Frequency Responses of the differencing schemes
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5728",leadTitle:null,fullTitle:"Colposcopy and Cervical Pathology",title:"Colposcopy and Cervical Pathology",subtitle:null,reviewType:"peer-reviewed",abstract:'This book entitled Colposcopy and Cervical Pathology is the third successful book of the editor with InTech publishers. This book serves the purpose of providing, valuable and valid, innovative ideas/suggestions for utilizations of the "resource-rich/resource-intensive" colposcopy and cervical pathology technology in a "cost-/resource-effective" way by the health providers and planners, especially in "resource-limited/resource-poor settings." Transfer of technology from high- to low-resource settings in all the programs of preventive/community oncology services, across the world, is highly recommended and strongly advocated. The authors have well contributed to the goal of advanced science being made accessible for the benefit of common man. The InTech publishers have the distinct honor of imbibing the in-depth knowledge and vast experiences from experts of international repute and infusing it to the health providers and planners of developing countries, so that the communities of all nations are richly benefited. The book is a pearl, which deserves a precious and purposeful planning model for achieving "global health by education and empowerment."',isbn:"978-953-51-3538-8",printIsbn:"978-953-51-3537-1",pdfIsbn:"978-953-51-4646-9",doi:"10.5772/65158",price:119,priceEur:129,priceUsd:155,slug:"colposcopy-and-cervical-pathology",numberOfPages:148,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"f4232ee2dc701c710f42172d09afdc8f",bookSignature:"Rajamanickam Rajkumar",publishedDate:"September 20th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5728.jpg",numberOfDownloads:9548,numberOfWosCitations:4,numberOfCrossrefCitations:6,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:10,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:20,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 7th 2016",dateEndSecondStepPublish:"November 10th 2016",dateEndThirdStepPublish:"February 2nd 2017",dateEndFourthStepPublish:"March 30th 2017",dateEndFifthStepPublish:"June 1st 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",middleName:null,surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar",profilePictureURL:"https://mts.intechopen.com/storage/users/120109/images/system/120109.png",biography:"Rajamanickam Rajkumar is a scientist at the forefront of cervical cancer and HPV prevention and control. He has an MD in Community Medicine and a Ph.D. in Cancer Epidemiology. He is a professor at Meenakshi Medical College, Kanchipuram, India, and a Ph.D. mentor at Indian medical universities. He was Principal Investigator for one of the largest cervical cancer screening programs in India with the International Agency for Research on Cancer of the World Health Organization. Dr. Rajkumar is trained in cancer registry, cancer epidemiology, and colposcopy. He is also a consultant to The Ohio State University Medical Center in cervical cancer screening and an honorary member of the Society for Colposcopy & Cervical Pathology of Singapore.",institutionString:"Meenakshi Medical College Hospital and Research Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Meenakshi Medical College Hospital and Research Institute",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1071",title:"Urogynecology",slug:"urogynecology"}],chapters:[{id:"56122",title:"Introductory Chapter: Colposcopy and Cervical Pathology in Cervical Cancer Screening Programs: Resource Effectiveness, Concepts, and Models of “Raj”©",doi:"10.5772/intechopen.69692",slug:"introductory-chapter-colposcopy-and-cervical-pathology-in-cervical-cancer-screening-programs-resourc",totalDownloads:1197,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Rajamanickam Rajkumar",downloadPdfUrl:"/chapter/pdf-download/56122",previewPdfUrl:"/chapter/pdf-preview/56122",authors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],corrections:null},{id:"55613",title:"Psychosocial Aspects of Colposcopic Assessment: Perspectives and Strategies for Physicians",doi:"10.5772/intechopen.69160",slug:"psychosocial-aspects-of-colposcopic-assessment-perspectives-and-strategies-for-physicians",totalDownloads:1198,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"The purpose of this work is to determine perspectives, misconceptions, psychology adjustments and useful strategies of women living with dilemmas about their malignant lesions which can be detected through the colposcopy. Colposcopic assessment following abnormal Pap test has resulted in a long list of concerns: fear of having cancer, periodic obligations related to follow-up, balancing treatment of premalignant disease with quality of life, pain or discomfort and long-term impact on their families or limited social support. How prepared are they to adapt to their diagnosis? New diagnosis results in patient not being able to listen well or to understand her medical situation. The success of the outcome and procedure takes time to deduce the concerns she has regarding her diagnosis, treatment and appropriate follow-up. Several physicians endorse a wide range of barriers with respect to diagnosis and management of the disease: organizational or patient issues. Furthermore, patient appears to be important for the effective treatment than to identify and assess psychosocial problems among women diagnosed with cancer. In conclusion, physician provides effective treatment, but fails to address psychosocial issues associated with the illness. It is necessary to define the condition more clearly by studying patients and their psychosocial problems.",signatures:"Eugen Ancuta, Dumitru Sofroni, Codrina Ancuta, Larisa Sofroni, Ion\nMereuta, Lilian Gutu and Emil Anton",downloadPdfUrl:"/chapter/pdf-download/55613",previewPdfUrl:"/chapter/pdf-preview/55613",authors:[{id:"35586",title:"Prof.",name:"Codrina",surname:"Ancuta",slug:"codrina-ancuta",fullName:"Codrina Ancuta"}],corrections:null},{id:"56814",title:"Colposcopy of the Vulva and Perineum",doi:"10.5772/intechopen.68768",slug:"colposcopy-of-the-vulva-and-perineum",totalDownloads:1954,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Due to the normal histology of this area and the multifocal nature of vulvar intraepithelial disease, vulvoscopy is more difficult and less objective than the cervix examination. Basis of vulvar colposcopy as well as benign vulvar skin disorders that are usually found in a routine gynecology examination will be reviewed.",signatures:"Marta García-Yuste González, Ana Maria Muñoz Ledesma, Mayte Navarro Monge and José Schneider Fontán",downloadPdfUrl:"/chapter/pdf-download/56814",previewPdfUrl:"/chapter/pdf-preview/56814",authors:[{id:"195677",title:"Prof.",name:"Marta",surname:"García -Yuste",slug:"marta-garcia-yuste",fullName:"Marta García -Yuste"},{id:"195987",title:"Prof.",name:"Ana",surname:"Muñoz Ledesma",slug:"ana-munoz-ledesma",fullName:"Ana Muñoz Ledesma"},{id:"195988",title:"Dr.",name:"Mayte",surname:"Navarro Monge",slug:"mayte-navarro-monge",fullName:"Mayte Navarro Monge"}],corrections:null},{id:"55592",title:"Colposcopic Assessment Among Women with Lower Genital Tract Pathology",doi:"10.5772/intechopen.69176",slug:"colposcopic-assessment-among-women-with-lower-genital-tract-pathology",totalDownloads:1250,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"A broad spectrum of conditions classically requires a colposcopic assessment for either diagnostic or treatment means, including atypical changes in the cervix-vagina and vulva, abnormal Pap tests, cervicitis, polyps, cervical warts, genital warts, and bleeding. Although the procedure is commonly considered as criteria for the management of cervical cancer, the sensitivity of colposcopy is quite limited as its ability to discriminate among dysplasia and microinvasive carcinoma is difficult. Most professional societies and international health organizations have already released guidelines and recommendation for the management for woman with abnormal cervical pathology (e.g., cervical intraepithelial neoplasia and cervical cancer); only women with positive human papillomavirus (HPV) tests, low-grade squamous intraepithelial lesion (LSIL), or severe cytology have clear indication for referral to a colposcopic evaluation. While most guidelines recommend colposcopy for any abnormal cytology or any positive HPV test, others apply only for woman with two consecutive unsatisfactory Pap tests or for those with some abnormalities. In conclusion, cervical cancer risk remains high; thus, the potential benefit of colposcopy examination should be balanced against the risk.",signatures:"Eugen Ancuta, Dumitru Sofroni, Codrina Ancuta, Larisa Sofroni, Ion\nMereuta and Lilian Gutu",downloadPdfUrl:"/chapter/pdf-download/55592",previewPdfUrl:"/chapter/pdf-preview/55592",authors:[{id:"35586",title:"Prof.",name:"Codrina",surname:"Ancuta",slug:"codrina-ancuta",fullName:"Codrina Ancuta"},{id:"53221",title:"MSc.",name:"Eugen",surname:"Ancuta",slug:"eugen-ancuta",fullName:"Eugen Ancuta"},{id:"196666",title:"MSc.",name:"Dumitru",surname:"Sofroni",slug:"dumitru-sofroni",fullName:"Dumitru Sofroni"}],corrections:null},{id:"55650",title:"Utility of Colposcopy: Comparison of Colposcopic Abnormality with Histology and Cytology, with Colposcopic Findings Focusing on the Lesion in Cervical Canal",doi:"10.5772/intechopen.68358",slug:"utility-of-colposcopy-comparison-of-colposcopic-abnormality-with-histology-and-cytology-with-colposc",totalDownloads:1202,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter discusses four significant items: (1) incidences of abnormal colposcopy in healthy women, (2) comparison of its abnormality with histology and (3) cytology, and (4) colposcopic findings focused on the lesions in cervical canal to prevent misdiagnosis.The incidence of atypical colposcopic findings (ACF) was 3.6%, whereas that of abnormal cytology (≧ASC-US: Atypical Squamous Cells with Undetermined Significance) was 1.1%. The former is more frequent than the latter.The incidence of unsatisfactory colposcopic findings (UCF) was high (24.2%). Pap smear is more useful in primary screening, if performed satisfactorily.Colposcopy detects squamous intraepithelial lesions (SILs) constantly regardless of the severity of lesions. In cytology, it is easier to miss the lower lesions.The incidence of benign reparatory lesion was 61.4% among women (n = 1317) who had either abnormal cytology or colposcopy and was 74.6% if cytology is negative. We should realize that colposcopic abnormality does not always show neoplastic lesions.Main colposcopic abnormalities were the triad of mosaic, punctation, and aceto‐white epithelium, which appeared admixed in the majority of cases with tendency of lesion severity. However, colposcopic abnormal findings in benign lesions are also the triad, although the admixed ones are few.The abnormal areas were wider in order of severity of SILs.",signatures:"Hiroyuki Kuramoto and Toshiko Jobo",downloadPdfUrl:"/chapter/pdf-download/55650",previewPdfUrl:"/chapter/pdf-preview/55650",authors:[{id:"196678",title:"Emeritus Prof.",name:"Hiroyuki",surname:"Kuramoto",slug:"hiroyuki-kuramoto",fullName:"Hiroyuki Kuramoto"},{id:"205916",title:"Prof.",name:"Toshiko",surname:"Jobo",slug:"toshiko-jobo",fullName:"Toshiko Jobo"}],corrections:null},{id:"54716",title:"MiRNAs in Cervical Cancer Radio- and Chemotherapy Response",doi:"10.5772/68010",slug:"mirnas-in-cervical-cancer-radio-and-chemotherapy-response",totalDownloads:1165,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Cervical cancer (CC) is a very frequent women disease with high mortality and morbidity incidence worldwide, being the developing countries the most affected. Persistent infection with an oncogenic high-risk human papillomavirus (HPV) type is the primary cause of cervical cancer, but other etiologies are needed for complete malignancy such as patient immune response, genetic, and cellular factors, and/or environment. Radiotherapy in combination with cisplatinum is the standard treatment for invasive cervical cancer. Nevertheless, this conventional treatment is restricted due to eventual development of drug resistance and systemic toxicity. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of protein-coding genes involved in various cellular processes including cancer where they play a very important role in the development and progression of malignancy. As part of this complex disease, miRNAs have been implicated in the process of drug and radiation resistance and sensitivity. Recent studies have been directed to understand how miRNAs under or over-expressed are determinants of clinical response, and other studies have focused to clarify how the process of radio and/or chemotherapy affects miRNA expression. These works could lead to the design of safer and more effective therapy approaches based on miRNA expression and their target regulation.",signatures:"Jesús Adrián López and Angelica Judith Granados López",downloadPdfUrl:"/chapter/pdf-download/54716",previewPdfUrl:"/chapter/pdf-preview/54716",authors:[{id:"196431",title:"M.Sc.",name:"Angelica Judith",surname:"Granados López",slug:"angelica-judith-granados-lopez",fullName:"Angelica Judith Granados López"},{id:"196441",title:"Dr.",name:"Jesús Adrián",surname:"López",slug:"jesus-adrian-lopez",fullName:"Jesús Adrián López"}],corrections:null},{id:"54747",title:"The Role of miRNAs in Diagnosis, Prognosis and Treatment Prediction in Cervical Cancer",doi:"10.5772/68011",slug:"the-role-of-mirnas-in-diagnosis-prognosis-and-treatment-prediction-in-cervical-cancer",totalDownloads:1582,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Cervical cancer represents one of the major problems of health women worldwide, especially in the developing countries. If discovered in its earliest stages, cervical cancer is successfully treatable; however, due to lack of proper implementation of screening programs, the majority of cervical cancer patients are diagnosed in advanced stages, which dramatically influence their outcome. Almost a half of these patients will suffer recurrence or metastasis in the following 2 years after therapy. If there are no immediate prospects in terms of developing new or more effective therapies, identifying new tools for early diagnosis, prognosis and treatment prediction remains a big challenge for cervical cancer. miRNAs have been validated to be key players in cell physiology, alterations in miRNA expression being associated with cancer progression and response to therapy. Cervical cancer studies have showed that alterations of miRNA expression can be identified in tumor tissues, exfoliated cervical cells and patients serum and that their transcription pattern is regulated by the present HPV genotype. Furthermore, miRNAs have been associated with patients response to therapy, therefore suggesting their potential to be used as biomarkers for cervical cancer diagnosis, prognosis and treatment response.",signatures:"Ovidiu Balacescu, Loredana Balacescu, Oana Baldasici, Oana\nTudoran and Patriciu Achimas‐Cadariu",downloadPdfUrl:"/chapter/pdf-download/54747",previewPdfUrl:"/chapter/pdf-preview/54747",authors:[{id:"195763",title:"Ph.D.",name:"Ovidiu",surname:"Balacescu",slug:"ovidiu-balacescu",fullName:"Ovidiu Balacescu"},{id:"196758",title:"Dr.",name:"Loreadana",surname:"Balacescu",slug:"loreadana-balacescu",fullName:"Loreadana Balacescu"},{id:"196761",title:"Dr.",name:"Oana",surname:"Tudoran",slug:"oana-tudoran",fullName:"Oana Tudoran"},{id:"196770",title:"Prof.",name:"Patriciu",surname:"Achimas",slug:"patriciu-achimas",fullName:"Patriciu Achimas"},{id:"203875",title:"Dr.",name:"Oana",surname:"Baldasici",slug:"oana-baldasici",fullName:"Oana Baldasici"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"951",title:"Topics on Cervical Cancer With an Advocacy for Prevention",subtitle:null,isOpenForSubmission:!1,hash:"fedfb0b32d856abf87bdb68b8ce9791c",slug:"topics-on-cervical-cancer-with-an-advocacy-for-prevention",bookSignature:"Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/951.jpg",editedByType:"Edited by",editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5256",title:"Human Papillomavirus",subtitle:"Research in a Global Perspective",isOpenForSubmission:!1,hash:"8d66d3c0bc41a12be8217ca0cee52b60",slug:"human-papillomavirus-research-in-a-global-perspective",bookSignature:"Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/5256.jpg",editedByType:"Edited by",editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6421",title:"Cervical Cancer",subtitle:"Screening, Treatment and Prevention - Universal Protocols for Ultimate Control",isOpenForSubmission:!1,hash:"33de90dc3727148b27fc60f4e46f92eb",slug:"cervical-cancer-screening-treatment-and-prevention-universal-protocols-for-ultimate-control",bookSignature:"Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/6421.jpg",editedByType:"Edited by",editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10789",title:"Cervical Cancer",subtitle:"A Global Public Health Treatise",isOpenForSubmission:!1,hash:"3f7a79875d0d0ae71479de8c60276913",slug:"cervical-cancer-a-global-public-health-treatise",bookSignature:"Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10789.jpg",editedByType:"Edited by",editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8946",title:"Human Papillomavirus",subtitle:null,isOpenForSubmission:!1,hash:"dcd959bb940ca13a13e234d6c569c06d",slug:"human-papillomavirus",bookSignature:"Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/8946.jpg",editedByType:"Edited by",editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"684",title:"Endometriosis",subtitle:"Basic Concepts and Current Research Trends",isOpenForSubmission:!1,hash:"1f5625375189846e4fa04200c135afcc",slug:"endometriosis-basic-concepts-and-current-research-trends",bookSignature:"Koel