Comparison of different LWCA for different layers of SDN-IoT network in 5G.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"2200",leadTitle:null,fullTitle:"Ceramic Materials - Progress in Modern Ceramics",title:"Ceramic Materials",subtitle:"Progress in Modern Ceramics",reviewType:"peer-reviewed",abstract:"This text covers ceramic materials from the fundamentals to industrial applications. This includes their impact on the modern technologies, including nano-ceramic, ceramic matrix composites, nanostructured ceramic membranes, porous ceramics, and the sintering theory model of modern ceramics.",isbn:null,printIsbn:"978-953-51-0476-6",pdfIsbn:"978-953-51-6194-3",doi:"10.5772/2593",price:119,priceEur:129,priceUsd:155,slug:"ceramic-materials-progress-in-modern-ceramics",numberOfPages:242,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"612da9cb87615f384b89b64be02c39be",bookSignature:"Feng Shi",publishedDate:"April 5th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2200.jpg",numberOfDownloads:39325,numberOfWosCitations:29,numberOfCrossrefCitations:11,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:26,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:66,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 1st 2011",dateEndSecondStepPublish:"June 29th 2011",dateEndThirdStepPublish:"November 3rd 2011",dateEndFourthStepPublish:"December 3rd 2011",dateEndFifthStepPublish:"April 1st 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"24821",title:"Dr.",name:"Feng",middleName:null,surname:"Shi",slug:"feng-shi",fullName:"Feng Shi",profilePictureURL:"https://mts.intechopen.com/storage/users/24821/images/2367_n.jpg",biography:"Feng Shi, PH.D, majored in Solid State Electronics and graduated in 09/2003 from Tianjin University, P. R. China; Professor in School of Materials Science and Technology, Shandong University of Science and Technology. Now, I study the lattice dynamics of electronic ceramics, and fabrication/properties of semiconductor nanomaterials. I have published more than 140 papers and more than 120 papers were indexed in SCI or EI.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Tianjin University",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"923",title:"Process Engineering",slug:"ceramics-process-engineering"}],chapters:[{id:"35035",title:"Characterization of PLZT Ceramics for Optical Sensor and Actuator Devices",doi:"10.5772/38440",slug:"characterization-of-plzt-ceramics-for-optical-sensor-and-actuator-devices",totalDownloads:5574,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Ribal Georges Sabat",downloadPdfUrl:"/chapter/pdf-download/35035",previewPdfUrl:"/chapter/pdf-preview/35035",authors:[{id:"117241",title:"Dr.",name:"Ribal",surname:"Sabat",slug:"ribal-sabat",fullName:"Ribal Sabat"}],corrections:null},{id:"35036",title:"Electrode Size and Dimensional Ratio Effect on the Resonant Characteristics of Piezoelectric Ceramic Disk",doi:"10.5772/38673",slug:"electrode-size-and-dimensional-ratio-effect-on-the-resonant-characteristics-of-piezoelectric-ceramic",totalDownloads:4587,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Lang Wu, Ming-Cheng Chure, Yeong-Chin Chen, King-Kung Wu and Bing-Huei Chen",downloadPdfUrl:"/chapter/pdf-download/35036",previewPdfUrl:"/chapter/pdf-preview/35036",authors:[{id:"118654",title:"Dr.",name:"Lang",surname:"Wu",slug:"lang-wu",fullName:"Lang Wu"},{id:"119407",title:"Prof.",name:"Ming-Cheng",surname:"Chure",slug:"ming-cheng-chure",fullName:"Ming-Cheng Chure"},{id:"119408",title:"Prof.",name:"Yeong-Chin",surname:"Chen",slug:"yeong-chin-chen",fullName:"Yeong-Chin Chen"},{id:"119409",title:"Prof.",name:"Bing-Huei Chen",surname:"Chen",slug:"bing-huei-chen-chen",fullName:"Bing-Huei Chen Chen"},{id:"138662",title:"BSc.",name:"King-Kung",surname:"Wu",slug:"king-kung-wu",fullName:"King-Kung Wu"}],corrections:null},{id:"35037",title:"Fine Grained Alumina-Based Ceramics Produced Using Magnetic Pulsed Compaction",doi:"10.5772/38747",slug:"fine-grained-alumina-based-ceramics-produced-using-magnetic-pulsed-compacting",totalDownloads:2845,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"V. V. Ivanov, A. S. Kaygorodov, V. R. Khrustov and S. N. Paranin",downloadPdfUrl:"/chapter/pdf-download/35037",previewPdfUrl:"/chapter/pdf-preview/35037",authors:[{id:"119146",title:"Dr.",name:"Vladimir",surname:"Khrustov",slug:"vladimir-khrustov",fullName:"Vladimir Khrustov"},{id:"119166",title:"Prof.",name:"Victor",surname:"Ivanov",slug:"victor-ivanov",fullName:"Victor Ivanov"},{id:"119167",title:"Dr.",name:"Sergey",surname:"Paranin",slug:"sergey-paranin",fullName:"Sergey Paranin"},{id:"119169",title:"Dr.",name:"Anton",surname:"Kaygorodov",slug:"anton-kaygorodov",fullName:"Anton Kaygorodov"}],corrections:null},{id:"35038",title:"Advanced Sintering of Nano-Ceramic Materials",doi:"10.5772/38287",slug:"advanced-sintering-of-nano-ceramic-materials",totalDownloads:7517,totalCrossrefCites:2,totalDimensionsCites:13,hasAltmetrics:1,abstract:null,signatures:"Khalil Abdelrazek Khalil",downloadPdfUrl:"/chapter/pdf-download/35038",previewPdfUrl:"/chapter/pdf-preview/35038",authors:[{id:"116426",title:"Dr.",name:"Khalil",surname:"Khalil",slug:"khalil-khalil",fullName:"Khalil Khalil"}],corrections:null},{id:"35039",title:"Development of Zirconia Nanocomposite Ceramic Tool and Die Material Based on Tribological Design",doi:"10.5772/38722",slug:"development-of-zirconia-nanocomposite-ceramic-tool-and-die-material-based-on-tribological-design",totalDownloads:2741,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Chonghai Xu, Mingdong Yi, Jingjie Zhang, Bin Fang and Gaofeng Wei",downloadPdfUrl:"/chapter/pdf-download/35039",previewPdfUrl:"/chapter/pdf-preview/35039",authors:[{id:"23577",title:"Prof.",name:"Chonghai",surname:"Xu",slug:"chonghai-xu",fullName:"Chonghai Xu"}],corrections:null},{id:"35040",title:"Synthesis, Microstructure and Properties of High-Strength Porous Ceramics",doi:"10.5772/17111",slug:"synthesis-microstructure-and-properties-of-high-strength-porous-ceramics",totalDownloads:5049,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Changqing Hong, Xinghong Zhang, Jiecai Han, Songhe Meng and Shanyi Du",downloadPdfUrl:"/chapter/pdf-download/35040",previewPdfUrl:"/chapter/pdf-preview/35040",authors:[{id:"27290",title:"Prof.",name:"Changqing",surname:"Hong",slug:"changqing-hong",fullName:"Changqing Hong"},{id:"30007",title:"Prof.",name:"Xinghong",surname:"Zhang",slug:"xinghong-zhang",fullName:"Xinghong Zhang"},{id:"30008",title:"Prof.",name:"Jiecai",surname:"Han",slug:"jiecai-han",fullName:"Jiecai Han"}],corrections:null},{id:"35041",title:"Composites Hydroxyapatite with Addition of Zirconium Phase",doi:"10.5772/37941",slug:"composites-hydroxyapatite-with-addition-of-zirconium-phase",totalDownloads:2536,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Agata Dudek and Renata Wlodarczyk",downloadPdfUrl:"/chapter/pdf-download/35041",previewPdfUrl:"/chapter/pdf-preview/35041",authors:[{id:"114870",title:"Prof.",name:"Agata",surname:"Dudek",slug:"agata-dudek",fullName:"Agata Dudek"}],corrections:null},{id:"35042",title:"Numerical Simulation of Fabrication for Ceramic Tool Materials",doi:"10.5772/38623",slug:"numerical-simulation-of-fabrication-for-ceramic-tool-materials",totalDownloads:2022,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Bin Fang, Chonghai Xu, Fang Yang, Jingjie Zhang and Mingdong Yi",downloadPdfUrl:"/chapter/pdf-download/35042",previewPdfUrl:"/chapter/pdf-preview/35042",authors:[{id:"118350",title:"Dr.",name:"Bin",surname:"Fang",slug:"bin-fang",fullName:"Bin Fang"}],corrections:null},{id:"35043",title:"Synthesis and Characterization of a Novel Hydrophobic Membrane: Application for Seawater Desalination with Air Gap Membrane Distillation Process",doi:"10.5772/37747",slug:"synthesis-and-characterization-of-a-novel-hydrophobic-membrane-application-for-desalination-with-air",totalDownloads:3254,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Sabeur Khemakhem and Raja Ben Amar",downloadPdfUrl:"/chapter/pdf-download/35043",previewPdfUrl:"/chapter/pdf-preview/35043",authors:[{id:"11531",title:"Dr.",name:"Sabeur",surname:"Khemakhem",slug:"sabeur-khemakhem",fullName:"Sabeur Khemakhem"}],corrections:null},{id:"35044",title:"Fabrication, Structure and Properties of Nanostructured Ceramic Membranes",doi:"10.5772/38151",slug:"fabrication-structure-and-properties-of-nanostructured-ceramic-membranes",totalDownloads:3203,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Ian W. M. Brown, Jeremy P. Wu and Geoff Smith",downloadPdfUrl:"/chapter/pdf-download/35044",previewPdfUrl:"/chapter/pdf-preview/35044",authors:[{id:"115805",title:"Prof.",name:"Ian",surname:"Brown",slug:"ian-brown",fullName:"Ian