Open access

Ferromagnetic Resonance

Written By

Orhan Yalçın

Submitted: September 25th, 2012 Published: July 31st, 2013

DOI: 10.5772/56134

Chapter metrics overview

11,766 Chapter Downloads

View Full Metrics

1. Introduction

Ferromagnetism is used to characterize magnetic behavior of a material, such as the strong attraction to a permanent magnet. The origin of this strong magnetism is the presence of a spontaneous magnetization which is produced by a parallel alignment of spins. Instead of a parallel alignment of all the spins, there can be an anti-parallel alignment of unequal spins. This results in a spontaneous magnetization which is called ferrimagnetism.

The resonance arises when the energy levels of a quantized system of electronic or nuclear moments are Zeeman split by a uniform magnetic field and the system absorbs energy from an oscillating magnetic field at sharply defined frequencies corresponding to the transitions between the levels. Classically, the resonance event occurs when a transverse ac field is applied at the Larmor frequency.

The resonance behaviour usually called magnetic resonance (MR) and nuclear magnetic resonance (NMR). Main types of resonance phenomenon can be listed as nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), electron paramagnetic/spin resonance (EPR, ESR), spin wave resonance (SWR), ferromagnetic resonance (FMR), antiferromagnetic resonance (AFMR) and conductor electron spin resonance (CESR). The resonant may be an isolated ionic spin as in electron paramagnetic resonance (EPR) or a nuclear magnetic resonance (NMR). Also, resonance effects are associated with the spin waves and the domain walls. The resonance methods are important for investigating the structure and magnetic properties of solids and other materials. These methods are used for imaging and other applications.

The following information can be accessed with the help of such resonance experiments. (i) Electrical structure of point defects by looking at the absorption in a thin structure. (ii) The line width with the movement of spin or surroundings isn’t changed. (iii) The distribution of the magnetic field in solid by looking at the of the resonance line position (chemical shift and etc.). (iv) Collective spin excitations.

The atoms of ferromagnetic coupling originate from the spins of d-electrons. The size of μ permanent atomic dipoles create spontaneously magnetized. According to the shape of dipoles materials can be ferromagnetic, antiferromagnetic, diamagnetic, paramagnetic and etc.

Ferromagnetic resonance (FMR) technique was initially applied to ferromagnetic materials, all magnetic materials and unpaired electron systems. Basically, it is analogous to the electron paramagnetic resonance (EPR). The EPR technique gives better results at unpaired electron systems. The FMR technique depends on the geometry of the sample at hand. The demagnetization field is observed where the sample geometry is active. The resonance area of the sample depends on the properties of material. The FMR technique is advantageous because it does not cause damage to materials. Also, it allows a three dimensional analysis of samples. The FMR occurs at high field values while EPR occurs at low magnetic field values. Also, line-width of ferromagnetic materials is large according to paramagnetic materials. Exchange interaction energy between unpaired electron spins that contribute to the ferromagnetism causes the line narrowing. So, ferromagnetic resonance lines appear sharper than expected.

The FMR studies have been increased since the EPR was discovered in 1945 (Zavosky, 1945; Kittel, 1946, 1947, 1949, 1953, 1958; Kip, 1949; Bloembergen, 1950, 1954; Crittenden, 1953; Van Vleck, 1950; Herring, 1950; Anderson, 1953; Damon, 1953; Young, 1953; Ament, 1955; Ruderman, 1954; Reich, 1955; Kasuya, 1956; White, 1956; Macdonald, 1956; Mercereau, 1956; Walker, 1957; Yosida, 1957; Tannenwald, 1957; Jarrett, 1958; Rado, 1958; Brown, 1962; Frait, 1965; Sparks, 1969). The beginnings of theoretical and experimental studies of spectroscopic investigations of basic sciences are used such as physics, chemistry, especially nanosciences and nanostructures (Rodbell, 1964; Kooi, 1964; Bhagat, 1967, 1974; Sparks, 1970(a), 1970(b), 1970(c), 1970(d); Rachford, 1981; Dillon, 1981; Schultz, 1983; Artman, 1957, 1979; Ramesh, 1988(a), 1988(b); Fraitova, 1983(a), 1983(b), 1984; Teale, 1986; Speriosu, 1987; Vounyuk, 1991; Roy, 1992; Puszkarski, 1992; Weiss, 1955). The FMR technique can provide information on the magnetization, magnetic anisotropy, dynamic exchange/dipolar energies and relaxation times, as well as the damping in the magnetization dynamics (Wigen, 1962, 1984, 1998; De Wames, 1970; Wolfram, 1971; Yu, 1975; Frait, 1985, 1998; Rook, 1991; Bland, 1994; Patton, 1995, 1996; Skomski, 2008; Coey, 2009). This spectroscopic method/FMR have been used to magnetic properties (Celinski, 1991; Farle, 1998, 2000; Fermin, 1999; Buschow, 2004; Heinrich, 2005(a), 2005(b)), films (Özdemir, 1996, 1997), monolayers (Zakeri, 2006), ultrathin and multilayers films (Layadi, 1990(a), 1990(b), 2002, 2004; Wigen, 1993; Zhang, 1994(a), 1994(b); Farle, 2000; Platow, 1998; Anisimov, 1999; Yıldız, 2004; Heinrich, 2005(a); Lacheisserie, 2005; de Cos, 2006; Liua, 2012; Schäfer, 2012), the angular, the frequency (Celinski, 1997; Farle, 1998), the temperature dependence (Platow, 1998), interlayer exchange coupling (Frait, 1965, 1998; Parkin, 1990, 1991(a), 1991(b), 1994; Schreiber, 1996; Rook, 1991; Wigen, 1993; Layadi, 1990(a); Heinrich, 2005; Paul, 2005), Brillouin light scattering (BLS) (Grünberg, 1982; Cochran, 1995; Hillebrands, 2000) and sample inhomogeneities (Artman, 1957, 1979; Damon, 1963; McMichael, 1990; Arias, 1999; Wigen, 1998; Chappert, 1986; Gnatzig, 1987; Fermin, 1999) of samples. Besides using FMR to characterize magnetic properties, it also allows one to study the fundamental excitations and technological applications of a magnetic system (Schmool, 1998; Voges, 1998; Zianni, 1998; Grünberg, 2000, 2001; Vlasko-Vlasov, 2001; Zhai, 2003; Aktaş, 2004; Birkhäuser Verlag, 2007; Seib, 2009). The various thickness, disk array, half-metallic ferromagnetic electrodes, magnon scattering and other of some properties of samples have been studied using the FMR tehniques (Mazur, 1982; da Silva, 1993; Chikazumi, 1997; Song, 2003; Mills, 2003; Rameev, 2003(a), 2003(b), 2004(a), 2004(b); An, 2004; Ramprasad, 2004; Xu, 2004; Wojtowicz, 2005; Zakeri, 2007; Tsai, 2009; Chen, 2009). The magnetic properties of single-crystalline (Kambe, 2005; Brustolon, 2009), polycrystalline (Singh, 2006; Fan, 2010), alloy films (Sihues, 2007), temperature dependence and similar qualities have been studied electromagnetic spectroscopy techniques (Özdemir, 1998; Birlikseven, 1999(a), 1999(b); Fermin, 1999; Rameev, 2000; Aktaş, 2001; Budak, 2003; Khaibullin, 2004). The magnetic resonance techniques (EPR, FMR) have been applied to the iron oxides, permalloy nanostructure (Kuanr, 2005), clustered, thermocouple connected to the ferromagnet, thin permalloy layer and et al. (Guimarães, 1998; Spoddig, 2005; Can, 2012; Rousseau, 2012; Valenzuela, 2012; Bakker, 2012; Maciá, 2012; Dreher, 2012; Kind, 2012; Li, 2012; Estévez, 2012; Sun, 2012(a), 2012(b), 2012(c); Richard, 2012). Magneto-optic (Paz, 2012), dipolar energy contributions (Bose, 2012), nanocrystalline (Maklakov, 2012; Raita, 2012), La0.7Sr0.3MnO3 films (Golosovsky, 2012), La0.67Ba0.33Mn1-yAyO3, A - Fe, Cr (Osthöver, 1998), voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (Zhu, 2012) and the typical properties of the inertial resonance are investigated (Olive, 2012). The exchange bias (Backes, 2012), Q cavities for magnetic material (Beguhn, 2012), MgO/CoFeB/Ta structure (Chen, 2012), the interfacial origin of the giant magnetoresistive effect (GMR) phenomenon (Prieto, 2012), self-demagnetization field (Hinata, 2012), Fe3O4/InAs(100) hybrid spintronic structures (Huang, 2012), granular films (Kakazei, 1999, 2001; Sarmiento, 2007; Krone, 2011; Kobayashi, 2012), nano-sized powdered barium (BaFe12O19) and strontium (Sr Fe12O19) hexaferrites (Korolev, 2012), Ni0.7Mn0.3-x CoxFe2O4 ferrites (NiMnCo: x = 0.00, 0.04, 0.06, and 0.10) (Lee, 2012), thin films (Demokritov, 1996,1997; Nakai, 2002; Lindner, 2004; Aswal, 2005; Jalali-Roudsar, 2005; Cochran, 2006; Mizukami, 2007; Seemann, 2010), Ni2MnGa films (Huang, 2004), magnetic/electronic order of films (Shames, 2012), Fe1-xGd(Tb)x films (Sun, 2012), in ε-Al0.06Fe1.94O3 (Yoshikiyo, 2012). 10 nm thick Fe/GaAs(110) film (Römer, 2012), triangular shaped permalloy rings (Ding, 2012) and Co2-Y hexagonal ferrite single rod (Bai, 2012) structures and properties have been studied by FMR tecniques (Spaldin, 2010). Biological applications (Berliner, 1981; Wallis, 2005; Gatteschi, 2006; Kopp, 2006; Fischer, 2008; Mastrogiacomo, 2010), giant magneto-impedance (Valenzuela, 2007; Park, 2007), dynamics of feromagnets (Vilasi, 2001; Rusek, 2004; Limmer, 2006; Sellmyer, 2006; Spinu, 2006; Azzerboni, 2006; Krivoruchko, 2012), magneto-optic kerr effect (Suzuki, 1997; Neudecker, 2006), Heusler alloy (HA) films (Kudryavtsev, 2007), ferrites (Kohmoto, 2007), spin polarized electrons (Rahman, 2008) and quantum mechanics (Weil, 2007) have been studied by FMR technique in generally (Hillebrands, 2002, 2003, 2006). In additional, electric and magnetic properties of pure, Cu2+ ions doped hydrogels have been studied by ESR techniques (Coşkun, 2012).

The FMR measurements were performed in single crystals of silicon- iron, nickel-iron, nickel and hcp cobalt (Frait, 1965), thin films (Knorr, 1959; Davis, 1965; Hsia, 1981; Krebs, 1982; Maksymowich, 1983, 1985, 1992; Platow, 1998; Durusoy, 2000; Baek, 2002; Kuanr, 2004), CoCr magnetic thin films (Cofield, 1987), NiFe/FeMn thin films (Layadi, 1988), single-crystal Fe/Cr/Fe(100) sandwiches (Krebs, 1989), polycrystalline single films (Hathaway, 1981; Rezende, 1993) and ultrathin multilayers of the system Au/Fe/Au/Pd/Fe (001) prepared on GaAs(001) (Woltersdorf, 2004). The FMR techniques have been succesfully applied peak-to-peak linewidth (Yeh, 2009; Sun, 2012), superconducting and ferromagnetic coupled structures (Richard, 2012) and thin Co films of 50 nm thick (Maklakov, 2012). The garnet materials (Ramesh, 1988 (a), 1988 (b)), polar magneto-optic kerr effect and brillouin light scattering measurements (Riedling, 1999), giant-magnetoresistive (GMR) multilayers (Grünberg, 1991; Borchers, 1998) and insulated multilayer film (de Cos, 2006; Lacheisserie, 2005) are the most intensely studied systems.

The technique of FMR can be applied to nano-systems (Poole, 2003; Parvatheeswara, 2006; Mills, 2006; Schmool, 2007; Vargas, 2007; Seemann, 2009; Wang, 2011; Patel, 2012; De Biasi, 2013). The FMR measurement on a square array of permalloy nanodots have been comparion a numerical simulation based on the eigenvalues of the linearized Landau-Lifshitz equation (Rivkin, 2007). The dynamic fluctuations of the nanoparticles and their anisotropic behaviour have been recorded with FMR signal (Owens, 2009). Ferromagnetic resonance (FMR) modes for Fe70Co30 magnetic nanodots of 100 nm in diameter in a mono-domain state are studied under different in-plane and out-of-plane magnetic fields (Miyake, 2012). The FMR techniques have been accomplished applied to magnetic microwires and nanowire arrays (Adeyeye, 1997; Wegrowe, 1999, 2000; García-Miquel, 2001; Jung, 2002; Arias, 2003; Raposo, 2011; Boulle, 2011; Kraus, 2012; Klein, 2012). In additional, FMR measurements have been performed for nanocomposite samples of varying particles packing fractions with demagnetization field (Song, 2012). The ferromagnetic resonance of magnetic fluids were theoretically investigated on thermal and particles size distribution effects (Marin, 2006). The FMR applied to nanoparticles, superparamagnetic particles and catalyst particles (de Biasi, 2006; Vargas, 2007; Duraia, 2009).

In the scope of this chapter, we firstly give a detailed account of both magnetic order and their origin. The origin of magnetic orders are explained and the equations are obtained using Fig.1 which shows rotating one electron on the table plane. Then, the dynamic equation of motion for magnetization was derived. We mentioned MR and damping terms which have consisted three terms as the Bloch-Bloembergen, the Landau-Lifshitz and the Gilbert form. We indicated electron EPR/ESR and their historical development. The information of spin Hamiltonian and g-tensor is given. The dispersion relations of monolayer, trilayers, five-layers and multilayer/n-layers have regularly been calculated for ferromagnetic exchange-couple systems (Grünberg, 1992; Nagamine, 2005, Schmool, 1998). The theoretical FMR spectra were obtained by using the dynamic equation of motion for magnetization with the Bloch-Bloembergen type damping term. The exchange-spring (hard/soft) system which is the best of the sample for multilayer structure has been explained by using the FMR technique and equilibrium condition of energy of system. The FMR spectra originated from the iron/soft layers as shown in the exchange spring magnets in Fig.9. Finally, superparamagnetic/single-domain nanoparticles and their resonance are described in detail.


2. Magnetic order

Magnetic materials are classified as paramagnetic, ferromagnetic, ferrimagnetic, antiferromagnetic and diamagnetic to their electronic order. Magnetic orders are divided in two groups as (i) paramagnetic, ferromagnetic, ferrimagnetic, antiferromagnetic and (ii) diamagnetic. The magnetic moments in diamagnetic materials are opposite to each other as well as the moments associated with the orbiting electrons so that a zero magnetic moment μ is produced on macroscopic scale. In the paramagnetic materials, each atom possesses a small magnetic moment. The orientation of magnetic moment of each atom is random, the net magnetic moment of a large sample (macroscopic scale) of dipole and the magnetization vector are zero when there is no applied field.

Nanoscience, nanotechnology and nanomaterials have become a central field of scientific and technical activity. Over the last years the interest in magnetic nanostructures and their applications in various electronic devices, effective opto-electronic devices, bio-sensors, photo-detectors, solar cells, nanodevices and plasmonic structures have been increasing tremendously. This is caused by the unique properties of magnetic nanostructures and the outstanding performance of nanoscale devices. Dimension in the range of one to hundred nanometers, is called the nano regime. In recent years, nanorods, nanoparticles, quantum dots, nanocrystals etc. are in a class of nanostructures (Yalçın, 2012; Kartopu & Yalçın, 2010; Aktaş, 2006) studied extensively. As the dimensions of nano materials decrease down to the nanometer scale, the surface of nanostructures starts to exhibit new and interesting properties mainly due to quantum size effects.