Chaudhury and Baidyanath Chakravarty",coverURL:"https://cdn.intechopen.com/books/images_new/684.jpg",editedByType:"Edited by",editors:[{id:"83747",title:"Prof.",name:"Koel",surname:"Chaudhury",slug:"koel-chaudhury",fullName:"Koel Chaudhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"707",title:"Hysterectomy",subtitle:null,isOpenForSubmission:!1,hash:"219d88512350b2e1d01cfd8faf81aa9c",slug:"hysterectomy",bookSignature:"Ayman Al-Hendy and Mohamed Sabry",coverURL:"https://cdn.intechopen.com/books/images_new/707.jpg",editedByType:"Edited by",editors:[{id:"54087",title:"Dr.",name:"Ayman",surname:"Al-Hendy",slug:"ayman-al-hendy",fullName:"Ayman Al-Hendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1900",title:"In Vitro Fertilization",subtitle:"Innovative Clinical and Laboratory Aspects",isOpenForSubmission:!1,hash:"212b5ed00828501488c8d7025d84a188",slug:"in-vitro-fertilization-innovative-clinical-and-laboratory-aspects",bookSignature:"Shevach Friedler",coverURL:"https://cdn.intechopen.com/books/images_new/1900.jpg",editedByType:"Edited by",editors:[{id:"111647",title:"Prof.",name:"Shevach",surname:"Friedler",slug:"shevach-friedler",fullName:"Shevach Friedler"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6278",title:"Pelvic Floor Disorders",subtitle:null,isOpenForSubmission:!1,hash:"e53630ad8f02658c6ca31163f9d68193",slug:"pelvic-floor-disorders",bookSignature:"Raheela M. Rizvi",coverURL:"https://cdn.intechopen.com/books/images_new/6278.jpg",editedByType:"Edited by",editors:[{id:"185970",title:"Dr.",name:"Raheela",surname:"Rizvi",slug:"raheela-rizvi",fullName:"Raheela Rizvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4641",title:"Approaches to Hysterectomy",subtitle:null,isOpenForSubmission:!1,hash:"a2a63bba8f7b17c10aff3d6d59ea0d08",slug:"approaches-to-hysterectomy",bookSignature:"Zouhair O. Amarin",coverURL:"https://cdn.intechopen.com/books/images_new/4641.jpg",editedByType:"Edited by",editors:[{id:"101551",title:"Prof.",name:"Zouhair",surname:"Amarin",slug:"zouhair-amarin",fullName:"Zouhair Amarin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64554",slug:"erratum-treatment-of-resistant-hypertension-an-update-in-device-therapy",title:"Erratum - Treatment of Resistant Hypertension: An Update in Device Therapy",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64554.pdf",downloadPdfUrl:"/chapter/pdf-download/64554",previewPdfUrl:"/chapter/pdf-preview/64554",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64554",risUrl:"/chapter/ris/64554",chapter:{id:"59188",slug:"treatment-of-resistant-hypertension-an-update-in-device-therapy",signatures:"Ghazal Quinn, Phillip John Gary, Christopher Damiano and Geoffrey\nTeehan",dateSubmitted:"May 10th 2017",dateReviewed:"January 10th 2018",datePrePublished:"February 7th 2018",datePublished:"November 14th 2018",book:{id:"6311",title:"Blood Pressure",subtitle:"From Bench to Bed",fullTitle:"Blood Pressure - From Bench to Bed",slug:"blood-pressure-from-bench-to-bed",publishedDate:"November 14th 2018",bookSignature:"Aise Seda Artis",coverURL:"https://cdn.intechopen.com/books/images_new/6311.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"210880",title:"Dr.",name:"Geoffrey",middleName:null,surname:"Teehan",fullName:"Geoffrey Teehan",slug:"geoffrey-teehan",email:"gteehan@comcast.net",position:null,institution:{name:"Lankenau Medical Center",institutionURL:null,country:{name:"United States of America"}}},{id:"221168",title:"Dr.",name:"Ghazal",middleName:null,surname:"Quinn",fullName:"Ghazal Quinn",slug:"ghazal-quinn",email:"quinng@mlhs.org",position:null,institution:null},{id:"221169",title:"Dr.",name:"Phillip John",middleName:null,surname:"Gary",fullName:"Phillip John Gary",slug:"phillip-john-gary",email:"garyp@mlhs.org",position:null,institution:null},{id:"221170",title:"Dr.",name:"Christopher",middleName:null,surname:"Damiano",fullName:"Christopher Damiano",slug:"christopher-damiano",email:"damianoc@mlhs.org",position:null,institution:null}]}},chapter:{id:"59188",slug:"treatment-of-resistant-hypertension-an-update-in-device-therapy",signatures:"Ghazal Quinn, Phillip John Gary, Christopher Damiano and Geoffrey\nTeehan",dateSubmitted:"May 10th 2017",dateReviewed:"January 10th 2018",datePrePublished:"February 7th 2018",datePublished:"November 14th 2018",book:{id:"6311",title:"Blood Pressure",subtitle:"From Bench to Bed",fullTitle:"Blood Pressure - From Bench to Bed",slug:"blood-pressure-from-bench-to-bed",publishedDate:"November 14th 2018",bookSignature:"Aise Seda Artis",coverURL:"https://cdn.intechopen.com/books/images_new/6311.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"210880",title:"Dr.",name:"Geoffrey",middleName:null,surname:"Teehan",fullName:"Geoffrey Teehan",slug:"geoffrey-teehan",email:"gteehan@comcast.net",position:null,institution:{name:"Lankenau Medical Center",institutionURL:null,country:{name:"United States of America"}}},{id:"221168",title:"Dr.",name:"Ghazal",middleName:null,surname:"Quinn",fullName:"Ghazal Quinn",slug:"ghazal-quinn",email:"quinng@mlhs.org",position:null,institution:null},{id:"221169",title:"Dr.",name:"Phillip John",middleName:null,surname:"Gary",fullName:"Phillip John Gary",slug:"phillip-john-gary",email:"garyp@mlhs.org",position:null,institution:null},{id:"221170",title:"Dr.",name:"Christopher",middleName:null,surname:"Damiano",fullName:"Christopher Damiano",slug:"christopher-damiano",email:"damianoc@mlhs.org",position:null,institution:null}]},book:{id:"6311",title:"Blood Pressure",subtitle:"From Bench to Bed",fullTitle:"Blood Pressure - From Bench to Bed",slug:"blood-pressure-from-bench-to-bed",publishedDate:"November 14th 2018",bookSignature:"Aise Seda Artis",coverURL:"https://cdn.intechopen.com/books/images_new/6311.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10423",leadTitle:null,title:"The Wonders of Diptera",subtitle:"Characteristics, Diversity, and Significance for the World's Ecosystems",reviewType:"peer-reviewed",abstract:"This book provides comprehensive and concise knowledge about Diptera, an order of insects that has both useful and harmful aspects for humans, animals, plants, and the environment. Insects of this order act as agricultural pests as well as vectors of diseases and carriers of microorganisms. Chapters cover such topics as characteristics of different types of Dipteran insects including fruit flies, mosquitos, and midges, and strategies to control insect populations to combat the spread of human and animal diseases such as dengue, trypanosomosis, and others.",isbn:"978-1-83968-883-6",printIsbn:"978-1-83968-882-9",pdfIsbn:"978-1-83968-884-3",doi:"10.5772/intechopen.91609",price:119,priceEur:129,priceUsd:155,slug:"the-wonders-of-diptera-characteristics-diversity-and-significance-for-the-world-s-ecosystems",numberOfPages:188,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"2746b4288e78c8688d1be1bd9d99a127",bookSignature:"Farzana Khan Perveen",publishedDate:"September 8th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10423.jpg",keywords:null,numberOfDownloads:2502,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 18th 2020",dateEndSecondStepPublish:"October 16th 2020",dateEndThirdStepPublish:"December 15th 2020",dateEndFourthStepPublish:"March 5th 2021",dateEndFifthStepPublish:"May 4th 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"Dr. Farzana Khan Perveen (FLS; Gold-Medallist) is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University, and Kohat University of Science & Technology. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.jpg",biography:"Dr. Farzana Khan Perveen (FLS; Gold Medalist) obtained her BSc (Hons) and MSc in Entomology from the University of Karachi, Pakistan, and MAS (Monbusho Scholarship) in Agronomy from Nagoya University, Japan, and a Ph.D. in Toxicology from the University of Karachi. She is the founder of the Department of Zoology and former controller of examinations at Shaheed Benazir Bhutto University, Hazara University, and Kohat University of Science and Technology. She is the author of 150 high-impact research papers, 135 abstracts, 40 authored books, 9 chapters, and 9 edited books. She is also a student supervisor. Her fields of interest are entomology, toxicology, forensic entomology.",institutionString:"Classes et Events in Sciences (C.E.S.)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"7",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"35",title:"Entomology",slug:"entomology"}],chapters:[{id:"78012",title:"Introductory Chapter: Diptera",slug:"introductory-chapter-diptera",totalDownloads:179,totalCrossrefCites:0,authors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"},{id:"383356",title:"Dr.",name:"Anzela",surname:"Khan",slug:"anzela-khan",fullName:"Anzela Khan"}]},{id:"75438",title:"Characteristics of Dipteran Insects",slug:"characteristics-of-dipteran-insects",totalDownloads:486,totalCrossrefCites:0,authors:[{id:"301984",title:"Ph.D.",name:"Murat",surname:"Helvaci",slug:"murat-helvaci",fullName:"Murat Helvaci"}]},{id:"75974",title:"Fruit Flies (Drosophila spp.) Collection, Handling, and Maintenance: Field to Laboratory",slug:"fruit-flies-em-drosophila-spp-em-collection-handling-and-maintenance-field-to-laboratory",totalDownloads:372,totalCrossrefCites:0,authors:[{id:"336156",title:"Assistant Prof.",name:"Rajendra S.",surname:"Fartyal",slug:"rajendra-s.-fartyal",fullName:"Rajendra S. Fartyal"},{id:"336657",title:"Ms.",name:"Pragya",surname:"Topal",slug:"pragya-topal",fullName:"Pragya Topal"},{id:"344407",title:"Ms.",name:"Divita",surname:"Garg",slug:"divita-garg",fullName:"Divita Garg"}]},{id:"75382",title:"Diversity of Tephritidae and Agromyzidae (Diptera: Brachycera) in Flower Heads of Asteraceae in the Chaco",slug:"diversity-of-tephritidae-and-agromyzidae-diptera-brachycera-in-flower-heads-of-asteraceae-in-the-cha",totalDownloads:125,totalCrossrefCites:0,authors:[{id:"87919",title:"Dr.",name:"Manoel",surname:"Uchoa",slug:"manoel-uchoa",fullName:"Manoel Uchoa"},{id:"346550",title:"Dr.",name:"Jimi N.",surname:"Nakajima",slug:"jimi-n.-nakajima",fullName:"Jimi N. Nakajima"},{id:"346551",title:"Dr.",name:"Anderson S.",surname:"Fernandes",slug:"anderson-s.-fernandes",fullName:"Anderson S. Fernandes"}]},{id:"75428",title:"Feeding by Florivorous Flies (Tephritidae and Agromyzidae) in Flower Heads of Neotropical Asteraceae (Asterales) from Central Brazil",slug:"feeding-by-florivorous-flies-tephritidae-and-agromyzidae-in-flower-heads-of-neotropical-asteraceae-a",totalDownloads:178,totalCrossrefCites:0,authors:[{id:"87919",title:"Dr.",name:"Manoel",surname:"Uchoa",slug:"manoel-uchoa",fullName:"Manoel Uchoa"},{id:"346548",title:"Dr.",name:"Nádia",surname:"Roque",slug:"nadia-roque",fullName:"Nádia Roque"},{id:"346549",title:"Dr.",name:"Morgana F.",surname:"Wachter-Serapião",slug:"morgana-f.-wachter-serapiao",fullName:"Morgana F. Wachter-Serapião"}]},{id:"74836",title:"Chironomidae: Biology, Ecology and Systematics",slug:"chironomidae-biology-ecology-and-systematics",totalDownloads:430,totalCrossrefCites:0,authors:[{id:"334825",title:"Dr.",name:"Karima",surname:"Zerguine",slug:"karima-zerguine",fullName:"Karima Zerguine"}]},{id:"74320",title:"Ecological Aspects of Tabanids (Diptera: Tabanidae) in a Gabonese Cattle Ranch",slug:"ecological-aspects-of-tabanids-diptera-tabanidae-in-a-gabonese-cattle-ranch",totalDownloads:146,totalCrossrefCites:0,authors:[{id:"243979",title:"Ph.D. Student",name:"Sevidzem",surname:"Lendzele",slug:"sevidzem-lendzele",fullName:"Sevidzem Lendzele"},{id:"340184",title:"Dr.",name:"Ovono Mélodie",surname:"Audrey Prisca",slug:"ovono-melodie-audrey-prisca",fullName:"Ovono Mélodie Audrey Prisca"},{id:"340185",title:"Dr.",name:"Mounioko",surname:"Franck",slug:"mounioko-franck",fullName:"Mounioko Franck"},{id:"340186",title:"Dr.",name:"Zinga Koumba Christophe",surname:"Roland",slug:"zinga-koumba-christophe-roland",fullName:"Zinga Koumba Christophe Roland"},{id:"340187",title:"Dr.",name:"Maroundou Audrey",surname:"Pamela",slug:"maroundou-audrey-pamela",fullName:"Maroundou Audrey Pamela"},{id:"340188",title:"Dr.",name:"Acapovi-Yao Géneviève",surname:"Lydie",slug:"acapovi-yao-genevieve-lydie",fullName:"Acapovi-Yao Géneviève Lydie"},{id:"340190",title:"Dr.",name:"Tamesse Joseph",surname:"Lebel",slug:"tamesse-joseph-lebel",fullName:"Tamesse Joseph Lebel"},{id:"340191",title:"Dr.",name:"Simo",surname:"Gustave",slug:"simo-gustave",fullName:"Simo Gustave"},{id:"340192",title:"Dr.",name:"M’batchi",surname:"Bertrand",slug:"m'batchi-bertrand",fullName:"M’batchi Bertrand"},{id:"340193",title:"Dr.",name:"Mavoungou Jacques",surname:"François",slug:"mavoungou-jacques-francois",fullName:"Mavoungou Jacques François"}]},{id:"75790",title:"Morphological Keys for the Identification of Tunisian Culicoides Biting Midges (Diptera: Ceratopogonidae)",slug:"morphological-keys-for-the-identification-of-tunisian-em-culicoides-em-biting-midges-diptera-ceratop",totalDownloads:134,totalCrossrefCites:0,authors:[{id:"192246",title:"Ph.D.",name:"Darine",surname:"Slama",slug:"darine-slama",fullName:"Darine Slama"},{id:"195408",title:"Prof.",name:"Hamouda",surname:"Babba",slug:"hamouda-babba",fullName:"Hamouda Babba"},{id:"195409",title:"Prof.",name:"Emna",surname:"Chaker",slug:"emna-chaker",fullName:"Emna Chaker"}]},{id:"75244",title:"Control Strategy for Aedes aegypti (Linnaeus, 1762) Population",slug:"control-strategy-for-em-aedes-aegypti-em-linnaeus-1762-population",totalDownloads:213,totalCrossrefCites:0,authors:[{id:"301356",title:"Dr.",name:"Eduardo",surname:"Arruda",slug:"eduardo-arruda",fullName:"Eduardo Arruda"},{id:"308803",title:"Dr.",name:"António",surname:"Souza",slug:"antonio-souza",fullName:"António Souza"},{id:"343503",title:"Dr.",name:"Alex",surname:"Martins Machado",slug:"alex-martins-machado",fullName:"Alex Martins Machado"},{id:"343509",title:"BSc.",name:"Taiana",surname:"Gabriela Barbosa De Souza",slug:"taiana-gabriela-barbosa-de-souza",fullName:"Taiana Gabriela Barbosa De Souza"},{id:"346904",title:"Dr.",name:"Raphael Antônio",surname:"Borges Gomes",slug:"raphael-antonio-borges-gomes",fullName:"Raphael Antônio Borges Gomes"}]},{id:"76977",title:"Environmental Manipulation: A Potential Tool for Mosquito Vector Control",slug:"environmental-manipulation-a-potential-tool-for-mosquito-vector-control",totalDownloads:240,totalCrossrefCites:0,authors:[{id:"335962",title:"Dr.",name:"Azubuike",surname:"Ukubuiwe",slug:"azubuike-ukubuiwe",fullName:"Azubuike Ukubuiwe"},{id:"344891",title:"Prof.",name:"Israel Kayode",surname:"Olayemi",slug:"israel-kayode-olayemi",fullName:"Israel Kayode Olayemi"},{id:"344892",title:"Mrs.",name:"Chinenye Catherine",surname:"Ukubuiwe",slug:"chinenye-catherine-ukubuiwe",fullName:"Chinenye Catherine Ukubuiwe"},{id:"345712",title:"Mr.",name:"Bright Ugbede",surname:"Sule",slug:"bright-ugbede-sule",fullName:"Bright Ugbede Sule"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2036",title:"Insecticides",subtitle:"Advances in Integrated Pest Management",isOpenForSubmission:!1,hash:"42dc69ce20386f76845e38275b0e54e8",slug:"insecticides-advances-in-integrated-pest-management",bookSignature:"Farzana Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/2036.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"843",title:"Insecticides",subtitle:"Pest Engineering",isOpenForSubmission:!1,hash:"88f3cc3c937f853057f544c152ef7491",slug:"insecticides-pest-engineering",bookSignature:"Farzana Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/843.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5089",title:"Recent Advances in Biopolymers",subtitle:null,isOpenForSubmission:!1,hash:"49b676f9ac3f7097cd3d01b379cde9b4",slug:"recent-advances-in-biopolymers",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/5089.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5976",title:"Drosophila melanogaster",subtitle:"Model for Recent Advances in Genetics and Therapeutics",isOpenForSubmission:!1,hash:"46ff086c2ae55b49970a648d604634cc",slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/5976.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6156",title:"Lepidoptera",subtitle:null,isOpenForSubmission:!1,hash:"b5d586ee7920aa6388b521b833916453",slug:"lepidoptera",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/6156.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6895",title:"Moths",subtitle:"Pests of Potato, Maize and Sugar Beet",isOpenForSubmission:!1,hash:"53f66556fd9bcdc455a639838d45c2d8",slug:"moths-pests-of-potato-maize-and-sugar-beet",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/6895.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6619",title:"Insect Science",subtitle:"Diversity, Conservation and Nutrition",isOpenForSubmission:!1,hash:"08241b041b2072a88452041f8fdebe7e",slug:"insect-science-diversity-conservation-and-nutrition",bookSignature:"Mohammad Manjur Shah and Umar Sharif",coverURL:"https://cdn.intechopen.com/books/images_new/6619.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"46091",title:"Perfusion Based Functional MRI",doi:"10.5772/58259",slug:"perfusion-based-functional-mri",body:'
In this chapter, we will discuss the perfusion imaging for functional MRI experiments as an alternative and complementary technique to the conventional Blood Oxygenation Level Dependent (BOLD) effect. We begin by discussing the motivation behind the development of perfusion based functional MRI techniques. In order to do so, we briefly review the underlying relationship between the brain’s vasculature and neuronal activity. Increases in neuronal activity result in metabolic increases, which in turn elicit a local, complex, vasodilatory response. With this physiology in mind, we will discuss the advantages and disadvantages of perfusion MRI and BOLD imaging, and which situations are appropriate for each technique. We will discuss how the types of artifacts and noise characteristics present in each technique determine its applicability.
