A summary of the early phases of the glaucoma surgical treatment.
\r\n\tThe purpose of this book is to provide the readers with an understanding of the characteristics of the crisis itself, recognize the wide range and multi-layer of the crisis from a real situation, give ideas on how to minimize the damage, and find ways to increase resilience in the future. To adapt to the rapidly and diversely changing world, the necessary experience and appropriate management for all kinds of crisis issues will be discussed as well. At the same time, it is intended to suggest elements such as verified scientific and empirical knowledge and applicable technologies; more effective risk management operation; modeling of the risks, manuals, management plans, and strategies.
\r\n\t
At the present time it is much easier to recognize and to assess glaucomatous changes at the optic nerve than it used to be. This is possible thanks to modern devices and imaging techniques that allow much faster and better diagnosing. Even today, the single most important thing in this matter is to know the characteristics of the normal -healthy optic disc (Figure 1.). The appearance of the optic disc, as in the other biological variables varies widely among healthy individuals. This fact complicates the recognition of the pathological changes.
Today modern glaucoma diagnostic is unimaginable without technological support, when it comes to discovering as well as for following up glaucoma optic neuropathy.
With standard clinical exam aside, there is a number of imaging devices that we use in everyday practice, and to mention a couple i.e. CVF, HRT, GDX, OCT, PACHIMETRY, FUNDUS PHOTOS, CDI… and we agree that without the help of this wide technological spectrum of supporting diagnostic devices we could not be able to diagnose the disease or to track the glaucoma changes. Just stop for a second and remember how it was in the old days? Let’s take a glance of the old days and how it all started?
There was the time when ophthalmologist did not have those sophisticated imaging devices; they even did not have slit lamps… despite the fact that they were glaucomatologists!
This chapter is dedicated to the pioneers of ophthalmology and glaucomathology; their legacy for future glaucomatologists.
The term optic disc is frequently used to describe the portion of the optic nerve clinically visible on examination. This, however, may be slightly inaccurate as ‘disc’ implies a flat, 2 dimensional structure without depth, when in fact the ‘optic nerve head’ is very much a 3 dimensional structure which should ideally be viewed stereoscopically.
Healthy optic disc
Every disease has its history, as much in diagnosing-discovering it, as in quality and adequate treatment. History of the diseases categorized today under the term “glaucoma” may be divided into three major periods. First period is the earliest and it stretches from approximately 400 BC up until 1600 AD; during the course of this period the term “glaucoma” was used to refer to a general group of blinding ocular diseases without the distinctions that historians now can recognize. During the middle period from the beginning of the 17th century to the middle of the 19th century the cardinal signs of glaucoma, separately and in combination, were described in published texts. Finally, the third period starts with the introduction of the ophthalmoscope (Helmholtz, 1854) to the present.
First period (400 BC to 1600 AD)
Etymology of the term glaucoma is that it derives from the Greek word ‘‘glaukos’’, which appears in the Homer’s notes, where it is mentioned as -a sparkling silver glare, later used for colours such as sky-blue or green. As a diagnosis by physicians, glaucoma is first mentioned in Hippocrates\'
It is interesting that most authors, by the Roman era, used the term
However, Archigenes, who practised at Rome in the time of Trajan (98-117 AD), used the term “ophthalmosglaucos” for a curable blindness that was not caused by cataract.
Archigenes revealed that he used the juice of the deadly nightshade, a mydriatic, in the treatment of this condition, adding, “the instilled juice of nightshade makes black the grey eyes.”
Galen (129-216 AD), (Figure 3.) defined glaucoma as a condition in which changes in fluids of the eye caused the pupil to become grey. He also refers to the mydriatic effect of nightshade.
Aetius, the physician of the emperor Justinian (482-565) AD, and a great Ophthalmologist, identified two forms of glaucoma, one a curable condition of the lens and the other an incurable condition that involved an effusion in which the pupil becomes thickly coagulated and dried.
Hippocrates (c.460 B.C.-c. 370 B.C.), a famous Greek physician, and the father ofMedicine, who first used the term \'glaucosis\' in his work \'Aphorisms\' to describe,conditions correlated with blindness and possibly glaucoma
Anatomy of the Eye, according to Galen as the Arabs transferred to the West
Second period (1600 TO 1854)
This period is marked by the rising awareness among ophthalmologists that technology is a key to a proper diagnostic.
Glaucoma became more distinct when it comes to adult or elderly patients with the emergence of four characteristics: (1) the consistent failure of cataract operations to improve vision, (2) the clinical appearance of eyes in terminal stages of the disease, (3) a specific history indicating self-limited forerunners of the severe disease, and (4) the elevated intraocular pressure.
Important breakthrough in ophthalmology is marked with the anatomic findings of Brisseau (1707) and the introduction of the process of lens extraction by Daviel (1752). This led to a search for the site of glaucoma in other structures of the eye and to concentration on clinical signs that could be helpful in distinguishing between cataract and glaucoma. Since a majority of the eyes in which the diagnosis of glaucoma was made in the 18th century were in an advanced stage of visual loss and iris atrophy after one or several acute attacks or after a prolonged chronic course, the clinical picture was dominated by congestion (varicosities) of the anterior ciliary veins, a dilated, poorly reacting pupil, and a varying degree of nuclear lens opacity. On examination with the light sources of that period, a greenish reflection could often be obtained; since this seemed to point to the real location of the disease, it became a prominent sign listed in the literature of the 181h and early 191h centuries.
The clinical features of advanced glaucoma, occasionally preceded by attacks of blurred vision that recurred with a high degree of uniformity, was first recorded in St. Yves\' “Treatise of the Diseases of the Eyes” (1741) and was described in more detail by Weller (1826).
It is a well known fact that elevation of the intraocular pressure as a distinct sign of ocular disease, recognizable by undue resistance of the eyeball to indentation by the physician\'s finger, was first clearly mentioned in the “Breviary” of the itinerant English oculist Banister (1626). In 1738 an equally clear reference to hardness of the eye appeared in the independent writings of Johann Platner, professor of anatomy, surgery, and therapeutics at the University of Leipzig. As a distinct clinical symptom, hardness of the eyeball was apparently generally known and accepted in the 1820s, as one may judge from the almost simultaneous but independent texts by Demours of France (1818), Guthrie of England (1823), and Weller of Germany (1826).
William Mackenzie[1] had a great influence on European and American ophthalmology through his personal teaching and through his textbook, between 1830. and 1854. He distinguished between acute and chronic glaucoma and gave a detailed description of the course of the latter from a stage 1 characterized just by a greenish hue reflected from the pupil to a stage 6 in which the eyeball, after perforation of a corneal ulcer in absolute glaucoma, has become atrophic. Mackenzie was well aware of the abnormal hardness of the glaucomatous eye from the second stage on; also, he apparently was the first to recommend a form of posterior sclerotomy to relieve the abnormal hardness.
Duke-Elder in his
Third period (1854. to the present day)
With Eduard Jaeger, the grandson and son of distinguished Austrian ophthalmologist, began modern ophthalmology and modern ophthalmic exam. He was the first investigator who described and documented with the picture, ophthalmoscopic appearance of the glaucomatous disc in the literature. It was a picture from the monocular indirect ophthalmoscope, on which was described the glaucomatous disc as a swelling of the papillary tissues with respect to the surrounding retina[3].
Just a few months later, Albrecht von Graefe also described a prominence of the papilla in glaucoma[4]. His description of the optic disc, specially his description of the pulsation of the arteries in the glaucomatous eyes, became reliable and, at time, reliable indicator of elevated intraocular pressure. The ring-shaped zone around the disc was officialy named -
Later, pathological findings confirmed ophthalmoscopic findings of the optic disc depression, what was interpreted as an effect of the elevated intraocular pressure, or-
Early classification of glaucoma was made at von Graefe’s clinic.
First type of glaucoma was acute or inflammatory, which characterized with self-limited prodromal attacks of misty vision (in 70 % of the cases), patient is seeing rainbows around the candle flame; attacks increased in severity, length and frequency until the real disease suddenly erupted in the form of an acute attack of inflammation and severe reduction of vision. Partial vision recovery with temporary remission mostly occurred spontaneously or responding on a treatment with large doses of opiates, antiphlogisthics and paracenthesis. Many penetrating exams were carried out during the remissions. After analysis of all phases of this type of glaucoma, von Graefe made a concept according which an acute glaucoma is:”achoroiditis or an iridochoroiditis, with diffuse impregnation of vitreous and aqueous with exudative material which caused the rise in pressure through an increase in volume.”
Second type was the chronic glaucoma. Prodromal attacks were without any sign of irritation, congestion or swelling; lengthen gradually and fused in a chronic form, characterized with the anterior ciliary veins dilatation, shallow anterior chamber, iris atrophy, glaucomatous cupping, arterial pulsation in the fundus; followed with reduction in vision.
The third type von Graefe simply named amaurosis with excavation of the optic nerve, and for him it was not in a group of glaucomatous diseases[6]. Normal anterior segment, with optic disc excavation, which lead to the vision impairment.
Completing this classification, von Graefe used the designation
In the late period of his research (1861.), von Graefe declared that an exclusion of amaurosis with the optic disc excavation from the group of glaucoma diseases was a mistake[7]. This correction he credited to Doners of Utrecht, his friend, who found a palpable tension among many eyes with so-called amaurosis with optic nerve excavation to be significantly above normal. Doners, after his research, prepositioned a term
It is interesting that von Graefe discovered also an ocular hypertension patients among his amaurosis with optic nerve excavation cases. He accepted Doner’s term glaucoma simplex. His posterity, first of all Schnabel[8], had verb his amaurosis with optic nerve excavation, implying that it was an optic nerve disease unrelated to elevated intraocular pressure.
Theory of inflammation, that von Graefe’s proposed as a cause of intraocular pressure rise and a name of that type of glaucoma held until the clinical discovery of the angle closure mechanism in the 20th century. Some of the alternative terms that were used are: “irritative” (de Wecker[9]), “congestive” (Hansen-Grut), and, much later, “uncompensated” (Elschnig).
The Anglo-Saxon literature preferred terms as acute, subacuteand chronic glaucoma
Finally, von Graefe in his last communication (1869), for the first time introduced a terms
In the late 1850s, German anatomist Heinrich Mueller[10] was the first who granted ophthalmoscopically observed depression of the optic disc. In his theory that was a result of an abnormally increased vitreous pressure acting upon the lamina and forcing it to recede. Mueller and his followers assumed that the receding lamina had taken the entire papilla with it, placing the nerve fibres on a steadily increasing stretch or pressing them against the sharp edge of the excavation. Consequence of that was optic nerve atrophy.
Considering that this concept was not uniform for all glaucomatous eyes (in some cases pathologists confirmed the lamina cribrosa displacement, in others not), the theory was add to the basic pressure hypothesis and was widely accepted but also a new ophthalmoscopic and pathologic facts of glaucoma were revealed.
Austrian ophthalmologist Isidor Schnabel (1842-1908)[8] was the first to describe in detail the nerve fibre breakdown with the formation of cavities as a characteristic of the glaucomatous process in the optic nerve. It was the earliest sign and for a long time the only glaucomatous change. In later stages the atrophy affected all portions of the optic nerve up to the entrance of the central vessels. In his opinion, cavernous atrophy was
Another perspective on the origin and nature of the glaucomatous optic neuropathy was introduced by Priestley Smith[11]. The glaucomatous cup is not a purely mechanical result of exalted pressure, but is in part at least, an atrophic condition which, though primarily due to pressure, includes vascular changes and impaired nutrition in the area of the disc and around its margin which require a considerable time for their full development.