3. Origin of magnetic moment

The magnetization of a matter is derived by electrons moving around the nucleus of an atom. Total magnetic moment occurs when the electrons such as a disc returns around its axis consist of spin angular momentum and returns around the nucleus consist orbital angular momentum. The most of matters which have unpaired electrons have a little magnetic moment. This natural angular momentum consists of the result of charged particle return around its own axis and is called spin of the particle. The origin of spin is not known exactly, although electron is point particle the movement of an electron in an external magnetic field is similar to the movement of the disc. In other words, the origin of the spin is quantum field theoretical considerations and comes from the representations of the Poincare algebra for the elementary particles. The magnetism related to spin angular momentum, orbital angular momentum and spin-orbit interactions angular momentum. The movement of the electron around the nucleus can be considered as a current loop while electron spin is considered very small current loop which generate magnetic field. Here, orbital angular momentum was obtained by the result of an electron current loop around the nucleus. Thus, both it is exceeded the difficulty of understanding the magnetic moment and the magnetic moment for an electron orbiting around the nucleus is used easily. The result of orbital-angular momentum (L) adapted for spin-angular momentum (S) (Cullity, 1990).

One electron is rotating from left to right on the table plane as shown in Fig.1. The rotating electron creates a current (i) on the circle with radius of r.

Figure 1.

Schematic representation of the precession of a single electron on the table plane.

The magnetic moment of a single electron is defined as below


Where, Ais the circle area. The magnetic moment is written as follows by using the current (e=it), one cycle (2πr=vt) and angular momentum (L=mevr) definition.


Where γ=e/2me and Lis the gyromagnetic (magneto-mechanical or magneto-gyric) ratio and the orbital-angular momentum, respectively. Therefore, the magnetic moment μ is obtained from Eq. (2) as below


The following expression is obtained when derivative of Eq.(3)


For our purpose, we only need to know that γ is a constant anddγ=0. From this results,dμ+γdL=0. The derivative of time of this equation, the equation of motion for magnetic moments of an electron is found as below


This equation is related to τ=dL/dt in two dimensional motions on the plane and F=dP/dtin one dimensional motion. This motion corresponds to Newton’s dynamic equations. When an electron is placed in an applied magnetic fieldH, the magnetic field will produce a torque (τ) on the magnetic moment (μ) of amountμ×H. The equation of motion for magnetic moment (μ) is found by equating the torque as below

Figure 2.

Schematic representation of precession of a single magnetic moment μ in the external magnetic field around the z-axis.


This expression is called the equation of motion for magnetic moment (μ). The motion of magnetic moment (μ) forms a cone related to Hwhen the angle θof magnetic moment and external magnetic field does not change. Therefore, in time (dt), the tip of the vector μ moves an angle(γH)dt. The magnetic moment vector make precession movement about H at a frequency ofγH/2π. This frequency, υ=ω/2π=γH/2π, is called the Larmor frequency. In general this Larmor frequency is used this form ω=γH in literature.


4. Magnetic resonance

Magnetic Resonance (MR) is a research branch which examines magnetic properties of matters. The magnetic properties of atom originate from electrons and nucleus. So, it is studied in two groups such as electron paramagnetic resonance (EPR)/electron spin resonance (ESR) and nuclear magnetic resonance (NMR). At ESR and NMR all of them are the sample is placed in a strong static magnetic field and subjected to an orthogonally amplitude-frequency. While EPR uses a radiation of microwave frequency in general, NMR is observed at low radio frequency range. The energy absorption occurs when radio frequency is equal with energy difference between electrons two levels. But, the transition must obey the selection rules. The splitting between the energy levels occurs when total angular moment of electron is different from zero. On the other hand, the splitting of energy levels has not been observed in the filled orbit. The precession motion of a paramagnetic sample in magnetic field is seen schematically in Fig. 2. If microwave field with υ-frequency at perpendicular is applied to the static field, it comes out power absorption when precession (ω0) is same with υ-frequency. The power increases when these frequencies come near to each other and it occurs maximum occurs at point when they are equal. This behaviour is called magnetic resonance (MR).

The magnetic materials contain a large number of atomic magnetic moment in generally. Net atomic magnetic moment can be calculated byM=Nμ. Where, N is the number of atomic magnetic moment in materials.


This precession movement continue indefinitely would take forever when there is no damping force. The damping term may be introduced in different ways. Indeed, since the details of the damping mechanism in a ferromagnet have not been completely resolved, different mathematical forms for the damping have been suggested. The three most common damping terms used to augment the right-hand side of Eq. (7) are as follows:

(i) The Bloch-Bloembergen form: Mθ,φT2MzM0T1

(ii) The Landau-Lifshitz form: λ|M|2M×M×H

(iii) The Gilbert form: α|M|M×dMdt

Bloch-Bloembergen type damping does not converse Mso it is equivalent to the type of Landau-Lifshitz and the Gilbert only when αis small and for small excursion ofM. For large excursion ofM, the magnitude of Mis certainly not protected, as the damping torque is in the direction of the magnetization component in this formularization. Hence, the observation of M in the switching experiments in thin films should be provide a sensitive test on the appropriate form of the damping term for ferromagnetism since M which is conserved during switching. This would suggest that the form of the Bloch-Bloembergen damping term would not be applicable for this type of experiment. The Gilbert type (Gilbert, 1955) is essentially a modification of the original form which is proposed firstly by Landau and Lifshitz (Landau & Lifshitz, 1935). It is very important to note that the Landau-Lifshitz and Gilbert type of damping conserve while the Bloch-Bloembergen (Bloembergen, 1950) type does not. Landau and Lifshitz observed that the ferromagnetic exchange forces between spins are much greater than the Zeeman forces between the spins and the magnetic fields in their formulation of the damping term. Therefore, the exchange will conserve the magnitude ofM. In this formulation, since the approach of Mtowards His due completely to the relatively weak interaction between MandH, we must require thatλ<<γM. In this small damping limit, the Landau-Lifshitz and the Gilbert forms are equivalence so that whether one uses one or the other is simply a matter of convenience or familiarity. However, Callen has obtained a dynamic equation by quantizing the spin waves into magnons and treating the problem quantum-mechanically (Callen, 1958). Subsequently, Fletcher, Le Craw, and Spencer have reproduced the same equation using energy consideration (Fletcher, 1960). In their reproduction, they found the mean the rate of energy transfer between the uniform precession, the spin waves (Grünberg, 1979, 1980) and the lattice.


5. Electron paramagnetic resonance

Stern and Gerlach (Gerlach, 1922) proved that the electron-magnetic moment of an atom in an external magnetic field originates only in certain directions in the experiment in 1922. Uhlenbek and Goudsmit found that the connection between the magnetic moment and spin angular momentum of electron (Uhlenbek, 1925), Rabi and Breit found the transition between the energy levels in oscillating magnetic field (Rabi, 1938). This also proved to be observed in the event of the first magnetic resonance. The EPR technique is said to be important of Stern-Gerlach experiment. Zavoisky observed the first peak in the electron paramagnetic resonance for CuCI22H2O sample and recorded (Zavoisky, 1945). The most of EPR experiments were made by scientists in the United Kingdom and the United States. Important people mentioned in the experimental EPR studies; Abragam, Bleaney and Van Vleck. The historical developments of MR have been summarized by Ramsey (Ramsey, 1985). NMR experiments had been done by Purcell et al. (Purcell, 1946). Today it has been used as a tool for clinical medicine. MRI was considered as a basic tool of CT scan in 1970s. The behaviors of spin system under the external magnetic field with the gradient of spin system are known NMR tomography. This technique is used too much for medicine, clinics, diagnostic and therapeutic purposes. General structure of the EPR spectrometer consist four basic parts in general. (i) Source system (generally used in the microwave 1-100 GHz), (ii) cavity-grid system, (iii) Magnet system and (iv) detector and modulation system. EPR/ESR is subject of the MR. An atom which has free electron when it is put in magnetic field the electron’s energy levels separate (Yalçın, 2003, 2007(a), 2007(b)). This separation originates from the interaction of the electrons magnetic moment with external magnetic field. Energy separating has been calculated by the following Hamiltonian.


It is called Zeeman Effect. If the applied magnetic field oriented z-axis energy levels are;


Here, gis the g-value (or Landé g-value) (for free electron ge=2.0023193and protongN=2.7896), μBis Bohr magneton (μB=(eh/4πme)=9.2740×1024J/T) and Msis the number of magnetic spin quantum. If the orbital angular momentum of electron is large of zero (L>0)g -value for free atoms is following


The anisotropy of the g-factor is described by taking into account the spin–orbit interaction combined (Yalçın, 2004(c)). The total magnetic moment can be written at below;


The values of orbital angular momentum of unpaired electrons for most of the radicals and radical ions are zero or nearly zero. Hence, the number of total electron angular momentum Jequals only the number of spin quantumS. So, these values are nearly 2. For free electron (Ms=±1/2) and for this electron;


When the electromagnetic radiation which frequency υ is applied to such an electron system;


Figure 3.

The energy levels and resonance of free electron at zero field and increasing applied magnetic field. In this figure, while the value of magnetic field increases, the separating between energy levels increase. Arbitrary units used in vertical axes for χ2anddχ2/dH.

If this equation is provided the system absorbs energy from applied electromagnetic wave (see Fig. 3). It is called resonance effect. Material absorbs energy in two different ways from applied electromagnetic wave by according to the Eq.(12). Firstly, in Eq.(12), frequency of electromagnetic wave doesn’t change while the external magnetic field changes. Secondly, its opposite can be provided.

In this Fig.(3) it has been seen that magnetic susceptibility χ2 versus magnetic field. At the same time it is said the absorption curve. The magnetic field derivative beneath of this figure is FMR absorption spectrum (dχ2/dH). Here, Δppand 1/T2are linewidth, Hresis resonance field, ω/γis resonance frequency.

5.1. Spin Hamiltonian

The spin Hamiltonian is total electronic spins and nucleon spin I which have crystal lattice under the static magnetic field following;

(13)S^and I operators of electronic and nucleus, respectively. In this equation, first term is Zeeman effect, second one is thin layer effects, the third one is the effect of between electronic spin and nucleus-spin of ion and it is known that thin layer effects. The fourth term is the effect of nucleus with the magnetic field. The last one is quadrupole effect of nucleus. It can be added different terms in Eq.13 (Slichter, 1963).

5.2. gtensor

The total magnetic moment of ion isμ=gμBJ. Jis the ratio of total angular momentum to Planck constant. Landé factor g is depend onS,L,J. For the base energy level if L is zero, gfactor is equal free electron’s g-factor. But, g-factor in the exited energy levels separated from the g-factor of free electron. The hamiltonian for an ion which is in the magnetic field is following (Weil, 1994).


In this equation, first term is Zeeman effects, second one is spin-orbit interaction. The first order energy of ion which shows |J,Mand it is excepted not degenerate is seen at below.


We can write the hamiltonian equation which uses energy equations. There is two terms in the hamiltonian equations. The first term is the independent temperature coefficient for paramagnetic for paramagnetic, the last terms are only for spin variables. If the angular moment of ion occurs because of spin, g-tensor is to be isotropic.


6. Ferromagnetic resonance

The most important parameters for ferromagnet can be deduced by the ferromagnetic resonance method. FMR absorption curves may be obtained from Eq.(12) by chancing frequency or magnetic field. FMR signal can be detected by the external magnetic field and frequency such as EPR signal. The field derivative FMR absorption spectra are greater than in EPR as a generally. The linear dependence of frequency of resonance field may be calculated from 1 GHz to 100 GHz range in frequency spectra (L-, S-, C-, X-, K-, Q-, V-, E-, W-, F-, and D-band). The resonance frequency, relaxation, linewidth, Landé g-factor (spectroscopic g-factor), the coercive force, the anisotropy field, shape of the specimen, symmetry axes of the crystal and temperature characterized FMR spectra. The broadening of the FMR absorption line depend on the line width ( so called 1/T2 on the Bloch-Bloembergen type damping form). The nonuniform modes are seen in the EPR signal. The nonlinear effects for FMR are shown by the relationship between the uniform precessions of magnetic moments. The paramagnetic excitation of unstable oscillation of the phonons displays magneto-elastic interaction in ferromagnetic systems. This behaviour so called magnetostriction. The FMR studies have led to the development of many micro-wave devices. These phenomenon are microwave tubes, circulators, oscillators, amplifiers, parametric frequency converters, and limiters. The resonance absorption curve of electromagnetic waves at centimeter scale by ferromagnet was first observed by Arkad’ev in 1913 (Arkad’ev, 1913).

The sample geometry, relative orientation of the equilibrium magnetizationM, the applied dc magnetic field Hand experimental coordinate systems are shown in Fig.4.

Figure 4.

Sample geometries and relative orientations of equilibrium magnetization M and the dc components of external magnetic field, Hfor thin films.

The ferromagnetic resonance data analyzed using the free energy expansion similar to that employed


Where, EZ,Ea,Ed,Eexare Zeeman, magnetocrystalline anisotropy, demagnetization and ferromagnetic exchange energy. (θ,ϕ)and (θH,ϕH)are the angles for magnetization and applied magnetic field vector in the spherical coordinates, respectively. Magnetic anisotropy energy arises from either the interaction of electron spin magnetic moments with the lattice via spin-orbit coupling. On the other hand, anisotropy energy induced due to local atomic ordering. The θ in anisotropy energy is the angle between magnetization orientation and local easy axis of the magnetic anisotropy. Ku1and Ku2are energy density constants. The demagnetization field is proportional to the magnetic free pole density. The exchange energy for thin magnetic film may be neglected in generally. Because associated energies is small. But, this exchange energy are not neglected for multilayer structures. This energy occurs between the magnetic layers, so that this energy called interlayer exchange energy. This expression is seen at the end of this subject in details. Keff=πM2+KUis the effective uniaxial anisotropy term and Ku takes into account some additional second-order uniaxial anisotropy andHeff=2πMS+(2Ku/Ms) is the effective field for a single magnetic films. The equilibrium values of polar angles θfor the magnetization vector M are obtained from static equilibrium conditions. Eθ,Eϕ,EθθandEϕϕcan be easily calculated using the Eq. (16). Neglecting the damping term one can write the equation of motion for the magnetization vector Mas


Here the Heffis the effective magnetic field that includes the applied magnetic field and the internal field due to the anisotropy energy. The dynamic equation of motion for magnetization with the Bloch-Bloembergen type damping term is given as Eq.(18).


Here, T=(T2,T2,T1)represents both transverse (for Mxand My components) and the longitudinal (for Mz components) relaxation times of the magnetization. That is, T1is the spin-lattice relaxation time, T2is the spin-spin relaxation time, and δiz=(0,0,1)for (x,y,z) projections of the magnetization. In the spherical coordinates the Bloch-Bloembergen equation can be written as below;

Figure 5.

Damped precession of a magnetic moment M toward the effective magnetic field Heffaccording to the Bloch-Bloembergen type equation (Aktaş, 1993, 1994; Yalçın, 2008(a)).


Where, the torque is obtained from the energy density through the expression


For a small deviation from the equilibrium orientation, the magnetization vector Mcan be approximated by


Where the dynamic transverse components are assumed to be sufficiently small and can be given as


Dispersion relation for films can be derived by using these solutions (Eq.(22)) in Eqs. (19) and (20). On the other hand, the eigen frequency of thin films mode is determined by the static effective field and can be derived directly from the total free energy for magnetic system/ferromagnet. It is given by the second derivatives of the total energy with respect to the θ andϕ (Smit, 1955; Artman, 1957; Wigen, 1984, 1988, 1992; Baseglia, 1988; Layadi, 1990; Farle, 1998). The matrices form for mθandmϕ is calculated using the Eq.(19) with Eq.(20, 21, 22).


Here (ω/γ)=gμBH is the Larmour frequency of the magnetization in the external dc effective magnetic field. This dispersion relation can be related as the angular momentum analogue to be linear momentum oscillator describedω=κ/μi. Here, restoring force constantκ is the second derivative of the potential part in the energy of systemκ=Exx. The inverse mass μi1is given by the second derivative of the kinetic part in the energy with respect to linear momentumμi1=Epp. The restoring constant in this chapter corresponds toEθθ. The inverse mass is proportional toEϕϕ. The Eθϕ arises when the coordinate system is not parallel to the symmetry and last term originated from relaxation term in Eq.(23) (Sparks, 1964; Morrish, 1965; Vittoria, 1993; Gurevich, 1996; Chikazumi, 1997)

The power absorption from radio frequency (rf) field in a unit volume of sample is given by


where ωis the microwave frequency, h1is the amplitude of the magnetic field component and χ2is the imaginary part of the high-frequency susceptibility. The field derivative FMR absorption spectrum is proportional to dχ2/dH and the magnetic susceptibility χis given as


The theoretical absorption curves are obtained by using the imaginary part of the high frequency magnetic susceptibility as a function of applied field (Öner, 1997; Min, 2006; Cullity, 2009)


The dispersion relation can be derived by substituting Eq.(16) into Eq. (23) (Aktaş, 1997; Yalçın, 2004(a), 2004(b), 2008(a); Güner, 2006; Kharmouche, 2007; Stashkevich, 2009)


here, ω0=2πυis the circular frequency of the EPR spectrometer. Fitting Eq.(27) with experimental results of the FMR measurement at different out-of-plane-angle(θH), the values for the effective magnetization can be obtained.

Figure 6 uses of both experimental and theoretical coordinate systems for the nanowire sample geometry. Equilibrium magnetization M and dc-magnetic field H are shown in this figure and also the geometric factor and hexagonal nanowire array presentation of nanowire are displayed. The ferromagnetic resonance theory has been developed for thin films applied to nanowires with the help of the following Fig.6. The effective uniaxial anisotropy term for nanowire arrays filmsKeff=πM2(13P)+KUis written in this manner for arrayed nanowires. The first term in the Keff is due to the magnetostatic energy of perpendicularly-arrayed NWs (Dubowik, 1996; Encinas-Oropesa, 2001; Demand, 2002; Yalçın, 2004(a); Kartopu, 2009, 2010, 2011(a)) and constant with the symmetry axis along wire direction. The second term in the Keff is packing factor for a perfectly ordered hcp NW arrays. The packing factor is defined asP=(π/23)(d/r)2. The packing factor (P) of nanowires increases, nanowire diameter increases, the preferential orientation of the easy direction of magnetization changes from the parallel to the perpendicular direction to the wire axis (Kartopu, 2011(a)). As further, the effective uniaxial anisotropy (Keff) for a perfectly ordered hcp NWs should decrease linearly with increasing packing factor.Heff=2πMS(13P)+(2Ku/Ms), which is the effective anisotropy field derived from the total magnetic anisotropy energy of NWs Eq. (16). The values for total magnetization have been obtained by fitting Heffwith experimental results of FMR measurements at different angles (θH) of external fieldH. The experimental spectra are proportional to the derivative of the absorbed power with respect to the applied field which is also proportional to the imaginary part of the magnetic susceptibility.

Figure 6.

a) Schematic representation of the cobalt nanowires and the relative orientation of the equilibrium magnetization M and the dc component of the external magnetic field H, for the FMR experiments and their theoretical calculations. (b) Hexagonal NW array exhibiting a total of seven wires and the dashed lines bottom of the seven wires indicate the six fold symmetry. (c) Sample parameters used in the packing factors P calculation.

The experimental data were analyzed by using magnetic energy density for a system consisting of n magnetic layers with saturation magnetization Ms and layer thickness ti. The magnetic energy density for the nanoscale multilayer structures the energy per unit surface area can be written as below


Where, θiis the polar angle of the magnetization Msto the z-axis and φi is the azimuth angle to the x-axis in the film plane. The first term is the Zeeman energy. The second and third terms correspond to first and second order magnetocrystalline energy with respectively. These energies due to the demagnetization field and any induced perpendicular anisotropy energy. On the other hand, these energies qualitatively have the same angular dependence with respect to the film normal. The second order magnetocrystalline energy term can be neglected for most of the ferromagnetic systems. The last two terms corresponds to bilinear and biquadratic interactions of ferromagnetic layers through nonmagnetic spacer via conduction energies. Ai,i1and Bi,i1are bilinear and biquadratic coupling constants, respectively. The bilinear exchange interaction can be written from Eq.16. Ai,i1can be either negative and positive depending on antiferromagnetic and ferromagnetic interactions, respectively. The antiparallel/perpendicular and parallel alignments of magnetization of nearest neighboring layers are energetically favorable for a negative/positive value ofBi,i1. Biquadratic interaction for spin systems have been analysed for Ising system in detail (Chen, 1973; Erdem, 2001). The biquadratic term is smaller than the bilinear interaction term. Therefore, it can be neglected for most of the ferromagnetic systems. The indirect exchange energy depends on spacer thickness and even shows oscillatory behavior with spacer thickness (Ruderman, 1954; Yosida, 1957; Parkin, 1990, 1991(a), 19901(b), 1994). The current literature on single ultrathin films and multilayers is given in below at table (Layadi, 1990(a), 1990(b); Wigen, 1992; Zhang, 1994(a), 1994 (b); Goryunov, 1995; Ando, 1997; Farle; 1998; Platow, 1998; Schmool, 1998; Lindner, 2003; Sklyuyev, 2009; Topkaya, 2010; Erkovan, 2011).

This type exchange-coupling system is located in an external magnetic field, the magnetic moment in each layer. The suitable theoretical expression may be derived in order to deduce magnetic parameter for ac susceptibility. The equation of precession motion for magnetization of the ith layer in the spherical coordinates with the Bloch-Bloembergen type relaxation term can be written as

1γdMdt=1tiMMi,s×MiEMθi,φiγT2Mz,iMi,sγT1. (i=1, n)E31

The matrices form for mθ,i1,mϕ,i1,mθ,i,mϕ,i,mθ,i+1andmϕ,i+1of each magnetic layers calculated using the Eq.(29) with Eq.(20, 21,28).


1, 2, 3 number in this Eq.(30) corresponds toi1,iandi+1, respectively. HereΩ=i(ωγ)+1γT2. Then dispersion relation for ferromagnetic exchange-coupled n-layers has been calculated using the (2nx2n) matrix on the left-hand side of Eq. (30) in below in detail.


Here, n is the number of ferromagnetic layer. C0, C1,...etc. are constant related toti,Ms,Eθiθi,Eφiφi,Eθiφi, sinθiandsin2θi. The dispersion relations for monolayer, trilayers, five-layers obtained from the Eq.(31). For tri-layers detail information are seen in ref. (Zhang, 1994(a); Schmool, 1998; Lindner, 2003). It is given that the dispersion relation for monolayer, trilayers, five-layers and multilayers/n-layers in Fig. 7.

Figure 7.

Schematic representation of the (a) one layer, (b) three layer, (c) five layer and (d) n magnetic layer and their relative orientation of the equilibrium magnetization M and the dc component of the external magnetic field H for the FMR experiments and their theoretical calculations.


6. Example: Exchange spring (hard/soft) behaviour

The Bloch wall, Néel line and magnetization vortex are well known properties for magnetic domain in magnetic systems. The multilayer structures are ordered layer by layer. The best of the sample for multilayer structure are exchange-spring systems. The equilibrium magnetic properties of nano-structured exchange-spring magnets may be studied in detail for some selected magnetic systems. The exchange systems are oriented from the exchange coupling between ferromagnetic and antiferromagnetic films or between two ferromagnetic films. This type structure has been extensively studied since the phenomenon was discovered (Meiklejohn, 1956, 1957). Kneller and Hawing have been used firstly the “exchange-spring” expression (Kneller, 1991). Spring magnet films consist of hard and soft layers that are coupled at the interfaces due to strong exchange coupling between relatively soft and hard layers. The soft magnet provides a high magnetic saturation, whereas the magnetically hard material provides a high coercive field. Skomski and Coey explored the theory of exchanged coupled films and predicted that a huge energy about three times of commercially available permanent magnets (120 MGOe) can be induced (Skomski, 1993; Coey, 1997). The magnetic reversal proceeds via a twisting of the magnetization only in the soft layer after saturating hard layers, if a reverse magnetic field that is higher than exchange field is applied. The spins are sufficiently closed to the interface are pinned by the hard layer, while those in deep region of soft layer rotate up to some extent to follow the applied field (Szlaferek, 2004). To be more specific, the angle of the rotation depends on the distance to the hard layer. That is the angle of rotating in a spiral spin structure similar to that of a Bloch domain wall. If the applied field is removed, the soft spins rotate back into alignment with the hard layer.

The general expression of the free energy for exchange interaction spring materials at film (θi,i±1=π/2andθH=π/2) plane in spherical coordinate system as below.


The expression is obtained as following using ϕiϕi'for magnetization’s equilibrium orientations of each layer at a state of equilibrium under the external magnetic field.


In this example, second-order anisotropy term (Kb,i=0) and biquadratic interaction constant (Bi,i±1=0) considered and the result obtained show as following as adapted with spring magnets SmCo(hard)/Fe(soft). For theoretical analysis, the exchange-spring magnet SmCo/Fe is divided into subatomic multi-layers (d=2 Å), and the spins in each layer are characterized by the average magnetization Mi, and the uniaxial anisotropy constant Ki, (Fig.8).

Figure 8.

Schematic illustration of phases of exchange spring magnets.

Sublayers are coupled by an exchange constant Ai,i+1( Astalos, 1998; Fullerton, 1998, 1999; Jiang, 1999, 2002, 2005; Grimsditch, 1999; Scholz, 2000; Hellwig, 2000; Pollmann, 2001; Dumesnil, 2002). ϕiis the angle formed by the magnetization of the i th plane with the in-plane (where the external field is always perpendicular to the film normal) easy axis of the hard layer (Yıldız, 2004(a), 2004(b)). The FMR spectra for exchange-spring magnet of SmCo/Fe have been analyzed using the Eqs. (26, 27, and 33) in Fig.9. Sm-Co (200 Å)/Fe (200 Å and 100 Å) bilayers have been grown on epitaxial 200 Å Cr(211) buffer layer on single crystal MgO(110) substrates by magnetron sputtering technique (Wüchner, 1997). To prevent oxidation Sm-Co/Fe film was coated with a 100 Å thick Cr layer. The FMR spectra for exchange-spring magnets of 200 Å and 100 Å Fe samples for different angles of the applied magnetic field in the film plane are presented in Fig.9.

There are three peaks that are one of them corresponds to the bulk mode and the remaining to the surface modes for 200 Å Fe sample. For more information about the FMR studies exchange spring magnets look at the ref. (Yildiz, 2004(a), 2004(b) ). Exchange-spring coupled magnets are promising systems for applications in perpendicular magnetic data recording-storage devices and permanent magnet (Schrefl, 1993(a), 1993(b),1998, 2002; Mibu, 1997, 1998).

Figure 9.

FMR spectra for SmCo(200 Å)/Fe(200 Å) (black line) and SmCo(200 Å)/Fe(100 Å) (blue line) samples. These FMR spectra originated from the iron/soft layers.


7. Superparamagnetic resonance

Magnetic nanoparticles have been steadily interested in science and nanotechnology. As the dimensions of magnetic nanoparticles decrease to the nanometer scale, these nanoparticles start to exhibit new and interesting physical properties mainly due to quantum size effects (Yalçın, 2004(a), 2008(b), 2012). A single domain particle is commonly referred to as superparamagnetic (Held, 2001; Diaz, 2002; Fonseca, 2002). The superparamagnetic/single-domain nanoparticles are important for non surgical interfere of human body. Even the intrinsic physical characteristics of nanoparticles are observed to change drastically compared to their macroscopic counterparts. Stoner-Wohlfarth (Stoner, 1948) and Heisenberg model (Heisenberg, 1928) to describe the fine structure were firstly used in detail. A simple (Bakuzis, 2004) and the first atomic-scale models of the ferrimagnetic and heterogeneous systems in which the exchange energy plays a central role in determining the magnetization of the NPs, were studied (Kodama, 1996, 1999; Kodama & Berkowitz, 1999). Superparamagnetic resonance (SPR) studies of fine magnetic nanoparticles is calculated a correlation between the line-width and the resonance field for superparamagnetic structures (Berger, 1997, 1998, 2000(a), 2000(b), 2001; Kliava, 1999). The correlation of the line-width and the resonance field is calculated from Bloch-Bloembergen equation of motion for magnetization. The SPR spectra, line width and resonance field may be analyzed by using the Eq.(34) in below. The equation of motion for magnetization with Bloch-Bloembergen type relaxation term for FMR adapted for superparamagnetic structures from Eqs.(18) and (19) in below.


Here, ΔH=1/γT2,Hr=(ω/γ). This equation for SPR system so called modified Bloch for fine particle magnets. The SPR microwave absorption is proportional to the imaginary part of the dynamic susceptibility. The line shape and resonance field for superparamagnet is obtained. The temperature evolution for the SPR line-width for nanoparticles can be calculated byΔH=ΔTL(x). In this expression ΔTis a saturation line-width at a temperature T, L(x)=coth(x)(1/x)is the Langevin function withx=MVHeff/kBT, Vis the particle volume. The superparamagnetic (Chastellain, 2004; Dormer, 2005; Hamoudeh, 2007), core-shell nanoparticles and nanocrystalline nanoparticles (Woods, 2001; Wiekhorst, 2003; Tartaj, 2004) have been performed for possible biological applications (Sun,2005; Zhang, 2008). In additional, superparamagnetic nanoparticles have been used for hydrogels, memory effects and electronic devices (Raikher, 2003; Sasaki, 2005; Heim, 2007).


8. Result and discussions

The EPR, FMR and SPR signals have been observed in Fig.10. The EPR signal has reached approaching peak level about 3000 G as seeing at Fig.10. It’s symmetric and line width are narrower than resonance field, in generally. If EPR samples show crystallization, resonance field value starts to change. The EPR signal can be observed at lower temperature about 3000 G and the signal can show crystalline property. The signal is observed in two different areas at FMR spectra as the magnetic field is parallel and perpendicular to the film. The FMR spectra are observed at low field when the magnetic field is parallel to the film, in generally. On the other hand, the FMR spectra are observed at highest field when the magnetic field is perpendicular to the film. For other conditions FMR signals are observed between these two conditions for thin films. FMR spectra can be seen a wide range of field so as to the thin films are full.