We will then survey a few examples of ASL based fMRI studies. These typically include clinical studies of pathological conditions, longitudinal studies of cognitive function and studies requiring sustained periods of the condition or state of interest (i.e., greater than 30 seconds).
We then proceed to survey the wide array of current techniques available to image cerebral perfusion, including non-MRI techniques. We will describe in broad strokes the basics of PET and SPECT imaging and the use of paramagnetic tracer injections in MRI to map cerebral perfusion. However, we will narrow our focus down to arterial spin labeling (ASL) techniques, which use the water in the arteries as a tracer by labeling it with radiofrequency pulses. Because of ASL’s ability to image perfusion dynamically as well as quantitatively, this technique will be the main focus of this chapter.
We will discuss the technical aspects of ASL techniques by first describing the physics of the labeling process and the different labeling schemes available Here, we will discuss the advantages and disadvantages of each of these strategies in greater detail.
Next, we will discuss the requirements for image acquisition following the labeling period. We will give a brief survey of different image acquisition schemes that are typically used in the ASL literature. While slower non-echo planar techniques can be used for perfusion measurements at rest, functional imaging applications typically require faster, single-shot, echo-planar techniques. 3D acquisition techniques are also gaining prominence in ASL imaging because of signal-to-noise advantages, but they are often accompanied by blurring artifacts if not implemented properly.
We will then proceed to discuss the technical considerations for the analysis of ASL based functional MRI. We divide this section into the
Linear regression techniques are typically used for detection of activation in ASL data, just as with BOLD data. However, ASL techniques typically rely on the subtraction of images acquired following a labeling pulse from control images that are free of label, in order to extract the perfusion information. As we will discuss in greater detail, there are several subtraction schemes that can be used to isolate the perfusion signal from the raw data. Each of these schemes has an effect on the content and properties of the resulting perfusion weighted signals. We will describe methods to leverage those statistical properties in order to maximize the statistical power of the analysis.
We then address the question of quantifying perfusion from the ASL images. We will discuss the tracer kinetics theory necessary for quantification, and we discuss strategies for quantifying perfusion from time-series data where the perfusion level is changing due to a known stimulation paradigm. In particular, we will discuss how the parameter estimates obtained in the same linear regression procedure used for signal detection can be used to obtain quantitative measures of perfusion both at baseline and perfusion increases due to neuronal activation.
Blood Oxygenation Level Dependent (BOLD) contrast fMRI is currently the dominant technique for functional imaging and has yielded a wealth of information about brain function. The observed BOLD contrast arises from a combination of several indirect phenomena that correlate with neuronal brain activation, such as increases in blood volume and perfusion and a decrease in the concentration of deoxy-hemoglobin, that causes the observed BOLD signal intensity to increase in the active area. However, this signal increase is a non-linear function of many physiological parameters as well as the scanner’s own characteristics (Boynton, Engel et al. 1996; Buxton and Frank 1997; Buxton, Wong et al. 1998; Vazquez and Noll 1998). As a consequence, BOLD imaging results are typically reported as unitless statistical significance maps without a clear, quantitative, physiological interpretation.
One issue plaguing the BOLD effect technique is that, since the BOLD effect is based on sensitivity to local changes in magnetic susceptibility, artifacts due to susceptibility gradients are also greatly exacerbated. These artifacts are especially problematic in areas of the brain that lie near air spaces, such as the roof of the mouth, nose and ear canals, as well as the sinuses (Bandettini, Wong et al. 1992; Kwong, Belliveau et al. 1992).
The structure of the drift noise within a session has been shown to be autoregressive (Lund, Madsen et al. 2006) and difficult to remove or model. Furthermore, the height and shape of the BOLD response depend on the baseline perfusion and metabolic levels, and thus effects of interest can be confounded by the conditions of the experimental resting state (Cohen, Ugurbil et al. 2002; Mulderink, Gitelman et al. 2002). Thus, noise properties and drift of the BOLD signal make studies with long activation periods nearly impossible, as the effects of interest are confounded with the slow scanner drifts (Smith, Lewis et al. 1999). The same reasons prevent BOLD FMRI studies from answering questions about baseline conditions. For example, what is the effect of a given drug, therapy, or training regimen on the baseline activity of a brain structure of interest? How do the neural substrates of a specific cognitive function change with age?
Hence, there is a clear need for development of alternative and/or complementary
This is where perfusion comes in. Perfusion is a readily quantifiable physiological parameter, and is easier to relate to neuronal metabolism than the BOLD response. Furthermore, animal studies conducted at high field, and high spatial resolution have indicated that neuronal activity produces perfusion (Cerebral Blood Flow - CBF) changes that are more localized to the parenchyma than the BOLD effect, consistent with the notion that the BOLD effect is more weighted toward draining veins and away from the active tissue (Duong, Yacoub et al. 2002; Pfeuffer, Adriany et al. 2002; Nencka and Rowe 2007; Olafsson, Noll et al. 2008). Thus, a fast, repeatable technique to measure cerebral perfusion
We note that recent blood volume imaging techniques, such as VASO (Lu, Law et al. 2005) and AVIS (Vazquez, Lee et al. 2006), hold promise for quantitative FMRI, but they are severely hampered in terms of signal to noise ration (SNR), temporal resolution, and multi-slice imaging capability in their present state. The corresponding models for quantification require many assumptions and/or multiple measurements per time point. (Gu, Lu et al. 2006; Changwei, Kai-Hsiang et al. 2008; Jin and Kim 2008 ; Christopher, Ronald et al. 2009). Other methods that indirectly measure the rate of oxygen consumption by the brain are also available, but they require ASL data and calibration studies involving hypercapnia experiments (Davis, Kwong et al. 1998; Hoge, Atkinson et al. 1999). Thus, at this stage, they are not practical for dynamic quantitative functional imaging and will not be the focus of this chapter.
Blood flow through any organ has been used as an important measure of its health and functionality for a long time (Kety and Schmidt 1945; Lassen and Perl 1979). As such, many techniques have been developed to measure blood flow based on tracer injections. The central idea behind these is always the same: some substance that can be detected easily (i.e. - radioactivity or fluorescence) gets injected somewhere upstream of the organ of interest, either an artery feeding of the tissue, a vein, or directly into the left ventricle of the heart. Then the concentration of the tracer is measured with the appropriate detector as it travels through the tissue of interest. Perfusion can then be calculated from the uptake curve of the tracer in the tissue.
With the advent of new imaging techniques, the detection process was incorporated into the imaging process, as in autoradiography, PET, or SPECT scanners. These imaging modalities use radioactive tracers to generate the raw signals from which the images are reconstructed. Hence, it was a straightforward leap to use the timing information in order to quantify perfusion through the existing tracer kinetic models.
In the case of MRI, perfusion can also be obtained by imaging the passage of a tracer through the tissue. Instead of being radioactive, though, MRI tracers are molecules that change the relaxation rates of blood and tissue – typically gadolinium compounds, such as Gd-DOTA or Gd-DTPA. MRI has the added benefit that it allows for fairly rapid imaging (1-2 seconds for a whole brain volume) so one can sample the wash-in and wash-out of the tracer through the tissue. One can also simultaneously measure the amount of dispersion of the bolus that occurs during the transit from the injection site to the region of interest. Knowledge of this dispersion provides a more accurate estimate of the tissue’s perfusion rate. Unfortunately, one can only do one contrast injection at a time, as the tracer takes many hours to clear the body, so it is not a very useful technique for FMRI.
Thus, our focus is on arterial spin labeling (ASL) techniques. The principle behind ASL imaging is conceptually simple. As with other techniques, the measurement consists of measuring the concentration of a tracer as it passes through a tissue of interest. We will discuss the details in more depth later in this chapter, but for now, note that ASL deviates from the usual tracer strategy in two ways. First and foremost, no tracer is injected. Instead, the tracer is “created” inside the arteries feeding the organ by radio frequency (RF) electromagnetic pulses. These pulses are generated by standard MRI coils and invert the magnetization state of the water protons in the blood. After allowing a short period of time for inflow of the tracer into the tissue of interest, an image is collected. Just like in previous techniques, perfusion can be quantified by measuring the signal change due to the tracer – typically by subtracting the image with the tracer from a control image without the tracer. The second important difference is that the tracer used in ASL decays very quickly, since the longitudinal relaxation rate of arterial blood is in the order of 1600 ms. As a result, there is a significant penalty in the signal-to-noise ratio (SNR) but, on the bright side, the experiment can be repeated immediately and as many times as desired. One can think of ASL as a tracer (also referred to as “label” or “tag”) that is completely non-toxic, rapidly decaying and it can be selectively injected into any artery (Detre, Leigh et al. 1992; Williams, Detre et al. 1992).
Although ASL is still limited by SNR and temporal resolution relative to BOLD imaging, some features of ASL make it a preferable option in many situations. The most important feature of ASL is the ability to quantify perfusion from the signal difference. This poses a significant advantage over BOLD contrast in that it allows the study of absolute baseline activity (i.e. – resting state) without comparison to an active state. This type of measurement is particularly desirable for studies concerned with pathological states, and/or testing the effects and specificity of different drugs. This ability to quantify perfusion is extremely useful in longitudinal studies over scanning sessions, whether involving activation or limited to the resting state. For example, we have used quantitative ASL to study the long-term effects of working memory training on brain activity, both at rest and during the performance of working memory tasks (Jaeggi, Studer et al. 2009).
Another interesting feature is that although the residual variance of an ASL time course within a single run is higher than with BOLD, it has been shown that the variance of non-quantitative ASL studies (i.e., relative CBF) across scanning sessions is dramatically less than that of BOLD, allowing studies that span days or even months (Aguirre, Detre et al. 2002; Wang, Aguirre et al. 2003; Wang, Aguirre et al. 2003). Furthermore, the variance across subjects is also lower in ASL than in BOLD, thus requiring fewer subjects to be scanned per experiment (Tjandra, Brooks et al. 2005).
Arterial spin labeling techniques allow greater flexibility in the image acquisition, especially when examining slow activation paradigms. Hence, they do not require T2* weighting and one can use standard Spin Echo imaging to collect the image data, dramatically reducing susceptibility artifacts. Functional imaging studies of the inferior brain structures, such as the basal ganglia, and the orbito-frontal cortex would benefit greatly from such techniques.
Due to above mentioned properties of functional arterial spin labeling (FASL), it is particularly useful for the study of gradual changes in neural activity, longitudinal and multi-site studies. (N.B. in this chapter, we use the term FASL to indicate ASL time series used for FMRI purposes, but there is no technical difference between FASL and ASL). FASL has been used in several basic and cognitive neuroscience applications. It has been used in many studies to investigate visual, motor and language functions at 1.5T and 3T (Aguirre, Detre et al. 2002; Wang, Aguirre et al. 2003; Kemeny, Ye et al. 2005; Tjandra, Brooks et al. 2005; Leontiev and Buxton 2007; Ances, Leontiev et al. 2008; Chen, Wieckowska et al. 2008; Raoult, Petr et al. 2011) and has been compared to BOLD fMRI (Aguirre, Detre et al. 2002; Chen, Wieckowska et al. 2008; Raoult, Petr et al. 2011) (Kemeny, Ye et al. 2005) (Tjandra, Brooks et al. 2005) (Hermes, Hagemann et al. 2007) indicating that the intra-individual reproducibility of FASL in terms of the area of activation and activation quantification is comparable to that of BOLD fMRI. FASL however, detects smaller activation volumes than BOLD fMRI but the areas had a high degree of co-localization between subjects. FASL also shows higher specificity compared to BOLD fMRI while maintaining high sensitivity in activation detection in the activated area (Raoult, Petr et al. 2011).
Due to the drift in the BOLD signal, study of slow changes in neural activity using BOLD is quit challenging. FASL is a suitable tool for these studies as well. Motor learning is an example of the gradual changes in the neural activity over time, which cannot be easily assessed using BOLD fMRI. In (Olson, Rao et al. 2006) Olson et al. used FASL to study continuous, gradual changes in neural activity during motor learning. Subjects were required to use four fingers to press keys as quickly and as accurately as possible in response to the presentation of visual cues. Olson et al. reported that subjects performing this task demonstrated a reduction of neural activity in response to motor execution after training as compared to the start of training. Because the change in performance is slow and continuous, it is assumed for this study that the neural correlate of performance improvement during training is a gradual reduction in regional activity. The authors used FASL to detect these neural changes and reported reliable correlations between performance improvements and decreases in blood flow in premotor cortex and the inferior parietal lobe. This study suggests that FASL is a suitable tool for the study of the slow changes in the neural activity resulting from different cognitive tasks.
FASL has also been used in higher level cognitive activation studies. There is an increasing body of evidence pointing to a neurobiological basis of personality. Characterizing the biological bases of personality dimensions is important to explaining individual differences in brain activity associated with more dynamic changes in experience (e.g., a psychotic episode) and cognition (e.g., activation paradigms in functional MRI) (O\'Gorman, Kumari et al. 2006). In (O\'Gorman, Kumari et al. 2006) O’ Gorman et al. explored the biological bases of the major dimensions of models of personality using FASL. In this study, the correlation between personality factors with regional brain function was successfully investigated using FASL. The authors reported associations between perfusion in brain regions (including basal ganglia, thalamus, inferior frontal gyrus, cerebellum and cuneus) and different personality dimensions. These results suggest that variations in perfusion in certain brain regions correlated with variations in personality dimensions may reflect variations in brain function (O\'Gorman, Kumari et al. 2006).
FASL provides reliable quantification of absolute cerebral blood flow (CBF) along with excellent reproducibility over long time periods, making ASL a sensitive technique for reliable visualization of brain function during the resting state as well as during task performance. This property allowed Rao et al. (Rao, Gillihan et al. 2007) to employ ASL to investigate the effect of genetic variation of the human serotonin transporter gene on resting brain function of healthy individuals. They studied the alteration of resting brain function in emotion-related regions (including the amygdala and ventromedial prefrontal cortex) in healthy individuals caused by the 5-HTTLPR genotype. Valid and reliable inferences of resting activity for applications such as this study could not be derived from BOLD fMRI because it only measures
Also, using ASL, authors (Rao, Gillihan et al. 2007) demonstrated an association of 5-HTTLPR genotype with resting amygdala and ventromedial prefrontal cortex function in the healthy human brain. Such alterations suggest a broad role of the 5-HTT gene in brain function that may be associated with the genetic susceptibility for mood disorders such as depression.