This Priestley Smith\'s original notion that the rise in pressure may cause damage to the tissues of the disc through its influence on blood circulation is valid until the present day.
Previously mentioned essence of glaucoma, recognized in the mid-1850s, attributed to excessive formation of intraocular fluid or hyper secretion and assumed to eider a type of choroiditis (von Graefe) or a secretory neurosis (Donders).
The clear concept of the eye mechanisms that were involved in the intraocular pressure production, in that time, was not plain. German anatomist Schwalbe12 began in 1860s the experimental study of the fluid exchange of the eye, searching the lymphatics in the anterior segment. When the dye is injected into the anterior chamber of the eye, in aqueous solution or suspension, it appears promptly in veins on the surface of the globe! His conclusion was that the anterior chamber is a lymphatic space in open communication with anterior cilliary veins.
Theodor Leber13 also injected dyes into the anterior chamber of the eye of a rabbit, and discriminated certain border structures. This disclosure stimulated many investigators of that time, including Leber, to investigate a cannular system and Schwalbe, to investigate the anterior chamber angle in animals. Thus Leber discovered normal outflow (on a fresh enucleated mammalian eye), he presented it as a filtration through the trabecular meshwork and a flow through ciliary and vortex veins.His conclusion was that the rate of outflow was, in principle, proportional to the perfusion pressure, except during an initial period, when the perfusion fluid took up the space occupied in the living eye by blood. He actually determined filtration coefficients, the forerunners of today\'s coefficients of aqueous outflow.
Since this outflow was from fresh enucleated eyes at the pressures prevailing in the living eye, Leber reasoned that the same process of outflow must also take place in the normal living eye. To maintain a stable in vivo pressure, the steady loss of fluid must be compensated for by steady formation of an equal amount of fluid, which Leber believed could also take place through a process of filtration. Thus, the filtration theory of aqueous formation and elimination was born. In a few human eyes enucleated in far-advanced stages of glaucoma, Leber found very low filtration coefficients which indicated abnormal resistance to aqueous outflow[14]. This finding fitted in well with the first detailed pathologic report on the condition of the chamber angle in far-advanced glaucoma[15]: “The most important finding in genuine glaucoma is the circular adhesion of the iris periphery to the periphery of the cornea or the obliteration of the space of Fontana.”*
Considering that in either case glaucoma could result from an inflammatory or an obstructive process within the angle or from pressure from behind. It was realized almost immediately that the peripheral anterior synechiae could be either the cause or the effect of glaucoma. Pathologic specimens which supported these mechanisms were identified and reported. The theory that glaucoma was principally a disorder of aqueous outflow (referred to generally as the Leber-Knies theory) rapidly gained ground.
The essence of the Leber’s (Leber-Knies) filtration theory has stood the test of time. Leber’s best apprentice, Erich Seidel, in 1920’s, made some necessary additions to this theory, including the effects of the colloidosmotic pressure of the plasma proteins and of active transfer processes in the formation of aqueous[16].
Interesting appendage is that the essence of the Leber’s theory, the idea, admittedly without experimental proof, of a steady directional circulation of fluid through the chambers of the eye had been expressed by earlier observers, specifically William Porterfield, more than 100 years before Leber.
During 1880s and 1890s, it was observed that chronic inflammatory glaucomas composed two thirds of all glaucomas. Angle closure glaucomas were dominant. Priestley Smith measured the horizontal corneal meridian in normal eyes 11.6mm and in glaucomatous eyes 11.2mm[17], what expressed dominance of the angle closure glaucoma in that period. 1888. Priestley Smith also introduced the concept of a predisposition to glaucoma, which consists in progressive narrowing of the circumlental space with age, due to the steady growth of the lens in eyes with small corneas. Anatomicaly, the ciliary processes in states of hyperaemia are crowded forward, pressing the iris against the anterior angle wall. This based on a Smith\'s experiment on the animal that a small excess of pressure in the vitreous chamber (as little as 4 mm Hg) makes the lens and the suspensory ligament advance in such a manner as to close the angle of the anterior chamber.
Next step was the discovery of shallowness of the anterior chamber as an important role in the mechanism of the acute glaucoma (in the eyes with acute inflammatory glaucoma)[18]. The description of the mechanism: if the pupil dilates in an eye with shallow anterior chamber, the iris, particularly with its thicker portion, can occlude the filtration angle and, thereby, raise the intraocular pressure. If contraction of the sphincter frees the filtration space, the event remains a prodromal attack. At a certain level of intraocular pressure the ocular veins are compressed at their place of entry into the sclera; venous stasis develops with increased transudation; that, and not inflammation, is the true nature of glaucoma.[18]
The Revolution on this field came in 1920.when Curran [19](Kansas City) and Seidel [16](Heidelberg), on the basis of astute clinical observations, independently announced the concept of the relative pupillary block.
Curran\'s paper[19]: "normally the aqueous passes through the pupil from the posterior to the anterior chamber, but it is here contended that in glaucoma this passage is impeded on account of the iris hugging the lens over too great a surface extent. Some of the aqueous gets through while some passes back, forcing the lens and the iris still more forward. "
Ophthalmoscopy, the most important single invention in ophthalmology, that had shaped its evolution, was introduced by Hermann von Helmholtz in December of 1850.[20],[21]However, Jan Purkinje (known for the Purkinje images) had described the complete technique and published it in Latin in 1823,[22]but his audience apparently was not yet ready and his publication went unnoticed. A quarter of a century later, however, the situation changed.
The ophthalmoscope was not based on any radically new concepts. Rather, it combined the appropriate application of various known principles with recognition of its potential impact and presentation to an appropriate audience. Under the leadership of men like Bowman in London, Donders in Holland, and von Graefe and von Helmholtz in Germany, ophthalmology emerged as the first organ-based specialty in medicine.
Several workers had tried to visualize the inside of the eye but had fallen short of putting it all together. Kussmaul (known for “Kussmaul\'sairhunger”) described the imaging principles in a thesis in 1845[23]but failed to solve the illumination problem. Cumming[24](1846) in England and Brücke[25](1847) in Germany had shown that a reflection from the fundus could be obtained by bringing the light source in line with the observer, but they failed to solve the imaging problem. Babbage,[26]the English mathematician, reportedly constructed an ophthalmoscope in 1847, but his ophthalmologist friend did not recognize the importance and did not publish it until 1854, when von Helmholtz\' instrument was well known.
In the fall of 1850, von Helmholtz tried to demonstrate the inside of the eye to the students in his physiology class. On December 6, he presented his findings to the Berlin Physical Society[20]; on December 17, he wrote to his father[27]:
Helmholtz\' monograph on ophthalmoscopy was published in 1851 and soon was widely circulated. The next year there were several important improvements contributed by other workers. Rekoss,[28]von Helmholtz\' instrument maker, added two movable disks with lenses for easier focusing. Epkens, working with Donders in Holland,[27] introduced a perforated mirror for increased illumination. Ruete[29] in Germany did the same and also developed the indirect method of ophthalmoscopy. With these basic components in place, future generations provided technical improvements. In 1913, Landolt[30] listed 200 different types of ophthalmoscopes.
If the patient\'s fundus is properly illuminated, the field of view is limited by the most oblique pencil of light that can still pass from the patient\'s pupil to the observer\'s pupil (Figure 4.). In direct ophthalmoscopy the retinal point that corresponds to this beam can be found by constructing an auxiliary ray through the nodal point of the eye.[30] The point farthest from the centerline of view that can still be seen is determined by the angle α, that is, the angle between this oblique pencil and the common optical axis of the eyes.
Field limits in direct ophthalmoscopy. The maximum field of view is determined by the most oblique pencil of rays (shaded) that can still pass from one pupil to the other.
Angle α, and therefore the field of view, is increased when the patient\'s or the observer\'s pupil is dilated or when the eyes are brought more closely together.
The more peripheral pencils of light use ever-smaller parts of each pupil. This means that, even if the patient\'s fundus is uniformly illuminated, the luminosity of the fundus image gradually decreases toward the periphery, so that there is no sharp limitation to the field of vision. In practice, therefore, the effective field of vision is determined by the illuminating system not by the viewing system. Most ophthalmoscopes project a beam of light of about one disc diameter.
Even with appropriate illumination, direct ophthalmoscopy has a small field of view (Figure 5.) shows that of four points in the fundus, points one and four cannot be seen because pencils of light emanating from these points diverge beyond the observer\'s pupil. To bring these pencils to the observer\'s pupil, their direction must be changed (Figure 6). This requires a fairly large lens somewhere between the patient\'s and the observer\'s eye. This principle was introduced by Ruete[29]in 1852 and is called indirect ophthalmoscopy to differentiate it from the first method, in which the light traveled in a straight, direct path from the patient\'s eye to the observer.
Limited field of view in the direct method. Peripheral pencils of light do not reach the observer\'s pupil.
Extended field of view in the indirect method. The ophthalmoscopy lens redirects peripheral pencils of light toward the observer.
The use of the intermediate lens has several important implications that make indirect ophthalmoscopy more complicated than direct ophthalmoscopy.
The primary purpose of the ophthalmoscopy lens is to bend pencils of light toward the observer\'s pupil. Figure 3 also demonstrates one of the most characteristic side effects of this arrangement: Compared with the image in direct ophthalmoscopy, the orientation of the image on the observer\'s retina is inverted. For the novice, this often causes confusion in localization and orientation. Figure 3 further shows that in this arrangement the patient\'s pupil is imaged in the pupillary plane of the observer. In optical terms the pupils are in conjugate planes.
The most important changes are related to the change from candle light to gas light, to external electric light and, finally, to built-in electric light sources.[31]
Although the older generation found it difficult to adapt to the new instrument, the younger generation did so eagerly. One of them was Eduard von Jaeger (1828 to 1884) from Vienna, best known for his print samples that were based on the print catalogue of the Vienna State Printing House. He was the son of a well-known ophthalmologist and an artistically gifted mother. In 1855, at the age of 27, he published his first atlas; he continued to add to his collection of authoritative fundus paintings until his death in 1884.[32]
Although not generally considered as a method of ophthalmoscopy, fundus examination with the slit lamp offers an important addition to the traditional methods of direct and indirect ophthalmoscopy. It offers the advantage of high-power magnification through the microscope and flexible illumination with the slit-lamp beam. With appropriate contact lenses, it can offer higher magnification than direct ophthalmoscopy and a field several times wider than indirect ophthalmoscopy. These methods have become particularly important in combination with laser treatment.
Because the slit-lamp microscope has a fixed focus on a plane approximately 10 cm in front of the objective and because the image of the fundus of an emmetropic eye appears at infinity, the fundus cannot be visualized without the help of additional lenses. There are several options.
A negative lens placed in front of the objective of the microscope can move the microscope focus to infinity. The practical application of this principle was worked out by Hruby[33],[34]of Vienna (1942) with a lens known as the Hruby lens.
The optical principle is best understood if the lens is considered in conjunction with the eye, rather than as a part of the microscope. Parallel rays emerging from an emmetropic eye are made divergent by the Hruby lens and seem to arise from the posterior focal plane of that lens (Figure 7A.) For a -50-D lens, this would be 20 mm behind the lens (the usual Hruby lens is -55 D). The slit-lamp microscope is thus looking at a virtual image of the fundus in a plane somewhere in the anterior segment and must be moved a little closer to the patient than it would be for the regular external examination.