Brown"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"588",title:"Ceramic Coatings",subtitle:"Applications in Engineering",isOpenForSubmission:!1,hash:"87d35270dc765ca2c5fa7fd7063c7f60",slug:"ceramic-coatings-applications-in-engineering",bookSignature:"Feng Shi",coverURL:"https://cdn.intechopen.com/books/images_new/588.jpg",editedByType:"Edited by",editors:[{id:"24821",title:"Dr.",name:"Feng",surname:"Shi",slug:"feng-shi",fullName:"Feng Shi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3478",title:"Sintering Applications",subtitle:null,isOpenForSubmission:!1,hash:"78b5ad7a210c4dcb3346ca452f828938",slug:"sintering-applications",bookSignature:"Burcu Ertuğ",coverURL:"https://cdn.intechopen.com/books/images_new/3478.jpg",editedByType:"Edited by",editors:[{id:"97820",title:"Dr.",name:"Burcu",surname:"Ertug",slug:"burcu-ertug",fullName:"Burcu Ertug"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"474",title:"Advances in Ceramics",subtitle:"Synthesis and Characterization, Processing and Specific Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-ceramics-synthesis-and-characterization-processing-and-specific-applications",bookSignature:"Costas Sikalidis",coverURL:"https://cdn.intechopen.com/books/images_new/474.jpg",editedByType:"Edited by",editors:[{id:"42599",title:"Prof.",name:"Costas",surname:"Sikalidis",slug:"costas-sikalidis",fullName:"Costas Sikalidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1422",title:"Sintering of Ceramics",subtitle:"New Emerging Techniques",isOpenForSubmission:!1,hash:"285c4e1c255669f44ed4f19f066c84cb",slug:"sintering-of-ceramics-new-emerging-techniques",bookSignature:"Arunachalam Lakshmanan",coverURL:"https://cdn.intechopen.com/books/images_new/1422.jpg",editedByType:"Edited by",editors:[{id:"94482",title:"Dr.",name:"Arunachalam",surname:"Lakshmanan",slug:"arunachalam-lakshmanan",fullName:"Arunachalam Lakshmanan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2132",title:"Sintering",subtitle:"Methods and Products",isOpenForSubmission:!1,hash:"a4374d54a1172051ff65e9f3aebee8f3",slug:"sintering-methods-and-products",bookSignature:"Volodymyr Shatokha",coverURL:"https://cdn.intechopen.com/books/images_new/2132.jpg",editedByType:"Edited by",editors:[{id:"111000",title:"Dr.",name:"Volodymyr",surname:"Shatokha",slug:"volodymyr-shatokha",fullName:"Volodymyr Shatokha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"473",title:"Advances in Ceramics",subtitle:"Characterization, Raw Materials, Processing, Properties, Degradation and Healing",isOpenForSubmission:!1,hash:null,slug:"advances-in-ceramics-characterization-raw-materials-processing-properties-degradation-and-healing",bookSignature:"Costas Sikalidis",coverURL:"https://cdn.intechopen.com/books/images_new/473.jpg",editedByType:"Edited by",editors:[{id:"42599",title:"Prof.",name:"Costas",surname:"Sikalidis",slug:"costas-sikalidis",fullName:"Costas Sikalidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4485",title:"Sintering Techniques of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f3b86bfd3fbf78fd259db41fedf4123f",slug:"sintering-techniques-of-materials",bookSignature:"Arunachalam Lakshmanan",coverURL:"https://cdn.intechopen.com/books/images_new/4485.jpg",editedByType:"Edited by",editors:[{id:"94482",title:"Dr.",name:"Arunachalam",surname:"Lakshmanan",slug:"arunachalam-lakshmanan",fullName:"Arunachalam Lakshmanan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4788",title:"Advanced Ceramic Processing",subtitle:null,isOpenForSubmission:!1,hash:"537975e8ade968caf3e16ea092b9c973",slug:"advanced-ceramic-processing",bookSignature:"Adel Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/4788.jpg",editedByType:"Edited by",editors:[{id:"148964",title:"Dr.",name:"A.M.A",surname:"Mohamed",slug:"a.m.a-mohamed",fullName:"A.M.A Mohamed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7333",title:"Sintering Technology",subtitle:"Method and Application",isOpenForSubmission:!1,hash:"d0b37ebc58f468e22dd7c63f94d0761e",slug:"sintering-technology-method-and-application",bookSignature:"Malin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/7333.jpg",editedByType:"Edited by",editors:[{id:"165407",title:"Dr.",name:"Malin",surname:"Liu",slug:"malin-liu",fullName:"Malin Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"81439",slug:"corrigendum-to-the-development-biology-authentic-learning-of-mahasarakham-university-demonstration-s",title:"Corrigendum to: The Development Biology Authentic Learning of Mahasarakham University Demonstration School (Secondary), Thailand",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/81439.pdf\r\n",downloadPdfUrl:"/chapter/pdf-download/81439",previewPdfUrl:"/chapter/pdf-preview/81439",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/81439",risUrl:"/chapter/ris/81439",chapter:{id:"78086",slug:"the-development-biology-authentic-learning-of-mahasarakham-university-demonstration-school-secondary",signatures:"Wutthisak Bunnaen",dateSubmitted:"April 27th 2021",dateReviewed:"June 8th 2021",datePrePublished:"August 13th 2021",datePublished:"February 9th 2022",book:{id:"9558",title:"Active Learning",subtitle:"Theory and Practice",fullTitle:"Active Learning - Theory and Practice",slug:"active-learning-theory-and-practice",publishedDate:"February 9th 2022",bookSignature:"Olena Lutsenko and Gregory Lutsenko",coverURL:"https://cdn.intechopen.com/books/images_new/9558.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"225667",title:"Mrs.",name:"Olena",middleName:null,surname:"Lutsenko",slug:"olena-lutsenko",fullName:"Olena Lutsenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"342787",title:"Dr.",name:"Wutthisak",middleName:null,surname:"Bunnaen",fullName:"Wutthisak Bunnaen",slug:"wutthisak-bunnaen",email:"wutthisakcomplete@gmail.com",position:null,institution:null}]}},chapter:{id:"78086",slug:"the-development-biology-authentic-learning-of-mahasarakham-university-demonstration-school-secondary",signatures:"Wutthisak Bunnaen",dateSubmitted:"April 27th 2021",dateReviewed:"June 8th 2021",datePrePublished:"August 13th 2021",datePublished:"February 9th 2022",book:{id:"9558",title:"Active Learning",subtitle:"Theory and Practice",fullTitle:"Active Learning - Theory and Practice",slug:"active-learning-theory-and-practice",publishedDate:"February 9th 2022",bookSignature:"Olena Lutsenko and Gregory Lutsenko",coverURL:"https://cdn.intechopen.com/books/images_new/9558.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"225667",title:"Mrs.",name:"Olena",middleName:null,surname:"Lutsenko",slug:"olena-lutsenko",fullName:"Olena Lutsenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"342787",title:"Dr.",name:"Wutthisak",middleName:null,surname:"Bunnaen",fullName:"Wutthisak Bunnaen",slug:"wutthisak-bunnaen",email:"wutthisakcomplete@gmail.com",position:null,institution:null}]},book:{id:"9558",title:"Active Learning",subtitle:"Theory and Practice",fullTitle:"Active Learning - Theory and Practice",slug:"active-learning-theory-and-practice",publishedDate:"February 9th 2022",bookSignature:"Olena Lutsenko and Gregory Lutsenko",coverURL:"https://cdn.intechopen.com/books/images_new/9558.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"225667",title:"Mrs.",name:"Olena",middleName:null,surname:"Lutsenko",slug:"olena-lutsenko",fullName:"Olena Lutsenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11686",leadTitle:null,title:"Essentials of Pulmonary Lobectomy",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tLung resections are performed with many different indications worldwide, and lobectomy is the most frequently preferred one of these surgical resections. The first modern lobectomy with hilar dissection was performed by Blades and Kent in 1940 for the surgical treatment of bronchiectasis. With the demonstration of promising long-term survival results, lobectomy has also become the gold standard treatment method for early-stage non-small cell lung cancer. Today, lobectomy can be performed in many benign and malignant lung pathologies, especially in lung cancer. Although the basic surgical features are similar, more meticulous preoperative preparation, the chance of minimally invasive surgery and careful postoperative care have reduced the mortality and morbidity of lobectomy, unlike in previous years.
\r\n\r\n\tThis book, it is aimed to focus on the technical features of lobectomy, minimally invasive surgery (video-assisted thoracic surgery, robot-assisted thoracic surgery, and hybrid methods) preoperative preparation, and the most up-to-date information on postoperative care.