Neuronal modulations found using functional ASL (FASL), such as those reported in (O\'Gorman, Kumari et al. 2006) and (Rao, Gillihan et al. 2007), may also be important in interpretation of the different manifestations of BOLD response (which typically rely on the modulation of cerebral hemodynamics for detection of task-induced activation) to a particular stimuli in different groups.
The presence of low frequency signal drift in the BOLD signal impedes using a long task block. This problem makes it difficult to investigate slow processes such as learning, emotion, sustained attention and behavioral states in healthy and clinical populations. Because of its efficacy in longitudinal designs and low frequency paradigms, FASL is a good candidate for these studies. Kim et al. (Kim, Whyte et al. 2006) successfully utilized FASL to study an uninterrupted 6-min continuous performance of the two high-level cognitive tasks (visual sustained attention and verbal working memory) which prior to FASL was only feasible for suboptimal short data acquisition blocks (40-90s). Understanding the neural correlates of these cognition function is very important because sustained attention is also implicated in various clinical disorders including attention deficit hyperactivity disorder, traumatic brain injury, and Alzheimer’s disease (Kim, Whyte et al. 2006).
In another study, Rao et al. (Rao, Wang et al. 2007) used FASL and BOLD to measure brain activation patterns associated with natural vision while subjects were freely viewing a cartoon movie. Rao et al. reported that cerebral blood flow increases in multiple visual pathway areas and frontal areas, and decreases in ventromedial frontal cortex and superior temporal cortex during movie viewing compared to resting states. Concurrent BOLD contrast revealed similar but weaker activation and deactivation patterns. This study demonstrates the feasibility of using FASL for imaging both sustained and dynamic effects in neural activation during natural and ecologically valid situations (Rao, Wang et al. 2007).
With excellent reproducibility over long-term time periods, FASL is ideal for imaging a sustained behavioral state, such as stress. Wang et al (Wang, Rao et al. 2005) used FASL technique to measure perfusion changes associated with mild to moderate stress. The authors demonstrated that a positive correlation exists between the change in perfusion induced by the stress task and subjective stress rating in the ventral right prefrontal cortex and left insula/putamen area. This study provides neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral right prefrontal cortex plays a key role in the central stress response.
Pharmacological functional (phMRI) studies are making a significant contribution to our understanding of drug effects on brain systems. Since noise spectrum of arterial spin labeling signal contains relatively less power at low frequencies, it is particularly useful for phMRI studies in which a change in brain activity is expected over the course of minutes, hours, or days to asses low frequency between- and within-session drug-induced changes (Wise and Tracey 2006) (16). As an example, Gollub et al. (Gollub, Breiter et al. 1998) used FASL to measure neuronal activation during visual stimulation before and after cocaine and saline infusions. The authors used FASL to determine whether acute intravenous cocaine use would change global cerebral blood flow and demonstrated that cortical gray matter cerebral blood flow was unchanged after saline infusion but decreased after cocaine infusion.
These studies demonstrate that FASL can be successfully utilized for the investigation of the cerebral blood flow changes associated with development of human brain, personality, high level cognitive operations, the behavioral states such as attention, natural vision, psychological stress and assessing low frequency drug effects. Increased applications of FASL to the investigation of cognitively impaired populations are expected to follow.
Now that we’ve seen the bigger picture, let’s examine the details of carrying out the acquisition and analysis of ASL data. Any ASL sequence is basically made up of a labeling period, during which the inversion label is created, some delay time to allow the label to reach the tissue of interest, and then an imaging pulse sequence where the image is acquired. There may be additional pulses to shape the input function before the acquisition part, and there may be multiple coils involved in some variants, but in general, the structure remains the same. Thus, it is convenient to discuss labeling and imaging schemes independently, as they can be combined in multiple ways.
There are a number of MRI pulse sequence strategies that can be used to obtain ASL perfusion images. The first class of arterial spin labeling pulse sequences is “Continuous arterial spin labeling” (CASL). In the original continuous ASL formulation, low-power, long pulses (in the order of a second or two) are applied at a plane inferior to the brain. Typically this is below the circle of Willis where the arterial supply to the brain is perpendicular to the labeling plane. As usual, in order to achieve slice selection, the long RF pulses are applied at some frequency offset and in the presence of a slice-selective gradient. These pulses have very different effects on the stationary and the moving spins. While the stationary spins at the labeling plane become saturated and lose phase coherence (essentially destroying their magnetization), the spins that are moving through the labeling plane experience a gradual change of their resonant frequency (recall that the resonant frequency is directly proportional to the magnetic field). The difference between the resonance frequency of the protons and the transmission frequency changes from positive through negative as the spins move through the inversion plane and is zero at the center of it.
The Adiabatic Inversion Process - 1A – In the rotating frame of reference the magnetic fields due to the scanner’s main magnetic field (B0), the RF coil’s field (B1), the slice select gradient (Bz) and the opposing magnetization field add up to an “effective magnetic field” (Beff). The arterial water’s magnetization vector precesses around Beff. 1B- As the spins move, the contribution from the slice select changes from positive to negative. As this happens, the magnetization vector continues to precess around the effective field, resulting in the inversion of the magnetization vector.
Because of this effective “frequency sweep”, the net magnetic field generated by the combination of the main magnetic field (B0), the applied RF field (B1eff) and the magnetic field resulting from the spin’s precession itself (ω/γ) experiences a rotation from pointing along the direction of the main magnetic field to pointing against it (see figure 1). If this rotation is slow relative to the precession frequency, the effect of the constant RF pulse on these moving spins is to create a “spin-locked” state. This means that the flowing proton’s magnetization processes around the effective magnetic field and follows it as it rotated from pointing up to pointing down.
This image shows the magnitude (left) and phase (right) of an image of water flowing through a tube while experiencing adiabatic inversion. The banding pattern reflects periods where the pulses were turned on and off. Figure reproduced from (
The longitudinal magnetization of the arterial water experiences adiabatic inversion at the labeling plane, then slowly decays back to its relaxed state. This phenomenon depends on a number of factors, such as the velocity of the spins, and the size of the slice select gradient and the RF fields used in the pulse sequence.
As the protons move through the inversion plane, the “effective” field (Beff) to which they are locked rotates from pointing along the direction of the main magnetic field to pointing against it. The end result is that when the flowing spins leave the plane, their magnetization is inverted (figure 2 shows a practical demonstration of this phenomenon). This phenomenon is referred to as “flow driven adiabatic inversion” and is the basis for continuous arterial spin labeling techniques. It is important to note that immediately after inversion, the spins experience T1 relaxation and the label effectively decays in a matter of a couple of seconds, as depicted in figure 3.
The main caveat of continuous ASL is that the long inversion pulses applied at the neck for labeling purposes also produce a significant amount of magnetization transfer (MT) (Detre, Leigh et al. 1992; Williams, Detre et al. 1992) in the spins at the tissue of interest. Briefly, magnetization transfer consists of signal loss during acquisition when it is preceded by RF pulses, even if those are not applied on resonance. As a result of MT, subtracting a tagged image from a control image would indicate not only the perfusion effects but also the degree of magnetization transfer, which is of no interest to the investigator.
This would constitute a major obstacle, but a number of solutions have been devised. The original solution to this problem was to apply an MT preparation pulse with identical properties to those of the labeling pulse before collecting the control image. This preparation pulse was identical to labeling pulse but with a reversed slice select gradient such that the inversion pulse would be centered above the head. In that case, there is only magnetization transfer but no arterial spin labeling. While this works in principle, it is difficult to collect more than one slice at a time while appropriately compensated magnetization transfer symmetrically for all the slices. Another solution was to simply use a separate RF coil for labeling whose field pattern will not reach the brain (Zhang, Silva et al. 1995) (Talagala, Ye et al. 2004) (Hernandez-Garcia, Lee et al. 2004). While this approach works quite well and relatively simple to implement in principle, in practice it requires additional hardware that can be synchronized with the main MRI scanner’s pulse sequence. It is also generally uncomfortable for the subjects to wear the additional neck coil and it can pose some logistical pulses.
Labeling Schemes - Schematics indicating the relative locations of the inversion types of popular ASL schemes
Several other strategies to overcome the magnetization transfer problem have been tried to overcome this problem, such as amplitude modulated CASL (Wang, Zhang et al. 2005), but the most promising one is to break up the continuous labeling pulse into a train of pulses applied in rapid succession to achieve the same adiabatic inversion effect. In the control case, however, the same pulse train is applied but the phase of every other pulse is shifted by 180 degrees, such that every other pulse “un-does” the flip of the previous pulse. The end result is that both the control and the labeled image receive the same amount of magnetization transfer, the flowing blood’s magnetization gets inverted prior to collecting the labeled image but it remains un-inverted during the collection of the control image. This technique, known as pseudo-continuous arterial spin labeling (PCASL) has greatly facilitated the use of continuous ASL because it addresses the magnetization transfer issue and is relatively easy to implement (Garcia, de Bazelaire et al. 2005; Wang, Zhang et al. 2005; Fernandez-Seara, Wang et al. 2007; Wu, Fernandez-Seara et al. 2007). The caveat is that PCASL is sensitive to magnetic field inhomogeneity (off-resonance) at the inversion plane. This effect can severely affect the efficiency of the labeling process, crippling the technique, and is exacerbated at higher magnetic fields. Fortunately, the loss of inversion efficiency can be recovered by adjusting the phase of the inversion pulses and introducing compensation gradients (Jahanian, Noll et al. 2011).
A second class of arterial spin labeling pulse sequences is “pulsed ASL” (PASL). This strategy is to label a slab containing the arterial supply to the organ of interest with a more standard, short RF inversion pulse and then allow the inverted spins to flow from that slab into the tissue of interest. The difference in signal intensity between the two images is provided by the un-inverted spins that flowed into the imaging slices during the inversion delay. This signal intensity difference can then be readily quantified and translated into perfusion images. This process mimics the injection of a bolus of tracer, rather than a constant infusion, as in the case of continuous ASL.
The simplest form of pulsed ASL is the EPISTAR technique (Edelman and Chen 1998), in which the inversion pulse (typically a hyperbolic secant) applied just below the region of interest followed by a delay to allow the inverted blood to flow into the tissue before collecting the image. Hyperbolic secant pulses are relatively short adiabatic pulses and exhibit no significant magnetization transfer effects, so there is no need for pre-compensation pulses before collecting the reference image. In the FAIR technique (the original pulsed ASL technique) the control image is preceded by an inversion pulse applied over the entire brain, followed by a short delay (Kim 1995; Kim and Tsekos 1997). The tagged image is collected following a similar hyperbolic secant inversion pulse, except that it is applied only over the slices of interest, followed again by the same short delay to allow for inflow of blood into the imaging region. There are many variants on this theme, but perhaps the most popular pulsed ASL technique is QUIPSS which uses additional pulses to saturate the trailing edges of the label, thus producing a clearly defined bolus (Wong, Buxton et al. 1997; Wong, Buxton et al. 1998).
A - The uptake and release of the inversion label is relatively short, so there is only a limited amount of time to collect the images without a significant signal change. While including long post inversion delays reduce the sensitivity to the difference in slice timing, there is still only a limited amount of time to collect the images. If the process takes too long, different slices will have different SNR and sensitivity to perfusion changes from activation. B – This image, originally consisting of 24 slices, shows a noticeable change in SNR between the top and bottom slices. Here we only show slices 6, 9, 12, 15.
Whereas the pulsed approach only requires 1-2 seconds for the label to reach its maximum concentration in the tissue the continuous approach requires approximately 3 seconds before a steady state concentration of tag is reached. However, because of the longer inversion times of the continuous labeling scheme, the amount of tag to be detected is much larger and thus, the SNR of the method is also larger (Buxton, Frank et al. 1998; Wong, Buxton et al. 1998). Thus, the tradeoff between them is primarily one of speed versus SNR.
Image collection following the spin labeling process can be done in a number of ways, but it is important to take into account the goals of the specific application. As usual in MRI, there is a trade-off between acquisition speed, SNR and resolution.
In clinical and resting state applications, typical ASL scans use more standard image acquisition pulse sequences since the speed consideration is relaxed. Fast spin-echo acquisitions are a popular method because of their insensitivity to off-resonance artifacts and relatively high SNR and speed. For example (Fernandez-Seara, Wang et al. 2005; Fernandez-Seara, Wang et al. 2007) used a 3D GRASE acquisition sequence in conjunction with continuous ASL in order to boost the SNR of the acquired images in a functional imaging study of the medial temporal lobe.
Functional MRI requires image acquisition speed in order to capture the hemodynamic changes that take place during mental activity adequately. Fast imaging techniques that take advantage of echo-planar and echo-volumar acquisition and parallel imaging allow us to image the whole brain in a matter of a second or two with high spatial resolution. Consider the figure below, which indicates the concentration of tag in the tissue as it is taken up. Unfortunately, the rates at which the flows in and out of the tissue while decaying is such that we are constrained to roughly a half a second to acquire the whole volume.
If one slice is collected at the beginning of the uptake and another toward the end, the perfusion contrast will be vastly different. While one can account for it by including this delay in the quantification scheme, the SNR of the slices can still be significantly different.
Depending on the transit time of the blood from the labeling plane to the imaging slab, the uptake of the label can induce a mild distortion along the slab-select location (or kz). Interestingly, this effect can be characterized by a point spread function that acts as either a high-pass or low-pass filter along the kz axis.
This acquisition time window means that there is a significant constraint in the number of slices that one can get after a single labeling period. For instance, using a fast spiral acquisition typically allows for acquisition of a single slice in at least 25 ms. At this rate one can acquire 20 slices in half a second, which is adequate but requires thick slices of about 6 mm thickness, assuming a 12 cm brain.
In this regard, there is recent interest in the development of 3D echo-planar and echo-volumar acquisition schemes. 3D imaging schemes can ensure the same acquisition delay for the entire imaging volume relative to the labeling period. The SNR of 3D imaging can be greater than 2D multislice because a larger volume contributes to each echo. For example, Gunther et al (Gunther, Oshio et al. 2005) proposed a multi-echo 3D acquisition that allows collection of a k-space plane at each echo. Unfortunately, this acquisition scheme imposes a T2 weighting on each plane of k-space depending on the acquisition order. The result is typically a severe blur of the volume along the z-direction. One can think of this as a blurring filter applied along the slice direction, and the shape of that filter’s point spread function (PSF) is that of the T2 decay.
Another 3D alternative is to use multi-shot readouts as in (Talagala, Ye et al. 2004) but these typically require the use of low flip angles to preserve the magnetization throughout all the kz encoding steps. Low flip angles however result in reduction of the available signal. Gai et al (Gai, Talagala et al. 2011) have experimented with an increasing flip-angle schedule starting at 10 degrees that produces a constant signal along kz according to the Ernst formula. This approach produces a flat PSF, but at the cost of SNR. In recent investigation, we have found that a flip angle schedule that starts at 15 degrees and increases with a simple third order polynomial is a good compromise between SNR and blurring along the slice direction. The figure below illustrates this issue by calculating the PSF along the z-direction of different order polynomial flip angle schedules.
Real Time imaging with ASL requires coordination of the scanner’s acquisition with an external computer that “catches” the data as it is generated by the scanner and carries out the analysis within the interval between two images. (Figure from (
This figure shows an updated view of the real time FASL acquisition during a visuo-motor stimulation paradigm. As one can see, the activation maps evolve over time and become better defined as more data become available. (Figure from (
Real-time functional magnetic resonance imaging (rtfMRI) is an exciting extension to conventional fMRI techniques that enables the user to analyze fMRI data as it is being collected. The requisite is that the reconstruction and analysis must be carried out before acquisition of the next image in the time series (about two seconds for standard FMRI). Thus, in rtfMRI the results are immediately available as the subject is being scanned, and can be used to reveal and/or guide the subject’s cognitive processes. Thus, by collecting the data in real time, the investigator can fine tune the design’s parameters to suit each specific subject (deCharms 2008). One can also design interactive paradigms based on the subject’s dynamic functional activity (fMRI biofeedback or brain-computer interface (Yoo, Fairneny et al. 2004) ). Furthermore, it allows the investigator to determine the subject’s compliance during the experiment. Examples of real time FMRI also include studies of the modulation of motor-area cortical activation and emotional processing by the subjects themselves (Yoo and Jolesz 2002; Posse, Fitzgerald et al. 2003; deCharms, Christoff et al. 2004; Phan, Fitzgerald et al. 2004; Caria, Veit et al. 2007).