To estimate the field of view in this method, it may be assumed that only rays emerging parallel to the axis will reach the objective of the microscope and the observer\'s eye. When emerging from the eye, these rays must have been aimed at the anterior focal point of the Hruby lens. (Figure 7B), in which these rays are traced back to the retina, shows that the field of view (a) is proportional to the pupillary diameter as seen from the anterior focal point of the lens. This field is of the same order of magnitude as the field in direct ophthalmoscopy; it is largest when the lens is closest to the eye.
Hruby lens. A. The fundus image (F\') is formed in the posterior focal plane of the lens. B. The field of view is proportional to the size of the pupil as seen from the anterior focal point of the lens.
With the lens close to the cornea, the fundus image will be close to the fundus plane and approximately actual size. The magnification to the observer is thus largely determined by the magnification of the microscope. At 16×, the magnification is about equal to that of direct ophthalmoscopy; at higher settings, the magnification is greater. Binocular viewing and slit illumination are advantages over direct ophthalmoscopy, even at similar magnification. Limitation to the posterior pole is a disadvantage.
When the Hruby lens is moved progressively closer to the eye, it will eventually touch the cornea and become a contact lens. If the curvature of the posterior lens surface equals the curvature of the anterior corneal surface, the image formation will not change, but two reflecting surfaces will be eliminated, and image clarity will increase.
The use of a contact lens for fundus examination was perfected by Goldmann[35]of Berne, Switzerland (1938). His contact lens is known for the three mirrors incorporated in it. These mirrors positioned at different angles make it possible to examine the peripheral retina with little manipulation of the patient\'s eye or of the microscope axis (Figure 8).
Three mirror contact lens by Goldmann. Two of the three mirrors are shown. They allow visualization of different parts of the fundus.
The refractive power of the cornea is eliminated in the contact lens. The only effective refractive element left would seem to be the far less powerful crystalline lens. The retina is situated well within the focal length of this lens, and the crystalline lens will therefore form a virtual image of the fundus (F) in a plane (F\') behind the globe. How can the microscope focus on an image that far back? We overlooked one other refracting surface: the plano front surface of the contact lens. F\' is seen through plastic and vitreous. To the observer in air F\' appears at F", through the same effect that makes a swimming pool appear shallower than it is. Because of this, the microscope again must focus on a plane inside the globe. As with the Hruby lens, magnification is largely determined by the microscope.
Thus, contact lens fundus microscopy extends our range of examination methods to details beyond the reach of ordinary direct ophthalmoscopy.
The use of the Hruby lens and Goldmann contact lens is comparable to direct ophthalmoscopy, because no real intermediate image is formed. The equivalent of indirect ophthalmoscopy can be achieved by focusing the microscope on the real image formed by a high-power plus lens.
El Bayadi[36]introduced the use of a +60-D lens for this purpose. The inverted image formed by this lens is situated 16 mm (0.0167 m) in front of it. A practical problem with some older slit lamps is that they cannot be pulled back far enough to observe this image.
Compared with the Hruby (-55 D) lens, the El Bayadi (+60 D) lens offers the same major advantage as does indirect ophthalmoscopy: a larger field of view. With proper placement of the lens, the field is about six disc diameters (40 degrees), compared with the one- or two-disc diameter field of the Hruby lens.
With a 60-D lens the aerial image is as large as the fundus; thus the magnification is approximately equal to the microscope magnification (similar to that with the Hruby lens).
Can the field of view be widened even further? This is possible by using a contact lens of very high plus power with some additional optical tricks.Figure 9 illustrates the RodenstockPanfunduscope, based on a design by Schiegel.[37]
The unit contains a high plus contact lens, which forms an inverted fundus image (F\') located inside a second, spherical glass element.
In this arrangement, as in the previous example of a high myope (Figure 10), the image-forming and field-widening functions of the ophthalmoscopy lens are separated again. The contact lens forms the image; the spherical element serves to flatten the image and to redirect the diverging pencils of rays toward the observer. Because these elements are so close to the eye, the field of view can be very wide. Indeed, without moving the lens, the view reaches 200 degrees, that is, from equator to equator, 4 to 5 times the diameter (16 times the area) of regular indirect ophthalmoscopy or of the El Bayadi lens.
Contact lens arrangement for wide-angle indirect biomicroscopy. A high-power contact lens forms an inverted image (F\') inside a spherical element, which redirects the light toward the observer.
Indirect ophthalmoscopy of a high myope. The myopic eye forms its own aerial image (dotted lines) without the help of the ophthalmoscopy lens. Without the lens, only the central part of this image would be visible (dashed lines, limited by the patient\'s pupil). With lens (solid lines) the image is limited by the lens rim.
The size of the image inside the front lens is 70% of the retinal size; for detailed examination, therefore, 50% more microscope magnification is required than with the other slit-lamp methods. However, the principal use of this lens is not for its magnification but for its overview, an overview previously achievable only in fundus drawings or photocompositions.
Similar contact lens arrangements are used in specially designed fundus cameras that allow fundus photography of areas 100 degrees or more in diameter. With lenses such as these, the spectrum of our examining methods can be extended not only toward higher magnification than with direct ophthalmoscopy but also, at the other end, toward an overview of the fundus considerably beyond that obtainable with regular indirect ophthalmoscopy.
As the technology to calculate, design, and manufacture lenses with aspheric surfaces has improved, it has been possible to make lenses with higher powers and better light gathering abilities. The number and variety of lenses for indirect ophthalmoscopy and of contact lenses for slit-lamp microscopy has grown accordingly.
Fundus cameras have greatly improved the ability to document and follow fundus lesions. Eduard von Jaeger often spent countless hours drawing a single fundus, but today a photographic image is available in a fraction of a second. For reasons mentioned earlier, fundus cameras are built on the principle of indirect ophthalmoscopy. The observer\'s lens and retina are replaced by a camera lens and film. Because all components are enclosed in a rigid housing, more accessories can be built in. This includes a dual illumination system, which includes a constant light source for focusing and a flash for photography, and filters such as for fluorescein angiography. Rather than placing the viewing and illumination beams side by side, the illumination beam generally uses the periphery of the pupil and leaves the center for the observation beam.[38]
An angled glass plate that can be flipped to the right or to the left can be used to slightly deviate the observation beam to the right part or the left part of the patient\'s pupil to produce photo pairs that can be viewed stereoscopically.
Because newer lens designs have allowed the construction of wide-angle cameras, a special challenge has been to construct the optical system in such a way that the curved retina is imaged in a plane that can be captured on a flat film.
The optics of the eye are not perfect. Even if major errors are corrected with spherical and cylindrical lenses, small irregularities across the pupillary opening persist. The technique of adaptive optics was developed for astronomical telescopes to counteract image degradation by atmospheric irregularities. An adaptive optics system uses a grid to divide the pupillary opening into many small areas and determines a separate small correction for each area. The information is fed to a slightly deformable mirror with microactuators. Thus the image quality can be enhanced to the point at which the cone mosaic can be clearly visible. The setup is too laborious for use in routine photography. Because the corrective system has to be fixed in relation to the pupil, it cannot be implemented in glasses or contact lenses. However, the technique, also known as wavefront analysis, has found a place in the refractive sculpting of the cornea.[39]
Another important part of ophthalmic exam. First explored in by Trantas (1907.); then explored by Salzmann (1915-16.); Koeppe (1919-20.); and Troncoso (1925-30). Finally Otto Barkan (1887.-1958.) made gonioscopy a routine diagnostic method in the ophthalmologist\'s office, thereby bringing about the separation of the glaucomas due to the angle-closure mechanism from the open-angle glaucomas[40]that the elevation of the intraocular pressure depends of abnormal resistance to aqueous outflow caused by anatomic or functional changes within the outflow channels.
Not until the 1890s did open-angle glaucoma become well proved and accepted in theories.
Thanks to gonioscopy, started recognition of a type or types of glaucoma without obstruction of the angle by the iris.
In the first edition of the Graefe-SaemischHandbook of Ophthalmology (1877), Saemisch lists the following ocular diseases as frequently giving rise to secondary glaucoma: cicatricial ecstasies of the cornea, circular or total adhesions of the iris to the lens, iritis serosa, traumatic cataract, dislocations of the lens, intraocular tumours, hemorrhagic retinal processes (referring mainly, if not exclusively, to occlusions of the central retinal vein), and sclerectasia pastries (which probably referred to glaucoma in eyes with malignant myopia). Congenital hydrophthalmos was at the time also classified with the secondary glaucomas.
William Bowman introduced digital estimation of the ocular tension at the annual meeting of the British Medical Association in 1862. Estimation of the ocular tension by palpation became one of the ophthalmologist\'s special skills, and some ophthalmologists developed so much confidence in it that they viewed instrumental tonometry with suspicion.
The early beginning of instrumental tonometry, apparently made by von Graefe, who mentions preliminary trials of mechanical tonometers in a letter to Donders dated December 24, 1862. Unfortunately, none of these instruments, however, reached the drawing board stage.
The real beginning and the first tonometers actually produced and tested on human eyes were developed in Donders\' clinic in Utrecht between 1863 and 1868. They were instruments for use on the sclera. The scleral curvature at the site of tonometer application was determined first; it then served as a reference plane for the measurement of the depth of the indentation.
Impression tonometry had its drawbacks. The principal flaw was that the indentation, by displacing a significant amount of intraocular fluid, changes the pressure which is intended to measure; this was clearly expressed for the first time by AdoIf Weber in 1867. Weber was official inventor of the first applanation tonometer, which was intended to give a tension reading with only minimal fluid displacement. Despite its theoretic superiority, this instrument did not gain wide acceptance, because recognition of the point of perfect applanation without indentation proved to be difficult. Lately, the principles of applanation tonometry were explored by Maklakoff in 1885. andImbert and Fick, father and son, a few years later. It resulted a several new applanationtonometers, but only one of them, Maklakoff\'s model of 1892, has stood the test of time and has remained in use, mainly by groups in the USSR.
The beginning of the 20th century, digital tonometry was still a method of subjective assessment of the ocular pressure [41]. At that time neither applanation tonometer did not find widespread use in practice.Finally, in 1905.Schiøtz presented his impression tonometer and it did not take long for the instrument to acquire the epithet “the first clinically useful tonometer.” First major comprehensive reports of the clinical value of Schiotz tonometer began to appear in 1910. The essence of today\'s knowledge of the intraocular pressure in the normal and in the diseased human eye was acquired between 1910. and 1920. through the use of Schiøtztonometers.
Disadvantages of digital and instrumental tonometry, realized by the pioneers of these methods, addressed to the properties of the eyeball wall, especially elasticity, affected estimation of the intraocular pressure. Early experimental attempts in that time, to measure these properties and to eliminate them revealed new variables. Schiøtz wrote in 1920: “I can not imagine any method available for living eyes by which errors due to variations of the envelope could be eliminated.” [42]Thirty years later, the electronic form of his instrument came closest to yielding reasonable estimates of “ocular rigidity,” the term introduced by Friedenwald for the resistance that the in vivo eyeball offers to a change in intraocular volume [43].
