Effects of Integrin Deletion in Murine Models
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"2323",leadTitle:null,fullTitle:"Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology",title:"Carbohydrates",subtitle:"Comprehensive Studies on Glycobiology and Glycotechnology",reviewType:"peer-reviewed",abstract:"It is my great honor and pleasure to introduce this comprehensive book to readers who are interested in carbohydrates. This book contains 23 excellent chapters written by experts from the fields of chemistry, glycobiology, microbiology, immunology, botany, zoology, as well as biotechnology. According to the topics, methods and targets, the 23 chapters are further divided into five independent sections. In addition to the basic research, this book also offers much in the way of experiences, tools, and technologies for readers who are interested in different fields of Glycobiology. I believe that readers can obtain more than anticipated from this meaningful and useful book.",isbn:null,printIsbn:"978-953-51-0864-1",pdfIsbn:"978-953-51-4264-5",doi:"10.5772/2702",price:159,priceEur:175,priceUsd:205,slug:"carbohydrates-comprehensive-studies-on-glycobiology-and-glycotechnology",numberOfPages:572,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"f7c2e6a3566eee14c9884ad0820a6416",bookSignature:"Chuan-Fa Chang",publishedDate:"November 21st 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2323.jpg",numberOfDownloads:117233,numberOfWosCitations:357,numberOfCrossrefCitations:150,numberOfCrossrefCitationsByBook:7,numberOfDimensionsCitations:405,numberOfDimensionsCitationsByBook:11,hasAltmetrics:1,numberOfTotalCitations:912,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 22nd 2011",dateEndSecondStepPublish:"December 20th 2011",dateEndThirdStepPublish:"April 18th 2012",dateEndFourthStepPublish:"July 17th 2012",dateEndFifthStepPublish:"August 16th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"145728",title:"Prof.",name:"Chuan-Fa",middleName:null,surname:"Chang",slug:"chuan-fa-chang",fullName:"Chuan-Fa Chang",profilePictureURL:"https://mts.intechopen.com/storage/users/145728/images/1226_n.jpg",biography:"Dr. Chuan-Fa Chang started his research work in Glycobiology for his doctorate at Institute of Biological Chemistry, Academia Sinica. He developed new methodologies for carbohydrate organic synthesis and accomplished series of carbohydrate analogs by using exo-glycals as building blocks. He then joined Dr. Chi-Huey Wong’s chemical biology lab as a postdoctoral fellow and worked on discovering glycosidase inhibitors by high-throughput drug screening systems. In 2007, Dr. Chang moved to National Cheng Kung University and initiated his independent research career. He is also the member of Society of Glycobiology (since 2004) and participating investigator of Consortium for Functional Glycomics (CFG, since 2011). Recently, Dr. Chang is interested in investigating the roles of carbohydrates in infectious disease and the regulation of glycosylation in tumorigenesis and cancer metastasis.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"384",title:"Chemical Biology",slug:"chemical-biology"}],chapters:[{id:"41124",title:"Carbohydrate Microarray",doi:"10.5772/51971",slug:"carbohydrate-microarray",totalDownloads:3200,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Chuan-Fa Chang",downloadPdfUrl:"/chapter/pdf-download/41124",previewPdfUrl:"/chapter/pdf-preview/41124",authors:[{id:"145728",title:"Prof.",name:"Chuan-Fa",surname:"Chang",slug:"chuan-fa-chang",fullName:"Chuan-Fa Chang"}],corrections:null},{id:"41104",title:"Conversion of Carbohydrates Under Microwave Heating",doi:"10.5772/50628",slug:"conversion-of-carbohydrates-under-microwave-heating",totalDownloads:4096,totalCrossrefCites:6,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"Aurore Richel and Michel Paquot",downloadPdfUrl:"/chapter/pdf-download/41104",previewPdfUrl:"/chapter/pdf-preview/41104",authors:[{id:"144442",title:"Prof.",name:"Aurore",surname:"Richel",slug:"aurore-richel",fullName:"Aurore Richel"}],corrections:null},{id:"41107",title:"Boron-Carbohydrate Interactions",doi:"10.5772/50630",slug:"boron-carbohydrate-interactions",totalDownloads:7759,totalCrossrefCites:12,totalDimensionsCites:38,hasAltmetrics:0,abstract:null,signatures:"Brighid Pappin, Milton J. Kiefel and Todd A. Houston",downloadPdfUrl:"/chapter/pdf-download/41107",previewPdfUrl:"/chapter/pdf-preview/41107",authors:[{id:"147209",title:"Dr.",name:"Todd",surname:"Houston",slug:"todd-houston",fullName:"Todd Houston"},{id:"156339",title:"Dr.",name:"Milton",surname:"Kiefel",slug:"milton-kiefel",fullName:"Milton Kiefel"},{id:"156340",title:"Ms.",name:"Brighid",surname:"Pappin",slug:"brighid-pappin",fullName:"Brighid Pappin"}],corrections:null},{id:"41111",title:"Liquid Chromatography – Mass Spectrometry of Carbohydrates Derivatized with Biotinamidocaproyl Hydrazide",doi:"10.5772/50634",slug:"liquid-chromatography-mass-spectrometry-of-carbohydrates-derivatized-with-biotinamidocaproyl-hydrazi",totalDownloads:4102,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Stephanie Bank and Petra Kapkova",downloadPdfUrl:"/chapter/pdf-download/41111",previewPdfUrl:"/chapter/pdf-preview/41111",authors:[{id:"148596",title:"Dr.",name:"Petra",surname:"Kapkova",slug:"petra-kapkova",fullName:"Petra Kapkova"},{id:"148627",title:"Ms.",name:"Stephanie",surname:"Bank",slug:"stephanie-bank",fullName:"Stephanie Bank"}],corrections:null},{id:"41103",title:"Investigation of Carbohydrates and Their Derivatives as Crystallization Modifiers",doi:"10.5772/50626",slug:"investigation-of-carbohydrates-and-their-derivatives-as-crystallization-modifiers",totalDownloads:4112,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Josef Jampílek and Jiří Dohnal",downloadPdfUrl:"/chapter/pdf-download/41103",previewPdfUrl:"/chapter/pdf-preview/41103",authors:[{id:"89487",title:"Prof.",name:"Josef",surname:"Jampílek",slug:"josef-jampilek",fullName:"Josef Jampílek"},{id:"155228",title:"Prof.",name:"Jiří",surname:"Dohnal",slug:"jiri-dohnal",fullName:"Jiří Dohnal"}],corrections:null},{id:"41125",title:"Glycosidases – A Mechanistic Overview",doi:"10.5772/52019",slug:"glycosidases-a-mechanistic-overview",totalDownloads:3036,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Nuno Cerqueira, Natércia Brás, Maria João Ramos and Pedro Alexandrino Fernandes",downloadPdfUrl:"/chapter/pdf-download/41125",previewPdfUrl:"/chapter/pdf-preview/41125",authors:[{id:"144335",title:"Prof.",name:"Nuno",surname:"Cerqueira",slug:"nuno-cerqueira",fullName:"Nuno Cerqueira"},{id:"148943",title:"Dr.",name:"Natércia",surname:"Brás",slug:"natercia-bras",fullName:"Natércia Brás"},{id:"148956",title:"Prof.",name:"Maria João",surname:"Ramos",slug:"maria-joao-ramos",fullName:"Maria João Ramos"},{id:"148957",title:"Dr.",name:"Pedro Alexandrino",surname:"Fernandes",slug:"pedro-alexandrino-fernandes",fullName:"Pedro Alexandrino Fernandes"}],corrections:null},{id:"41105",title:"DC-SIGN Antagonists – A Paradigm of C-Type Lectin Binding Inhibition",doi:"10.5772/50627",slug:"dc-sign-antagonists-a-paradigm-of-c-type-lectin-binding-inhibition",totalDownloads:3273,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Marko Anderluh",downloadPdfUrl:"/chapter/pdf-download/41105",previewPdfUrl:"/chapter/pdf-preview/41105",authors:[{id:"143196",title:"Prof.",name:"Marko",surname:"Anderluh",slug:"marko-anderluh",fullName:"Marko Anderluh"}],corrections:null},{id:"41108",title:"Broad Antiviral Activity of Carbohydrate-Binding Agents Against Dengue Virus Infection",doi:"10.5772/50631",slug:"broad-antiviral-activity-of-carbohydrate-binding-agents-against-dengue-virus-infection",totalDownloads:3052,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Marijke Alen and Dominique Schols",downloadPdfUrl:"/chapter/pdf-download/41108",previewPdfUrl:"/chapter/pdf-preview/41108",authors:[{id:"148442",title:"Prof.",name:"Dominique",surname:"Schols",slug:"dominique-schols",fullName:"Dominique Schols"}],corrections:null},{id:"41123",title:"IL-13, Asthma and Glycosylation in Airway Epithelial Repair",doi:"10.5772/51970",slug:"il-13-asthma-and-glycosylation-in-airway-epithelial-repair",totalDownloads:4163,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Samuel J. Wadsworth, S. Jasemine Yang and Delbert R. Dorscheid",downloadPdfUrl:"/chapter/pdf-download/41123",previewPdfUrl:"/chapter/pdf-preview/41123",authors:[{id:"141889",title:"Dr.",name:"Del",surname:"Dorscheid",slug:"del-dorscheid",fullName:"Del Dorscheid"},{id:"153539",title:"Dr.",name:"Samuel",surname:"Wadsworth",slug:"samuel-wadsworth",fullName:"Samuel Wadsworth"},{id:"154075",title:"Dr.",name:"Jasemine",surname:"Yang",slug:"jasemine-yang",fullName:"Jasemine Yang"}],corrections:null},{id:"41106",title:"Metabolism of Carbochidrates in the Cell of Green Photosintesis Sulfur Bacteria",doi:"10.5772/50629",slug:"metabolism-of-carbochidrates-in-the-cell-of-green-photosintesis-sulfur-bacteria",totalDownloads:3163,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"M. B. Gorishniy and S. P. Gudz",downloadPdfUrl:"/chapter/pdf-download/41106",previewPdfUrl:"/chapter/pdf-preview/41106",authors:[{id:"146009",title:"Dr.",name:"Muroslav",surname:"Gorishniy",slug:"muroslav-gorishniy",fullName:"Muroslav Gorishniy"}],corrections:null},{id:"41118",title:"Digestion in Ruminants",doi:"10.5772/51574",slug:"digestion-in-ruminants",totalDownloads:7463,totalCrossrefCites:5,totalDimensionsCites:8,hasAltmetrics:0,abstract:null,signatures:"Barbara Niwińska",downloadPdfUrl:"/chapter/pdf-download/41118",previewPdfUrl:"/chapter/pdf-preview/41118",authors:[{id:"144439",title:"Associate Prof.",name:"Barbara",surname:"Niwińska",slug:"barbara-niwinska",fullName:"Barbara Niwińska"}],corrections:null},{id:"41117",title:"Resistant Dextrins as Prebiotic",doi:"10.5772/51573",slug:"resistant-dextrins-as-prebiotic",totalDownloads:6034,totalCrossrefCites:4,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"Katarzyna Śliżewska, Janusz Kapuśniak, Renata Barczyńska and Kamila Jochym",downloadPdfUrl:"/chapter/pdf-download/41117",previewPdfUrl:"/chapter/pdf-preview/41117",authors:[{id:"143518",title:"Dr.",name:"Katarzyna",surname:"Śliżewska",slug:"katarzyna-slizewska",fullName:"Katarzyna Śliżewska"}],corrections:null},{id:"41122",title:"Food Structure and Carbohydrate Digestibility",doi:"10.5772/51969",slug:"food-structure-and-carbohydrate-digestibility",totalDownloads:7938,totalCrossrefCites:15,totalDimensionsCites:31,hasAltmetrics:0,abstract:null,signatures:"Suman Mishra, Allan Hardacre and John Monro",downloadPdfUrl:"/chapter/pdf-download/41122",previewPdfUrl:"/chapter/pdf-preview/41122",authors:[{id:"143365",title:"Dr.",name:"Suman",surname:"Mishra",slug:"suman-mishra",fullName:"Suman Mishra"},{id:"146859",title:"Dr.",name:"John",surname:"Monro",slug:"john-monro",fullName:"John Monro"},{id:"163213",title:"Dr.",name:"Allan",surname:"Hardacre",slug:"allan-hardacre",fullName:"Allan Hardacre"}],corrections:null},{id:"41110",title:"Carbohydrate Metabolism in Drosophila: Reliance on the Disaccharide Trehalose",doi:"10.5772/50633",slug:"carbohydrate-metabolism-in-drosophila-reliance-on-the-disaccharide-trehalose",totalDownloads:5393,totalCrossrefCites:10,totalDimensionsCites:24,hasAltmetrics:1,abstract:null,signatures:"Alejandro Reyes-DelaTorre, María Teresa Peña-Rangel and Juan Rafael Riesgo-Escovar",downloadPdfUrl:"/chapter/pdf-download/41110",previewPdfUrl:"/chapter/pdf-preview/41110",authors:[{id:"148766",title:"Dr.",name:"Juan R.",surname:"Riesgo-Escovar",slug:"juan-r.-riesgo-escovar",fullName:"Juan R. Riesgo-Escovar"},{id:"148771",title:"Dr.",name:"María Teresa",surname:"Peña-Rangel",slug:"maria-teresa-pena-rangel",fullName:"María Teresa Peña-Rangel"},{id:"148772",title:"BSc.",name:"Alejandro",surname:"Reyes-Delatorre",slug:"alejandro-reyes-delatorre",fullName:"Alejandro Reyes-Delatorre"}],corrections:null},{id:"41112",title:"Starvation Conditions Effects on Carbohydrate Metabolism of Marine Bacteria",doi:"10.5772/50877",slug:"starvation-conditions-effects-on-carbohydrate-metabolism-of-marine-bacteria",totalDownloads:3074,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Monia El Bour",downloadPdfUrl:"/chapter/pdf-download/41112",previewPdfUrl:"/chapter/pdf-preview/41112",authors:[{id:"142531",title:"Dr.",name:"Monia",surname:"El Bour",slug:"monia-el-bour",fullName:"Monia El Bour"}],corrections:null},{id:"41114",title:"Adapting the Consumption of Carbohydrates for Diabetic Athletes",doi:"10.5772/51570",slug:"adapting-the-consumption-of-carbohydrates-for-diabetic-athletes",totalDownloads:3763,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Anna Novials and Serafín Murillo",downloadPdfUrl:"/chapter/pdf-download/41114",previewPdfUrl:"/chapter/pdf-preview/41114",authors:[{id:"103592",title:"Dr.",name:"Anna",surname:"Novials",slug:"anna-novials",fullName:"Anna Novials"},{id:"148487",title:"Dr.",name:"Serafin",surname:"Murillo",slug:"serafin-murillo",fullName:"Serafin Murillo"}],corrections:null},{id:"41119",title:"Environmental and Genetic Variation for Water Soluble Carbohydrate Content in Cool Season Forage Grasses",doi:"10.5772/51575",slug:"environmental-and-genetic-variation-for-water-soluble-carbohydrate-content-in-cool-season-forage-gra",totalDownloads:2942,totalCrossrefCites:0,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Ali Ashraf Jafari",downloadPdfUrl:"/chapter/pdf-download/41119",previewPdfUrl:"/chapter/pdf-preview/41119",authors:[{id:"145334",title:"Prof.",name:"Ali Ashraf",surname:"Jafari",slug:"ali-ashraf-jafari",fullName:"Ali Ashraf Jafari"}],corrections:null},{id:"41120",title:"Alterations in Root Morphology of Rootstock Peach Trees Caused by Mycorrhizal Fungi",doi:"10.5772/51586",slug:"alterations-in-root-morphology-of-rootstock-peach-trees-caused-by-mycorrhizal-fungi",totalDownloads:3101,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"José Luis da Silva Nunes, Paulo Vitor Dutra de Souza, Gilmar Arduino Bettio Marodin, José Carlos Fachinello and Jorge Ernesto de Araújo Mariath",downloadPdfUrl:"/chapter/pdf-download/41120",previewPdfUrl:"/chapter/pdf-preview/41120",authors:[{id:"144373",title:"Dr.",name:"José Luis",surname:"Da Silva Nunes",slug:"jose-luis-da-silva-nunes",fullName:"José Luis Da Silva Nunes"}],corrections:null},{id:"41113",title:"Plant Responses to Sugar Starvation",doi:"10.5772/51569",slug:"plant-responses-to-sugar-starvation",totalDownloads:4113,totalCrossrefCites:3,totalDimensionsCites:17,hasAltmetrics:1,abstract:null,signatures:"Iwona Morkunas, Sławomir Borek, Magda Formela and Lech Ratajczak",downloadPdfUrl:"/chapter/pdf-download/41113",previewPdfUrl:"/chapter/pdf-preview/41113",authors:[{id:"144334",title:"Dr.",name:"Iwona",surname:"Morkunas",slug:"iwona-morkunas",fullName:"Iwona Morkunas"},{id:"145584",title:"Dr.",name:"Sławomir",surname:"Borek",slug:"slawomir-borek",fullName:"Sławomir Borek"},{id:"145585",title:"Prof.",name:"Lech",surname:"Ratajczak",slug:"lech-ratajczak",fullName:"Lech Ratajczak"},{id:"148592",title:"MSc.",name:"Magda",surname:"Formela",slug:"magda-formela",fullName:"Magda Formela"}],corrections:null},{id:"41121",title:"Carbohydrates from Biomass: Sources and Transformation by Microbial Enzymes",doi:"10.5772/51576",slug:"carbohydrates-from-biomass-sources-and-transformation-by-microbial-enzymes",totalDownloads:3680,totalCrossrefCites:5,totalDimensionsCites:10,hasAltmetrics:1,abstract:null,signatures:"Luis Henrique Souza Guimarães",downloadPdfUrl:"/chapter/pdf-download/41121",previewPdfUrl:"/chapter/pdf-preview/41121",authors:[{id:"148075",title:"Dr.",name:"Luis Henrique",surname:"Guimaraes",slug:"luis-henrique-guimaraes",fullName:"Luis Henrique Guimaraes"}],corrections:null},{id:"41115",title:"Starch and Microbial α-Amylases: From Concepts to Biotechnological Applications",doi:"10.5772/51571",slug:"starch-and-microbial-amylases-from-concepts-to-biotechnological-applications",totalDownloads:8143,totalCrossrefCites:13,totalDimensionsCites:25,hasAltmetrics:0,abstract:null,signatures:"Amira El-Fallal, Mohammed Abou Dobara, Ahmed El-Sayed and Noha Omar",downloadPdfUrl:"/chapter/pdf-download/41115",previewPdfUrl:"/chapter/pdf-preview/41115",authors:[{id:"144675",title:"Dr.",name:"Noha",surname:"Omar",slug:"noha-omar",fullName:"Noha Omar"},{id:"148277",title:"Dr.",name:"Mohammed",surname:"Abou-Dobara",slug:"mohammed-abou-dobara",fullName:"Mohammed Abou-Dobara"},{id:"148278",title:"Dr.",name:"Ahmed",surname:"El-Sayed",slug:"ahmed-el-sayed",fullName:"Ahmed El-Sayed"},{id:"148279",title:"Prof.",name:"Amira",surname:"El-Fallal",slug:"amira-el-fallal",fullName:"Amira El-Fallal"}],corrections:null},{id:"41116",title:"Algal Polysaccharides, Novel Applications and Outlook",doi:"10.5772/51572",slug:"algal-polysaccharides-novel-applications-and-outlook",totalDownloads:14013,totalCrossrefCites:69,totalDimensionsCites:182,hasAltmetrics:1,abstract:null,signatures:"Stefan Kraan",downloadPdfUrl:"/chapter/pdf-download/41116",previewPdfUrl:"/chapter/pdf-preview/41116",authors:[{id:"142720",title:"Dr.",name:"Stefan",surname:"Kraan",slug:"stefan-kraan",fullName:"Stefan Kraan"}],corrections:null},{id:"41109",title:"Biological Applications of Plants and Algae Lectins: An Overview",doi:"10.5772/50632",slug:"biological-applications-of-plants-and-algae-lectins-an-overview",totalDownloads:7630,totalCrossrefCites:3,totalDimensionsCites:24,hasAltmetrics:0,abstract:null,signatures:"Edson Holanda Teixeira, Francisco Vassiliepe Sousa Arruda, Kyria Santiago do Nascimento, Victor Alves Carneiro, Celso Shiniti Nagano, Bruno Rocha da Silva, Alexandre Holanda Sampaio and Benildo Sousa Cavada",downloadPdfUrl:"/chapter/pdf-download/41109",previewPdfUrl:"/chapter/pdf-preview/41109",authors:[{id:"148792",title:"Prof.",name:"Edson",surname:"Teixeira",slug:"edson-teixeira",fullName:"Edson Teixeira"},{id:"156851",title:"Dr.",name:"Francisco V S",surname:"Arruda",slug:"francisco-v-s-arruda",fullName:"Francisco V S Arruda"},{id:"156852",title:"Prof.",name:"Kyria Santiago Do",surname:"Nascimento",slug:"kyria-santiago-do-nascimento",fullName:"Kyria Santiago Do Nascimento"},{id:"156857",title:"Dr.",name:"Victor Alves",surname:"Carneiro",slug:"victor-alves-carneiro",fullName:"Victor Alves Carneiro"},{id:"156858",title:"Prof.",name:"Celso Shiniti",surname:"Nagano",slug:"celso-shiniti-nagano",fullName:"Celso Shiniti Nagano"},{id:"156859",title:"Mr.",name:"Bruno Rocha Da",surname:"Silva",slug:"bruno-rocha-da-silva",fullName:"Bruno Rocha Da Silva"},{id:"156860",title:"Prof.",name:"Alexandre Holanda",surname:"Sampaio",slug:"alexandre-holanda-sampaio",fullName:"Alexandre Holanda Sampaio"},{id:"156861",title:"Prof.",name:"Benildo Sousa",surname:"Cavada",slug:"benildo-sousa-cavada",fullName:"Benildo Sousa Cavada"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2553",title:"Lipid Peroxidation",subtitle:null,isOpenForSubmission:!1,hash:"b39734aa940b2d63ae5e8773d3dd5280",slug:"lipid-peroxidation",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/2553.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"372",title:"Aflatoxins",subtitle:"Biochemistry and Molecular Biology",isOpenForSubmission:!1,hash:"b7f7359995dc5ee04e12df282495f77e",slug:"aflatoxins-biochemistry-and-molecular-biology",bookSignature:"Ramón Gerardo Guevara-González",coverURL:"https://cdn.intechopen.com/books/images_new/372.jpg",editedByType:"Edited by",editors:[{id:"62559",title:"Dr.",name:"Ramon G.",surname:"Guevara-Gonzalez",slug:"ramon-g.-guevara-gonzalez",fullName:"Ramon G. Guevara-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2524",title:"Dehydrogenases",subtitle:null,isOpenForSubmission:!1,hash:"33ceb84d728f6a5033ba0389f83db79b",slug:"dehydrogenases",bookSignature:"Rosa Angela Canuto",coverURL:"https://cdn.intechopen.com/books/images_new/2524.jpg",editedByType:"Edited by",editors:[{id:"149584",title:"Prof.",name:"Rosa Angela",surname:"Canuto",slug:"rosa-angela-canuto",fullName:"Rosa Angela Canuto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2558",title:"Milk Protein",subtitle:null,isOpenForSubmission:!1,hash:"592dc83a9c30e990c850c0dec87d5d7a",slug:"milk-protein",bookSignature:"Walter L. Hurley",coverURL:"https://cdn.intechopen.com/books/images_new/2558.jpg",editedByType:"Edited by",editors:[{id:"136109",title:"Dr.",name:"Walter",surname:"Hurley",slug:"walter-hurley",fullName:"Walter Hurley"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2290",title:"Protein-Protein Interactions",subtitle:"Computational and Experimental Tools",isOpenForSubmission:!1,hash:"5ad647ca09bc52a34fb2d02f38aa2455",slug:"protein-protein-interactions-computational-and-experimental-tools",bookSignature:"Weibo Cai and Hao Hong",coverURL:"https://cdn.intechopen.com/books/images_new/2290.jpg",editedByType:"Edited by",editors:[{id:"119750",title:"Dr.",name:"Weibo",surname:"Cai",slug:"weibo-cai",fullName:"Weibo Cai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2064",title:"Integrative Proteomics",subtitle:null,isOpenForSubmission:!1,hash:"82fe979a574466e287d597db196c0d67",slug:"integrative-proteomics",bookSignature:"Hon-Chiu Eastwood Leung, Tsz-Kwong Man and Ricardo J. Flores",coverURL:"https://cdn.intechopen.com/books/images_new/2064.jpg",editedByType:"Edited by",editors:[{id:"105582",title:"Dr.",name:"Hon-Chiu",surname:"Leung",slug:"hon-chiu-leung",fullName:"Hon-Chiu Leung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2555",title:"Lipoproteins",subtitle:"Role in Health and Diseases",isOpenForSubmission:!1,hash:"30f398afbe882fe1db3d1013952f3f13",slug:"lipoproteins-role-in-health-and-diseases",bookSignature:"Sasa Frank and Gerhard Kostner",coverURL:"https://cdn.intechopen.com/books/images_new/2555.jpg",editedByType:"Edited by",editors:[{id:"135586",title:"Prof.",name:"Gerhard",surname:"Kostner",slug:"gerhard-kostner",fullName:"Gerhard Kostner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4597",title:"Basic Principles and Clinical Significance of Oxidative Stress",subtitle:null,isOpenForSubmission:!1,hash:"89a2f0b8113514563d387fba14e963bd",slug:"basic-principles-and-clinical-significance-of-oxidative-stress",bookSignature:"Sivakumar Joghi Thatha Gowder",coverURL:"https://cdn.intechopen.com/books/images_new/4597.jpg",editedByType:"Edited by",editors:[{id:"118572",title:"Dr.",name:"Sivakumar Joghi",surname:"Thatha Gowder",slug:"sivakumar-joghi-thatha-gowder",fullName:"Sivakumar Joghi Thatha Gowder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1788",title:"Biochemistry",subtitle:null,isOpenForSubmission:!1,hash:"1caa1928583ed92d67d44bf4a71403ef",slug:"biochemistry",bookSignature:"Deniz Ekinci",coverURL:"https://cdn.intechopen.com/books/images_new/1788.jpg",editedByType:"Edited by",editors:[{id:"13652",title:"Prof.",name:"Deniz",surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1490",title:"Affinity Chromatography",subtitle:null,isOpenForSubmission:!1,hash:"b605cd690ec61005a6b6b27c934de321",slug:"affinity-chromatography",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1490.jpg",editedByType:"Edited by",editors:[{id:"123648",title:"Dr.",name:"Sameh",surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"57158",slug:"correction-to-chemical-composition-and-biological-activities-of-mentha-species",title:"Correction to: Chemical Composition and Biological Activities of Mentha Species",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/57158.pdf",downloadPdfUrl:"/chapter/pdf-download/57158",previewPdfUrl:"/chapter/pdf-preview/57158",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/57158",risUrl:"/chapter/ris/57158",chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]}},chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]},book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7841",leadTitle:null,title:"New Insights Into Metabolic Syndrome",subtitle:null,reviewType:"peer-reviewed",abstract:"Contributors to this book have reviewed research from the fields of metabolic syndromes in view of their own research. The chapters cover the neural mechanisms of food intake and proposed factors related to obesity. The influences of the intake of sugar and lipids are also discussed. The relationships between cancer and venous thromboembolism in connection with obesity are discussed. Omega (ω) fatty acids and trans-fatty acids are risks of cardiovascular diseases. Comparison of plasma levels of trans-fatty acids indicated that industrially produced trans-fatty acids are higher in American than Japanese men. Hopefully, the book provides information that readers want to obtain in the fields of food intake and metabolic syndromes.",isbn:"978-1-83968-456-2",printIsbn:"978-1-83968-455-5",pdfIsbn:"978-1-83968-457-9",doi:"10.5772/intechopen.77659",price:119,priceEur:129,priceUsd:155,slug:"new-insights-into-metabolic-syndrome",numberOfPages:230,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"ef5accfac9772b9e2c9eff884f085510",bookSignature:"Akikazu Takada",publishedDate:"February 17th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",keywords:null,numberOfDownloads:6536,numberOfWosCitations:1,numberOfCrossrefCitations:2,numberOfDimensionsCitations:3,numberOfTotalCitations:6,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 2nd 2019",dateEndSecondStepPublish:"March 10th 2020",dateEndThirdStepPublish:"May 9th 2020",dateEndFourthStepPublish:"July 28th 2020",dateEndFifthStepPublish:"September 26th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Hamamatsu University School of Medicine",institutionURL:null,country:{name:"Japan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"323",title:"Food and Nutrition",slug:"food-and-nutrition"}],chapters:[{id:"72998",title:"Neural Control of Homeostatic Feeding and Food Selection",slug:"neural-control-of-homeostatic-feeding-and-food-selection",totalDownloads:608,totalCrossrefCites:0,authors:[{id:"316613",title:"Prof.",name:"Yasuhiko",surname:"Minokoshi",slug:"yasuhiko-minokoshi",fullName:"Yasuhiko Minokoshi"}]},{id:"72366",title:"Neural Mechanisms of Feeding Behavior and Its Disorders",slug:"neural-mechanisms-of-feeding-behavior-and-its-disorders",totalDownloads:589,totalCrossrefCites:0,authors:[{id:"195251",title:"Prof.",name:"Hisao",surname:"Nishijo",slug:"hisao-nishijo",fullName:"Hisao Nishijo"},{id:"316631",title:"Prof.",name:"Taketoshi",surname:"Ono",slug:"taketoshi-ono",fullName:"Taketoshi Ono"}]},{id:"71991",title:"Glucose or Sucrose Intakes and Plasma Levels of Essential and Nonessential Amino Acids",slug:"glucose-or-sucrose-intakes-and-plasma-levels-of-essential-and-nonessential-amino-acids",totalDownloads:502,totalCrossrefCites:1,authors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"},{id:"258324",title:"Prof.",name:"Fumiko",surname:"Shimizu",slug:"fumiko-shimizu",fullName:"Fumiko Shimizu"},{id:"258579",title:"Prof.",name:"Yukie",surname:"Ishii",slug:"yukie-ishii",fullName:"Yukie Ishii"},{id:"258580",title:"Prof.",name:"Mutsumi",surname:"Ogawa",slug:"mutsumi-ogawa",fullName:"Mutsumi Ogawa"},{id:"258581",title:"Prof.",name:"Tetsuya",surname:"Takao",slug:"tetsuya-takao",fullName:"Tetsuya Takao"}]},{id:"72055",title:"Mechanism of Thrombus Formation in Regard to Diet",slug:"mechanism-of-thrombus-formation-in-regard-to-diet",totalDownloads:661,totalCrossrefCites:0,authors:[{id:"316667",title:"Prof.",name:"Shinya",surname:"Goto",slug:"shinya-goto",fullName:"Shinya Goto"}]},{id:"73740",title:"Effects and Issues of Diet Fat on Cardiovascular Metabolism",slug:"effects-and-issues-of-diet-fat-on-cardiovascular-metabolism",totalDownloads:423,totalCrossrefCites:0,authors:[{id:"316622",title:"M.D.",name:"Yasuhiro",surname:"Nishikawa",slug:"yasuhiro-nishikawa",fullName:"Yasuhiro Nishikawa"}]},{id:"72102",title:"Etiology of Cancer Associated Thromboembolism (CAT), and Diet, Lifestyle and Medicine to Reduce Cancer and Venous Thromboembolism",slug:"etiology-of-cancer-associated-thromboembolism-cat-and-diet-lifestyle-and-medicine-to-reduce-cancer-a",totalDownloads:581,totalCrossrefCites:0,authors:[{id:"316711",title:"Prof.",name:"Kenji",surname:"Yokoyama",slug:"kenji-yokoyama",fullName:"Kenji Yokoyama"}]},{id:"72735",title:"Metabolic Syndrome and Pathogenesis of Obesity-Related Adverse Outcomes in Pregnancy",slug:"metabolic-syndrome-and-pathogenesis-of-obesity-related-adverse-outcomes-in-pregnancy",totalDownloads:676,totalCrossrefCites:0,authors:[{id:"317110",title:"Prof.",name:"Motoi",surname:"Sugimura",slug:"motoi-sugimura",fullName:"Motoi Sugimura"}]},{id:"73137",title:"Significance of Trans Fatty Acids and Omega-3 Fatty Acids in Japanese Men with Coronary Heart Disease",slug:"significance-of-trans-fatty-acids-and-omega-3-fatty-acids-in-japanese-men-with-coronary-heart-diseas",totalDownloads:469,totalCrossrefCites:0,authors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"},{id:"258324",title:"Prof.",name:"Fumiko",surname:"Shimizu",slug:"fumiko-shimizu",fullName:"Fumiko Shimizu"},{id:"258580",title:"Prof.",name:"Mutsumi",surname:"Ogawa",slug:"mutsumi-ogawa",fullName:"Mutsumi Ogawa"},{id:"258581",title:"Prof.",name:"Tetsuya",surname:"Takao",slug:"tetsuya-takao",fullName:"Tetsuya Takao"},{id:"84834",title:"Prof.",name:"Shinji",surname:"Koba",slug:"shinji-koba",fullName:"Shinji Koba"},{id:"317481",title:"Dr.",name:"Yuuya",surname:"Yokota",slug:"yuuya-yokota",fullName:"Yuuya Yokota"},{id:"325459",title:"Dr.",name:"Fumiyoshi",surname:"Tsunoda",slug:"fumiyoshi-tsunoda",fullName:"Fumiyoshi Tsunoda"},{id:"325460",title:"Dr.",name:"Ken",surname:"Arai",slug:"ken-arai",fullName:"Ken Arai"},{id:"325461",title:"Prof.",name:"Toshiro",surname:"Shinke",slug:"toshiro-shinke",fullName:"Toshiro Shinke"}]},{id:"72172",title:"Metabolic Programming and Nutrition",slug:"metabolic-programming-and-nutrition",totalDownloads:601,totalCrossrefCites:1,authors:[{id:"317245",title:"M.Sc.",name:"Poliana Guiomar",surname:"Brasiel",slug:"poliana-guiomar-brasiel",fullName:"Poliana Guiomar Brasiel"},{id:"319615",title:"Mrs.",name:"Sheila Cristina",surname:"Potente Dutra Luquetti",slug:"sheila-cristina-potente-dutra-luquetti",fullName:"Sheila Cristina Potente Dutra Luquetti"}]},{id:"71488",title:"Acidosis and Anion Gap",slug:"acidosis-and-anion-gap",totalDownloads:758,totalCrossrefCites:0,authors:[{id:"313410",title:"Dr.",name:"Md. Masudul",surname:"Hassan",slug:"md.-masudul-hassan",fullName:"Md. Masudul Hassan"}]},{id:"72321",title:"Regulatory Functions of α-Amylase in the Small Intestine Other than Starch Digestion: α-Glucosidase Activity, Glucose Absorption, Cell Proliferation, and Differentiation",slug:"regulatory-functions-of-amylase-in-the-small-intestine-other-than-starch-digestion-glucosidase-activ",totalDownloads:670,totalCrossrefCites:0,authors:[{id:"241226",title:"Ph.D.",name:"Kimie",surname:"Date",slug:"kimie-date",fullName:"Kimie Date"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10543",title:"Psychology and Pathophysiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!1,hash:"2464b5fb6a39df380e935096743410a0",slug:"psychology-and-pathophysiological-outcomes-of-eating",bookSignature:"Akikazu Takada and Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:"Edited by",editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"497",title:"Soybean and Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"11aa0c9ed0f6ea8da765be93b50954bb",slug:"soybean-and-nutrition",bookSignature:"Hany El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/497.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"496",title:"Soybean and Health",subtitle:null,isOpenForSubmission:!1,hash:"66d40dbc031b2825ba95f7ac2bfae1b6",slug:"soybean-and-health",bookSignature:"Hany El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/496.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1018",title:"Milk Production",subtitle:"An Up-to-Date Overview of Animal Nutrition, Management and Health",isOpenForSubmission:!1,hash:"0666bd242c21546d0c83c0290bd114ea",slug:"milk-production-an-up-to-date-overview-of-animal-nutrition-management-and-health",bookSignature:"Narongsak Chaiyabutr",coverURL:"https://cdn.intechopen.com/books/images_new/1018.jpg",editedByType:"Edited by",editors:[{id:"76047",title:"Prof.",name:"Narongsak",surname:"Chaiyabutr",slug:"narongsak-chaiyabutr",fullName:"Narongsak Chaiyabutr"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2066",title:"Milk Production",subtitle:"Advanced Genetic Traits, Cellular Mechanism, Animal Management and Health",isOpenForSubmission:!1,hash:"0bce9f57b06503666b182457b414a9de",slug:"milk-production-advanced-genetic-traits-cellular-mechanism-animal-management-and-health",bookSignature:"Narongsak Chaiyabutr",coverURL:"https://cdn.intechopen.com/books/images_new/2066.jpg",editedByType:"Edited by",editors:[{id:"76047",title:"Prof.",name:"Narongsak",surname:"Chaiyabutr",slug:"narongsak-chaiyabutr",fullName:"Narongsak Chaiyabutr"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6678",title:"Antioxidants in Foods and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"819eb2d8d2c889ef23affd7fd01e4e98",slug:"antioxidants-in-foods-and-its-applications",bookSignature:"Emad Shalaby and Ghada Mostafa Azzam",coverURL:"https://cdn.intechopen.com/books/images_new/6678.jpg",editedByType:"Edited by",editors:[{id:"63600",title:"Prof.",name:"Emad",surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6669",title:"Meat Science and Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"bca2d87ed258a60a9c92c5c6056d1465",slug:"meat-science-and-nutrition",bookSignature:"Muhammad Sajid Arshad",coverURL:"https://cdn.intechopen.com/books/images_new/6669.jpg",editedByType:"Edited by",editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6155",title:"Diabetes Food Plan",subtitle:null,isOpenForSubmission:!1,hash:"b826ff12304ae270954a41210f4e1582",slug:"diabetes-food-plan",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/6155.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7943",title:"Nutrition in Health and Disease",subtitle:"Our Challenges Now and Forthcoming Time",isOpenForSubmission:!1,hash:"bf9135b4940c5e9bf0f7de103e543946",slug:"nutrition-in-health-and-disease-our-challenges-now-and-forthcoming-time",bookSignature:"Gyula Mózsik and Mária Figler",coverURL:"https://cdn.intechopen.com/books/images_new/7943.jpg",editedByType:"Edited by",editors:[{id:"58390",title:"Dr.",name:"Gyula",surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7183",title:"Functional Foods",subtitle:null,isOpenForSubmission:!1,hash:"8023d990ea5254d039f9c438b66899c6",slug:"functional-foods",bookSignature:"Vasiliki Lagouri",coverURL:"https://cdn.intechopen.com/books/images_new/7183.jpg",editedByType:"Edited by",editors:[{id:"232589",title:"Dr.",name:"Vasiliki",surname:"Lagouri",slug:"vasiliki-lagouri",fullName:"Vasiliki Lagouri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44889",title:"Neuroblastoma Integrins",doi:"10.5772/55991",slug:"neuroblastoma-integrins",body:'In the body, cells are surrounded and supported by an intricate network of glycoproteins and proteoglycans that make up a complex extracellular matrix, or ECM. Many constituents, such as collagen, laminin, and fibronectin, are locally produced within the tissues, where they act as physical scaffolds, growth factor depots, and points of anchorage [1]. The local rigidity and composition of the matrix also provide environmental cues that govern cell behavior.
The ECM surrounding cells can be considered in two broad classes. On one hand, there exists a ‘physiologic’ ECM, present in all tissues, that aids in structuring and maintaining homeostasis. Typical ECM components include several collagens and laminins, as well as proteoglycans. On the other hand, there is a provisional ECM that is deposited during wounding, hemostasis and tissue remodeling. This ECM is typically deposited, digested and replaced in a very dynamic manner, and contains proteins such as fibronectin, fibrin, vitronectin and even residual fragments of collagen and laminin. This type of ECM promotes tissue remodeling as well as cellular survival, proliferation and invasion. In both types of ECM, however, the diversity in the type and quantity of each individual ECM component present determines the physical properties of these tissues. In so doing, this modulates the mechanical forces sensed by cells that bind to the ECM, and provides yet another layer of information relayed to cells. This ‘mechanosensation’ requires integrins, receptors that can transmit extracellular forces to the actin cytoskeleton.
Although many classes of receptors can interact with components of the ECM, the integrins are regarded as the principle receptors mediating anchorage and attachment to the ECM [2]. The name integrin was derived from initial observations that these receptors permitted a realignment of the actin cytoskeleton to match that of an underlying ECM. Integrins are transmembrane glycoprotein receptors that are composed of a heterodimer of α and β subunits [3]. There are 18 different α subunits and 8 β subunits, but there are a limited number of possible combinations that can form from these subunits. To date, at least 24 unique integrin complexes have been identified, each with its own binding specificity for different subsets of ligands (Figure 1). Cells will generally express only a limited number of integrins, perhaps 10 of these combinations. The particular repertoire of integrins expressed by a given cell varies, but is typically closely tied to a cell’s particular extracellular microenvironment. Differences in integrin binding to a ligand can be subtle. For example, approximately one third of human integrins bind to an arginine-glycine-aspartic acid (RGD) sequence of amino acid residues, but this can be profoundly conformation specific, and thus not all ‘RGD-binding’ integrins are capable of binding all RGD sequences with appreciable affinity.
Each integrin is composed of a large extracellular region of 600-1000 amino acids, as well as a single transmembrane domain. The extracellular regions can be broadly thought of in terms of a head and stalk (leg/thigh) region; the head is the critical site for ligand binding and divalent cation binding, as well as heterodimerization between the α and β subunits. Most integrins also have a small (~30-50 amino acid) cytosolic domain, with the singular exception being integrin β4, which has a large cytosolic domain that interacts with intermediate filaments [4]. Integrins are cysteine–rich proteins, and have extensive crosslinking within domains that stabilize domain structure. Thus, integrins appear at different sizes when analyzed on reducing and non-reducing gels, and detection of integrins by some antibodies may require either condition, depending upon the linearity or conformation dependence of an epitope.
The integrin extracellular domains are required for and sufficient to bind to ECM or to ‘receptor-ligands’ present on the surface of adjacent cells. However, the binding of integrins to their ligands is controlled by their conformation, which is influenced by the stalk and cytosolic regions of the molecule. Inactive integrins adapt a ‘folded back’ conformation at a region halfway up the stalk (at the ‘genou,’ or knee, between the thigh and leg). Active integrins are extended molecules with stalks separated, and intermediates between these states tend to have intermediate affinities for ligands. Integrin-ligand binding requires the presence of divalent cations, with a typical preference for manganese, magnesium and calcium, although the relative preference for optimal affinity varies among the different heterodimers. These divalent cations, and Mn+2 in particular, directly influence integrin conformation, stabilizing them in the extended and high affinity conformation (Figure 2).
With the exception of circulating hematopoietic cells, which tend to maintain their integrins in an inactive conformation, most cells that have been examined express both active and inactive integrins. Active integrins tend to form higher order clusters on the cell surface, which promotes their localization to sites of ligation. There, the integrins are further stabilized by interaction with ligand. The accumulation of integrins in these sites creates a ‘Velcro-like’ effect, with groups of integrins (rather than individual molecules) collaborating to strengthen anchorage and to induce downstream signaling points of extracellular matrix contact. This clustering effect is called integrin ‘avidity’ regulation, which is distinct from affinity. This permits the stable interaction with the ECM required for sustained cellular anchorage and signaling via the assembly of a ‘focal adhesion complex’ that accumulates proximal to the membrane.
The focal adhesion complex that forms is multifunctional, and is capable of signaling directly, scaffolding additional or alternative signals, and engaging the actin/myosin system. Thus, despite the absence of intrinsic kinase or proteolytic activity, integrins transform mechanical and chemical cues from the extracellular environment into intracellular signals that profoundly impact cell behavior and function.
The focal adhesion complex contains a complicated array of non-receptor kinases and adaptor proteins that mediate downstream signaling events. As will be discussed in more detail below, integrin effectors in the focal adhesion include diverse signaling elements such as: focal adhesion kinase (FAK), src kinase, cytoskeletal elements including talin, paxillin and vinculin, phosphoinositide 3 kinase, and small GTPases of the Ras and Rho families and their effectors [5, 6]. Importantly, as part of the clustering process, integrins tend to undergo lateral associations with other cell surface receptors such as the receptor tyrosine kinases, EGFR and VEGFR, which are important for other global cellular signaling events. This type of signaling, in which the integrin ectodomain is ligated and transforms information from the extracellular environment into cues for cytosolic signaling events has been termed “outside-in signaling.”
However, in some cases, signals from inside the cell result in changes in integrin conformation. These are typically associated with cytosolic proteins binding to the cytosolic domains of the integrins. This type of regulation of integrin conformation is called “inside-out signaling.” Both types of signaling are important for understanding the role of integrins in normal tissues and in disease pathology.
The ability of cells to interact with their extracellular environment is crucial for most developmental processes. Consequently, it is perhaps not surprising that integrins, as mediators of the interplay between cells, the ECM and the microenvironment, have critical roles in early development. The early physiological relevance is evident in defects observed in murine genetic models lacking proper integrin function or expression. Overall, the loss of the β1, α5, and α4 subunits leads to an embryonic lethal phenotype. The loss of the αv or α3 subunits permits initial and subsequent development, but results in perinatal lethality. Other integrin subunits do not appear to be essential during development.
Nonetheless, loss, misregulation, or improper function of integrins can lead to other abnormalities [7]. (Table 1)
α1 | \n\t\t\tViable | \n\t\t\tYes | \n\t\t\tNormal; [8] | \n\t\t
α2 | \n\t\t\tViable | \n\t\t\tYes | \n\t\t\tAbnormal mammary branching morphogenesis; [9] | \n\t\t
α3 | \n\t\t\tPerinatal lethality | \n\t\t\tYes | \n\t\t\tAbnormal kidneys; [10] | \n\t\t
α4 | \n\t\t\tLethal, by E14.5 | \n\t\t\tYes | \n\t\t\tAbnormal placenta and heart formation; [11] | \n\t\t
α5 | \n\t\t\tLethal, E11 | \n\t\t\tYes | \n\t\t\tAbnormal mesoderm morphogenesis; [12] | \n\t\t
α6 | \n\t\t\tPerinatal lethality | \n\t\t\tYes | \n\t\t\tSkin blistering; [13] | \n\t\t
α7 | \n\t\t\tViable | \n\t\t\tYes | \n\t\t\tMuscular dystrophy; [14] | \n\t\t
α8 | \n\t\t\tPerinatal lethality | \n\t\t\tNo* | \n\t\t\tAbnormal kidneys and lungs; [15, 16] | \n\t\t
α9 | \n\t\t\tPerinatal lethality | \n\t\t\tNo | \n\t\t\tBilateral chylothorax; [17] | \n\t\t
α10 | \n\t\t\tViable | \n\t\t\tNo | \n\t\t\tImproper function of growth plate chondrocytes; [18] | \n\t\t
α11 | \n\t\t\tViable | \n\t\t\tNo | \n\t\t\tDwarfism; [18] | \n\t\t
αv | \n\t\t\tPerinatal lethality | \n\t\t\tYes | \n\t\t\tBrain and bladder, hemorrhages; [19] | \n\t\t
αL | \n\t\t\tViable | \n\t\t\tNo | \n\t\t\tImpaired leukocyte recruitment; [18] | \n\t\t
αM | \n\t\t\tViable | \n\t\t\tNo | \n\t\t\tImpaired phagocytosis; obesity; [18] | \n\t\t
αE | \n\t\t\tViable | \n\t\t\tNo | \n\t\t\tInflammatory skin lesions; [18] | \n\t\t
αIIb | \n\t\t\tViable | \n\t\t\tNo | \n\t\t\tImpaired platelet aggregation; [18] | \n\t\t
β1 | \n\t\t\tLethal, E5.5 | \n\t\t\tYes | \n\t\t\tAbnormal mesoderm morphogenesis; [20] | \n\t\t
β2 | \n\t\t\tViable | \n\t\t\tNo | \n\t\t\tImpaired leukocyte recruitment; [21] | \n\t\t
β3 | \n\t\t\tViable | \n\t\t\tYes | \n\t\t\tGlanzmann’s thrombasthenia; osteosclerotic; [22] | \n\t\t
β4 | \n\t\t\tPerinatal lethality | \n\t\t\tNo | \n\t\t\tSkin blistering; [23] | \n\t\t
β5 | \n\t\t\tViable | \n\t\t\tYes | \n\t\t\tNo apparent phenotype; [24] | \n\t\t
β6 | \n\t\t\tViable | \n\t\t\tNo | \n\t\t\tMacrophage infiltration in skin and lungs; [25] | \n\t\t
β7 | \n\t\t\tViable | \n\t\t\tNo | \n\t\t\tNo gut-associated lymphoid tissue; [26] | \n\t\t
β8 | \n\t\t\tLethal, E12 - birth | \n\t\t\tNo* | \n\t\t\tAbnormal placenta; defects in neurovascular homeostasis; [27] | \n\t\t
Effects of Integrin Deletion in Murine Models
*Subunit found on neural crest cells but not yet reported on NB tumor cells
The development of the nervous system is dependent on integrin function, in part, because it involves extensive migration of neuronal precursors which is mediated by integrins. During the process of neurulation, the neural crest forms in the region of the neural plate border. Upon formation of the neural tube, neural crest cells undergo an ‘epithelial-to-mesenchymal-like transition’ which permits them to move along migratory tracks. These tracks lead cells to a variety of destinations where they differentiate and help to form several different tissue types. During development, collagens, laminins, fibronectin and vitronectin are expressed along these migratory pathways [28]. Disruption of integrin-ligand binding inhibits neural crest cell migration and results in impaired function in the peripheral nervous system. Following the initial gross exodus of neurons from the neural crest, integrins also play other key roles in the development of the peripheral nervous system, including the establishment of Schwann cell polarity [29], neurite outgrowth [30, 31] and myelination [32].
In addition to the requirement for integrins to support migration, integrins are also important for arresting migration at the proper time and place. In the central nervous system, for example, the presence of the α6 and β1 subunits appears to serves as stop signals for neuronal cells when they reach a laminin rich region. This is critical for cortical plate formation. In the absence of these integrins, neuronal precursors migrating outward to the outermost layer of the cortical plate overshoot their destination and disrupt the cortical plate structure [33, 34].
Neuroblastoma is a tumor that is considered to arise from ganglion or pre-ganglion cells. To begin to understand the pathological roles of integrins in this disease, it is helpful to be familiar with the normal expression patterns of these receptors in neural crest cells and how that expression changes over time. Neural crest cells express subsets of integrins that allow them to adhere to the fibrillar proteins that line their migratory pathways. Truncal neural crest cells, which give rise to dorsal root ganglia, sympathetic ganglia, and the adrenal medulla express receptors for vitronectin (αvβ1, αvβ3, and αvβ5: [35]), laminin (α1β1, α3β1,: [36] [37]), and fibronectin and associated molecules (α4β1, α5β1, α8β1, αvβ1 and β8 integrin: [37], [38]. Antibody blockade of any one type of these integrins is unable to completely abolish cell migration, consistent with a multi-receptor and complex ligand system. However, in studies on avian truncal neural crest cells, the α3β1, α4β1, and αv integrins appear to be the most crucial to maintain migration [38]. In particular, inhibition of the interaction between α4β1 and its ligands via blocking antibodies or ligand-mimicking peptides, leads to a marked reduction in neural crest cell migration [37].
As neural crest cells reach their target tissues and differentiate, their integrin expression changes. For example, neural crest cells do not express detectable levels of α6β1 until they differentiate into a peripheral nervous system cell type such as a Schwann cell precursor [39]. Conversely, neural crest cells express α1β1 but Schwann cell precursors do not [40, 41]. This induction of expression of one class of integrins while another is eliminated is not well understood, however, and further study will be required to elucidate additional neuroblast-specific integrin expression and function.
Similarly, the formation of the vascular system relies heavily on integrin function. During vasculogenesis, or
The formation of the vasculature, and angiogenesis in particular, is of interest to scientists who study neuroblastoma, which is typically a highly angiogenic disease. Although a focus has been placed on the roles of integrins in development of the neuronal and vascular systems, the ability of integrins to regulate such a large array of cellular functions renders them essential for most, if not all, developmental processes. Their roles may be directly associated with their adhesion and motility-related functions, or with the ability of integrins to indirectly enhance the efficiency of other signaling pathways [44].
As cells are transformed from a normal to malignant state, their integrin expression is modulated to support pathologic behaviors. In primary tumors, integrin signaling can impact cell growth, differentiation, and vascular infiltration and continues to be important as the cancer progresses through the stages of metastasis (Figure 3). The initial steps of the metastatic process involve the degradation and remodeling of extracellular matrix adjacent to primary tumor cells, facilitating cancer cell migration into recruited blood vessels. This process is termed local invasion. Usually, for local invasion to begin, cells from the primary tumor shift from an epithelial or non-motile to a more mesenchymal phenotype. In addition, cells frequently create a pathway for themselves by inducing degradation of the matrix via enzymes such as matrix metalloproteases [45]. Integrins can regulate MMP expression and/or activity. For example, integrin α2β1 is a positive regulator of MMP-1 expression [46, 47].
For many types of cancer, metastasizing cells spread to a specific subset of secondary locations for establishment of metastatic nodules. This phenomenon, termed tissue tropism, has historically been explained by two major theories. The “seed and soil” hypothesis proposed by Stephen Paget in 1889 followed his observation of tissue-specific patterns of tumor metastasis in 735 breast cancer patients. Paget noted that the pattern of organs bearing metastases was not random, and suggested that certain tumor types preferentially metastasized to compatible environments [48]. He proposed that ‘seeds’ of tumors required compatible ‘soil’ to take root and grow. An alternative theory, by Ewing, suggests that tissue tropism is simply due to mechanical forces and circulatory patterns [49], and that tissue tropism results from this. These are not absolutely exclusive theories, and it is reasonable that blood flow patterns are important for the initial distribution of circulating tumor cells, while the propensity to invade, grow and survive may be dependent on the presence of the appropriate integrin ligands as well as other pro-survival factors.
Though there have been no studies specifically linking integrins to site-specific metastasis in neuroblastoma, integrins have been shown to play a role in tissue tropism. The primary sites of neuroblastoma metastasis are bone marrow, bone, lymph node and liver. In general, certain integrins have been linked to metastasis to these sites. For instance, integrin α4β1 can promote homing to the bone [50] and has been shown to enhance bone metastasis in melanoma [51]. This effect may be due to expression of VCAM-1 on bone marrow stromal cells. Integrin α4β1 may also promote lymphatic metastasis by enhancing binding to VCAM-1 present on lymphatic endothelial cells [52]. Integrin α2β1 is associated with enhanced liver metastasis. This is potentially due to its binding to collagen type IV expressed in liver sinusoids [53].
Since the metastatic cascade involves several steps, including local tumor invasion, intravasation, survival in the lymphatics/blood stream, extravasation, invasion into the new tissue parenchyma and growth and establishment of metastatic nodules, there are many opportunities for integrins to facilitate this process. The role of integrins in local invasion is clear. Once cells gain entry into the vasculature, integrins are important for cell-cell and cell-platelet adhesion leading to increased formation of cell emboli [54] and subsequent lodging in capillary beds. Integrins are also important for the endothelial transmigration that follows. At the site of distant metastasis, the microenvironment and composition of the extracellular matrix may be different from that of the native tissue of the invading tumor cells. Here, the balance of ligated and unligated integrins impacts cell behavior and survival, as discussed in Section 4.
The shedding of gangliosides also impacts neuroblastoma metastasis. Gangliosides are glycosphingolipids with one or more sialic acids linked to them. In circulation, gangliosides are associated with lipoproteins. There are several different types of gangliosides that are classified based on the number of associated sialic acids. Some of these gangliosides, such as GM3, are normally present in circulation. Conversely, elevated levels of circulating GD2, a disialoganglioside, have been found in neuroblastoma patients and its concentration is inversely related to progression-free survival. Shedding of gangliosides enhances integrin α2β1-dependent platelet activation, leading to platelet aggregation, and increased adhesion to vascular basement membranes [55]. These events can enhance tumor cell embolization impacting the occurrence of cells lodging in capillary beds and invading into surrounding tissue.
Finally, it is worth noting that at any phase of tumor progression, cancer cells must evade the immune system. Some T-cell lysis mechanisms are dependent on integrin expression. For instance, binding of T-cell integrin LFA-1 (αLβ2) to its ligands ICAM-1 on tumor cells is important in CD3-mediated T-cell lysis [56, 57]. Of note, ICAM expression on neuroblastoma cells is associated with increased susceptibility to lymphokine-activated killer (LAK) cell lysis following interferon gamma treatment [58].
Since integrins impact cell differentiation and invasion, there has been an interest in linking the expression of subsets of integrins with a particular tumor stage, or more appropriately, with tumor ‘risk.’ Key risk predictors to date have been established by the Children’s Oncology Group, and include status of the MYCN gene, the pathology of the tumor according to guidelines established by Shimada [59], and in some cases the relative ploidy of the tumor. Since integrins are associated with neuronal cell developmental stages and activities, it is reasonable that integrin expression could offer insights into tumor activities.
In pioneering studies, using 45 clinical samples, Favrot et al. showed that the α2 and α6 subunits were associated with low grade, well-differentiated neuroblastoma samples. The finding is consistent with observations of normal ‘neural crest cell to neuronal’ differentiation. The β1 subunit was expressed on all samples while the α5 subunit was not expressed on any samples examined. Samples expressing the α4, αv, β3, and β4 subunits revealed no N-Myc amplification, and were associated with a good prognosis. In addition, expression of α4 and β4 subunits was found selectively on Schwannian stromal cells [60].
Conversely, more recent studies have found that many neuroblastoma cell lines express integrin α4 and that α4 expression is associated with increased tumor stage (stages 3 and 4) in clinical samples [61]. At least on cell lines, integrin α5β1 also appears to be expressed [45] and integrin αvβ3 has been described to be present on some malignant neuroblastomas [62]. In addition, by flow cytometry, our lab consistently observes low levels of integrin αvβ5 on established neuroblastoma cell lines, although whether this is a tissue culture adaptation or reflects actual expression
Neuroblastomas fall into three common morphological/adhesive categories when grown
The third type of cells is the ‘intermediate cells.’ Noted as potential ‘cancer stem cells’ as early as 1989 by Ross and colleagues, these cells look like an intermediate between the N and S types via diverse measures including phase contrast microscopy, intermediate filament expression, tyrosine hydroxylase activity, and norepinephrine uptake [64]. Consistent with being a tumor stem-like cell (or tumor initiating cell), I-type cells are by far the most tumorigenic in mice and in
In addition to key roles in cell anchorage and migration, integrin-mediated ligation of the extracellular matrix results in the initiation of signaling events exerting both local and cellular effects. Thus, the extracellular matrix encodes information via the local milieu of cell surface or diffusible factors presented to the cell (Figure 4). Most of these signals have been studied in rigorously defined systems
Signaling that follows the ligation of integrins by extracellular matrix components can be studied by introducing suspended neuroblastoma cells to a surface coated with an extracellular matrix component, such as fibronectin. This results in cell attachment and spreading. Concurrent with these events, phosphorylation is observed on cytosolic nonreceptor tyrosine kinases like FAK (tyrosine residue 397) and Src (tyrosine residue 418), which indicate activation of the tyrosine kinases. At least some of this activity is physically present in the integrin associated focal adhesion complex, and these kinases can be co-purified with integrins from this complex.
FAK and Src can associate with each other and with an array of cytosolic adaptor proteins and other effectors. For example, FAK can associate with the cytoskeletal adaptor protein talin, which also binds to integrins. The adhesion of NB7 neuroblastoma cells to fibronectin or collagen has been shown to promote co-association of these molecules together in a complex with the protease calpain. Calpain in turn cleaves talin in a cell-adhesion dependent manner, which faciliates more rapid turn over of the focal adhesion, and promotes neuroblastoma cell migration. The same cleavage is observed in other neuroblastoma cells, including NB5 and NB16, suggesting it may be a conserved pathway [69].
FAK also associates with Grb2 and SoS [70], key regulators of Ras-GTP mediated activation of the Raf/MEK/ERK pathway of MAP kinase signaling. This pathway helps to drive proliferation of the tumor cells, and may account for adhesion-based induction of cyclin E in neuroblastoma (and other) cells [71]. FAK is perhaps best known for its capacity to support and promote integrin-mediated cell migration on an ECM, and performs this function in neuroblastoma cells as well, although this appears to be integrin specific [61]. For example, integrin α5β1 activates FAK and uses this kinase for migration, while integrin α4β1 migration is dependent upon the non-receptor kinase Src. Both integrins can bind to a fibronectin substrate, thus the particular integrin ligated can have an impact on the cells\' response. Other effects of specific integrin ligation have been reported in non-neuroblastoma cell lines, such as the FAK and α5β1-induced expression of the pro-survival gene Bcl-2 [72]. Thus, signals from FAK can play a role in regulating cell survival in an ECM and integrin-dependent manner.
Integrins stabilized and ligated to correct ECM promote signaling via class I phosphoinisotol-3 kinases (PI3K). PI3K’s are a family of lipid bound kinases found at the cell membrane or intracellular endosomes, and can promote cell motility, intracellular trafficking and survival. Among the four class I PI3K’s, neuroblastoma tend to express P110α and p110β, with the latter more likely to be associated with N-Myc expressing tumors. Nonetheless, P110γ and p110δ are also sometimes detected [73]. Activation of the PI3K signaling axis promotes malignancy in numerous cancer cell lines and models of human cancer [74]. PI3K signaling also enhances turnover of pro-mitochondrial apoptotic proteins like Bad and promotes downstream pro-survival pathways, such as AKT and mTOR [75]. PTEN, a suppressor of PI3K, is frequently lost in cancer, although studies in neuroblastoma have shown a lesser degrees of loss, in the range of ~5% for homozygous deletion [76]. Mutations of PI3K that enhance kinase activity have been reported in other cancers [77], yet they have been proven to be infrequent in neuroblastoma [78]. Thus, the activity of PI3K appears to frequently depend upon extrinsic regulatory factors, mediated by receptor tyrosine kinases (eg., IGFR-1, ALK) and integrins.
Given the lack of effective therapies for malignant neuroblastoma, it is perhaps not surprising that the PI3K pathway is being pursued for pharmacological intervention [79]. In neuroblastoma, inhibition of PI3K has been demonstrated to decrease migration and survival of tumor cells
N-Myc is a transcription factor normally expressed during early lymphocyte development and in embryonic brain and kidney tissues [82], and is critical for survival of neural crest-derived neurons [83]. Amplification of greater than ten copies of the
ALK is a tyrosine kinase that is expressed largely during development within the nervous system. ALK belongs to the ‘insulin-like tyrosine kinase’ family of receptors that is frequently upregulated or subject to oncogenic mutation in neuroblastoma [89]. Signaling by tyrosine kinases generally requires integrin ligation [5], activating downstream targets (such as FAK, Src, PI3K etc.). This suggests that there is an intrinsic requirement for ECM adhesion to permit a tumor to ‘leverage’ amplified ALK. However, mutant forms of ALK also exist, particularly a F1174 mutation that drives neuroblastoma malignancy cooperatively with MYCN. In this case, it is unclear whether integrin-mediated adhesion is actually required for cell proliferation, although it is likely to enhance signaling in keeping with the rationale described above. MYCN also leads to increased expression of a close ALK relative, insulin-like growth factor I receptor (IGF-IR). In this case, crosstalk between IGF-IR and integrins is also observed [90].
Cells that lose anchorage for extended periods of time will typically undergo apoptosis. This phenomenon encompasses one aspect of anoikis (gr., homelessness), a phenomenon wherein a cell that finds itself in an inappropriate environment is signaled to undergo apoptosis. However, there is no ‘central cell death pathway’ associated with anoikis, and in fact many different pathways have been validated in the literature. This underscores the critical need for cell adhesion. One anoikis pathway is focused on the activation of caspase-9. Although many neuroblastomas lose expression of one copy of caspase-9 (as many are LOH1p21), this does not appear to impact the capacity of caspase-9 to activate [91]. Antagonism of b1 integrins on differentiated neuroblastoma, but not undifferentiated, promotes this apoptotic pathway [92].
Integrin-mediated death is an anoikis pathway in which the presence of unligated, or antagonized, integrins on the cell surface promote cell death via the activation of caspase-8. Neuroblastoma avoid this death pathway via several mechanisms. First, the amplification of MYCN can lead to an overall decrease in integrin expression, which lowers the capacity of the pathway to trigger. Secondly, stage III and IV neuroblastoma tend to methylate, delete, or disrupt the caspase-8 gene [93, 94], preventing the triggering of the apoptotic pathway, and this results in a survival advantage
Opposing the induction of death by unligated or antagonized integrins, it is worth noting that a cell that has a robust interaction with the ECM is more resistant to certain insults than others, and integrin ligation has been linked to chemo and radiation resistance. Mechanistically, this is likely to result from remodeling of the ECM, combined with transcriptional alterations of survival promoting genes such as Bcl-2 family members, IAPs and others. However, direct effects, such as maturation-inhibiting phosphorylation of procaspase-8, cannot be excluded from contributing to this effect [95, 96].
Integrin αvβ3 is the most ‘promiscuous’ member of the integrin family, in that it binds a variety of different RGD conformations, and thus binds to ligands that include vitronectin, fibronectin, fibrinogen, von Willebrand factor and others. Gladson et al. found that αv was present in all tumors they examined regardless of stage. While αvβ1 and αvβ5 heterodimers were found in normal adrenal tissues and ganglioneuroblastomas which exhibit lower levels of dissemination, the αvβ3 integrin was found to be expressed in highly metastatic, undifferentiated neuroblastomas [62]. By contrast, we observe only very low levels of integrin αvβ3 on our neuroblastoma specimens relative to melanoma or cultured endothelial cells, which express robust levels of αvβ3. However, it remains possible that the techniques originally used by Gladson were simply very sensitive and detected this modest but important level of integrin expression. Indeed, αvβ3 is, in some systems, a stem cell marker, and this may reflect the advanced stage and poor prognosis of her positive cohort.
In addition, on a variety of tumor cells, αvβ3 expression has been demonstrated to promote tumor progression by its ability to bind to a wide array of different ligands, facilitating anchorage and invasion. Integrin αvβ3 also stimulates MMP activity, promotes the activation of receptor and non-receptor tyrosine kinases including src, and the release of growth factors such as TGF that promote tumor response. This vascularization provides the growing tumor with the nutrients it needs and brings tumor cells proximal to vessels, which may facilitate invasion and metastasis. As previously mentioned, αvβ3 is also expressed on angiogenic endothelial cells where it promotes cell survival and migration. One study showed that there is higher β3 expression on invasive and metastatic melanomas than on noninvasive melanomas [97], although the levels demonstrated in these cases appear to be logarithmically higher than those seen on neuroblastoma cell lines [98].
Integrin α4β1 is primarily known as a trafficking integrin, as it is present on most leukocytes. Binding to its ligand VCAM-1, present on activated endothelial cells, enhances the transendothelial migration of white blood cells into surrounding tissues. Cancer cells that express α4β1 acquire this same enhanced trafficking potential and show increased tumor cell arrest in circulation and increased extravasation and colony formation. α4β1 may also enhance invasion and metastasis through promotion of angiogenesis and lymphangiogenesis [99, 100]. In [97], α4β1 expression was found on 40% of invasive and metastatic melanomas, although not on non-malignant melanocytes.
It is important to note that, though the expression of α4β1 can indeed promote extravasation, the overall role of integrin α4β1 in tumor progression and metastasis is highly controversial and is dependent on the level of expression and the phase of tumor progression. For example, high α4β1 expression in some primary tumors can enhance homotypic cell-cell adhesion [101], preventing cells from breaking away from the tumor and invading into surrounding tissues [102]. In addition, α4β1 expression can lead to a reduction in MMPs and impair the ability of the cells to degrade the matrix and create a pathway for invasion [103]. If cells do successfully metastasize to distant sites, α4β1 expression may promote or inhibit metastatic growth depending on the microenvironment.
The involvement of integrins in multiple stages of tumor progression makes them attractive therapeutic targets. Inhibition of integrin signaling can be achieved using several approaches including blocking ligand binding, preventing the formation of functional focal adhesion complexes and disrupting integrin association with the cytoskeleton. Because the structure of integrins has been extensively studied and because having an extracellular target eliminates the challenges of intracellular delivery, the most common approach has been to target the integrin ligand-binding site. This has been accomplished using blocking antibodies, cyclic and ligand-mimicking peptides, small molecule antagonists and disintegrins [104] (Table 2).
αvβ3 | \n\t\t\tVitaxin | \n\t\t\thumanized antibody | \n\t\t\tPhase II trials | \n\t\t
\n\t\t\t | CNTO 95 | \n\t\t\thumanized antibody | \n\t\t\tPhase II trials | \n\t\t
\n\t\t\t | c7E3 (Abciximab) | \n\t\t\tChimeric mouse- human antibody | \n\t\t\tFDA approved (1994) for use in percutaneous coronary intervention (PCI) | \n\t\t
\n\t\t\t | Cilengitide | \n\t\t\tcyclic peptide | \n\t\t\tPhase III trials for glioblastoma multiforme; Phase II trials for melanoma, glioma, and SCCHN; Phase I trials for NSCLC | \n\t\t
\n\t\t\t | L000845704 | \n\t\t\tSmall molecule | \n\t\t\tPhase I trials | \n\t\t
\n\t\t\t | SB273005 | \n\t\t\tSmall molecule | \n\t\t\tPre-clinical animal studies | \n\t\t
α4β1 | \n\t\t\tNatalizumab | \n\t\t\thumanized antibody | \n\t\t\tFDA approved (1994) for treatment of multiple sclerosis and Crohn’s disease | \n\t\t
\n\t\t\t | MLN-00002 | \n\t\t\thuman antibody | \n\t\t\tPhase II trials | \n\t\t
\n\t\t\t | Firategrast | \n\t\t\tsmall molecule | \n\t\t\tPhase II trials | \n\t\t
αIIbβ3 | \n\t\t\tc7E3 (Abciximab) | \n\t\t\tChimeric mouse- human antibody | \n\t\t\tFDA approved (1994) for use in percutaneous coronary intervention (PCI) | \n\t\t
\n\t\t\t | Eptifibatide | \n\t\t\tcyclic peptide | \n\t\t\tFDA approved (1998) for use in patients with acute coronary syndrome or undergoing PCI | \n\t\t
\n\t\t\t | Tirofiban | \n\t\t\tsmall molecule | \n\t\t\tFDA approved in 1999 | \n\t\t
α5β1 | \n\t\t\tVolociximab | \n\t\t\tchimeric human-mouse antibody | \n\t\t\tPhase II trials in melanoma, pancreatic cancer, and NSCLC | \n\t\t
\n\t\t\t | JSM6427 | \n\t\t\tsmall molecule | \n\t\t\tPhase I trials | \n\t\t
α2β1 | \n\t\t\tRhodocetin | \n\t\t\tdisintegrin | \n\t\t\tPre-clinical | \n\t\t
Drugs that Target Integrins
The primary rationale for targeting integrin αvβ3 in cancer is to reduce primary tumor growth and metastasis via nutrient deprivation due to inhibition of tumor angiogenesis. Several αvβ3 antagonists have gone to clinical trials with the most notable being cilengitide. Cilengitide is a cyclic peptide containing the RGD integrin-binding motif. It inhibits both αvβ3 and αvβ5. Cilengitide produces both anti-angiogenic and anti-tumor effects through inhibition of VEGF stimulation and FAK-Src and Erk signaling, respectively [105].
The integrin α4 subunit is predominantly expressed in lymphocytes and leukocytes and supports endothelial transmigration of these cells via binding to VCAM-1. Consequently, α4 is important for immune function and has been targeted in diseases such as multiple sclerosis (MS), Crohn’s disease and asthma that are characterized by excessive inflammation or an improper immune response. Natalizumab, the only FDA approved α4 antagonist, is a humanized mouse monoclonal antibody that binds both α4 heterodimers. The use of natalizumab was successful in clinical trials in MS [106, 107] and Crohn’s disease [108] with the exception of rare cases of progressive multi-focal leukoencephalopathy (PML) caused by reactivation of latent JC virus associated with immunosuppression [109]. Unfortunately, this side effect was detrimental enough to lead to limitation of the use of natalizumab to patients who are unresponsive to other treatments. Other α4 antagonists under clinical evaluation include MLN-00002 (human α4β7 antibody), firategrast and IVL745 (small molecules: [104]). Though the rationale for the use of most α4 antagonists is to reduce excessive infiltration of immune cells, these therapies have the potential for use against cancer cells that exploit α4 for tumor cell extravasation. The success of targeting α4 in cancer will depend on the ability to minimize immunosuppression or to indirectly impair α4 function via downstream targets.
Integrin αIIbβ3 is also a frequently targeted integrin. This heterodimer is expressed selectively on platelets and megakaryocytes and is mostly known for its role in blood coagulation. Antagonists of this receptor are primarily employed in diseases such as stroke, sickle cell anemia and acute coronary syndromes [104].
Integrins are a unique group of receptors that provide anchorage, mediate cell migration and invasion, and signal via cell survival and proliferation pathways. Aptly named, integrins integrate extracellular cues with intracellular signaling and serve to regulate many cellular processes that are mediated by other receptors, such as receptor tyrosine kinases. The importance of integrins in cancer development of the nervous system is well established; it seems inevitable therefore that they play a major role in neuroblastoma progression. In fact, integrin expression has been linked to malignancy in neuroblastoma, possibly due to alterations in invasiveness and the ability to evade cell death in foreign tissue environments. Aggressive disease may modulate integrin expression (i.e. N-Myc).
Targeting integrins has shown great clinical promise. By inhibiting ligand binding, many antagonists successfully disrupt cellular connections to the extracellular environment and pro-survival pathways that are necessary for tumor progression. As we continue to learn more about the downstream signaling activity of integrin receptors, we can also explore more therapeutic avenues against these targets, attacking the problem from both sides. However, the logical use of integrin antagonists in complex, multi-agent regimens is lacking. Given the synergy of integrins with signaling through receptor tyrosine kinases and in the induction of susceptibility to apoptosis, this is where one would suspect that these relatively non-toxic agents would have their greatest impact.
Though clinical studies of integrin-targeted drugs in neuroblastoma have not been performed,
Mammalian sensory systems are composed in cortex of many functionally specialized areas organized into hierarchical networks [1, 2, 3, 4, 5, 6]. The most fundamental sensory information is embodied by the organization of the sensory receptors, which is maintained throughout most of the cortical hierarchy of sensory regions with repeating representations of this topography in cortical field maps (CFMs) [5, 7, 8, 9, 10, 11, 12, 13]. Accordingly neurons with receptive fields situated next to one another in sensory feature space are positioned next to one another in cortex within a CFM.
\nIn auditory cortex, auditory field maps (AFMs) are identified by two orthogonal sensory representations: tonotopic gradients from the spectral aspects of sound (i.e., tones), and periodotopic gradients from the temporal aspects of sound (i.e., period or temporal envelope) [5, 10, 14]. On a larger scale across cortex, AFMs are grouped into cloverleaf clusters, another fundamental organizational structure also common to visual cortex [8, 10, 15, 16, 17, 18, 19, 20]. CFMs within clusters tend to share properties such as receptive field distribution, cortical magnification, and processing specialization (e.g., [18, 19, 21]).
\nAcross the cortical hierarchy, there is generally a progressive increase in the complexity of sensory computations from simple sensory stimulus features (e.g., frequency content) to higher levels of cognition (e.g., attention and working memory) [6, 13, 22]. CFM organization likely serves as a framework for integrating bottom-up inputs from sensory receptors with top-down attentional processing [12, 17]. With the recent ability to measure AFMs in the core and belt regions of human auditory cortex along Heschl’s gyrus (HG) using high-resolution functional magnetic resonance imaging (fMRI), the stage is now set for investigation into this integration of basic auditory processing with higher-order auditory attention and working memory within human AFMs (Figure 1) [5, 12, 15, 23].
\nPrimary auditory cortex. (A) The lateral view of the left hemisphere is shown in the schematic. Major sulci are marked by black lines. The approximate position of primary auditory cortex (PAC) is shown with the red overlay inside the black dotted line. The white dotted line within the red region indicates the extension of PAC into the lateral sulcus (LS) along Heschl’s gyrus (HG; hidden within the sulcus in this view). Inset refers to anatomical directions as A: anterior; P: posterior; S: superior; I: inferior. PAC: primary auditory cortex (red); LS: lateral sulcus (green; also known as the lateral fissure or Sylvian fissure); CS: central sulcus (purple); STG: superior temporal gyrus (blue); STS: superior temporal sulcus (orange). (B) The cortical surface of the left hemisphere of one subject (S2) is displayed as a typical inflated 3-D rendering created from high-resolution, anatomical MRI measurements. Light gray regions denote gyri; dark gray regions denote sulci. The exact location of this subject’s hA1 auditory field map is shown in red within the black dotted lines. Note that HG in S2 is composed of a double peak, seen here as two light gray stripes, rather than the more common single gyrus. The locations of the three cloverleaf clusters composed of the core and belt AFMs are shown along HG by three colored overlays as yellow: hCM/hCL cluster; red: HG cluster including hA1, hR, hRM, hMM, hML, hAL; and magenta: hRTM/hRT/hRTL cluster (cite?). Additional cloverleaf clusters are under investigation along PP, PT, STG, and the STS. Green-labeled anatomical regions are sections within the lateral sulcus—CG: Circular gyrus (green); PP: planum polare (green); PT: planum temporale (green). (C) This single T1 image shows a coronal view of hA1 on HG (red within dotted white line). Adapted from Refs. [
This chapter first provides a brief history of research into models of auditory nonverbal attention and working memory, with comparisons to their visual counterparts. Next, we discuss the current state of research into AFMs within human auditory cortex. Finally, we propose directions of future research investigating auditory attention and working memory within these AFMs to illuminate how these higher-order cognitive processes interact with low-level auditory processing.
\nAttention, the ability to select and attend to aspects of the sensory environment while simultaneously ignoring or inhibiting others, is a fundamental aspect of human sensory systems (for reviews, see [24, 25, 26, 27]). Given the limited resources of the human brain, attention allows for greater resources to be allocated to processing of important incoming sensory stimuli by diverting precious resources from currently unimportant stimuli. Such allocation can be controlled cognitively, in what is generally referred to as ‘top-down’ attentional control in models of attention, in reference to the higher-order cognitive processes controlling attention from the ‘top’ of the sensory-processing hierarchy and acting ‘down’ on the lower levels (Figure 2) [24, 28, 29, 30, 31]. Despite lower priority being assigned to the currently unimportant stimulus locations, change is constant, so the resource diversion to attended stimuli is not absolute, allowing for the sensory environment to continue to be monitored. If, instead, processing resources were evenly distributed throughout the sensory field, without regard to salience, more resources would be wasted on unimportant aspects of the field. If something in the unattended sensory field should become important, the system requires a mechanism to reorient attention to that aspect of the field. Such stimulus-driven attentional control is referred to as ‘bottom-up’, referring to the ability of incoming sensory input at the bottom of the hierarchy to orient the higher-order attention system. This broad framework of attentional models is common at least to the senses most commonly studied, vision and audition [25, 27, 31, 32].
\nAttention and working-memory model. A model of the interactions between perception, trace memory, attention, working memory, and long-term memory in the visual and auditory systems, as well as the central executive. Ovals represent neural systems. Arrows represent actions of one system on another. Attention is the term for the action of perception and trace memory on working memory and vice versa. Rehearsal is the term for maintaining information in working memory. This model is not intended to indicate that these systems are discrete or independent; within each sense, they are in fact highly integrated.
In the effort to elucidate the parameters of auditory attention, researchers have taken a myriad of approaches in numerous contexts. Researchers have attempted to decipher at what level of the sensory-processing hierarchy stimulus-driven attention occurs (after which sensory-processing steps does attention act) [24, 30, 31, 33, 34, 35], how attention can be deployed (to locations in space or particular sensory features) [36, 37, 38, 39, 40], and how can attention be distributed (to how many ‘objects’ or ‘streams’ can attention be simultaneously deployed) [41, 42, 43, 44]. Many studies have narrowed the range of possibilities without precisely answering these questions, and so remain active areas of research. Modern models of attention generally agree that stimuli are processed to some degree before attention acts, accounting for the stimulus-driven ‘bottom-up’ attentional shifts, though it is unclear to precisely which degree [24, 30, 33]. Neuroscientific evidence suggests that attention acts throughout sensory-processing hierarchies, so the idea of attention being located at a particular ‘height’ in the hierarchy may not be a particularly useful insight for identifying the cortical locus of attentional control [45, 46]. Modern attentional models also generally agree that attention can be deployed to locations in or features of sensory space, both of which are fundamental aspects to the sensory-processing hierarchy [24, 35]. Finally, modern models of attention agree that attention is very limited, but not about precisely how it is limited. Some models are still fundamentally ‘spotlight’ models [25, 44], in which attention is limited to a single location or feature set, while others posit that attention can be divided between a small number of locations or features [41, 47]. Based on related working-memory research, the latter theory is gaining prominence as likely correct.
\nWorking memory (i.e., a more accurate term for ‘short-term memory’) is the ability to maintain and manipulate information within the focus of attention over a short period of time after the stimulus is no longer perceptible (for reviews, see [48, 49, 50, 51]). Without explicit maintenance, this retention period is approximately 1–2 s, but is theoretically indefinite with explicit maintenance. Working memory should not to be confused with ‘sensory memory’, also known as ‘iconic memory’ in vision and ‘echoic memory’ in audition [52]. Sensory memory is a fundamental aspect of sensory systems in which a sensory trace available to attention and working-memory systems persists for less than ~100 ms after stimuli are no longer perceptible. Models of working memory are nearly indistinguishable from models of attention; the key difference is that working memory is a ‘memory’ of previously perceptible stimuli, whereas attention is thought to act on perceptible stimuli or sensory traces thereof. Working-memory models posit, by definition, that working memory acts after perception processing has occurred (Figure 2; for review, see [53]). However, it has been difficult to isolate exactly where working-memory control resides along the cortical hierarchy of sensory processing, likely because low-level perceptual cortex is recruited at least for visual working memory and attention [40, 46, 54, 55].
\nLike attention, working-memory models also posit that working memory is a highly limited resource, in which a small set of locations or objects (e.g., 3–4 items on average) can be simultaneously maintained [42, 49]. In fact, some modern measures of attention and working memory are nearly identical. The change-detection task is a ubiquitous one in which subjects are asked to view a sensory array, then compare that sensory array to a second one in which some aspect of the array may have changed, and indicate whether a change has occurred (Figure 3) [56, 57, 58, 59, 60]. A short delay period (i.e., retention interval) is included during each array, which may include a neutral presentation or, if desired, a mask of the sensory stimuli to prevent the use of ‘sensory memory’. The length of the delay period can be then be altered to either measure attention or working memory. If the delay period is on the order of ~0–200 ms, it is considered an attentional task; if it is longer, on the order of 1–2 s, it is considered a working-memory task [53]. Therefore, attention and working-memory systems are at a minimum heavily intertwined and very likely the same system studied in slightly different contexts, with attention being a component of a larger working-memory framework.
\nVisual change-detection task. This task can be used to probe visual attention or working memory and is very similar to its auditory counterpart. Such tasks have three phases: first is encoding, when subjects are given ~100–500 ms to view the sample array; next is maintenance, which is short (~0–200 ms) for measuring attention and longer (~1000 ms) for working memory; last is the probe (lasting until the subject responds or with a time limit, often ~2000 ms). In this example, a set size of four is presented for the sample array and a probe array of one is used, though different set sizes are commonplace and often the probe array will be the same set size as the encoding array with a possibility of one object being changed. Typically there is an equal chance (50%) of the probe array containing a change or not. Generally subjects will be required to fixate centrally, particularly if fMRI, EEG, or PET recordings are being made. (A) Simple colored square stimuli are depicted here, often drawn from a small set of easily distinguished hues (in this case, 6). As a result, changes are always low in similarity, requiring low resolution to make accurate comparisons between encoding and test arrays, which is important at least for visual working-memory measurements. More complex stimuli can also be used as in (B) and (C). These stimuli are shaded cubes with the same hue set as in (A), but also have 6 possible shading patterns with the dark, medium, and light shaded sides on each cube. Changes between hues, as in (B), are equivalently low similarity to (A) and result in similar performance under visual working-memory conditions. Changes in shading patterns, as in (C), result in worse performance than (B) despite having the same number of possible pattern changes as hue changes in (A) or (B), because such changes require higher resolution representations in visual working memory. Adapted from Barton and Brewer [
With the relatively recent invention of fMRI, researchers have been able to begin to localize these models of attention and working memory to their cortical underpinnings (e.g., [6, 37, 40, 50, 55, 61, 62]). FMRI, through its exquisite ability to localize blood oxygenation-level dependent (BOLD) signals (and thus the underlying neural activity) to just a couple of millimeters is the best technology available for such research [63, 64]. Two broad approaches have been employed for studying these high-order cognitive processes: model-based and perception-based. Model-based investigations tend to use tasks based on behavioral investigations into attention and working memory, adapt them to the strict parameters required of fMRI, and compare activity in conditions when attention or working memory are differentially deployed [61, 62]. Perception-based investigations tend to measure low-level perceptual cortex that has already been mapped in detail and measure the effects of attention or working memory within those regions [50, 55, 65]. Both approaches are important and should be fully integrated to garner a more complete and accurate localization of these attentional and working-memory systems.
\nResearch into attention began in earnest in the auditory system after World War II with a very practical motivation. It had been noted that fighter pilots sometimes failed to perceive auditory messages presented to them over headphones despite the fact that the messages were completely audible. To solve this problem, Donald Broadbent began studying subjects with an auditory environment similar to the pilots, with multiple speech messages presented over headphones [34]. Based on his findings, he proposed a selective theory of attention, which was popular and persuasive, but ultimately required modification. Environments such as the one Broadbent studied are more commonly encountered at cocktail parties, in which multiple audible conversations are taking place, and people are able to attend to one or a small set of speech streams while attenuating the others. To study the ‘cocktail party phenomenon,’ the dichotic listening task was developed in the 1950s by Colin Cherry [66, 67]. Subjects were asked to shadow the speech stream presented to one ear of a set of headphones while another stream was presented to the other ear, and they demonstrated little knowledge of the nonshadowed (unattended) stream (Figure 4).
\nAuditory spatial attention. Schematic of an example auditory spatial attention task (e.g., see [
A host of studies followed up on the basic finding, revealing several attentional parameters within the context of that type of task (e.g., [30, 35, 40, 68, 69, 70, 71]). Importantly, preferential processing of the attended stream relative to the unattended streams is not absolute; for example, particularly salient information, such as the name of the subject, could sometimes be recalled from an unattended stream, presumably by reorienting attention [39, 66, 67, 69]. The streams were typically differentiated spatially (e.g., to each ear through a headset), indicating a spatial aspect to attentional selection and therefore the attentional system. Similarly, the streams were also typically differentiated by the voice of the person speaking, indicating attentional selection based on the spectrotemporal characteristics of the speaker’s voice such as the average and variance of pitch and speech rate (often reflecting additional information about the speaker, such as gender) [66, 67, 68, 72].
\nThese findings are very similar to findings in the visual domain, indicating that attentional systems across senses are similarly organized. Visual attention can similarly be deployed to a small set of locations or to visual features with very little recall of nonattended visual stimuli [41]. Roughly analogous to speech shadowing are multiple-object-tracking tasks, which require subjects to visually track a small set of moving objects out of a group [47, 73]. Visual change-detection tasks are also very common, and they demonstrate very similar results as their auditory counterparts [50, 74, 75]. In sum, the evidence suggests that attentional systems are organized very similarly, perhaps identically, between at least vision and audition.
\nDespite these broad contributions, these types of tasks are of limited utility when tying behavior to cortical activity because the types of stimuli used are rather high-order (e.g., speech) with relatively uncontrolled low-level parameters. For example, the spectrotemporal profile of a stream of speech is complex, likely activating broad swaths of low-level sensory cortex in addition to higher-order regions dedicated to speech comprehension, including working and long-term memory [68, 72, 76, 77]. If one were to compare fMRI activity across auditory cortex in traditional dichotic listening tasks, the differences would have far too many variables for which to account before meaningful conclusions can be made about attentional systems. It may seem intuitive to compare cortical activity between conditions where identical speech stimuli have been presented and the subject either attended to the stimuli or did not. However, areas that have increased activity when the stimuli were attended could simply reflect higher-order processing that only occurs when attention is directed to the stimuli rather than directly revealing areas involved in attentional control. For example, recognition of particular words requires comparison of the speech stimulus to an internal representation, which requires activation of long-term memories of words [77]. Long-term memory retrieval does not happen if the subject never perceived the word due to attention being maintained on a separate speech stream, so such memory-retrieval activity would be confounded with attentional activity in the analysis [70].
\nThus, simpler stimuli that are closer in nature to the initial spectrotemporal analyses performed by primary auditory cortex (PAC) are better suited for experiments intended to demonstrate attentional effects in cortex [24]. Reducing the speech comprehension element is a good first step, and research approached this by using a change-detection task and arrays of recognizable animal sounds (cow, owl, frog, etc.; Figure 5) [59]. These tests revealed what the researchers termed ‘change deafness,’ in which subjects often failed to identify changes in the sound arrays. Such inability to detect changes is entirely consistent with very limited attentional resources, and very similar to results of working-memory change-detection tasks [30, 53, 60, 78].
\nAuditory feature attention. Schematic outlines a simple proposed attention task utilizing spectral (narrowband noise) and temporal (broadband noise) stimuli taken from the stimuli used by [
However, even these types of stimuli are not best suited to fMRI investigation at this stage of understanding due to their relative complexity compared to the basic spectrotemporal features of sounds initially processed in auditory cortex [12, 50]. As discussed in detail below, the auditory system represents sounds in spectral and temporal dimensions, and stimuli similar to those used to define those perceptual areas would be best suited now to evaluating the effects of attention in the auditory system (Figure 6) [5, 10].
\nAuditory object attention and working memory. Schematic of one trial in an auditory change-detection task (e.g., see change-deafness experiments in [
Visual and auditory working memory were discovered in quick succession and discussed together in a very popular and influential model by Baddeley and Hitch linking sensory perception, working memory, and executive control [79, 80, 81]. The generally accepted modern model of working memory has changed somewhat from the original depiction, but the vast majority of research has been working within the framework (for reviews, see [30, 51, 53, 79, 81]). Each sense is equipped with its own perceptual system and three memory systems: sensory memory, working memory, and long-term memory. Direct sensory input, gated by attentional selection, is one of the two primary inputs into working memory. Sensory memory is a vivid trace of sensory information that persists after the information has vanished for a short time and is essentially equivalent to direct sensory input into working memory, again gated by attentional selection; one can reorient attention to aspects of the sensory trace as if it were direct sensation. Long-term memory is the second primary input into working memory, which is gated by an attention-like selection, generally referred to as selective memory retrieval. Working memory itself is a short-term memory workspace lasting a couple of seconds without rehearsal, in which sensory information is maintained and manipulated by a central executive [82]. The central executive is a deliberately vague term with nebulous properties; as a colleague often quips, “All we know of the central executive is that it’s an oval,” after its oval-shaped depiction in the Baddeley and Hitch model. There is ongoing debate as to the level of the hierarchy at which each system is integrated into that of the other senses, with no definitive solutions.
\nVisual working memory and visual sensory memory (i.e., ‘iconic memory’) were fundamentally measured by George Sperling in 1960 [52]. He presented arrays of simple visual stimuli for short periods of time and asked subjects to report what they had seen after a number of short delays. He discovered that subjects could only recall a small subset of stimuli in a large array, representing the limited capacity of visual working memory. Furthermore, they could recall a particular subset of the stimuli when cued after the presentation but before the sensory trace had faded (≤100 ms), indicating that visual sensory memory exists and that visual attention can be deployed to stimuli either during sensation or sensory memory. Over the next decade, George Sperling went on to perform similar measurements in the auditory system, delineating very similar properties for auditory perception, sensory memory, and working memory [83].
\nWithout directly measuring brain activity, researchers concluded that sensory systems must be operating independently with dual-task paradigms in which subjects were asked to maintain visual, auditory, or both types of information in working memory. It was shown that subjects could recall ~3–4 ‘chunks’ of information (which may not precisely reflect individual sensory locations or features) of each type, regardless of whether they were asked to maintain visual, auditory, or both types of information [49, 78]. If the systems were integrated, one would be able to allocate multisensory working-memory ‘slots’ to either sense, with a maximum number (e.g., 6–8) that could be divided between the senses as desired. Instead, subjects can maintain on average ~3–4 visual chunks and ~3–4 auditory chunks, without any ability to reallocate any ‘slots’ from one sense to the other.
\nWhile electroencephalogram (EEG) and positron emission topography (PET) recordings could broadly confirm the contralateral organization of the visual system and coarsely implicate the parietal and frontal lobes in attention and working memory, it was not until the advent of high-resolution fMRI that researchers could begin localizing attention and working memory in human cortex with any detail [6, 17, 37, 50, 84, 85, 86, 87, 88, 89, 90]. Model-based fMRI investigations have attempted to localize visual working memory by comparing BOLD activity in conditions where subjects are required to hold different numbers of objects in working memory [50, 62, 91, 92]. The logic goes that, because visual-working-memory models posit that a maximum of ~3–4 objects can be held in visual working memory on average, areas that increase their activity with arrays 1, 2, 3 objects and remaining constant with arrays of 4 or more objects should be areas controlling visual working memory. Such areas were found bilaterally in parietal cortex by multiple laboratories [57, 62, 91, 93], but activity related to visual working memory has also been measured in early visual cortex (e.g., V1 and hV4) [55, 65, 94], prefrontal cortex [95], and possibly in object-processing regions in lateral occipital cortex [62], indicating that working-memory tasks recruit areas throughout the visual-processing hierarchy. (We note that the report of object-processing regions is controversial, as the cortical coordinates reported in that study are more closely consistent with the human motion-processing complex, hMT+, than the lateral occipital complex [15, 17, 96, 97]). However, little has been done to measure visual-working-memory activity in visual field maps, and so these studies should be considered preliminary rather than definitive. Measurements within CFMs would, in fact, help to clear up such controversies.
\nAuditory-working-memory localization with fMRI has been quite limited compared to its visual counterpart, and largely concentrated on speech stimuli rather than fundamental auditory stimuli [30, 68]. As noted above with attention localization with fMRI, too many variables exist with highly complex stimuli, and as such, a different approach is necessary. Furthermore, even low-level auditory sensory areas have only very recently been properly identified [5, 10].
\nAuditory processing is essential for a wide range of our sensory experiences, including the identification of and attention to environmental sounds, verbal communication, and the enjoyment of music. The intricate sounds in our daily environments are encoded by our auditory system as the intensity of their individual component frequencies, comparable to a Fourier analysis [98]. This spectral sound information is thus one fundamental aspect of the auditory feature space (Figure 7A,C). The basilar membrane of the inner ear responds topographically to incoming sound waves with higher frequencies transduced to neural signals near the entrance to the cochlea and progressively lower frequencies transduced further along the membrane. This organized gradient of frequencies (i.e., tones) is referred to as tonotopy (i.e., a map of tones); this topography may also be termed cochleotopy, referring to a map of the cochlea. Tonotopic organization is maintained as auditory information is processed and passed on from the inner ear through the brainstem, to the thalamus, and into PAC along Heschl’s gyrus (HG; Figure 1; for additional discussion, see [2, 5, 6, 12, 99, 100]). The preservation of such topographical organization from the basilar membrane of the inner ear to auditory cortex allows for a common reference frame across this hierarchically organized sensory system [6, 7, 12, 13, 22, 23].
\nExample tonotopic and periodotopic stimuli for auditory field mapping. (A) Three stimulus values for one dimension of auditory feature space (e.g., tonotopy) are depicted in the graph: 1—low (L, red); 2—medium (M, green); 3—high (H, blue). (B) Three stimulus values for a second dimension of auditory feature space (e.g., periodotopy) are depicted in the second graph: 1—low (L, orange); 2—medium (M, aqua); 3—high (H, purple). (C) Tonotopic representations can be measured using narrowband noise stimuli, which hold periodicity constant and vary frequency. (i) Sound amplitude (arbitrary units) for this stimulus set as a function of time in seconds. (ii) Sound spectrograms for two example narrowband noise stimuli with center frequencies (CF) of 1600 Hz (top) and 6400 Hz (bottom). Higher amplitudes in decibels (dB) are represented as ‘warmer’ colors (see dB legend below). (D) Periodotopic representations can be measured using broadband noise stimuli, which maintain constant frequency information and vary periodicity. (i) Sound amplitude (arbitrary units) for this stimulus set as a function of time in seconds. (ii) Sound spectrograms for two example broadband noise stimuli with amplitude modulation (AM) rates of 2 Hz (top) and 8 Hz (bottom). Higher amplitudes are again depicted as ‘warmer’ colors (see dB legend on bottom).
A second fundamental aspect of the auditory feature space is temporal sound information, termed periodicity (Figure 7B,D) [10, 101, 102]. Human psychoacoustic studies indicate that there are separable filter banks (i.e., neurons with distinct receptive fields) for not only frequency spectra—as expected given tonotopy, but also temporal information [103, 104, 105]. The auditory nerve likely encodes such temporal information through activity time-locked to the periodicity of the amplitude modulation (i.e., the length of time from peak-to-peak of the temporal envelope) [101, 106]. Temporally varying aspects of sound are thought to preferentially active neurons selective for the onset and offset of sounds and for sounds of certain durations. Organized representations of periodicity in primates have been measured to date in the thalamus and PAC of macaque and human, respectively, and are termed periodotopy, a map of neurons that respond differentially to sounds of different temporal envelope modulation rates [5, 10, 107]. Repeating periodotopic gradients exist in the same cortical locations as, but are orthogonal to, tonotopic gradients, which allows researchers to use measurements of these two acoustic dimensions to identify complete AFMs.
\nMeasurements of the structure and function of human PAC and lower-level auditory cortex have been relatively few to date, with many studies hampered by methodological issues (for reviews, see [5, 23]. Precise measurements of AFMs across primary and lower-level auditory cortex are vital, however, for studying the neural underpinnings of such prominent auditory behaviors as attention and working memory. Recent research has now successfully applied fMRI methods commonly used to measure visual field maps to the study of AFMs in human auditory cortex.
\nThe phase-encoded fMRI paradigm provides highly detailed
Schematic of phase-encoded fMRI paradigm for auditory field mapping experiments. (A) Diagram of a single stimulus phase shows the components of a single block of one auditory stimulus presentation (striped green) followed by an fMRI data acquisition period (solid green). This sparse-sampling paradigm separates the auditory stimulus presentation from the noisy environment of the MR scanner acquisition. The timing of the acquisition (2 s delay) is set to collect the approximate peak response of auditory cortex to the stimulus, in accordance with the estimated hemodynamic delay. (B) Each phase (block) of an example tonotopic stimulus is displayed within the gray box above the colored blocks; one block thus represents one stimulus position in the ‘phase-encoded’ sequence. The diagram of an example stimulus cycle below this depicts six presentation blocks (striped green+ solid green) grouped together into one stimulus cycle (blue). Each block, or stimulus phase, in each cycle represents a specific frequency; e.g., for tonotopic measurements, the stimulus that is presented sequentially changes to each of the Hz listed in the gray box. The term ‘traveling-wave’ is also used to describe this type of phase-encoded stimulus presentation, as the stimuli produce a sequential activation of representations across a topographically organized cortical region. (C) Diagram shows a full, single scan comprising six cycles. (D) Legend denotes color-coding for diagrams above.
The periodic stimulus allows for the use of a Fourier analysis to determine the value of the stimulus (e.g., 800 Hz frequency for tonotopy) that most effectively drives each cortical location [110]. The cortical response at a specific location is said to be ‘in phase’ throughout the scan with the stimulus value that most effectively activates it, hence the term ‘phase-encoded’ mapping. The alternate term ‘traveling-wave’ mapping arises from the consecutive activation of one neighboring cortical location after the other to create a wave-like pattern of activity across the CFM during the stimulus presentation. The phase-encoded paradigm only captures cortical activity that is at the stimulus frequency, thus excluding unrelated cortical activity and other sources of noise. Similarly, cortical regions that are not organized topographically will not be significantly activated by phase-encoded stimuli, as there would be no differential activation across the cortical representation [8, 15, 16]. The statistical threshold for phase-encoded cortical activity is commonly determined by coherence, which is a measure of the amplitude of the BOLD signal modulation at the frequency of the stimulus presentation (e.g., six stimulus cycles per scan), divided by the square root of the power over all other frequencies except the first and second harmonic (e.g., 12 and 18 cycles per scan) [15, 17, 110].
\nMeasurement and analysis of phase-encoded CFM data must be performed within individual subjects rather than across group averages to avoid problematically blurring together discrete CFMs and their associated computations (for extended discussions, see [5, 15, 17]). CFMs may differ radically in size and anatomical position among individual subjects independent of brain size; this variation is reflected in associated shifts in cytoarchitectural and topographic boundaries [119, 120, 121, 122, 123, 124]. In the visual system, for example, V1 can differ in size by at least a factor of three despite its location on the relatively stable calcarine sulcus [120]. Accordingly, when such data are group-averaged across subjects, especially through such approaches as aligning data from individual brains to an average brain with atlases such as Talairach space [125] or Montreal Neurological Institute (MNI) coordinates [126], the measurements will be blurred to such a degree that the measured topography of the CFMs is inaccurate or even lost. Blurring from such whole-brain anatomical co-alignment will thus cause different CFMs to be incorrectly averaged together into a single measurement, mixing data together from adjacent CFMs within each subject and preventing the analysis of the distinct computations of each CFM.
\nIn order to avoid the imprecise application of the term ‘map’ to topographical gradients or other similar patterns of cortical organization, the designation of an AFM—and CFMs in general—should be established according to several key criteria (Figure 9) (for reviews, see [5, 8, 15]). First, by definition, each AFM must contain at least the two orthogonal, nonrepeating topographical representations of fundamental acoustic feature space described above: tonotopy and periodotopy (Figure 9A) [10, 17, 21, 108, 110, 111]. When this criterion is ignored and the measurement of only one topographical representation is acquired (e.g., tonotopy), it is impossible to correctly identify boundaries among cortical regions. Measurements of the organization and function of specific regions of early auditory cortex in human long have mostly relied on tonotopic measurements alone, which has resulted in variable, conflicting, and ultimately unusable interpretations of the organization of human PAC and surrounding regions (for detailed reviews, see [5, 23]).
\nDefinition of auditory field maps (AFMs). (A) (i) Schematic of a single gradient of dimension 1 (e.g., tonotopy). Black arrow shows the low-to-high gradient for this tonotopic gradient. With only measurements of the single dimension of tonotopy, it cannot be determined whether the region within dimension 1 contains one or more cortical field maps without measuring a second, orthogonal gradient. (ii) Schematic of a single gradient of dimension 2 (e.g., periodotopy) overlapping the tonotopic gradient in (i) to form a single AFM like hA1. Black arrow shows the low-to-high gradient for this periodotopic gradient. Note the orthogonal orientation of the two gradients (i vs. ii) composing this AFM. (iii) schematic of an alternative gradient organization for periodotopy overlapping the same tonotopic gradient in (i). Black arrows now show two low-to-high gradients (G1: gradient 1, G2: gradient 2) of this second dimension within the same territory as the orthogonal low-to-high gradient in (i). The gray dotted line marks the boundary dividing this region into two AFMs. (B) (i) In a properly defined AFM, measurements along the cortical representation of a single value of tonotopy (e.g., green) span all values of periodotopy (e.g., orange to cyan to purple), and vice versa. (ii) Schematic of vectors drawn along a single CFM from centers of low-stimulus-value regions of interest (ROIs) to high-stimulus-value ROIs for dimensions 1 (e.g., red to blue) and 2 (e.g., orange to purple). The offset measured between the low-to-high vectors for each dimension should be approximately 90° to be considered orthogonal and thus allow for each voxel/portion of the map to represent a unique combination of dimension 1 and dimension 2 values. (C) The diagram demonstrates how gradient boundaries for one dimension of an AFM are determined. Black dots denote hypothetical measurement points along the cortical surface shown in (A, iii). Black arrows note gradient directions (low, L, to medium, M, to high, H). Dashed gray lines mark gradient reversals. Two gradients that span the full range of dimension 2 measurements can be divided into G1 and G2, with the representations of stimulus values increasing from low to high across the cortical surface in one gradient to the boundary where the representations in the next map then reverse back from high to low along the cortical surface in the next gradient. G3 and G4 (gradients 3 and 4, respectively) denote additional gradients continuing at reversal to regions outside the diagram. (for review, see [
The representation of one dimension of sensory space—one topographical gradient along cortex like tonotopy—is not adequate to delineate an AFM, or CFMs in any sensory system. The measurement of a singular topographical dimension merely demonstrates that this particular aspect of sensory feature space is represented along that cortical region. The CFMs within that cortical region cannot be identified without measuring an orthogonal second dimension: a region of cortex with a large, confluent gradient for one dimension could denote a single CFM (Figure 9Ai,ii) or many CFMs (Figure 9Ai,iii), depending upon the organization of the overlapping second topography. Similarly, the two overlapping gradients must be approximately orthogonal, as they will otherwise not represent all the points in sensory space uniquely (Figure 9B) [15, 16, 127, 128]. As the complexity of adjacent gradients increases, the determination of the emergent CFM organization grows increasingly complicated.
\nDue to the relatively recent measurements of periodotopic representations in human auditory cortex and monkey midbrain, AFMs in core and belt regions can now be identified [10, 102]. The identification of periodotopy as the second key dimension of auditory feature space is strengthened by psychoacoustic studies, which show that separable filter banks occur not only for frequency spectra, but also temporal information, indicating the presence of neurons with receptive fields tuned to ranges of frequencies and periods [14, 103, 104, 105]. Additionally, representations of temporal acoustic information (i.e., periodicity) have been measured in the auditory system of other model organisms, including PAC in domestic cat and inferior colliculus in chinchilla [129, 130].
\nA second AFM criterion is that each of its topographical representations must be organized as a generally contiguous and orderly gradient [16, 128]. For such a gradient to develop, the representation must be organized such that it covers a full range of sensory space, in order from one boundary to the other (e.g., from lower to upper frequencies for tonotopy; Figure 9C). A topographical gradient is thus one of the most highly structured features of the cortical surface that can be measured using fMRI. The odds of two orderly, orthogonal gradients arising as a spurious pattern from noise in an overlapping section of cortex is extraordinarily low (for a calculation of the probability of spurious gradients arising from noise, see [19]).
\nThird, each CFM should contain representations of a considerable amount of sensory space. Differences in cortical magnification are likely among CFMs with different computational needs, but a large portion of sensory space is still expected to be represented (e.g., [15, 16, 19, 21, 97, 127, 131]). A high-quality fMRI measurement of the topography is necessary to adequately capture the sensory range and magnification. The quality of the measurement is dependent upon choosing an appropriate set of phase-encoded stimuli. The sampling density and range of values in the stimulus set both affect the accuracy and precision of the measurement. For example, the intensity (i.e., loudness) of the tonotopic stimulus alone can alter the width of the receptive fields of neurons in PAC and consequently increase the lateral spread of the BOLD signal measured in neuroimaging [132]. In addition, some degree of blurring in the measurements of the topography is expected due to such factors as the overlapping broad receptive fields, the inherent spatial spread of the fMRI signal, and measurement noise [64, 109, 133, 134]. The stimulus parameters and how they may affect the cortical responses should therefore be given careful consideration.
\nFourth, the general features of the topographies composing the CFMs and the pattern of CFMs across cortex should both be consistent among individuals. It is essential to remember, nevertheless, that cytoarchitectural and topographic boundaries in PAC vary dramatically in size and anatomical location independent of overall brain size [119, 121, 122, 123, 124, 135], as do CFMs across visual cortex [16, 17, 120, 136]. Regardless of these variations, the overall organization among specific CFMs and cloverleaf clusters will be maintained across individuals.
\nThe measurement of AFMs is one of the few reliable
At a scale of several centimeters, groups of adjacent CFMs are organized within both auditory and visual cortex into a macrostructural pattern called the cloverleaf cluster, named for the similarity of the organization of the individual CFMs composing a cluster to the leaves of a clover plant [8, 10, 15, 16, 17, 18, 19, 20]. Within a cluster, one dimension of sensory topography is represented in concentric, circular bands from center to periphery of the cluster, and the second, orthogonal dimension separates this confluent representation into multiple CFMs with radial bands spanning the cluster center to periphery. In AFM clusters, a confluent, concentric tonotopic representation is divided into specific AFMs by reversal in the orthogonal periodotopic gradients. Neighboring cloverleaf clusters are then divided along the tonotopic reversals at the cluster boundaries.
\nWhile CFM clusters have consistent positions relative to one another across the cortical surface, CFMs within each cluster may be oriented differently among individuals as if rotating about a cluster’s central representation. This inter-subject is consistent with the variability in molecular gradient expression that gives rise to the development of cortical topographical gradients [145, 146, 147, 148, 149]. This unpredictability of cluster anatomical location and rotation emphasizes the need for careful data analysis to be performed in individual subjects, in which common CFMs can be identified by analyzing the pattern of CFMs and cloverleaf clusters within that sensory system.
\nAuditory processing in human cortex and in nonhuman primates occurs bilaterally along the temporal lobes near the lateral sulcus (Figure 1; e.g., [5, 10, 115, 121, 139, 140, 141, 142, 144, 150, 151, 152, 153]). In the macaque monkey model system upon which much of our understanding of human audition is based, converging evidence from cytoarchitectural, connectivity, electrophysiological, and neuroimaging studies have generally identified 13 auditory cortical areas grouped into core, medial and lateral belt, and parabelt regions that are associated with primary, secondary, and tertiary levels of processing, respectively (for extended discussions, see [2, 5, 154]). Auditory processing in macaque cortex begins along the superior temporal gyrus (STG) within three primary auditory areas: A1, R, and RT [140]. In contrast to early visual processing in which primary visual cortex is composed of V1 alone, primary auditory cortex is considered to be a core region composed of these three AFMs; all three areas contain the expanded layer IV arising from dense thalamic inputs and the high expression of cytochrome oxidase, acetylcholinesterase, and parvalbumin distinctive to primary sensory cortices [2, 142, 143, 150, 152, 154, 155, 156, 157]. The eight belt regions are divided into four areas along both the lateral (CL, ML, AL, RTL) and medial (CM, RM, MM, RTM) sides of the core [158, 159, 160]. Along the lateral belt, two additional areas create the parabelt, which allocates auditory information to neighboring auditory cortex as well as to multimodal cortical regions [2, 161].
\nBased on cytoarchitectural, connectivity, and neuroimaging measurements, early auditory processing in human cortex has been shown to resemble the organization of lower-level macaque auditory processing [10, 23, 121, 144, 151, 152, 153, 162]. Over the ~25 million years of evolutionary separation between the species, the core, belt, and parabelt areas have rotated from the STG to Heschl’s gyrus (HG), an anatomical feature unique to humans [11, 163]. The specific structure of HG differs across individuals, variably existing as a single or double gyrus. PAC is then either mostly centered on the single HG or overlapping both gyri in the case of two (Figure 1B,C) [122, 135, 136]. Core, belt, and parabelt areas have thus shifted in orientation from a strictly rostral-caudal axis for A1 to R to RT along macaque STG to a medial-lateral axis along human HG for hA1, hR, and hRT. The naming of the AFMs in human is based on the likely homology to macaque, but adds an ‘h’ to signify human [10].
\nWith our new understanding of periodotopic representations overlapping the previously identified tonotopic gradients,
Auditory field maps and cloverleaf clusters in human cortex. (A) Anatomical views of Heschl’s gyrus (HG), superior temporal gyrus (STG) and surrounding auditory cortex in an individual subject’s left hemisphere (S2). (i) Inflated 3-D rendering of the cortical surface. Light gray denotes gyri; dark gray denotes sulci. The approximate region presented in the other panels is indicated by the dotted black line. Note that this subject has a double peak along HG. (ii) flattened cortical surface of the region indicated by the dotted black line in (i). AFM boundaries between maps along tonotopic reversals are indicated by solid black lines. These tonotopic reversals constitute the separation of cloverleaf clusters from one another. AFM boundaries along periodotopic reversals are indicated by dotted black lines. These periodotopic reversals compose the separation between maps within a cloverleaf cluster. Red text indicates AFM names. (B) Tonotopic gradients measured using narrowband noise stimuli with a phase-encoded fMRI paradigm (example single-subject data from [
A reversal in the tonotopic gradient along the anteromedial edge of the HG cluster divides it from the CM/CL cluster just past the tip of HG (Figure 10B,C). A high-periodicity gradient reversal splits this tonotopic gradient into hCM, and hCL, two regions associated with early language and speech processing as well as audiovisual integration (Figure 10D,E) [164]. Finally, the reversal in the tonotopic gradient along the posteriolateral edge of the HG cluster separates it from the RT cluster positioned where HG meets STG (Figure 10B,C). Two reversals in the periodotopic representations here divide the RT cluster into hRT, hRTM, and hRTL (Figure 10D,E). In macaque, these AFMs along STG are thought to subserve lower-level processing of auditory stimuli like temporally modulated environmental sounds [158, 159]. More research is needed to determine how what other AFMs form the CM/CL and RT clusters. Based on emerging data, it is likely that AFMs will also be a fundamental organization of auditory cortex adjacent to these cloverleaf clusters, such as planum temporale (PT), planum polare (PP) and STG.
\nThe characterization of AFMs and cloverleaf clusters will be crucial for the study of the structure and function of human auditory cortex, as these
The cluster organization is not necessarily thought to be driving common sensory functions, but rather reflects how multiple stages in a sensory processing pathway might arise during development across individuals and during evolution across species. It is likely that this cluster organization, like the topographic organization of CFMs, allows for efficient connectivity among neurons that represent neighboring aspects in sensory feature space [166, 167, 168, 169]. Since the axons contained within one cubic millimeter of cortex can extend 3-4 km in length, efficient connectivity is vital for sustainable energetics in cortex [170].
\nThe definitions of AFMs and the cloverleaf clusters they compose using phase-encoded fMRI will thus serve as reliable, independent localizers for investigations of attention and working memory in early auditory cortex across individuals. Measurements of individual AFMs along the cortical hierarchy will help reveal the distinct stages of top-down and bottom-up auditory processing. In addition, changes in AFMs can be tracked to study how auditory cortex changes under various attentional and working memory tasks and disorders (e.g., [145, 171, 172, 173, 174, 175, 176, 177]).
\nThe human brain has sophisticated systems for perception, trace memory, attention, and working memory for audition and vision, and likely the other senses as well. These systems appear to be organized in a very similar manner for each sense, despite the inputs to each system and information content being quite different. Behavioral measures of the last several decades have led to the development of well-defined models of each system. These models form the basis for the investigation of their underlying architecture in the cortical structures of the human brain. EEG and PET have allowed for spatially coarse investigation of cortical activity, but with the advent of fMRI, it has become possible to make exceptionally detailed spatial measurements. The methods of investigation must be carefully crafted to best elicit activity reflecting the desired aspects of each system; not only must the tasks be appropriate for fMRI, the stimuli and task must be closely matched not just to the system being studied, but to the inputs into that system as well.
\nFor both audition and vision, the sensory processing in cortex happens in cloverleaf clusters of CFMs. This organizational pattern has clearly been demonstrated in the lower tiers of the processing hierarchy and very likely is organized as such throughout. Because the CFMs across the entire hierarchy (or at least, most) of one sense can be measured in just one session in the fMRI scanner, they make incredibly efficient localizers. CFMs are be measured in individual subjects, and serve as functional localizers that can be used to average more accurately across subjects than anatomical localizers. As such, due to the pervasive and fundamental role CFMs play in sensory systems, they are also excellent candidates for measuring the effects of attention and working memory in cortex. To best accomplish this feat, it is proposed that stimuli that are similar to those used to measure CFMs are excellent candidates for use in traditional tasks used to define attentional and working-memory models.
\nThis material is based upon work supported by the National Science Foundation under Grant Number 1329255 and by startup funds from the Department of Cognitive Sciences at the University of California, Irvine.
\nThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"10"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11486",title:"Climate Change - Recent Observations",subtitle:null,isOpenForSubmission:!0,hash:"741543ff220f5cf688efbf12d3e2f536",slug:null,bookSignature:"Assistant Prof. Terence Epule Epule",coverURL:"https://cdn.intechopen.com/books/images_new/11486.jpg",editedByType:null,editors:[{id:"348146",title:"Assistant Prof.",name:"Terence Epule",surname:"Epule",slug:"terence-epule-epule",fullName:"Terence Epule Epule"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11487",title:"Floods - Understanding Existing and Emerging Risk Drivers in a Climate Change Context",subtitle:null,isOpenForSubmission:!0,hash:"c829bdd1a2a84b4b2c31ce5eaab865e2",slug:null,bookSignature:"Dr. Tiago Miguel Ferreira and Associate Prof. Haiyun Shi",coverURL:"https://cdn.intechopen.com/books/images_new/11487.jpg",editedByType:null,editors:[{id:"450075",title:"Dr.",name:"Tiago Miguel",surname:"Ferreira",slug:"tiago-miguel-ferreira",fullName:"Tiago Miguel Ferreira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11488",title:"GIS and Spatial Analysis",subtitle:null,isOpenForSubmission:!0,hash:"fbb625cf1556787cd00be17e7137a5dc",slug:null,bookSignature:"Ph.D. Jorge Rocha, MSc. Eduardo Gomes, Dr. Inês Boavida-Portugal and Dr. Cláudia M. Viana",coverURL:"https://cdn.intechopen.com/books/images_new/11488.jpg",editedByType:null,editors:[{id:"145918",title:"Ph.D.",name:"Jorge",surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11489",title:"Satellite Systems - Applied Geodesy and Earth Observation",subtitle:null,isOpenForSubmission:!0,hash:"7c21d1a8ed9ad6be081d2e74d977d2bc",slug:null,bookSignature:"Dr. Bihter Erol",coverURL:"https://cdn.intechopen.com/books/images_new/11489.jpg",editedByType:null,editors:[{id:"75478",title:"Dr.",name:"Bihter",surname:"Erol",slug:"bihter-erol",fullName:"Bihter Erol"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11490",title:"Advances in Plate Tectonics",subtitle:null,isOpenForSubmission:!0,hash:"412f2e209ff259650a5a1c7df151e3a7",slug:null,bookSignature:"Dr. Gaurav D. Chauhan, Dr. Subhash Bhandari and Dr. M. G. Thakkar",coverURL:"https://cdn.intechopen.com/books/images_new/11490.jpg",editedByType:null,editors:[{id:"239938",title:"Dr.",name:"Gaurav",surname:"Chauhan",slug:"gaurav-chauhan",fullName:"Gaurav Chauhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11491",title:"Current Perspectives on Applied Geomorphology",subtitle:null,isOpenForSubmission:!0,hash:"f9f0fe8910dc02818cad71316650d297",slug:null,bookSignature:"Prof. António Vieira",coverURL:"https://cdn.intechopen.com/books/images_new/11491.jpg",editedByType:null,editors:[{id:"103627",title:"Prof.",name:"António",surname:"Vieira",slug:"antonio-vieira",fullName:"António Vieira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11492",title:"Space Exploration - Advances in Research",subtitle:null,isOpenForSubmission:!0,hash:"2204ff2e64bffb84a4bf1b74bb38bfa1",slug:null,bookSignature:"Dr. Hector Pérez-de-Tejada",coverURL:"https://cdn.intechopen.com/books/images_new/11492.jpg",editedByType:null,editors:[{id:"345070",title:"Dr.",name:"Hector",surname:"Pérez-de-Tejada",slug:"hector-perez-de-tejada",fullName:"Hector Pérez-de-Tejada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11493",title:"Solar Radiation - Enabling Technologies, Recent Innovations, and Advancements for Energy Transition",subtitle:null,isOpenForSubmission:!0,hash:"0400d540d2b8fb55d4cc8590e1e58844",slug:null,bookSignature:"Dr. Mohammadreza Aghaei and Associate Prof. Amin Moazami",coverURL:"https://cdn.intechopen.com/books/images_new/11493.jpg",editedByType:null,editors:[{id:"317230",title:"Dr.",name:"Mohammadreza",surname:"Aghaei",slug:"mohammadreza-aghaei",fullName:"Mohammadreza Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",subtitle:null,isOpenForSubmission:!0,hash:"f1043cf6b1daae7a7b527e1d162ca4a8",slug:null,bookSignature:"Dr. Carmine Massarelli and Dr. Claudia Campanale",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",editedByType:null,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11833",title:"Ozone Research - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"1e789b57319be85ed0a32e569967d822",slug:null,bookSignature:"Associate Prof. Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/11833.jpg",editedByType:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11834",title:"Steppe Geography",subtitle:null,isOpenForSubmission:!0,hash:"363517fa6f079daf94c51ea1b91fed2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11834.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:33},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4380},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"685",title:"Bioinformatics",slug:"engineering-biomedical-engineering-bioinformatics",parent:{id:"112",title:"Biomedical Engineering",slug:"engineering-biomedical-engineering"},numberOfBooks:11,numberOfSeries:0,numberOfAuthorsAndEditors:229,numberOfWosCitations:533,numberOfCrossrefCitations:310,numberOfDimensionsCitations:671,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"685",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery and Development",subtitle:null,isOpenForSubmission:!1,hash:"043c178c3668865ab7d35dcb2ceea794",slug:"artificial-intelligence-in-oncology-drug-discovery-and-development",bookSignature:"John W. Cassidy and Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:"Edited by",editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9236",title:"Cheminformatics and its Applications",subtitle:null,isOpenForSubmission:!1,hash:"3fed97d1719b8a321190c86985494a34",slug:"cheminformatics-and-its-applications",bookSignature:"Amalia Stefaniu, Azhar Rasul and Ghulam Hussain",coverURL:"https://cdn.intechopen.com/books/images_new/9236.jpg",editedByType:"Edited by",editors:[{id:"213696",title:"Dr.",name:"Amalia",middleName:null,surname:"Stefaniu",slug:"amalia-stefaniu",fullName:"Amalia Stefaniu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6835",title:"Computer Methods and Programs in Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"19f08ef15d97900c94dc8fb04f9afb5f",slug:"computer-methods-and-programs-in-biomedical-signal-and-image-processing",bookSignature:"Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6835.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7639",title:"Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations",subtitle:null,isOpenForSubmission:!1,hash:"94f9f01b510ca80812f0eee467f9428b",slug:"bioinformatics-tools-for-detection-and-clinical-interpretation-of-genomic-variations",bookSignature:"Ali Samadikuchaksaraei and Morteza Seifi",coverURL:"https://cdn.intechopen.com/books/images_new/7639.jpg",editedByType:"Edited by",editors:[{id:"187501",title:"Prof.",name:"Ali",middleName:null,surname:"Samadikuchaksaraei",slug:"ali-samadikuchaksaraei",fullName:"Ali Samadikuchaksaraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",isOpenForSubmission:!1,hash:"a3852659e727f95c98c740ed98146011",slug:"artificial-intelligence-applications-in-medicine-and-biology",bookSignature:"Marco Antonio Aceves-Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",editedByType:"Edited by",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6573",title:"Bioinformatics in the Era of Post Genomics and Big Data",subtitle:null,isOpenForSubmission:!1,hash:"ebdf5cb36c49d7d0eaa38059c4434ee4",slug:"bioinformatics-in-the-era-of-post-genomics-and-big-data",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/6573.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",isOpenForSubmission:!1,hash:"0c1a7c2cda06b0fc2ebaa90f8e7036dc",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"2",chapterContentType:"conference paper",authoredCaption:"Edited by"}},{type:"book",id:"3222",title:"State of the Art in Biosensors",subtitle:"General Aspects",isOpenForSubmission:!1,hash:"0057daafc7f0654587e99f5fc3f03a34",slug:"state-of-the-art-in-biosensors-general-aspects",bookSignature:"Toonika Rinken",coverURL:"https://cdn.intechopen.com/books/images_new/3222.jpg",editedByType:"Edited by",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2715",title:"Independent Component Analysis for Audio and Biosignal Applications",subtitle:null,isOpenForSubmission:!1,hash:"3915fb2a427c73e9aeee010bb1857ae5",slug:"independent-component-analysis-for-audio-and-biosignal-applications",bookSignature:"Ganesh R Naik",coverURL:"https://cdn.intechopen.com/books/images_new/2715.jpg",editedByType:"Edited by",editors:[{id:"2276",title:"Dr.",name:"Ganesh R.",middleName:null,surname:"Naik",slug:"ganesh-r.-naik",fullName:"Ganesh R. Naik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"506",title:"Advanced Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"8ae90cb19bbf5c0a612d7cf490464f8d",slug:"advanced-biomedical-engineering",bookSignature:"Gaetano D. Gargiulo and Alistair McEwan",coverURL:"https://cdn.intechopen.com/books/images_new/506.jpg",editedByType:"Edited by",editors:[{id:"24082",title:"Dr.",name:"Gaetano",middleName:"D.",surname:"Gargiulo",slug:"gaetano-gargiulo",fullName:"Gaetano Gargiulo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3703",title:"New Developments in Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new-developments-in-biomedical-engineering",bookSignature:"Domenico Campolo",coverURL:"https://cdn.intechopen.com/books/images_new/3703.jpg",editedByType:"Edited by",editors:[{id:"1909",title:"Dr.",name:"Domenico",middleName:null,surname:"Campolo",slug:"domenico-campolo",fullName:"Domenico Campolo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:11,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"9103",doi:"10.5772/7598",title:"Wireless Body Area Network (WBAN) for Medical Applications",slug:"wireless-body-area-network-wban-for-medical-applications",totalDownloads:23266,totalCrossrefCites:9,totalDimensionsCites:70,abstract:null,book:{id:"3703",slug:"new-developments-in-biomedical-engineering",title:"New Developments in Biomedical Engineering",fullTitle:"New Developments in Biomedical Engineering"},signatures:"Jamil. Y. Khan and Mehmet R. Yuce",authors:null},{id:"9090",doi:"10.5772/7611",title:"Skin Roughness Assessment",slug:"skin-roughness-assessment",totalDownloads:6093,totalCrossrefCites:18,totalDimensionsCites:44,abstract:null,book:{id:"3703",slug:"new-developments-in-biomedical-engineering",title:"New Developments in Biomedical Engineering",fullTitle:"New Developments in Biomedical Engineering"},signatures:"Lioudmila Tchvialeva, Haishan Zeng, Igor Markhvida, David I McLean, Harvey Lui and Tim K Lee",authors:null},{id:"9105",doi:"10.5772/7596",title:"Complete Sound and Speech Recognition System for Health Smart Homes: Application to the Recognition of Activities of Daily Living",slug:"complete-sound-and-speech-recognition-system-for-health-smart-homes-application-to-the-recognition-o",totalDownloads:2296,totalCrossrefCites:27,totalDimensionsCites:43,abstract:null,book:{id:"3703",slug:"new-developments-in-biomedical-engineering",title:"New Developments in Biomedical Engineering",fullTitle:"New Developments in Biomedical Engineering"},signatures:"Michel Vacher, Anthony Fleury, Francois Portet, Jean-Francois Serignat and Norbert Noury",authors:null},{id:"43454",doi:"10.5772/53077",title:"Love Wave Biosensors: A Review",slug:"love-wave-biosensors-a-review",totalDownloads:3624,totalCrossrefCites:12,totalDimensionsCites:38,abstract:null,book:{id:"3222",slug:"state-of-the-art-in-biosensors-general-aspects",title:"State of the Art in Biosensors",fullTitle:"State of the Art in Biosensors - General Aspects"},signatures:"María Isabel Gaso Rocha, Yolanda Jiménez, Francis A. Laurent and Antonio Arnau",authors:[{id:"30056",title:"Prof.",name:"Antonio",middleName:null,surname:"Arnau",slug:"antonio-arnau",fullName:"Antonio Arnau"},{id:"35995",title:"Dr.",name:"Yolanda",middleName:null,surname:"Jiménez",slug:"yolanda-jimenez",fullName:"Yolanda Jiménez"},{id:"100875",title:"Prof.",name:"Laurent",middleName:"Alain",surname:"Francis",slug:"laurent-francis",fullName:"Laurent Francis"},{id:"156599",title:"Ms.",name:"María-Isabel",middleName:null,surname:"Rocha-Gaso",slug:"maria-isabel-rocha-gaso",fullName:"María-Isabel Rocha-Gaso"}]},{id:"43443",doi:"10.5772/54428",title:"Polymers for Biosensors Construction",slug:"polymers-for-biosensors-construction",totalDownloads:3729,totalCrossrefCites:9,totalDimensionsCites:26,abstract:null,book:{id:"3222",slug:"state-of-the-art-in-biosensors-general-aspects",title:"State of the Art in Biosensors",fullTitle:"State of the Art in Biosensors - General Aspects"},signatures:"Xiuyun Wang and Shunichi Uchiyama",authors:[{id:"156779",title:"Dr",name:"Shunichi",middleName:null,surname:"Uchiyama",slug:"shunichi-uchiyama",fullName:"Shunichi Uchiyama"}]}],mostDownloadedChaptersLast30Days:[{id:"18367",title:"Pulse Wave Analysis",slug:"pulse-wave-analysis",totalDownloads:9327,totalCrossrefCites:13,totalDimensionsCites:17,abstract:null,book:{id:"506",slug:"advanced-biomedical-engineering",title:"Advanced Biomedical Engineering",fullTitle:"Advanced Biomedical Engineering"},signatures:"Zhaopeng Fan, Gong Zhang and Simon Liao",authors:[{id:"24603",title:"Dr.",name:"Gong",middleName:null,surname:"Zhang",slug:"gong-zhang",fullName:"Gong Zhang"},{id:"103967",title:"Dr.",name:"Zhaopeng",middleName:null,surname:"Fan",slug:"zhaopeng-fan",fullName:"Zhaopeng Fan"},{id:"126697",title:"Dr.",name:"Simon",middleName:null,surname:"Liao",slug:"simon-liao",fullName:"Simon Liao"}]},{id:"71466",title:"Cell-Penetrating Peptides: A Challenge for Drug Delivery",slug:"cell-penetrating-peptides-a-challenge-for-drug-delivery",totalDownloads:1103,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Cell-penetrating peptide (CPP) is a term that describes relatively short amphipathic and cationic peptides (7–30 amino acid residues) with rapid translocation across the cell membrane. They can be used to deliver molecular bioactive cargoes due to their efficacy in cellular internalization and also to their low cytotoxicity. In this review we provide an overview of the current approaches and describe the potential of CPP-based drug delivery systems and indicate their powerful promise for clinical efficacy.",book:{id:"9236",slug:"cheminformatics-and-its-applications",title:"Cheminformatics and its Applications",fullTitle:"Cheminformatics and its Applications"},signatures:"Sonia Aroui and Abderraouf Kenani",authors:[{id:"313768",title:"Ph.D.",name:"Sonia",middleName:null,surname:"Aroui",slug:"sonia-aroui",fullName:"Sonia Aroui"},{id:"412248",title:"Dr.",name:"Abderraouf",middleName:null,surname:"Kenani",slug:"abderraouf-kenani",fullName:"Abderraouf Kenani"}]},{id:"63949",title:"A Survey on 3D Ultrasound Reconstruction Techniques",slug:"a-survey-on-3d-ultrasound-reconstruction-techniques",totalDownloads:1993,totalCrossrefCites:8,totalDimensionsCites:9,abstract:"This book chapter aims to discuss the 3D ultrasound reconstruction and visualization. First, the various types of 3D ultrasound system are reviewed, such as mechanical, 2D array, position tracking-based freehand, and untracked-based freehand. Second, the 3D ultrasound reconstruction technique or pipeline used by the current existing system, which includes the data acquisition, data preprocessing, reconstruction method and 3D visualization, is discussed. The reconstruction method and 3D visualization will be emphasized. The reconstruction method includes the pixel-based method, volume-based method, and function-based method, accompanied with their benefits and drawbacks. In the 3D visualization, methods such as multiplanar reformatting, volume rendering, and surface rendering are presented. Lastly, its application in the medical field is reviewed as well.",book:{id:"7723",slug:"artificial-intelligence-applications-in-medicine-and-biology",title:"Artificial Intelligence",fullTitle:"Artificial Intelligence - Applications in Medicine and Biology"},signatures:"Farhan Mohamed and Chan Vei Siang",authors:null},{id:"67673",title:"Bioinformatics Workflows for Genomic Variant Discovery, Interpretation and Prioritization",slug:"bioinformatics-workflows-for-genomic-variant-discovery-interpretation-and-prioritization",totalDownloads:2001,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Next-generation sequencing (NGS) techniques allow high-throughput detection of a vast amount of variations in a cost-efficient manner. However, there still are inconsistencies and debates about how to process and analyse this ‘big data’. To accurately extract clinically relevant information from genomics data, choosing appropriate tools, knowing how to best utilize them and interpreting the results correctly is crucial. This chapter reviews state-of-the-art bioinformatics approaches in clinically relevant genomic variant detection. Best practices of reads-to-variant discovery workflows for germline and somatic short genomic variants are presented along with the most commonly utilized tools for each step. Additionally, methods for detecting structural variations are overviewed. Finally, approaches and current guidelines for clinical interpretation of genomic variants are discussed. As emphasized in this chapter, data processing and variant discovery steps are relatively well-understood. The differences in prioritization algorithms on the other hand can be perplexing, thus creating a bottleneck during interpretation. This review aims to shed light on the pros and cons of these differences to help experts give more informed decisions.",book:{id:"7639",slug:"bioinformatics-tools-for-detection-and-clinical-interpretation-of-genomic-variations",title:"Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations",fullTitle:"Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations"},signatures:"Osman Ugur Sezerman, Ege Ulgen, Nogayhan Seymen and Ilknur Melis Durasi",authors:[{id:"283538",title:"Prof.",name:"Osman Ugur",middleName:null,surname:"Sezerman",slug:"osman-ugur-sezerman",fullName:"Osman Ugur Sezerman"}]},{id:"9090",title:"Skin Roughness Assessment",slug:"skin-roughness-assessment",totalDownloads:6091,totalCrossrefCites:18,totalDimensionsCites:44,abstract:null,book:{id:"3703",slug:"new-developments-in-biomedical-engineering",title:"New Developments in Biomedical Engineering",fullTitle:"New Developments in Biomedical Engineering"},signatures:"Lioudmila Tchvialeva, Haishan Zeng, Igor Markhvida, David I McLean, Harvey Lui and Tim K Lee",authors:null}],onlineFirstChaptersFilter:{topicId:"685",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Parasitic Infectious Diseases",value:5,count:1,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:2,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an a