Figure 10.

a) The EPR/ESR experimental signal for La0.7Ca0.3MnO3 samples at room temperature (see, Kartopu, 2011 (b)). (b) Theoretical FMR spectra calculated from Eq. (26) with Eq.(27) at parallel (θ=90o;~ 2000 G) and perpendicular (θ=0o;~7000 G) position of OPG case. (c) The theoretical (red-dot line in online) and experimental FMR spectra for Ni NWs (P= 29,6; L=0,8 μm, τ=13 ) (see for detail, Kartopu, 2011 (a)). (d) The theoretical SPR signal for superparamagnet by Eq.(34) at room temperature.

FMR spectra are similar to thin films at nanowire samples. In case of occupancy rate is that as the theoretical P<33%for Nickel (Ni) it behaviors like thin film. But, in case of occupancy rate is that as the theoretical P<33%it behaviors different from thin film. This situation is clearly visible fromHeff=2πMS(13P)+(2Ku/Ms). If the occupancy rate is P<33%sample’s signals show the opposite behavior according to thin film FMR signals. Look at for more information (Kartopu, 2011 (a)). This is perceived as changes the direction of the easy axis. The changes of easy axes depend on magnetization (Terry, 1917) and porosity (Kartopu, 2011 (a)) for magnetic materials/transition elements. The SPR signal is similar to EPR signal. SPR peak may show symmetrical properties both at room temperature and low temperatures. The SPR signal is in the form of Lorentzian and Gaussian line shapes at all temperature range. Specially prepared nanoparticles SPR peak exhibit shift in symmetry. The line width of SPR peak expands at low temperature.


I would like to thank Muhittin Öztürk and Songül Özüm of Niğde University for valuable discussions an the critical reading of the chapter. This study was supported by Research found (Grant No. FEB2012/12) of Niğde University.


  1. 1. AdeyeyeA. O.BlandJ. A. C.DabooC.HaskoD. G.1997Magnetostatic interactions and magnetization reversal in ferromagnetic wiresPhys. Rev. B. 563265
  2. 2. AktasB.1993Clear evidence for field induced unidirectional exchange surface anisotropy in NiMn alloysSolid State Commun.871067
  3. 3. AktasB.ÖzdemirM.1994Simulated spin wave resonance absorption curves for ferromagnetic thin films and application to NiMn filmsPhysica B119125
  4. 4. AktasB.1997FMR properties of epitaxial Fe3O4 films on MgO(100). Thin Solid Films. 307250
  5. 5. AktasB.ÖzdemirM.YilginR.ÖnerY.SatoT.AndoT.2001Thickness and temperature dependence of magnetic anisotropies of Ni77 Mn23 films. Physica B. 305298
  6. 6. AktasB.YildizF.RameevB.KhaibullinR.TagirovL.ÖzdemirM.2004Giant room temperature ferromagnetism in rutile TiO2 implanted by Co. Phys. stat. sol. (c). 123319
  7. 7. Aktas, B.; Tagirov, L. & Mikailov, F. (October, 2006). Magnetic Nanostructures, Springer Series in materials science, 94 978-3-54049-334-1
  8. 8. AmentW. S.RadoG. T.1955Electromagnetic effects of spin wave resonance in ferromagnetic metalsPhys. Rev. 971558
  9. 9. AndoY.KoizumiH.MiyazakiT.1997Exchange coupling energy determined by ferromagnetic resonance in 80 Ni-Fe/Cu multilayer films. J. Magn. Magn. Mater. 16675
  10. 10. AnisimovA. N.FarleM.PoulopoulosP.PlatowW.BaberschkeK.IsbergP.WäpplingR.NiklassonA. M. N.ErikssonO.1999Orbital magnetism and magnetic anisotropy probed with ferromagnetic resonancePhys. Rev. Lett. 822390
  11. 11. AnS. Y.KrivosikP.KraemerM. A.OlsonH. M.NazarovA. V.PattonC. E.2004High power ferromagnetic resonance and spin wave instability processes in permalloy thin filmsJ. Appl. Phys. 961572
  12. 12. AndersonP. W.1953Exchange narrowing in paramagnetic resonanceRev. Mod. Phy. 25269
  13. 13. AriasR.MillsD. L.1999Extrinsic contributions to the ferromagnetic resonance response in ultrathin filmsPhys. Rev. B. 607395
  14. 14. AriasR.MillsD. L.2003Theory of collective spin waves and microwave response of ferromagnetic nanowire arraysPhys. Rev. B. 67094423
  15. 15. Arkad’evV.K. (1913The Reflection of Electric Waves from a Wire, Sov. Phys.-JETP, 45A45312
  16. 16. ArtmanJ. O.1957Ferromagnetic resonance in metal single crystals. Phys. Rev. 10574
  17. 17. ArtmanJ. O.1979Domain mode FMR in materials with K1 and Ku. J. Appl. Phys. 502024
  18. 18. AstalosR. J.CamleyR. E.1998Magnetic permeability for exchange-spring magnets: application to Fe/Sm-CoPhys. Rev. B. 588646
  19. 19. AswalD. K.SinghA.KadamR. M.BhideM. K.PageA. G.BhattacharyaS.GuptaS. K.YakhmiJ. V.SahniV. C.2005Ferromagnetic resonance studies of nanocrystalline La0.6Pb0.4 MnO3 thin films. Mater. Lett. 59728
  20. 20. Azzerboni, B.; Asti, G.; Pareti, L.; Ghidini, M. (2006). Magnetic nanostructures in modern technology, spintronics, magnetic MEMS and recording. Proceedings of the NATO advanced study institute on magnetic nanostructures for micro-electromechanical systems and spintronic applications catona, Published by Springer. Italy. 978-1-40206-337-4
  21. 21. BackesD.BedauD.LiuH.LangerJ.KentA. D.2012Characterization of interlayer interactions in magnetic random access memory layer stacks using ferromagnetic resonanceJ. Appl. Phys. 11107C721
  22. 22. BaekJ. S.MinS. G.YuS. C.LimW. Y.2002Ferromagnetic resonance of Fe-Sm-O thin filmsJ. App. Phys. 937604
  23. 23. BaiY.XuF.QiaoL.2012The twice ferromagnetic resonance in hexagonal ferrite single rod and paired rods. Phys. Lett. A. 376563
  24. 24. BakkerF. L.FlipseJ.SlachterA.WagenaarD.Van WeesB. J.2012Thermoelectric detection of ferromagnetic resonance of a nanoscale ferromagnetPhys. Rev. Lett. 108167602
  25. 25. BakuzisA. F.MoraisP. C.2004Magnetic nanoparticle systems: an Ising model approximationJ. Magn. Magn. Mater. 272-276e1161
  26. 26. BasegliaL.WardenM.WaldnerF.HuttonS. L.DrumhellerJ. E.HeY. Q.WigenP. E.MaryškoM.1988Derivation of the resonance frequency from the free energy of ferromagnets. Phys. Rev. B. 382237
  27. 27. BeguhnS.ZhouZ.RandS.YangX.LouJ.SunN. X.2012A new highly sensitive broadband ferromagnetic resonance measurement system with lock-in detectionJ. Appl. Phys. 11107A503
  28. 28. BergerR.BisseyJ.KliavaJ.2000a)). Lineshapes in magnetic resonance spectraJ. Phys.: Condens. Matter. 129347
  29. 29. BergerR.KliavaJ.BisseyJ. C.2000b)). Magnetic resonance of superparamagnetic iron-containing nanoparticles in annealed glassJ. Appl. Phys. 877389
  30. 30. BergerR.BisseyJ. C.KliavaJ.SoulardB.1997Superparamagnetic resonance of ferric ions in devitrifield borate glass. J. Magn. Magn. Mater. 167129
  31. 31. BergerR.BisseyJ. C.KliavaJ.DaubricH.Estourns.C. (2001Temperature dependence of superparamagnetic resonance of iron oxide nanoparticlesJ. Magn. Magn. Mater. 234535
  32. 32. BergerR.KliavaJ.BisseyJ. C.Ba?ettoz, V. (1998Superparamagnetic resonance of annealed iron containing borate glassJ. Phys.: Condens. Matter. 108559
  33. 33. Birkhäuser Verlag, A.G. (2007). Spin glasses statics and dynamics. Basel, Boston, Berlin. 978-3-76438-999-4
  34. 34. BirliksevenC.TopacliC.DurusoyH. Z.TagirovL. R.KoymenA. R.AktasB.1999a.Magnetoresistancemagnetization and FMR study of Fe/Ag/Co multilayer film. J. Magn. Magn. Mater. 192258
  35. 35. BirliksevenC.TopacliC.DurusoyH. Z.TagirovL. R.KoymenA. R.AktasB.1999b.Layer-sensitivemagnetization, magnetoresistance and ferromagnetic resonance (FMR) study of NiFe/Ag/CoNi trilayer film. J. Magn. Magn. Mater. 202342
  36. 36. BhagatS. M.AndersonJ. R.WuN.1967Influence of the anomalous skin effect on the ferromagnetic resonance linewidth in ironPhys. Rev. 155510
  37. 37. BhagatS. M.LubitzP.1974Temperature variation of ferromagnetic relaxation in the 3d transition metals. Phys. Rev. B. 10179
  38. 38. Bland, J.A.C.; Heinrich, B. (1994). Ultrathin magnetic structures I: An introduction to the electronic magnetic and structural properties. Springer-Verlag Berlin Heidelberg. 3-54057-407-7
  39. 39. BloembergenB.1950On the ferromagnetic resonance in nickel and supermalloyPhys. Rev. 78572
  40. 40. BloembergenN.WangS.1954Relaxation effects in para- and ferromagnetic resonace. Phys. Rev. 9372
  41. 41. BorchersJ. A.DuraJ. A.UngurisJ.TulchinskyD.KelleyM. H.MajkrzakC. F.1998Observation of antiparallel magnetic order in weakly coupled CoyCu multilayers. Phys. Rev. Lett. 822796
  42. 42. BoseT.TrimperS.2012Nonlocal feedback in ferromagnetic resonanceArxiv: 1204-5342. Cond-mat. Mes-hall. 1
  43. 43. BoulleO.MalinowskiG.KläuiM.2011Current-induced domain wall motion in nanoscale ferromagnetic elementsMaterials Science and Engineering R. 72159
  44. 44. BrownF. M.1962Magnetostatic principles in ferromagnetism.North Holland Publishing Company.
  45. 45. Brustolon, M.; Giamello, E. (2009). Electron paramagnetic resonance. John Wiley & Sons, Inc. 978047025882
  46. 46. BudakS.YildizF.ÖzdemirM.AktasB.2003Electron spin resonance studies on single crystalline Fe3O4 filmsJ. Magn. Magn. Mater. 258-259423
  47. 47. Buschow, K.H.J.; de Boer, F.R. (2004). Physics of magnetism and magnetic materials. Kluwer Academic Publishers. 0-30647-421-2
  48. 48. CallenH. B.1958A ferromagnetic dynamical equationJ. Phys. Chem. Solids. 4256
  49. 49. CanM. M.CoskunM.FiratT.2012A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (?-Fe2O3) and hematite (a-Fe2O3), using ferromagnetic resonance. J. Alloy. Compd. 542241
  50. 50. CelinskiZ.UrquhartB.HeinrichB.1997Using ferromagmetic resonance to measure the magnetic moments of ultrathin films, J. Magn. Magn. Mater. 1666
  51. 51. CelinskiZ.HeinrichB.1991Ferromagnetic resonance line width of Fe ultrathin films grown on a bcc substrate. J. Appl. Phys. 705936
  52. 52. ChappertC.Le Dang, K.; Beauvillain, P.; Hurdequint, H.; Renard, D. (1986Ferromagnetic resonance studies of very thin cobalt films on a gold substratePhys. Rev. B. 343192
  53. 53. ChastellainM.PetriA.HofmannH.2004Particle size investigations of a multi-step synthesis of PVA coated superparamagnetic nanoparticles. J. Colloid. Interf. Sci. 278353
  54. 54. ChenY. S.ChengC. W.ChernG.WuW. F.LinJ. G.2012Ferromagnetic resonance probed annealing effects on magnetic anisotropy of perpendicular CoFeB/MgO bilayerJ. Appl. Phys. 11107C101
  55. 55. ChenS. H.ChangC. R.XiaoJ. Q.NikolicK. B.2009Spin and charge pumping in magnetic tunnel junctions with precessing magnetization: A nonequilibrium green function approachPhys. Rev. B. 79054424
  56. 56. ChenH. H.LevyP. M.1973Dipole and quadrupole phase transitions in spin-1 modelsPhys. Rev. B. 74267 EOF4284 EOF
  57. 57. Chikazumi, S. (1997). Physics of ferromagnetism. Oxford University Press. 0-19851-776-9
  58. 58. CochranJ. F.1995Light scattering from ultrathin magnetic layers and bilayers in magnetic ultrathin films. Heinrich, B.; Bland, J.A.C. (Eds.) Springer, Berlin, Heidelberg Vol. II, 222B. Hillebrands: Brillouin light scattering in magnetic superlattices. ibid pp. 258.
  59. 59. CochranJ. F.KamberskyV.2006Ferromagnetic resonance in very thin filmsJ. Magn. Magn. Mater. 302348
  60. 60. CoeyJ. M. D.1997Permanent magnetismSolid State Comm. 102101
  61. 61. Coey, J.M.D. (2009). Magnetism and magnetic materials. Cambridge University Press. 1397805218161413978052181614 .
  62. 62. CofieldM. L.GlockerD.GauJ. S.1987Spin-wave resonance in CoCr magnetic thin films. J. Appl. Phys. 613810
  63. 63. CoskunR.OkutanM.YalçinO.KösemenA.2012Electric and magnetic properties of hydrogels doped with Cu ionsActa. Phys. Pol. A. 122683
  64. 64. CrittendenE. C.Jr; Hoffman, R.W. (1953Thin films of ferromagnetic materialsRev. Mod. Phys. 25310
  65. 65. CullityB. D.GrahamC. D.1990Introduction to Magnetic MaterialsWiley. New York. 199
  66. 66. CullityB. D.GrahamC. D.2009Introduction to magnetic materials 2nd Edition.
  67. 67. DamonR. W.1953Relaxation effect in the ferromagnetic resonance.Rev. Mod. Phys. 25239
  68. 68. DamonR. W.1963Ferromagneticre sonance at high power in Rado, G.T.; Suhl, H. (Eds.). Magnetism. Vol. I
  69. 69. da SilvaE.C.; Meckenstock, R.; von Geisau, O.; Kordecki, R.; Pelzl, J.; Wolf, J.A.; Grünberg, P. (1993Ferromagnetic resonance investigations of anisotropy fields of Fe(001) epitaxial layers. J. Magn. Magn. Mater. 121528
  70. 70. DavisJ. A.1965Effect of surface pinning on the magnetization of thin films. J. Appl. Phys. 363520
  71. 71. DemokritovS.RückerU.GrünbergP.1996Enhancement of the Curie temperature of epitaxial EuS(100) films caused by growth dislocations. J. Magn. Magn. Mater. 16321
  72. 72. DemokritovS.RückerU.AronsR. R.GrünbergP.1997Antiferromagnetic interlayer coupling in epitaxial Fe/EuS (100) bilayersJ. Appl. Phys. 815348
  73. 73. De WamesR. E.WolframT.1970Dipole-exchange spinwaves in ferromagnetic films. J. Appl. Phys. 4187
  74. 74. DemandM.Encinas-oropesaA.KenaneS.EbelsU.HuynenI.PiraxL.2002Ferromagnetic resonance studies of nickel and permalloy nanowire arraysJ. Magn. Magn. Mater.249228
  75. 75. De BiasiE.Lima, Jr. E.; Ramos, C.A.; Butera, A.; Zysler, R.D. (2013Effect of thermal fluctuations in FMR experiments in uniaxial magnetic nanoparticles: Blocked vs. superparamagnetic regimesJ. Magn. Magn. Mater. 326138
  76. 76. De BiasiR. S.GondimE. C.2006Use of ferromagnetic resonance to determine the size distribution of ?-Fe2O3 nanoparticles. Solid State Commun. 138271
  77. 77. De CosD.ArribasA. G.BarandiaranJ. M.2006Ferromagnetic resonance in gigahertz magneto-impedance of multilayer systemsJ. Magn. Magn. Mater. 304218
  78. 78. DiazL. L.TorresL.MoroE.2002Transition from ferromagnetism to superparamagnetism on the nanosecond time scalePhys. Rev. B. 65224406
  79. 79. DillonJ. F.Jr.; Gyorgy, E.M.; Rupp, L.W.Jr.; Yafet, Y.; Testardi,L.R. (1981Ferromagnetic resonance in compositionally modulated CuNi films. J. Appl. Phys. 522256
  80. 80. DingJ.KostylevM.AdeyeyeA. O.2012Broadband ferromagnetic resonance spectroscopy of permalloy triangular nanoringsJ. Appl. Phys. 100062401
  81. 81. DormerK.SeeneyC.LewellingK.LianG.GibsonD.JohnsonM.2005Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field.Biomaterials262061
  82. 82. DreherL.WeilerM.PernpeintnerM.HueblH.GrossR.BrandtM. S.GoennenweinS. T. B.2012Surface acoustic wave-driven ferromagnetic resonance in nickel thin films: Theory and experimentArxiv:Cond-mat. Mes-hall. 12081
  83. 83. DubowikJ.1996Shape anisotropy of magnetic heterostructuresPhys. Rev. B. 541088
  84. 84. DumesnilK.DufourC.Mangin, Ph.; Rogalev, A. (2002Magnetic springs in exchange-coupled DyFe2/YFe2 superlattices: An element-selective x-ray magnetic circular dichroism study.Phys. Rev. B. 65094401
  85. 85. DuraiaE. M.Abdullin, Kh.A. (2009Ferromagnetic resonance of cobalt nanoparticles used as a catalyst for the carbon nanotubes synthesisJ. Magn. Magn. Mater. 32169
  86. 86. DurusoyH. Z.AktasB.YilginR.TeradaN.IchikawaM.KanedaT.TagirovL. R.2000New technique for measuring the microwave penetration depth in high- Tc superconducting thin films. Phys. B. 284-288953
  87. 87. Encinas-oropesaA.DemandM.PirauxL.HuynenI.EbelsU.2001Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonancePhys. Rev. B. 63104415
  88. 88. ErdemR.KeskinM.2001Dynamics of a spin-1 Ising system in the neighborhood of equilibrium states,Phys. Rev. E. 64026102
  89. 89. ErkovanM.ÖztürkS. T.TopkayaR.ÖzdemirM.AktasB.ÖztürkO.2011Ferromagnetic resonance investigation of Py/Cr multilayer systemJ. Appl. Phys. 110023908
  90. 90. EstévezD. C.BetancourtI.MontielH.2012Magnetization dynamics and ferromagnetic resonance behavior of melt spun FeBSiGe amorphous alloysJ. Appl. Phys. 112053923
  91. 91. 5182175Fan, W.J.; Qiu, X.P.; Shi, Z.; Zhou, S.M.; Cheng, Z.H. (2010). Correlation between isotropic ferromagnetic resonance field shift and rotatable anisotropy in polycrystalline NiFe/FeMn bilayers. Thin Solid Films. Vol. 518, pp. 2175
  92. 92. FarleM.1998Ferromagnetic resonance of ultrathin metallic layersRep. Prog. Phys. 61755
  93. 93. FarleM.LindnerJ.BaberschkeK.2000Ferromagnetic resonance of Ni(111) on Re(0001). J. Magn. Magn. Mater. 212301
  94. 94. FerminJ. R.AzevedoA.AguiarF. M.LiB.RezendeS. M.1999Ferromagnetic resonance linewidth and anisotropy dispersion in thin Fe films. J. Appl. Phys. 857316
  95. 95. FischerH.MastrogiacomoG.LöfflerJ. F.WarthmannR. J.WeidlerP. G.GehringA. U.2008Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldenseEarth and Planetary Science Letters270200
  96. 96. FletcherR. C.Le Craw, R.C.; Spencer, E.G. (1960Electron spin relaxation in ferromagnetic insulatorsPhys. Rev. 117955
  97. 97. FonsecaF. C.GoyaG. F.JardimR. F.MuccilloR.CarreñoN. L. V.LongoE.LeiteE. R.2002Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2Phys. Rev. B. 66104406
  98. 98. FraitZ.MacfadenH.1965Ferromagnetic resonance in metals frequency dependence.Phys. Rev. 139A1173
  99. 99. FraitZ.FraitovaD.ZarubovaN.1985Observation of FMR surface spin wave modes in bulk amorphous ferromagnets. PhysStat. Sol. (b). 128219
  100. 100. FraitZ.FraitovaD.1998Low energy spinwave excitation in highly conducting thin films and surfaces, in Frontiers in Magnetism of Reduced Dimension Systems. Nato ASI Series, Bar’yakhtar, V.G.; Wigen, P.E.; Lesnik, N.A. (Eds.) (Kluwer, Dordrecht) 121
  101. 101. FraitZ.MacfadenH.1965Ferromagnetic resonance in metals frequency dependence.Phys. Rev. 1391173
  102. 102. FraitovaD.1983a)). An analytical theory of FMR in bulk metals, I. Dispersion relations. Phys. Stat. Sol. 120341
  103. 103. FraitovaD.1983b)). An analytical theory of FMR in bulk metals, II. Penetration depths. Phys. Stat. Sol. 120659
  104. 104. FraitovaD.1984An analytical theory of FMR in bulk metals, III. Surface impedance. Phys. Stat. Sol. 124587
  105. 105. FullertonE. E.JiangJ. S.BaderS. D.1999Hard/soft magnetic heterostructures: model exchange-spring magnetsJ. Magn. Magn. Mater. 200392
  106. 106. FullertonE. E.JiangJ. S.GrimsditchM.SowersC. H.BaderS. D.1998Exchange-spring behavior in epitaxial hard/soft magnetic bilayersPhys. Rev. B. 5812193
  107. 107. GatteschiD.SessoliR.VillainJ.2006Molecular nanomagnets. Oxford University Press.
  108. 108. García-miquelH.GarcíaJ. M.García-beneytezJ. M.VázquezM.2001Surface magnetic anisotropy in glass-coated amorphous microwires as determined from ferromagnetic resonance measurementsJ. Magn. Magn. Mater. 23138
  109. 109. GerlachW.SternO.1922Dasmagnetische moment dessilber atoms. Zeitschrift für Physik. 9353
  110. 110. GilbertT. A.1955Armour research foundation rept. Armour Research Foundation. Chicago. 11
  111. 111. GnatzigK.DötschH.YeM.BrockmeyerA.1987Ferrimagnetic resonance in garnet films at large precession angles. J. Appl. Phys. 624839Golosovsky, M.; Monod, P.; Muduli, P.K.; Budhani, R.C. (2012). Low-field microwave absorption in epitaxial La0.7Sr0.3MnO3 films resulting from the angle-tuned ferromagnetic resonance in the multidomain state. Arxiv: 1206-3041. Cont-mat. mtrl-sci. pp. 1.
  112. 112. GoryunovYu. V.; Garifyanov, N.N.; Khaliullin, G.G.; Garifullin, I.A.; Tagirov, L.R.; Schreiber, F.; Mühge, Th.; Zabel, H. (1995Magnetican isotropies of sputtered Fe films on MgO substrates. Phys. Rev. B. 5213450
  113. 113. GrimsditchM.CamleyR.FullertonE. E.JiangS.BaderS. D.SowersH.1999Exchange-spring systems: Coupling of hard and soft ferromagnets as measured by magnetization and Brillouin light scattering (invited)J. Appl. Phys. 855901
  114. 114. GrünbergP.SchwarzB.VachW.ZinnW.DabkowskiD.1979Light scattering from spin waves in bubble films. J. Magn. Magn. Mater. 13181
  115. 115. GrünbergP.1980Brillouin scattering from spin waves in thin ferromagnetic films. J. Magn. Magn. Mater. 15-18766
  116. 116. GrünbergP.MayrC. M.VachW.1982Determination of magnetic parameters by means of brillouin scattering. Examples: Fe, Ni, Ni0.8Fe0.2. J. Magn. Magn. Mater. 28319
  117. 117. GrünbergP.BarnasJ.SaurenbachF.FuJ. A.WolfA.VohlM.1991Layered magnetic structures: antiferromagnetic type interlayer coupling and magnetoresistance due to antiparallel alignmentJ. Magn. Magn. Mater. 9358
  118. 118. GrünbergP.DemokritovS.FussA.SchreiberR.WolfJ. A.PurcellS. T.1992Interlayer exchange, magnetotransport and magnetic domains in Fe/Cr layered structures. J. Magn. Magn. Mater. 104-1071734
  119. 119. GrünbergP.2000Layered magnetic structures in research and applicationActa mater. 48239Grünberg, P. (2001). Layered magnetic structures: history, facts and figures. J. Magn. Magn. Mater. Vol. 226-230, pp. 1688.
  120. 120. Guimarães, A.P. (2009). Principles of nanomagnetism. Springer-Verlag Berlin Heidelberg. 978-3-64201-481-9 Guimarães, A.1998 . Magnetism and magnetic resonance in solids. A Wiley-Interscience Publication. Canada.
  121. 121. GurevichA. G.MelkovG. A.1996Magnetization Oscillations and WavesCRC, Boca Raton).
  122. 122. GünerS.YalçinO.KazanS.YildizF.SahingözR.2006FMR studies of bilayer Co90Fe10/Ni81Fe19, Ni81Fe19/Co90Fe10 and monolayer Ni81Fe19 thin filmsPhys. Stat. Solid (a). 2031539
  123. 123. HamoudehM.Al Faraj, A.; Canet-Soulas, E.; Bessueille, F.; Leonard, D.; Fessi, H. (2007Elaboration of PLLA-based superparamagnetic nanoparticles: Characterization, magnetic behaviour study and in vitro elaxivity evaluation.Int. J. Pharmaceut. 338248
  124. 124. HathawayK.CullenJ.1981Magnetoelastic softening of moduli and determination of magnetic anisotropy in RE-TM compounds. J. Appl. Phys. 522282
  125. 125. HeimE.HarlingS.PöhligK.LudwigF.MenzelH.SchillingM.2007Fluxgate magnetorelaxometry of superparamagnetic nanoparticles for hydrogel characterizationJ. Magn. Magn. Mater. 311150
  126. 126. HeinrichB.2005a)). Ferromagnetic resonance in ultrathin film structures. In magnetic ultrathin films. Heinrich, B.; Bland, J.A.C. (Eds.) Springer, Berlin, Heidelberg. Vol. II, 195
  127. 127. Heinrich, B.; Bland, J.A.C. (2005(b)). Ultrathin magnetic structures IV, applications of nanomagnetism. Springer Berlin Heidelberg New York. 3-54021-954-4
  128. 128. HeisenbergW.1928Theory of ferromagnetism. ZeitschriftfürPhysik. 49619
  129. 129. HeldG. A.GrinsteinG.DoyleH.SunS.MurrayC. B.2001Competing interactions in dispersions of superparamagnetic nanoparticlesPhys. Rev. B. 64012408
  130. 130. HellwigO.KortrighJ. B.TakanoK.FullertonE. E.2000Switching behavior of Fe-Pt/Ni-Fe exchange- spring films studied by resonant soft-x-ray magneto-optical Kerr effect. Phys. Rev. B. 6211694
  131. 131. HerringC.KittelC.1950On the theory of spin waves in ferromagnetic mediaPhys. Rev. 81869
  132. 132. HillebrandsB.2000Light scattering in solids VII. Topics. Appl. Phys. 75M. Cardona, Güntherodt, G. (Eds.). Springer, Berlin, Heidelberg.
  133. 133. Hillebrands, B.; Thiaville, A. (2006). Spin dynamics in confined magnetic structures III. Springer-Verlag Berlin Heidelberg. 103540201084
  134. 134. HillebrandsB.OunadjelaK.2002Spin dynamics in confined magnetic structures ISpringer-Verlag Berlin Heidelberg.
  135. 135. HillebrandsB.OunadjelaK.2003Spin dynamics in confined magnetic structures IISpringer-Verlag Berlin Heidelberg. Hinata, S.; Saito, S.; Takahashi, M. (2012). Ferromagnetic resonance analysis of internal effective field of classified grains by switching field for granular perpendicular recording media. J. Appl. Phys.. 11107B722
  136. 136. HsiaL. C.WigenP. E.1981Enhancement of uniaxial anisotropy constant by introducing oxygen vacancies in Ca-doped YIG. J. Appl. Phys. 521261
  137. 137. HuangZ. C.HuX. F.XuY. X.ZhaiY.XuY. B.WuJ.ZhaiH. R.2012Magnetic properties of ultrathin single crystal Fe3O4 film on InAs(100) by ferromagnetic resonance. J. Appl. Phys. 11107C108
  138. 138. HuangM. D.LeeN. N.HyunY. H.DubowikJ.LeeY. P.2004Ferromagnetic resonance study of magnetic-shape-memory Ni2MnGa filmsJ. Magn. Magn. Mater. 272-2762031
  139. 139. Jalali-roudsarA. A.DenysenkovV. P.KhartsevS. I.2005Determination of magnetic anisotropy constants for magnetic garnet epitaxial films using ferromagnetic resonanceJ. Magn. Magn. Mater. 28815
  140. 140. JarrettH. S.WaringR. K.1958Ferrimagnetic resonance in NiMnO3Phys. Rev. 1111223
  141. 141. JiangJ. S.FullertonE. E.SowersC. H.InomataA.BaderS. D.ShapiroA. J.ShullR. D.GornakovV. S.NikitenkoV. I.1999Spring magnet films. IEEE Trans. Magn. 353229
  142. 142. JiangJ. S.PearsonJ. E.LiuZ. Y.KabiusB.TrasobaresS.MillerD. J.BaderS. D.2005A new approach for improving exchange-spring magnets.J. Appl. Phys. 9710K311
  143. 143. 352339Jiang, J.S.; Bader, S.D.; Kaper, H.; Leaf, G.K.; Shull, R.D.; Shapiro, A.J.; Gornakov, V.S.; Nikitenko, V.I.; Platt, C.L.; Berkowitz, A.E.; David, S.; Fullerton, E.E. (2002). Rotational hysteresis of exchange-spring Magnets. J. Phys. D: Appl. Phys. Vol. 35, pp. 2339
  144. 144. JungS.WatkinsB.DelongL.KettersonJ. B.ChandrasekharV.2002Ferromagnetic resonance in periodic particle arraysPhys. Rev. B. 66132401
  145. 145. KakazeiG. N.KravetsA. F.LesnikN. A.De AzevedoM. M. P.PogorelovY. G.SousaJ. B.1999Ferromagnetic resonance in granular thin films. J. Appl. Phys. 855654
  146. 146. KakazeiG. N.Pogorelov, Yu.G.; Sousa, J.B.; Golub, V.O.; Lesnik, N.A.; Cardoso, S.; Freitas, P.P. (2001FMR in CoFe(t)/Al2O3 multilayers: from continuous to discontinuous regime. J. Magn. Magn. Mater. 226-2301828
  147. 147. KambeT.KajiyoshiK.OshimaK.TamuraM.KinoshitaM.2005Ferromagnetic resonance in ß-p-NPNN at radio-frequency region. Polyhedron. 242468
  148. 148. KartopuG.YalçinO.KazanS.AktasB.2009Preparation and FMR analysis of Co nanowires in alumina templatesJ. Magn. Magn. Mater. 3211142
  149. 149. Kartopu, G.; Yalçin, O. (2010). Electrodeposited nanowires and their applications. edited by N. Lupu. INTECH. available from:
  150. 150. KartopuG.YalçinO.ChoyK.L.TopkayaR.KazanS.AktasB. (2011a)). Size effects and origin of easy-axis in nickel nanowire arrays. J. Appl. Phys. 109033909
  151. 151. KartopuG; Yalçin, O; Demiray, A.S. (2011b)). Magnetic and transport properties of chemical solution deposited (100)-textured La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3 nanocrystalline thin films. Phys. Scr. 83015701
  152. 152. KasuyaT.1956A theory of metallic ferro- and antiferromagnetism on Zener’s modelProg. Theor. Phys. 1645
  153. 153. KindJ.Van RadenU. J.García-rubioI.GehringA. U.2012Rock magnetic techniques complemented by ferromagnetic resonance spectroscopy to analyse a sediment recordGeophys. J. Int. 19151
  154. 154. KipA. F.ArnoldR. D.1949Ferromagnetic resonance at microwave frequencies in iron single crystal. Phys. Rev. 751556
  155. 155. KittelC.1947On the theory of ferromagnetic resonance absorptionPhys. Rev. 73155
  156. 156. KittelC.1946Theory of the structure of ferromagnetic domains in films and small ParticlesPhys. Rev. 70965
  157. 157. KittelC.1949On the gyromagnetic ratio and spectroscopic splitting factor of ferromagnetic substancesPhys. Rev. 76743
  158. 158. KittelC.AbrahamsE.1953Relaxation processes in ferromagnetism. Rev. Mod. Phys. 25233
  159. 159. KipA. F.ArnoldR. D.1949Ferromagnetic Resonance at Microwave Frequencies in Iron Single Crystal. Phys. Rev. 751556
  160. 160. KittelC.1958Interaction of spin waves and ultrasonic waves in ferromagnetic crystalsPhys. Rev. 110836
  161. 161. KharmoucheA.Ben Youssef, J.; Layadi, A.; Chérif, S.M. (2007Ferromagnetic resonance in evaporated Co/Si(100) and Co/glass thin films. J. App. Phys. 10113910
  162. 162. KhaibullinR. I.TagirovL. R.RameevB. Z.IbragimovS. Z.YildizF.AktasB.2004High curie-temperature ferromagnetism in cobalt-implanted single-crystalline rutileJ. Phys.: Condens. Matter. 161
  163. 163. KleinP.VargaR.InfanteG.VázquezM.2012Ferromagnetic resonance study of FeCoMoB microwires during devitrification processJ. Appl. Phys. 111053920
  164. 164. KliavaJ.BergerR.1999Size and shape distribution of magnetic nanoparticles in disordered systems: computer simulations of superparamagnetic resonance spectraJ. Magn. Magn. Mater. 205328
  165. 165. KnellerE. F.HawingR.1991The exchange-spring magnet: a new material principle for permanent magnetsIEEE Trans. Magn. 273588
  166. 166. KobayashiT.IshidaN.SekiguchiK.NozakiY.2012Ferromagnetic resonance properties of granular Co-Cr-Pt films measured by micro-fabricated coplanar waveguidesJ. Appl. Phys. 11107B919
  167. 167. KodamaR. H.1999Magnetic Nanoparticles. J. Magn. Magn. Mater. 200359
  168. 168. KodamaR. H.BerkowitzA. E.1999Atomic-scale magnetic modeling of oxide nanoparticlesPhys. Rev. B. 596321
  169. 169. KodamaR. H.BerkowitzA. E.McNiff Jr. E.J.; Foner S. (1996Surface spin disorder in NiFe2O4 nanoparticlesPhys. Rev. Lett. 77394
  170. 170. KooiC. F.WigenP. E.ShanabargerM. R.KerriganJ. V.1964Spin-wave resonance in magnetic films on the basis of surface-spin-pinning model and the volume inhomogeneity model. J. Appl. Phys. 35791
  171. 171. KoppR. E.WeissB. P.MaloofA. C.ValiH.NashC. Z.KirschvinkJ. L.2006Chains, clumps, and strings: magneto fossil taphonomy with ferromagnetic resonance spectroscopy. Earth Planet Sc. Lett. 24710
  172. 172. KorolevK. A.MccloyJ. S.AfsarM. N.2012Ferromagnetic resonance of micro- and nano-sized hexagonal ferrite powders at millimeter wavesJ. Appl. Phys. 11107E113
  173. 173. KohmotoO.2007Ferromagnetic resonance equation of hexagonal ferrite in c-planeJ. Magn. Magn. Mater. 3102561
  174. 174. KnorrT. G.HoffmanR. W.1959Dependence of geometric magnetic anisotropy in thin iron filmsPhys. Rev. 1131039
  175. 175. KrausL.FraitZ.AbabeiG.ChaykaO.ChiriacH.2012Ferromagnetic resonance in submicron amorphous wiresJ. Appl. Phys. 111053924
  176. 176. KrebsJ. J.RachfordF. J.LubitzP.PrinzG. A.1982Ferromagnetic resonance studies of very thin epitaxial single crystals of iron. J. Appl. Phys. 538058
  177. 177. KrebsJ. J.LubitzP.ChaikenA.PrinzG. A.1989Magnetic resonance determination of the antiferromagnetic coupling of Fe layers through CrPhys. Rev. Lett. 631645
  178. 178. KrivoruchkoV. N.MarchenkoA. I.2012Spatial confinement of ferromagnetic resonances in honeycomb antidot latticesJ. Magn. Magn. Mater. 3243087
  179. 179. KroneP.AlbrechtM.SchreflT.2011Micromagnetic simulation of ferromagnetic resonance of perpendicular granular media: Influence of the intergranular exchange on the Landau-Lifshitz-Gilbert damping constantJ. Magn. Magn. Mater. 323432
  180. 180. KuanrB. K.CamleyR. E.CelinskiZ.2004Relaxation in epitaxial Fe films measured by ferromagnetic resonanceJ. Appl. Phys. 936610
  181. 181. KuanrB. K.CamleyR. E.CelinskiZ.2005Extrinsic contribution to Gilbert damping in sputtered NiFe films by ferromagnetic resonanceJ. Magn. Magn. Mater. 286276
  182. 182. KudryavtsevY. V.OksenenkoV. A.KulaginV. A.DubowikJ.LeeY. P.2007Ferromagnetic resonance in Co2MnGa films with various structural orderingJ. Magn. Magn. Mater. 3102271
  183. 183. LacheisserieE. T.GignouxD.SchlenkerM.2005Magnetism, materials and aplications. Springer science + Business Media, Inc. Boston.
  184. 184. LandauE.LifshitzE.1935On the theory of the dispersion of magnetic permeability in ferromagnetic bodiesPhysik Z. Sowjetunnion. 8153Layadi, A.; Lee, J.M.; Artman, J.O. (1988). Spin-wave FMR in annealed NiFe/FeMn thin films. J. Appl. Phys. Vol. 63, pp. 3808.
  185. 185. LayadiA.2002Exchange anisotropy: A ferromagnetic resonance studyPhys. Rev. B. 66184423
  186. 186. LayadiA.2004Theoretical study of resonance modes of coupled thin films in the rigid layer modelPhys. Rev. B. 69144431
  187. 187. LayadiA.ArtmanJ. O.1990a)). Ferromagnetic resonance in a coupled two-layer SystemJ. Magn. Magn. Mater. 92143
  188. 188. LayadiA.ArtmanJ. O.1990b)). Study of antiferromagnetic coupling by ferromagnetic resonance (FMR).J. Magn. Magn. Mater. 92143
  189. 189. LeeJ.HongY. K.LeeW.AboG. S.ParkJ.SysloR.SeongW. M.ParkS. H.AhnW. K.2012High ferromagnetic resonance and thermal stability spinel Ni0.7Mn0.3-x CoxFe2O4 ferrite for ultra high frequency devices. J. Appl. Phys. 11107A516
  190. 190. LimmerW.GlunkM.DaeublerJ.HummelT.SchochW.BihlerC.HueblH.BrandtM. S.GoennenweinS. T. B.SauerR.2006Magnetic anisotropy in (Ga, Mn)As on GaAs(1 1 3)As studied by magnetotransport and ferromagnetic resonance. Microelectron. J. 371490
  191. 191. LindnerJ.BaberschkeK.2003In situ ferromagnetic resonance: an ultimate tool to investigate the coupling in ultrathin magnetic filmsJ. Phys.: Condens. Matter. 15R193
  192. 192. LindnerJ.TolinskiT.LenzK.KosubekE.WendeH.BaberschkeK.NeyA.HesjedalT.PampuchC.KochR.DäweritzL.PloogK. H.2004Magnetic anisotropy of MnAs-films on GaAs(0 0 1) studied with ferromagnetic resonance. J. Magn. Magn. Mater. 277159
  193. 193. LiN.SchäferS.DattaR.MewesT.KleinT. M.GuptaA.2012Microstructural and ferromagnetic resonance properties of epitaxial nickel ferrite films grown by chemical vapor deposition. Appl. Phys. Lett. 101132409
  194. 194. LiuaB.YangY.TangD.ZhangB.LuM.LuH.2012The contributions of intrinsic damping and two magnon scattering on the ferromagnetic resonance linewidth in [Fe65Co35/SiO2]n multilayer films. J. Alloy. compd. 52469
  195. 195. MacdonaldJ. R.1956Spin exchange effects in ferromagnetic resonancePhys. Rev. 103280
  196. 196. MaciáF.WarnickeP.BedauD.ImM. Y.FischerP.ArenaD. A.KentA. D.2012Perpendicular magnetic anisotropy in ultrathin Co9Ni multilayer films studied with ferromagnetic resonance and magnetic x-ray microspectroscopy. J. Magn. Magn. Mater. 3243629
  197. 197. MaklakovS. S.MaklakovS. A.RyzhikovI. A.RozanovK. N.OsipovA. V.2012Thin Co films with tunable ferromagnetic resonance frequencyJ. Magn. Magn. Mater. 3242108
  198. 198. MaksymowichL. J.SendorekD.1983Surface modes in magnetic thin amorphous films of GdCoMo alloys. J. Magn. Magn. Mater. 37177
  199. 199. MaksymowiczL. J.SendorekD.ZuberekR.1985Surface anisotropy energy of thin amorphous magnetic films of (Gd1-xCox)1-yMoy alloys; experimental results. J. Magn. Magn. Mater. 46295Maksymowicz, L.J.; Jankowski, H. (1992). FMR experiment in multilayer structure of FeBSi/Pd. J. Magn. Magn. Mater. Vol. 109, pp. 341.
  200. 200. MarinC. N.2006Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluidsJ. Magn. Magn. Mater. 300397
  201. 201. MastrogiacomoG.FischerH.Garcia-rubioI.GehringA. U.2010Ferromagnetic resonance spectroscopic response of magnetite chains in a biological matrixJ. Magn. Magn. Mater. 322661
  202. 202. MazurP.MillsD. L.1982Inelastic scattering of neutrons by surface spin waves on ferromagnetsPhys. Rev. B. 265175McMichael, R.D.; Wigen, P.E. (1990). High power FMR without a degenerate spin wave manifold. Phys. Rev. Lett. Vol. 64, pp. 64.
  203. 203. MeiklejohnW. H.BeanC. P.1956New magnetic anisotropy. Phys. Rev. 1021413
  204. 204. MeiklejohnW. H.BeanC. P.1957New magnetic anisotropy. Phys. Rev. 105904
  205. 205. MercereauJ. E.FeynmanR. P.1956Physical conditions for ferromagnetic resonancePhys. Rev. 10463
  206. 206. MibuK.NagahamaT.OnoT.ShinjoT.1997Magnetoresistance of quasi-Bloch-wall induced in NiFe/CoSm exchange. J. Magn. Magn.Mater. 177-1811267
  207. 207. MibuK.NagahamaT.ShinjoT.OnoT.1998Magnetoresistance of Bloch-wall-type magnetic structures induced in NiFe/CoSm exchange-spring bilayersPhys. Rev. B. 586442
  208. 208. MillsD. L.BlandJ. A. C.2006Nanomagnetism ultrathin films, multilayers and nanostructures.Elsevier B.V. Mills, D.L. (2003). Ferromagnetic resonance relaxation in ultrathin metal films: The role of the conduction electrons. Phys. Rev. B. 68014419
  209. 209. MinJ. H.ChoJ. U.KimY. K.WuJ. H.KoY. D.ChungJ. S.2006Substrate effects on microstructure and magnetic properties of electrodeposited Co nanowire arrays. J. Appl.Phys. 9908Q510
  210. 210. MiyakeK.NohS. M.KanekoT.ImamuraH.SahashiM.2012Study on high-frequency 3-D magnetization precession modes of circular magnetic nano-dots using coplanar wave guide vector network analyzer ferromagnetic resonanceIEEE T. Magn. 481782
  211. 211. MizukamiS.NagashimaS.YakataS.AndoY.MiyazakiT.2007Enhancement of DC voltage generated in ferromagnetic resonance for magnetic thin filmJ. Magn. Magn. Mater. 3102248
  212. 212. MorrishA. H.1965The physical principles of magnetismWiley, New York.
  213. 213. NagamineL. C. C. M.GeshevJ.MenegottoT.FernandesA. A. R.BiondoA.SaitovitchE. B.2005Ferromagnetic resonance and magnetization studies in exchange-coupled NiFe/Cu/NiFe structuresJ. Magn. Magn. Mater. 288205
  214. 214. NakaiT.YamaguchiM.KikuchiH.IizukaH.AraiK. I.2002Remarkable improvement of sensitivity for high-frequency carrier-type magnetic field sensor with ferromagnetic resonanceJ. Magn. Magn. Mater. 242-2451142
  215. 215. NeudeckerI.WoltersdorfG.HeinrichB.OkunoT.GubbiottiG.BackC. H.2006Comparison of frequency, field, and time domain ferromagnetic resonance methodsJ. Magn. Magn. Mater. 307148
  216. 216. OliveE.LansacY.WegroweJ. E.2012Beyond ferromagnetic resonance: The inertial regime of the magnetizationAppl. Phys. Lett. 100192407
  217. 217. OsthöverC.GrünbergP.AronsR. R.1998Magnetic properties of doped La0.67Ba0.33Mn1-yAyO3, A- Fe, Cr. J. Magn. Magn. Mater. 177-181854
  218. 218. OwensF. J.2009Ferromagnetic resonance observation of a phase transition in magnetic field-aligned Fe2O3 nanoparticles. J. Magn. Magn. Mater3212386
  219. 219. ÖnerY.ÖzdemirM.AktasB.TopacliC.HarisE. A.SenoussiS.1997The role of Pt impurities on both bulk and surface anisotropies in amorphous NiMn filmsJ. Magn. Magn. Mater. 170129
  220. 220. ÖzdemirM.AktasB.ÖnerY.SatoT.AndoT.1996A.Spin- Waveresonance study on reentrant Mn77Mn23 thin films. J. Magn. Magn. Mater. 16453
  221. 221. ÖzdemirM.AktasB.ÖnerY.SatoT.AndoT.1997Anomalous anisotropy of re-entrant Ni77Mn23 film. J. Phys.: Condens. Matter. 96433
  222. 222. ÖzdemirM.ÖnerY.AktasB.1998Evidence of superparamagnetic behaviour in an amorphous Ni62Mn38 film by ESR measurementsPhys. B. 252138
  223. 223. PatelR.OwensF. J.2012Ferromagnetic resonance and magnetic force microscopy evidence for above room temperature ferromagnetism in Mn doped Si made by a solid state sintering processSolid State Commun. 152603
  224. 224. PattonC. E.HurbenM. J.1995Theory of magnetostatic waves for in-plane magnetized isotropic filmsJ. Magn. Magn. Mater. 139263Patton, C.E.; Hurben, M.J. (1996). Theory of magnetostatic waves for in-plane magnetized anisotropic films. J. Magn. Magn. Mater. Vol. 163, pp. 39.
  225. 225. ParkD. G.KimC. G.KimW. W.HongJ. H.2007Study of GMI-valve characteristics in the Co-based amorphous ribbon by ferromagnetic resonanceJ. Magn. Magn. Mater. 3102295
  226. 226. ParkinS. S. P.MoreN.RocheK. P.1990Oscillations in exchange coupling and magneto resistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 642304
  227. 227. ParkinS. S. P.BhadraR.RocheK. P.1991a)). Oscillatory magnetic exchange coupling through thin copper layersPhys. Rev. Lett. 662152
  228. 228. ParkinS. S. P.1991b)). Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metalsPhys. Rev. Lett. 673598
  229. 229. ParkinS. S. P.FarrowR. F. C.MarksR. F.CebolladaA.HarpG. R.SavoyR. J.1994Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayersPhys. Rev. Lett. 723718
  230. 230. ParvatheeswaraR. B.CaltunO.DumitruI.SpinuL.2006Ferromagnetic resonance parameters of ball-milled Ni-Zn ferrite nanoparticlesJ. Magn. Magn. Mater. 304752
  231. 231. PaulA.BürglerD. E.GrünbergP.2005Enhanced exchange bias in ferromagnet/ antiferromagnet multilayers. J. Magn. Magn. Mater. 286216
  232. 232. PazE.CebolladaF.PalomaresF. J.GonzálezJ. M.MartinsJ. S.SantosN. M.SobolevN. A.2012Ferromagnetic resonance and magnetooptic study of submicron epitaxial Fe(001) stripes. J. Appl. Phys. 111123917
  233. 233. PiresM. J. M.MansanaresA. M.da Silva, E.C.; Schmidt, J.E.; Meckenstock, R.; Pelzl, J. (2006Ferromagnetic resonance studies in granular CoCu codeposited filmsJ. Magn. Magn. Mater. 300382
  234. 234. PlatowW.AnisimovA. N.DuniferG. L.FarleM.BaberschkeK.1998Correlations between ferromagnetic-resonance linewidths and sample quality in the study of metallic ultrathin filmsPhys. Rev. B. 585611
  235. 235. PollmannJ.SrajerG.HakelD.LangJ. C.MaserJ.JiangJ. S.BaderS. D.2001Magnetic imaging of a buried SmCo layer in a spring magnet.J. Appl. Phys. 897165
  236. 236. Poole, C.P.; Owens J.F. (2003). Introduction to nanotechnology. John Wiley & Sons, Inc. 0-47107-935-9
  237. 237. PrietoA. G.Fdez-gubiedaM. L.LezamaL.OrueI.2012Study of surface effects on CoCu nanogranular alloys by ferromagnetic resonanceJ. Appl. Phys. 11107C105
  238. 238. PurcellE. M.TorreyH. C.PoundR. V.1946Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 6937
  239. 239. PuszkarskiH.1992Spectrum of interface coupling-affected spin-wave modes in ferromagnetic bilayer films. Phys. stat. sol. 171205
  240. 240. RabiI. I.ZachariasJ. R.MillmanS.KuschP.1938A new method of measuring nuclear magnetic momentPhys. Rev. 53318
  241. 241. RachfordF. J.VittoriaC.1981Ferromagnetic anti-resonance in non-saturated magnetic metals. J. Appl. Phys. 522253
  242. 242. RadoG. T.1958Effect of electronic mean free path on spin-wave resonance in ferromagnetic metalsJ. Appl. Phys. 29330Raikher, Yu.L.; Stepanov, V.I. (2003). Nonlinear dynamic response of superparamagnetic nanoparticles. Microelectron. Eng. Vol. 69, pp. 317.
  243. 243. RaitaO.PopaA.StanM.SuciuR. C.BirisA.GiurgiuL. M.2012Effect of Fe concentration in ZnO powders on ferromagnetic resonance spectraAppl. Magn. Reson. 42499
  244. 244. RahmanF.2008Nanostructures in electronics and photonicsPan Stanford Publishing Pte. Ltd. Singapore, 596224.
  245. 245. RameevB. Z.AktasB.KhaibullinR. I.ZhikharevV. A.Osin, Yu.N.; Khaibullin, I.B. (2000Magnetic properties of iron-and cobalt-implanted silicone polymersVacuum58551
  246. 246. RameevB. Z.YildizF.AktasB.OkayC.KhaibullinR. I.ZheglovE. P.PivinJ. C.TagirovL. R.2003a)). I on synthesis and FMR studies of iron and cobalt nanoparticles in polyimides. Microelectron. Eng. 69330
  247. 247. RameevB. Z.YilginR.AktasB.GuptaA.TagirovL. R.2003b)). FMR studies of CrO epitaxial thin films.Microelectron. Eng. 69336
  248. 248. RameevB. Z.GuptaA.AnguelouchA.XiaoG.YildizF.TagirovL. R.AktasB.2004b)). Probing magnetic anisotropies in half-metallic CrO2 epitaxial films by FMR. J. Magn. Magn. Mater. 272-2761167
  249. 249. RameevB.OkayC.YildizF.KhaibullinR. I.PopokV. N.AktasB.2004a)). Ferromagnetic resonance investigations of cobalt-implanted polyimides. J. Magn. Magn. Mater. 278164
  250. 250. RameshM.WigenP. E.1988a)). Ferromagnetic resonance of parallel stripe domains-domain wall system. J. Magn. Magn. Mater. 74123Ramesh, M.; Ren, E.W.; Artman, J.O.; Kryder, M.H. (1988 (b)). Domain mode ferromagnetic resonance studies in bismuth-substituted magnetic garnet films. J. Appl. Phys. Vol. 64, pp. 5483.
  251. 251. RamprasadR.ZurcherP.PetrasM.MillerM.RenaudP.2004Magnetic properties of metallic ferromagnetic nanoparticle compositesJ. Appl. Phys. 96519
  252. 252. RamseyN. F.1985Molecular beamsOxford University Press. New York.
  253. 253. RaposoV.ZazoM.IñiguezJ.2011Comparison of ferromagnetic resonance between amorphous wires and microwiresJ. Magn. Magn. Mater. 3231170
  254. 254. ReichK. H.1955Ferromagnetic resonance absorption in a nickel single crystal at low temperature.Phys. Rev. 1011647
  255. 255. RezendeS. M.MouraJ. A. S.De AguiarF. M.1993Ferromagnetic resonance in Ag coupled Ni filmsJ. Appl. Phys. 736341
  256. 256. RiedlingS.KnorrN.MathieuC.JorzickJ.DemokritovS. O.HillebrandsB.SchreiberR.GrünbergP.1999Magnetic ordering and anisotropies of atomically layered Fe/Au(001) multilayers. J. Magn. Magn. Mater. 198-199348
  257. 257. RichardC.HouzetM.MeyerJ. S.2012Andreev current induced by ferromagnetic resonance.Appl. Phys. Lett. 109057002
  258. 258. RivkinK.XuW.De LongL. E.MetlushkoV. V.IlicB.KettersonJ. B.2007Analysis of ferromagnetic resonance response of square arrays of permalloy nanodotsJ. Magn. Magn. Mater. 309317
  259. 259. RodbellD. S.1964Ferromagnetic resonance absorption linewidth of nickel metal. Evidence for Landau- Lifshitz damping. Phys. Rev. Lett. 13471
  260. 260. RookK.ArtmanJ. O.1991Spin wave resonance in FeAlN filmsIEEE Trans. Magn. 275450Roy, W.V.; Boeck, J.D.; Borghs, G. (1992). Optimization of the magnetic field of perpendicular ferromagnetic thin films for device applications. Appl. Phys. Lett. Vol. 61, pp. 3056.
  261. 261. RousseauO.ViretM.2012Interaction between ferromagnetic resonance and spin currents in nanostructuresPhys. Rev. B. 85144413
  262. 262. RömerF. M.MöllerM.WagnerK.GathmannL.NarkowiczR.ZähresH.SallesB. R.TorelliP.MeckenstockR.LindnerJ.FarleM.2012In situ multifrequency ferromagnetic resonance and x-ray magnetic circular dichroism investigations on Fe/GaAs(110): Enhanced g-factor. J. Appl. Phys. 100092402
  263. 263. RudermanM. A.KittelC.1954Indirect exchange coupling of nuclear magnetic moments by conduction electronsPhys. Rev. 9699Rusek, P. (2004). Spin dynamics of ferromagnetic spin glass. J. Magn. Magn. Mater. Vol. 272-276, pp. 1332.
  264. 264. SarmientoG.Fdez-gubiedaM. L.SiruguriV.LezamaL.OrueI.2007Ferromagnetic resonance study of Fe50Ag50 granular film. J. Magn. Magn. Mater. 31659
  265. 265. SasakiM.JönssonP. E.TakayamaH.MamiyaH.2005Aging and memory effects in superparamagnets and superspin glassesRev. B. 71104405
  266. 266. SchäferS.PachauriN.MewesC. K. A.MewesT.KaiserC.LengQ.PakalaM.2012Frequency-selective control of ferromagnetic resonance linewidth in magnetic multilayersJ. Appl. Phys. 100032402
  267. 267. SchmoolD. S.BarandiaránJ. M.1998Ferromagnetic resonance and spin wave resonance in multiphase materials: theoretical considerationsJ. Phys.: Condens. Matter. 1010679
  268. 268. SchmoolD. S.SchmalzlM.2007Ferromagnetic resonance in magnetic nanoparticle assembliesJ. Non-Cryst. Solids. 353738
  269. 269. ScholzW.SuessD.SchreflT.FidlerJ.2000Micromagnetic simulation of structure-property relations in hard and soft magnetsComp. Mater. Sci. 181
  270. 270. SchreiberF.FraitZ.1996Spinwave resonance in high conductivity films: The Fe-Co alloy system. Phys. Rev. B. 546473Schrefl, T.; Kronmüller, H.; Fidler, J. (1993(a)). Exchange hardening in nano-structured permanent magnets. J. Magn. Magn. Mater. Vol. 127, pp. 273.
  271. 271. SchreflT.SchmidtsH. F.FidlerJ.KronmüllerH.1993b)). The role of exchange and dipolar coupling at grain boundaries in hard magnetic materialsJ. Magn. Magn. Mater. 124251Schrefl, T.; Fidler, J. (1998). Modelling of exchange-spring permanent magnets. J. Magn. Magn. Mater. Vol. 177-181, pp. 970.
  272. 272. SchreflT.ForsterH.FidlerJ.DittrichR.SuessD.ScholzW.2002Magnetic hardening of exchange spring multilayers. Proof XVII Rare Earth Magnets Workshop, University of Delaware, ed: Hadjipanayis, G.; Bonder M.J. 1006
  273. 273. SchultzS.GulliksonE. M.1983Measurement of static magnetization using electron spin resonance. Rev. Sci. Insrum. 541383
  274. 274. SeemannK.LeisteH.KleverC.2009On the relation between the effective ferromagnetic resonance linewidth ?feff and damping parameter aeff in ferromagnetic Fe-Co-Hf-N nanocomposite films. J. Magn. Magn. Mater. 3213149