Correcting readings taken with the Schiøtz tonometer for deviation of the particular eye from average ocular rigidity, the coefficient of ocular rigidity lost some of its clinical importance through the tremendous progress in applanation tonometry that occurred in the early 1950s through the work of Goldmann, Perkins, and Maurice.
The technology to estimate intraocular pressure (IOP) has evolved tremendously since Sir William Bowman emphasized the importance of ocular tension measurements in 1826. In an address delivered at the annual meeting of the British Medical Association, Sir William underscored the critical role that digital estimation of ocular tension played in his practice. In his address, Sir William stated that “it is now my constant practice, where defective vision is complained of, to ascertain almost at the first instant the state of tension in the eye...It is easy enough to estimate the tension of the eye, though there is a right and a wrong way of doing even so simple a thing... With medical men, the touch is already an educated sense, and a very little practice should suffice to apply it successfully to the eye.”[44]
Soon afterwards, digital tonometry became an essential clinical skill necessary to master by all ophthalmologists. When mechanical tonometry was first introduced in the late 1800s, many ophthalmologists felt so confident with their ability to estimate IOP by palpation that they viewed the new technology as inferior. Isador Schnabel, in an address to the Vienna Ophthalmological Society in 1908, was noted to state that although he did not object in principle to mechanical tonometry, he expected “…very little from this test since digital tonometry by an expert is a much more accurate test”.[45]
Although Grafe is credited with the first attempts to create instruments that mechanically measured IOP in the early 1860s, his proposed instruments were neither designed nor built. Rather, it was Donders who designed the first instrument capable of estimating IOP – albeit not accurately – with mechanical tonometry in the mid 1860s. The principle behind Donders’s instrument was to displace intraocular fluid by contact with the sclera. The ophthalmologist first measured the curvature of the sclera at the site of contact, and then used this measurement as a reference plane to measure the depth of indentation. Smith and Lazerat refined this technology in the 1880s, and the discovery of cocaine by Carl Koller in 1884 led the way to corneal impression tonometry soon thereafter. With the aid of a powerful corneal anesthetic agent, corneal tonometry became the definitive choice of IOP measurements because it offered a well – defined and uniform site of impression when compared with the sclera.
Impression tonometry’s major shortcoming was that it displaced so much fluid upon contact with the eye that the measured readings were highly variable and mostly inaccurate. What was needed was a way to displace a minimal amount of fluid to record IOP. This breakthrough came when Adolf Weber designed the first applanation tonometer in 1867, which gave a highly defined applanation point without indentation. After two decades of skepticism, the value of applanation tonometry was re-discovered when Alexei Maklakoff and others introduced new versions of applanationtonometers. In early 20th century, there were about 15 models of tonometers in use. In fact, Maklakoff’s 1892 model is the basis of applanation tonometry today. However, digital tonometry still remained the gold standard among most ophthalmologists in the early 1900s.
The first clinically useful mechanical tonometer was designed and introduced by HjalmarSchiotz in the early 1900s. The instrument was simple, easy to use, and highly precise. It was quickly accepted and became the new gold standard beginning the 1910s. Innovations in calibration led to its increased use, and a tremendous amount of knowledge about the normal and glaucomatous eye was quickly acquired. An adjustment for ocular rigidity was introduced by Goldmann in the 1950s, which led to the development of Goldmannapplanationtonometers. The Goldmanntonometers displace such little fluid that variations in ocular rigidity are mostly negligible. The electronic and non – contact tonometers used today rely heavily on the principles and instrumentation first introduced by Maklakoff, Schiotz and Goldmann.
Today, for the most part, digital tonometry has been replaced by sophisticated technologies to estimate IOP. Today’s instruments are incredibly accurate and easy to use. Yet, there is sometimes no good substitute for digital tonometry. For example, some ophthalmologists may prefer digital tonometry when estimating IOP in patients with keratoprostheses. In these situations, fingers that have mastered Sir William’s art are highly desirable. In fact, it is said that the famous Dr. Claus Dohlman, Harvard professor of Ophthalmology at the Massachusetts Eye and Ear Infirmary, remains as accurate in measuring IOP with his fingers as any ophthalmologist using the high-tech tonometers of today!
Modern diagnostic of glaucoma is unimaginable without perimetry. The merit for measurements of peripheral vision for the diagnosis and follow-up of ocular disease, as many other things in ophthalmology, is attributed to Albert von Graefe. With a primitive campimeter—a sheet of paper with radial rows of dots which served as stimuli—he was probably the first (1856) to plot paracentral field defects in chronic glaucoma and to use them in the evaluation of surgical results. Similar to von Graefe’s device, Haffmanns from Donder’s clinic discovered the greater frequency in glaucoma simplex of serious involvement of the upper half of the field, which gave rise to an easily detectable nasal step [46].
In 1857.Förster introduced the first perimeter, which placed accent on large targets, such as the 10/330, which permitted only very gross measurements. The observations of that time did suggest partial reversibility of field defects if the pressure was lowered substantially by an iridectomy or sclerotomy. 1889. was a very important year for a development of techniques most appropriate for glaucoma. Bjerrum presented 2-meter screen, the 2-meter test distance, and the 2- to 5-ram white test objects. He discovered the relative or absolute scotomas, circling the point of fixation and including the blind spot, which became the hallmark of chronic glaucoma. Conceptually, it means the beginning of the nerve fibre bundle theory of the glaucomatous optic nerve disease.
Further major step was the occurrence of small scotomas in the zone from 12° to 20° from the point of fixation, in early glaucomas, presented by Peter [47]. These scotomas, in the beginning were not connected with the blind spot, but they reached it later via expansion.
The construction of smaller isopters, another early glaucoma characteristic, presented in 1920s, was clearly established with Bjerrum’s technique. Bjerrum’s technique also confirmed the regression of early glaucomatous defects following normalization of pressure documented by instrumental tonometry. The close relationship between pressure and field of vision was demonstrated further by Samojloff\'s observations [48]of temporary enlargement of the blind spot concurrent with osmotically induced pressure elevations. By stereocampimetry with minute targets, Evans was able to detect a gross form of parallelism between diurnal pressure fluctuations and the size of paracentralscotomas[49].
Also in 1920s was noticed that among patients with glaucomatous defects close to the point of fixation (late stages of glaucoma optic neuropathy), a surgical procedure, particularly iridectomy, could have an untoward effect and lead to further rapid shrinkage of the visual field. The incrimination of the iridectomy referred originally to the period when the alternative, the sclerotomy, had proved relatively free of unfavourable effects on the visual field. Subsequent experience with filtering operations temporarily led to the distinction between two classes of glaucoma operations: 1) the less risky: cyclodialysis and sclerotomy and 2) the riskier: iridectomy, sclerectomy, and trephination.
The early treatment of glaucoma has its course of history (Table 1. and Table 2.).
Main discoveries where:
A curative action of the iridectomy in certain glaucomas7,[44],
The development of the filtering operations [50], and
The discovery of the first three ocular hypotensive drugs: eserine, pilocarpine, and epinephrine [51].
\n\t\t\t\t | \n\t\t|
1830 | \n\t\t\tMackenzie1 recommends scleral punctures to release vitreous and to relieve the pressure on the retina. | \n\t\t
1857 | \n\t\t\tvon Graefe\'s iridectomy6 almost overnight gains the position of | \n\t\t
1882 | \n\t\t\tde Wecker, in a paper on the “filtering cicatrix”9, expresses the concept that in the presence of elevated intraocular pressure, a properly executed corneoscleral incision can heal in a manner allowing intraocular fluid to “filter,” ie, be driven by a pressure gradient through the loose scar tissue into subconjunctival spaces. | \n\t\t
1891 | \n\t\t\tBader [52] finds the occurrence of an iris prolapse during or shortly after an iridectomy a favourable sign, auguring success of the operation. | \n\t\t
1903 | \n\t\t\tHerbert reports on a series of subconjunctival fistula operations in which he purposely leaves the iris in the operative incision. The report includes the first detailed description of the transformation of the epibulbar tissues that become exposed to the steady flow of aqueous [53]. | \n\t\t
1905 | \n\t\t\tHeine first reports on the operation of cyclodialysis[54], based on Fuchs\' [55] and Axenfeld\'s[56] observation of the association between postoperative choroidal detachment, a tear or tears in the insertion of the ciliary muscle at the scleral spur, and hypotony. | \n\t\t
1906 | \n\t\t\tLagrange first reports on his iridosclerectomy[50]. | \n\t\t
1909 | \n\t\t\tFreeland and Elliot independently substitute the trephine for Lagrange\'s scissors. | \n\t\t
1913 | \n\t\t\tAt the first international review of glaucoma surgery the pronouncement is made that chronic glaucoma can only be arrested by establishing a filtering cicatrix in connection with the anterior chamber. The iridectomy loses its status of | \n\t\t
1915 | \n\t\t\tThe abexterno incision is introduced by Foroni[58]. | \n\t\t
1920 | \n\t\t\tSeidel demonstrates the transconjunctival passage of aqueous after trephining procedures[16]. | \n\t\t
A summary of the early phases of the glaucoma surgical treatment.
\n\t\t\t\t | \n\t\t|
1863 | \n\t\t\tArgyll Robertson and von Graefe study the effect of extracts of the calabar bean on pupil and accommodation. Von Graefe finds the miotic effect useful in that it facilitates the iridectomy. | \n\t\t
1876 | \n\t\t\tLaqueur[59] reports “a definite drop of the elevated tension after repeated installations of physostigmine in five cases of glaucoma simplex and in one case of secondary glaucoma.” | \n\t\t
1876 | \n\t\t\tWeber studies the mechanisms underlying the hypotensive effect of physostigmine in rabbits and in man and advises caution in its use because of the marked swelling and engorgement of the ciliary processes caused by the drug [60]. | \n\t\t
1877 | \n\t\t\tLaqueur gives the first clear-cut account of the successful termination by use of physostigmine of attacks of acute glaucoma and of the prevention of recurrences [61]. | \n\t\t
1877 | \n\t\t\tWeber introduces pilocarpine with the hope that it will replace the iridectomy in some of the chronic and simple glaucomas and that it will serve to make up for the insufficient effect of the latter in many other cases [62]. | \n\t\t
1898 | \n\t\t\tThe hypotensive effect of topically administered adrenal extracts is discovered. | \n\t\t
1902 | \n\t\t\tDarier reports significant lowering of pressure in some glaucomas, induced by adrenaline alone or in combination with physostigmine[51]. | \n\t\t
1909 | \n\t\t\tExtensive clinical use of adrenaline has confirmed the beneficial results, but it has also brought to light the clear-cut untoward effects, ie, the drug may cause further elevation of pressure and even precipitate acute attacks in certain eyes. | \n\t\t
1923 | \n\t\t\tHamburger reintroduces adrenaline; new, more potent, more stable preparations for topical use are becoming available. Untoward effects in certain eyes are rediscovered [63]. | \n\t\t
1932 | \n\t\t\tGonioscopy furnishes the answer to the unfavorable response of certain eyes to topical adrenaline. | \n\t\t
A summary of the early phases of the glaucoma medical treatment.
The co-variability of paleomagnetic and paleoclimate time series has been found in many sedimentary records, e.g. [1] and references therein. Most of the reversals of geomagnetic field polarity and magnetic poles’ excursions seem to appear in periods of cold climate [1, 2]. Other authors, however, announced that climatic cooling fairly well corresponds to episodes with a stronger geomagnetic field [3, 4, 5]. This controversy, together with objective difficulties for disentangling paleomagnetic from paleoclimate data – due to the high variability and climate dependence of marine sedimentation rates – determines the skepticism of the greater part of the scientific community regarding possible links between geomagnetic filed and climate.