",isbn:"978-1-80355-571-3",printIsbn:"978-1-80355-570-6",pdfIsbn:"978-1-80355-572-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"34bd6816576c2fdade0d06c7317c68c6",bookSignature:"M.D. Guntug Batihan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11686.jpg",keywords:"Lung Cancer, Bronchiectasis, Metastasis, Thoracic Incisions, Hybrid Lobectomy, Spirometry, Cardiopulmonary Exercise Testing, Bronchovascular Anatomy, Postoperative Pain Control, Respiratory Physiotherapy, Drainage Systems, Postoperative Complications",numberOfDownloads:1,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 8th 2022",dateEndSecondStepPublish:"April 13th 2022",dateEndThirdStepPublish:"June 12th 2022",dateEndFourthStepPublish:"August 31st 2022",dateEndFifthStepPublish:"October 30th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Guntug Batihan is a Consultant Thoracic Surgeon and serves on several editorial boards, is a reviewer of many scientific journals, and is an author of more than 30 medical journal articles.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"296216",title:"M.D.",name:"Guntug",middleName:null,surname:"Batihan",slug:"guntug-batihan",fullName:"Guntug Batihan",profilePictureURL:"https://mts.intechopen.com/storage/users/296216/images/system/296216.jpg",biography:"WORK EXPERIENCE\n\n2016-Present Dr. Suat Seren Chest Diseases and Surgery, Medical Practice and Research Center, \n Thoracic Surgery\n \n2015-2016 Tunceli Ovacık Hospital\n Emergency Service\n\n2014-2015 9 Eylül University Hospital General Practitioner\n\nEDUCATION\n\n2009-2015 9 Eylül University Medical Faculty, Izmir\n2005-2009 Guzelbahce 60. Yıl High School, Izmir\n\nLANGUAGE SKILLS English, Very Good \n German, Intermediate\nRESEARCH AREAS Thoracic Surgery, Thoracic Oncology, Surgical Oncology, Mediastinal Diseases, \n Videothoracoscopic Surgery",institutionString:"Dr. Suat Seren Göğüs Hastalıkları Hastanesi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Dr. Suat Seren Göğüs Hastalıkları Hastanesi",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"82314",title:"Perspective Chapter: Essentials of Lobectomy under Video-Assisted Thoracoscopic Surgery for Non-Small-Cell Lung Cancer",slug:"perspective-chapter-essentials-of-lobectomy-under-video-assisted-thoracoscopic-surgery-for-non-small",totalDownloads:1,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"455410",firstName:"Dajana",lastName:"Jusic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/455410/images/20500_n.jpeg",email:"dajana.j@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"45953",title:"Basic PET Data Analysis Techniques",doi:"10.5772/57126",slug:"basic-pet-data-analysis-techniques",body:'\nIn many neuroscience-based PET research labs, procedures for data analyses are developed in-house and passed along as students, staff and post-doctoral fellows transition through training cycles. Although image processing and data analysis techniques are quite similar across many groups, there has not been any formal information available to the general scientific public. This becomes problematic from an instructional standpoint, as the increasingly cross-disciplinary nature of neuroimaging attracts researchers with vastly diverse backgrounds. It is not uncommon to find behavioral pharmacologists, bench neuroscientists, neuropsychologists, and neuroradiologists interested in using neuroimaging techniques for their research. However, often these individuals cannot pursue formal training in PET because of time constraints from other job demands. Although it is easy for seasoned PET researchers to quickly train someone in a laboratory-codified stream of image processing, the “why” of the steps may not get communicated sufficiently, which is a clear disservice to the trainees. This chapter was designed to remedy this problem. The intent of this chapter is to provide a broad foundation of the concepts behind basic PET image processing and data analyses, using data and images from several neuroligands to illustrate key points.
\nThe reader is expected to have a basic working understanding of positron emission, gamma ray generation, and photon detection by the PET scanner.
\nFirst and foremost, the scientific question at hand should drive the research process. The first question to answer should be: does your institution have the capability to synthesize or obtain the ligand you need to answer your burning question about neuroscience? If the answer is yes, then the next step is in-depth consultation with the research PET experts at the institution, so that the study design and data analysis pathway(s) are clearly defined from the outset. The study design, data acquisition protocols, image processing stream, and analysis will differ from study to study, and will depend heavily on both the radioligand and the neurophysiological phenomenon of interest. Types of questions that need to be addressed include (but are not limited to) the following:
\n\n
\n
Group size is not the only consideration- knowledge of the expected spatial extent of the effect is also important. The newer-generation human PET scanners (and most small animal PET scanners) have excellent spatial resolution (1-2 mm3), but excitement about this technological progress may be mitigated if your hypothesis is restricted to the CA3 region of the hippocampus in humans, or even the whole hippocampus in a mouse. Additionally, the spatial extent of the effect in question will affect the decision to use a region-of-interest based approach versus a voxel-wise analysis (see below).
\nAt this point, hopefully the reader is now familiar with the importance of understanding the type of data that will result from the study, even before the study begins. Although study design is critically important, a thorough discussion of this topic is beyond the scope of this chapter. The remainder of the text will focus on defining concepts and outlining processes for preparing and analyzing neuroligand PET data. Within each subsection, the descriptions will be presented in a linear fashion. However, the ultimate choices an investigator makes regarding a processing/analysis scheme will depend on multiple factors.
\nIt is important to note that it is not the author’s intent to endorse any one particular product or software platform. Examples used here are based primarily on the author’s experience, and it is highly likely that many excellent programs are not mentioned. Choices of hardware and software should be made based on investigator preference and availability of individual and/or institutional licenses.
\n\n
Dynamic data can be acquired in two ways. One is by pre-specifying “frame times” for the acquisition, usually of increasing duration (for example, 6 frames at 10 seconds, 12 frames at 20 seconds, 5x60s, 5x120s, 4x300s, 2x600s). The scanner records all the coincidence events that occur during each specified time frame, and the reconstructed image consists of the average amount of radioactivity detected at each voxel during each time frame. The other method is “listmode acquisition”, where the scanner records all the coincidence events continuously over time. After acquisition, the investigator specifies how the data should be binned into time frames during reconstruction. Listmode acquisition offers more flexibility for the investigator, especially when the ideal time frame sequence has not been identified. The capability for listmode acquisition varies across scanner platforms.
\n\n
When deciding upon a static versus dynamic protocol, it should be kept in mind that capturing dynamic data leaves open the possibility for quantitative metrics (if the proper methods are available); static acquisition does not. Static images can always be created from dynamic data by calculating the weighted average of radioactivity over a specified set of time frames. However, static data cannot be “undone” into dynamic data.
\nThe advantage of PET imaging is that it provides unique information about the chemistry and physiology of the brain. However, even with high-resolution scanners, PET data often do not contain sufficient neuroanatomic information for identification of specific structures within the brain. The solution to this apparent conundrum is to collect an anatomic Magnetic Resonance Image (MRI) sequence (often an “T1-weighted” sequence) in the same subjects that underwent PET imaging. Having the MRI data confers many advantages to the PET image processing stream, as will be evident below. However, the PET images and MRI images, fresh off the scanner and reconstruction queues, will not be automatically matched up in image space. This is caused by many factors, but the biggest one is differences in final voxel dimensions and final image volume. One of the major objectives of post-processing of PET images is to move the PET and MRI images from the same subject into the same three-dimensional space.
\nA second main objective of post-processing is motion correction of the PET data. PET acquisitions typically require the subject to try and lay still for as little as 15 minutes, or for up to 90 minutes at a time. It is not uncommon for subjects to move their heads- from coughing, talking, or falling asleep (singing subjects have also been observed). In some protocols, subjects are allowed to get up for a break during the scan acquisition – which automatically means that the PET data will not be in the same exact place in the scanner. Some institutions have developed sophisticated motion-detection and correction systems that work at the level of the reconstruction; however, most investigators do not have access to this technology. Here, we describe a post-hoc method for motion correction after the image has been generated. Because the brain is encased by the skull, there is little concern about movement of the brain within its external bony boundaries. Therefore, the concept of using temporal gating to correct for organ motion, which is a major concern for cardiac and pulmonary imaging, will not be addressed here.
\nFinally, certain types of data analysis – specifically, voxel-wise analyses – require that all subjects brains be in the same coordinate space. We describe the process that “spatially normalizes” MRI images so that data can be sampled objectively and equivalently across subjects. The processing stream described herein has the goal of translating the PET image(s) into MRI space, so that spatial normalization parameters derived for the MRI likewise can be applied to the PET data.
\nA wealth of literature and scholarly work has been published on the mathematical basis for algorithms that shift, realign, warp, and reslice three-dimensional images from different modalities so they align correctly. The purpose of this section is to provide a basic, qualitative description of some of these algorithms in context of why they are useful for PET data.
\nNote: some image processing programs use the terms like “realign” and “co-register” to designate a very specific series of algorithm implementations. To avoid confusion, we will use these terms generically, without attaching any algorithmic meaning to either. We leave it to the reader to investigate the semantics and procedural implementations of a particular program.
\nRepresentative examples of spatially normalized, co-registered images from a healthy subject. Images are axial slices at the level of the striatum and thalamus. Left, a “static” PET image of [18F]flurodeoxyglucose (FDG) Right, the corresponding anatomic T1-weighted MRI. Note that the FDG image contains a high degree of anatomic information that is shared with the MRI (cohesive brain outline and subcortical structure delineation).