A number of processing strategies have been developed in order to carry out real time FMRI analysis, such as cumulative correlation (Cox, Jesmanowicz et al. 1995), sliding-window correlations with reference vector optimization (Gembris, Taylor et al. 2000), online general linear model [GLM] analysis (Nakai, Bagarinao et al. 2006). There are also a number of combined methods to collect behavioral, physiological and MRI data while performing near real-time statistical analysis (Voyvodic 1999). The recent advances in computational speed have made it relatively easy to implement any of these analysis methods.
In the original implementation of continuous ASL, quantification was done by writing the well-known Bloch equations that describe the longitudinal magnetization with one modification: the authors included terms to account for the inflow of arterial blood and outflow of venous blood. (Recall that the Bloch equations describe the behavior of a magnetization vector in the presence of magnetic fields such as the ones present in an MRI pulse sequence Please see textbooks like Haacke’s (Haacke 1999) or Bernstein (Bernstein, King et al. 2004) for an introduction). Like this
Here, Mtissue(t) would be the longitudinal magnetization of the tissue protons. Mart(t) is the incoming arterial magnetization. In the control image it would be positive, but in the labeled image, it would be negative. Note that this must be adjusted to reflect the efficiency of the inversion efficiency (α) and its decay during transit time from the labeling plane to the tissue (Δ). Hence,
T1art and T1 are the longitudinal relaxation rates of the arterial blood and the tissue. The parameter λ is blood brain partition coefficient and it relates the concentrations of label in blood and tissue at equilibrium. The key parameter is f, the perfusion rate that describes the rate at which water moves in and out of the tissue. By writing the steady state solutions for this equation in the case of control and tagged images, one can solve for f.
An equivalent but perhaps more generalizable approach was presented by Buxton et al (Buxton, Frank et al. 1998) in which they treated the ASL experiment as a standard tracer kinetics experiment. In this formulation, the concentration of “label” in the tissue, Ctissue is given by the subtraction of control and tagged images, and can be modeled as a linear system. In that case, the observed signal difference between control and tagged images is the convolution of an input function with a system function.
In this case, the input function is a fraction of the arterial blood (determined by the perfusion rate, f). The system function is a combination of the tissue “retention” function, e-ft, which describes how the label clears away with an exponential decay, and also the T1 decay function of the tag in the tissue, e-t/T1.
In subsequent work the pulse sequence’s timing parameters, including the TR, duration of the tagging period (ω), post inversion delay (τ) and transit time (δ) were taken into account to yield the following equation relating the subtraction image (ΔM) to the perfusion rate. If the post inversion delay is longer than the transit time, the perfusion rate can be calculated by
Note that R1 is simply the reciprocal of the T1 relaxation rate (or 1/T1) used for convenience. In keeping with the notation of the authors, R1a refers to the relaxation of arterial blood and R1app refers to the apparent relaxation rate of the tissue.
The regressors in a design matrix for a simple functional ASL experiment (only two conditions) include both the usual baseline and BOLD effects (regressors 0 and 2). In order to capture the variance due to resting and activation blood flow, we must include regressor 1 and 3, which are modulated by the presence of the arterial label. Reproduced from (
On a practical note, R1a and R1app may vary from subject to subject when dealing with clinical populations or across age groups, so in those cases, it is important to make those measurements separately and use the measured values in the calculation. In the healthy subjects typically used for FMRI research, this is not so much of a factor and literature values are typically employed for the relaxation rates.
While the above framework is useful for situations where perfusion is constant, it’s more challenging to quantify dynamic perfusion changes as in the case of FMRI experiments. The very slow sampling rate of ASL makes it difficult to get perfusion values during the transitions between active and resting states, so investigators are often forced to settle for collecting only a few perfusion measurements obtained at the baseline and a few measurements at the plateau of the activation, and none from the transition. Unfortunately, this reduces the number of samples available for quantification, which can be fatal in a low SNR technique like ASL. Furthermore, it precludes event-related fMRI, where there is not much of a plateau of activation.
In order to overcome this problem, one can formulate a general linear model (GLM) that specifies BOLD and ASL effects. One can then estimate the coefficients of this model and translate them into meaningful, quantitative measures of perfusion by using standard tracer kinetic models. This concept is based on the simple realization that the difference images used in ASL quantitative models have a direct relationship to the coefficients (or amplitudes) of the regressors or the general linear model. Since estimation of a general linear model is the standard way of analyzing FMRI data by the bulk of the functional imaging community, this approach constitutes a natural next step in the analysis.
For example, let us consider an ASL FMRI experiment with a baseline condition and a single activation condition with tag and control ASL images acquired in each. One such experiment can be characterized by a linear model, as previously described (Mumford, Hernandez-Garcia et al. 2006). Let yt be the time course (a vector) of image intensity at a particular voxel obtained from an ASL experiment. In Fig. 9 are the regressors of a simple ASL design matrix representing the linear model
for time
Quantification of perfusion effects in continuous ASL data without background suppression can be done directly by adapting the same kinetic model by Wang et al (Wang, Alsop et al. 2002) that we discussed in the previous section. The ΔM parameters are replaced with the GLM parameter estimates as follows
where
As previously noted (Wang, Alsop et al. 2002), when long post-inversion delays (
But, what about the error on those parameter estimates? Both Ordinary and Generalized Least Squares estimation yield estimates of the linear model’s parameters as well as their variances. Thus, the same relationship can be used to derive the standard deviation of the estimates in perfusion units. In order to calculate the variance of the estimated
Propagation of error can be calculated in a straightforward way from the partial derivatives of the model relative to the coefficient parameters of interest (Bevington and Robinson 2003). We refer the readers to the article by Hernandez-Garcia et al (Hernandez-Garcia, Jahanian et al. 2010) for the derivation.
We have seen that instead of calculating a perfusion time series one image at a time, we can make a linear model of what that perfusion time series should be, and then estimate the corresponding coefficients and their variance. If the model is accurate, this yields much better estimates of the perfusion time series. To illustrate this point, figure 10 shows the perfusion time courses at a given voxel obtained from the traditional method versus the GLM method. Since the residual variance estimates are reduced, the activation maps and residual variances are greatly improved, as illustrated in figure 11.
The green line shows the individual perfusion time series calculated at each individual time point. The propagation of errors through the equation makes the result noisy. However, by using all the data at once to estimate the coefficients of a linear model, one can also obtain such a time course if the activation paradigm is known. Reproduced from (
By translating the coefficients of a GLM into perfusion estimates, the residual variance is greatly reduced in comparison to calculating the perfusion time series first and then estimating a general linear model. The result is more accurate activation maps. As with all linear models, one must know the activation paradigm a priori. Reproduced from (
As we have described earlier, the perfusion information in the ASL images is contained in the subtraction of tagged images from control images, which are previously acquired in an alternating order. While differencing the image time course reduces the degree of autocorrelation in ASL data (Aguirre, Detre et al. 2002 ; Liu and Wong 2005) and is widely used, this topic deserves some attention, as there are multiple options available with their corresponding side effects.
In its simplest form, subtraction is done by “pairwise differencing” in which every two images is used to obtain a single perfusion image. As a result, the raw data are no longer auto-correlated, but they are also sub-sampled severely and, consequently, aliasing can occur. By this sub-sampling one also gives up almost half of the degrees of freedom in the analysis, so it translates into a major loss of power. There are other ways to difference the data, however. For example, one can make a “running subtraction” in which one would subtract from every image the previous one, but reverse the sign of the subtraction at every image. Similarly, one would subtract from every control image the average of the two neighboring tagged images (i.e., “surround subtraction”). In this case, only two degrees of freedom are lost, and the data are still whitened. The caveat is that all these differencing processes have a smoothing effect on the time course so fast changes in perfusion are dampened, and we may not be able to observe them. The “sinc subtraction” scheme consists of interpolating the value of the control images at the time of acquisition of the tagged images and, likewise, interpolating the tagged images to obtain their value at the time of the control images. The two up-sampled time courses are then subtracted from each other.
Examples of differencing matrices that can be used for functional ASL.Whether we use an ordinary least squares (OLS) approach on differenced data or a generalized least squares approach (GLS) on raw data can make a significant difference in the statistical power of the analysis. It’s not important for blocked designs, but in the case of event related designs, whose frequency content is relatively higher, it makes a significant difference, whether the inter stimulus interval (ISI) is randomized or not. Reproduced from (
The effect of the differencing process on the frequency content of the ASL signal. Reproduced from (
From a signal processing point of view it is useful to note that the differencing schemes can be thought of as multiplying the time course by a “differencing matrix”. Figure 12 shows some of the differencing matrices that are commonly used. This differencing process, in addition to isolating the perfusion weighting, also behaves like a filter applied to the data and frequency responses can be computed accordingly. For example, figure 13 shows the filtering effect on the frequency content by several differencing “filters”.
Those frequency responses can be derived analytically for a given input y[n] whose discrete Fourier transform is given by
Note that pairwise subtraction and sinc subtraction do not have a straightforward linear response since they involve down-sampling the data. In both of those cases, the down-sampling process causes the top half of the frequency spectrum to alias into the bottom half before the filtering process. In terms of their frequency response, they are very similar except for the imperfections of the sinc kernel used in the implementation. In terms of detection and statistics, sinc subtraction preserves greater degrees of freedom than pairwise subtraction, which reduces the number of time points by half.
Frequency Responses of the differencing schemes
With that in mind, it is important to take the differencing matrix into account when constructing a general linear model for analysis. In the previous section we constructed a model that contained both BOLD effects and ASL effects (see figure 9). Let X represent the corresponding design matrix. We can then re-write the general linear model equation with an additional Differencing matrix, like this:
It is crucial to note that whatever we do to the data, we must also do to the model if that model is to be as accurate as possible. Hence we difference the data, we must also difference the model, including the noise term. If no differencing is applied, the matrix D can be the identity.
At this point, the objective is the same as in the standard GLM analysis: estimate the model’s coefficients (β) and determine whether they are statistically significant. Our choices are to pick a differencing matrix, D, and solve by ordinary least squares (OLS), or do nothing to the data (use D = I) and solve be generalized least squares (GLS).
As it turns out, this decision largely depends on the type of experimental paradigm and on the design matrix. Figure 14 shows a comparison between the statistical power obtained from analyzing ASL data with different amount of noise the two strategies: differencing and not differencing. In one case the data are analyzed with a Generalized Least Squares (GLS) model and not differenced. In the other case, the data are pairwise differenced and analyzed with the usual ordinary least squares (OLS).
Specifically, it shows the statistical power for no differencing with GLS and that of pairwise differencing with OLS for the 3 study designs over SNR values ranging between 0.25 and 2. The dotted lines on the random event related figure indicate ± 2 standard deviations of the average power over the 100 simulations. As expected, the power is similar between the two methods for the block design, but the “no differencing GLS” model is shown to have larger power for the event related study designs. The random event related design can have up to 14% (s.d. 0.7%) lower power when OLS is used compared to GLS. (Mumford, Hernandez-Garcia et al. 2006). An added benefit is that the GLS approach also enables us to estimate both BOLD and ASL effects simultaneously, which may be desirable in some analyses.
A final note is that the above quantification method using the GLM can be used whether the data are differenced and undifferenced, as long as the design matrix is constructed carefully to reflect the differencing scheme.
Whether we use an ordinary least squares (OLS) approach on differenced data or a generalized least squares approach (GLS) on raw data can make a significant difference in the statistical power of the analysis. It’s not important for blocked designs, but in the case of event related designs, whose frequency content is relatively higher, it makes a significant difference. Reproduced from (
So far, we have illustrated the utility of ASL in functional MRI, but we must reiterate that ASL is not a panacea, though. Arterial spin labeling techniques pose a number of challenges. These challenges must be overcome so that ASL techniques can take a more central role in the study of brain function.
ASL is challenged by low SNR, since less than 10% of the water in a given voxel is contributed by blood (Pawlik, Rackl et al. 1981; Weiss, Buchweitz et al. 1982) and the label decays quickly. This problem can be partially alleviated by continuous arterial spin labeling, which increases the amount of label that is introduced into the tissue. Gains in the SNR have also been made with the development of pulse sequences that employ background suppression pulses, as these dramatically reduce the noise contribution from stationary tissue (Garcia, Duhamel et al. 2005). However, these background suppression pulses interfere with the ability to quantify perfusion, so they limit the measurement to relative CBF measures (Shin, Liu et al. 2011).
Another major challenge to ASL techniques is low temporal resolution because ASL measurements take from 3 to 6 seconds depending on the amount of time spent labeling the arterial blood. Collecting multi-slice data can be challenging because the imaging RF pulses can interfere with the inversion label of the arterial water (Silva, Zhang et al. 1995). Lastly, all slices must be acquired within a short period of time in order to sample the label before it clears from the tissue of interest. As we have discussed earlier, functional MRI experiments often require the ability to scan the whole brain at a rapid rate in order to localize and characterize brief, subtle changes in cerebral activity (i.e., event related experiments). Collecting multi-slice ASL images in a rapid manner is challenging, given the SNR and clearance rate of the label. While one can collect images at a rate roughly equivalent to the transit time of the subject (roughly 1.5 seconds) the number of slices at this rate is limited to less than five at the present time (Hernandez-Garcia, Lee et al. 2004; Hernandez-Garcia, Lee et al. 2005).
In this chapter we have examined arterial spin labeling as technique for functional MRI in depth. As we have seen, there are some clear advantages to collecting ASL data for functional studies in some circumstances, but other times it may not be beneficial at all. ASL is really well suited for longitudinal studies and studies with long blocks of activation, but it may not be so well suited for event related experiments. ASL offers quantitative measures of perfusion at rest and activation. On a per subject basis, the technique’s limitations are low SNR and temporal resolution, but there are significant gains in terms of population variance and contrast between resting and active states.
Optical control of biological reactions is one of the most recently studied fields of research because light facilitates highly spatial and temporal manipulation. In particular, optogenetics, that is, the specific and noninvasive control of biological activities such as neural activities by light stimulus of photoreceptor proteins heterogeneously expressed in targeted neurons or other related cells, has a significant impact in the field of neuroscience [1, 2, 3, 4, 5, 6, 7, 8] and has attracted the interest of myriad researchers in the life sciences. Over the past 15 years since the first report on optogenetics in 2005 [1], the development of tools for this interesting technique has been rapidly progressing [9, 10, 11, 12, 13, 14]. Recently, various types of photosensitive proteins have been employed for optogenetics [15, 16, 17]. Nevertheless, retinal-based proteins found in microbes (referred to as microbial rhodopsins), which were first applied to optogenetics, are still overriding toolkits [18, 19].
Microbial rhodopsins (also termed type-I rhodopsins) are seven transmembrane α-helical proteins that bind to the retinal chromophore, similar to animal rhodopsins (also termed type-II rhodopsins) [20]. A distinctive property of animal rhodopsins is the difference in their chromophore configurations; retinals in microbial and animal rhodopsins adopt all-
Microbial rhodopsins are classified into two categories of ion carriers. One is a light-gated ion channel, and the other is a light-driven ion pump. The former group includes channelrhodopsins (ChRs) [8, 25, 26, 27] and anion channelrhodopsins (ACRs) [28, 29, 30], which are the principal tools for optogenetics. Upon illumination, ChRs become permeable to various monovalent or divalent cations, such as H+, K+, Na+, and Ca2+ [8, 25, 26, 27]. Therefore, in nerve cells expressing ChRs, the influx of Na+ induced by light activation of ChRs causes depolarization in these cells, leading to neural activation [1, 2, 3, 4, 5, 6, 7, 8, 25, 26, 27]. Conversely, light activation of ACRs, which act as anion-selective channels, can drive the hyperpolarization of ACR-expressing cells to suppress neural activity [28, 31]. The ion pump group includes light-driven outward H+- [32, 33], Na+- [34], and inward Cl−-pumps [35, 36, 37, 38]. As these proteins can generate negative membrane potential in their incorporated cells by illumination, they can be utilized as neural silencers similar to ACRs [39, 40]. Microbial rhodopsins, as ion channels or pumps, can lead to changes in membrane potential by absorption of a photon without going through complicated reactions. This simple light-activated machinery makes them more easily applicable to optogenetics, together with repeatable properties through their photocycle.
Among the three types of ion-pumping rhodopsins, proton-pumping rhodopsins have a distinct feature from the other two. Proton translocation across the cell membrane induced by light activation of these pigments is accompanied by a change in intracellular pH. Hence, these proteins have the potential for various applications, for example, photoinduced pH control in cells or all sorts of organelles, as well as their use as neural silencers. To date, genes encoding H+-pumping rhodopsins have been identified from the genomes of many microorganisms, irrespective of species [41], which enables us to gain the most plentiful genetic information from the database of the microbial rhodopsin family. Therefore, these types of rhodopsins may be applicable for exploring better candidates for optogenetics in various respects, such as the strength of neural inhibition, spectral properties (maximum absorption wavelength for activation), and kinetics.