On the other hand, time series based on contemporary instrumental measurements do not contain the ambiguity of paleo-data records. Based on the magnetic and climate measurements collected from the beginning of 1900 up to 2010, this chapter provides not only more evidence for existing coupling between geomagnetic field and climate system, but also offers a physically rational explanation and results supporting its validity.
The Earth’s magnetic field interacts with all planetary shells – the core, mantle, and crust of the solid Earth, as well as with the atmosphere, hydrosphere, and biosphere. It comprises information about both the state of near-earth space and the internal structure of our planet. The Earth’s magnetic field is continuously changing in space and time. The sources of its variations are located inside and outside of the planet. The amplitude and periodicity of geomagnetic variations are very different, which affects the methods used for data acquisition.
The longest periods of reoccurrence have geomagnetic
The palaeomagnetic records reveals also the existence of shorter periods (with a duration of several thousand years) when the field has departed from its near-axial configuration. Such short-term events are called geomagnetic
In the first approximation, the magnetic field is interpolated as the field of a magnetic dipole. However, the empirical models (incorporating all available measurements of field intensity), as well as satellite measurements, reveal the existence of a non-dipolar component in the real geomagnetic field. The irregularities in the spatial distribution of geomagnetic field intensity are well visible in Figure 1, based on the 13th generation of the International Geomagnetic References Field model (IGRF) [8]. The two-wave distribution of field intensity in the Northern Hemisphere and a single-wave in the Southern Hemisphere are well visible in Figure 1.
Spatial structure of the modulus of the total vector of the geomagnetic field intensity, calculated for 2021 by the IGRF-13 model. (
Moreover, the temporal evolution of geomagnetic field also differs in different regions over the world. The greatest amplitude of changes is observed in the Western Hemisphere, in the regions of the Canadian (Figure 2a) and South Atlantic (Figure 2c) world anomalies. In the Eastern Hemisphere amplitudes of these changes are smaller (Figure 2b and d). The spatial structure of these irregularities is well visible in the maps of geomagnetic secular variations (Figure 3), which are calculated by the formula:
Geomagnetic field changes in the regions of world geomagnetic anomalies: (a) Canadian, (b) Siberian, (c) South Atlantic and (d) Geomagnetic pole in the southern hemisphere.
Secular variations of the first two decades of twenty-first century, based on the IGRF-13 model. (
Figure 3 illustrates fairly well that focuses of the strongest secular variations evolve with time, in their strength and position over the globe. All the features of the spatio-temporal structure of the geomagnetic field, the problems of its observations and modeling, are described in great details in [9].
Short-term changes in geomagnetic field (from seconds to days) are caused by the external sources – i.e. the current systems in the magnetosphere and ionosphere. In the absence of solar-terrestrial disturbances, the Earth’s magnetic field shows regular daily variations with small amplitude (∼tens of nT), which are primarily composed of 24, 12, 8, and 6-hour spectral components [10, 11, 12]. These variations are known as solar quiet (Sq) variations. Today it is well understood that Sq variations are induced by the electric currents existing in the ionospheric dynamo region (between 90 and 150 km), where the neutral wind drives an electromotive force – through the ionospheric wind dynamo mechanism [13, 14]. The Sq variations are sensitive to the sunspot numbers [10]. For example, the midlatitude Sq currents’ intensity is approximately twice higher in solar maximum than in solar minimum conditions [15, 16].
In addition, the geomagnetic perturbations at the planetary surface also have
The maximum amplitude of quiet Sq and lunar variations has a maximum during the daytime hours, and when the moon is in opposition. These are smooth periodic variations with intensities reaching 200nT, increasing from the equator to the poles [20].
The quiet conditions, however, are frequently disturbed by active processes on the Sun (e.g. solar flares, coronal mass ejection, coronal holes, etc.). The ejected solar mass and magnetic fields propagate in the interplanetary magnetic field (IMF) as a shock wave, which distorts significantly geomagnetic field when it splashes on the Earth. Only ∼1% of energy carried by the solar wind is transferred to the Earth’s magnetic field because the reconnection between interplanetary and geomagnetic fields depends on their directions. It is well established that the southward direction of the interplanetary magnetic field favors its reconnection with the Earth’s magnetic field. The energy transferred to the magnetosphere in such periods abrupt dramatically by one-two orders of magnitude, reaching power of ≥1011 W [21]. These periods are known as
The dominant interplanetary phenomena causing
Magnetic clouds are large-scale interplanetary formations, caused by coronal mass ejection on the Sun, in which the magnetic field strength, propagating speed, and plasma concentration are higher than in the surrounding flows [23]. The vertical Bz component of IMF slowly changes from negative to positive sign in SN clouds, and vice versa in NS clouds. The interaction of the Earth’s magnetosphere with magnetic clouds, as a rule, is accompanied by intense geomagnetic disturbances [24, 25]. According to some estimates, the geoeffectiveness of magnetic clouds to disturb Earth’s magnetic field is 77% [25, 26].
During solar minimum, high-speed streams from coronal holes dominate the interplanetary medium activity. The high-density, low-speed streams (associated with the heliospheric current sheet plasma) impinging upon the Earth’s magnetosphere cause positive Dst values in the initial phase of the storm. In the absence of shocks, sudden impulses are infrequent in periods of low solar activity. The interaction between fast stream (emanated from coronal holes) and the slow heliospheric current sheet plasma leads to the formation of a compression region with a high magnetic gradient, called
For certain classes of magnetic storms, the interaction of CIR with the Earth’s magnetosphere is more efficient than CME [27]. On the other hand, comparisons of the geoeffectiveness of various interplanetary structures, such as shock waves, magnetic clouds, IMF sectors boundaries, and CIR, showed that 33% of CIR are accompanied by moderate or intense storms. This means that every third phenomenon of the observed CIR at the Earth is geoeffective [28].
It is statistically confirmed that geoeffective disturbances can be caused by a whole spectrum of various phenomena on the Sun:
The influence of geomagnetic storms on the lower atmospheric variables is studied by many authors. The storm imprint on the near-surface pressure and temperature has been reported by [33, 34], on circulation by [35, 36, 37, 38, 39, 40], on total ozone density by [41], etc. The latter authors have compared geomagnetic storm manifestation in upper, middle, and lower atmosphere, emphasizing on differences in the atmospheric response to geomagnetic storms. Their main conclusions are summarized as follow: (i) unlike the prevailing latitudinal dependence of storm impact on the upper-middle atmosphere, the tropospheric effects manifest itself with a well pronounced
All these effects are due to the short-term geomagnetic disturbances, initiated by the external influence – i.e. solar variability and inhomogeneity of interplanetary medium. Although important, these fluctuations of Earth’s magnetic field are short-lasting and their impact on the climate system is negligible. Oppositely, this publication is focused on the long-term variations of geomagnetic field on interdecadal and multidecadal time scales (initiated at the core-mantle boundary) and their relation to climate variability with its regional specifics.
Important structures in Earth’s magnetosphere are its radiation belts, which consist of relativistic electron and proton populations, trapped in the Earth’s magnetic field. The Earth has two such belts and some others may be temporarily created. The
An electrons population is found also in the outer edge of the
The
Particles trapped within the geomagnetic field are urged by the Lorentz force (1) to move along the magnetic field lines on spiral trajectories (the result of a combined
where: B(r,t) is external magnetic field – function of the spatial dimensions and time, r and v are respectively particle’s radius vector and velocity; “m” is particle’s mass and “q” – its charge.
Besides the helical movement of particles along geomagnetic field lines, they also perform the additional movement in a direction perpendicular to the magnetic field lines – known as
where B is the magnetic vector, ρ – the radius of the geomagnetic lines curvature,
Formula (2) shows also that particles’ drift across the magnetic field lines depends on their charge q, and consequently leads to a charge separation, which in turn generates electric field E along the drift direction. The combined effect of E and B fields induces an E×B/B2 drift of particles, which displaces positive ions and negative electrons in the same direction – perpendicular simultaneously to B and to E. These charged particles are then “lost” in the ambient atmosphere, where they release their energy, producing showers of secondary particles.
In a dipolar geomagnetic field (with its cross-latitudinal magnetic gradient) the protons are drifting westward, while electrons – eastward. The real geomagnetic field has, however, a non-dipole component creating additionally a cross-longitudinal gradient. In this case, the protons (entering the denser atmosphere from the west) are shifted sought-westward in regions with a positive cross-longitudinal gradient and sought-eastward – in regions with a negative gradient (refer to Eq. (1)). Consequently, the overall westward drift (forced by the magnetic curvature and cross-latitudinal gradient) is reduced by the eastward component – exerted in regions with a negative azimuthal magnetic gradient. Furthermore, the electric field (induced by the charge separation of impending particles) is significantly reduced in these regions. Finally, the number of particles expelled outside the magnetic trap (due to the (E × B)/B2 electric drift) is much less. More precisely, only a few of them have a “chance” to be lost in the atmosphere in said regions.
Oppositely, in regions with positive azimuthal geomagnetic gradients, the southward drift component changes slightly in the direction, but not the amplitude of the westward drift, impelled by the magnetic curvature and latitudinal gradient. Consequently, in these regions, the induced electric field – resulted from the charge separation of arriving particles – is much stronger. It will intensively expel the charged particles outside the magnetic trap through the imposed (E × B)/B2 drift. Furthermore, these particles interact with the atmospheric molecules creating secondary electrons, ions, and nuclear products, giving rise to the ionization of the lower atmosphere.
The confinement of any particle in the gradient magnetic field B depends on the ratio between the maximum field strength Bmax in the polar regions (where the backward reflection of trapped particles occurs) and the equatorial magnetic field strength B0, i.e.
where the angle
Orientation of the particle’s velocity vector, with respect to the equatorial magnetic field B0, and changing particles pitch angle α (from α0 at the equator, to 90 degrees at magnetic mirror point).
Any particle is assumed trapped by the magnetic field, when the angle
The geomagnetic field near the poles is stronger in the Southern Hemisphere, compared to those in the Northern Hemisphere. Consequently, in the case of isotropic particles’ flux arriving at magnetopause – almost every third particle will be confined in the Southern Hemisphere, while in the Northern Hemisphere less than ¼ of all arriving particles are trapped, because of its larger loss cone [51]. This means that some of particles confined in the Southern Hemisphere could not be held by the weaker geomagnetic field in the Northern Hemisphere. The expected result is – more particles precipitating in the Northern Hemisphere.
Energetic particles penetrating deeper in the atmosphere create showers of secondary particles, produced from their interaction with atmospheric molecules – the deeper the penetration is, the wider the showers are. In the lower stratosphere, the number of secondary products dramatically increases, becoming maximal at a certain level. This level is known as a Regener-Pfotzer maximum. Beneath it, the concentration of secondary ions and electrons decreases again.
The longitudinal geomagnetic gradient and hemispherical asymmetry of geomagnetic field determine the uneven distribution of geomagnetically trapped particles’ precipitation over the globe (refer to Subsections 3.2 and 3.3). Existence of such an effect is illustrated in [52].