\n
Rigid body algorithms typically “converge” (that is, come to the final, ostensibly correct answer) fairly quickly, and most co-registrations of PET and MRI are successful. However, the algorithms typically rely on the PET and MRI to share a sufficient amount of contrast and outline among anatomic structures for the alignment to work. In cases in which the PET data “looks” sufficiently similar to the structural MR (Figure 1), the registration process is straightforward, and the PET and MR can be aligned without additional steps. However, in the case of dynamic data, the tracer distribution and resulting structural information changes significantly over time. Additionally, different tracers will provide varying degrees of structural information (Figure 2). Because of the lack of similarity to the MRI, attempts to co-register individual early or late-time images will likely fail. Here, an intermediate strategy is often successful: create a PET image that shares sufficient features with
\n
Example of how a mean dynamic image can be used to facilitate successful co-registration with an anatomic MRI. Left, spatially normalized “early” mean PET, consisting of the first ~10 minutes of dynamic [11C]raclopride data. The number of frames required to achieve a balance of flow/binding for co-registration with the MRI depends heavily on the individual tracer kinetics, and must be determined empirically by each investigator for the particular tracer and acquisition sequence. This particular combination happens to work well for [11C]raclopride. Note the general similarity to the FDG scan in
Time-activity curves (TACs) from a [11C]raclopride scan with and without manual motion correction. Left: TAC from the right putamen of a subject after initial automated motion correction was conducted. Subject motion was severe enough that at least two frames could not be corrected by the algorithm (arrows). Right: resultant TACs after several frames were re-oriented manually and the co-registration algorithm was re-run. The improved initial guesses given by the manual manipulation resulted in better convergence for the algorithm and much smoother curves. This illustrates the need for use of TACs to check for motion in addition to the use of cine loops. It also illustrates the advantage of shorter time frames for capturing motion artifacts.
\n\n
If the investigator intends to rely on region-of-interest (ROI) analysis based on subject-specific ROIs from native-space MRIs, then this step may not be needed. Our laboratory uses a combined approach for ROI analysis (see below).
\nIt should be noted that while the working assumption is that the deformations applied to subject data will render the brain totally “warped” to the template, not all individual variation in anatomy is lost. This should be taken into consideration when interpreting voxel-wise analyses (see below), or using template or group-averaged normalized MRs as starting points for ROIs.
\nThe term “partial volume effect” (PVE) and “partial volume correction” have become general terms in neuroimaging. However, it can mean very different things to MRI and PET experts. Even in PET, there can be confusion about between PVE and “spill-out/spill-in” effects. Therefore, definitions are warranted to prevent confusion.
\n\n\n
\n
The source of concern of PVE in PET focuses mainly on quantitative analyses. Regardless of tracer, GM, WM, and CSF will have inherently different kinetics (although CSF does not have “kinetics” per se). This heterogeneity would necessitate accounting for multiple sets of tracer behaviors, complicating and potentially confounding quantitation via mathematical modeling. However, tissue heterogeneity in neuroligand PET data is typically not addressed. This is in part because scanner resolution has improved significantly, and in part because PET processing and analyses rely heavily on structural information from the MRI, which helps restrict the analyses to specific structures/tissue types.
\nSo, the PET studies have been designed and data have been collected. Now what?
\n\n
\n
The most common method used for data normalization is the index of “Standardized Uptake Value” (SUV), in which the radioactivity concentration is divided by injected dose per body weight (e.g., MBq/kg). This index comes with one major assumption, which is that the tracer has been distributed equally across the entire body- that is, all tissues have had an equal opportunity to be exposed to the tracer. If a “sink” for the tracer exists outside the target of interest, such that a great amount of tracer is sequestered during first pass circulation, then the tracer is not being distributed equally across the body. The whole-body distribution assumption has then been violated, and body weight is no longer the proper denominator. In this case, SUV measurements are rendered incorrect, and become unreliable as a dependent variable. Another type of normalization with SUV is “SUVR”, which is the ratio of SUV from tissue that has specific binding of the tracer to tissue that does not (a reference region). This method was proposed for [11C]PiB, and was evaluated thoroughly for this tracer against arterial and reference region kinetic approaches (Lopresti et al., 2005). If investigators are using a relatively new neuroligand and seek to use SUV or SUVR as endpoints, it is highly recommended the stability of the semi-quantitative index be assessed against either VT or BP, either with real data or via simulation studies.
\n\n
\n
Broadly speaking, a region-of-interest (ROI) refers to a user-defined set of voxels (or voxel) on an image, from which PET data are extracted. First, we will address anatomically-defined ROIs.
\nUsing anatomically-defined ROIs remains a popular approach for analyzing neuroligand PET data. Typically, anatomic ROIs are defined on a subject’s MRI, and then transferred to the dynamic PET data (which is in register with the MRI). An average time-activity curve for the ROI is generated (that is, the time-activity curves of all voxels within the ROI are averaged), and the TAC is fed into a model for estimation of VT or BP.
\n\n\n
Time-activity curves (TACs) of [11C]raclopride from, Left: a single voxel in the left ventral striatum (BPND = 2.09) and Right: from the whole left ventral striatum region-of-interest (ROI) (BPND = 2.74). BPND values were estimated with MRTM (
\n
There are many ways to generate anatomic ROIs. Often, ROIs are painstakingly drawn by hand, which is labor- and time-intensive (and fairly boring for the individual charged with this task). This also has the risk of inducing subjective bias to the ROI definition, with the ensuing possibility data may not be completely comparable across institutions. However, adherence to strict and consistent anatomic definitions based on accepted atlas(es) (e.g., Martinez et al., 2003; Mawlawi et al., 2001) helps mitigate any investigator-induced bias. There are many software programs that offer sets of pre-defined ROIs, which are often defined from a single-subject MR. In our experience, these ROIs are not very representative and do not match well to our subject samples. We have also found that ROIs drawn by our lab on “canonical” average multi-subject T1 templates (again, available in many software packages) do not conform well to our subject samples. Yet another option is to utilize sophisticated software that automatically extract hundreds of ROIs by parcellation of a subjects’ MRI. Our laboratory uses a combined approach, in which we start with an individual subjects’ spatially normalized gray matter map and a template ROI (e.g., ventral striatum) generated from an average MR from our subject sample. These two sources are combined to generate a “starting point” MRI, which is then edited to explicitly conform to an individual’s subject anatomy. Regardless of chosen method, the investigator should take care to ensure that the anatomic ROIs are spatially appropriate for each individual subject.
\nChoice of statistical analysis of ROIs depends on the study design: independent t-tests, paired t-tests, one-way ANOVA, mixed effects models, ANCOVA, correlations, etc. Regardless of the test, when multiple ROIs are being tested for between-group or between-condition effects, or for correlations with e.g., a particular subject characteristic, there is always the question of whether the results need to be corrected for multiple comparisons. This is a relevant but somewhat controversial issue. It is indeed the case that multiple comparisons can lead to false positive results (Type I error), and results that survive statistical adjustments for the multiple tests (e.g., a Bonferroni correction) can help assure the investigator that the effects are real. However, arguments have been made that in pilot studies and/or with exploratory data, such corrections are overtly stringent and unwarranted (Perneger, 1998). Investigators should be prepared to justify omission of correction for multiple comparisons based on the exploratory nature of the study and/or sample size.
\n\n
Technically speaking, a voxel is the smallest ROI that is possible within an image. Voxel-wise analyses assume that all subject brain data are in the same coordinate space (see above). Voxel-wise studies demand “parametric images”, that is, voxels cannot be in units of radioactivity concentration, but must be converted to either a quantitative (e.g., VT or BP) or semi-quantitative (e.g., SUV) value. (In this context, “parametric” simply carries the general meaning of a uniformly normalized or an explicit physiologically descriptive value, and should not be confused with “parameter estimation” used to describe the process of kinetic modeling). In the case of quantitative values, the parameter of interest is generated based on the time-activity curve for each voxel (the input function is the same for all voxels). Taking a page from MRI processing procedures, many investigators will spatially smooth the parametric images to remove any spuriously high or low voxel values. The smoothing kernel should be roughly the size of the practical resolution of the PET scanner (not the ideal, intrinsic resolution). Statistical models are specified based on study design, and statistical testing is performed at each voxel. Most image analysis packages include the flexibility to specify different statistical thresholds, which allows investigators to interrogate the data for subthreshold effects. They also have the capacity to apply stringent corrections for a true multiple comparisons problem: performing statistical tests at tens of thousands of voxels across the brain simultaneously. Areas of significant results are shown as “clusters” (groups of contiguous voxels).