  275. 275. SeemannK.LeisteH.Klever, Ch. (2010Determination of intrinsic FMR line broadening in ferromagnetic (Fe44Co56)77Hf12N11 nanocomposite films. J. Magn. Magn. Mater. 3222979
  276. 276. SeibJ.SteiaufD.FähnleM.2009Linewidth of ferromagnetic resonance for systems with anisotropic damping. Phys. Rev. B. 79092418
  277. 277. SellmyerD.SkomskiR.2006Advanced magnetic nanostructuresSpringer Science+Business Media, Inc.
  278. 278. SihuesM. D.Durante-rincónC. A.FerminJ. R.2007A ferromagnetic resonance study of NiFe alloy thin filmsJ. Magn. Magn. Mater. 316462
  279. 279. SinghA.ChowdhuryP.PadmaN.AswalD. K.KadamR. M.BabuY.KumarM. L. J.ViswanadhamC. S.GoswamiG. L.GuptaS. K.YakhmiJ. V.2006Magneto-transport and ferromagnetic resonance studies of polycrystalline La0.6Pb0.43thin films. Solid State Commun. 137456
  280. 280. ShamesA. I.RozenbergE.SominskiE.GedankenA.2012Nanometer size effects on magnetic order in La1-x CaxMnO3 (x = 50.5 and 0.6) manganites, probed by ferromagnetic resonance. J. Appl. Phys. 11107D701
  281. 281. SklyuyevA.CiureanuM.AkyelC.CiureanuP.YelonA.2009Microwave studies of magnetic anisotropy of Co nanowire arraysJ. App. Phys. 105023914
  282. 282. SkomskiR.CoeyJ. M. D.1993Giant energy product in nanostructured two-phase magnetsPhys. Rev. B. 4815812
  283. 283. Skomski, R. (2008).Simple models of magnetism. Oxford University Press. 978-0-19857-075-2
  284. 284. SlichterC. P.1963Principle of Magnetic Resonance. Harper & Row, New York. Smit, J.; Beljers, H. G. (1955). Ferromagnetic resonance absorption in BaFe12O19, a high anisotropy crystal. Philips Res. Rep. 10113
  285. 285. Spaldin, N.A. (2010). Magnetic materials: Fundamentals and applications. Cambridge University Press. 13978052188669 7.
  286. 286. SparksM.1964Ferromagnetic Relaxation Theory. McGraw-Hill, New York.
  287. 287. SparksM.1969Theory of surface spin pinning in ferromagnetic resonancePhys. Rev. Lett. 221111
  288. 288. SparksM.1970a)). Ferromagnetic resonance in thin films. III. Theory of mode Intensities. Phys. Rev. B. 13869
  289. 289. SparksM.1970b)). Ferromagnetic resonance in thin films I and II. Phys. Rev. B. 13831Sparks, M. (1970(c)). Ferromagnetic resonance in thin films. I. Theory of normal-mode frequencies. Phys. Rev. B. Vol. 1, pp. 3831.
  290. 290. SparksM.1970d)). Ferromagnetic resonance in thin films. I. Theory of normal-modeintensities. Phys. Rev. B. 13869
  291. 291. SperiosuV. S.ParkinS. S. P.1987Standing spin waves in FeMn/NiFe/FeMn exchange bias structures. IEEE Trans. magn. 232999
  292. 292. SpinuL.DumitruI.StancuA.CimpoesuD.2006Transverse susceptibility as the low-frequency limit of ferromagnetic resonanceJ. Magn. Magn. Mater. 2961
  293. 293. SpoddigD.MeckenstockR.BucherJ. P.PelzlJ.2005Studies of ferromagnetic resonance line width during electrochemical deposition of Co films on Au(1 1 1). J. Magn. Magn. Mater. 286286
  294. 294. SongY. Y.KalarickalS.PattonC. E.2003Optimized pulsed laser deposited barium ferrite thin films with narrow ferromagnetic resonance linewidthsJ. Appl. Phys. 945103
  295. 295. SongH.MulleyS.CoussensN.DhagatP.JanderA.YokochiA.2012Effect of packing fraction on ferromagnetic resonance in NiFe2O4 nanocompositesJ. Appl. Phys. 11107E348
  296. 296. StashkevichA. A.RoussignéY.DjemiaP.ChérifS. M.EvansP. R.MurphyA. P.HendrenW. R.AtkinsonR.PollardR. J.ZayatsA. V.ChaboussantG.OttF.2009Spin-wave modes in Ni nanorod arrays studied by Brillouin light scatteringPhys. Rev. B. 80144406
  297. 297. StonerE. C.WohlfarthE. P.1948A mechanism of magnetic hysteresis in heterogeneous alloysPhil. Trans. R. Soc. A. 240599
  298. 298. SunY.DuanL.GuoZ.DuanMu, Y.; Ma, M.; Xu, L.; Zhang, Y.; Gu, N. (2005An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological applicationJ. Magn. Magn. Mater. 28565
  299. 299. SunY.SongY. Y.ChangH.KabatekM.JantzM.SchneiderW.WuM.SchultheissH.HoffmannA.2012a.Growthand ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films. Appl. Phys. Lett. 101152405
  300. 300. SunY.SongY. Y.WuM.2012b.Growthand ferromagnetic resonance of yttrium iron garnet thin films on metals. Appl. Phys. Lett. 101082405
  301. 301. SunL.WangY.YangM.HuangZ.ZhaiY.XuY.DuJ.ZhaiH.2012c)). Ferromagnetic resonance studies of Fe thin films with dilute heavy rare-earth impuritiesJ. Appl. Phys. 11107A328
  302. 302. SuzukiY.KatayamaT.TakanashiK.SchreiberR.GtinbergP.TanakaK.1997The magneto-optical effect of Cr( 001) wedged ultrathin films grown on Fe( 001). J. Magn. Magn. Mater. 165134
  303. 303. SzlaferekA.2004Model exchange-spring nanocomposite. Status Solidi B, 2411312
  304. 304. TannenwaldP. E.SeaweyM. H.1957Ferromagnetic resonance in thin films of permalloy. Phys. Rev. 105377
  305. 305. TartajP.González-carreñoT.Bomati-miguelO.SernaC. J.2004Magnetic behavior of superparamagnetic Fe nanocrystals confined inside submicron-sized spherical silica particles. Phys. Rev. B. 69094401
  306. 306. TealeR. W.PelegriniF.1986Magnetic surface anisotropy and ferromagnetic resonance in the single crystal GdAl2. J. Phys. F:Met. Phys. 16621
  307. 307. TerryE. M.1917The magnetic properties of iron, nickel and cobalt above the curie point, and Keeson’s quantum theory of magnetism. Phys. Rev. 9394
  308. 308. TopkayaR.ErkovanM.ÖztürkA.ÖztürkO.AktasB.ÖzdemirM.2010Ferromagnetic resonance studies of exchange coupled ultrathin Py/Cr/Py trilayers. J. Appl. Phys. 108023910
  309. 309. TsaiC. C.ChoiJ.ChoS.LeeS. J.SarmaB. K.ThompsonC.ChernyashevskyyO.NevirkovetsI.MetlushkoV.RivkinK.KettersonJ. B.2009Vortex phase boundaries from ferromagnetic resonance measurements in a patterned disc array. Phys. Rev. B. 80014423
  310. 310. UhlenbeckG. E.GoudsmitS.1925Ersetzung der hypothese vom unmechanischen zwang durch eine forderung bezüglich des inneren verhaltens jedes einzelnen elektrons. Die Naturwissenschaften. 1347953
  311. 311. ValenzuelaR.ZamoranoR.AlvarezG.GutiérrezM. P.MontielH.2007Magnetoimpedance, ferromagnetic resonance, and low field microwave absorption in amorphous ferromagnets. J. Non-Cryst. Solids. 353768
  312. 312. ValenzuelaR.HerbstF.AmmarS.2012Ferromagnetic resonance in Ni-Zn ferrite nanoparticles in different aggregation states. J. Magn. Magn. Mater. 3243398
  313. 313. Van VleckJ. H.1950Concerning the theory of ferromagnetic resonance absorption. Phys. Rev. 78266
  314. 314. VargasJ. M.ZyslerR. D.ButeraA.2007Order-disorder transformation in FePt nanoparticles studied by ferromagnetic resonance. Appl. Surf. Sci. 254274
  315. 315. Vilasi, D. (2001). Hamiltonian dynamics. World Scientific. 9-81023-308-6
  316. 316. VittoriaC.1993Microwave Properties in Magnetic Films. World Scientific, Singapore. 87
  317. 317. Vlasko-vlasovK.WelpU.JiangJ. S.MillerD. J.CrabtreeG. W.BaderS. D.2001Field induced biquadratic exchange in hard/soft ferromagnetic bilayers. Phys. Rev. Lett. 864386
  318. 318. VogesF.De GronckelH.OsthöverC.SchreiberR.GrünbergP.1998Spin valves with CoO as an exchange bias layer. J. Magn. Magn. Mater. 190183
  319. 319. VounyukB. P.GuslienkoK. Y.KozlovV. I.LesnikN. A.MitsekA. I.1991Effect on the interaction of layers on a ferromagnetic resonance in two layer feromagnetic films. Sov. Phys. Solid State. 33250
  320. 320. WalkerL. R.1957Magnetostatic modes in ferromagnetic resonance. Phys. Rev. 105390
  321. 321. WallisT. M.MorelandJ.RiddleB.KabosP.2005Microwave power imaging with ferromagnetic calorimeter probes on bimaterial cantilevers. J. Magn. Magn. Mater. 286320
  322. 322. WangX.DengL. J.XieJ. L.LiD.2011Observations of ferromagnetic resonance modes on FeCo-based nanocrystalline alloys. J. Magn. Magn. Mater. 323635
  323. 323. Weil, J.A.; Bolton, J.R.; Wertz, J.E. (1994). Electron Paramagnetic Resonance: elementary Theory and Practical Application. John Wiley-Sons. New York. Weil, J.A.; Bolton, J.R. (2007). Electron paramagnetic resonance. John Wiley & Sons, Inc. Hoboken, New Jersey. 978-0-47175-496-1
  324. 324. WeissM. T.AndersonP. W.1955Ferromagnetic resonance in ferroxdure. Phys. Rev. 98925
  325. 325. WegroweJ. E.KellyD.FranckA.GilbertS. E.AnsermetJ.Ph. (1999Magnetoresistance of ferromagnetic nanowires. Phys. Rev. Lett. 823681
  326. 326. WegroweJ. E.CommentA.JaccardY.AnsermetJ.Ph. (2000Spin-dependent scattering of a domain wall of controlled size. Phys. Rev. B. 6112216
  327. 327. WhiteR. L.SoltI. H.1956Multiple ferromagnetic resonance in ferrite spheres. Phys. Rev. 10456
  328. 328. WiekhorstF.ShevchenkoE.WellerH.KötzlerJ.2003Anisotropic superparamagnetism of mono dispersive cobalt-platinum nanocrystals. Phys. Rev. B. 67224416
  329. 329. WigenP. E.ZhangZ.1992Ferromagnetic resonance in coupled magnetic multilayer systems. Braz. J. Phys. 22267Wigen, P.E.; Kooi, C.F.; Shanaberger, M.R.; Rosing, T.R. (1962). Dynamic pinning in thin-film spin-wave resonance. Phys. Rev. Lett. Vol. 9, pp. 206. Wigen, P.E. (1984). Microwave properties of magnetic garnet thin films. Thin Solid Films. Vol. 114, pp. 135.
  330. 330. WigenP. E.ZhangZ.ZhouL.YeM.CowenJ. A.1993The dispersion relation in antiparallel coupled ferromagnetic films. J. Appl. Phys. 736338
  331. 331. WigenP. E.1998Routes to chaos in ferromagnetic resonance and the return trip: Controlling and synchronizing Chaos, in Bar’yakhtar, V.G.; Wigen, P.E.; Lesnik, N.A. (Eds.). Frontiers in magnetism of reduced dimension systems Nato ASI series (Kluwer, Dordrecht) 29Wojtowicz, T. (2005). Ferromagnetic resonance study of the free-hole contribution to magnetization and magnetic anisotropy in modulation-doped Ga1-xMnxAs/Ga1-yAlyAs: Be. Phys. Rev. B. 71pp. 035307.
  332. 332. WolframT.De WamesR. E.1971Magneto-exchange branches and spin-wave resonance in conducting and insulating films: Perpendicular resonance. Phys. Rev. B. 43125
  333. 333. WoltersdorfG.HeinrichB.WoltersdorfJ.ScholzR.2004Spin dynamics in ultrathin film structures with a network of misfit dislocations. Journal of Applied Physics. 9570077009
  334. 334. WoodsS. I.KirtleyJ. R.SunS.KochR. H.2001Direct investigation of superparamagnetism in Co nanoparticle films. Phys. Rev. Lett. 87137205
  335. 335. WüchnerS.ToussaintJ. C.VoironJ.1997Magnetic properties of exchange-coupled trilayers of amorphous rare-earth-cobalt alloys. J. Phys. Rev. B. 5511576
  336. 336. XuY.ZhangD.ZhaiY.ChenJ.LongJ. G.SangH.YouB.DuJ.HuA.LuM.ZhaiH. R.2004FMR study on magnetic thin and ultrathin Ni-Fe films. Phys. Stat. Sol. (c). 123698
  337. 337. YalçinO.YildizF.ÖzdemirM.AktasB.KöseogluY.BalM.TouminenM. T.2004a)). Ferromagnetic resonance studies of Co nanowire arrays. J. Magn. Magn. Mater. 272-2761684
  338. 338. YalçinO.YildizF.ÖzdemirM.RameevB.BalM.TuominenM. T.2004b)). FMR Studies of Co Nanowire Arrays, Nanostructures Magnetic Materials and Their Applications. Kluwer Academic Publisher. Nato Science Series. Mathematics, Physics and Chemistry. 143347
  339. 339. Yalçin, O. (2004(c)). PhD Thesis, investigation of phase transition in inorganic spin-Peierls CuGeO3 systems by ESR techgnique. Gebze institute of technology, 2004 Gebze, Kocaeli, Turkey.
  340. 340. YalçinO.AktasB.2003The Effects of Zn2+ doping on Spin-Peierls transition in CuGeO3 J. Magn. Magn. Mater. 258-259137
  341. 341. YalçinO.YildizF.AktasB.2007a.Spinop and spin-Peierls transition in doped CuGeO3. Spectrochim. Acta Part A. 66307
  342. 342. YalçinO.2007b)). Comparison effects of different doping on spin-Peierls transition in CuGeO3 Spectrochim. Acta Part A. 681320
  343. 343. YalçinO.KazanS.SahingözR.YildizF.YerliY.AktasB.2008a)). Thickness dependence of magnetic properties of Co90Fe10 nanoscale thin films. J. Nanosci. Nanotech. 8841
  344. 344. Yalçin, O.; Erdem, R.; Övünç, S. (2008(b)). Spin-1 model of noninteracting nanoparticles. Acta Phys. Pol. A. 114 835 Yalçin, O.; Erdem,R.; Demir, Z. (2012). Magnetic properties and size effects of spin-1/2 and spin-1 models of core-surface nanoparticles in different type lattices, smart nanoparticles technology, Abbass Hashim (Ed.), 978-9-53510-500-8 InTech, DOI: 10.5772/34706. Available from:
  345. 345. YehY. C.JinJ. D.LiC. M.LueJ. T.2009The electric and magnetic properties of Co and Fe films percept from the coexistence of ferromagnetic and microstrip resonance or a T-type microstrip. Measurement. 42290
  346. 346. YildizF.YalçinO.ÖzdemirM.AktasB.KöseogluY.JiangJ. S.2004a)). Magnetic properties of SmCo/Fe exchange spring magnets. J. Magn. Magn. Mater. 272-2761941
  347. 347. YildizF.YalçinO.AktasB.ÖzdemirM.JiangJ. S.2004b)). Ferromagnetic resonance studies on Sm-Co/Fe thin films. MSMW’04 Symposium Proceedings. Kharkov, Ukraine.
  348. 348. YildizF.KazanS.AktasB.TarapovS.SamofalovV.RavlikA.2004c)). Magnetic anisotropy studies on FeNiCo/Ta/FeNiCo three layers film by layer sensitive ferromagnetic resonance technique. Phys. stat. sol. (c). 123694
  349. 349. YosidaK.1957Magnetic properties of Cu-Mn alloys. Phys. Rev. 106893Yoshikiyo, M.; Namai, A.; Nakajima, M.; Suemoto, T.; Ohkoshi, S. (2012). Anomalous behavior of high-frequency zero-field ferromagnetic resonance in aluminum-substituted e-Fe2O3. J. Appl. Phys. Vol. 111, pp. 07A726.
  350. 350. YoungJ. A.UehlingE. A.1953The tensor formulation of ferromagnetic resonance. Phys. Rev. 93544
  351. 351. YuJ. T.TurkR. A.WigenP. E.1975Exchange dominated surface spinwaves in yttrium-iron-garnet films. Phys. Rev. B. 11420
  352. 352. ZakeriK.KebeT.LindnerJ.FarleM.2006Magnetic anisotropy of Fe/GaAs(001) ultrathin films investigated by in situ ferromagnetic resonance. J. Magn. Magn. Mater. 299L1
  353. 353. ZakeriKh.; Lindner, J.; Barsukov, I.; Meckenstock, R.; Farle, M.; von Hörsten, U.; Wende, H.; Keune, W. (2007Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering. Phys. Rev. B. 76104416
  354. 354. ZavoiskyE.1945Spin-magnetic resonance in paramagnetics. J. Phys. USSR. 9211
  355. 355. ZianniX.TrohidouK. N.1998Monte carlo simulations the coercive behaviour of oxide coated ferromagnetic particles. J. Phys.: Condens. Matter. 107475
  356. 356. ZhaiY.ShiL.ZhangW.XuY. X.LuM.ZhaiH. R.TangW. X.JinX. F.XuY. B.BlandJ. A. C.2003Evolution of magnetic anisotropy in epitaxial Fe films by ferromagnetic resonance. J. Appl. Phys. 937622
  357. 357. ZhangZ.ZhouL.WigenP. E.OunadjelaK.1994a)). Angular dependence of ferromagnetic resonance in exchange coupled Co/Ru/Co trilayer structures, Phys. Rev. B. 506094Zhang, Z.; Zhou, L.; Wigen, P.E.; Ounadjela, K. (1994 (b)). Using ferromagnetic resonance as a sensitive method to study the temperature dependence of interlayer exchange coupling. Phys. Rev. Lett. Vol. 73, pp. 336.
  358. 358. ZhangB.ChengJ.GongaX.DongX.LiuX.MaG.ChangJ.2008Facile fabrication of multi-colors high fluorescent/superparamagnetic nanoparticles. J. Colloid Interf. Sci. 322485
  359. 359. ZhuJ.KatineJ. A.RowlandsG. E.ChenY. J.DuanZ.AlzateJ. G.UpadhyayaP.LangerJ.AmiriP. K.WangK. L.KrivorotovI. N.2012Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. ArXiv: 1205-2835: Cond-mat. Mes-hall. 1

Written By

Orhan Yalçın

Submitted: September 25th, 2012 Published: July 31st, 2013