics could be achieved by using chitosan to prepare carriers of drugs. It is almost the only cationic polysaccharide in nature with a great innate medical potential. Chitosan, a cationic polymer of natural origin, is a remarkable example of an excipient which currently has enormous potential for using in pharmaceutical dosage forms because of its properties as polyelectrolyte with reactive functional groups, gel-forming capability, high adsorption capacity, biodegradability and biocompatible and non-toxic to living tissues as well as having antibacterial, antifungal and antitumor activity. These functional properties provide suitability and extensive pharmaceutical applications such as for the preparation of drug delivery systems (drug conjugate, micro/nanoparticles, hydrogels, emulsions, biodegradable release system, etc.) and for regenerative medicine for many components such as proteins/peptides, growth factors, anti-inflammatory drugs, antibiotics intended to be administered in non parenteral routes (oral, topical, intranasal, vaginal, rectal and ocular). Interesting applications of chitosan has been receiving considerable attention since it has been developed systems more versatile by the incorporation of chitosan and other components in novel systems. They have provided a strategy for the functionalization by modulating physicochemical properties (hydrophilicity, surface charge, etc.) improving the encapsulation, stability, and protection of drugs. The recent development of nanotechnology and the various processes of funcionalization of chitosan have increased and improved its functionality as drug carrier.
This work reviews the drug carrier systems using chitosan to improve and increase the delivery of drugs for non parenteral routes. The most important properties of chitosan, the types of systems intended to be used for non parenteral routes, the strategies for the functionalization of chitosan systems by the incorporation of other components, advantages and limitations, and the relevance of pharmaceutical, pharmacological and toxicological experimental studies are reviewed in different drug carrier systems from chitosan.
Chitosan is an abundant polysaccharide, it has the peculiarity of being the unique cationic biopolymer of natural origin [1, 2]. It is obtained from the chitin, the most second abundant polysaccharide in the nature [3, 4]. The wide variety of natural sources of chitosan include: structural components of the cell walls of certain fungi, algae and bacteria species, and in the egg shells of nematodes. Nevertheless, the principal source is the shells of mollusks and the exoskeleton of the phylum
The chemical structure of chitosan is ideally formed only by 2-amino-2-deoxy-β-D-glucopyranose, the deacetylated form of D-glucosamine, and chitin is ideally formed only by 2-acetamido-2-deoxy-β-D-glucopyranose, which is the acetylated form of D-glucosamine. However, the real found structure of chitosan, as well as the one of chitin, is a copolymer of 2-amino-2-deoxy-β-D-glucopyranose and 2-acetamido-2-deoxy-β-D-glucopyranose, in which both the deacetylated and the acetylated forms of D-glucosamine are randomly distributed along the whole copolymer chain. This is the reason why chitosan comprises a wide group of fully and partially deacetylated chitins. The two kind of D-glucosamine residues are linked by β(1→4)-glycosidic bonds. It is accepted chitosan is composed predominantly of the deacetylated form of D-glucosamine [1, 2, 4, 6, 7, 11-13]. The Figure 1 represents the chemical structure of chitin and chitosan.
Commercial chitosans have a deacetylation degree of 85%, and its elemental composition is 44. 11 % of carbon, 7. 97 % of nitrogen, and 6. 84 % hydrogen [6]. When chitosan is obtained using an alkaline process, the degree of deacetylation can be controlled if the time, temperature and the concentration of alkali and chitin are also controlled. In addition to these processing factors, the degree of acetylation, the distribution of acetyl groups along the biopolymer chain, and the molecular size distribution of chitosans change depending of the source of chitosan. All these factors determine chitosan physicochemical and biological properties [13, 14].
Chitosan is distinguished by its solubility in dilute aqueous acid solutions derived from its polycationic character [9] and its insolubility in most solvents. In function of deacetylation degree, a chitosan polymer becomes soluble in dilute acidic medium; the minimum deacetylation level for solubilizing is 40-60%. The solubility of the polymer, the inter-chain interactions due to hydrogen bonds and the hydrophobic character of the acetyl group are affected by the distribution of N-acetyl groups along the biopolymer chain [13]. The solubility of chitosan is also affected by the formation of crystalline structures as a result of intra- and inter-macromolecular hydrogen bonds in the solid state; crystalline domains appear to be the main factor limiting for chitosan aqueous solubility [15]. Between acidic and neutral pH conditions, chitosan develops positive net charges because of its polycationic nature [9, 13]. Chitosan is positively charged due to primary amino groups, the magnitude of the charge density is dependent on the degree of deacetylation, pH, and ionic strength [9]. In weakly acidic aqueous solutions of inorganic acids (phosphoric and sulfuric acids) and organic acids (formic, acetic, tartaric, and citric acids), amino groups are partially protonated, while a total protonation is reached at pH 4. 0 [15]. Another chemical characteristic of chitosan is its metal binding capacity attributed to its chelating ability of the amine groups [5]. Table 1 shows some intrinsic (structural characteristics of chitosan) and extrinsic parameters that affect some functionality parameters [16-18].
Chemical structures of chitin and chitosan and their monomers: a) 2-acetamido-2-deoxy-β-D-glucopyranose or β-D-GlcNAc and b) 2-amino-2-deoxy-β-D-glucopyranose or β-D-GlcN.
Physical properties of chitosan depend of factors as the molecular weight distribution, the acetylation degree and the source of chitosan. In Table 2 are listed some physical properties of reported in scientific literature and commercial chitosans from different sources [19-22]. The solution conformation of chitosan can occur as rod-like, spherical or random coil conformations in function of the molecular weight distribution and degree of acetylation; the molecular mass affects the intrinsic viscosity and radius of gyration [23] while the degree of acetylation determines in turn the electric charge which is directly related to the solution conformation of chitosan [20]. When the charge on the chitosan chain increases, its conformation in solution expands and the viscosity increases substantially [24].
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t•Molecular weight •Deacetylation degree •Presence of contraions •pH •Solvent | \n\t\t\t•Viscosity of the chitosan solutions is affected by the presence of the amino groups with a pKa value of 6. 3 (as a strong base its polielectrolyte nature affects the hydrodynamic ratio in solution) [16]. | \n\t\t
\n\t\t\t\t | \n\t\t\t•Molecular weight •Deacetylation degree •Chitosan concentration •Presence of contraions •pH •Temperature | \n\t\t\t•At pH above 7 and at low temperatures (≈25ºC) the hydrogels are greatly swollen [17]. •Hydrogels are more compact and irregular when the deacetylation degree (D.D.) of chitosan is increased [18]. | \n\t\t
\n\t\t\t\t | \n\t\t\t•Molecular weight •Deacetylation degree | \n\t\t\t•Lower molecular weights leads to a faster biodegradation rates than higher molecular weights. •Deacetylation degree is determinant, increasing the presence of charged moieties leads to faster degradation rates. | \n\t\t
\n\t\t\t\t | \n\t\t\t•Acid concentration •Ionic strength •Deacetylation degree | \n\t\t\t•Chitosan is soluble at a higher concentration of hydrogen ions (below at a pH of 6) [16]. | \n\t\t
Correlation of intrinsic properties and extrinsic factors that affect its functionality and structural conformation
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\tWhite | \n\t\t\t\n\t\t\t | White | \n\t\t\tWhite to beige | \n\t\t
\n\t\t\t\t | \n\t\t\tPowder | \n\t\t\t\n\t\t\t | Powder | \n\t\t\tPowder/chips | \n\t\t
\n\t\t\t\t | \n\t\t\t0. 245 | \n\t\t\t\n\t\t\t | \n\t\t\t | \n\t\t |
\n\t\t\t\t | \n\t\t\t6. 96 | \n\t\t\t\n\t\t\t | \n\t\t\t | \n\t\t |
\n\t\t\t\t | \n\t\t\t83. 1 | \n\t\t\t89 | \n\t\t\t73 | \n\t\t\t>75 | \n\t\t
\n\t\t\t\t | \n\t\t\t347 mPa. s | \n\t\t\t540 ml/g [η] | \n\t\t\t563. 7 cP | \n\t\t\t\n\t\t |
\n\t\t\t\t | \n\t\t\t\n\t\t\t | 1. 72 | \n\t\t\t0. 23 (tapped) | \n\t\t\t0. 15-0. 3 | \n\t\t
\n\t\t\t\t | \n\t\t\t[19] | \n\t\t\t[15] | \n\t\t\t[21] | \n\t\t\t[22] | \n\t\t
Some physical properties of reported in scientific literature and commercial chitosans
Rheological properties of chitosan solutions are independent of the ionic strength and the pH, this behavior can be related to the fact that the ionic strength within certain range does not affect the conformation in solution [23, 25]. In organic acid solutions as acetic acid ones, the viscosity curves for chitosan solutions consist of two distinct viscosimetric behaviors, the first one is a Newtonian zero-shear viscosity region and second one is a shear rate dependent apparent viscosity region. An increase in chitosan concentration produces a pseudoplastic behavior, i. e., a higher shear rate dependence of viscosity [9] while at a lower concentration exhibits a shear thinning behavior [25]. The pseudoplastic behavior is explained because as the polymer concentration increased, the freedom of movement of the individual chains becomes more restricted due to the correspondingly increased number of entanglements between chitosan chains [9]. Table 3 shows viscosities of various chitosan samples [21, 26-29]. Because chitosan undergoes acid-catalyzed hydrolysis, chitosan presents an irreversible decrease in viscosity in dilute acid medium [28], the degree of hydrolysis depends on the molecular weight and degree of acetylation: the higher the values of both parameters, the quicker decrease in the viscosity and, consequently, in the viscosity-average molecular weight [29].
Due to its degradation in acidic media, chitosan dissolved quickly after swollen in gastric juice and could not achieve sustained release in the gastrointestinal tract [30]. In order to obtain chitosan derivatives with new functionality and to extend its uses in a greater number of pharmaceutical applications, chitosan has been subjected to various chemical modifications. The chitosan structure has been modified through trimethylation, N-succinylation, thiolation, azidation, sugar-modified chitosan, chitosan-dendrimer hybrids, cyclodextrin-linked chitosans, crown-ether-bound chitosan, chemical grafting of chitosan, enzymatic modification of chitosan. These reactions yield chitosan-based derivatives that retain the biodegradability and non-toxicity characteristic of chitosan [1].
Chitosan is able to form physical gels, these gels retain the main properties of this polysaccharide, in particular, biocompatibility. The process of gel formation depends on the initial concentration of the polymer and charge density, which is determined by the degree of deacetylation [31]. The degree of hydration of chitosan hydrogels are affected by the molecular weight of chitosan [32]. Chitosan hydrogels have been investigated as potential vehicles for targeted drug delivery [15] specially seems to be suitable for sustained-release drug [32, 33].
Polycationic character of chitosan opens the possibility for interactions with negatively charged molecules (anions and polyanions) [34] and allows the forming of polyanion-chitosan complexes with polyanions such as heparin, carboxymethylcellulose, carrageenan, alginate, Pluronic, dextran sulfate, and xanthan have been produced [35-51]. The complexes formed by chitosan with other polymers can be divided into hydrogen bonding complexes, polyelectrolytes complexes, coordination complexes and self-assembly complexes based on dominant intermolecular interactions [52]. Some chitosan-based non-stoichiometric polyelectrolyte complexes are soluble at physiological pH and ionic strength [53], because polyelectrolyte complexes are formed in aqueous solutions, it should be taken into account molecular information as the molecular weight of chitosan, its mass distribution, the degree of deacetylation, the location of free and acetylated amino groups in the polymer chain, chain length, and conformation of molecules in solution [34]. The synthesis mechanism of chitosan-polyanions complexes can be the result of changing the chemical structure of component polymers, such as molecular weight, flexibility, functional group structure, charge density, stereoregularity, and compatibility, as well as synthesis conditions: pH, ionic strength, concentration, mixing ratio, and temperature [30].
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Oxidative fragmentation (1% NaNO2) of chitosan | \n\t\t\t91. 3 | \n\t\t\t659. 4 | \n\t\t\t1. 05 dL/g (intrinsic, in 0. 25 mM acetate buffer, 0. 05-0. 3 g/dl of chitosan, 25°C) | \n\t\t\t[26] | \n\t\t
Oxidative fragmentation (4% NaNO2) of chitosan | \n\t\t\t90. 19 | \n\t\t\t864. 2 | \n\t\t\t0. 21 dL/g (intrinsic, in 0. 25 mM acetate buffer, 0. 05-0. 3 g/dl of chitosan, 25°C) | \n\t\t\t[26] | \n\t\t
1% NaOH, 21 hr, 4% HCl, 2 hr | \n\t\t\t75. 9 | \n\t\t\tNot determined | \n\t\t\t830 cP (1% acetic acid, 1% chitosan) | \n\t\t\t[27] | \n\t\t
4% HCl, 2 hr, 1% NaOH, 21 hr | \n\t\t\t76. 3 | \n\t\t\tNot determined | \n\t\t\t2919 cP (1% acetic acid, 1% chitosan) | \n\t\t\t[27] | \n\t\t
Demineralization 1N HCl, 30 min, room temperature after decolorization 0. 315% NaOCl, 5min, room temperature | \n\t\t\t73 | \n\t\t\t10. 59 | \n\t\t\t563. 7cP(1% acetic acid, 1% chitosan, 25°C) | \n\t\t\t[21] | \n\t\t
Deproteinization 3. 5%NaOH, 2hr, 65°C after decolorization 0. 315% NaOCl, 5min, room temperature | \n\t\t\t70 | \n\t\t\t9. 63 | \n\t\t\t444. 9 cP1% (1% acetic acid, 1% chitosan, 25°C) | \n\t\t\t[21] | \n\t\t
Viscosity of chitosan related to deacetylation degree (D. D. ), molecular weight (M. W. ) of chitosans produced by different methods.