\nAlthough first-pass voxel-wise analyses does not necessarily have to correct for multiple comparisons, there may be logical reasons to spatially restrict the initial voxel-wise analyses. If the tracer is only anticipated to have specific binding in gray matter, use of an average gray matter mask (derived from the sample) would be appropriate to exclude WM and CSF voxels. [11C]raclopride (a dopamine D2/D3 antagonist) is another good example- the signal-to-noise properties of this tracer are such that it cannot be used to quantitate D2/D3 receptor binding in areas outside the striatum (which has the highest concentration of D2/D3 in the brain). In our laboratory, we use a striatal mask to restrict the search area to the striatum. However, with tracers that can bind to processes that are not restricted to gray or white matter, whole-brain sampling would be more appropriate (unless the investigator has an a priori hypothesis that targets a specific region). An example of this would be [11C]PBR28, which is a marker of neuroinflammatory processes. Additionally, if the investigator has specific a priori hypotheses about a structure of interest, it is reasonable to use an anatomic ROI to restrict analysis to a particular nucleus or cortical area. By now, the reader should appreciate that the distinctions between voxel-wise and ROI analyses begin to blur a bit.
\n\n
\n\n
\n
The output of most voxel-wise analyses is a series of parametric maps with
Many analysis programs will allow you to save out a cluster of significant voxels as an ROI; single voxels may even be used as ROIs (this would be useful for characterizing peak effects). You may also choose to use a predefined anatomic ROI, especially when the effect of interest spans areas of interest, or the region was part of an
Many of the processes discussed here involve computer-based procedures. However, it is unwise to assume that the algorithms will work perfectly and that the data will always be robust. In order to assure the quality of the study, quality control by real humans is required- at every point along the processing and analysis stream. Simple visual checks can be made to determine the success of the co-registration, motion correction, and normalization steps. Here is a sample checklist:
\nMR-PET co-registration: Is the mean/summed PET in the same space as the native MR? Multiple anatomic landmarks should be assessed- from outer cortical layers to subcortical landmarks such as striatal boundaries, ventricles, and corpus callosum. Cortical landmarks may be the best visual assessment for PET studies that do not contain much subcortical binding (for example, [11C]PiB in healthy controls)
MR normalization. The “warping” of the native space MR to the target coordinate space should be checked against the coordinate template. This step does not always converge appropriately, and some very strange brains can result from incorrect convergence of the spatial normalization algorithm. A helpful step to ensure successful normalization is to first perform a rigid-body co-registration between the subject native space MR and the canonical template, then perform the spatial normalization step.
PET normalization. To perform this QC step, create a mean or summed PET from all the spatially normalized dynamic PET frames (or spatially normalized single static frame), and compare it to both the subject’s normalized MR and the template MR. If the MR normalization step was successful, then in most cases the PET normalization will be fine – but this should never be taken for granted.
Motion-correction. Programs that read in multiple 3D volumes in a cine loop are extremely useful for visually detecting motion. Make sure that the program can read in the numerical convention of sequential mages (i.e., decimal or hexadecimal). Investigators must learn to distinguish between true anatomic subject motion and the random noise inherent in PET images- which can create an optical illusion of motion.
Anatomic regions of interest. This QC should be done during the generation of the regions of interest, but is still a crucial trouble-shooting step, especially if a subject’s data appears to be a high or low outlier relative to the sample. It is extremely important to check the overlay of the ROIs on the PET data. Reslicing of the PET data during the motion correction and spatial normalization can result in “chopping off” of brain regions, especially cerebellum and frontal cortex. It is very important to make sure the anatomic ROIs are not sampling image “air”. This is especially important for quantitative analyses that utilize BP with a “reference regions” (see above). If the reference region is corrupted by white matter, CSF, or “air”, then the BP estimate of the target region (or voxel) will be corrupted.
Time-activity curves. Even if the investigator intends to only run a voxel-wise analysis, it is always a good idea to visually check the TACs from at least one, if not several, anatomic regions of interest. This may help identify motion that needs to be corrected, or may shed light on other data quality problems that should be addressed.
Parametric images. Regardless of outcome variable (e.g., SUV VT, BP), the parametric images should be examined to make sure the values are reasonable. If outlying values are observed, then more intensive investigation is warranted to identify the source of the (apparently) aberrant data.
Executing all the image processing steps individually can be time-consuming and labor-intensive. With many programs, it is possible to automate, or “batch”, many steps together through the use of scripts. In fact, automation is often implemented at the level of multiple subjects at once. The degree of automation implemented must be up to the discretion of the laboratory and what works best with the current laboratory culture, which encompasses both available manpower and study completion rate. Some labs may run hundreds of subjects, then perform QC steps for each step in batches for each QC point. Other labs may choose to implement QC for each individual subject as those data come through. Workload distribution of QC is ultimately up to each investigator, based on their needs.
\nIn general, the same principles described above regarding types of data (semi-quantitative, quantitative) and analyses (ROI, voxel-wise) apply to PET imaging in small animals. Having said that, some special concerns need to be addressed (or alleviated). In most studies, animals will be anesthetized during imaging. If the animal is restrained by a device that prohibits head motion (e.g., for neuroimaging, a stereotaxic head-holder), then motion correction for the dynamic PET data may not be needed. (Again, gating acquisition methods for thoracic and abdominal imaging are beyond the scope of this discussion). If the animal’s skull is not explicitly restrained, then head motion may occur from breathing, and motion-correction algorithms may be warranted.
\nIf one acquires parallel data in other modalities for the purposes of co-registration, the nature of the PET data must be considered within the context of aligning one modality to another. Tracer kinetics in rodents can be vastly different than what is observed in humans. Some tracers may have very little apparent brain uptake, and therefore the outline of the brain may not be obvious. If there is little information about brain shape in the PET data, a co-registration algorithm may not work accurately, or may even crash. If alternate modality images are acquired and needed for co-registration (e.g., CT for attenuation correction; MR for anatomic localization of anatomic structures), then image editing may be required for successful co-registration between the PET data and MRI and/or CT. For example, if the lack of a coherent brain outline in the PET image data is problematic, it may be useful to edit out the skull in CT or MR images. On the other hand, in rodents, tracers with high uptake areas (e.g., dopaminergic ligands in the striatum) may not register well to a rodent MR, which will not have clear delineation between subcortical nuclei in rodents. In this case, an early-time PET image may be useful for registration. Finally, if the animal is restrained with a headholder, the extra image information from the headholder material may need to be edited out to render a more purely anatomic image and facilitate co-registration with the PET (which will not show the presence of the holder). Again, there is no “set” approach, and it is up to the investigator to empirically determine what is most appropriate for their particular imaging system.
\nRegardless if an ROI or voxel-wise approach is used for small animal PET data analysis, it is important that the investigator appreciate the practical resolution limitations of the imaging modality. Even with the most advanced small animal PET scanners, it is difficult to resolve structures below a ~1mm3 volume. This is true even if high-resolution anatomic MR data are available. Two key concepts are worth emphasizing:
\nThe presence of micron resolution in an MR image co-registered to a PET image does not guarantee micron resolution in the PET dataset (see above section for discussion on partial voluming artifacts).
The voxel size in a PET image does not necessarily correspond to the practical resolution of the scanner. Images can be resliced almost infinitely to very small voxels by relatively simple interpolation of the original PET data. However, this does not change the actual resolution of the scanner. If the final PET voxel size is one 0.25mm x 0.25mm x 0.25mm, and the practical scanner resolution is 1mm x 1mm x 1mm, then the resolution is still 1mm x 1mm x 1mm. Information is not gained by voxel sizes that are smaller than the intrinsic scanner resolution. Check with your local PET expert to determine what the resolution of the small animal scanner is.
Voxel-wise studies in small animal PET data require careful consideration with respect to how spatial normalization will be achieved, especially with rodent data. Brain structure between rodent strains is likely to be quite different; it should not be assumed that one-rat (or mouse) brain-fits-all. Additional factors like gender, age, and weight of the animal also influence brain shape and structure. Of particular note is that brain development and growth in rodents is nonlinear across structures (Sullivan et al., 2006), and therefore a younger brain should not simply be scaled up to the size of an older rodent brain. Three-dimensional templates and atlases of mice and rat brains are becoming more common. However, when possible, the investigator should consider generating an in-house brain template specific to the strain, age, gender, and weight of the sample being studied.
\nImage processing and data analysis of neuroligand PET data requires multiple steps. There are an almost infinite number of possible iterations and refinements to data processing streams. Hopefully, this chapter has provided a useful overview of the key concepts investigators need to consider when working with these expensive and often complex datasets. Regardless of the exact sequence of processing procedures selected, a thorough working knowledge of the rationale behind each step will help ensure the fidelity and quality of the laboratory’s datasets.
\nThe author would like to thank Daniel Albrecht and Dr. Shannon Risacher for processing the PET data presented in this report, and for providing data for the figures.