For almost a century –since the creation of the theory about ozone production in the upper atmosphere by Sydney Chapman [53] – the single source of stratospheric ozone is believed to be the photo-dissociation of molecular oxygen by solar ultraviolet radiation. Recently it has been shown that in the dry lowermost stratosphere the lower-energy electrons in the Regener-Pfotzer maximum initiate ion-molecular reactions producing ozone [54].
The mean energy of electrons in the Regener-Pfotzer max (∼35 eV [55]) is not sufficient to break the molecular bounds of the major atmospheric constituents. It is, however enough to ionize the molecular oxygen (Reaction (5)). The oxygen cation interacts furthermore with neutral oxygen molecule, producing a tetra-oxygen ion
Being very unstable, this oxygen complex rapidly dissociates into two different channels [57]. The first channel (7) produces
As a result, the dissociation of one
At middle and high latitudes, the Regener-Pfotzer maximum is placed well above the tropopause [60], which provides the necessary conditions for activation of the autocatalytic cycle of ozone production – i.e. a dry atmosphere and plenty of low energy electrons. As discussed in Sections 3.2 and 3.3, and shown in [52], the ionization in the Regener-Pfotzer maximum is unevenly distributed over the globe. Remind that an increased particles’ flux is expected in regions of geomagnetic field strengthening. Consequently, if the autocatalytic production of ozone is significant, the longitudinal variations of the Regener-Pfotzer maximum ionization should be projected on the ozone profile.
Figure 5 presents a comparison between ozone profiles in regions with increasing and decreasing geomagnetic field, during solar minimum in 2009. Note that the O3 values beneath the peak ozone density are higher in regions with increasing geomagnetic field (i.e. the longitudinal sector 90–50°W in the Western Hemisphere and 120–140°E – in the Eastern one), relative to corresponding O3 values in regions with a geomagnetic field weakening in the sectors: 140–110°W and 30–50°E.
Difference between ozone profiles in regions with positive (red curves) and negative (black curves) cross-longitudinal magnetic gradients; (a) for the Eastern hemisphere, and (b) for the Western one.
The longitudinal variations in atmospheric ozone have been noticed long ago [61, 62]. The authors have suggested that this variability could be related to the planetary wave structure. However, the maximal amplitude of the stationary planetary waves is found at ∼300 hPa [61], while the highest amplitude of O3 longitudinal variations in ERA Interim reanalysis is placed near 150–70 hPa [51]. These and some other problems, e.g. [63, 64] suggest that other factor(s) (e.g. energetic particles) may have an important influence on the spatial and interannual variability of the extra-tropical near tropopause O3.
In order to assess quantitatively the coupling between energetic particles precipitating in Earth’s atmosphere and lower stratospheric ozone, as well as its spatial distribution, we have performed a cross-correlation analysis in a grid with 10° increments in latitude and longitude. Ground-based measurement of galactic cosmic rays (GCR) by neutron monitors, has been used as an indication of energetic particles flux. The Moscow record of GCR has been expanded backward in time by the paleore constructed GCR intensity [65]. The 11-year periodicity of GCR has been removed by moving averaging procedure with 22-year running window. The winter values of ozone at 70 hPa have been taken from ERA twentieth century reanalysis, covering the period 1900–2010. Data have been preliminarily smoothed by 11-year running window.
The map of ozone-GCR correlation is presented in Figure 6 (colored shading). It is important to note that the map has been created from correlation coefficients, being preliminary weighted by the autocorrelation function of GCR with time lag corresponding to the delay of O3 response to the GCR forcing. This procedure, which reduces correlation coefficients with longer time lags, allows a comparison of correlations with different time lags. The introduction of weighs for the lagged correlation coefficients is justified by the assumption that the effect of the applied forcing in a given moment of time decreases with moving away from this moment [66].
Lag-corrected correlation map of GCR and O3 at 70 hPa (shading), compared with modeled effective vertical cut-of rigidity of geomagnetic field (courtesy to Boschini MJ, Della Torre S, Gervasi M., Grandi D, Rancoita PG: Http://
Figure 6 shows that the ozone responds differently to particles’ impact at different regions over the world – not only by amplitude but even by sign. Thus, at high latitudes and in the Indo-Pacific region, ozone varies synchronously with GCR. On the other hand, at the Northern Hemisphere extratropics and near the southernmost edge of Latin America, both variables covariate in antiphase – meaning that in these regions ozone increases with time.
Such heterogeneity in ozone response to particles’ forcing could be attributed to the different origins of impacting particles. For example, the polar regions are vulnerable to the particles from interplanetary space, propagating along the open geomagnetic field lines. The long-term variations of these particles are modulated mainly by the interplanetary magnetic field in the heliosphere. The latitudes shielded by the closed geomagnetic field lines (i.e. the tropics and mid-latitudes) are accessible to very highly energetic particles (which are very few), and to the radiation trapped in the Van Allen radiation belts. The latter are subject to geomagnetic lensing (in the lowest part of their helical trajectories along the magnetic field lines) and asymmetrical precipitation in both hemispheres, due to the asymmetry of geomagnetic field (refer to Sections 3.2 and 3.3).
Figure 6 shows in addition the effective vertical cut-off rigidity of geomagnetic field (contours), with the values greater than 12 GV being colored in red. Note that the strongest GCR-O3 correlation over the equatorial Indo-Pacific region fairly well coincides with the higher geomagnetic cut-off rigidity. Having in mind the centennial negative trend in GCR, the positive correlation coefficients indicate ozone depletion during the examined period (1900–2010). Consequently, the reduced ozone density could be attributed to the weaker particles’ fluxes accessing the said region.
On the other side, the negative GCR-ozone correlation in extratropics suggests enhancement of ozone density near 70 hPa. This result indicates that particles confined in the outer radiation belt are involved in ozone production in the lower stratosphere. Powered by the solar wind, the population of this radiation belt is highly variable [45], reflecting the changes in solar activity. The examined period is characterized by enhanced solar activity, which appears to be projected on the extratropical latitudes as enhanced ozone density at 70 hPa – due to the enhanced particles’ population in the outer radiation belt.
The positive GCR-O3 correlation at polar latitudes suggests a centennial ozone depletion, which corresponds to the decreased flux of GCR, modulated itself by the stronger interplanetary magnetic field in the heliosphere during the twentieth century [51].
The centennial changes in ozone mixing ratio at 70 hPa, between the first decades of twenty-first and twentieth centuries, is presented in Figure 7. Note that ozone changes deduced from the correlation map in Figure 6 fairly well corresponds to the observed changes of ozone at 70 hPa.
Spatial distribution of centennial ozone changes between the first decades of twenty-first and twentieth centuries.
The sensitivity of atmospheric temperature profiles and climate to the ozone density (particularly near the tropopause) has been noticed long ago [67, 68, 69, 70, 71], etc. The detected synchronization between the spatial and temporal variability of particles’ flux reaching the ground, and the lower stratospheric ozone, is a hint that ozone could serve as a mediator of the geomagnetic field-energetic particles’ influence on climatic variables (i.e. temperature, pressure, etc.) [72]. The following section throws some more light on this problem.
The potential synchronization between ozone at 70 hPa and near-surface temperature variability, within the period 1900–2010, is examined by the use of lagged cross-correlation analysis. The leading role of winter ozone in the ozone-temperature correlation, have been analyzed in a spatial grid with 10° steps in latitude and longitude. The time series of both variables are taken from the monthly values provided by the ERA twentieth century reanalysis. The correlation map presented in Figure 8 is created from the preliminary weighted correlation coefficients by the autocorrelation function of ozone, with lag corresponding to the time delay of temperature response – to account for the reduced weigh of covariances being away from the moment of applied forcing.
(top) correlation map of winter ozone at 70 hPa and air surface temperature, calculated over the period 1900–2010; (bottom) time lag in years of temperature response following ozone changes.
The most impressive of the results shown in Figure 8 is the asymmetry of the temperature response to ozone variations. The positive O3 –T2m correlation coefficients – over Eurasia and the extratropical Pacific Ocean, unlike the overall negative correlation, require their explanation. In addition, the analysis of the long-term variations of ozone and temperature at 60°N latitude, and at longitudinal zones, 140 and 70°W (corresponding to the regions with positive and negative GCR-ozone correlation) are presented in Figure 9. It is important to note that the short-term variations are preliminarily filtered by data smoothing through 11-year running average procedure.
(left) Time series of winter ozone at 70 hPa and 60°N latitude, obtained at Eastern (140°E longitude) and Western (70°W) longitude; (right) air surface temperature at the same latitude and longitudes.
Figure 9 clarifies that the lower temperature trend of Eastern Asia corresponds to the higher ozone density at 70 hPa. Oppositely, the stronger warming in south-eastern Canada corresponds to a lower ozone density at 70 hPa, with a negative centennial trend. Examination of the global picture of twentieth century warming (presented in Figure 10) reveals that the “hot spots” of contemporary global warming (i.e. north-eastern Canada and Greenland, and the Southern Ocean – southward of Africa) correspond to the regions of negatively correlated ozone and temperature (refer to Figure 8). In opposite, the regions with in-phase co-varying ozone and temperature are characterized by weaker warming.
Centennial changes of the air surface temperature between the first decades of twenty-first and twentieth centuries, derived from the ERA twentieth century reanalysis.
Conclusively, the above results indicate that the strongest warming during the twentieth century is observed in regions with reduced density of the lower stratospheric ozone.
Climate variability is not homogeneous in space and is usually described as a combination of some “preferred” spatial regimes, called
Although the spatial-temporal variations of climatic modes are extensively studied, the reasons for their occurrence and variability over time are not fully understood. Internal variations of the climate system are usually associated with the processes of energy exchange and redistribution between the planetary atmosphere and ocean. The huge heat capacity of the ocean is the reason for its inertia in response to short-time fluctuations of atmospheric variables, which transforms them into long-period variations of the ocean surface temperature. This understanding does explain the phase alteration, but it is not able to explain neither the various manifestations of climatic modes [75] nor their long-term changes.
Analysis of the spatial-temporal variability of GCR and ozone at 70 hPa reveals the important role of the latter in the formation of regional specificity of air surface temperature variability (refer to Subsection 4.1.1, or to [76]). Examination of the temporal synchronization between two of the most important
Figure 11 illustrates the projection of the long-term variations of ozone at 70 hPa on the NAO index (which describes the variability of the surface pressure between Azores and Iceland). The coupling between both variables has been estimated by the use of the lagged cross-correlation analysis between annual values of NAO index (smoothed by 5 points averaging) and winter ozone values at 70 hPa (smoothed by 11 points moving window). The stronger smoothing of ozone is due to its higher temporal variability. The leading factor (i.e. the “forcing”) in calculated ozone-NAO variability is ozone. As in the previous case, the correlation coefficients have been preliminarily weighted (according to different delay of NAO response) with the ozone’s autocorrelation function. The physical reasoning behind this weighting is that the memory of the climate system for the applied impact weakens with time. This suggests that the high correlation coefficients with a large delay are more or less random.
(top) Cross-correlation maps of the winter lower stratospheric ozone and NAO index, calculated for the period 1900–2010; (bottom) time lag of NAO response in years.
Figure 11 shows that the ozone’s impact on the NAO climatic pattern fairly well coincides with both centers of action (Azores and Iceland) determining the phase of NAO mode. Unlike the previous results (stressing the leading role of the northern [78] or the southern part of NAO spatial structure [79]), Figure 11 indicates that the variations of lower stratospheric ozone density can impact each center of action (Azores or Icelandic), or simultaneously both of them – altering in such a way the phase of NAO mode [76].