In addition to the electrical charge, dipole-dipole interactions, as well as hydrogen and hydrophobic bonds are determinant for the formation of complexes with polyanions [34]. As a matrix for releasing drugs, chitosan complexes must allow the controlled release either modulating tissue drug levels or spatially-placing (or temporarily-placing) a drug in some region of the body to maintain efficacy and stability of drugs within the matrix. For drug delivery systems for gastrointestinal, respiratory, ophthalmologic, cervical, and vaginal routes, the mucins are hydrophilic saline gels that are thickened by natural anionic glycoproteins. Here, a cationic polymer as chitosan is ideal [52].
Chitosan has excellent properties such as hydrophilicity, biocompatibility, biodegradability, antibacterial and adsorption applications, and a very low toxicity [54-57]. The biocompatibility of chitosan is generally regarded as the ability of the newly developed material to interact with living cells, tissues, or organs by not being toxic or injurious and not triggering immunological reactions or rejections while functioning appropriately in vitro and in vivo [57]. Accordingly the features mentioned above, besides the chitosan being used for drug delivery, is used in tissue engineering, gene delivery, nasal drug and vaccine delivery [58]. The formulation of chitosan with a drug may alter the pharmacokinetic and biodistribution profiles, and for pharmaceutical applications it is necessary to take in account the route of administration, its concentration, contact time and cell types that enter in contact with chitosan or chitosan complexes [58-63]. In Table 4 are listed some biological and toxicological properties of chitosan in several biological systems [64-75].
Due to its good biocompatibility and biodegradability properties, chitosan provides a useful excipient for mucoadhesive drug delivery systems in order to prolong the mucosal residence time. An inconvenient issue about chitosan, it is that glucosamine from shellfish may not be suitable for allergic people to shellfishes [10]. Although chitosan has not yet been related directly to cases of allergic reactions, some cosmetics or nutraceuticals products prepared with chitosan are related to skin irritation or even anaphylaxis [21, 76, 77]. It is possible that proteins from shellfish such as tropomyosin and arginine kinase remain as residues on the chitosan and chitin, being these substances responsible for such allergic reactions [78]. As a result of this review, no allergenic reactions produced to nasal membranes have been found reported. Arai et al. found that chitosan has an LD50 comparable to sucrose of >16 g/kg in oral administration to mice [79]. No oral toxicity was found in mice treated with 100 mg/kg chitosan nanoparticles (80 kDa, 80% DD) [80]. Exposure of rat nasal mucosa to chitosan solutions at 0. 5% (w/v) over 1 h caused no significant changes in mucosal cell morphology compared to control [81]. From most studies reported it appears that chitosan shows minimal toxic effects and this approves its adoption as a safe material in drug delivery. Others authors studied the safety of a chitosan bandage in shellfish allergic patients (shellfish allergy prevalence of 2. 8% in adults) showing that all subjects tolerated the bandage without reaction. Although larger cohort studies should be considered, the results from this study are encouraging and consistent with two previous studies demonstrating the safety of other chitin-derived products in patients allergic to shellfish [82].
\n\t\t\t | \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t||||
Antitumor activity against HepG2, A549, and PC3 model tumor cell | \n\t\t\t100 87. 5 | \n\t\t\tPentamers Octamers | \n\t\t\tIC50 < 50 μg·mL−1 \n\t\t\t | \n\t\t\t[64] | \n\t\t
Prevent leakage and bleeding from lung punctures | \n\t\t\t99 98 | \n\t\t\t230 kDa 300 kDa | \n\t\t\t2. 3% (w/v) 2. 3% (w/v) | \n\t\t\t[65] | \n\t\t
Reduction of 25-30% in plasmatic cholesterol in rats | \n\t\t\t\n\t\t\t | \n\t\t\t | 5% of the diet | \n\t\t\t[66] | \n\t\t
Decreasing of fat digestibility, mineral absorption and vitamin E level in rats fed with high-fat diets | \n\t\t\t90 | \n\t\t\tNot specified | \n\t\t\t50g/100g of solids | \n\t\t\t[67] | \n\t\t
Prevention the symptoms of isoprenaline-induced myocardial infarction in rats | \n\t\t\t85-87 | \n\t\t\t750kDa | \n\t\t\t2% of the diet for 60 days | \n\t\t\t[68] | \n\t\t
Reduction of body weight and plasma triacylglycerol concentration in mice | \n\t\t\tNot specified | \n\t\t\t46 kDa | \n\t\t\t300 mg/Kg daily administrated | \n\t\t\t[69] | \n\t\t
\n\t\t\t\t | \n\t\t||||
Against E. coli | \n\t\t\t20% 11% | \n\t\t\t55, 155 5, 300 | \n\t\t\t50-100 ppm 2500-10000 ppm | \n\t\t\t[70, 71] | \n\t\t
Against L. monocytogenes | \n\t\t\t10 (56 kDa) | \n\t\t\t5, 150 | \n\t\t\t1000 ppm | \n\t\t\t[72] | \n\t\t
Against S. typhimurium | \n\t\t\t15-25% (150 kDa) | \n\t\t\t5, 150 | \n\t\t\t1000 ppm | \n\t\t\t[72] | \n\t\t
Maximum inhibition of absorption of Streptococcus sobrinus by hydroxyapatite (anti-plaque activity) | \n\t\t\t50-60% | \n\t\t\t5-6 | \n\t\t\t250 ppm | \n\t\t\t[73] | \n\t\t
\n\t\t\t\t | \n\t\t||||
Aspartic acid salt of chitosan in B16F10 cells | \n\t\t\t78% | \n\t\t\t<50 | \n\t\t\t(IC50)2. 50 mg/mL | \n\t\t\t[74] | \n\t\t
Aspartic acid salt of chitosan in Caco-2 cells | \n\t\t\t87% | \n\t\t\t20, 45, 200, 460 | \n\t\t\t(IC50)670, 650, 720 mg/mL | \n\t\t\t[75] | \n\t\t
Some biological and toxicological properties of chitosan related to deacetylation degree (D. D. ), molecular weight (M. W. ) and its concentration in several biological systems.
An important aspect in the use of polymers as drug delivery systems is their metabolic fate in the body or biodegradation [54]. Degradation of chitosan by thermal, acidic, enzymatic, and irradiation process have been reported [28, 29, 60-63, 83- 85]. In general, both rate and extent of chitosan biodegradability in living organisms are dependent on the degree of deacetylation [54]. Enzymatic degradation of chitosan is sensitive to the supermolecular structure of the polymer [83], in human body lisozyme produces the hydrolysis of chitosan [86]. Aminosugars released as a result of its biodegradation can be used in the metabolic pathways of glycosaminoglycans and glycoproteins in the body [87, 88]. In the stomach, some chemical degradation is wide catalysed by gastric acid [54], but it is not hydrolyzed by human digestive enzymes [69], its lack of absorption in the human body provides chitosan a function as dietary fiber [56]. In the case of the systemic absorption of hydrophilic polymers such as chitosan, they should have a suitable Mw for renal clearance [54].
The administration of chitosan in humans has been extensively studied (Table 5) [89-94]. The chitosan exhibits a hypocholesterolemic effect, the administration of chitosan, regardless of their molecular weight, coupled with ascorbic acid, produce a decreased fat absorption. When chitosan enters in contact with gastric fluids, forms a gel that traps lipids preventing their absorption in the intestine. Sodium ascorbate enhances the gelling and flexibility of chitosan, increasing the amount of fat that is stuck [95]. By blocking the absorption of fat is inhibited the atherosclerotic plaque formation, reducing the risk of atherosclerosis in hypercholesterolemic persons [88], besides that no deterioration occurs in the intestinal mucosa causing anti-hypercholesterolemiants as cholestyramine [96].
Fat absorption depends on the degree of deacetylation and the viscosity of chitosan. The greater degree of deacetylation and a high viscosity of the chitosan cause a higher absorption of dietary fat [66]. Chitosan also reduces cholesterol, urea and creatinine, and increases of hemoglobin levels, which may be used as coadyuvate in the treatment of patients with kidney failure [89]. Chitosan can cause wound healing and fibrosis decreasing mortality genitourinary surgery, and produce a hemostatic effect, which is attributed to the interaction between the cell membrane of the erythrocytes and chitosan, being this interaction independent of the classical cascade of coagulation [97].
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t45 mg/tablet per 12 weeks | \n\t\t\tReduction of urea, cholesterol, creatinine levels in serum. | \n\t\t\t[89] | \n\t\t
\n\t\t\t\t | \n\t\t\tFour tablets, 400 mg/tablet, per day with low calorie diet for 4 weeks | \n\t\t\tVariable adverse effects in 5% of treated subjects | \n\t\t\t[90] | \n\t\t
\n\t\t\t\t | \n\t\t\t0, 4. 5, 6. 75 g of chitosan per day for eight weeks, no dietary restrictions | \n\t\t\tNo effect on serum content of vitamins A, E, D, alpha carotene, beta carotene. Modest reduction in plasma cholesterol concentrations | \n\t\t\t[91] | \n\t\t
\n\t\t\t\t | \n\t\t\tLocal percutaneous Ho-166/chitosan complex injections | \n\t\t\tComplete tumor necrosis in 77. 5% of treated patients | \n\t\t\t[92] | \n\t\t
\n\t\t\t\t | \n\t\t\t5 g of chitosan | \n\t\t\tPrevention of blood pressure after a high in salt meal | \n\t\t\t[93] | \n\t\t
\n\t\t\t\t | \n\t\t\t1. 2 g of chitosan per day, no dietary restrictions | \n\t\t\tMild reduction in total and LDL cholesterol, few adverse effects observed | \n\t\t\t[94] | \n\t\t
Effects of chitosan and complexes containing chitosan administrated on humans with different health problems.
Biodegradation of chitosan and chitin implies the cleaving of the β(1→4)-glycosidic bond between the two kind of D-glucosamine residues that form its chemical structure. Biodegradation of chitosan has been assessed by enzymatic methods using enzymes from different sources. The lysozyme (EC 3. 2. 1. 17) is an enzyme which degrades chitosan and chitosan-conjugates by cleaving the β(1→4) bonds between N-acetyl-D-glucosamine residues; lysozyme also degrades β(1→4)-glycosidic bonds between the N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglucan [98]. Lysozyme exists in various human body fluids and tissues with concentrations from 4 to 13 mg/L in serum and from 450 to 1230 mg/L in human tears [99]. The rate of biodegradation of chitosan by the lysozyme is affected by the degree of deacetylation; initial degradation rates increase with a decreasing degree of deacetylation.
Some chitosan derivatives exhibit a faster degradation rate than chitosan, for example with the increasing of the molar ratio of glycolic acid to chitosan of poly(glycolic acid) grafted chitosan the rate of degradation gradually increased [100].
Chitin polyphorms exhibit different rates of degradation. Lysozyme degrades β-chitin more readily than α-chitin due to the weak intermolecular forces of the latter. In β-chitin the degree of deacetylation is decisive for the degradation behavior of chitin [101].
Chitinases are enzymes present in fungi, insects, and bacteria, these enymes degrades chitin to olygosaccharides. In general, microbial endo-chitinases hydrolyze β(1→4)-glycosidic bonds randomly. Chitinases isolated from different organisms have widely different characteristics. In human the presence of chitinases is associated to allergic reactions. Human chitinases with enzymatic activity have been identified, but they have not been investigated with regards to the degradation of chitosan and/or its derivatives [52].
Biodistribution, in vivo and in vitro toxicity using various chitosans of different molecular weights and degrees of deacetylation and derivatives would provide data that could help correlate chitosan\'s structure and safety profile [48]. Some derivatives increase in toxicity and any residual reactants must be carefully removed [49]. In laboratory mice, the LD50 of chitosan is similar to that of salt or sugar (16 g/kg of body weight) [50].
A considerable amount of work has been published on chitosan and its potential use in drug delivery systems. In recent years considerable research has been focused on noninvasive routes, such as mucosal (oral, buccal, nasal, pulmonary and vaginal) and (trans)dermal. Chitosan has a cationic character because of its primary amino groups. These primary amino groups are responsible for properties such as controlled drug release, mucoadhesion, in situ gellation, transfection, permeation enhancement, and efflux pump inhibitory properties.
The mucoadhesive properties are also based on its cationic character. The mucus gel layer exhibits anionic substructures in the form of sialic acid and sulfonic acid substructures. Based on ionic interactions between the cationic primary amino groups of chitosan and these anionic substructures of the mucus, mucoadhesion can be achieved. In addition, hydrophobic interactions might contribute to its mucoadhesive properties. Moreover, several studies have shown the effects of chitosan systems for the drug delivery. The molecule has been widely used in a variety of pharmaceutical multipurpose excipients capable of increasing aqueous solubility and drug stability [102].
Owing to nasal obstacles such as low membrane permeability, a short local residence time, and high turnover rate of a secretion in nasal cavities, the bioavailability of nasally administered drugs is often comparatively poor [103]. In order to overcome those problems, chitosan particles or polyelectrolyte complexes have been studied for nasal delivery of therapeutic proteins [104-106]. It was found that insulin loaded chitosan nanoparticles enhance nasal drug absorption to a greater extent than relevant chitosan solutions.
Chitosan has been also used recently via intranasal in many studies particulary in vaccines as a potent mucosal adjuvant. In a study, the matrix protein 1, which is highly conserved in all influenza A strains, was purified and used for immunization (twice at an interval of 3 weeks) of BALB/c mice by intranasal drip using chitosan as adjuvant to test the efficacy as vaccine. The results showed that nasal administration of 100 μg of the matrix protein 1 in combination with chitosan could not only completely protect the mice effectively against the homologous virus (H9N2) but also protect 70% and 30% of the mice against the heterologous H1N1 and H5N1 viruses, respectively, indicating that the matrix protein 1 is a candidate antigen for a broad-spectrum influenza virus vaccine and the adjuvant chitosan significantly improved the efficacy of the vaccine. This vaccine could provide effective protection against unknown influenza virus infection in future [107].