\nSoftware-Defined Networking (SDN) is an intelligent architecture in networking. It decouples the control and data plane which helps to improve the network performance and make it scalable, secure, and programmable. Internet of Things (IoT) network embedded with sensors nodes, RFID tags, smart cards, low resource devices which can communicate and share huge data to provide services to the clients. It is too difficult to provide security to the IoT system in heterogeneous and large networks. To combine SDN and IoT in a single architecture as SDN-IoT, it can make the infrastructure plane controllable, smart, reliable, and scalable [1]. IoT has many applications in different areas such as smart cities, smart vehicular networks, and security surveillance. To make these secure, SDN plays a huge part since it controls the whole network from its control plane. IoT devices capture and store sensitive information which is a great concern to make the network and physical devices secure from the eavesdroppers. 5G is the latest communication technology that is famous for low latency, massive connectivity, high throughput, and heterogeneous nature. By making SDN-IoT architecture in 5G, it can be flexible, dynamic and helps to improve the bad scalability due to hardware differences in heterogeneous environments. To make these happen there are many security challenges that need to be taken care of. One of the major necessities of 5G is low latency which is a real challenge with a huge growing market. Many cryptographic algorithms exist, but due to their high time and space complexity requirements, it will be a good choice to avoid these in a fast communication system like 5G. Recently, a lightweight cryptographic algorithm (LWCA) is a new area of cryptography applied in 5G [2]. These algorithms do not require much space, and the time complexity is also low which makes this technique applicable in IoT networks where limited battery life and strict physical constraints both need to be considered. Currently, many researchers tend to shift their focus from cryptographic aspects of security to lightweight security algorithms [3]. This helps the system to become less complex, provide high performance and also lower the cost. Traditional cryptographic techniques have high complexity as well as it is difficult to implement. In this chapter, we discuss different lightweight cryptographic algorithms and their applications in the SDN-5G network. There are three vulnerable areas in SDN-IoT architecture: Control Plane, Data Plane, and the Interfaces between Control and Data Plane due to their programmable nature and open access architecture.
LCAs are divided into four types: 1. Block cipher, 2. Stream cipher, 3. Hash functions, 4. Elliptic curve cryptography. Each of the techniques has its own strength and weaknesses. Based on the application’s requirements, it can be used in different layers of SDN-IoT architecture. Block ciphers are AES, DES, DESL, DESX, DESLX, Piccolo, TEA, XTEA, mCRYPTON, PRESENT, TWINE, LBlock whereas SNOW-V and Espresso are the stream cipher presented in this chapter maintaining the strict requirements of LWCA. Apart from the above-mentioned algorithms also, GRAIN works as a stream cipher and can use as one of the LWC algorithms in the SDN-IoT network. It uses very few gates with high security and less power consumption. When it comes to security perspectives, HIGHT, ICEBERG, CLEFIA are good choices. Hummingbird holds both of the properties of block and stream cipher and can implement in both hardware as well software. This flexibility of implementation and maintaining the lightweight properties can use this technique in both the infrastructure and control layers of the SDN-IoT network in 5G. SHA-1, SHA-2, SHA-3, BLAKE2 are the algorithms used as Hash function techniques. We will discuss each of them and their applications in the SDN-IoT network later in this chapter. There are some application areas of cryptography where we work with such devices that operate on battery power and need cryptographic algorithms which consume less power, such devices are medical implant devices or environment-measuring devices. Although very few works have been done in this direction and many exposures are open for future research work in this subarea of cryptography which we mention here as lightweight cryptography (LWC). Most of the LWC algorithms can resist linear and differential attacks which are the basic criteria of any general cryptographic algorithm. It is important to measure the performance of LWC algorithms before using them in any application. One of the key criteria of the LWC algorithm is low latency. For that, some of the automobile sectors which require immediate response use LWC techniques for security purposes. IoT devices that require less CPU cost and memory consumption such as smart TV, tablet PCs are the application area of LWCAs. Also, medical sensors, smart agriculture sensors, RFID tag applications, electrical home appliances, automobile industry are the different applications of LWCAs.
Software-defined networking (SDN), a network architecture, provides an environment that enables the network traffic and connectivity provided by a set of network resources that are centrally controlled or programmed by software applications. It manages the data traffic forwarding or processing functions, such as QoS, filtering, monitoring, or tapping. Except the traditional network architecture, the SDN architecture logically decouples data and control plane which helps to control the network centrally from the control plane. This helps to improve the scalability of SDN architecture. Figure 1 illustrates the working principles of SDN. SDN architecture comprises three basic components: Data Plane, Control Plane, Application Plane.
Software defined networking architecture.
It consists of hosts and Open Flow (OF) switches. OF forwards data from source to a destination following the instructions of the Control layer. The data plane handles the data traffic forwarding and processing based on the configuration set by the control plane. It implements all the forwarding and processing decisions which have been made and commanded by the control plane. Also, the data plane needs to respond to network failure which is configured by the control plane. The controller plane interface with the data plane is called D-CPI. It executes the function which is capable of event notification.
It controls the network resources of the data plane. Resources that are involved to forward and processing data traffic. It may comprise a set of SDN controllers based on the number of applications. The concern of control plane in case of multiple SDN controllers also to execute different applications with no overlapping with one another. To execute multiple application controllers, it has to communicate with one another. SDN controller which is a network operating system (NOS) is a logical concept. It is programmable and centrally keeps track of the global view of the network and data traffic. It dynamically configures the working strategy of the devices in the data plane.
It consists of one or more applications that have the capability to communicate with them. The controller plane interface with the application plane is called A-CPI. Each SDN application may consist of a coordinator, SDN application logic, and A-CPI agent. An SDN application may invoke more than one SDN controller through the A-CPI interface to achieve its goal.
A heterogeneous network of smart devices that are connected and communicated for transferring a large amount of data to provide services according to client application’s requirements technically called IoT. To make the physical structures, such as buildings, transportation vehicles, transportation networks, information technology networks more smart, secure, and automated, IoT is a great solution. It can make the physical devices interact with each other. It divides the whole network into three main abstract levels, sensing layer, network layer, the application layer. Figure 2 illustrates the working principles of IoT with detailed descriptions of all layers.
Internet of things architecture in 5G network.
It is also called the perception layer. All the hardware integration has been done in this layer. In traditional internet, this layer is equivalent to the physical layer. It senses and collects data from physical devices. The data can be temperature, humidity, presence or absence of some observable, etc.
It is also called the transport layer. It acts as a bridge between the sensing layer and the application layer. It transmits the data collected from the sensing layer and sends it to the application layer based on applications requirements. The network layer can be wired or wireless, sometimes both wired and wireless networks can together make an IoT network. This layer is responsible for receiving instructions from the controller.
This is the last layer of abstraction in the IoT network. It receives data comes from the networks layer and based on this; it provides service. The applications can be a smart home, smart cities, smart vehicular network, security, and surveillance of a building.
SDN architecture plays an important role for security purposes and traffic analysis. This architecture will help in SDN-IoT network for security purposes which is better than traditional internet in many different ways. As the name implies SDN working principle is based on software programming and control by the control plane. The advantages of an SDN network over the traditional network are it helps to modify the software functions based on dynamic requirements really quickly which is a great concern of traditional networks where the software functions are fixed. The inability for scaling, poor network security, and performance are the great concern in the traditional network which has been mitigated in SDN architecture.
Recently IoT is the fastest growing technology with dynamic characteristics. Traditional internet has static constraints which is the most difficult barrier to work with IoT networks. The dynamism and centralized control architecture of SDN helps IoT to be a great partner of SDN rather than of traditional internet. Also, SDN provides debugging tool which helps the IoT environment to enhance security which earlier was not possible on the traditional internet.
Figure 3 illustrates SDN with IoT architecture. This configuration divides the network into three layers, the infrastructure layer, control layer, and service layer or application layer.
Software-defined internet of things architecture.
The infrastructure layer is divided into two sublayers sensing layer and the communication layer. The sensing layer consists of different smart IoT devices and the communication layer consists of different data forwarding devices. The IoT devices help to create different IoT applications. These IoT devices collect a large volume of data from the physical plane. In comparison to SDN architecture, the infrastructure layer is equivalent to the data layer. The infrastructure layer consists of Open Flow (OF) switches which work exactly the same as what OF works in SDN architecture.
The next layer in SDN-IoT architecture is called the control layer which contains an SDN controller or a number of controllers. This layer is responsible for global controlling and monitoring communications between the infrastructure layer and the application layer. Multiple controllers can help in this regard if anyone fails since controllers are communicating with one another. This type of configuration called the multi-controller master–slave deployment model, where one controller act as a master controller and others are act as slaves waiting for the instructions of the master controller if any one of the slave controllers fails to follow the instructions of the master controller. There are more than 30 controllers available up to now where some of them are open source and others are proprietary with their own programming languages and interfaces.
The application layer is responsible for different IoT services, such as smart home and smart city. This is also called the service layer in standard SDN-IoT architecture. The control layer communicates using the D-CPI interface to get required data from the sensing layer and using the A-CPI interface communicates with the application or service layer.
The difference between a traditional network and SDN is it decouples the control and data plane which divides the network into a set of components and interfaces. This unique feature of SDN makes it different from the traditional network also makes it vulnerable in terms of security. The controller plane is the central part of SDN, an attack in the controller plane may collapse the whole network. There are a few vulnerable areas that SDN encounters due to its centralized control and open programmable interfaces. The attacks can target to different areas of SDN described below:
To measure the performance of lightweight algorithms, there are some performance metrics are described below.
Latency = N ∗ CriticalPathoftheCircuit
Energy = Latency ∗ Power/blocksize.
Efficiency = Throughput/Complexity.
Complexity in terms of chip area is defined by GE and so the unit used to define complexity is KGE. For a software implementation, the efficiency can be calculated as:
Efficiency = Throughput/Codesize.
In this case, code size is defined in KB.