Chow et al. screened efficient neuronal silencing rhodopsins and showed that the magnitude of photocurrents evoked by the activation of H+-pump-type rhodopsins was on average higher than those evoked by the activation of inward Cl−-pump halorhodopsins (HRs) [39]. Moreover, the rates of activation upon light irradiation and recovery from inactivation after light cessation tended to be faster, as observed for archaerhodopsin-3 from
Among all microbial rhodopsins, the first H+-pumping rhodopsin reported was bacteriorhodopsin (BR), which was discovered in
Following the discovery of BR, the second H+-pump identified was archaerhodopsin (aR). Two homologous proteins, archaerhodopsin-1 and -2 (aR-1 and aR-2), were simultaneously identified from
The history of microbial rhodopsin research has been confined to the archaebacterial world for about three decades since the first discovery of BR. However, since the 2000s, rapid technical advances in metagenomics have led to the discovery of unknown microbial H+-pumping rhodopsins from various eubacteria [58, 59]. A representative example is proteorhodopsin (PR) from marine bacteria [60, 61].
In 2000, PR was first identified in the genome of uncultivated marine γ-proteobacteria, which is a member of the SAR86 clade, from a sea sample collected from Monterey Bay in California [62]. Thus, the nomenclature of this protein, i.e., “proteo-,” originates from the name of the hosting bacterium. Sequencing of a bacterial artificial chromosome vector into which a fragmented DNA extracted from samples was cloned revealed the presence of a gene encoding rhodopsin-like protein (EBAC31A08) [62]. Furthermore, after transformation by this gene and successive induction of protein expression with exogenous retinal in
PR-related proteins were also discovered from non-marine bacteria present in various environments, such as freshwater [76], high mountains [77], hot springs [78], and permafrost [79]. For example, a PR-like protein identified from actinobacteria living in freshwater is called actinorhodopsin (ActR) because it is classified into a phylogenetically different clade from PR [76]. A halophilic eubacterium
In 1999, the presence of a gene encoding eukaryotic microbial rhodopsin (
Phylogenetic tree of microbial rhodopsins. RpActR represents ActR from actinobacterium Rhodoluna planktonica strain MWH-Dar1.
When the molecular mechanism of microbial H+-pumping rhodopsins is considered, the scenario of proton transportation in BR is often used as a prototype. Detailed descriptions of the H+-pumping mechanism of BR from various aspects can be found in excellent previously published reviews (refer to relevant refs. [32, 33, 43, 44, 45, 46, 47, 48]). We present only a brief outline here.
The photocycle of BR is initiated by photoisomerization of the retinal from all-
Amino-acid alignment of various microbial H+-pumping rhodopsins. Analysis was performed using a multiple sequence alignment program (CLUSTALW). The numbers shown in the top row represent the numbering of amino acid residues in BR. The dotted line represents the missing residues in the determined structure. The amino acid residues with maximum homological numbers at each position are marked with a black or gray background depending on their numbers: The monochrome tone becomes darker as the number of homological residues increases. Notes: cR-2, cR from Haloarcula sp. arg-2; cR-3, cR from Haloarcula vallismortis; dR-2, dR from Haloterrigena turkmenica JCM9743; dR-3, dR from Haloterrigena thermotolerans; GPR, γ-proteobacterium (EBAC31A08) GPR; BPR, γ-proteobacterium (Hot75m4) BPR; ActR, RpActR.
A proton releasing complex (PRC) comprising several internal H2O and various residues on the EC surface such as Tyr57BR, Arg82BR, Tyr83BR, Ser193BR, Glu194BR, Glu204BR, and Thr205BR also participates in the proton transfer reaction of BR [98, 99], although it is not always an indispensable component for proton pumping. The p
Two threonine residues, Thr89BR and Thr46BR, are also important, although these residues do not belong to the series of proton transfer events due to nonionizable residues. Thr89BR is within the active center and includes PSB, Asp85BR, and some water molecules [102], where this residue forms a hydrogen bond with Asp85BR [103], indirectly contributing to the initial proton transfer from PSB to Asp85BR during M-formation [102, 103]. In contrast, Thr46BR forms an interhelical hydrogen bond with Asp96BR in the CP region, which is associated with the regulation of p
In most outward H+-pumping microbial rhodopsins identified to date, the residues corresponding to three main groups (PSB [Lys216BR as the retinal binding site], Asp85BR, and Asp96BR) described above are highly conserved. By checking their presence, we can therefore forecast whether each protein in the microbial rhodopsin family acts as an H+-pump like BR. Figure 2 shows a comparison between important amino acid residues for proton transport among representative H+-pumping rhodopsins. As shown in this figure, almost all primal residues relevant to proton transport in archaeal-type H+-pumps agree with the residues corresponding to BR. Similarly, both fungal and algal H+-pumps from eukaryotes retain the residues corresponding to Asp85BR and Asp96BR; however, a difference exists in the components of PRC in BR. In both types of eukaryotic H+-pumps, the residue corresponding to Glu194BR of two EC glutamates in PRC is replaced by glycine, whereas another residue corresponding to Glu204BR is conserved. In contrast, in the eubacterial H+-pump, the residues corresponding to Asp96BR are substituted by conservative carboxylate glutamic acid, although there are several exceptions. Another significant aspartate corresponding to Asp85BR is perfectly conserved, similar to other types of H+-pumps. Furthermore, these H+-pumps lack both glutamic acids in the components of PRC: Glu194BR and Glu204BR. Thus, a comparison of the amino acid sequences among various H+-pumping rhodopsins can reveal the superconservation of the proton acceptor (Asp85BR) and the diversity of the proton donor (Asp96BR) and the residues in the EC proton releasing pathway. These differences could lead to different methods of proton transfer among varying H+-pumps.
During a single photocycle induced by the absorption of one photon, ion-pump-type rhodopsins can transport ions as substrates. The number of photocycle turnover under illumination, therefore, affects the amount of ions transported by these proteins, in other words, the ion-pumping activity of these rhodopsins. In general, the turnover rate of the photocycle in ion-pumping rhodopsins tends to be relatively higher than those of photosensor-type rhodopsins to transport numerous ions per illumination. The speed of their photocycle completion can be used to analyze the H+-pump, in addition to actually measuring H+-pumping activity that is usually examined by measuring the photoinduced pH change in a suspension of cells expressing these rhodopsins. Furthermore, the identification of photointermediates during the photocycle of respective rhodopsins and the estimation of their rise/decay kinetics together with the measurement of transient proton transfer during their photocycles enable us to understand the timing of proton movement. Thus, detailed investigations of the photocycles are important for understanding the H+-pumping mechanism.
Among the H+-pumping rhodopsins identified so far, the next well-characterized proton pump following BR is GPR. In many studies, the first identified PR variant (EBAC31A08) was employed as a sample. As soon as GPR was discovered in 2000, various spectroscopic approaches such as static and time-resolved transient UV–visible, FTIR, and FT-Raman spectroscopies were applied to characterize the photochemistry of this protein, as previously performed for the research of BR [105, 106, 107, 108, 109, 110]. These experimental results revealed that the photocycle of GPR was similar to that of BR but also concomitantly contained several differences. Using the same kinetically analytical method as previously applied to the transient absorbance data of BR, where the possibilities of parallel or branch models were also considered [111], Váró et al. determined the photocycles of GPR at acidic and alkaline pH values [108, 109]. Their proposed photocycle at alkaline pH (9.5) is in accordance with the following scheme: GPR → K↔M1 → M2↔N↔GPR’(O) → GPR [108]. As shown in the above scheme, one of the apparent differences from the BR photocycle is the absence of L after K, which is thought to be probably due to kinetic reasons. A remarkably retarded (ca. 10-100-fold slower) decay of K compared with that of BR was observed in GPR [105]. Because of such slow K-decay, low-temperature Raman spectroscopic data presented by Fujisawa et al. demonstrated that the chromophore structure in GPR in the K state is less distorted compared to that of BR in the same state and is rather close to that of L in BR, which possess a more relaxed chromophore structure [112]. Therefore, the formation of a longer stable K state may obscure the appearance of L in the GPR along with the fast formation of the following M-state. Another difference from BR can be observed in the spectral characteristics of the latter photoproducts, N and GPR’(O). The N-intermediate in PR was red-shifted with 13-
The photocycles of other eubacterial H+-pumping rhodopsins, including XR, GR, ESR, and ActR, were also investigated by time-resolved absorption spectroscopy [80, 83, 114, 115, 116]. Their photocycles go through the K, L, M, N, and O states, similar to BR or GPR. For many eubacterial H+-pumps including GPR, structural information obtained by multiple approaches such as X-ray crystallography, NMR, and atomic force microscopy has also been reported [117, 118, 119, 120, 121, 122, 123], providing structural insights into their photochemistry.
Recent genome analysis revealed that numerous eukaryotic fungi possess rhodopsin-like protein-encoding genes (RDs) and opsin-related genes (ORPs) [124]. Nevertheless, unlike archaeal or bacterial H+-pumping rhodopsins, reports on the photochemistry of eukaryotic H+-pumps are extremely limited because the protein expression in
For two algal H+-pumps, ARI and ARII, the establishment of a large-scale sample preparation method using a unique
As described above, the proton acceptor residue from PSB corresponding to Asp85BR is superconserved in all H+-pump-type rhodopsins, suggesting the significance of this residue in the proton pumping mechanism. The negative charge of deprotonated Asp85BR interacts with another deprotonated aspartate Asp212BR and three water molecules through hydrogen bonds, forming a pentagonal cluster that electrostatically stabilizes two positive charges of PSB and Arg82BR [47]. The same cluster structure has also been observed in H+-pumping rhodopsins other than BR [22, 131]. In this sense, two aspartates also play an important role in counterions to PSB, in which Asp85BR and Asp212BR are referred to as primary and secondary counterions, respectively. The aspartate residue, which is the proton acceptor, is deprotonated in the unphotolyzed state under physiological conditions. At pH values below the p
In contrast, the p
The primary and secondary counterions (corresponding to Asp85BR and Asp212BR, respectively) are located near and arranged symmetrically around the PSB, resulting in forming a part of the proton acceptor cluster. The secondary counterion is also deprotonated like the primary counterion (proton acceptor) because the p
In contrast, a question that could arise would be how p
Through low-temperature FTIR experiments, it was suggested that PSB forms a stronger hydrogen bond with Asp227GPR rather than Asp97GPR within the pentagonal cluster around PSB upon K-formation [144]. In addition to this observation, the p
Following the EC proton transfer in the first half of the photocycle, the CP proton transfer events via the SB proton donor in the second half of the photocycle after M-decay are the next critical steps. The proton transfer mechanism at this stage varies among the three types of H+-pumping rhodopsins—archaeal, bacterial, and eukaryotic. In the latter half of the BR photocycle, the deprotonated SB first accepts a proton from its proton donor, Asp96BR, located in the CP channel during the M–N transition. The p
As described above, in GPR, the residue corresponding to Asp96BR is the conservative carboxylate, Glu108GPR. This residue can function as a proton donor to SB; however, the proton movement from Glu108GPR to SB and the subsequent reprotonation of Glu108GPR from the CP bulk are indistinguishable, unlike BR; two sequential proton transfer events in the CP channel concurrently take place upon the M–N transition [105]. The difference in CP proton migration in eubacterial H+-pumps, including PR from BR, seems to be related to the difference in the environment around the proton donor in the intracellular part of the protein between them. In many eubacterial H+-pumping rhodopsins, the interhelical hydrogen bonding pair corresponding to the Asp-Thr interaction in BR is replaced by the Glu-Ser interaction. The X-ray crystal structure of XR in the dark state revealed that the proton donor (Glu107XR) in the CP channel connects to the peptide carbonyl of the lysine residue (Lys240XR) in SB; therefore, the CP H-bonded chain via water is already formed in the unphotolyzed state [118]. Thus, the difference in the CP proton transfer scheme from BR may be due to the formation of the hydrophilic CP pathway in eubacterial H+-pumps.
We also observed a further interesting characteristic in the CP proton transfer of the PR-like H+-pump ESR. The residue positioned at the site of the proton donor in ESR is the cationic residue Lys96ESR (see Figure 2). Nevertheless, Lys96ESR seems to be involved in the CP proton transfer from the intracellular aqueous space to the inner deprotonated SB because the replacement of this residue by other nonionizable residues resulted in a significant delay of the M-intermediate [114]. This observation exploded a conventional concept, the so-called carboxyl rule, that the functional proton-donating residue is confined to two carboxylates (Asp or Glu). Some distinct structural features of BR can be observed in the X-ray crystal structure of the ESR. One of the differences is the presence of a cavity around Lys96ESR located close to the CP bulk media [122]. Although Lys96ESR is surrounded by hydrophobic residues in the CP channel in the dark state similar to BR, the cavity in the vicinity of Lys96ESR is separated only by a polar side chain of Thr43ESR (corresponding to Phe42BR), in contrast to BR, whose proton donor residue is completely separated from the CP bulk solvent by a hydrophobic barrier composed of multiple hydrophobic residues including Phe42BR [122]. Connectivity with the CP bulk facilitates direct access of the protons from the CP solvent in Lys96ESR. Another difference is the flexibility of the side chain of Lys96ESR, which may allow the smooth repositioning of this residue by donating to SB and reprotonation. Given that these structural properties are present in the CP region together with the time-resolved spectroscopic data using D2O, it may be plausible that the CP proton transfer scheme in ESR is as follows [114]: Lys96ESR adopts an unprotonated form at the resting state to be buried within the hydrophobic CP region. Upon M-decay, Lys96ESR transiently catches a proton from the CP bulk solvent (at M1↔M2), and then, a little later, it donates a proton to SB (at M2↔N1). Hence, Lys96ESR acts as a residue facilitating proton delivery from the CP bulk to the SB, which is an apparently different proton donating mechanism from the conventional one.
Another unique example of CP proton transfer was found in two types of gram-negative rod-shaped Proteobacteria in soil:
Among eukaryotic H+-pumps, both fungal and algal H+-pumps possess the same proton donor aspartate residue as BR. For two algal H+-pump homologs ARI and ARII, however, the residue corresponding to Thr46BR is replaced by asparagine, which may cause different interactions with the proton donor and its p
pKa estimation of critical residues for a proton pump by the SnO2 (or ITO) electrode method. (A) Photoinduced voltage changes representing proton uptake/release at varying pH values [
Among the three photointermediates M, N, and O produced in the latter half of the photocycle in H+-pumping rhodopsins, two spectrally silent substates are known for each photoproduct [33, 132]. Because the transitions between these substates occur without apparent spectral changes, they are usually observed by kinetic analysis for transient absorbance changes measured using various spectroscopic techniques. Three critical events for proton translocation occur during these silent transitions. As is known in BR, the first crucial event was observed upon the transition between two successive M-states, M1 and M2, which is accompanied by the accessibility switch of SB from the EC side to the CP side. This switching is important for unidirectional proton transport because it causes the conversion of the direction of proton movement from toward EC at M to toward CP at N.
The second event occurs during the N1-to-N2 transition, where the accessibility of the proton donor changes. In BR, the proton donor Asp96BR connects to the SB but not the CP bulk during the M–N transition, thus hampering the misdirected transfer of a proton of Asp96BR toward the CP solvent. Then, the connection of Asp96BR to SB is switched toward the CP side upon the N1–N2 transition, facilitating the reprotonation of Asp96BR from the CP surface [33, 45]. Although the detailed mechanism of this accessibility switch upon N1–N2 transition remains incompletely understood, even in the most well-known BR, a previous computational study by Wang et al. proposed a model in which the further opening of the proton uptake pathway in the CP channel, which remains closed even in the M-state with the opening of the F-helix by the presence of a hydrophobic barrier composed of Phe42BR and multiple other hydrophobic residues, is triggered by the deprotonation of Asp96BR during the M–N transition, leading to the connection of Asp96BR to the CP aqueous space [155]. In contrast, for the algal H+-pump ARII, it was presumed that the change in the unique interhelical interaction between Asp92ARII and Cys218ARII located in the CP domain acts as a switch for opening the gate of the CP channel for H+-uptake [133].