Microparticles (with suitable range for vaccine delivery) and gels using chitosans with different molecular weight and solubility as adjuvant/delivery system for mucosal (nasal) immunization against bovine herpes virus 1(BHV-1) showed that when the virus was incorporated into microparticles, the particle size was increased (p < 0. 05). Narrower particle size distribution was obtained with water soluble chitosan compared to that of base chitosan particles at different molecular weights (p < 0. 05). This difference can be attributed to difference in solubility of chitosans [108]. Similar results were reported in other studies [109-112]. With blank microparticles prepared with base chitosan at different molecular weights, the surface appearance and morphology were observed to be similar (with a smooth surface and spheroids). When the particles were loaded with the antigen; the surface appearance of the microparticles was changed with the increasing molecular weight of chitosan (Figure 2). These results suggest that antigen is entrapped within the microparticles, as well as associated with the surface of the microparticles [108]. Similarly, increased particle size and surface roughness with antigen loading has been reported by other groups [113, 114]. These systems are promising adjuvant/delivery systems for non-invasive delivery of antigen tested as well as for other antigens.
Moreover, the nasal administration of vaccines can induce specific IgA antibody responses at distant mucosal sites, including the upper and lower airway mucosa and the small and large intestines, as well as the nasopharynx, salivary glands, genital tract, and tonsils, because of the dissemination of antigen-specific lymphocytes in the common mucosal immune system (immunocompetent cells in the body, such as M-cells, T-cell, B-cell, dendritic cells, and macrophages) [114-116].
Chitosan-based formulations have been used for the delivery of drugs to specific sites of the body such as oral cavity, stomach, small intestine and colon. The site-specific delivery of the drug to the oral cavity can be used to treat a number of diseases of the mouth, such as stomatitis, periodontal disease, fungal and viral infections, and oral cavity cancers, thereby avoiding the first pass metabolism effect. In this sense, some points should be considerate for buccal administration of drugs, such as maintain the device in its position for many hours against buccal motion and salivary flow, which could reduce the mucosal absorption. Consequently, the dosage form must have good adhesive properties and show an efficient control of drug delivery. Investigations have shown in several studies that drug release is influenced by swelling and erosion of the matrix, whereas matrix adhesiveness can be modulated using different mixtures of polymers, both adhesive and not. Here, investigations have reported that the chitosan has good mucoadhesiveness and a significant enhancing effect on the permeation of drugs across the buccal mucosa [117, 118]. The applications using chitosan include chlorhexidine loaded chitosan microparticles, which showed a determination effective of antibacterial activity of chitosan from thermosensitive hydrogel (with or without drugs) or as activator for the antibacterial process [119]. Chitosan microspheres based drug delivery is applicable for systemic as well as for local therapy. In case of oral drug delivery, the use of microspheres loaded with antibiotics would be beneficial for gastric diseases such as peptic ulcer [21],
With respect to the colon drug delivery, some microcrystalline cellulose core beads containing 5-aminosalicylic acid produced by extrusion-spheronization were coated with chitosan and Aquacoat® ECD mixtures. An adequated selection of the coating thickness and the chitosan level in the coat could minimize drug release in simulated intestinal fluid and provide zero order release. These products could also be used to achieve controlled release of drugs in the small intestine. Beads coated with chitosan/ Aquacoat® showed to be susceptible to the action of rat cecal and colonic enzymes and demonstrated their potential for colon specific drug delivery [120].
Various ophthalmic vehicles, such as inserts, ointment, suspensions, and aqueous gels, have been developed in order to lengthen the resident time of instilled dose and enhance the ophthalmic bioavailability. Chitosan based systems have the potential for improving the retention and biodistribution of drugs applied topically onto the eye. One of the pharmaceutical forms most investigated are the
SEM micrographs of blank (A) and BHV-1 loaded microparticles (B) prepared with water soluble chitosan; chitosan base-low molecular weight (50-1000 kDa): blank (C), BHV-1 loaded microparticles (D); chitosan base-medium molecular weight (300-2000 kDa): blank (E), BHV-1 loaded microparticles (F); chitosan base-high molecular weight (500-5000): blank (G), and BHV-1 loaded microparticles (H). This figure is reproduced with the permission [
Another interesting study reported chitosan microparticles to be administered via ophthalmic. The
Transdermal drug delivery systems can deliver drugs for systemic effects through skin at controlled rate (can be interrupted if it necessary), with the advantage of avoiding the first pass metabolism effect [130-134]. An example of this could be obtained with the lidocaine hydrochloride-loaded transdermal chitosan patches as a drug reservoir, which released the drug in a manner prolonged at 95% chitosan degree of deacetylation [135].
In a recent study, warfarin-β-cyclodextrin loaded chitosan nanoparticles for transdermal delivery were successfully prepared by ionic gelation method. Chitosan nanoparticles were found to be spherical, smooth and with narrow size distribution. They showed high drug entrapment efficiency and well accepted yield. The release profile from nanoparticles showed an initial burst effect followed by a slow and continuous release phase. The nanoparticle formulation enhanced the permeation of warfarin through excised rat skin in a constant and continuous profile. Therefore, it could be concluded that this formulation enhanced the controlled release and the permeation of warfarin, offering a promising system for the transdermal delivery [136].
In order to regenerate some loss or damaged tissue and organ,
Chitosan is a non-toxic, biocompatible and biodegradable polymer and has attracted considerable interest in a wide range of biomedical and pharmaceutical applications including drug delivery, cosmetics, and tissue engineering. The primary hydroxyl and amine groups located on the backbone of chitosan are responsible for the reactivity of the polymer and also act as sites for chemical modification. However, chitosan has certain limitations for use in controlled drug delivery and tissue engineering. These limitations can be overcome by chemical modification. In order to achieve high mucoadhesive properties, this polymer needs to exhibit also high cohesive properties as the adhesive bond otherwise fails within the mucoadhesive polymer rather than between the mucus gel layer and the polymer. In case of chitosans, however, these cohesive properties are also comparatively weak. Although they can be strongly improved by the formation of complexes with multivalent anionic drugs, multivalent anionic polymeric excipients, and multivalent inorganic anions, this strategy is only to a quite limited extent effective, as the cationic substructures of chitosan being responsible for mucoadhesion via ionic interactions with the mucus are in this way blocked. The combination of chitosan with other materials appears to be a common theme in various reports. Blending with other polymers is widely investigated. Blends with synthetic and natural polymers can imbibe the wide range of physicochemical properties and processing techniques of synthetic polymers as well as the biocompatibility and biological interactions of natural polymers.
A significantly improved oral bioavailability of buserelin was demonstrated with mucoadhesive polymers such as chitosan and carbomer to rats. This effect, however, could not be observed anymore when chitosan was combined with the polyanionic carbomer in the same formulation [141]. Trimethylation of the primary amino group of chitosan provides an even more cationic character of the polymer. When trimethylated chitosan is additionally PEGylated, its mucoadhesive properties are even up to 3. 4-fold improved [142]. Due to the immobilization of thiol groups on chitosan, its mucoadhesive properties can also be strongly improved, as the thiolated polymer is capable of forming disulfide bonds with mucus glycoproteins of the mucus gel layer, placing it among the most mucoadhesive polymers known so far [143]. In addition, as inter- and intrachain disulfide bonds are also formed within chitosan itself, thiolated chitosan exhibits substantially improved cohesive properties. Recently, the mucoadhesive properties of thiolated chitosans were even significantly further improved by the preactivation of thiol groups on chitosan via the formation of disulfide bonds with mercaptonicotinamide.
Chitosan, the second most abundant polysaccharide next to cellulose, has been adopted as having great potential application as a protein drug carrier for oral administration due to its outstanding properties of non-toxicity, biocompatibility, biodegradability and low cost [144, 145]. Oral administration of drugs represents the easiest and the most convenient route of drug delivery. Therefore, the enhancement of oral bioavailability of some drugs particularly those with poor aqueous solubility, is gaining increasing attention for successful development of oral treatment. Chitosan based hydrogel systems can be designed to deliver drugs locally to the stomach or the upper part of tract to improve bioavailability. It was tested by confocal laser scanning microscopy that amoxicillin loaded pH-sensitive hydrogels composed of chitosan and poly(g-glutamic acid) could be infiltrated in the cell–cell junctions and interact with
Another investigation reported that the oral bioavailability of acyclovir could be improved 3-fold and 4-fold due to the incorporation of this drug in chitosan and thiolated chitosan, respectively. Within this study, a prolonged residence time in particular of thiolated chitosan microparticles in duodenal and jejunum regions was observed. These data need to be confirmed in human volunteers. So far, an improved oral bioavailability of various model drugs could be shown in human volunteers for mucoadhesive formulations likely because of an intimate contact of the delivery system with the absorption membrane and a prolonged mucosal residence time of the delivery systems [148].
Several systems have been proposed to encapsulate insulin to improve oral insulin bioavailability, including polymeric hydrogels polymeric solid nano-particles and liposome-based carriers [149-153]. However, limitations related to the enzymatic degradation in the gastrointestinal tract and the low permeability across the intestinal epithelium are common problems in those systems [154, 155].
Contrarily, it was reported that insulin analog can be successfully encapsulated in chitosan microspheres with a high loading content. The quaternized groups on N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) can protect the insulin analog from the cross-linking reaction and maintain its activity. The positive charged chitosan microspheres also showed improved bioadhesion to the intestinal tract due to a strong interaction with the mucus. Evaluation using an in vivo diabetic model showed an optimal reduction in blood glucose level and compelling therapeutic effects after treatment with insulin analog loaded chitosan microspheres, which further confirmed the feasibility of using quaternized chitosan microspheres as insulin carriers for oral administration [156].
In case of oral drug delivery, the use of microspheres loaded with antibiotics would be beneficial for several diseases [157]. A particular problem related to a low molecular weight compound like ampicillin is the high permeability of the chitosan microbead matrix material. In order to overcome these restrictions, chitosan gel beads and microspheres are generally crosslinked chemically using glutaraldehyde or ethylene glycol diglycidyl ether [157]. However, residual glutaraldehyde and ethylene glycol diglycidyl ether in the chitosan microspheres give rise to health concerns and can cause undesirable effects including irritation to mucosal membranes. To solve these disadvantages of chemical crosslinking, researchers have proposed to apply chitosan microspheres reacetylated with acetic anhydride. The re-acetylated chitosan microspheres were able to interact closely with the gastric mucosa and to exhibit sustained delivery of entrapped antibiotic [158].
The factors affecting drug encapsulation efficiency, particle size, surface charge, surface hydrophilicity, pharmacokinetics and biodistribution were studied in clozapine-loaded nanoparticles coated with chitosan, pluronic F-68, polyethylene glycol (PEG) 4000 and polysorbate 80. The results proved that although a similarity in surface hydrophilicity, chitosan-stealth nanoparticles showed different pharmacokinetic profile and biodistribution behavior compared to polysorbate-stealth nanoparticles [159]. A great improvement in surface hydrophilicity was brought by chitosan and polysorbate 80 coatings. However, the in vivo particle uptake by the reticuloendothelial system was less pronounced with positively charged chitosan-stealth nanoparticles than with polysorbate 80. In another study, the thermal amide conjugation of COO− group of EDTA with NH2 group of chitosan was employed to prepare microparticles, which showed higher amphotericin B loading capacity, enhancement in the in vitro dissolution performance 12-fold and a nanoemulsion was produced in the size range of 70–90 nm [160]. On the other hand, microparticles were prepared entrapping ovalbumin as a model antigen following oral vaccination. In another investigation, methylated N-(4-N, N-dimethylaminocinnamyl) chitosan was used to coat microparticles, which demonstrated a greater swelling, mucoadhesive properties and a more sustained release than uncoated microparticles. Thus, this formulation represent a useful carrier to improve the immunogenicity of oral vaccines [161].
Galactosylated trimethyl chitosan-cysteine nanoparticles were developed for oral delivery of a
The buccal route is an alternative choice to deliver drugs to the application site. In addition, this route shows high acceptance by patients. An ideal buccal delivery system should stay in the oral cavity for hours and release the drug in a controlled way. Mucoadhesive polymers prolong the residence time of the drug in the oral cavity [163]. Based on its mucoadhesive as well as absorption enhancement properties, chitosan is a promising polymer to be used for buccal delivery, such as chitosan mixed with sodium alginate, which was studied as a vehicle in buccal tablets; while chitosan glutamate, interacted with polycarbophil and other anionic polymers and was proposed for bilaminated films and bilayered tablets [164, 165].
Chitosan salts have different physical properties and can have different effects on mucosa permeability [166, 167]. A combination of chitosan and Pluronic F-127 was investigated in one study, showing that the drug release systems for via buccal was improved and demonstrating that independently of chitosan salt type (citrate, acetate and lactate), mucoadhesion was significantly favoured when the concentration of Pluronic F-127 in the matrix was about 30% (w/w). Chitosan lactate gave good sustained release, controlled swelling, and higher mucoadhesion when combined with Pluronic F-127 present in the matrix at the above concentration (Figure 3). These results indicate that such a matrix could find useful application in buccal drug delivery systems [168].