The major constraint of IoT devices is it has limited resources in terms of processing power, storage and memory. This must be a primary reason when lightweight cryptographic (LWC) techniques came into the picture. This technique works in tight memory and resource constraints environments and has low computational complexity. Resources can be the size of the chip, cost of the IoT device, total speed, and power consumption. The size of the chip used in smart IoT devices must be small, so the encryption algorithm code size should be small enough to fit into these chips. The overall cost of the IoT devices should not increase much after using an encryption algorithm. The programming languages used to code the algorithm should be energy efficient, require less run time and memory [4]. LWC techniques are used for extremely low resource constraints devices which are communicating in IoT networks. LWC is one of the subbranch of cryptographic techniques. The battery technology is increasing relatively slowly and most of the encryption algorithm takes huge energy, so there is a trade-off between energy consumption and security.
5G mobile communication architecture is divided into three sections [2]—radio access network (RAN), core network, and application network. RAN in the infrastructure layer of the SDN-IoT network connects devices with one another to the control layer. In comparison with the hardware architecture, using software architecture reduces the equipment, development cost and improves flexibility. RAN can be modified to C-RAN which is a cloud/centralized RAN that works using software programming in 5G network. The security operations then moved to the cloud and implemented using software programs. This makes the cryptographic designer focuses more on the security aspects of the algorithm than the hardware efficiency which measures in GE. In this context, AES-256 is a great solution against quantum computing. There are a few algorithms discussed below, such as AES-256, SNOW-V, DES, Piccolo, Hash Algorithm, Espresso, which are potential for 5G security perspectives in the software platform. It is recommended to use in the cloud environment and is suitable for SDN-IoT architecture.
The security concern of SDN-IoT architecture comes into three layers as mentioned above. The first layer is an infrastructure layer, in IoT architecture, the infrastructure layer is equivalent to the sensing layer and in comparison to SDN architecture, this layer is equivalent to the data layer. All the LWC algorithms suitable for strict memory constraint IoT devices are used in this plane. The second layer is the control layer, which controls the overall system’s architecture and the third layer is the service layer or application layer. Below we discuss all three layers and the potential LWC algorithms for each layer.
SDN-IoT control layer is responsible for controlling the whole structure and traffic monitoring in a centralized manner, for that any malicious action can be detected from the control plane easily and for immediately taking an action. Multiple controllers connected by east/westbound interfaces with one another to maintain the connection. These interfaces are suffered from a lack of security support protocols and are easily vulnerable by the attacker. Identity-based cryptography (IBC) and elliptic curve cryptography (ECC) [5] are the two security solutions for this problem. Other cryptographic algorithms used in the control layer are Hash algorithms [6], AES [7], PRESENT [8], DES [9], etc.
Elliptic Curve Cryptography (ECC): ECC belongs to the category of LWC techniques. The key size has a significant role in cryptographic algorithms. The more the key size, the hard the algorithm to break. ECC which is based on a public-key cryptographic approach provides the same level of security as Rivest-Shamir-Adleman (RSA) algorithm but with a smaller key size. ECC with the 521-bit length of key provides the same level of security as Conventional RSA with a 15,360-bit length which implies ECC uses less memory than Conventional RSA signifies a great impact of mobile optimization. The key creation also takes less time in ECC which uses an elliptic curve to generate faster and smaller keys than the Conventional RSA algorithm which uses large prime numbers. To break the 228-bit ECC key, it would take more energy than the total energy required to boil all the water on the earth. This technique is called the next generation of cryptography since this is not a widely accepted method in the cryptographic system yet. It uses a complex mathematical algorithm to protect data which is a game-changer in the near future of cryptography. ECC is an asymmetric algorithm like RSA.
Hash Algorithms: Hash technique is considered a lightweight one-way authentication technique for generating a digital signature. SHA-1 and SHA-2 both are used in the control plane of SDN-IoT architecture of 5G network. The SHA-2 uses 256-bit digest whereas SHA-1 uses 160-bit digest confirms SHA-2 is more difficult to break than SHA-1 was the reason SHA-1 has not been used since 2010. The most recently developed Hash algorithm is SHA-3 which can be a future concept of SDN-IoT security architecture. All the hash algorithms from the SHA family standardize by the National Institute of Standard and Technology (NIST). The total number of iterations taken by SHA algorithms is 80 which leads to a power-hungry situation. This in terns leads to a requirement of using the BLAKE2 hashing algorithm which uses eight rounds to generate a message digest of 256-bit. Also, the time and space requirement of the BLAKE2 algorithm is much better than SHA in digital signature-based authentication schemes. All the security threats can handle by SHA-2 algorithms up to today. SHA-3 will be used in the near future if any such situations are beyond the capability of SHA-2.
AES-256 [7]: It is a block cipher algorithm with a 128-bit data block and 256-bit key length used for encryption purposes in the control layer. The key length is variable; therefore, 128-bit key length requires 10 rounds, 192-bit key requires 12 rounds, 256-bit key requires 14 rounds. The throughput achieves for plaintext size 256 bytes is 22.67Gbps which is more than the targeted downlink speed requirement of 5G, which is 20Gbps. An AES implementation for RFID tag takes 3600 GE which is far beyond the minimum criteria of IoT nodes which is 2000 GE. This is one of the reason; AES-256 is used in cloud or software environments rather than hardware constraint environments such as the infrastructure layer of the SDN-IoT network. The control layer uses cloud and virtualization technologies to virtualize and centralize the function where securing the system using AES, DES, or other highly secure algorithms are recommended. Here security is more important than hardware cost. One of the famous lightweight IoT app “Flutter” includes AES-256 for encryption purposes.
SNOW-V: A 256-bit key length stream cipher can implement both in hardware as well software as SNOW-V [10]. Here V stands for virtualization. This algorithm takes the design and security techniques from SNOW 3G techniques. In this cryptographic technique, the throughput achieves for 256 bytes of plaintext is 26.37 Gbps. In comparison with SNOW 3G where the throughput achieves for 256 bytes of plaintext is 5.38 Gbps does not meet the minimum criteria of 5G network. So, there is a need to revise SNOW 3G to SNOW-V to meet 5G requirements. Both of the technique works with a key length of 256-bit. In a hardware implementation, it may require a large portion which may reach up to 19,179 GE. It is recommended to use this technique in a software environment and may not use for hardware constraint IoT devices.
DES: The main difference between AES and DES [9] is DES has a key size lesser than AES. This block cipher uses 56-bit keys with 64-bit blocks. Reducing the key size also reduces the hardware requirements of this algorithm while implementing it in a hardware environment. A smaller key size will lead to a lower security level. There are two variants of DES: DESL and DESX. Hardware implementation costs for DES and DESX are 2309GE and 2629GE. DESX uses the key-whitening technique to improve security performance. Another variation of the DES algorithm is DESXL which is the combination of DESL and DESX with GE 2169. On the other hand, DESL uses 1848 GE which is fairly a great deal for using it in hardware constraint devices such as RFID tags. DESL optionally uses the key-whitening method and avoid brute-force attack also reduces gate complexity by using serial hardware architecture and replacing 8 S-Boxes with a single box. This algorithm also improves the resistance against linear cryptanalysis and differential cryptanalysis attacks. One of the variants of DES is 3DES also used in the control layer for encryption purposes.
Piccolo [11]: It is a 64-bit block cipher supporting 80-bit and 128-bit keys. From a security perspective as well as compact design aspects, this lightweight encryption technique can handle both. Both encryption and decryption take 818GE. This algorithm is not only famous for its minimal GE requirement but provides strong security against many attacks, such as Differential Attack, Linear Attack, Boomerang-Type Attacks, Impossible Differential Attack, Related-Key Differential Attacks, Meet-in-the-Middle Attack. This algorithm is suitable in a cloud environment which confirms to use it in the control layer of the SDN-IoT network. Due to its small memory requirements, it can also use in the infrastructure layer.
Espresso: This is a stream cipher that combines both of the primary constraints of 5G and IoT network which is hardware area requirements and throughput and provides a solution as an encryption technique. This technique is called the best trade-off between GE measure and throughput while security standards are also maintained. The hardware implementation requires 2045GE with 8.88Gbps throughput and 59 ns latency which meet most of the 5G requirements [12].
The SDN-IoT infrastructure layer is integrated with constrained devices that require security algorithms that take less area to execute. Apart from timing, power, and energy [13] constraints, the area is another primary constraint of IoT devices. One of the metrics to measure the efficiency of the algorithm in terms of hardware area is gate equivalence. It is noted that GE less than 2000 is recommended for IoT devices in 5G network since they have very strict hardware and timing constraints, such as RFID tags, sensor nodes, smart and cards. All the encryption algorithms described here mostly have less than 2000 GE and are very efficient in terms of power consumption and timing.
TEA: TEA [14] is a lightweight cryptographic block cipher algorithm that is the fastest and is famous for its simple implementation. This algorithm is implemented in software with very few lines of code that can be implemented in any programming language is the main reason for its high-speed nature. This approach is resistant to differential attacks which is one of the major problems for IoT devices. XTEA and XXTEA are the two variants of TEA that are more efficient in terms of security and implementation. TEA follows the architecture of IDEA, a symmetric key block cipher that brings the gap between AES and DES. TEA uses 64-bit blocks and 128-bit keys. XXTEA which is the modified variant of block TEA, another variant of TEA works on variable-length blocks.
mCRYPTON: Another block cipher for resource constraint tiny devices, such as low-cost RFID tags and sensors is Miniature CRYPTON (mCRYPTON) [15]. mCRYPTON follows the architecture of CRYPTON, a 64-bit block cipher with key size options 64, 96, and 128-bits. mCRYPTON provides an economic hardware cost of 2400 GE for encryption under 0.13 m CMOS technology. This hardware cost is affordable for RFID tags and sensor nodes. For further size reduction of 30% requires compact implementation of each component in both hardware and software.