In contrast to M and N, the molecular events in the O-state have not been completely examined because the stable trapping of O produced in the latter stages of the photocycle is difficult. In the early stages of studies on BR, Haupts et al. hypothesized that during the N–O transition, the reisomerization of the retinal from the 13-
As described above, PRC located on the EC surface is not necessarily indispensable for proton pumping because of the presence of a PRC-deficient type (eubacterial or eukaryotic) H+-pumping rhodopsins, although PRC alters the timing of proton release during the photocycle. The replacement of either Glu194BR, Glu204BR, or both by nonionizable residues, however, caused a delay in O-decay with a late proton release from the protonated Asp85BR toward the EC surface as well as the absence of the initial proton release upon the L–M transition. In addition, when the residues corresponding to three of PRC-constituting residues (Ser193BR, Glu194BR, and Thr205BR) in a sensory-type rhodopsin from
As described previously, sequential proton transfer events during the photocycles in various microbial H+-pumping rhodopsins, including BR, are successfully accomplished by regulating rigorous p
As a method for measuring proton movement transiently occurring during the photocycles of these pigments, the conventional method of using various pH-indicator dyes is frequently employed [44]. This method is highly time-resolved because the transient pH changes of the media with photoinduced proton uptake and release in rhodopsins are monitored based on the real-time transient absorbance changes of these pH-sensitive dyes in the sample suspension. The use of this method, therefore, enables us to precisely identify the timing of proton uptake and release together with the rise and decay kinetics of photoproducts. However, the pH range for measurement is confined to the pH values around its p
Schematic representation of the photocycle and accompanying proton transfer of three types of H+-pumping rhodopsins. (A) Schematic diagram of the photochemistry of BR. The stepwise proton transfer reactions are depicted by thin blue arrows and overlaid on the crystal structure of BR at the dark state (PDB 1c3w). The timing of H+-release differs depending on pH values. The expected configuration changes of chromophore retinal (RET) and PSB in each photocycle intermediate are also depicted. (B) Summary of pKa changes in the residues participating in the proton transfer reactions during the photocycle. A transient pKa increase and decrease of respective residues upon each transition are shown in upward and downward thin arrows. The reverse of pKa values between two adjacent residues leads to a unidirectional proton movement from a (protonated) residue with a lowered pKa value to another (unprotonated) residue with an elevated pKa value. Such proton migrations are expressed in thick blue arrows. The values in parentheses represent our previous estimated pKa values by the SnO2 electrode method [
As described at the beginning of this chapter, outward H+-pumping microbial rhodopsins can evoke stronger light-induced neural suppression and quicker recovery from the inactivated state formed upon illumination than inward Cl−-pump HRs. Hence, optical neural control using H+-pumping rhodopsins may also be an effective alternative for optogenetics, although neural inhibition with light-gated anion channel ACRs has recently attracted attention. The rational design based on the functional molecular basis of these rhodopsins described in this chapter may allow the creation of “neo-type” H+-pumping microbial rhodopsins by introducing several mutations to further enhance the effect of neural silencing upon illumination, resulting in the acceleration of the development of more efficient tools for optogenetics along with developing color variants with various spectral properties. Further increases in protein expression and stability in targeted neural cells could also lead to the improvement of optogenetic tools. For this purpose, taking advantage of the abundance of these H+-pumping rhodopsins, the exploration of new microbial H+-pumping rhodopsins with novel properties (e.g., high thermal stability [165, 166]) from nature may be useful for producing mutants.
In addition, studies on H+-pumping microbial rhodopsins are required to develop novel optical cellular control methods because these types of pigments can simultaneously induce alkalization of the intracellular pH by illumination-induced outward proton transport. As is generally known, the maintenance of an appropriate cellular pH is necessary to ensure that each requisite enzyme for various biological reactions functions properly. Because the drainage of acids produced by cellular metabolism is controlled through the Na+/H+ antiporter or the Cl−/HCO3− exchanger to maintain the cellular pH near neutral, failure in these transporting systems affects the normal function of cells. Therefore, the application of optogenetics to cells with abnormal pH values, that is, light-induced manipulation of the cells specifically expressing H+-pumping microbial rhodopsins, may allow the restoration of the functions of these cells. As an example of intracellular pH regulation by optogenetics, Matsui et al. reported that the photoinduced intracellular pH increase in glial cells expressing aR-3 (Arch) suppressed the release of glutamate from these cells, which was triggered by glial acidosis upon brain ischemia, thereby ameliorating the effects of ischemic brain damage [167]. Moreover, the optical regulation of the function of varying organelles expressing H+-pumping rhodopsins has recently been attempted. Rost et al. demonstrated that selective Arch expression on synaptic vesicles together with a pH-sensitive indicator and successive illumination led to vesicular acidification via Arch instead of vacuolar-type H+-ATPases (V-ATPases), enabling neurotransmitter accumulation within synaptic vesicles driven by the proton motive force (PMF) generated through light-activated Arch [168]. In addition, Hara et al. achieved dR-2-mediated optical partial suppression of cell death induced by the inhibition of respiratory PMF generation in the mitochondria of mammalian cells [169]. More recently, a method for topological inversion of microbial rhodopsins as optogenetic tools was also developed [170]. Hence, the application of this technique together with the use of recently discovered natural inward H+-pumping rhodopsins [171, 172] as optogenetic tools may allow the induction of both light-activated acidification and alkalization in various types of cells or organelles such as mitochondria, vesicles, and lysosomes. Hence, the combination of an outward H+-pumping rhodopsin and the topological reversal technique described above may allow various types of optogenetics. For instance, the use of outward H+-pumping rhodopsin might lead to the following optogenetics: in general, the pH values of lysosomes in normal cells are regulated to be approximately 5, whereas those of lysosomes in cancer cells with acquired resistance to carcinostatic agents tend to be lower [173, 174]. The efficacy of carcinostatic agents for these cancer cells is degraded because they get trapped in acidified organelles; therefore, specific expression of H+-pumping rhodopsins in lysosomes of drug-resistant cancer cells and optical pH control (photoinduced alkalization) of these cellular organelles might lead to the restoration of the original effect of drugs. Thus, optogenetics using H+-pumping microbial rhodopsins may lead to the establishment of new optical therapies in the future.
Proton pump-type microbial rhodopsins are not only effective neural suppressors but also optical tools for pH control of various cells or organelles that specifically incorporate these pigments, which makes them a dual optogenetic tool. Rational protein engineering based on molecular mechanisms is required to further develop these rhodopsins into more effective tools. Considering the photochemical reaction and accompanying proton transfer mechanism in various H+-pumping rhodopsins described previously, mutations that increase their photocycle kinetics may be effective for enhancing the respective H+-pumping abilities. To increase their H+-pumping efficiency via their photocycles, for example, a mutation that lowers the p
The authors declare no competing financial interests.
Authors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11168",title:"Sulfur Industry",subtitle:null,isOpenForSubmission:!0,hash:"39d4f4522a9f465bfe15ec2d85ef8861",slug:null,bookSignature:"Dr. Enos Wamalwa Wambu and Dr. Esther Nthiga",coverURL:"https://cdn.intechopen.com/books/images_new/11168.jpg",editedByType:null,editors:[{id:"187655",title:"Dr.",name:"Enos",surname:"Wambu",slug:"enos-wambu",fullName:"Enos Wambu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty - Evolutionary, Social and Cultural Perspectives on Attractiveness",subtitle:null,isOpenForSubmission:!0,hash:"8f2773e5d4ffe767f38dd15712258e8c",slug:null,bookSignature:"Dr. Farid Pazhoohi",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:[{id:"470837",title:"Dr.",name:"Farid",surname:"Pazhoohi",slug:"farid-pazhoohi",fullName:"Farid Pazhoohi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Associate Prof.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:659},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"29",title:"Agronomy",slug:"agronomy",parent:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:54,numberOfSeries:0,numberOfAuthorsAndEditors:1493,numberOfWosCitations:1638,numberOfCrossrefCitations:1242,numberOfDimensionsCitations:2718,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"29",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10896",title:"Integrative Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"47659401ffe512c28313440110c0a903",slug:"integrative-advances-in-rice-research",bookSignature:"Min Huang",coverURL:"https://cdn.intechopen.com/books/images_new/10896.jpg",editedByType:"Edited by",editors:[{id:"189829",title:"Dr.",name:"Min",middleName:null,surname:"Huang",slug:"min-huang",fullName:"Min Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11571",title:"Cereal Grains",subtitle:"Volume 2",isOpenForSubmission:!1,hash:"2c4003ff225208126f1e2386eefa4d5a",slug:"cereal-grains-volume-2",bookSignature:"Aakash Kumar Goyal",coverURL:"https://cdn.intechopen.com/books/images_new/11571.jpg",editedByType:"Edited by",editors:[{id:"97604",title:"Dr.",name:"Aakash K.",middleName:null,surname:"Goyal",slug:"aakash-k.-goyal",fullName:"Aakash K. Goyal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10499",title:"Next-Generation Greenhouses for Food Security",subtitle:null,isOpenForSubmission:!1,hash:"456f82c97eafad5734cd36c48e167781",slug:"next-generation-greenhouses-for-food-security",bookSignature:"Redmond R. Shamshiri",coverURL:"https://cdn.intechopen.com/books/images_new/10499.jpg",editedByType:"Edited by",editors:[{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9643",title:"Agrometeorology",subtitle:null,isOpenForSubmission:!1,hash:"492510d45d202e73a8a7d6eb6cc60be8",slug:"agrometeorology",bookSignature:"Ram Swaroop Meena",coverURL:"https://cdn.intechopen.com/books/images_new/9643.jpg",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editedByType:"Edited by",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10134",title:"Organic Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"a9866f9df52191cc505b27fb2abdc687",slug:"organic-agriculture",bookSignature:"Shaon Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/10134.jpg",editedByType:"Edited by",editors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",middleName:null,surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9712",title:"Genetic Transformation in Crops",subtitle:null,isOpenForSubmission:!1,hash:"c111fe32d4d7e3988e4ef2fd6775a265",slug:"genetic-transformation-in-crops",bookSignature:"Kin-Ying To",coverURL:"https://cdn.intechopen.com/books/images_new/9712.jpg",editedByType:"Edited by",editors:[{id:"310646",title:"Dr.",name:"Kin-Ying",middleName:null,surname:"To",slug:"kin-ying-to",fullName:"Kin-Ying To"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8153",title:"Agronomy",subtitle:"Climate Change & Food Security",isOpenForSubmission:!1,hash:"2c01368bbeacbbedeb3681ea0c037dbe",slug:"agronomy-climate-change-food-security",bookSignature:"Amanullah",coverURL:"https://cdn.intechopen.com/books/images_new/8153.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",middleName:null,surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:54,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"40178",doi:"10.5772/52583",title:"Molecular Markers and Marker-Assisted Breeding in Plants",slug:"molecular-markers-and-marker-assisted-breeding-in-plants",totalDownloads:23030,totalCrossrefCites:81,totalDimensionsCites:146,abstract:null,book:{id:"3060",slug:"plant-breeding-from-laboratories-to-fields",title:"Plant Breeding from Laboratories to Fields",fullTitle:"Plant Breeding from Laboratories to Fields"},signatures:"Guo-Liang Jiang",authors:[{id:"158810",title:"Dr.",name:"Guo-Liang",middleName:null,surname:"Jiang",slug:"guo-liang-jiang",fullName:"Guo-Liang Jiang"}]},{id:"33765",doi:"10.5772/37578",title:"Nutrient Solutions for Hydroponic Systems",slug:"nutrient-solutions-for-hydroponic-systems",totalDownloads:71704,totalCrossrefCites:11,totalDimensionsCites:66,abstract:null,book:{id:"1781",slug:"hydroponics-a-standard-methodology-for-plant-biological-researches",title:"Hydroponics",fullTitle:"Hydroponics - A Standard Methodology for Plant Biological Researches"},signatures:"Libia I. Trejo-Téllez and Fernando C. Gómez-Merino",authors:[{id:"113365",title:"Dr.",name:"Libia I.",middleName:null,surname:"Trejo-Téllez",slug:"libia-i.-trejo-tellez",fullName:"Libia I. Trejo-Téllez"},{id:"113414",title:"Dr.",name:"Fernando C.",middleName:null,surname:"Gómez-Merino",slug:"fernando-c.-gomez-merino",fullName:"Fernando C. Gómez-Merino"}]},{id:"45745",doi:"10.5772/56824",title:"Current Advances on Genetic Resistance to Rice Blast Disease",slug:"current-advances-on-genetic-resistance-to-rice-blast-disease",totalDownloads:4528,totalCrossrefCites:27,totalDimensionsCites:58,abstract:null,book:{id:"3554",slug:"rice-germplasm-genetics-and-improvement",title:"Rice",fullTitle:"Rice - Germplasm, Genetics and Improvement"},signatures:"Xueyan Wang, Seonghee Lee, Jichun Wang, Jianbing Ma, Tracy\nBianco and Yulin Jia",authors:[{id:"168971",title:"Dr.",name:"Yulin",middleName:null,surname:"Jia",slug:"yulin-jia",fullName:"Yulin Jia"}]},{id:"68945",doi:"10.5772/intechopen.88434",title:"Effect of Abiotic Stress on Crops",slug:"effect-of-abiotic-stress-on-crops",totalDownloads:1494,totalCrossrefCites:28,totalDimensionsCites:46,abstract:"Crop yield is mainly influenced by climatic factors, agronomic factors, pests and nutrient availability in the soil. Stress is any adverse environmental condition that hampers proper growth of plant. Abiotic stress creates adverse effect on multiple procedures of morphology, biochemistry and physiology that are directly connected with growth and yield of plant. Abiotic stress are quantitative trait hence genes linked to these traits can be identified and used to select desirable alleles responsible for tolerance in plant. Plants can initiate a number of molecular, cellular and physiological modifications to react to and adapt to abiotic stress. Crop productivity is significantly affected by drought, salinity and cold. Abiotic stress reduce water availability to plant roots by increasing water soluble salts in soil and plants suffer from increased osmotic pressure outside the root. Physiological changes include lowering of leaf osmotic potential, water potential and relative water content, creation of nutritional imbalance, enhancing relative stress injury or one or more combination of these factors. Morphological and biochemical changes include changes in root and shoot length, number of leaves, secondary metabolite (glycine betaine, proline, MDA, abscisic acid) accumulation in plant, source and sink ratio. Proposed chapter will concentrate on enhancing plant response to abiotic stress and contemporary breeding application to increasing stress tolerance.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Summy Yadav, Payal Modi, Akanksha Dave, Akdasbanu Vijapura, Disha Patel and Mohini Patel",authors:[{id:"186963",title:"Dr.",name:"Summy",middleName:null,surname:"Yadav",slug:"summy-yadav",fullName:"Summy Yadav"},{id:"308004",title:"Ms.",name:"Payal",middleName:null,surname:"Modi",slug:"payal-modi",fullName:"Payal Modi"},{id:"308005",title:"Ms.",name:"Akanksha",middleName:null,surname:"Dave",slug:"akanksha-dave",fullName:"Akanksha Dave"},{id:"308006",title:"Ms.",name:"Akdasbanu",middleName:null,surname:"Vijapara",slug:"akdasbanu-vijapara",fullName:"Akdasbanu Vijapara"},{id:"308007",title:"Ms.",name:"Disha",middleName:null,surname:"Patel",slug:"disha-patel",fullName:"Disha Patel"},{id:"308008",title:"Ms.",name:"Mohini",middleName:null,surname:"Patel",slug:"mohini-patel",fullName:"Mohini Patel"}]},{id:"45540",doi:"10.5772/56621",title:"Genes and QTLs for Rice Grain Quality Improvement",slug:"genes-and-qtls-for-rice-grain-quality-improvement",totalDownloads:3737,totalCrossrefCites:21,totalDimensionsCites:46,abstract:null,book:{id:"3554",slug:"rice-germplasm-genetics-and-improvement",title:"Rice",fullTitle:"Rice - Germplasm, Genetics and Improvement"},signatures:"Jinsong Bao",authors:[{id:"52135",title:"Dr.",name:"Jinsong",middleName:null,surname:"Bao",slug:"jinsong-bao",fullName:"Jinsong Bao"}]}],mostDownloadedChaptersLast30Days:[{id:"70658",title:"Factors Affecting Yield of Crops",slug:"factors-affecting-yield-of-crops",totalDownloads:4044,totalCrossrefCites:25,totalDimensionsCites:40,abstract:"A good understanding of dynamics involved in food production is critical for the improvement of food security. It has been demonstrated that an increase in crop yields significantly reduces poverty. Yield, the mass of harvest crop product in a specific area, is influenced by several factors. These factors are grouped in three basic categories known as technological (agricultural practices, managerial decision, etc.), biological (diseases, insects, pests, weeds) and environmental (climatic condition, soil fertility, topography, water quality, etc.). These factors account for yield differences from one region to another worldwide. The current chapter will discuss each of these three basic factors as well as providing some recommendations for overcoming them. In addition, it will provide the importance of climate-smart agriculture in the increase of crop yields while facilitating the achievement of crop production in safe environment. This goes in line with the second goal of 2030 Agenda for Sustainable Development of United Nations in transforming our world formulated as end hunger, achieve food security, improve nutrition and promote sustainable agriculture.",book:{id:"8153",slug:"agronomy-climate-change-food-security",title:"Agronomy",fullTitle:"Agronomy - Climate Change & Food Security"},signatures:"Tandzi Ngoune Liliane and Mutengwa Shelton Charles",authors:[{id:"313819",title:"Dr.",name:"Liliane",middleName:null,surname:"Tandzi",slug:"liliane-tandzi",fullName:"Liliane Tandzi"},{id:"314316",title:"Prof.",name:"Charles Shelton",middleName:null,surname:"Mutengwa",slug:"charles-shelton-mutengwa",fullName:"Charles Shelton Mutengwa"}]},{id:"40178",title:"Molecular Markers and Marker-Assisted Breeding in Plants",slug:"molecular-markers-and-marker-assisted-breeding-in-plants",totalDownloads:23030,totalCrossrefCites:81,totalDimensionsCites:146,abstract:null,book:{id:"3060",slug:"plant-breeding-from-laboratories-to-fields",title:"Plant Breeding from Laboratories to Fields",fullTitle:"Plant Breeding from Laboratories to Fields"},signatures:"Guo-Liang Jiang",authors:[{id:"158810",title:"Dr.",name:"Guo-Liang",middleName:null,surname:"Jiang",slug:"guo-liang-jiang",fullName:"Guo-Liang Jiang"}]},{id:"60074",title:"Pollen Germination in vitro",slug:"pollen-germination-in-vitro",totalDownloads:2759,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Pollen germination in vitro is a reliable method to test the pollen viability. It also addresses many basic questions in sexual reproduction and particularly useful in wide hybridization. Many pollen germination medium ranging from simple sugars to complex one having vitamins, growth regulators, etc. in addition to various minerals have been standardized to germinate pollen artificially. The different media, successful pollen germination methods, procedures from pollen germination studies with wheat, rye, brinjal, pigeonpea and its wild relatives are discussed.",book:{id:"6659",slug:"pollination-in-plants",title:"Pollination in Plants",fullTitle:"Pollination in Plants"},signatures:"Jayaprakash P",authors:[{id:"235465",title:"Dr.",name:"Jayaprakash",middleName:null,surname:"P",slug:"jayaprakash-p",fullName:"Jayaprakash P"}]},{id:"62376",title:"Genotype × Environment Interaction: A Prerequisite for Tomato Variety Development",slug:"genotype-environment-interaction-a-prerequisite-for-tomato-variety-development",totalDownloads:2297,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"Tomato (Solanum lycopersicum L.) is the second most important vegetable crop in the world due to its high level of nutrition particularly in vitamins and antioxidants. It is grown in several ecologies of the world due to its adaptability and ease of cultivation. Besides field conditions, tomatoes are grown in controlled environments which range from hydroponics and simple high tunnel structures to highly automated screen houses in advanced countries. However, the yield and quality of the fruits are highly influenced by the environment. This results in unpredictable performances in different growing environments in terms of quality, a phenomenon known as genotype by environment (G × E) interaction which confounds selection efficiency. Various approaches are employed by plant breeders to evaluate and address the challenges posed by genotype by environment interaction. This chapter discusses various field and controlled environments for growing tomatoes and the effect of these environments on the performance of the crop. The various types of genotype × environment interactions and their effect of the tomato plant are discussed. Finally, efforts are made to suggest ways and methods of mitigating the confounding effects of genotype × environment interaction including statistical approaches.",book:{id:"6422",slug:"recent-advances-in-tomato-breeding-and-production",title:"Recent Advances in Tomato Breeding and Production",fullTitle:"Recent Advances in Tomato Breeding and Production"},signatures:"Michael Kwabena Osei, Benjamin Annor, Joseph Adjebeng-\nDanquah, Agyemang Danquah, Eric Danquah, Essie Blay and Hans\nAdu-Dapaah",authors:[{id:"204223",title:"Dr.",name:"Agyemang",middleName:null,surname:"Danquah",slug:"agyemang-danquah",fullName:"Agyemang Danquah"},{id:"217531",title:"M.Sc.",name:"Michael Kwabena",middleName:null,surname:"Osei",slug:"michael-kwabena-osei",fullName:"Michael Kwabena Osei"},{id:"217760",title:"Dr.",name:"Joseph",middleName:null,surname:"Adjebeng-Danquah",slug:"joseph-adjebeng-danquah",fullName:"Joseph Adjebeng-Danquah"},{id:"217768",title:"MSc.",name:"Benjamin",middleName:null,surname:"Annor",slug:"benjamin-annor",fullName:"Benjamin Annor"},{id:"247378",title:"Dr.",name:"Eric Y.",middleName:null,surname:"Danquah",slug:"eric-y.-danquah",fullName:"Eric Y. Danquah"},{id:"248095",title:"Prof.",name:"Essie",middleName:null,surname:"Blay",slug:"essie-blay",fullName:"Essie Blay"},{id:"248096",title:"Prof.",name:"Hans",middleName:null,surname:"Adu-Dapaah",slug:"hans-adu-dapaah",fullName:"Hans Adu-Dapaah"}]},{id:"45153",title:"Irrigation of Sandy Soils, Basics and Scheduling",slug:"irrigation-of-sandy-soils-basics-and-scheduling",totalDownloads:5600,totalCrossrefCites:4,totalDimensionsCites:10,abstract:null,book:{id:"3357",slug:"crop-production",title:"Crop Production",fullTitle:"Crop Production"},signatures:"Mohamed S. Alhammadi and Ali M. Al-Shrouf",authors:[{id:"78245",title:"Dr.",name:"Mohamed",middleName:"Salman",surname:"Alhammadi",slug:"mohamed-alhammadi",fullName:"Mohamed Alhammadi"},{id:"159904",title:"Mr.",name:"Ali",middleName:null,surname:"Al-Shrouf",slug:"ali-al-shrouf",fullName:"Ali Al-Shrouf"}]}],onlineFirstChaptersFilter:{topicId:"29",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81888",title:"Reducing Soil Compaction from Equipment to Enhance Agricultural Sustainability",slug:"reducing-soil-compaction-from-equipment-to-enhance-agricultural-sustainability",totalDownloads:16,totalDimensionsCites:0,doi:"10.5772/intechopen.104489",abstract:"The compaction of agricultural soils cannot be solved, only managed. As a compressible media, soil travel without causing some collapse of the existing structure is impossible. If left uncorrected, farmers can see up to a 50% reduction in yield from long-term compaction. This chapter will describe the effects of soil compaction on the environment, crop quality, and economic sustainability. The base causes will be examined, along with the engineering designs for vehicles that minimize the problem. The tracks versus tires debate will be thoroughly discussed, and the advantages and disadvantages of each system will be detailed. It will be shown that although tires represent the likely current best economic option for vehicle support, the potential of tracks to reduce compaction has been fully exploited. The advantages of four-wheel drive vehicles in reducing soil compaction will be shown, along with the mitigation potential of independently driven wheels and active soil interaction feedback loops. The design of crop production tillage equipment and tillage tool working points will be explored, along with the concept of critical tillage depth. Equipment for compaction relief will also be discussed, as will the sustainable agricultural protocols of cover crops, crop rotation, and controlled traffic farming.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Michael M. Boland, Young U. Choi, Daniel G. Foley, Matthew S. Gobel, Nathan C. Sprague, Santiago Guevara-Ocana, Yury A. Kuleshov and Robert M. Stwalley III"},{id:"81378",title:"Sustainability-Based Review of Irrigation Schemes Performance for Sustainable Crop Production in Nigeria",slug:"sustainability-based-review-of-irrigation-schemes-performance-for-sustainable-crop-production-in-nig",totalDownloads:32,totalDimensionsCites:0,doi:"10.5772/intechopen.103980",abstract:"Irrigated agriculture has been identified as an important practice to achieving food security and socio-economic development in the face of rapid population growth and climatic uncertainties. In northern Nigeria, irrigation has long been identified as the key to achieving the much-desired increase in food production to meet the ever-increasing population. However, the existing irrigation schemes encountered several challenges coming from different dimensions including economic, social, environmental, institutional and technological. To attain sustainable crop production, this paper attempts to uncover the underline challenges confronting irrigation schemes in northern Nigeria that cut across sustainability pillars. The findings revealed that irrigation schemes contributed immensely toward achieving food security and improving the wellbeing of rural dwellers. However, the huge investment in large- and medium-scale irrigation schemes have resulted in massive economic losses. This could be attributed to their under-utilization, poor management and abandonment although few ones are performing remarkably well. The study recommends the need to adopt new water allocation and application methods that can improve water use efficiency, users-managers join approach (participatory), effective and competent institutions which include improved monitoring, evaluation and surveillance systems, frequent policy review to suit the situation, law enforcement, and timely sensitization and awareness campaigns.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Nura Jafar Shanono, Nura Yahaya Usman, Mu’azu Dantala Zakari, Habibu Ismail, Shehu Idris Umar, Sunusi Abubakar Amin and Nuraddeen Mukhtar Nasidi"},{id:"81274",title:"Toward the Recent Advances in Nutrient Use Efficiency (NUE): Strategies to Improve Phosphorus Availability to Plants",slug:"toward-the-recent-advances-in-nutrient-use-efficiency-nue-strategies-to-improve-phosphorus-availabil",totalDownloads:43,totalDimensionsCites:0,doi:"10.5772/intechopen.102595",abstract:"Achieving high nutrient use efficiency (NUE) and high crop productivity has become a challenge with increased global demand for food, depletion of natural resources, and deterioration of environmental conditions. Higher NUE by plants could reduce fertilizer input costs, decrease the rate of nutrient losses, and enhance crop yields. Nitrogen and Phosphorus are the most limiting nutrients for crop production in many of the world’s agricultural areas, and their efficient use is important for the economic sustainability of cropping systems. Furthermore, the dynamic nature of N and P in soil-plant systems creates a unique and challenging environment for its efficient management. Although numerous fertilizer recommendation methods have been proposed to improve NUE, technologies and innovative management practices are still lacking. Therefore, maximizing crop phosphorus (P) use efficiency (PUE) would be helpful in reducing the use of inorganic phosphorus fertilizers and their escape in the environment for sustainable agriculture. Improvement of PUE in cropping systems can be achieved through two main strategies: optimizing agronomic practice and breeding nutrient efficient crop cultivars that improves P-acquisition and -utilization efficiency. These strategies are needed for future food security and sustainable agriculture. The major revised points are the following: concept of NUE, application of nutrient stewardship, cereal-legume intercropping, regulating soil pH, etc., for enhancing phyto-availability of P and breeding P-efficient crop cultivars that can produce more biomass with lesser P costs and that acquire more P in P-stress condition. These approaches consider economic, social, and environmental dimensions essential to sustainable agricultural systems and afford a suitable context for specific NUE indicators.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Addisu Ebbisa"},{id:"81179",title:"Crop Diversification an Effective Strategy for Sustainable Agriculture Development",slug:"crop-diversification-an-effective-strategy-for-sustainable-agriculture-development",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.102635",abstract:"Sustainable agricultural practices involve a variety of approaches. The most important approached for sustainable agriculture development is crop diversification. It allowing the farmers to employ biological cycles to minimize inputs, conserve the resource base, maximize yields and also reduce the risk due to ecological and environmental factors. It serves as an important opportunity to augment income and employment generation for rural communities. Crop diversification promotes the interaction of beneficial soil bacteria, interrupts the disease cycle, and reduces the quantity of weeds. Crop diversification boosts land-use efficiency and crop output by improving the physical and chemical qualities of soil. Crop diversification shows a lot of scope to alleviating the problems such as resurgence of insects-pests and weeds, soil degradation, environmental pollution, soil salinity, decline farm profit and climate change. Crop diversification through crop intensification system enhanced the net returns, B:C ratio, and overall system productivity of a farm. In order to achieve the benefits of crop diversification farmers are shifting from low value low yielding crops to high value high yielding crops. Thus, crop diversification has the sound capacity for achieving the goal of nutritional security, income growth, food security, employment generation and sustainable agriculture development.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Anamika Barman, Priyanka Saha, Shashank Patel and Anurag Bera"},{id:"80867",title:"Potential Applications of Rhizobacteria as Eco-Friendly Biological Control, Plant Growth Promotion and Soil Metal Bioremediation",slug:"potential-applications-of-rhizobacteria-as-eco-friendly-biological-control-plant-growth-promotion-an",totalDownloads:67,totalDimensionsCites:0,doi:"10.5772/intechopen.102657",abstract:"Modern agriculture has an immense problem in the depletion of agricultural productivity owing to a variety of biotic and abiotic stresses. Agriculture’s sustainability and safety are dependent on ecologically friendly practices. Plant rhizobia have been proven to have an important role in disease control, as well as promoting plant growth, productivity, and biomass. Rhizobacteria are soil bacteria that live on the root surface and either directly or indirectly contribute to plant development. Rhizobia are used to induce mediated immune resistance through the manufacture of lytic enzymes, antibiotics, phytoalexins, phytohormone, metabolites. It supports the growth of plants through nitrogen fixation, nutrient enrichment, phosphate solubilization and phytohormone synthesis. In addition, it supports plants during different stresses such as temperature, osmotic, heavy metal and oxidative stress. Plant growth-promoting rhizobacteria have the ability to control heavy metal pollution of soils as well as enhancing plant growth in these soils. Efficient bioremediation is possible by using rhizobacterial inoculants, still, the distribution and functioning of microbes in the rhizosphere need to be fully explored. This review focuses on the effectiveness, biomonitoring processes and function in promoting plant development. Rhizobia application can be considered an alternative method for the improvement of biodiversity, agriculture, and the environment.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Nafeesa Farooq Khan, Aatifa Rasool, Sheikh Mansoor, Sana Saleem, Tawseef Rehman Baba, Sheikh Maurifatul Haq, Sheikh Aafreen Rehman, Charles Oluwaseun Adetunji and Simona Mariana Popescu"},{id:"80653",title:"Heavy Metal Contamination in Vegetables and Their Toxic Effects on Human Health",slug:"heavy-metal-contamination-in-vegetables-and-their-toxic-effects-on-human-health",totalDownloads:130,totalDimensionsCites:1,doi:"10.5772/intechopen.102651",abstract:"Vegetables are a prevalent nutrition for people all over the world because they are high in important nutrients, antioxidants, and metabolites that function as buffers for acidic compounds created during digestion. Vegetables, on the other hand, absorbed both vital and poisonous substances through the soil. Possible human health concerns, including as cancer and renal damage, have been linked to the consumption of heavy metal-contaminated vegetables (HMs). Heavy metals like Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, and Hg were found in high concentrations in popular vegetables such as Amaranthus tricolour L., Chenopodium album L., Spinacia oleracea, Coriandrum sativum, Solanum lycopersicum, and Solanum melongena. The toxicity, fortification, health hazard, and heavy metals sources grown in soil are detailed in this review study.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Seema Manwani, Vanisree C.R., Vibha Jaiman, Kumud Kant Awasthi, Chandra Shekhar Yadav, Mahipal Singh Sankhla, Pritam P. Pandit and Garima Awasthi"}],onlineFirstChaptersTotal:7},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:13,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:229,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",country:{name:"Spain"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}}]}},subseries:{item:{id:"38",type:"subseries",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:82,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:169,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-streptococcus-mutans-virulence-targets-a-proteomic-insig",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79515",title:"White Spot Lesions and Remineralization",doi:"10.5772/intechopen.101372",signatures:"Monisha Khatri, Shreya Kishore, S. Nagarathinam, Suvetha Siva and Vanita Barai",slug:"white-spot-lesions-and-remineralization",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79371",title:"The Contrasting Effects between Caffeine and Theobromine on Crystallization: How the Non-fluoride Dentifrice Was Developed",doi:"10.5772/intechopen.101116",signatures:"Tetsuo Nakamoto, Alexander U. Falster and William B. Simmons Jr",slug:"the-contrasting-effects-between-caffeine-and-theobromine-on-crystallization-how-the-non-fluoride-den",totalDownloads:130,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79409",title:"The Dental Implant Maintenance",doi:"10.5772/intechopen.101187",signatures:"Gayathri Krishnamoorthy, Aparna I. Narayana and Dhanasekar Balakrishnan",slug:"the-dental-implant-maintenance",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79387",title:"Ulcerative Lesions of the Oral Cavity",doi:"10.5772/intechopen.101215",signatures:"Nelli Yildirimyan",slug:"ulcerative-lesions-of-the-oral-cavity",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79319",title:"Empirical Study on Medical Information and Communication Technology System in Dentistry in Southeast Asia",doi:"10.5772/intechopen.101080",signatures:"Ichiro Nakajima, Ken-ichiro Ejima, Yoshinori Arai, Kunihito Matsumoto, Kazuya Honda, Hirofumi Aboshi, Marina Hamaguchi, Akao Lyvongsa, Bounnhong Sidaphone, Somphone Phanthavong, Chanthavisao Phanthanalay and Souksavanh Vongsa",slug:"empirical-study-on-medical-information-and-communication-technology-system-in-dentistry-in-southeast",totalDownloads:145,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/46091",hash:"",query:{},params:{id:"46091"},fullPath:"/chapters/46091",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()