Pictures of swollen matrices, containing different chitosan salt type (1—chitosan acetate; 2—chitosan citrate; 3—chitosan lactate) and different amounts of P407 [A—at about 50% (w/w); B—at about 30% (w/w); C—at about 12% (w/w)]. The images were taken 4 h after starting the swelling study. This figure is reproduced with the permission [
Other modifications such as, trimethylated chitosans seem to be promising exipients for drug delivery systems intended for buccal mucosa applications to enhance the absorption of hydrophilic macromolecules [169]. In another study, the potential of thiolated chitosan for peptide delivery systems via the buccal mucosa was investigated in pigs [170]. The therapeutic peptide PACAP was applied to pigs, and its bioavailability was determined in order to facilitate the treatment of type 2 diabetes. Due to its strong permeation enhancing properties, tablets based on thiolated chitosan raised continuously the plasma level of this peptide drug, allowing for therapeutic range levels to be maintained over the whole period of application. Furthermore, buccal bilayered devices with a mixture of nifedipine and propranolol as well as chitosan displayed promising potential for use in controlled delivery in the oral cavity [171].
Chitosan (derivatives) can interact with mucus and epithelial cells and induced a redistribution of cytoskeletal F-actin and the tight junction protein ZO-1 resulting in opening of cellular tight junctions and increasing the paracellular permeability of the epithelium [172, 173]. Besides their charge, other structural elements of these polymers likely contribute to their penetration-enhancing activity, since cationic polysaccharides such as quaternized diethyl aminoethyl-dextran were ineffective as an enhancer.
Colon specific drug delivery systems are gaining importance for use in the treatment of chronic diseases, such as irritable bowel syndrome, inflammatory bowel disease, ulcerative colitis, and also for the systemic delivery of protein and peptide drugs. By making use of this colon-specific degradation, chitosan has been discovered as useful coating in order to guarantee a site specific delivery. Radiolabelled (99mTc) tablets coated with a combination of pectin/chitosan/hydroxypropyl methylcellulose (3 + 1 + 1), for instance, were administered orally to human volunteers [174]. Within this study, gamma scintigraphy was used to evaluate the gastrointestinal transit of these tablets, showing that they remain intact through the stomach and small intestine. In the colon, the bacteria degraded the coat, and thus, the tablets disintegrated. In another study, it was developed a sustained dosage form for alpha-lipoic acid making use of ionic interactions between this anionic drug and chitosan used as carrier matrix. Studies in human volunteers showed a release maximum once the formulation had reached the colon [175].
Chitosan hydrogel beads coated with enteric polymer Eudragit S 100 were also investigated to be targeted to the colon; they prevented premature drug release in simulated gastric fluid, but delivered in the colon, because chitosan was degraded by the bacterial enzymes. Prednisolone, 5-aminosalicyclic acid, metronidazole, 5-fluorouracil and indomethacin are being investigated in chitosan formulations for the same purposes [176].
Mixes are being used to obtain some characteristics on the formulations. Here, blended chitosan with gelatin was used to improve the biological activity since (i) gelatin contains Arg-Gly-Asp (RGD)-like sequence that promotes cell adhesion and migration, and (ii) forms a polyelectrolyte complex [177]. Addition of gelatin affected the stiffness of 2D and 3D scaffolds, facilitated the degradation rate and maintained the dimension in the presence of lysozyme. The effect of blending chitosan with poly(ε-caprolactone) (PCL) also improved mechanical properties as well as cellular support [178]. The γ-poly (glutamic acid), a hydrophilic and biodegradable polymer, was also used to modify chitosan matrices and the γ-poly (glutamic acid)/chitosan composite matrix was found to enhance hydrophilicity and serum proteins adsorption, and to increase the maximum strength through addition of γ-poly (glutamic acid) in tissue engineering applications [179]. The mechanical properties and biocompatibility also were improved with galactosylated chitosan-based scaffolds by combining them with alginate. The scaffolds exhibited the usual pore configurations, and the pore sizes were dependent on the freezing pre-treatments, the molecular weight of chitosan and amount of galactosylated chitosan [180, 181].
Powder formulations of protein-loaded chitosan nanoparticles suitable for pulmonary delivery have been prepared by spray drying [182-184]. Moreover, insulin-loaded nanoparticles chitosan have been reported obtaining a good loading capacity (65–80%) and were fully recovered from the powder formulations after contact with an aqueous medium, and showed a fast release of insulin. The biocompatibility and penetration-enhancing effects of their chitosan powder formulations were examined in vitro using A549 and Calu-3 cells as models for alveolar and respiratory epithelial cells, respectively [185]. The formulations exhibited a very low cytotoxicity in both cell lines, but no effects on opening of tight junctions of the cells were reported. Further, CLSM studies did not reveal internalization of nanoparticles which contrasts previously reported studies [183]. The authors speculated that the total amount of chitosan used in their study was lower than that used in other publications. Moreover, the chitosan salt (glutamate) probably did not lose its charge after dispersing the particles in buffer [183].
An inhalable chitosan-based powder formulation of salmon calcitonin-containing mannitol as a cryoprotecting agent using a spray drying process was prepared. The effect of chitosan on the physicochemical stability of the protein was examined with chromatographic and spectrometric techniques [186]. The dissolution rate of the protein decreased when it was formulated with chitosan, which might be due to an irreversible complex formation between the protein and chitosan during the drying process [183]. On the other hand, chitosan-coated PLGA nanoparticle suspensions improved the absorption of calcitonin after pulmonary administration aerosolized with a nebulizer. The elimination of the chitosan-coated nanoparticles from the lungs was retarded as compared to non-coated particles, most likely due to the mucoadhesive properties of chitosan. It was shown that after pulmonary administration of the chitosan-coated particles the pharmacological action of calcitonin was prolonged as compared to that of the protein loaded in the non-coated nanoparticles [187]. In another study, the potential of chitosan oligomers and polymers for pulmonary delivery of proteins was studied. The absorption of interferon-α in rats was improved after pulmonary administration of aqueous solutions of the oligomers and the interferon-α. Among various oligomers, glucoseamine hexamers at a concentration of 0. 5% (w/v) showed the highest efficacy. Chitosan polymers were less efficient than the studied oligomers in increasing the systemic level of the interferon-α, likely due to their lower solubility in lung fluids [188].
Interesting results were obtained with N-trimethyl chitosan powder formulations of insulin using a drying process for pulmonary delivery [189]. The particles had an average volume aerodynamic diameter of 4 μm suitable for peripherally pulmonary deposition. After one-year storage at 4 °C, the particle characteristics were maintained and the insulin structure was largely preserved [189]. Pulmonary administration of N-trimethyl chitosan–insulin microparticles significantly enhanced the systemic absorption of insulin, with a bioavailability of about 95% relative to subcutaneously administered insulin.
It has been studied the development of a novel nanocarrier consisting of Lipoid S100 and chitosan or glycol-chitosan for the systemic delivery of low molecular weight heparin upon pulmonary administration. These nanosystems, formed by ionic gelation technique, provided both sufficient entrapment efficiency and mucoadhesive properties. Aerosolization of these formulations indicated that heparin could be delivered to the lung. Overall, these nanocarriers might have a use potential for systemic delivery of low molecular weight heparin as compared to free drug with a therapeutic potencial effect for the treatment of pulmonary embolism and other thromboembolic disorders [190]. The potential to deliver ofloxacin directly to alveolar macrophages via the respiratory route was enhanced from loaded glutaraldehyde-crosslinked chitosan microspheres in comparison with the ofloxacin powder. It suggests that chitosan microspheres are efficient delivery system of ofloxacin to cure tuberculosis [191].
Chitosan-coated gold nanoparticles have been investigated for mucosal protein delivery [192]. Chitosan was used as a reducing agent in the synthesis of gold nanoparticles and also as a mucoadhesive and penetration enhancer. Insulin was efficiently adsorbed (∼50%) through electrostatic interaction onto the surface of the coated nanoparticles and they were colloidally stable for 6 months. Intranasal administration of these nanoparticles in diabetic rats showed an improved pharmacodynamic effect as evidenced by higher reduction in blood glucose levels as compared to insulin-loaded sodium borohydride gold nanoparticles [192].
In another study nanoparticles consisting of chitosan and negatively charged cyclodextrin sulfobutylether-β-CD or carboxymethyl-β-CD derivatives were prepared and characterized [104]. It was demonstrated that chitosan– sulfobutylether-β-CD–insulin nanoparticles induced lower TEER values of Calu-3 cells than chitosan–carboxymethyl-β-CD–insulin nanoparticles. However, both insulin-loaded nanoparticles showed similar effects on reduction of rats\' plasma glucose levels upon intranasal administrations. It should be noted that, the plasma insulin concentrations of the treated animals which may give better indications in absorption enhancement properties of the formulations, were not determined [104]. Chitosan has been investigated as auxiliary agent in nasal drug delivery systems [193] due to mucoadhesive properties improving significantly nasal uptake of isosorbide dinitrate due to the co-administration of chitosan in rats [194]. In the same study, they showed a minor cilio-inhibiting effect of the polymer. In addition, fentanyl nasal spray formulations with pectin, chitosan, and chitosan–poloxamer 188 were developed for clinical evaluation to provide rapid absorption and subsequently increased bioavailability. The study was conducted in 18 healthy adult volunteers and revealed significantly increased systemic exposure as well as reduced times to peak plasma values for all formulations compared with oral transmucosal fentanyl citrate lozenge [195].
Recently, formulations prepared with chitosan and Pluronic F-127 as nasal delivery vehicles of vaccines have been reported [116, 196, 197]. In a study, some mice Balb/c mice were intranasally immunized with the antigen tetanus toxoid in the presence of chitosan, Pluronic F-127/chitosan or lysophosphatidylcholine (LPC) showing that the antigen specific IgA response in the nasal and lung washes of these animals had a significant increase in anti- tetanus toxoid mucosal IgA response in the group of mice immunized and boosted intranasally with Pluronic F-127/chitosan, enhancing the systemic and mucosal immune responses compared with those in the control groups. Successful mucosal vaccination is therefore largely dependent on the development of effective mucosal adjuvants. As it is well known, the adaptive humoral immune defense at the mucosa is mediated by the antibodies IgA that in mucosal secretions binds to the microbes and toxins present in the lumen and neutralize them by blocking their entry into the host [198, 199]. This nasal vaccine could induce not only systemic IgG antibody responses but also mucosal IgA antibody responses, which results in two layers of immune defense against infectious diseases. So, this study showed that the system represents a novel nasal vaccine delivery system to enhance immune response [200]. Important effects in the nasal delivery of vaccines were found, when the
Another objective was obtained with leucine-enkephalin loaded N-trimethyl chitosan nanoparticles, which were evaluated as a brain delivery vehicle via nasal route and prepared by ionic gelation method. The permeability of Leucine-enkephalin released from nanoparticles was 35 fold improved from the nasal mucosa as compared to Leucine-enkephalin solution. Fluorescent microscopy studies of brain sections of mice showed higher accumulation of fluorescent marker NBD-F labelled Leucine-enkephalin, when administered nasally by N-trimethyl chitosan nanoparticles, while low brain uptake of marker solution was observed. It was conclude that N-trimethyl chitosan nanoparticles could generate a significant improvement of bioactive Leucine-enkephalin levels in the brain when is intranasally administered [203].
Chitosan is a suitable material for the design of ocular drug delivery systems due to its nontoxic character, permeation enhancing properties, and physicochemical characteristics. Chitosan-based formulations used for ophthalmic drug delivery are hydrogels [203], nanoparticles [127], and coated colloidal systems [204]. Chitosan as well as Pluronic F-127, has recently been proposed as a material with a good potential for ocular drug delivery, since their solutions were found to prolong the corneal residence time of antibiotic drugs and nanocapsules coated with chitosan were more efficient to enhance the intraocular penetration of some specific drugs [205]. Making use of their in situ gelling properties, the formulations can be applied and distributed on the ocular surface in almost liquid form thereafter transforming into the gel status [203]. A combination of polycaprolactone nanocapsules as ocular carriers with the advantages of the cationic mucoadhesive chitosan and poly-L-lysine as coating was performed. Even though poly-L-lysine and chitosan displayed a similar positive surface charge, only chitosan-coated nanocapsules enhanced the ocular penetration of indomethacin with respect to uncoated nanocapsules. The authors suggested that an undetermined property of chitosan was responsible for this enhanced uptake [204].
In other studies chitosan-alginato microspheres or beads were investigated for the encapsulation of several drugs, proteins, cells and oligonucleotides, with promising results [206-211]. The complex has biocompatible and biodegradable characteristics, and limits the release of encapsulated materials more effectively than either alginate or chitosan alone [212]. A further advantage of this delivery system is its non-toxicity permitting the repeated administration of therapeutic agents. In another study, chitosan-sodium alginate nanoparticles entrapping gatifloxacin (a broad-spectrum antibacterial agent used in the treatment of ocular infections) were successfully formulated. The results showed that the drug was released over a period of 24 hours in a sustained release manner, primarily by non-Fickian diffusion. This new formulation is a viable alternative to conventional eye drops by virtue of its ability to sustain the drug release, for its ease of administration because of reduced dosing frequency resulting in better patient compliance [213].
Some mixes of polymers using chitosan could be used to prepare thermosensitive hydrogels which were a good choice to reduce local irritation in the skin caused by conventional transdermal patches (40 % of application-site skin reaction) due to components of the patch (acrylic adhesive, polyester, polyurethane, and silicone). Therefore, these formulations can also provide advantages for particular applications as it is transformed from a liquid to a gel when administered topically [214]. Additionally, modifications in the delivery of drugs could be achieved, such as that obtained for a hydrogel patch composed of chitosan and starch developed for cosmetic applications, in which a rapid curcumin release rate was observed [215].