PRESENT: PRESENT is another cryptographic technique known to be ultra-lightweight block cipher. In the case of PRESENT, it uses 1570 GE which is considered to be one of the lowest areas consumed while evaluating code for the algorithm. It is designed to be implemented in hardware and it is very difficult to implement it in software for the use of bitwise permutation.
HIGHT: HIGHT [16] is another lightweight algorithm for low resource IoT devices that require 3000 GE. In comparison with AES which requires 3400 GE, this algorithm takes less time to execute with a block length of 64-bit and a key length of 128-bit. Although the GE requirement of HIGH is much higher than other lightweight algorithms but the security aspects confirm this algorithm to use for IoT devices.
TWINE: TWINE [17] is another approach for lightweight cryptography with 1800 GE. It can be implemented in hardware as well as software signifies a good balance for hardware and software. TWINE is a 64-bit block cipher that supports the key value of 80-bit and 128-bit.
LBlock: LBlock [18] is a lightweight block cipher of block size 64-bit and the key size is 80-bit. The area efficiency of this algorithm is 1320 GE on 0.18 m technology with a throughput of 200 Kbps at 100 KHz and the software implementation on an 8-bit microcontroller requires 3955 clock cycles to encrypt a plaintext block.
The application layer is responsible for different IoT services, such as smart home, smart city, etc. This is also called the service layer in standard SDN-IoT architecture. Different protocols work on the application layer of the IoT network. Message Queuing Telemetry Transport (MQTT) is one of the protocols used in the application layer which enhances machine-to-machine communication between client and server. The challenge of the MQTT protocol in 5G is to work with constraint IoT devices. The security improvement of the MQTT protocol is called Secure MQTT (SMQTT). The new version improves the security perspective of MQTT. For this purpose, there are many lightweight security algorithms are used, such as AES and RSA. Arduino is an open-source IoT development tool that uses the RSA algorithm. Diffie-Hellman (DH) and Elliptic Curve Cryptography (ECC) can be an alternative solution to the RSA algorithm. ECC is the most efficient public-key encryption technique in terms of power consumption for resource constraints IoT devices in comparison with other encryption techniques, such as RSA, Diffie-Hellman, and Digital Signature Algorithm (DSA). In ECC, it uses less key size and provides higher security. It is also a low latency algorithm that can be implemented in hardware as well as software environment leads to use this in infrastructure layer as well as cloud security environment. This technique also supports the minimum requirements of 5G security in terms of key value which must be at least 256-bit. We present the comparison of different LWCA in terms of GE, block length, and key length in Table 1.
SDN-IoT different layers | LWCA | Hardware area (GE) | Key length (bit) | Block length (bit) |
---|---|---|---|---|
Infrastructure layer | TEA [14] | 2100 | 128 | 64 |
mCRYPTON [15] | 2400 | 64/96/128 | 64 | |
PRESENT [8] | 1570 | 80/128 | 64 | |
HIGHT [16] | 3000 | 128 | 64 | |
TWINE [17] | 1800 | 80/128 | 64 | |
LBlock [18] | 1320 | 80 | 64 | |
Control layer and Infrastructure layer | AES-256 [7] | 3600 | 128/192/256 | 128 |
SNOW-V [10] | 19,179 | 256 | — | |
DES [9] | 2309 | 56 | 64 | |
Piccolo [11] | 818 | 80/128 | 64 | |
Espresso [12] | 2045 | 128 | — | |
Service Layer | AES [7] | 3600 | 128/192/256 | 128 |
Comparison of different LWCA for different layers of SDN-IoT network in 5G.
All the LWC algorithms presented in this chapter can implement in software/hardware/both environments. We are here to present a code snippet of the TEA algorithm using c language with a few lines of code. Here we present the algorithm for implementation purposes. The algorithm uses 32 rounds, although 16 rounds are sufficient. The term “delta” indicates here golden ratio serves for encryption/decryption purposes to get different values in each round.
Encryption:
Initialize:
int. round = 0;
unsigned long delta = 0x9e3779b9, a = 0, data[], key[], p, q;
p = data[0], q = data[1];
While (round <32)
a = a + delta;
p + = ((q < <4) + key[0])^(q + a)^((q> > 5) + key[1]);
q + = ((p < <4) + key[2])^(p + a)^((p> > 5) + key[3]);
round ++;
data[0] = p, data[1] = q;
Decryption:
Initialize:
int. round = 32;
unsigned long delta = 0x9e3779b9, data[], key[], p, q, a;
p = data[0], q = data[1], a = (delta<<5);
While (round >0)
q + = ((p < <4) + key[2])^(p + a)^((p> > 5) + key[3]);
p + = ((q < <4) + key[0])^(q + a)^((q> > 5) + key[1]);
a = a - delta;
round --;
data[0] = p, data[1] = q;
In the above, we describe different lightweight cryptographic algorithms that are used in different layers of the SDN-IoT network depending on the feature of the algorithm. We mainly focus on all the algorithms that satisfy the minimum requirements of 5G and IoT nodes in terms of throughput, power consumption, and hardware area requirement. There are many algorithms considered as lightweight encryption techniques based on different criteria, such as GE measure, code size, RAM/ROM, used. We here only focus on those encryption algorithms that satisfy the criteria of 5G network that is throughput value must be fair enough to support the minimum requirement of uplink and downlink speed and GE must be small enough for IoT nodes. Apart from throughput and GE constraints, there are other aspects that we have considered, such as implementation aspects of the algorithm, best suited in hardware or software environments. There is always a trade-off among different performance metrics of LWC algorithms. Depending on the requirements of the SDN-IoT network layer, the algorithms are set for a particular layer.
LWC | Lightweight Cryptography |
IoT | Internet of Things |
SDN | Software-defined Networking |
LWCA | Lightweight Cryptographic Algorithm |
OF | Open Flow |
NOS | Network Operating System |
A-CPI | Application and Controller Plane Interface |
D-CPI | Data and controller Plane Interface |
SDN-IoT | Software-defined Internet of Things |
SOAP | Simple Object Access Protocol |
REST API | Representational State Transfer Application Programming Interface |
GE | Gate Equivalence |
RAN | Radio Access Network |
C-RAN | Cloud/Centralized RAN |
IBC | Identity Based Cryptography |
ECC | Elliptic Curve Cryptography |
RSA | Rivest-Shamir-Adleman |
NIST | National Institute of Standard and Technology |
AES | Advanced Encryption Standard |
DES | Data Encryption Standard |
SHA | Secure Hash Algorithm |
RFID | Radio Frequency Identification |
TEA | Tiny Encryption Algorithm |
IDEA | International Data Encryption Algorithm |
mCRYPTON | Miniature CRYPTON |
MQTT | Message Queuing Telemetry Transport |
SMQTT | Secure MQTT |
DH | Diffie-Hellman |
DSA | Digital Signature Algorithm |
The Open Access model is applied to all of our publications and is designed to eliminate subscriptions and pay-per-view fees. This approach ensures free, immediate access to full text versions of your research.
",metaTitle:"Open Access Publishing Fees",metaDescription:"Open Access Publishing Fees",metaKeywords:null,canonicalURL:"/page/OA-publishing-fees",contentRaw:'[{"type":"htmlEditorComponent","content":"As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\\n\\nThe Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\\n\\nOAPF Publishing Options
\\n\\nDuring the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\\n\\n*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\\n\\nServices included are:
\\n\\nWhat isn't covered by the Open Access Publishing Fee?
\\n\\nIf your manuscript:
\\n\\nYour Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\\n\\nOpen Access Funding
\\n\\nTo explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\\n\\nFor Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\\n\\nAdded Value of Publishing with IntechOpen
\\n\\nChoosing to publish with IntechOpen ensures the following benefits:
\\n\\nBenefits of Publishing with IntechOpen
\\n\\nAs a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\n\nThe Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\n\nOAPF Publishing Options
\n\nDuring the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\n\n*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\n\nServices included are:
\n\nWhat isn't covered by the Open Access Publishing Fee?
\n\nIf your manuscript:
\n\nYour Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\n\nOpen Access Funding
\n\nTo explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\n\nFor Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\n\nAdded Value of Publishing with IntechOpen
\n\nChoosing to publish with IntechOpen ensures the following benefits:
\n\nBenefits of Publishing with IntechOpen
\n\n\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"June 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA. Dr. Stavropoulos received her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a Faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,annualVolume:null,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,annualVolume:11974,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82013",title:"Streamlining Laboratory Tests for HIV Detection",doi:"10.5772/intechopen.105096",signatures:"Ramakrishna Prakash and Mysore Krishnamurthy Yashaswini",slug:"streamlining-laboratory-tests-for-hiv-detection",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:62,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Parasitic Infectious Diseases",value:5,count:2,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:3,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:4,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:2},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"25",type:"subseries",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}}]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/45953",hash:"",query:{},params:{id:"45953"},fullPath:"/chapters/45953",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()