Analysis of the time delay of NAO response to ozone changes shows that surface temperature near the Icelandic Low respond with a delay of 1–2 years. In the subtropical center of action, however, the atmospheric response is delayed approximately by a decade (see the bottom panel in Figure 11).
Direct ozone influence on the surface temperature is quite small due to the mutually exclusive effect of stratospheric and tropospheric ozone in the planetary radiation balance [70]. Ozone’s ability to absorb the incoming solar radiation (and to a lesser extent the longwave radiation emitted from the Earth), makes it a radiatively active gaz. The covariance between the near tropopause ozone and temperature has been noticed long ago [80, 81]. However, the tropopause temperature determines the moist adiabatic lapse rate and accordingly the static stability of the upper troposphere [82, 83], which in turn alters the humidity near the tropopause [51]. For example, ozone depletion cools the near tropopause region making the upper troposphere more unstable [82, 83]. The upward propagation of the more humid air masses from the lower atmospheric levels moistens the upper troposphere, and strengthens the greenhouse warming of the planet. The satellite measurements show that water vapor at these levels ensures 90% of the greenhouse warming of the total atmospheric humidity [84]. Consequently, ozone variability in the lower stratosphere is projected on the planetary surface through the modulation of the strength of greenhouse warming.
Figure 12, which compares the lag-corrected correlation maps of ozone mixing ratio at 70 hPa with: (i) GCR, and (ii) humidity at 150 hPa, is a good illustration of our hypothesis validity. Note that the latitudinal band of antiphase correlation between GCRs and ozone (dark shading), and in phase correlation between ozone and water vapor (red contours), coincide impressively well. In the Northern Hemisphere, this coincidence persists round the year, although being slightly reduced in summer season (compare panels (a) and (b) in Figure 12). In the winter Southern Hemisphere, the area of synchronous variations of GCR, ozone, and humidity is narrower and practically disappears in summer (Figure 12d). The results presented in Figure 12 are a good indication that ozone–humidity variations, which are projected down to Earth’s surface by the strengthening or weakening of the greenhouse effect, are actually related to GCR variability.
Comparison of correlation maps of ozone at 70 hPa with GCRs (dark shading) and water vapor at 150 hPa (contours), for winter (a) and (c), and summer (b) and (d) panels.
Historical and contemporary changes in climate system put a lot of questions, the answers to which are difficult. This motivates scientists from different branches to look for various factors with a potential influence on the climate system. Geomagnetic field is one of the proposed factors, due to the rendered multiple evidence for spatially or temporary co-varying geomagnetic field and climate, at different time scales. In this chapter, we clarify that hypothesized geomagnetic influence on climate could be reasonably explained through the mediation of energetic particles, propagating in Earth’s atmosphere, and their influence on the ozone density in the lower stratosphere.
More specifically, the non-dipolar part of geomagnetic field creates irregularities in the spatial distribution of lower atmospheric ionization in the Regener-Pfotzer maximum [51]. The bulk of low-energy electrons and dry lower stratosphere favors activation of autocatalytic ozone production at these altitudes. Thus geomagnetic irregularities are projected on the ozone density near the tropopause. Being a radiatively active gas, the ozone itself affects the temperature and humidity in the tropopause region, altering in such a way the greenhouse effect and consequently – the near-surface temperature.
This chapter provides evidence for the validity of this chain of sequences, which gives an adequate explanation of hemispherical and longitudinal asymmetry of the lower stratospheric ozone distribution, regionality of climate change, formation of regional climate patterns, known as climatic modes, etc.
The authors are grateful to the project teams of ERA 20C and ERA Interim reanalyses, providing gridded data for ozone temperature and pressure, as well as to the Climatic research unit of University of East Anglia – for the data of NAO index. We are thankful to the National Centre for Environmental Information (NOAA) for providing IGRF model.
This research was funded by National Science Fund of Bulgaria, Contracts KP-06-N34/1/30-09-2020, and DN 14/1 from 11.12.2017.
IntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6585},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2382},{group:"region",caption:"Asia",value:4,count:12514},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17531}],offset:12,limit:12,total:132506},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-T-0-T1-NW"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12007",title:"Updates in Volcanology - Linking Active Volcanism and the Geological Record",subtitle:null,isOpenForSubmission:!0,hash:"a55d00d84b7616824cc783586c092525",slug:null,bookSignature:"Dr. Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/12007.jpg",editedByType:null,editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12009",title:"Soil Moisture",subtitle:null,isOpenForSubmission:!0,hash:"9d683c1c4b137c5de03d7e6f141256f1",slug:null,bookSignature:"Dr. Rahul Datta, Dr. Mohammad Javed Ansari, Dr. Shah Fahad and Dr. Subhan Danish",coverURL:"https://cdn.intechopen.com/books/images_new/12009.jpg",editedByType:null,editors:[{id:"313525",title:"Dr.",name:"Rahul",surname:"Datta",slug:"rahul-datta",fullName:"Rahul Datta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Dr. José R. Martí",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12173",title:"Dairy Processing - From Basics to Advances",subtitle:null,isOpenForSubmission:!0,hash:"420e687768b56ca7b3238d77f63f1302",slug:null,bookSignature:"Dr. Neelam Upadhyay",coverURL:"https://cdn.intechopen.com/books/images_new/12173.jpg",editedByType:null,editors:[{id:"269538",title:"Dr.",name:"Neelam",surname:"Upadhyay",slug:"neelam-upadhyay",fullName:"Neelam Upadhyay"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12176",title:"Oligonucleotides - Overview and Applications",subtitle:null,isOpenForSubmission:!0,hash:"365b4a84e87d26bcb24b7183814fba04",slug:null,bookSignature:"Dr. Arghya Sett",coverURL:"https://cdn.intechopen.com/books/images_new/12176.jpg",editedByType:null,editors:[{id:"301899",title:"Dr.",name:"Arghya",surname:"Sett",slug:"arghya-sett",fullName:"Arghya Sett"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11599",title:"Leukemia - From Biology to Diagnosis and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"30b431385424f0b84aee499d839f46cc",slug:null,bookSignature:"Prof. Margarita Guenova and Prof. Gueorgui Balatzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11599.jpg",editedByType:null,editors:[{id:"52938",title:"Prof.",name:"Margarita",surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11651",title:"Bone Tumors - Recent Updates",subtitle:null,isOpenForSubmission:!0,hash:"cf7dd688b160a1ba07e3179613684f16",slug:null,bookSignature:"Dr. Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/11651.jpg",editedByType:null,editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11830",title:"Rubber Materials",subtitle:null,isOpenForSubmission:!0,hash:"6cf0b844f6881c758c61cca10dc8b134",slug:null,bookSignature:"Associate Prof. Gülşen Akın Evingür and Dr. Önder Pekcan",coverURL:"https://cdn.intechopen.com/books/images_new/11830.jpg",editedByType:null,editors:[{id:"180256",title:"Associate Prof.",name:"Gülşen",surname:"Akın Evingür",slug:"gulsen-akin-evingur",fullName:"Gülşen Akın Evingür"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11947",title:"Power Converter Technology - Recent Advances, Design and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1f5c85b127faa05e07e46c646dcb4540",slug:null,bookSignature:"Dr. Raul Gregor",coverURL:"https://cdn.intechopen.com/books/images_new/11947.jpg",editedByType:null,editors:[{id:"175676",title:"Dr.",name:"Raul",surname:"Gregor",slug:"raul-gregor",fullName:"Raul Gregor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11499",title:"Nonlinear Systems - Recent Developments and Advances",subtitle:null,isOpenForSubmission:!0,hash:"22a4fb880337aaa9899a7bddcdde52eb",slug:null,bookSignature:"Dr. Bo Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11499.jpg",editedByType:null,editors:[{id:"234525",title:"Dr.",name:"Bo",surname:"Yang",slug:"bo-yang",fullName:"Bo Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:412},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1053",title:"Cognitive Psychology",slug:"cognitive-psychology",parent:{id:"187",title:"Mental and Behavioural Disorders and Diseases of the Nervous System",slug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:143,numberOfWosCitations:60,numberOfCrossrefCitations:58,numberOfDimensionsCitations:128,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1053",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8317",title:"Cognitive Behavioral Therapy",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"2c0d8be344e32f62e4ea4223425d8e4c",slug:"cognitive-behavioral-therapy-theories-and-applications",bookSignature:"Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/8317.jpg",editedByType:"Edited by",editors:[{id:"103586",title:null,name:"Sandro",middleName:null,surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8626",title:"Parkinson's Disease and Beyond",subtitle:"A Neurocognitive Approach",isOpenForSubmission:!1,hash:"7407cfb0a38d3c1b8dd1c578c804fc8d",slug:"parkinson-s-disease-and-beyond-a-neurocognitive-approach",bookSignature:"Sara Palermo, Mario Stanziano and Rosalba Morese",coverURL:"https://cdn.intechopen.com/books/images_new/8626.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6414",title:"Cognitive Disorders",subtitle:null,isOpenForSubmission:!1,hash:"c5587206b3e67e8b17543de33da9df78",slug:"cognitive-disorders",bookSignature:"Humberto Foyaca Sibat",coverURL:"https://cdn.intechopen.com/books/images_new/6414.jpg",editedByType:"Edited by",editors:[{id:"142346",title:"Prof.",name:"Humberto",middleName:null,surname:"Foyaca Sibat",slug:"humberto-foyaca-sibat",fullName:"Humberto Foyaca Sibat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6258",title:"Cognitive Behavioral Therapy and Clinical Applications",subtitle:null,isOpenForSubmission:!1,hash:"c7d1f6f57a5c51471a114a2b97564adb",slug:"cognitive-behavioral-therapy-and-clinical-applications",bookSignature:"Ömer Şenormancı and Güliz Şenormancı",coverURL:"https://cdn.intechopen.com/books/images_new/6258.jpg",editedByType:"Edited by",editors:[{id:"66055",title:"Dr.",name:"Ömer",middleName:null,surname:"Şenormancı",slug:"omer-senormanci",fullName:"Ömer Şenormancı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"653",title:"Standard and Innovative Strategies in Cognitive Behavior Therapy",subtitle:null,isOpenForSubmission:!1,hash:"7d1ffd545246107f74d6459737cabd2e",slug:"standard-and-innovative-strategies-in-cognitive-behavior-therapy",bookSignature:"Irismar Reis de Oliveira",coverURL:"https://cdn.intechopen.com/books/images_new/653.jpg",editedByType:"Edited by",editors:[{id:"64845",title:"Dr.",name:"Irismar Reis",middleName:null,surname:"De Oliveira",slug:"irismar-reis-de-oliveira",fullName:"Irismar Reis De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"704",title:"Current Directions in ADHD and Its Treatment",subtitle:null,isOpenForSubmission:!1,hash:"2362fa9cf0453e26f10f1172faef1631",slug:"current-directions-in-adhd-and-its-treatment",bookSignature:"Jill M. Norvilitis",coverURL:"https://cdn.intechopen.com/books/images_new/704.jpg",editedByType:"Edited by",editors:[{id:"91842",title:"Dr.",name:"Jill M.",middleName:null,surname:"Norvilitis",slug:"jill-m.