Amino acid grafted chitosans posses a great potential for application in these biomedical fields, whereby a combination of the properties of chitosan and those belonging to different amino acid moieties could produce materials with synergetic properties. Moreover, this conjugation can enhance some properties of chitosan, such as its antimicrobial activity, which are important in the area of tissue engineering such as wound healing [216]. Many tissue analogs including cartilage, bone, liver, and nerve have been prepared using this engineering technology. Systems of blood clots based in chitosan–glycerol phosphate disodium salt were purposed since bleeding has been identified as an initiating event in post-surgical repair and it was hypothesized that microfracture-based repair could be improved by stabilizing the clot formed in the lesion with chitosan that is thrombogenic and actively stimulates the wound-healing process [217]. These systems were applied as implants to marrow-stimulated chondral defects in rabbit cartilage repair models, where they induced greater fill of chondral defects with repair of tissue compared to marrow-stimulation alone [218]. In another investigation, a chitosan– hydroxyapatite multilayer nanocomposite with high strength and bending modulus rendering the material suitable was prepared for possible application as an internal fixation of long bone fractures [219]. A series of chitosan-tricalcium phosphate composite scaffolds were developed for the same purpose using freeze-drying process, which provided macroporous composite scaffolds with different pore structures. The biocompatibility, evaluated subcutaneously on rabbits indicated that these scaffolds can be utilized in non-loading bone regeneration [220]. The use of biomimetic hydroxyapatite/chitosan–gelatin network composites in the form of 3D-porous scaffolds improved adhesion, proliferation and expression of rat calvaria osteoblasts on these systems [221]. Recently, a scaffold with calcium phosphate cement and chitosan fibers with improved resistance to fatigue and fracture was used to harvest human umbilical cord mesenchymal stem cells without an invasive procedure that is commonly required when studying bone marrow mesenchymal stem cells. This system had flexural strength of 26 MPa, while calcium phosphate cement control was 10 MPa. In addition, an excellent and higher viability of human umbilical cord mesenchymal stem cells was obtained with scaffolds using chitosan fibers than those controls without fibers. Human umbilical cord mesenchymal stem cells had excellent proliferation (300 and 700 cells/mm2 on 1 and 4 day, respectively) and viability on the scaffolds [222]. A study showed that the chitosan surface modified with fructose (ligand of asialo-glycoprotein receptor in hepatocyte) on porous chitosan scaffolds induced the formation of cellular aggregates and enhanced liver specific metabolic activities and cell density to a satisfactory level [223, 224]. Chitosan microfibers were also developed and coated with collagen. Schwann and fibroblast cells were cultured on the chitosan microfibers to be adhered to the surface of the systems. After 72 h, the Schwann cells had proliferated linearly while the fibroblast cells covered the surface of the chitosan microfibers. The chitosan microfibers provide very good scaffolds for many tissue engineering applications with the advantages of ease of fabrication, simplicity and cost effectiveness [225].
One of the most important routes to drug delivery is the oral pathway. The uptake of chitosan into the bloodstream is generally not investigated in oral administration studies. Chitosan\'s systemic absorption and distribution from this route of delivery may be largely dependent on the Mw. It is very likely that oligomers could show some absorption whereas larger Mw chitosans are excreted without being absorbed. This effect was seen with FITC-labeled chitosans with 3. 8 kDa (88. 4% degree of deacetylation) chitosan having the greatest plasma concentration after oral administration vs 230 kDa (84. 9% degree of deacetylation) having almost no uptake. Increasing Mw was seen to decrease the plasma concentration in this, one of the only studies investigating plasma concentration after oral administration [226]. Trimethyl chitosan oligomers/DNA nanoparticles were taken up in the gastric and duodenal mucosa and to some extent in the jejunum mucosa, ileal mucosa and large intestinal mucosal cells as shown by green fluorescent protein (GFP) expression [227]. Chitosan polymers are not absorbed by the gastrointestinal way and are unlikely to show biodistribution. Chitosan oligosaccharides however may be absorbed to some extent.
Although native chitosan has not been investigated, the intracellular uptake and distribution of chitosan/DNA complexes have been studied in vitro [228–230]. Chitosan polyplex uptake at 37 °C was 3-fold higher than at 4 °C [228] but this could be due to increased interaction and not an ATP dependent endocytic mechanism. The authors suggested nuclear localization and they also stated little dissociation of the DNA from the chitosan. In a more comprehensive study, Leong et al. stained for lysosomes and found some co-localization with chitosan DNA nanoparticles. However, the majority of the polyplexes were found in the cytosol [229]. A complex of doxorubicin with chitosan has also been studied; complexes enter cells through an endocytic mechanism which was not further elucidated [231]. Hydrophobic (5-β-cholanic acid) modified glycol chitosan nanoparticles were internalized into HeLa cells through all the endocytic mechanisms studied: clathrin coated vesicles, caveolae and macropinocytosis. This study agrees with that of Leong, in that some particles were lysosomal but most were not [232]. Unfortunately, these studies all involve nanoparticle uptake of relatively large (>100 nm) nanoparticles or aggregates of complexes and not just labeled chitosan. Dodane and Vilivalem reported that chitosan has membrane perturbing properties that do not decrease cell viability [233]. It is likely that chitosan and chitosan nanoparticles enter the cell via cell membrane perturbation due to the cationic charge. It is important to understand chitosan\'s cell trafficking and investigate both endocytosis and exocytosis. Such study should shed some light on chitosan\'s biocompatibility.
It is important to mention that cellular uptake kinetics may be altered due to the charge interaction (e. g. in the case of DNA complexes). This balancing, or reduction, of the positive charges on the chitosan molecule has effects on its interaction with cells and the microenvironment, often leading to decreased uptake and a decrease in toxicity. In the case of a covalent drug conjugate, the polymer\'s physicochemical properties (hydrophilicity) and conformation are altered (i. e. micelle formation) with a consequent effect on distribution and cell uptake [52]. Similar results were found for poly(dl-lactic-co-glycolic acid) nanospheres surface modified by adsorption of chitosan for pulmonary administration, which were preferentially taken up by human lung adenocarcinoma cells (A549) in a temperature dependent manner [234]. Moreover, cellular uptake of these nanocarriers increased with decreasing diameter to the submicron level and the cellular uptake of nanospheres were promoted through electrostatic interactions between the surface due to chitosan adsorbed and the negatively charged cell membrane without showing cytotoxicity. Internalization of nanospheres (200-nm) by A549 cells appears to occur predominantly through adsorptive endocytosis initiated by nonspecific interactions between nanospheres and cell membranes, and is partially mediated by a clathrin-mediated process. Thus, chitosan is suitable as a material for surface modification of systems for intracellular targeting because it could increase the interaction between the cell membrane and the systems [234]. The effect on the charge of the systems was also reported for a large array of N-(2-hydroxypropyl)methacrylamide (HPMA) based copolymers, which were internalized into the prostate cancer cells through multiple endocytic pathways: positively charged copolymers robustly engaged clathrin-mediated endocytosis, macropinocytosis and dynamin-dependent endocytosis, while weakly negatively charged copolymers weakly employed these pathways; strongly negatively charged copolymers only mobilized macropinocytosis [235].
The hydrophobicity of the systems as drug delivery vehicles for therapeutic applications is another physicochemical property which has been investigated on the cellular uptake. Here, a hydrophobic glycol chitosan system (5β-cholanic-acid conjugated glycol chitosan) was reported to show several distinct uptake pathways involved in their internalization with a single degree of substitution [232]. Moreover, different degree of substitution (or hydrophobicity) could affect the endocytosis of hydrophobically-modified polymers. The cellular uptake of nanoparticles prepared by a hydrophobically-modified chitosan (N-palmitoyl chitosan), was significantly enhanced with increasing the degree of substitution. The internalization of these systems was clearly related with the lipid raft-mediated routes. With increasing the hydrophobicity on polymer, the caveolae-mediated endocytosis became more important. The internalized nanoparticles transiently associate with CAV1 at cell membranes and at a peripheral CAV1- positive structure coupled with caveosomes before trafficking to the endosomal pathway [236].
In addition, the cell entry and subsequent intracellular trafficking of drug carriers using chitosan or a combination with another polymer are strongly dependent on their physicochemical characteristics, such as charge and molecular weight. In addition, the route of administration determines the uptake, concentration, contact time and cell types affected [52].
Chitosan is one of the most promising polymers because of its nontoxic, polycationic, biocompatible, and biodegradable nature and particularly due to its mucoadhesive and permeation-enhancing properties [237-239]. Moreover, the strong mucoadhesive property of chitosan is most important for drug delivery through the mucosal routes. In addition, the interaction of the positively charged chitosan with the negatively charged mucin layer and the tight junctions facilitates the paracellular transport of hydrophilic macromolecules by opening the tight junctions of the mucosal barriers [111, 239-242]. Additionally, chitosan is cheap [243]. Practical use of chitosan has been widely investigated due to its ability to form hydrogels, to its biocompatibility in physiological environments (enzymes chitosanase and lysozyme degrade chitosan and form harmless products), enhancing it with deacetylation reactions. Moreover, its biocompatibility was demonstrated with viable cartilage producing any untoward effect [216].
One of many investigations using chitosan is as vaccines vehicles, which have showed better efficacy than the approved injectables (induce strong systemic immune responses and represent a pharmaceutical form painful). Diverse chitosan microspheres have been evaluated for controlled drug release and to enhance the protection and permeation of the antigens in the nasal mucosa, inducing antigen specific immune responses in both the nasal mucosa and the systemic compartment [114, 115, 196, 197]. Besides, the induction site of the antigen-specific mucosal immune responses were found contained in a broad range of mucosal surfaces (nasal and vaginal routes and the salivary gland).
Several studies have been conducted on chemically modified chitosan systems through their concomitant use with adjuvants for a synergistic effect, and through the mannosylation of chitosan for target the receptor-mediated. The chemically modified chitosan systems combined with other adjuvants have showed to have an increased immunostimulatory in nasal vaccine delivery [114, 115]. Another advantage of chitosan formulations is its cationic property, which has been also exploited to deliver a tissue plasminogen activator to substrates of the fibrin network or insulin to mucosa surfaces [244, 245]. Nasal delivery of insulin from solutions and gels based of chitosan incremented greatly the permeability and transmucosal absorption, which could avoid the pain and inconvenience of injections of insulin in patients [246, 247). Moreover,
Systems based in chitosan can provide advantages by their mucoadhesive properties overcome to the conventional formulations such as those for via ophthalmic, that are eliminated from the precorneal area immediately upon instillation because of lacrimal secretion and nasolacrimal drainage, needing a frequent instillation of concentrated solutions to achieve the desired therapeutic effects [248, 249]. In order to lengthen the resident time of instilled dose and enhance the ophthalmic bioavailability various conventional and non conventional (colloidal drug delivery systems, such as liposomes, biodegradable nanoparticles and nanocapsules) ophthalmic vehicles based in chitosan have been developed, but their use is reduced due to some adverse effects such as blurred vision from ointment or low patient compliance from inserts [250]. In order to avoid the blurred vision, a combination of chitosan and Pluronic F-127 could be used for the preparation of in situ forming gels with improved mechanical and mucoadhesive characteristics for prolonged precorneal residence time in vivo [251].
Mucoadhesive properties are also important for the buccal administration, which involve the direct entry of the drug into the systemic circulation avoiding the first pass hepatic metabolism. This route is easily accessible for self medication where the drug can be easily administered or if necessary, removed from the site of application. In order to maintain the device in its position for many hours against buccal motion and salivary flow, which could reduce the mucosal absorption, the dosage form must have good adhesive properties and show an efficient control of drug delivery. These characteristics have been obtained with systems using chitosan alone, modified chitosan, chitosan mixed with other components such as, sodium alginate or using chitosan glutamate proposed for bilaminated films and bilayered tablets [117, 118, 164]. In adittion, chitosan has the potential to be a safe pharmaceutical excipient for non-parenteral drugs. Altohoug it was approved for dietary applications in Japan, Italy and Finland and it has been approved by the FDA for use in wound dressings, more studies must be performance to ensure its safety. In Table 6 summarizes mains advantages in applications of chitosan systems by use other components.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Chitosan and carmomer | \n\t\t\tImproved oral bioavailability of buserelin. | \n\t\t\t[141] | \n\t\t
Chitosan and PEGylated | \n\t\t\t3. 4-fold was improved its mucoadhesive properties of chitosan. | \n\t\t\t[142] | \n\t\t
Preactivation of thiol groups on chitosan via the formation of disulfide bonds with mercaptonicotinamide | \n\t\t\tMucoadhesive properties of thiolated chitosans were even significantly improved. | \n\t\t\t[143] | \n\t\t
Chitosan and poly(g-glutamic acid) and chitosan and polyacrylic acids | \n\t\t\tThis combination could be infiltrated in the cell–cell junctions and interact with | \n\t\t\t[252] | \n\t\t
Modified chitosan hydrogels loaded with metronidazole, tetracycline and theophylline | \n\t\t\tModified chitosan hydrogels loaded with metronidazole, tetracycline and theophylline could bypass the acidic environment of the stomach and release the loaded drug into the intestine | \n\t\t\t[252] | \n\t\t
Chitosan and thiolated chitosan | \n\t\t\tChitosan and thiolated chitosan are used to improve the oral bioavailability of acyclovir 3-fold and 4-fold. | \n\t\t\t[148] | \n\t\t
Chitosan with glutaraldehyde or ethylene glycol diglycidyl | \n\t\t\tChitosan with glutaraldehyde or ethylene glycol diglycidyl are used to load antibiotics. | \n\t\t\t[174] | \n\t\t
Chitosan microspheres reacetylated with acetic anhydride | \n\t\t\tThe re-acetylated chitosan microspheres were able to interact closely with the gastric mucosa and to exhibit sustained delivery of entrapped antibiotic | \n\t\t\t[175] | \n\t\t
Clozapine-loaded nanoparticles with chitosan and polysorbate 80 | \n\t\t\tA great improvement in surface hydrophilicity was brought by chitosan and polysorbate 80 coatings | \n\t\t\t[176] | \n\t\t
Pectin/chitosan/hydroxypropyl methylcellulose (3 : 1: 1) | \n\t\t\tThis formulation had reached the colon | \n\t\t\t[174] | \n\t\t
Chitosan and pluronic F-127 | \n\t\t\tDrug release systems for via buccal was improved and demonstrating that independently of chitosan salt type (citrate, acetate and lactate), mucoadhesion was significantly favoured when the concentration of Pluronic F-127 in the matrix was about 30% (w/w). | \n\t\t\t[175] | \n\t\t
Trimethylated chitosans | \n\t\t\tSandri et al. (2005) showed that trimethylated chitosans seem to be promising exipients for drug delivery systems intended for buccal mucosa applications to enhance the absorption of hydrophilic macromolecules. | \n\t\t\t[169] | \n\t\t
Chitosan hydrogel beads coated with enteric polymer Eudragit S 100 | \n\t\t\tChitosan hydrogel beads coated with enteric polymer Eudragit S 100 to be targeted to the colon, prevented premature drug release in simulated gastric fluid, but delivered in the colon, because chitosan was degraded by the bacterial enzymes. | \n\t\t\t[159] | \n\t\t
Chitosan with gelatin | \n\t\t\tHuang et al. (2005) blended chitosan with gelatin to improve the biological activity. | \n\t\t\t[177] | \n\t\t
Chitosan with poly(ε-caprolactone) | \n\t\t\tThese blending membranes improved mechanical properties as well as cellular support. | \n\t\t\t[178] | \n\t\t
The γ-poly (glutamic acid) (γ-PGA) a hydrophilic and biodegradable polymer | \n\t\t\tThis formulation was also used to modify chitosan matrices and the γ-PGA/chitosan composite matrix was found to enhance hydrophilicity and serum proteins adsorption, and to increase the maximum strength through addition of γ-PGA in tissue engineering applications. | \n\t\t\t[179] | \n\t\t
Chitosan and PLGA | \n\t\t\tYamamoto et al. showed that chitosan-coated PLGA nanoparticle suspensions improved the absorption of calcitonin after pulmonary administration. | \n\t\t\t[187] | \n\t\t
Chitosan-coated gold nanoparticles | \n\t\t\tChitosan-coated gold nanoparticles have been investigated for mucosal protein delivery. | \n\t\t\t[253] | \n\t\t
Chitosan nanoparticles with cyclosporine A | \n\t\t\tChitosan nanoparticles with incorporated cyclosporine A in improving the delivery of drugs to the ocular mucosa. | \n\t\t\t[127] | \n\t\t
Main advantages in applications of using of chitosan with different materials.
Several limitations of the systems using chitosan alone, modified chitosan, or chitosan mixed with other components could be mentioned. One of the most important is the general rapid clearance of the formulations in the mucosal surface owing to the mucociliary clearance and the presence of a variety of metabolic enzymes (cytochrome P-450 enzymes, conjugative Phase II enzymes, nonoxidative enzymes, and proteolytic enzymes that could reduce the absorption) of drugs administered via nasal using conventional chitosan formulations [254]. Nonetheless, these limitations are reduced when the drugs are entrapped in micro or nanoparticles using chitosan and other components.
Chitosan, has shown a hypoglycemic effect in streptozotocin (STZ)-induced diabetic animals [255- 257]. Other studies also found that low molecular weight chitosan (average MW about 2. 0 x 104 Da) as well as chitosan oligosaccharides can reduce plasma glucose level in diabetic animals [258, 259]. On the other hand, when chitosan is used as a coat in liposomes, it helps in delaying intestinal transit time so as to increase absorption of insulin. An increase in chitosan molecular weight caused increase in the hypoglycemic efficacy of chitosan-coated insulin liposomes. The hypoglycemic efficacy of the liposomes coated by chitosan 1000 kDa was markedly superior to that of the liposomes coated by other chitosans. Both increasing and decreasing chitosan concentration, the hypoglycemic efficacies of chitosan-coated insulin liposomes were decreased and the systems were not able to protect insulin from enzymatic digestion [260]. Thus, diabetic patients should be careful when administering chitosan if they not eating above.
Chitosan systems have limited applications in drug delivery and tissue engineering due to their hydrophilic nature and insolubility in certain physiological conditions (eg. blood-brain barrier), due to chitosan is soluble at pH values below 6. 5 [261]. Besides its mucoadhesive and controlled release properties chitosan is also able to increase the paracellular permeability due to the opening of tight junctions which has been shown for various routes of delivery such as for nasal or intestinal drug delivery. However, no effect on the paracellular permeability could be observed at pH 7. 4, which is the physiological pH of blood [262]. This indicates that chitosan solutions are not effective as permeation enhancer at neutral pH values, because of the missing solubility of chitosan at neutral and alkaline pH values. Chitosan in form of particles can overcome this problem, because particles need not to be dissolved.
It is important to mention that the modification of the polymer can change the properties of the systems. Chitosan can be readily modified by reactions at the amino and hydroxyl groups present in the molecule, but adequate optimizations of the formulations need to test, increasing costs, time, and toxicological studies. It is important to mention, that some derivatives increase in toxicity and any residual reactants must be carefully removed [51]. Additionaly, studies of
Potential applications of chitosan as weight supplement in the market as well as drug carrier in pharmaceutical formulations and as an important material able to prepare regenerative structures for bones and cartilages have been investigated. Thus, this work summarizes recent pharmaceutical developments using chitosan, modified chitosan or mixes with other components as drug carriers for the most non parenteral routes of administration including oral, topical, intranasal, and ocular, etc. Various therapeutic agents, such as anticancer, anti-inflammatory, antibiotics, antithrombotic, steroids, proteins, amino acids, antidiabetic and diuretics have been incorporated in chitosan-based systems as carriers to improve the dissolution rate of poorly soluble drugs and to achieve controlled release. Although, chitosan systems have limited applications in drug delivery and tissue engineering due to their hydrophilic nature and insolubility in certain physiological conditions (eg. blood-brain barrier) due to chitosan is soluble at pH values below 6. 5, chitosan particulate systems can be used as carriers for encapsulate drugs and to enhance their bioavailability and delivery. The primary amines of chitosan impart these valuable physicochemical properties including particular interactions with cells, proteins and living organisms. On the other hand, the safety of chitosan could also be achieved in shellfish allergic patients since it was shown that the subjects have tolerated the polymer without reaction demonstrating the safety of other chitin-derived products in patients allergic to shellfish. Since chitosan has the hydroxyl and amino functional groups, important results have been obtained by reacting chitosan with controlled amounts of multivalent anions (functional groups) to control hydrophobic, cationic and anionic properties enhancing the vectorization, the stability, and the mucoadhesively (to prolong the drug residence time) of the drug carrier systems. These properties of chitosan, especially their intrinsic antibacterial activity, their ability to bind anionic molecules such as growth factors, glucosamine glycans and DNA and their ability to be processed into a variety forms are also used to generate suitable structures for bone and cartilage regeneration. However, more studies to improve their mechanical properties are essential for this type of application. Although many successful systems of chitosan have been developed, more toxicity tests must be conducted in order to ensure their safety when it is incorporated in other systems.
The authors acknowledge a grant from UNAM (PAPIIT TA 200312 and PACIVE NCONS-17). The authors acknowledge the material provided with the Figures 2 and 3 in this work "Reprinted from European Journal of Pharmaceutical Sciences, 41(3-4), Günbeyaz, M., Faraji, A., Ozkul, A., Puralı, N., Senel, S., Chitosan based delivery systems for mucosal immunization against bovine herpesvirus 1 (BHV-1), Pages No 531–545., Copyright (2010)., and "Reprinted from Journal of Controlled Release, 102(1), Cafaggi, S. ; Leardi, R. ; Parodi, B. ; Caviglioli, G. ; Russo, E., Bignardi, G., Preparation and evaluation of a chitosan salt–poloxamer 407 based matrix for buccal drug delivery, Pages No 159–169., Copyright (2005)., with permission from Elsevier.
Zimbabwe, like most southern African countries, currently faces erratic weather patterns amidst a rural population that is highly dependent on rain-fed agriculture for livelihood. The impacts of climate change have become a reality and this scenario calls for urgency in improving rural livelihoods and sustainable community development. There is growing recognition amongst development practitioners, academics, policymakers, non-governmental organisations (NGOs), and funding agencies for innovative approaches to the design and implementation of livelihoods programs that promote resilience among rural communities. Several proposed frameworks are emerging mostly based on improving the adaptive, absorptive, and transformational capacities of vulnerable communities. A key question remains on how such frameworks can be developed into practical programming models for rural development practitioners. Research on the impacts of climate change on agriculture and food systems is not new. In fact, a review of the literature shows that such studies in Zimbabwe and most parts of southern Africa can be traced to the 1980s.
Considerable research has been conducted on the impacts and potential impacts of climate change on Zimbabwean rural households, see, for example, Masiyiwa et al. [1]; Brown et al. [2]; Gwimbi [3]; Mutekwa [4]; Nhemachena and Hassan [5]; Kinuthia [6]; Buckland [7]; Matarira et al. [8]; Downing [9]. Some of the key documented climate change impacts include food insecurity; malnutrition; increases in incidence of drought, extreme temperature fluctuations, unpredictable seasons, reduced run-off necessary to sustain the country’s hydro-electric power supply, damage and destruction of infrastructure. There has been an increase in both minimum and maximum temperatures in Zimbabwe. In addition, it is documented that the most adverse impacts of climate change are in the developing world because of geographic exposure, reliance on climate-sensitive sectors, low incomes, and weak adaptive capacity. According to Heltberg et al. [10], most vulnerable households are those with assets and livelihoods exposed and sensitive to climatic risks and who are most dependent or rain-fed agriculture. This paper makes a deliberate departure from the discourse on climate change impacts (which has been given much attention) and focuses on how programs or projects on building community resilience against the impacts of climate change can be facilitated in practice since there is a dearth of such studies.
Approaches to rural development programming are always in transition. Such dynamism can be attributed to several factors including the continuous shift in development paradigms or thinking; the need for donor effectiveness; continuous learning and knowledge generation from rural development practice; and continuous shifts in global and local socio-economic, socio-cultural, and political factors affecting rural livelihoods. A synopsis of the rural development programming trajectory identifies several phases and shifts in development paradigms from the 1950s to the present that influenced praxis. These include development as economic growth and modernization in the 1950s; state intervention in the 1960s; market liberalisation in the 1980s; poverty reduction, participation, and empowerment in the 1990s; environment, climate change concerns, sustainable livelihoods, and millennium development goals (MDGs) in the early 2000 and more recently sustainable development goals (SDGs) and the focus on resilience [11, 12, 13]. These development paradigms shape worldviews, beliefs, and perceptions on appropriate programming approaches.
Although a detailed account on the evolution and progression of programming approaches is beyond the scope of this paper, a few approaches are highlighted here to give a context. A review of literature highlights varying nomenclature in classifying rural development programming approaches.1 Westoby and Dowling [14] identify several of these approaches. These include community driven development (CDD); rights-based community development (RBCD); asset-based community development (ABCD); sustainable livelihoods approach (SLA), people-centred capacity building approach (PCCBA); comprehensive community initiatives, and most recently, community resilience approaches which are the focus of this paper and are detailed in proceeding sections. CDD is associated with investments by the World Bank although its origins are linked to post-colonial years in India and Bangladesh during the 1940s and 1960s ([15], p. 27). Such a scenario has been linked to huge investments by the World Bank2 into CCD projects in the last decade. It is an approach that empowers the community by giving control of decision-making and resources. Communities are given the power to plan, execute and monitor projects. It places emphasis on improving governance capacity of the community and local development institutions.
Rights-based community development sets the achievement of human rights as a development objective and utilizes international human accountability to support development [17]. Its tenets are linked to the 1948 Universal Declaration of Human Rights and the 1986 United Nations Declaration of the Rights to Development (UNDRD). According to Cornwall and Nyamu-Musembi [18], the rights-based approach calls for existing resources to be shared more equally and for assisting the marginalised people to assert their rights to those resources. Its origins are highly contested with some scholars arguing linkages with gender and human rights struggles [19]. Other scholars link it with rights of the disabled [20] and civil, political, economic, social, environmental, and cultural rights [21].
ABCD is based on the assertion that communities can organise and drive their own development through the identification and mobilisation of existing resources at their disposal [22]. The SLA links socio-economic and environmental development concerns within communities and focuses on people’s strengths. It looks at five types of household assets; natural, social, financial, physical, and human capital and how they sustain livelihoods. The approach is premised on livelihoods, which are regarded as means of gaining a living through capabilities or livelihood strategies (e.g., agricultural intensification, livelihood diversification) and assets (both tangible and intangible). Livelihoods are taken as sustainable through the ability to recover from stress, and shocks to maintain and enhance capabilities and assets without undermining the natural resource base [23]. The approach emphasizes the importance of contexts, institutions, and supportive policies in enhancing livelihoods.
Related to SLA is community capitals framework (CCF) which is a systems approach to analysis of communities for holistic interventions. It emphasises seven different forms of capital; natural, human, social, financial, built, cultural and political, types of assets found in each capital, and how capitals are converted and coordinated. It provides tools for identifying capabilities for change of vulnerability situations. The CCF is related to the SL framework, with five capitals (human, social, financial, natural, and physical) being part of the assets in SLA framework. CCF adds cultural and political capital; the former brings dimensions of values, norms, and world views while the latter caters to influencing power dynamics, laws, policies, and strategies that affect livelihoods. Another approach within the African development discourse is the comprehensive rural development program (CRDP) or integrated rural development program or approach which cuts across all sectors and comprehensive approach whose components include agrarian reform, rural development, and land reform [24].
In the last two decades, there has been a proliferation of comprehensive community initiatives (CCIs). These are multi-sectoral, multi-stakeholder approaches to rural development [25]. They aim at a system-wide approach to community empowerment. They provide communities with leadership skills, youth, and women empowerment, aim at improving health systems and entrepreneurial skills, and enhance the utilisation of information communication technologies within communities. Comprehensive community initiatives (CCIs) present a shift from project-specific interventions toward a multi-faceted approach that aims at community-wide socio-economic transformation. They cover multiple development sectors (health, social services, leadership development, information communication technologies, youth development, institutional strengthening, women empowerment, and entrepreneurial development). CCIs engage multiple stakeholders including government departments, community-based organisations, private sector companies, research, and academic institutions. They are the shift from developmental approaches that view communities as recipients of aid and empower communities through decision-making and financial control. Communities are viewed as partners in developing community-led local development solutions. The following section explores the concept of community resilience which is at the core of this paper and is currently a core theme in rural development programming in the context of climate change.
Resilience focuses on how a community or individual can deal with disturbance, surprise, and change. It entails framing a sustainable future in an environment of growing risk and uncertainty. The concept was originally coined from ecology but currently borrows from various disciplines including ecosystems stability, complex adaptive systems, engineering infrastructure, psychology, behavioral sciences, and disaster risk management [26, 27]. The concept of resilience does not have a common definition and its building blocks are highly contested. However, it is generally formulated around the continued ability of a person, group, or system to adapt to shocks and stress and continue to function, or quickly recover its ability to function, during and after stress [28].
In the rural development context, it focuses on how communities can recover after a hazard, to their reference state of livelihood status or improve for the batter. It is the ability to withstand (absorb) shocks and stresses, as well as the ability to adapt to dynamic conditions and put in place mechanisms that enable longer-term, systemic responses to the underlying causes of vulnerability [29]. The need for building community resilience to the impacts of climate change has become central to rural development programming [26, 30, 31, 32]. Effort has been put into developing theories of change that build/strengthen household and community resilience. This requires helping people cope with current change, adapt their livelihoods, and improve governance systems and ecosystem health so they are better able to avoid problems in the future. It requires an integrated approach and a long-term commitment to improving three critical capacities (absorptive, adaptive, and transformative), which are interconnected, mutually reinforcing, and exist at multiple levels, i.e., individual, household, community, national, and ecosystem levels [26, 32]. Absorptive capacity leads to persistence, adaptive capacity leads to incremental adjustments/changes and adaptation, while transformative capacity leads to transformational responses [26].
According to Frankenberger [29], most NGO work on resilience programming has focused on five fundamental variables in developing theories of change. These variables a focus on shock dynamics, a multidimensional capacity, resilience functions, outcome-indexed capacities, and a multilevel and systems-based approach. Shock dynamics focus on understanding the type of shock(s) and the effects of the shock(s). A multidimensional approach draws on human, social, economic, physical, ecological, and programmatic (for example, safety nets) resources, the optimal configuration of which varies by type of shock, level of aggregation, context, and community. Resilience functions prepare for and respond to a particular type of disturbance or configuration of disturbances. They may require different types of absorptive, adaptive, and transformative capacities. Outcome indexed capacities stipulate that resilience should be indexed to a given well-being outcome. The specific capacities drawn upon may vary depending on the outcome of interest (for example, health, food security, poverty. Multilevel, systems-based approach argues that resilience is observed at a given level (such as household or community) but is understood as a multilevel construct. Interventions should be sensitive to nested dependencies between levels (for instance, households and communities, communities, and regions).
Absorptive capacity is the ability to minimize exposure to shocks and stresses through preventative measures and appropriate coping strategies to recover quickly and avoid permanent, negative impacts [26]. It is built through various incremental changes and adaptations that people undergo to continue functioning in response to a shock or growing stress, without making major qualitative changes to the way they operate. These adjustments can take many forms. In the context of rural households affected by food insecurity, examples include the adoption of new farming techniques, the diversification or adjustment of household’s livelihood activities, and the decision of taking out loans or connecting to new social networks. Disaster risk reduction/management (DRR/DRM) supports improved absorptive capacity by helping households and communities reduce risk and absorb the impacts of shocks without permanent, negative impacts on their livelihoods [32].
Adaptive capacity is the ability to make proactive and informed choices about alternative livelihood strategies based on an understanding of changing conditions. It is the capacity to learn, combine experience and knowledge, adjust responses to changing external drivers and internal processes, and continues operating ([33], p. 13). According to Brooks [34]; Smit and Wandel [35] adaptation refers to adjustments in a systems’ (household, community, group, sector, region, country) behavior, characteristics, actions, or outcomes that enhance its ability to cope with, manage or adjust to some changing condition, stress, hazard, risk or opportunity in order for the system to improve livelihoods. The rural development discourse derives knowledge of adaptation mostly from studying vulnerability to natural hazards and impacts on food insecurity [36]. Adaptation strategies realise that communities can take concrete steps to minimise net losses from climate change including taking advantage of opportunities for gains. Improved adaptive capacity results from adjustments that include livelihoods diversification, asset accumulation, and improved social and human capital.
Transformative capacity refers to system-level changes that enable more lasting resilience at the household and community levels. In recent years, resilience programming has shifted the balance of effort and resources from short-term humanitarian assistance efforts toward a combination of disaster risk management, climate change adaptation, livelihood diversification, social protection programs, and longer-term institutional development and systemic change [32]. Transformative capacity enables more lasting resilience at the household and community levels through altering permanently and drastically the system’s functioning or its structure to ensure the immediate “survival” of the household/system. It encompasses the governance mechanisms, policies/regulations, infrastructure, community networks, and formal and informal social protection mechanisms that constitute the enabling environment necessary for systemic change [32].
The need for a systemic or holistic programming framework for community resilience and improved livelihoods advocated in this paper is justified by three assertions. Firstly, there is a growing paradigm focused on improving community resilience against the shocks and stresses of climate change. Secondly, non-governmental organisation (NGO) work in Zimbabwe has been highly fragmented, and uncoordinated. Finally, there is a dearth of literature that chronicles good practices in rural development facilitation.
NGO activities in Zimbabwe have been highly fragmented in practice. Social experiments by these organisations have in most instances focused on isolated projects which tend to ignore the holistic nature of community life and make abstract assumptions from reality. In essence, such individual projects should be a part of a bigger puzzle and avoid duplication. Within the context of resilience being addressed in this paper, the components of building resilient communities should not be piecemeal but rather be integrated and have emergent properties. In recent years, it has become increasingly clear that, through encouraging systems-based thinking the concept of resilience has the potential to radically transform the compartmentalised and somewhat fragmented ways of developing vulnerable rural communities [31]. By recognising the complex interplay of the conditions of vulnerability, resilience could provide a means for more holistic understandings of such complexity by shifting attention away from individual project approaches toward addressing the complex milieu of community conditions.
This paper focuses on how resilience programming can be facilitated in practice. Although several NGOs have implemented various programming approaches, there is a dearth of literature on how such processes are conducted. Such a scenario is understandable as programming approaches determine the competitiveness and comparative advantage among NGOs. Thus, it becomes irrational to expose the ‘secrets’ of their programming successes. However, in recent years, potential approaches to building community resilience against the impacts of climate change have been conceptualised and documented but need to be tested empirically [29, 32]. It is against this scenario that this paper is premised. The key research questions addressed are: What are the critical components of a systemic programming framework for livelihoods and resilience? And how is such a framework facilitated in practice?
The concepts of soft systems methodology provide conceptual building blocks for the development of a systemic or holistic programming approach for building community resilience. Laslo and Krippner [37] define a system as, “a complex of interacting components together with the relationships among them that permit the identification of a boundary-maintaining entity or process”. The underlying principle of systems theory is that the effects or outputs of a system are dependent on the interactions among various components. Studying the components in isolation will not provide an accurate picture of the system [38, 39, 40]. Unlike the reductionist research approaches that rely on drawing samples, systems theory does not separate individual components under study but focuses on how these components interact with each other in their entirety [40]. Central to systems theory is the concept of wholeness that aims at bringing together fragmented research findings in a comprehensive view of man, nature, and society. Systems thinking is championed on the premise that there are emergent properties of systems that do not exist when systems are decoupled into smaller parts [41, 42, 43].
There is a diverse array of system thinking methodologies including system dynamics, critical systems thinking, viable systems, and critical systems heuristics, among others [44]. This paper adopts soft systems methodology (SSM) as a conceptual framework. The core of SSM is the construction of models of the system(s) being studied. These models are used to discuss how to bring about organizational/community change. They allow the community to engage in debate and the practitioner/facilitator to elicit multiple perspectives. The learning that takes place leads to purposeful3 action systems. The models constructed through SSM are regarded as learning systems, instead of incontestable representations of reality. Within the context of this paper, therefore, the term ‘system’ refers to the process of inquiry,
The seven-step process in classical soft systems methodology adopted from Mingers [
The first stage explores the situation within a framework of the real world. It focuses on the mapping of cultural history, stakeholder analysis, community perspectives and assumptions, historical trends, among other factors. The purpose is not to define the problem but to solicit holistic unstructured parameters of the problem situation through dialogue and debates with all the affected and those capable of bringing relevant choices. Stage 2 expresses the problem situation through development of a rich picture from the unstructured problem in stage 1.
Stage 3 provides root definitions of relevant systems in the problem situation. This is a departure from the real world and provides perceived choices. A root definition is a statement defining what is relevant to the system and who is either affected or affects it. Defining root definitions is guided by a CATWOE analysis (Customers, Actors, Transformation process,
CATWOE analysis. Adopted from Wang et al. [
Stage 4 is the construction of conceptual models that present holistic stakeholder perspectives about the desired system and associated human activities. It prepares for the dialogical process that will take place during the implementation of SSM-based interventions. For each root definition, the analyst makes a conceptual model. The conceptual model is the structured set of activities that logic requires in a system, defined in the root definition. Stage 5 compares the conceptual model with the real-world problem situation. It provides a dialogic process and debate on the perceived situation and an opportunity for stakeholders to critique their assumptions. Stage 6 determines the desirable and feasible systemic changes. Checkland [45] identifies three types of changes: structural, procedural, and attitudes. Within the rural development discourse, structural might refer to community groupings, communication, social capital, and functional responsibilities. Procedural will include community and other stakeholder modes of operation, while attitudes include changing mental models, and practices. Stage 7 is the implementation stage and outlines the implementation strategy, resources, and skills requirements. According to Mingers [47], in practice, these steps are not taken sequentially and some may be omitted and combined.
This paper utilised (a) experiential knowledge and expert experience from action research by the author based on more than a decade of engagement in rural development facilitation in Zimbabwe and (b) document reviews. The experiential knowledge was acquired through an action research process where the author engaged in action research between 2002 and 2014, under the WK Kellogg foundation programs as a development facilitator in Manicaland Province of Zimbabwe. Experiential knowledge is based on a participative inquiry paradigm and grounded in the belief that experiential encounter with the presence of the world is the ground of our being and knowing [49]. It assumes the creative shaping of a world through the transaction of imaging it, perceptually and in other ways. Experiential knowing thus articulates reality through inner resonance with what there is, and through perceptually enacting its forms of appearing. It further asserts that to experience, anything is to participate in it and to participate in both to mold and to encounter, hence experiential reality is always subjective/objective. Document review included reviewing the literature on systems thinking and rural development facilitation.
This paper adopts theoretical constructs from soft systems methodology to develop a community resilience programming framework. The proposed framework is illustrated in Figure 3. It incorporates principles from SSM and pillars from action research based on experiential knowledge by the author. The framework adopts a project cycle-based typology with two interrelated cycles (Figure 3). The outer cycle highlights the key components based on SSM while the inner cycle proposes key pillars for effectiveness of the programming framework. It should be highlighted that these cycles should be integrated and implemented simultaneously. The proposed components of the framework are detailed in the proceeding sections.
The proposed systemic programming framework.
This phase focuses on a holistic diagnosis of key resilience issues within the community. It is holistic in the sense of ‘sweeping in’ representatives of all stakeholders and community groupings as well as understanding interactions and synergies among various actors. Unlike most fragmented projects that select specified beneficiaries, system boundaries are stretched to incorporate different worldviews. A number of variables are mapped in the process including cultural history, stakeholders and their roles, community perspectives on resilience, historical trends of major shocks and coping strategies, and the role of social capital, among others. The process aims at capturing a wide range of perspectives and choices. It brings the real world and unstructured community perceptions on adaptive, absorptive, and transformative capacities. Experiences from action research highlight a few critical factors that might negatively affect such a holistic mapping process.
Firstly, most communities in Zimbabwe are polarised due to political defenses and past interactions with non-governmental organisations (NGOs) and other funding partners. Experiences by the author in Chimanimani District for example identified biases in beneficiary selection on the basis of political affiliation. On the other hand, participation in the different programs creates ‘camps’ between those selected and those left out. Such divisions often affect knowledge sharing and participation in local development activities. Other factors include local leadership wrangles and power dynamics as well as perceptions that participation in NGO activities need to be rewarded. Some cultural beliefs may affect participation by women. Dwindling confidence in NGO work in some sections of rural communities due to previously unsustainable projects may affect commitment by some community members.
The diagnosis process is conducted using rich text pictures (RTPs). An example of a TRP is given in Figure 4. The essence is to provide different perceptions, worldviews, and proposed actions on resilience within the community. Such diagrams could ideally be done at the village level and later consolidated at the Ward level through dialogue and participatory techniques for a more holistic view. The present is an unstructured description of issues on shocks and resilience within the community.
Example of a rich text picture. Adapted from Patching [
Root definitions are statements that present an ideal system with regards to relevant stakeholders, community actors, the perceived transformation process, world views, and endogenous and exogenous environmental factors. It should clearly highlight the required community-wide transformation process required to build resilience. It should be guided by inputs from the systemic diagnosis process in the preceding section. Root definitions should incorporate the three capacities of resilience (adaptive, absorptive, and transformative). An example of a root definition could be: “
These models illustrate the relationships among the various elements defined in the root definitions. They define activities that the system must implement to achieve the proposed transformation. It is important to note that conceptual models define the process and not the methods applied. These models must be as holistic as possible to ‘sweep in’ all relevant stakeholder views. They should show interactions and synergies (both positive and negative) of various elements. Communities in most rural areas in Zimbabwe have gone through different shocks/hazards and have developed their own coping mechanisms. The construction of conceptual models should, as much as possible, elicit tacit knowledge from these situations.
Conceptual models are normally represented in the form of bubble diagrams with activities enclosed in bubbles. The bubbles link each other through arrows that depict dependencies (positive and negative). They should demonstrate an ongoing purpose for improving community resilience, a means of assessing performance, decision-making processes, components that are sub-systems, an environment, continuity, and required resources. Figure 5 shows examples of conceptual models.
Example of a conceptual model (
The development of conceptual models should also be done at the village level. Experience from Action research indicates that such planning processes need to be conducted properly to manage reticence by some community members. Facilitators need to understand community dynamics that affect effective participation. Women for example may not participate effectively around men. Facilitators must be creative and adopt participatory methodologies that elicit the views of all stakeholders involved in the process. There might be need, for example, to form development groups, have separate inputs, and then conduct a village-wide process of consolidating the conceptual models.
This is an iterative process that focuses on comparing the conceptual models with the real-life situation from the unstructured problem presented in the rich text pictures. The conceptual and the real situations are compared to come up with realistic interventions. This process should ideally be facilitated at the village level with the participation of all key stakeholders through community-wide dialogue. This process can be replicated in other countries with similar socio-cultural conditions, particularly southern African countries such as Malawi, Mozambique, and Zambia. From action research experience, such a process can be challenging as village-wide dialogue has a number of challenging factors including breaking the ‘conspiracy of silence’ where community members won’t share knowledge and information as some perceive their tacit knowledge as inferior to technical expertise knowledge; gender and cultural dynamics where in some cases, certain community members’ contributions are regarded as inferior; de-politicking community dialogue; and detangling NGO specific forums. The latter normally stems from NGOs competing for space and developing their own forums. The comparison of the conceptual model to the rich text pictures should be done activity by activity in a tabular format. The table will have several columns. These columns might include the following headings: activity; status (indicating if the activity is already being implemented); current challenges and coping mechanisms; measures of performance; recommendations; and comments. The facilitators should draw as much as possible from participatory planning tools such as community based planning (CBP).
The implementation process should be action research-oriented informed by contemporary extension approaches. According to Özçatalbaş [51], such an extension approach should utilize proven, accurate information based on research findings to improve welfare. This process will allow the delivery of information and knowledge to target groups for socioeconomic development. Rather than a pure development practitioner/community member dichotomy, it should be based on a knowledge co-creation agenda. Such knowledge transfer should ideally be based on technology transfer within the current context of the fourth industrial revolution (4IR). Zimbabwean community members have been through numerous shocks; including droughts, and economic transitions among others. Extension and technology transfer through action research ensure that the implementation of the designed social activity systems engages a learning agenda. Experience shows that engaging Zimbabwean communities in action research have a key challenge in facilitating learning. There is a general belief by communities that rural development practitioners are more knowledgeable that communities and communities should learn from them. This poses a challenge for facilitators in changing this mindset to allow a knowledge-sharing agenda. In such instances, a tool such as appreciative inquiry, for example, was found to be effective in Chimanimani District during action research. The approach deviates from the traditional assumptions that community systems have inherent flaws that need to be fixed through problem solving and interventions. Rather than treating communities as problems, it focuses was placed on identifying positive capacities within communities which are the facilitators utilise to drive dialogue.
The proposed programming frame has strategic pillars that enhance its effectiveness (monitoring evaluation and learning, action research, knowledge integration, and dialogue). As outlined in the preceding sections, these should not be treated as a stand but should be integrated and interweaved with the entire SSM cycle (Figure 3). Implementation of the strategy should adopt monitoring and evaluation mechanisms that enhance community empowerment and learning. Experience in Chimanimani District through action research shows that tools such as community based monitoring and evaluation (CBME) and community score cards, where communities are given skills enhance knowledge sharing, improve project performance and accountability of local institutions and stakeholders. As described in preceding sections, action research, knowledge integration, and dialogue ought to be integral components of the proposed systemic programming framework.
This paper provides a framework for systemic programming for community resilience and sustainable community development in Zimbabwe. It is not a step-by-step programming manual but rather provides key tenets for researchers and development practitioners. The building blocks proposed are neither exhaustive nor prescriptive. Rural development is highly contextual,
IntechOpen’s Academic Editors and Authors have received funding for their work through many well-known funders, including: the European Commission, Bill and Melinda Gates Foundation, Wellcome Trust, Chinese Academy of Sciences, Natural Science Foundation of China (NSFC), CGIAR Consortium of International Agricultural Research Centers, National Institute of Health (NIH), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), National Institute of Standards and Technology (NIST), German Research Foundation (DFG), Research Councils United Kingdom (RCUK), Oswaldo Cruz Foundation, Austrian Science Fund (FWF), Foundation for Science and Technology (FCT), Australian Research Council (ARC).
",metaTitle:"Open Access Funding",metaDescription:"Open Access Funding",metaKeywords:null,canonicalURL:"/page/open-access-funding",contentRaw:'[{"type":"htmlEditorComponent","content":"Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\\n\\nIn order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\\n\\nIf you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\\n\\nPlease note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\\n\\nPlease be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
\\n\\nOpen Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\n\nIn order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\n\nIf you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\nPlease note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\n\nPlease be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
\n\n\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"August 12th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",slug:"taufiq-choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"86",title:"Business and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/86.jpg",isOpenForSubmission:!0,editor:{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek",profilePictureURL:"https://mts.intechopen.com/storage/users/128342/images/system/128342.jpg",biography:"Dr. Vito Bobek works as an international management professor at the University of Applied Sciences FH Joanneum, Graz, Austria. He has published more than 400 works in his academic career and visited twenty-two universities worldwide as a visiting professor. Dr. Bobek is a member of the editorial boards of six international journals and a member of the Strategic Council of the Minister of Foreign Affairs of the Republic of Slovenia. He has a long history in academia, consulting, and entrepreneurship. His own consulting firm, Palemid, has managed twenty significant projects, such as Cooperation Program Interreg V-A (Slovenia-Austria) and Capacity Building for the Serbian Chamber of Enforcement Agents. He has also participated in many international projects in Italy, Germany, Great Britain, the United States, Spain, Turkey, France, Romania, Croatia, Montenegro, Malaysia, and China. Dr. Bobek is also a co-founder of the Academy of Regional Management in Slovenia.",institutionString:"Universities of Applied Sciences FH Joanneum, Austria",institution:{name:"Universities of Applied Sciences Joanneum",institutionURL:null,country:{name:"Austria"}}},editorTwo:{id:"293992",title:"Dr.",name:"Tatjana",middleName:null,surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hXb0hQAC/Profile_Picture_1642419002203",biography:"Tatjana Horvat works as a professor for accountant and auditing at the University of Primorska, Slovenia. She is a Certified State Internal Auditor (licensed by Ministry of Finance RS) and Certified Internal Auditor for Business Sector and Certified accountant (licensed by Slovenian Institute of Auditors). At the Ministry of Justice of Slovenia, she is a member of examination boards for court expert candidates and judicial appraisers in the following areas: economy/finance, valuation of companies, banking, and forensic investigation of economic operations/accounting. At the leading business newspaper Finance in Slovenia (Swedish ownership), she is the editor and head of the area for business, finance, tax-related articles, and educational programs.",institutionString:null,institution:{name:"University of Primorska",institutionURL:null,country:{name:"Slovenia"}}},editorThree:null},{id:"87",title:"Economics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",isOpenForSubmission:!0,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},{id:"88",title:"Marketing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/88.jpg",isOpenForSubmission:!0,editor:{id:"203609",title:"Associate Prof.",name:"Hanna",middleName:null,surname:"Gorska-Warsewicz",slug:"hanna-gorska-warsewicz",fullName:"Hanna Gorska-Warsewicz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSD9pQAG/Profile_Picture_2022-06-14T11:58:32.jpeg",biography:"Hanna Górska-Warsewicz, Ph.D. is Associate Professor at Warsaw University of Life Sciences and Head of Department of Food Market and Consumption Research. She specializes in the subject of brands, brand equity, and brand management in production, service, and trade enterprises. She combines this subject with marketing and marketing management in both theoretical and practical aspects. Prof. Hanna Górska-Warsewicz also analyzes brands in the context of trademarks, legal regulations and the protection of intangible. She is an author or co-author of over 200 publications in this field, including 8 books. She works with the business sector and has participated in projects for the Ministry of Agriculture and Rural Development and the Ministry of Education and Science in Poland.",institutionString:null,institution:{name:"Warsaw University of Life Sciences",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:11,paginationItems:[{id:"83075",title:"Practices and Challenges of Community Services at Debre Markos University, Ethiopia: A Case Study",doi:"10.5772/intechopen.105896",signatures:"Adane Mengist",slug:"practices-and-challenges-of-community-services-at-debre-markos-university-ethiopia-a-case-study",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82858",title:"Corporate Social Responsibility a Case of the Provision of Recreational Facilities",doi:"10.5772/intechopen.105608",signatures:"Peter Musa Wash, Shida Irwana Omar, Badaruddin Mohamed and Mohd Ismail Isa",slug:"corporate-social-responsibility-a-case-of-the-provision-of-recreational-facilities",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82786",title:"Discussion of Purchasing Virtual Digital Nature and Tourism",doi:"10.5772/intechopen.105869",signatures:"Hiroko Oe and Yasuyuki Yamaoka",slug:"discussion-of-purchasing-virtual-digital-nature-and-tourism",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82388",title:"Epigenetics: Science of Changes without Change in DNA Sequences",doi:"10.5772/intechopen.105039",signatures:"Jayisha Dhargawe, Rita Lakkakul and Pradip Hirapure",slug:"epigenetics-science-of-changes-without-change-in-dna-sequences",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Chemical Biology",value:15,count:2,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:{name:"Association for Computing Machinery",country:{name:"United States of America"}}},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:"Manufacturing and Technology Integrated Campus – SENAI CIMATEC",institution:null},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"426586",title:"Dr.",name:"Oladunni A.",middleName:null,surname:"Daramola",slug:"oladunni-a.-daramola",fullName:"Oladunni A. Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Technology",country:{name:"Nigeria"}}},{id:"357014",title:"Prof.",name:"Leon",middleName:null,surname:"Bobrowski",slug:"leon-bobrowski",fullName:"Leon Bobrowski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Bialystok University of Technology",country:{name:"Poland"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"354126",title:"Dr.",name:"Setiawan",middleName:null,surname:"Hadi",slug:"setiawan-hadi",fullName:"Setiawan Hadi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Padjadjaran University",country:{name:"Indonesia"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"332603",title:"Prof.",name:"Kumar S.",middleName:null,surname:"Ray",slug:"kumar-s.-ray",fullName:"Kumar S. Ray",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Statistical Institute",country:{name:"India"}}},{id:"415409",title:"Prof.",name:"Maghsoud",middleName:null,surname:"Amiri",slug:"maghsoud-amiri",fullName:"Maghsoud Amiri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Allameh Tabataba'i University",country:{name:"Iran"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}}]}},subseries:{item:{id:"1",type:"subseries",title:"Oral Health",keywords:"Oral Health, Dental Care, Diagnosis, Diagnostic Imaging, Early Diagnosis, Oral Cancer, Conservative Treatment, Epidemiology, Comprehensive Dental Care, Complementary Therapies, Holistic Health",scope:"\r\n\tThis topic aims to provide a comprehensive overview of the latest trends in Oral Health based on recent scientific evidence. Subjects will include an overview of oral diseases and infections, systemic diseases affecting the oral cavity, prevention, diagnosis, treatment, epidemiology, as well as current clinical recommendations for the management of oral, dental, and periodontal diseases.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11397,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218"},editorialBoard:[{id:"267724",title:"Prof.",name:"Febronia",middleName:null,surname:"Kahabuka",slug:"febronia-kahabuka",fullName:"Febronia Kahabuka",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZpJQAW/Profile_Picture_2022-06-27T12:00:42.JPG",institutionString:"Muhimbili University of Health and Allied Sciences, Tanzania",institution:{name:"Muhimbili University of Health and Allied Sciences",institutionURL:null,country:{name:"Tanzania"}}},{id:"70530",title:"Dr.",name:"Márcio",middleName:"Campos",surname:"Oliveira",slug:"marcio-oliveira",fullName:"Márcio Oliveira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRm0AQAS/Profile_Picture_2022-08-01T12:34:46.jpg",institutionString:null,institution:{name:"State University of Feira de Santana",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82936",title:"Soil Degradation Processes Linked to Long-Term Forest-Type Damage",doi:"10.5772/intechopen.106390",signatures:"Pavel Samec, Aleš Kučera and Gabriela Tomášová",slug:"soil-degradation-processes-linked-to-long-term-forest-type-damage",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}}]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"