-norvilitis",fullName:"Jill M. Norvilitis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"31822",doi:"10.5772/30119",title:"Modification of Core Beliefs in Cognitive Therapy",slug:"modification-of-core-beliefs-in-cognitive-therapy",totalDownloads:13865,totalCrossrefCites:8,totalDimensionsCites:12,abstract:null,book:{id:"653",slug:"standard-and-innovative-strategies-in-cognitive-behavior-therapy",title:"Standard and Innovative Strategies in Cognitive Behavior Therapy",fullTitle:"Standard and Innovative Strategies in Cognitive Behavior Therapy"},signatures:"Amy Wenzel",authors:[{id:"124960",title:"Dr.",name:"Amy",middleName:null,surname:"Wenzel",slug:"amy-wenzel",fullName:"Amy Wenzel"}]},{id:"31830",doi:"10.5772/26265",title:"Internet Addiction and Its Cognitive Behavioral Therapy",slug:"internet-addiction-and-its-cognitive-behavioral-therapy",totalDownloads:10601,totalCrossrefCites:9,totalDimensionsCites:12,abstract:null,book:{id:"653",slug:"standard-and-innovative-strategies-in-cognitive-behavior-therapy",title:"Standard and Innovative Strategies in Cognitive Behavior Therapy",fullTitle:"Standard and Innovative Strategies in Cognitive Behavior Therapy"},signatures:"Ömer Şenormancı, Ramazan Konkan and Mehmet Zihni Sungur",authors:[{id:"66055",title:"Dr.",name:"Ömer",middleName:null,surname:"Şenormancı",slug:"omer-senormanci",fullName:"Ömer Şenormancı"},{id:"66057",title:"Dr.",name:"Ramazan",middleName:null,surname:"Konkan",slug:"ramazan-konkan",fullName:"Ramazan Konkan"},{id:"66058",title:"Prof.",name:"Mehmet",middleName:null,surname:"Zihni Sungur",slug:"mehmet-zihni-sungur",fullName:"Mehmet Zihni Sungur"}]},{id:"57353",doi:"10.5772/intechopen.71412",title:"Internet-Delivered Cognitive Behaviour Therapy",slug:"internet-delivered-cognitive-behaviour-therapy",totalDownloads:1343,totalCrossrefCites:3,totalDimensionsCites:12,abstract:"The delivery of cognitive behaviour therapy over the internet (iCBT) has developed in tandem with recent technological advancements. In this chapter, we briefly explore the background of iCBT and its ongoing evolution in the relatively short period that has been available. We summarise the empirical evidence that supports the efficacy and effectiveness of iCBT in different settings, and for different populations. We provide an overview on how an iCBT platform works for service users, and we offer some thoughts on the processes involved in repurposing an evidence-based treatment protocol into an online format. Using iCBT service, users can avail of the benefits of cognitive behaviour therapy in a flexible manner, with or without support. The case presentation provided an illustrative on some of these advantages and highlights opportunities for the individual. The service delivery examples describe the use of iCBT and its application in different contexts. Lastly, we discuss several areas of importance for the future research and practice of iCBT.",book:{id:"6258",slug:"cognitive-behavioral-therapy-and-clinical-applications",title:"Cognitive Behavioral Therapy and Clinical Applications",fullTitle:"Cognitive Behavioral Therapy and Clinical Applications"},signatures:"Derek Richards, Angel Enrique, Jorge Palacios and Daniel Duffy",authors:[{id:"220209",title:"Dr.",name:"Derek",middleName:null,surname:"Richards",slug:"derek-richards",fullName:"Derek Richards"},{id:"222759",title:"Dr.",name:"Angel",middleName:null,surname:"Enrique",slug:"angel-enrique",fullName:"Angel Enrique"},{id:"222760",title:"Dr.",name:"Jorge",middleName:null,surname:"Palacios",slug:"jorge-palacios",fullName:"Jorge Palacios"},{id:"222761",title:"MSc.",name:"Daniel",middleName:null,surname:"Duffy",slug:"daniel-duffy",fullName:"Daniel Duffy"}]},{id:"28250",doi:"10.5772/29657",title:"Distractor or Noise? The Influence of Different Sounds on Cognitive Performance in Inattentive and Attentive Children",slug:"distractor-or-noise-positive-influence-on-cognitive-performance-in-inattentive-children",totalDownloads:4073,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"704",slug:"current-directions-in-adhd-and-its-treatment",title:"Current Directions in ADHD and Its Treatment",fullTitle:"Current Directions in ADHD and Its Treatment"},signatures:"Göran Söderlund and Sverker Sikström",authors:[{id:"78776",title:"Dr.",name:"Goran",middleName:"B. W.",surname:"Soderlund",slug:"goran-soderlund",fullName:"Goran Soderlund"},{id:"83145",title:"Prof.",name:"Sverker",middleName:null,surname:"Sikstrom",slug:"sverker-sikstrom",fullName:"Sverker Sikstrom"}]},{id:"28245",doi:"10.5772/29889",title:"Do Stimulant Medications for Attention-Deficit/Hyperactivity Disorder (ADHD) Enhance Cognition?",slug:"do-stimulant-medications-enhance-cognition-",totalDownloads:2963,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"704",slug:"current-directions-in-adhd-and-its-treatment",title:"Current Directions in ADHD and Its Treatment",fullTitle:"Current Directions in ADHD and Its Treatment"},signatures:"Claire Advokat and Christine Vinci",authors:[{id:"79788",title:"Prof.",name:"Claire",middleName:null,surname:"Advokat",slug:"claire-advokat",fullName:"Claire Advokat"},{id:"150154",title:"MSc.",name:"Christine",middleName:null,surname:"Vinci",slug:"christine-vinci",fullName:"Christine Vinci"}]}],mostDownloadedChaptersLast30Days:[{id:"31830",title:"Internet Addiction and Its Cognitive Behavioral Therapy",slug:"internet-addiction-and-its-cognitive-behavioral-therapy",totalDownloads:10601,totalCrossrefCites:9,totalDimensionsCites:12,abstract:null,book:{id:"653",slug:"standard-and-innovative-strategies-in-cognitive-behavior-therapy",title:"Standard and Innovative Strategies in Cognitive Behavior Therapy",fullTitle:"Standard and Innovative Strategies in Cognitive Behavior Therapy"},signatures:"Ömer Şenormancı, Ramazan Konkan and Mehmet Zihni Sungur",authors:[{id:"66055",title:"Dr.",name:"Ömer",middleName:null,surname:"Şenormancı",slug:"omer-senormanci",fullName:"Ömer Şenormancı"},{id:"66057",title:"Dr.",name:"Ramazan",middleName:null,surname:"Konkan",slug:"ramazan-konkan",fullName:"Ramazan Konkan"},{id:"66058",title:"Prof.",name:"Mehmet",middleName:null,surname:"Zihni Sungur",slug:"mehmet-zihni-sungur",fullName:"Mehmet Zihni Sungur"}]},{id:"31825",title:"Cognitive-Behavioral Therapy for the Bipolar Disorder Patients",slug:"cognitive-behavioral-therapy-for-the-bipolar-disorder-patients",totalDownloads:14634,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"653",slug:"standard-and-innovative-strategies-in-cognitive-behavior-therapy",title:"Standard and Innovative Strategies in Cognitive Behavior Therapy",fullTitle:"Standard and Innovative Strategies in Cognitive Behavior Therapy"},signatures:"Mario Francisco P. Juruena",authors:[{id:"69896",title:"Dr.",name:"Mario",middleName:"Francisco",surname:"Juruena",slug:"mario-juruena",fullName:"Mario Juruena"}]},{id:"57215",title:"Dreams in Cognitive-Behavioral Therapy",slug:"dreams-in-cognitive-behavioral-therapy",totalDownloads:1449,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"In recent years, cognitive-behavioral-oriented therapists have found a new interest in work with dreams. Dream analysis within the framework of cognitive-behavioral therapy (CBT) seems to be fully justified if the cognitive processes involved in the dreaming process are considered. The aim of the chapter is to introduce three perspectives for working with dreams within the realm of CBT. The first perspective is dedicated to the historical view on the use of dreams in CBT. The second includes an analysis of the conceptual functions of working with dreams in CBT. The third presents practical issues related to dream analysis in CBT. To sum up, the chapter presents systematic and comprehensive information about the therapeutic work with dreams within CBT from a historical, functional, and processual perspective.",book:{id:"6258",slug:"cognitive-behavioral-therapy-and-clinical-applications",title:"Cognitive Behavioral Therapy and Clinical Applications",fullTitle:"Cognitive Behavioral Therapy and Clinical Applications"},signatures:"Dagna Skrzypińska and Barbara Szmigielska",authors:[{id:"215223",title:"Ph.D. Student",name:"Dagna",middleName:null,surname:"Skrzypińska",slug:"dagna-skrzypinska",fullName:"Dagna Skrzypińska"},{id:"215224",title:"Prof.",name:"Barbara",middleName:null,surname:"Szmigielska",slug:"barbara-szmigielska",fullName:"Barbara Szmigielska"}]},{id:"58891",title:"Cognitive-Behavioral Psychotherapy for Couples: An Insight into the Treatment of Couple Hardships and Struggles",slug:"cognitive-behavioral-psychotherapy-for-couples-an-insight-into-the-treatment-of-couple-hardships-and",totalDownloads:7506,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"In this chapter, a comprehensive literature review of the theoretical underpinnings and clinical practices of cognitive-behavioral couple therapy (CBCT) will be presented. First, a description of the theory underlying CBCT and the role of the therapist will be reviewed. Different mandates and motives for couples to consult in CBCT will then be described, with attention given to specificities for diverse populations. The assessment process and main intervention techniques used by CBCT therapists will be presented, including communication training, problem and conflict resolution, cognitive restructuring, identification and expression of emotions, expression of affection and sexual problems as well as acceptance and tolerance of differences. The chapter will conclude with a critical analysis of CBCT and suggestions for future clinical developments.",book:{id:"6258",slug:"cognitive-behavioral-therapy-and-clinical-applications",title:"Cognitive Behavioral Therapy and Clinical Applications",fullTitle:"Cognitive Behavioral Therapy and Clinical Applications"},signatures:"Caroline Dugal, Gaëlle Bakhos, Claude Bélanger and Natacha\nGodbout",authors:[{id:"57536",title:"Prof.",name:"Claude",middleName:null,surname:"Belanger",slug:"claude-belanger",fullName:"Claude Belanger"}]},{id:"31822",title:"Modification of Core Beliefs in Cognitive Therapy",slug:"modification-of-core-beliefs-in-cognitive-therapy",totalDownloads:13865,totalCrossrefCites:8,totalDimensionsCites:12,abstract:null,book:{id:"653",slug:"standard-and-innovative-strategies-in-cognitive-behavior-therapy",title:"Standard and Innovative Strategies in Cognitive Behavior Therapy",fullTitle:"Standard and Innovative Strategies in Cognitive Behavior Therapy"},signatures:"Amy Wenzel",authors:[{id:"124960",title:"Dr.",name:"Amy",middleName:null,surname:"Wenzel",slug:"amy-wenzel",fullName:"Amy Wenzel"}]}],onlineFirstChaptersFilter:{topicId:"1053",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",hash:"1806716f60b9be14fc05682c4a912b41",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 23rd 2022",isOpenForSubmission:!0,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Business and Management",value:86,count:1,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:null,institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:65,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:174,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:286,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabo