Energy Per Capita and CO2 Emissions Indexes from Energy (in Terajoules) Consumption in 2009
\r\n\tWithin this scenario, special attention needs to be devoted to financial implications, due to their pervasiveness. Nobody would question the key role that finance plays to complement the real sphere of the economy and that has increasingly attracted both academics and practitioners. As a result, traditional pillars – such as financial markets, products, and institutions – have evolved significantly, with financial innovation fueling further progress over time. The global side of the coin features – among others – financially connected markets, international financial exchanges, and financial conglomerates that provide valuable opportunities in terms of international corporate finance. On the other side, recent advances have involved a wider recourse to ESG factors, allowed forward steps towards a more inclusive financial system, and have made digital finance a must, rather than an option, even though much remains to be accomplished, for instance, to facilitate access to formal financial channels in many underdeveloped regions.
\r\n\r\n\t
\r\n\tThis book aims to examine emerging trends, new perspectives, and empirical applications that deal with globalization and sustainability. The goal is to provide a comprehensive overview of these important concepts as valuable support to successfully meet the challenges and take on the opportunities ahead. At the same time, drawing upon empirical evidence can contribute to bridging the gap between theory and practice, which also fits within the scope of this book.
This article seeks to provide an overview of the current energy policies, focusing on Brazil and regarding biofuels in particular. It does not claim to put forward an exhaustive analysis of the subject. Hence, it focuses on certain particularly relevant aspects, such as climate change and CO2 emissions abatement, rather than entering into the details of all extant aspects. It is aimed to serve as a policy instrument in order to provide a basis for decision-making and planning actions, contextualizing the discussion within the global framework. In this connection, special attention is paid to the impact of the initial soaring of the oil prices, their subsequent drop with the onset of the economic crisis, which reached Latin America in 2009, as well as the latest hike in the price of oil. This impact has as a counterpoint the discovery of off shore pre-salt oil in Brazilian deep waters, which significantly increases petroleum-producing potential of the country.
Among the different renewable primary energy sources in Brazil, the most relevant are hydroelectricity and biomass, from which biofuels are derived. The former has been the subject of several studies and, therefore, will not be discussed as thoroughly as biofuels in the present text, especially sugar cane ethanol. Both hydro and ethanol have stirred heated debates and controversies internationally. The recent soaring food prices worldwide is attributed by some to the supposed prioritization of biofuels production, which, in addition, is blamed, in the case of Brazil, for contributing further to the deforestation of the Amazon. Al of this, in spite of the continuous decrease of the deforestation rates since 2004[1], the increase of ethanol production [2] and the fact that sugarcane for ethanol plantations in Brazil occupy less than 1.5% of the Brazilian crop area [3].
The present situation resembles the not too distant past experience of the crises provoked by the skyrocketing in the price of crude oil on the international market which, until 1973, varied between US$ 1 and US$ 2 only to soar, for a spell in 1979, to US$ 40, then to plummet in the second half of the 1980s, and left to follow an erratic path throughout the 1990s. In 1999, oil prices fell to US$ 10 but, in 2006, exceeded US$ 70 and, in 2008, reached US$ 140. So, in 9 years, the price of oil increased 14-fold, nearly doubling in the span of two years, but then dropped to below US$ 50, maintaining itself around this value for the rest of 2009, to increase again up to reach about US$ 100 in 2011.
For its part, natural gas has been the cause of disputes, in recent years, between Russia and Europe, between Argentina and Chile, and, lately, between Bolivia and Brazil. An important new factor is the increasing participation of shale gas in North America. In 2000 only 1% of natural gas produced in the USA was shale gas, with its share growing to 20% in 2010 and projected to reach 46% in 2035, due to its low cost. The share of natural gas in the Brazilian energy matrix is not significant, although it shall became more important with the import of LNG by ships as well as with the pre-salt natural gas production.
Where electricity is concerned, there were serious instances of rationing in 2001, lasting for many months in Brazil and California - in both cases due to lack of adequate power sector regulation. Energy deregulation played an important part in the process of economic liberalization in the course of financial globalization, which is at the root of the global crisis, which first hit the USA in 2008, and worsening in 2009, it spilled over and reached South America, in particular, Brazil.
The energy crisis has been further aggravated by the overlap of an environmental crisis and a financial one, as a result of climate change, due to the intensification of global warming from greenhouse gas (GHG) emissions, such as carbon dioxide from the burning of fossil fuels. Global warming has become a major global political problem, because it bears on society choices which must not be left to business alone to make. The Nobel Peace Prize of 2008 awarded to the Intergovernmental Panel on Climate Change (IPCC) followed the release, in 2007, of its Fourth Assessment Report which caused great concern around the world.
The repercussions of the high international oil prices on the world economy have been significant, although today’s share of oil in the world economy is less than at the time of the 70s oil crises. At a global level, this share in the cost of products is generally half of what it was at that time.
Some particular factors contributed to this strong variation in the oil market:
The forecasted decline in world output, despite major discoveries in the Brazilian pre-salt, and increased oil consumption, especially in developing countries, led by China
The global geopolitical instability, especially in the Middle East oil producing regions, and the strong dependence of OECD countries on oil imports. To a lesser extent, this instability is felt in South America as in the case of the political tensions between the USA and Venezuela.
The global economic crisis which first erupted in the USA in 2008.
Environmental pressures, especially due to carbon dioxide emissions from the burning of fossil fuels, which exacerbate the greenhouse effect, thus contributing to global warming.
Finally, with respect to point (d), it is important to point out that the share of renewable primary energy sources is higher in Brazil and in South America as a whole than in other continents, while the use of biofuels in Brazil is widespread and thus, the GHG emissions of the country are mainly from deforestation.
Not considering nuclear energy, released from the fission of uranium and without any chemical combustion, non-renewable fuels, such as coal, oil and natural gas, are responsible for greenhouse gas emissions. Life cycle analysis show that renewable sources such as ethanol from sugar cane and hydroelectricity emit little greenhouse gases.CO2 emitted from biofuels combustion is reabsorbed from the atmosphere during plant growth. However, roughly half of all firewood and charcoal in Brazil comes from deforestation, charcoal mainly used in steel production [4]. The net emissions in the case of alcohol come primarily from the use of diesel for the tractors and trucks on the sugarcane plantations, as well as the production of the synthetic fertilizers and herbicides employed. In the case of hydropower, COPPE’s research group carried out measurements at various reservoirs in the country and recorded the carbon dioxide and methane emissions, confirming that those are much smaller than that of the thermoelectric power plants.
According to the latest IPCC report [5], there was a 70% worldwide growth in greenhouse gas emissions between 1970 and 2004. Among these, CO2 emissions rose by 80% and represented 77% of the anthropogenic emissions in 2004. The energy sector had the highest growth in emissions between 1970 and 2004 (145%) followed by the transport sector (120%), industry (65%), and land use and deforestation (40%). Table 1 provides the rates of primary energy per capita and CO2 emissions per capita, per energy consumption and per GDP of the South American countries in 2009. It can be seen that countries which have a large share of renewable power, such as Brazil and Paraguay, have better emission indicators than countries such as Argentina and Venezuela, which rely heavily on fossil fuels.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
Argentina | \n\t\t\t0.077 | \n\t\t\t4.14 | \n\t\t\t53.6 | \n\t\t\t0.42 | \n\t\t
Bolivia | \n\t\t\t0.027 | \n\t\t\t1.31 | \n\t\t\t49.3 | \n\t\t\t1.10 | \n\t\t
Brazil | \n\t\t\t0.052 | \n\t\t\t1.74 | \n\t\t\t33.6 | \n\t\t\t0.39 | \n\t\t
Chile | \n\t\t\t0.071 | \n\t\t\t3.84 | \n\t\t\t53.9 | \n\t\t\t0.63 | \n\t\t
Colombia | \n\t\t\t0.029 | \n\t\t\t1.33 | \n\t\t\t46.4 | \n\t\t\t0.43 | \n\t\t
Ecuador | \n\t\t\t0.035 | \n\t\t\t2.09 | \n\t\t\t59.9 | \n\t\t\t1.18 | \n\t\t
Paraguay | \n\t\t\t0.031 | \n\t\t\t0.64 | \n\t\t\t20.4 | \n\t\t\t0.45 | \n\t\t
Peru | \n\t\t\t0.023 | \n\t\t\t1.32 | \n\t\t\t58.2 | \n\t\t\t0.45 | \n\t\t
Uruguay | \n\t\t\t0.051 | \n\t\t\t2.31 | \n\t\t\t45.2 | \n\t\t\t0.26 | \n\t\t
Venezuela | \n\t\t\t0.099 | \n\t\t\t5.45 | \n\t\t\t55.2 | \n\t\t\t0.97 | \n\t\t
Energy Per Capita and CO2 Emissions Indexes from Energy (in Terajoules) Consumption in 2009
The meeting of the UN Convention on Climate Change in Copenhagen, in 2009, resulted in frustration regarding finding a consensus for more effective commitments to reduce global GHG emissions. However, the commitment to limit to 2° C the rise in global temperature relative to the preindustrial era is encouraging. At the Copenhagen Conference the Brazilian position included this limitation, which entails a major effort to reduce emissions on the part of the rich countries and to keep emissions under control where the developing countries are concerned. One controversial issue refers to the adoption of obligations by developing countries regarding their own emissions. An argument in support of adopting such commitments is the growth of emissions in developing countries, especially China and India. Nevertheless, the per capita CO2 emissions in rich countries are still well above those in developing countries.
It is important to point out that CO2 emission is not the only indicator to analyze the responsibility among countries. For example, cattle grazing emit a huge amount of CH4 due to enteric fermentation and N2O due to manure [7]. Nevertheless, these indicators need to be balanced because they are related to food production, a basic need. In Brazil, an encouraging development has been the creation of the National Climate Change Plan, with its targets for reducing deforestation, responsible for most of Brazil\'s emissions.
On the other hand, the increased share of fossil fuel use in power generation in Brazil is nothing to cheer about. But the growth of production and consumption of fuel alcohol in cars and the fact that 45% of its primary energy matrix is comprised of renewable sources, including hydroelectric generation and biofuels - as against 13% for the world and 6% for OECD countries - is heartening.
Now, if we consider the different primary energy sources [8], Latin America\'s share in the world’s energy production varies according to the source considered:
4.4% of total primary energy
9.5% for oil
4.9% for natural gas
1.4% for coal
0.8% for nuclear
20.1% for hydroelectricity.
The share of nuclear electricity generation in Latin America represents less than 1% of the world’s total, as it is limited to Brazil, Argentina and Mexico. Meanwhile, the share of hydropower exceeds 20%, as Brazil, Venezuela and Peru are among the ten countries with the largest water resources in the world, the first two also being among the top ten producers of hydroelectricity.
Table 2 shows the production, import and export of oil, natural gas, coal and hydroelectric power in the major South American countries. Imports and exports related to oil include oil derivatives in addition to crude oil. With respect to coal, the different types have been computed, as well as coke. The hydroelectricity columns show, in addition to production, the import and export of electrical energy.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t||||||||
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t|
Argentina | \n\t\t\t37.8 | \n\t\t\t1.3 | \n\t\t\t14.9 | \n\t\t\t36.2 | \n\t\t\t1.3 | \n\t\t\t5.4 | \n\t\t\t- | \n\t\t\t1.0 | \n\t\t\t0.14 | \n\t\t\t34.6 | \n\t\t\t8.0 | \n\t\t\t0.4 | \n\t\t
Bolivia | \n\t\t\t2.9 | \n\t\t\t0.2 | \n\t\t\t0.6 | \n\t\t\t9.9 | \n\t\t\t- | \n\t\t\t8.6 | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t2.5 | \n\t\t\t- | \n\t\t\t- | \n\t\t
Brazil | \n\t\t\t87.3 | \n\t\t\t28.0 | \n\t\t\t23.4 | \n\t\t\t9.2 | \n\t\t\t7.5 | \n\t\t\t- | \n\t\t\t2.5 | \n\t\t\t11.3 | \n\t\t\t- | \n\t\t\t337.4 | \n\t\t\t39.2 | \n\t\t\t0.1 | \n\t\t
Chile | \n\t\t\t0.3 | \n\t\t\t14.3 | \n\t\t\t1.7 | \n\t\t\t1.7 | \n\t\t\t5.3 | \n\t\t\t- | \n\t\t\t0.3 | \n\t\t\t3.9 | \n\t\t\t- | \n\t\t\t24.8 | \n\t\t\t2.1 | \n\t\t\t- | \n\t\t
Colombia | \n\t\t\t27.4 | \n\t\t\t0.9 | \n\t\t\t16.1 | \n\t\t\t6.1 | \n\t\t\t- | \n\t\t\t- | \n\t\t\t38.9 | \n\t\t\t- | \n\t\t\t34.9 | \n\t\t\t39.8 | \n\t\t\t- | \n\t\t\t1.7 | \n\t\t
Ecuador | \n\t\t\t27.0 | \n\t\t\t2.6 | \n\t\t\t20.6 | \n\t\t\t0.4 | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t6.8 | \n\t\t\t1.7 | \n\t\t\t- | \n\t\t
Paraguay | \n\t\t\t- | \n\t\t\t1.1 | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t51.2 | \n\t\t\t- | \n\t\t\t43.8 | \n\t\t
Peru | \n\t\t\t5.2 | \n\t\t\t5.9 | \n\t\t\t3.5 | \n\t\t\t1.4 | \n\t\t\t- | \n\t\t\t- | \n\t\t\t0.03 | \n\t\t\t0.8 | \n\t\t\t- | \n\t\t\t19.9 | \n\t\t\t- | \n\t\t\t- | \n\t\t
Uruguay | \n\t\t\t- | \n\t\t\t2.3 | \n\t\t\t0.3 | \n\t\t\t- | \n\t\t\t4.1 | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t- | \n\t\t\t6.7 | \n\t\t\t1.6 | \n\t\t\t0.8 | \n\t\t
Venezuela | \n\t\t\t169.3 | \n\t\t\t- | \n\t\t\t138.1 | \n\t\t\t23.2 | \n\t\t\t- | \n\t\t\t- | \n\t\t\t5. 2 | \n\t\t\t- | \n\t\t\t5.2 | \n\t\t\t75.0 | \n\t\t\t- | \n\t\t\t- | \n\t\t
Oil, Natural Gas, Coal and Hydroelectricity
(*) Includes crude oil and derivatives; (#) Electricity including hydro and thermal generation
Source: International Energy Agency, 2006
According to Table 2, the largest oil producers in South America are Venezuela and Brazil, the latter far behind the former. Brazilian exports (mainly of heavy crude oil) match the imports (of light crude for refining). Argentina, Colombia and Ecuador have a similar production and also export oil.
Argentina is the largest producer of natural gas, followed by Venezuela, Bolivia and Brazil, which is also an importer. The exporters are: Argentina (to Chile) and Bolivia (to Brazil and Argentina). Important consumers of natural gas are: Venezuela, Argentina and Brazil. Coal production is particularly significant in Colombia, also an exporter, while Brazil is the largest producer of hydroelectricity on the continent, followed by Venezuela and Paraguay, the latter also being a major exporter.
To understand the changes in South America, the following aspects should be taken into account:
In the years 2000 there has been significant pick-up in economic growth in several countries after a period of stagnation or low growth stretching over quite a few years, under the monetarist policies of economic adjustment under the auspices of the International Monetary Fund and the World Bank with the backing of the rich countries.
Social inequality remains high, even if significant improvements are taking place in the social field in some countries. In Brazil, it has been estimated that some 40 million people have been lifted out from the poorer Class D, to the level of Class C income.
The two main energy integration projects in operation between Brazil and South American countries are the bi-national Itaipu power plant with Paraguay, the world\'s 2nd largest in electricity generation, whose expansion from about 12 GW to 14 GW was completed in 2008, and the import of 30 million m3 per day of natural gas from Bolivia. Both were subject to crises with Bolivia and Paraguay respectively, already settled.
There is an electricity connection between Brazil and Argentina in the South and another one in the North with Venezuela. Furthermore, there is a small connection with Uruguay.
Given the variation in flow without a regulation reservoir to secure the power of these plants, the reservoirs of the hydroelectric plants of the interconnected grid can be used to store water when the flow is high, in order to offset the energy drop during the months with a low flow. However, to avoid very large environment impacts, in the new hydropower plants the flooding area is small. The Santo Antonio and Jirau hydroelectric projects under construction on the Madeira River, near the border with Bolivia, are run of the river, the same being the case of the new Belo Monte hydroelectric power plant.
Brazil is the foremost user not only of liquid biofuels, particularly ethanol in addition to its biodiesel program, but also of solid biomass - firewood and charcoal, widely used in the steel industry. Brazil and Argentina are currently among the world’s top five producers of biodiesel, the latter also being a major exporter, mainly to Europe. However, since biodiesel demand in general is still only a fraction of ethanol, most of this article’s focus will be on this alcoholic biofuel.
There is an international debate on biofuels, which are being blamed for the high food prices worldwide and which affect the poor most. The Brazilian government has addressed this concern adequately in connection to the production of alcohol from sugarcane. According to [9], the country’s sugarcane crop was cultivated over an area of 8.4 million hectares (8.4 Mha) in 2011. 50.3% of all sugarcane was targeted for ethanol production, the remainder used for sugar. On the other hand, soybean, Brazil’s most important crop, occupies 25 Mha [10]. According to [11], Brazil has 152 Mha of arable land, of which 62 Mha are currently in use. 177 Mha are pastures So, if one excludes the 440 Mha of virgin forests, there remains 90 Mha left available for expanding agricultural production without deforestation. And these figures do not include the reconversion of degraded pastures. Only a portion of these areas is suitable for sugar cane cultivation and is economically and socially viable for producing biofuels such as ethanol and biodiesel. The latter, to a large extent, comes from soybeans, which, unlike sugarcane, can encourage deforestation in the Amazon, but recently this link cannot be established, because the deforestation rates in Brazil have been decreasing in the last decade [1] in spite of the increase in soy production.
US corn ethanol is subsidized, and, unlike Brazilian sugarcane alcohol, it affects the price of corn, impacting the price of of food and feed. Production of corn ethanol also involves the burning of natural gas. The sugarcane crushed stalk, called bagasse, by contrast, has more than enough energy to meet the plant’s heat and electricity demand, even providing surplus power to the grid. Therefore, alcohol produced in Brazil is more efficient energy and environmentally-wise. The capture of CO2 from the air during sugarcane growth roughly balances out the emissions from the production and consumption of alcohol. As a gasoline alternative, it is effective in avoiding the emissions of gases contributing to global warming.
The international biofuels market is poised to increase in the next few years. The US presently consumes twice as much fuel alcohol as Brazil, but its percentage in terms of displacing gasoline is low, around 10%, because of its huge gasoline consumption - 8.74 million barrels per day or roughly 540 billion liters in 2011 [12]. The National Renewable Fuel Standard program (commonly known as RFS) has set an increasing volume of biofuels to be required in the US market [13]. RFS categorizes fuels and caps the so-called “conventional” renewable fuel (corn starch ethanol), so by 2022, 21 billion gallons of the 36 billion gallons (136 billion liters) required must come from cellulosic biofuel or advanced biofuels derived from feedstocks other than corn starch. This categorization of fuels contains specific lifecycle GHG emissions for biofuels relative to lifecycle emissions from fossil fuels and will be further discussed in section 4.
The Energy Independence and Security Act of 2007 (EISA), which established the biofuels mandate, stipulates that indirect, as well as direct, emissions must be accounted for in the lifecycle analysis of any biofuel source, an issue to be explored later on this article. It suffices to say that, currently, the only biofuel currently recognized by the Environmental Protection Agency as being “advanced”, from a GHG mitigation standpoint, is Brazilian sugarcane ethanol. If this situation does not change until 2022, at least 19 billion liters will have to be imported from Brazil, for environmental reasons. Considering that Brazilian supply of ethanol in 2011 was 23 billion liters, it will be a major undertaking to supply the projected US demand.
On top of that, in December 2008, the European Parliament approved the Renewable Energy Sources Directive (RED) setting an EU target of 10% for biofuel use in transportation fuels by 2020.
In a nutshell, Brazilian ethanol has generally been regarded the most effective biofuel in terms of mitigating GHG emissions, but, due to the huge markets under consideration, it is unreasonable to expect that Brazil would be able to meet their demands for environmentally appropriate biofuels. Other countries would have to play their part as well.
The issue of biofuels has raised a controversy concerning the competition with food production. In view of the fact that Brazil has plenty of spare land for crop production, as stated above, it should be clear that cultivating sugarcane for fuel alcohol does not interfere substantially with food production, remembering that sugar cane for biofuel occupies 1.3% of the country’s agricultural land[3].
In a recent paper, [14] made a comparison between sugar cane and corn for ethanol production, with focus on the present debate about land use dispute for food and energy production. The indicators used to compare the activities are CO2 emissions, energy consumption, co-products from the processes and deforestation. From a methodological standpoint, the study conducted a lifecycle inventory evaluation of sustainability issues, both for developed and developing countries. Brazilian government plans to ensure sustainability are commented. A synthesis of that paper together with other considerations follows below.
There are different biofuels feedstocks, such as forest resources; energy crops; agriculture wastes and urban wastes. Table 3 shows biomass raw materials with the corresponding technologies, products and uses in Brazil, as well as the fossil fuels that they replace. Direct combustion of firewood is important in rural areas for cooking. This does not necessarily entail deforestation as families in rural areas, in general, collect twigs and fallen trees branches. The use of charcoal in the steel industry is important for avoiding GHG emissions. For each ton of pig iron produced, 1.7 tons of CO2 from coke and coal are emitted, while charcoal use in steel production allows, on average, a net capture of 0.9 tons ton of CO2 from the atmosphere, due to tree growth, assuming a planted forest is employed. Thus, if one third of all pig iron were made with charcoal, the steel industry in Brazil could have zero net emission. However, as mentioned, about half of the firewood for charcoal used in pig iron production comes from deforestation, a problem yet to be solved.
The Brazilian Alcohol Program began in 1975 after the first oil shock and its first phase consisted in using ethanol as a gasoline octane booster. After the second oil shock in 1979, a second phase began, with ethanol replacing gasoline in cars, whose Otto cycle engines were adapted for this purpose. Among the historical factors that contributed for the government to deploy the Alcohol Program was the need to reduce the trade balance deficit, affected by crude oil importation. Besides, the Program boosted job generation in sugar cane agro-industry and reduced atmospheric pollution through the elimination of lead as an additive to gasoline, as ethanol has a high octane index [15, 16].
By 1985 more than 90% of new cars sales consisted of ethanol fuelled engines, but in the 1990 decade there was a shortage of ethanol in the country. An ad hoc temporary solution was to adopt a ternary mix composed of ethanol, methanol and gasoline to supply part of the market. The result was a lack of consumer confidence in ethanol, with the consequent reduction of sales of new ethanol fuelled cars to 11% in 1990, 2% in 1995 and 1% in 2000 [17]. The reasons for the ethanol shortage were the fall of crude oil price and lack of continuity in governmental policy for ethanol.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
Direct Combustion | \n\t\t\tFirewood Sugar cane bagasse trash and other wastes | \n\t\t\tHeat | \n\t\t\tCooking Industry Electric power | \n\t\t\tLPG Fuel oil Natural gas | \n\t\t
Bioconversion: | \n\t\t||||
- Fermentation | \n\t\t\tSugar cane | \n\t\t\tEthanol | \n\t\t\tTransport | \n\t\t\tGasoline* | \n\t\t
- Anaerobic digestion | \n\t\t\tWastes | \n\t\t\tBiogas | \n\t\t\tPotential | \n\t\t\tNatural gas | \n\t\t
Chemical and Thermal: | \n\t\t||||
- Pyrolysis | \n\t\t\tWood | \n\t\t\tCharcoal | \n\t\t\tIndustry | \n\t\t\tCoal and fuel oil | \n\t\t
-Gasification | \n\t\t\tBiomass | \n\t\t\tSynthesis gas | \n\t\t\tIndustry | \n\t\t\tNatural gas | \n\t\t
-Esterification | \n\t\t\tVegetable oil and others materials** | \n\t\t\tBiodiesel | \n\t\t\tTransport | \n\t\t\tDiesel | \n\t\t
- Cracking | \n\t\t\tVegetable oil | \n\t\t\tDiesel | \n\t\t\tR&D | \n\t\t\tDiesel | \n\t\t
- Hbio*** | \n\t\t\tVegetable oil | \n\t\t\tDiesel | \n\t\t\tPilot | \n\t\t\tDiesel | \n\t\t
Hydrolysis | \n\t\t\tBiomass | \n\t\t\tEthanol | \n\t\t\tR&D | \n\t\t\tGasoline* | \n\t\t
Uses of Bioenergy in Brazil
Obs: (#) Includes urban solid wastes, lixivia from pulp and paper industry, wastes from rice and others; (*) – It can substitute also for diesel oil with some additive; in Brazil gasoline has 25% of ethanol as additive, besides the use of pure ethanol in flex fuel cars; (**) Including animal fat wastes, garbage and micro-algae (R&D); (***) – Petrobras Technology for processing vegetable oil in oil refineries.
Beginning in 2003 there was an ethanol revival due to local production of flex fuel cars. Their engines can work with two different fuels in any proportion, and were first made in the US in the 1980s, but the technology developed by Brazilian engineers is innovative, as it uses sensors that already exist in the car, which match their fuel readings against information stored in the on-board computer to adjust the engine. Early US flex cars used a special sensor to identify the fuel mix and adjust the engine, but it was expensive and not viable for the Brazilian fleet, dominated by low cost, small and midsized compact cars [18].
Figure 1 shows the behavior of ethanol consumption in Brazil, which surpassed 15 billion liters in 1998, going down to 10 billion liters in 2001 and grew again in the years 2000, due to the introduction of flex fuel cars, which boosted the demand for hydrated ethanol.
Evolution of ethanol consumption in Brazil (billions liters a year)
Sales of Gasoline, Alcohol and Flex Cars in Brazil
Figure 2 shows how this phenomenon was correlated to the quick penetration of flex fuel cars, which currently comprise more than half the total fleet of passenger cars in Brazil The exponential growth of flexible cars after 2003, stimulated by the high gasoline price due to the increase of crude oil price, global warming-related pressure, among others factors. The cost of ethanol in Brazil went down from US$ 20/GJ in 1980 to US$ 6/GJ in 2006, corresponding to US$ 40/barrel of oil [21] following a learning curve. So, while subsides were necessary to start the program they are not needed nowadays.
A problem of ethanol in some OECD countries and China is that it is made from corn. From a global warming standpoint, corn ethanol is less effective than sugar cane ethanol as a substitute for gasoline.
The advantage of biofuels is that when biomass grows up it captures from the atmosphere the CO2 emitted by biofuel combustion in the car engine. However, 1 GJ of fossil fuel is expended to produce 1.3 GJ of ethanol from corn [22]. That is, for each energy unit transformed in heat through corn ethanol combustion, 0.77 energy units is spent producing ethanol from corn, mainly in the natural gas needed for ethanol distillation, as well as the embedded energy in synthetic fertilizers and herbicides.
On other hand, sugar cane has a surplus of biomass enough to generate heat and electricity in the process of ethanol production. For each 1 GJ of fossil fuel consumed in sugar cane and ethanol production there are, on average, 9 GJ of ethanol and this value can reach 11 GJ in the best cases [22].
Therefore, for each unit of energy transformed in heat when sugar cane ethanol is burned in car engines, an average of only 0.11 units of energy from fossil fuel is needed to product it. Besides the bagasse, sugar cane has a significant amount of trash (leaves and top), which is usually burned before harvesting, to allow manual cutting by laborers. However, crop residues are increasingly being recovered, as mechanization, mainly in São Paulo state (responsible for 50% of ethanol produced in Brazil) [23], is becoming more commonplace to harvest cane. To calculate the net avoided emissions, we must subtract, from the gross avoided CO2 emissions due to fossil fuel substitution, the emissions of CO2 from fossil fuels used in sugar cane and ethanol production process, as well as other GHG emitted also for producing cane and ethanol. Therefore, there is the need to express the mass of each non CO2 GHG in terms of equivalent CO2 emission.
In the literature there is a range of values for emissions in sugar cane production It is usual to express the emission in terms of mass of Carbon in the molecule. For instance, the mass of C in CO2 is 12/ (12+2x16) = 12/44 of the CO2 mass and the mass of C in CH4 is 12/ (12+ 4x1) = 12/16 of the CH4 mass.
the best case, a particular one or the average among a set of farms and distilleries in a period of time;
either only the gross avoided emission of the gasoline replaced with ethanol, or the gross avoided emission of gasoline plus the surplus electricity sold to the grid;
either only the direct energy consumption or the life cycle analysis, including emissions in ethanol production and also in gasoline production;
hydrated ethanol, anhydrous ethanol or a mix of them in the market.
Sometimes, the assumptions used in published papers are not clear, causing confusion in quotations.
A detailed life cycle analysis was presented in a report supported by the Environment Secretariat of São Paulo State [21]. The data base was composed of three surveys, the first one covering 26 to 31 distilleries, the second one 17 to 22, and the last one a larger set of 98 distilleries throughout the country. From this reference, it is possible to calculate representative values for emissions from sugar cane and ethanol production in percentages of CO2 equivalent (Table 4). The percentage of CO2 that is avoided by the ethanol industry can be found in Table 4.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
From life cycle (A): equipments, buildings, etc | \n\t\t\tin cane production in ethanol production | \n\t\t\t6.6 9.5 | \n\t\t
From fertilizers, herbicides, pesticides etc (B) | \n\t\t\tin cane production | \n\t\t\t20.6 | \n\t\t
From sugar cane burning before harvest (C ) | \n\t\t\tCH4 N2O | \n\t\t\t19.1 18.2 | \n\t\t
From soil (C) | \n\t\t\tN2O | \n\t\t\t6.9 | \n\t\t
From fossil fuel consumption (C ) | \n\t\t\tCO2 | \n\t\t\t19.1 | \n\t\t
Total | \n\t\t\tA B C | \n\t\t\t16.1 20.6 63.3 | \n\t\t
GHG Emissions in Sugar Cane Ethanol Production (% of CO2 equivalent)
Source: Elaborated by using data from [21]
The results in Table 4 deserve some comments. The lower heat value of ethanol is compensated by the higher compression rate and better efficiency of the engine. In the use of anhydrous ethanol as an additive to gasoline, used in a proportion of 25% in Brazil (E25), 1 liter of ethanol corresponds to 1 liter of gasoline. In the case of hydrated ethanol the proportion is 1.3 liters of ethanol (E100) to 1 liter of E25, which means 1 liter of ethanol for 0.77 liter of E25 or 0.77 x 0.75 = 0.577 liter of gasoline. The direct emission factor of gasoline is 0.0693 kg CO2/MJ [5], but in a life cycle it becomes 0.0817 kg CO2 / MJ [24]. Instead of bagasse substitution for fuel oil to calculate H’ in Table 5, the emission by electric power generation in Brazilian interconnected grid established for the Clean Development Mechanism can be applied.
More recent data on the average emissions can be obtained from [25], considering the 2005/ 2006 harvest. Their case study focused on a set of Brazilian distilleries that process 100 Mt of sugar cane per year.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
Energy consumption EC (Mcal/t cane) Sugar cane agriculture Ethanol production Total | \n\t\t\t48.2 11.8 60.0 | \n\t\t\t45.8 9.5 55.3 | \n\t\t
Energy production EP (Mcal/t cane) (ethanol + electric energy from bagasse surplus) | \n\t\t\t499.4 | \n\t\t\t565.7 | \n\t\t
Energy gain (EP/EC) | \n\t\t\t8.3 | \n\t\t\t10.2 | \n\t\t
GHG emissions (kg CO2 equiv. / t cane) From fossil fuel consumption Others Total | \n\t\t\t19.2 15.3 34.5 | \n\t\t\t17.7 15.3 33.0 | \n\t\t
Total GHG emission (kg CO2 equiv./ m3 of ethanol) = (A+B+C) | \n\t\t\t405.8 | \n\t\t\t358.7 | \n\t\t
Net avoided CO2 (kg CO2 / m3 of ethanol) from gasoline (H) and fuel oil (H’) used for electric energy: H+H’- (A+B+C) For anhydrous ethanol For hydrated ethanol | \n\t\t\t2600 1700 | \n\t\t\t2700 1900 | \n\t\t
Percentage of avoided CO2 For anhydrous ethanol For hydrated ethanol | \n\t\t\t86% 81% | \n\t\t\t88% 84% | \n\t\t
Energy gain, GHG emissions and percentage of CO2 avoided by the Ethanol industry in Brazil
Source: Elaborated by using data from [21]
Using data from this article it is possible to calculate the net avoided CO2 in terms of percentage of fossil fuel CO2 emission. The results are:
For sugar cane and ethanol production the total GHG emissions, using GWP [26], are 436 kg CO2 equivalent / m3 of ethanol.
The net CO2 avoided emissions are 2323 kg CO2 / m3 of anhydrous ethanol.
In [14] the percentage of avoided fossil fuel CO2 emission due to anhydrous ethanol is 84.1 %.
The above results, confirmed by Table 5, conclude that a very high percentage of GHG emission is avoided by sugar cane ethanol substitution for gasoline.
In Brazil about 1 toe of bagasse is consumed to produce 2 m3 of ethanol [19], equivalent to 20,900 MJ/m3. Taking this value as the self consumption of energy in the distillery (from bagasse combustion) and assuming that, instead of bagasse, natural gas is burned, whose emission in life cycle is 0.095 kg CO2/MJ [24], 20,900 x 0.095 = 1985 kg CO2, in a first approximation, the emissions are reduced by 12%.
The above calculation roughly shows the avoided percentage of CO2 when fossil fuel is not necessary to produce ethanol as in corn ethanol. Other factors that make the latter more energy intensive than sugarcane ethanol: better photosynthetic efficiency of sugarcane, producing more biomass; corn produces starch, which must be hydrolyzed (broken down into sugars), before fermentation; corn demands significantly more nitrogen fertilizers than Brazilian sugarcane, which employs biological nitrogen fixation techniques. Besides, Brazilian sugarcane industry is increasingly employing high efficiency steam boilers. All these factors explain why the avoided CO2 from sugar cane ethanol is much higher than that from corn ethanol.
It is possible to improve the energy balance of sugar cane ethanol by:
Increasing sugar cane productivity in tons of cane per hectare;
Increasing the amount of ethanol produced from each ton of sugar cane;
Obtaining more agricultural residues through harvest mechanization;
Improving conversion efficiency of bagasse and trash (sugarcane top and leaves) into heat, mechanical and electric energy.
Ethanol productivity grew up from 2024 liters per hectare in 1975 to 5931 liters per hectare in 2005 [27]. The production of sugarcane in the period 1975-2006 rose from 89 million metric tonnes to 426 million metric tonnes [28]. However, for several reasons – old plantations, poor weather prior and during harvest, sugarcane production and ethanol yield has decreased in 2011, as shown in Table 6.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t |
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
2003 | \n\t\t\t359.3 | \n\t\t\t14.5 | \n\t\t\t74.8 | \n\t\t
2006 | \n\t\t\t426.0 | \n\t\t\t17.7 | \n\t\t\t75.7 | \n\t\t
2009 | \n\t\t\t622,6 | \n\t\t\t26,2 | \n\t\t\t84.1 | \n\t\t
2010 | \n\t\t\t627,3 | \n\t\t\t28,0 | \n\t\t\t90,0 | \n\t\t
2011 | \n\t\t\t565,8 | \n\t\t\t23,0 | \n\t\t\t80,0 | \n\t\t
On average, 55% of sugar cane has been used for producing ethanol in the last five years, but this percentage has decreased to 50.3% in 2011, one of the reasons for the steep decline from 2010 [9]. The best average ethanol yield ever obtained, was 92 liters/t of cane [29], but this performance will take some years to return, due to lack of investments in sugarcane plantation renovation, linked to the Federal Government current gasoline price freeze policy, which has also led to an increase of sugar production instead of ethanol.
The energy available in bagasse and trash is quite significant. Each ton of cane has 280 kg of bagasse with 50% of humidity and 2,130 kcal /kg [19], yielding 596 Mcal / ton of cane. The average value for trash is slightly lower, but the combined energy of bagasse and trash is more than the double of ethanol energy (Table 7) calculated with 92 liter with 0.8 kg/liter and heat value 6,500 kcal/kg [19].
\n\t\t\t\t\t | \n\t\t\t|
92 liters of ethanol (best value) | \n\t\t\t478 | \n\t\t
280 kg of bagasse with 50% of humidity | \n\t\t\t596 | \n\t\t
280 kg of trash with 50% of humidity | \n\t\t\t596 | \n\t\t
In 2006 bagasse production was 121.0 Mt, from which 71.5 Mt (59.1%) was converted into heat for sugar productiont, 42.0 Mt (34.7%) for ethanol production and 7.5 Mt (6.2%) for electric power, part of it exported to the grid [19]. Sugar cane trash was not computed. So, 94% of bagasse is converted into heat and mechanical work for sugar and ethanol production. If there were a reduction of 20% in this percentage, through efficiency improvement, the energy from bagasse available for electric power would increase by a factor of 4 (24.2+7.5/7.5).
Besides, if 50% of the trash is used, thermal energy for electric generation will increase by a factor (61.5+24.2+7.5 / 7.5) = 12.4. As nowadays only a small part of electric energy from bagasse is sold to the grid, the avoided GHG emission due to electric energy sale to the grid could be multiplied even further.
In this scenario, it would be possible to avoid more CO2 emissions than that from gasoline replaced by ethanol, as can be shown below. The percentage of net avoided CO2 in terms of percentage of fossil fuel CO2 emission is given by the following formula:
A = emission from fossil fuels to make the equipments and to construct the buildings for cane and ethanol production in an entire life cycle analysis;
B = emission from fossil fuel to produce fertilizers and other materials;
C = emission from fossil fuel in sugar cane production It includes emissions from diesel oil in tractors, mechanized harvesting and trucks for transportation
H = gross avoided emission of gasoline that is substituted with ethanol, in a life cycle analysis;
H’ = gross avoided emission of fossil fuel used for electric generation in the grid, replaced by electric energy sold by the distilleries, using the bagasse (and trash) surplus after their self consumption in ethanol production.
The electric installed capacity using bagasse in 2006 was 2.6 GW [19], 85% of which, 2.2 GW, for self consumption and 15%, only 0.4 GW, sold to the grid. In the same year 8,357 GWh was produced, 1,256 GWh relayed to the grid [BEN, 2007]. In the hypothesis of increasing by a factor 4 the electric power generation from bagasse, as pointed above, the installed capacity could become 10.4 GW and 10.4 – 2.2 = 8.2 GW could be sold to the grid, a twenty-fold increase, expanding generation to 25,120 GWh.
Assuming that it will replace natural gas plants (which has a life cycle emission 0.095 kg CO2/MJ [16]) with 40% conversion efficiency, the avoided CO2 yields 2.13 billion kg of CO2. As in 2006 ethanol production was 17.7 Mm3, the avoided emission would be 1,200 kg CO2/m3 of ethanol. The bagasse computed for electric generation in the above estimate came from ethanol and sugar production as this industry is integrated. Considering that 55% of sugar cane is for ethanol production, H’= 660 kg CO2/m3 of ethanol. Using in formula (1) this figure and the average values from Table 4, the result is P’= 1.10, or 110%.
Therefore, besides compensating the full emission of sugar cane and ethanol production, for each ton of CO2 avoided through ethanol substitution for gasoline, a further 100 kg of CO2 could be avoided due to bagasse surplus conversion into electric power.
Focusing only ethanol production and consulting again Table 6 and reference [19], it is easy to calculate that bagasse consumption for heat and mechanical work in ethanol production amounts to 42 x 2,130 / (426 x 0.55) = 382 Mcal/ t of cane. Subtracting this value from 596 Mcal (Table 6) there is a 214 Mcal bagasse surplus per ton of cane in ethanol production that can be used for electric energy. By the same token, it can be deduced that 68.2 Mcal of bagasse per ton of cane was used for electric power in 2006.
Considering a substitution of 1 liter of ethanol (average of hydrated and anhydrous) for 0.79 liter of gasoline, with heat value 10,400 kcal / kg and density 0.74 kg / liter, the corresponding energy is 0.79 x 0.74 x 10,400 = 6,080 kcal per liter of ethanol or 75.7 x 6,080 = 460,000 kcal/t of cane. In the case of 92 liters/t of cane the equivalent energy will be 559 Mcal / t of cane.
There are limits for the sugar cane residues recovery because a portion is needed to recycle nutrients as well as protect the soil from erosion and because mechanization cannot be used in more than 50% of the area with present technology, due to declivity. On the other hand, the burning of bagasse and residues could be done with improved thermodynamic efficiency. Table 8 shows a hypothetical scenario regarding the 2006 harvest, based in the above considerations:
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Ethanol (energy of displaced gasoline) | \n\t\t\t460* | \n\t\t\t559** | \n\t\t\t21% | \n\t\t
Bagasse for electric energy (part to grid) | \n\t\t\t68 | \n\t\t\t214*** | \n\t\t\t314% | \n\t\t
Trash for electric energy (all to grid) | \n\t\t\t- | \n\t\t\t298 **** | \n\t\t\tinfinite | \n\t\t
Energy (Mcal) from 1 Metric Ton of Sugar Cane
* Considering 75.7 liters of ethanol per ton of cane (Brazil’s average in 2006)
** With the best value of 92 liters of ethanol per ton of cane
*** It is subtracted self consumption of 377 Mcal / t of cane
**** 50% of total mass
The scenario of Table 7 does not take into account the possible improvement of efficiency in energy transformation that can increase the bagasse surplus, for instance by changing low efficiency steam systems for electric power. In many plants low pressure steam boilers are used. tone can obtain more mechanical and electric energy per ton of cane with higher efficiency systems, decreasing bagasse self consumption. In general the sugarcane sector in Brazil employ boilers and turbines with 22 bars of steam pressure, which can be increased to 60 bars or 80 bars, improving efficiency by at least a factor of 2. Bagasse self consumption in ethanol production is usually divided in the following way: 90% for heat in ethanol distillation, 5% for mechanical work and 5% for electric power. If efficiency is improved in the conversion of heat into mechanical and electric energy, not only the bagasse surplus will be higher, but there will also be more electric power available to the grid per ton of bagasse. Therefore, H’ could be even higher.
Harvest mechanization, utilized in such a way to avoid cane burning, can allow not only a higher value of H’ due to the use of trash in electric power generation, but also a lower value of C emission in formula 1. 100% of mechanization is not feasible because of the slope in part of the lands where sugar cane is planted. If mechanization is increased in 50% in relation to the case study depicted in Table 3, there could be a reduction of 0.5x 37.3= 18.6% in CO2 equivalent emission of CH4 and N2O from cane burning.
However, 50% more machine-based harvesting will increase emissions from diesel oil in the same proportion. Assuming that half of fossil fuel consumption in Table 3 is diesel oil, the corresponding emissions (0.5x.19.1%=9.5%) will increase by 4.75%. The net result should be an emission reduction of 18.6 – 4.75= 13.85%. Diesel oil can be eliminated by fuelling diesel engines with either biodiesel or ethanol with additive. In this scenario, the higher indirect energy in life cycle of harvesting machines (A in Table 3) is considered negligible.
The problem of increasing harvesting mechanization is the drastic reduction of workers in sugar cane crop. The number of workers in the year 2005 in sugar cane agriculture was 414 thousand, in sugar production 439 thousands and in ethanol industry 128 thousand [30]. However, manual harvesting of sugar cane is a very hazardous activity, often causing stress-related diseases in workers. Also, sugar cane burning is a major source of air pollution, causing respiratory illnesses to local populations.
The issue of food crop displacement due to biofuel competition has been raised recently by several authors, which have concluded that land use change is the main cause of GHG emissions of biofuels in general. Land use change (LUC) is a complex process caused by the interaction of natural and social systems at different temporal and spatial scales. LUC can induce GHG emissions due to oxidation of soil organic carbon and due to burning or decomposition of above-ground biomass.
However, it’s important to notice that biofuels account for a very small proportion of global agricultural production; approximately 2%, or around 36 Mha [31] from a total cropland area of around 1,527 Mha [32]. Therefore, the magnitude of GHG emissions due to LUC from global biofuel production is small compared to the total emissions from all LUC: agricultural land expansion for food, feed, fibre, cattle ranching, fuel wood and timber (loggings), and expansion of infrastructure generates the greater part of LUC emissions. With respect to biomass cultivation, LUC can be divided into:
Direct land Use Change (DLUC) – it occurs when bioenergy feedstock production modifies an existing land use, resulting in a change in above- and below-ground carbon stocks
Indirect land Use change (ILUC) - occurs when land that was formerly used for the cultivation of food, feed or fiber is now used for biomass production shifting the original land use to an alternative area that might have a high carbon stock, like forests and wetlands. This carbon stock could be reduced if utilized for agricultural purposes. The resulting (indirect) GHG emissions are (at least partly) caused by increasing biomass/biofuel production.
[33] were the first to address the issue of ILUC: they estimated that allocation of 12.8 Mha of corn to produce ethanol in the USA would result in 10.8 Mha of new cropland around the world. The conversion of native ecosystems to cropland would result in indirect emissions potentially twice as large as direct lifecycle emissions, yielding emissions that surpass the gasoline it would replace. As there are no direct measurements that can be made, the authors used a partial economic equilibrium model of the global agricultural sector to assess the indirect emissions. ILUC will be discussed in more detail in the next section.
The problem of ILUC is not new in Brazil. It was exhaustively discussed since the displacement of food crops in São Paulo State by sugar cane was pointed out a long time ago by [34;35]. There was indeed displacement of food crops; however, its dimension is very different in the case of sugar cane in Brazil as opposed to that of corn in US. The US participation in World corn production is higher than the participation of Brazil in global sugar cane production, while the area used for corn production in US is almost 5 times the area for sugar cane production in Brazil (Table 9).
\n\t\t\t\t | \n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
Percentage of World production | \n\t\t\t38% | \n\t\t\t21.7% | \n\t\t
Crop area | \n\t\t\t37 Mha | \n\t\t\t8.4 Mha | \n\t\t
Corn in US X Sugar Cane in Brazil
Source: [9;36]
In 2011, the area used for sugar cane production in Brazil was 8.4 million ha, 4.2 million ha each to produce ethanol and sugar. As previously mentioned, Brazil has 152 Mha useful for agriculture, but only 62 Mha are currently cultivated for food, feed and biofuels. Thus, sugar cane for ethanol utilizes only 2.7% of the area useful for agriculture, not taking into account the recovery of degraded pasture lands. Native vegetation area of Brazil comprises 440 Mha, most of it in Amazon rain forest, in the North. The production of sugar cane is concentrated in the Southeast, followed by Center West, South and Northeast regions, but only 0.4% from the North Region (Table 10).
Southeast - 63.7% | \n\t\t\tNortheast – 11.8% | \n\t\t\tCenter West-16.7% | \n\t\t\tNorth - 0.4% | \n\t\t\tSouth - 7.3% | \n\t\t
In September 2009, to emphasize the Brazilian Federal Government disposition to preserve its main natural resources from sugarcane expansion, EMBRAPA, its agricultural research agency, published the
Brazilian Sugar cane Agroecological Zoning
No correlation between expansion of sugar cane and soy beans crops and deforestation has been established, since Brazil’s production of both crops has continuously increased, whereas deforestation rates have been decreasing since 2005 [1].
There are two points to be observed about biofuels and deforestation:
The presence of sugar cane in Center-West region (17%) has an impact on the Brazilian Cerrado, although its savanna type vegetation is less dense than rain forest.
Soybean, mainly used for feed, but also for biodiesel, is different, because its presence in the North region is high, although Brazilian biodiesel production is only one-tenth of ethanol’s. A multi-stakeholder initiative was established in 2006 with a commitment from major buyers not to acquire soybeans from areas in the Amazon that have been deforested after July 2006. The Soy Moratorium was signed by corporate unions which represent more than 90% of Brazil’s soybean industry.
Among the goals of the Brazilian Biodiesel Program there is the cultivation of castor, palm, sun flower and other crops by small farmers to supply the raw materials. But, since its inception, soybean oil from large soybean plantations has been the dominant feedstock for biodiesel.
The commonly accepted drivers of deforestation are four, mainly in the rain forest:
wood extraction;
pastures for cattle grazing;
crop plantations;
mineral resource exploration.
But in the case of Brazil all these drivers increased in the last decade while the deforestation rates decreased, showing that this mainstream deforestation model does not hold true in Brazil.
Different concepts of deforestation yield different values of deforested areas due to the accounting (or not) of deforested areas where vegetation is growing again. In some studies the deforested areas are only the ones that really changed their land use definitively, but others consider the burning of biomass as deforestation. Nevertheless these differences are mostly qualitative for the Brazilian Legal Amazon. Another issue is the vegetation classification which leads to varying results in terms of carbon emissions for the same area. It depends on the adopted vegetation classification because carbon content can differ a lot. For example, according to HYDE/IVIG database, the Brazilian Legal Amazon land use changes representing agriculture and pasture lands added up to 422,070 km2, in 1990. The natural areas were originally tropical forest, wooded tropical forest and savanna. According to INPE database, the cumulative Brazilian Legal Amazon deforestation until 1990 was 415,000 km2. These numbers show the compatibility of the 2 databases in terms of magnitude but the quality of the information present huge differences. These differences indicate that it is important to adopt a more detailed focus of analysis with new indicators [38].
Deforestation was responsible for about 78% of CO2 emissions of Brazil in 2000/2005 [39]. In 2006, Brazil proposed to the UN Climate Change Convention the creation of an International Fund for Reducing Deforestation. In 2007, the Brazilian Forum on Climate Change The President is the chairman of the Brazilian Forum on Climate Change. Members include the Minister of Science and Technology, of the Environment, of Foreign Affairs of Energy, members from academia, NGOs and industry.
To achieve its GHG emission targets, NPCC set as one of its main actions a sustained reduction of deforestation rates in all Brazilian biomes, in particular the Amazon Forest. Specifically, it calls for a reduction of 40% in the average deforestation rate by the 2006-2009 period in relation to the average rate of the ten years preceding years (1996-2005). For each of the next two periods of four years, it aims to reach a further 30% reduction, in relation to the previous period.
Since Brazil does not belong to Annex I of the UN Climate Change Convention, it does not have to set a binding emission commitment. But its decision is compatible with the so called road map decided in Bali (in 2007), which called for
Before [33], biofuel “well-to-wheel” LCAs were mostly attributional, consisting of a linear chain-like series of analytical steps, carrying out no assessments of nonlinear feedback-like effects. As already mentioned, the above authors suggested that when including ILUC, the previously thought GHG-saving corn ethanol turned into a net producer of GHG emissions. This raised serious concerns and new efforts were launched, particularly in the U.S. and Europe, to study biofuels LUC.
The logic that supports ILUC is that biofuel production competes for agricultural resources, which results in an increase in the price of agricultural products, and these price increases cause additional conversions of the world’s grasslands and forests to cropland. This additional land conversion results in loss of carbon previously sequestered in grassland and forest ecosystems. These emissions are an indirect result of producing biofuels and should be considered in calculating the GHG implication of adopting biofuels.
The quantification of the net GHG effects of DLUC occurring on a site used for bioenergy feedstock production requires the definition of a reference land use as well as carbon stock data. This data can be uncertain but still allows quantification of emissions with sufficient confidence for guiding policy. ILUC emissions estimation, on the other hand, is highly problematic given the complexities of the economic and social systems that connect biofuel production with land conversion throughout the world.
To make matters worse, ILUC due to the recent expansion of the biofuel industry is hard to assess because this expansion constitutes a very small driver as ILUC effects are not specific to biofuels or bioenergy, but to all incremental land use, so the biofuel impact is likely to be dwarfed by other causes. Besides, as the name implies, ILUC cannot be measured, only modeled, although case studies could offer some useful evidence. The fact is, up to now, there is still no sound and commonly accepted methodology either to calculate or to assign iLUC effects properly. Hence, bioenergy policies worldwide face a dilemma: neglect iLUC effects that in fact exist or take them into account although no sound methodology is available?
Despite these difficulties, the US Environmental Protection Agency, as part of the updated Renewable Fuels Standard (RFS-2), specified that life-cycle GHG are to include “direct emissions and significant indirect emissions such as significant emissions from land use change” to determine if a specific biofuel is eligible to be counted towards the RFS-2 mandate. Biofuels in the RFS were divided into four categories:
Renewable biofuel – any qualifying renewable fuel, including corn ethanol. Must meet 20% lifecycle GHG threshold
Advanced biofuel – anything but corn ethanol, can include cellulosic ethanol and biomass-based diesel. Must meet 50% lifecycle GHG threshold
Cellulosic biofuel – renewable fuel produced from cellulose, hemicellulose, or lignin. BTL, green gasoline also apply. Must meet 50% lifecycle GHG threshold
Biomass-based diesel – biodiesel, renewable diesel. Must meet 50% lifecycle GHG threshold
Using the FAPRI/CARD model, EPA published in 2009 an analysis of GHG emissions of a set of biofuels: US corn ethanol, Brazilian sugarcane ethanol, soybean biodiesel, among others. Brazilian sugarcane ethanol, after taking ILUC into account, was found to reduce emissions by 26%, which would disqualify it as an advanced biofuel. Corn ethanol did not qualify as a renewable fuel, except when cogeneration was used, nor did soybean biodiesel. There was an immediate backlash from the industry.
ICONE, a Brazilian consultancy, sent a letter to EPA listing shortcomings of the agency’s adopted model. It presented BLUM - Brazilian Land Use Model, more sophisticated, with better spatial resolution, and whose calculations resulted in total emission reduction (DLUC + ILUC) of 60%.
On February 2010, EPA concluded that, in fact Brazilian sugarcane ethanol reduced emissions by 61%, qualifying it as an advanced biofuel. The impacts of this decision will be discussed in the following section. EPA also revised the GHG emission reductions of other biofuels: corn ethanol was found to reduce emissions by 21%, qualifying it as a renewable fuel; soybean biodiesel was found to mitigate 57% of emissions, qualifying it as biomass-based diesel.
In the European Union (EU), ILUC calculations were more carefully considered. On April 2009, the EU adopted the Renewable Energy Directive which included a 10% target for the use of renewable energy in road transport by 2020. It set a minimum rate of direct GHG emissions savings – 35% in 2009, rising over time to 50% in 2017. Moreover, the European Commission (EC) was asked to examine the matter of ILUC, including measures to avoid it and report back this issue by the end of 2010. In that context the EC undertook a review of the scientific literature modelling the land use change impacts of biofuels, reviewing over 150 contributions on the topic and reviewing 22 different modelling exercises [40]. Large discrepancies were found in their results, reinforcing the arguments that good estimates of land use indirect impacts are hard to achieve. Comments sent to the EC [41] in regard to the need to improve sugarcane ethanol model assumptions from those studies include:
Projections on sugarcane and ethanol yield: models project smaller yields as compared to historical trends
Poor analysis or lack of analysis on pasture intensification, leading to an overestimation of LUC resulting from the expansion of biofuels, as pasture is the largest land user in Brazil and there has been high cropland expansion in this land category in the current decade
Lack of evidence supporting the criteria used to allocate marginal land demand over native vegetation. The main criterion was historical data, either inaccurate or based on the assumption that additional cropland due to biofuels expansion will determine a frontier advancement similar to what has been observed historically.
The EC published a report in December 2010 setting out four policy options it was considering:
Take no action for the time being while continuing to monitor.
Increasing the minimum greenhouse gas threshold for biofuels.
Introducing additional sustainability requirements for certain biofuels.
Attributing GHG emissions to biofuels reflecting the estimated ILUC impact
Recognizing the difficulties in establishing a consistent methodology for calculating biofuels ILUC emissions, as of this writing, no decision has yet been made by the EC.
The next question concerning possible impacts arising from the expansion of sugar cane production is related to the potential exportation of ethanol to OECD countries.
The European car fleet uses a growing proportion of diesel engines, although there is a non negligible consumption of gasoline either with or without ethanol as additive. For instance, part of Sweden’s car fleet uses 80% of ethanol and 20% of gasoline (E80).
The most important ethanol producers, as well as the countries to which Brazil exports can be seen in table 11. Only the USA and Brazil, which together supply 87% of the world’s production, use ethanol substitution for gasoline in a large scale. The current percentage of ethanol mixed to gasoline in the US is 10%, due to an EPA blend “wall”, which has recently expanded to a 15% threshold.
Until recently, the North-American market, almost all supplied by domestic production, was not open to Brazilian ethanol. However, at the end of 2011, a U$ 0.54/gallon levy on Brazilian ethanol, as well as a US$ 0.45/gallon credit for American producers of corn ethanol was waived, paving the way for a better relationship between these two major players. Also, due to EPA’s classification of Brazilian ethanol as an advanced biofuel, the US market, where Otto cycle engines are predominant in the car fleet, has become more attractive than ever. There are other potential importers, as Japan, where Petrobras created a joint venture with Mitsubishi to export ethanol. China, which uses corn to produce ethanol, has also become a major market. Many foreign investors are being attracted to ethanol agro-business in Brazil, including oil majors (BP, Shell) as well as companies researching 2nd generation biofuels, due to the widely held perception of sugarcane comparative advantages over corn, as seen on table 12:
Inefficacy of corn ethanol to mitigate global warming (as previously discussed).
higher competition of corn ethanol with food agriculture (as previously discussed);
lower productivity per hectare and higher cost of corn ethanol (Table 11);
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t||
USA | \n\t\t\t54.2 | \n\t\t\tSouth Korea | \n\t\t\t334 | \n\t\t
Brazil | \n\t\t\t21.0 | \n\t\t\tUSA | \n\t\t\t233 | \n\t\t
China | \n\t\t\t2.1 | \n\t\t\tJapan | \n\t\t\t230 | \n\t\t
Canada | \n\t\t\t1.8 | \n\t\t\tNetherlands | \n\t\t\t221 | \n\t\t
France | \n\t\t\t1.1 | \n\t\t\tUnited Kingdom156 | \n\t\t\t\n\t\t |
Germany | \n\t\t\t0.8 | \n\t\t\tJamaica | \n\t\t\t107 | \n\t\t
Spain | \n\t\t\t0.5 | \n\t\t\tNigeria | \n\t\t\t80 | \n\t\t
TOTAL | \n\t\t\t86.1 billion liters | \n\t\t\tTOTAL | \n\t\t\t1.650 million liters | \n\t\t
\n\t\t\t\t | \n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
Sugar cane ethanol | \n\t\t\t4000 to 7000 liters / ha | \n\t\t\t0.19 US$ / liter (S.Paulo) | \n\t\t
\n\t\t\t | \n\t\t\t | 0.23 US$ / liter (Northeast Region) | \n\t\t
Corn ethanol | \n\t\t\t3500 to 4700 liters / ha | \n\t\t\t0.33 US$ / liter | \n\t\t
Comparison of Sugar Cane Ethanol with Corn Ethanol
Source: [44;17]
Based on Brazilian ethanol’s competitive advantages, it is reasonable to imagine a virtual extreme scenario for future ethanol demand to be supplied through international trade. According to the RFS2 mandate, US biofuels consumption will total 136.5 billion liters/year by 2022, 19 billion from advanced biofuels, for which only Brazilian sugarcane ethanol currently qualifies. The entire American market alone will be equal to 7 times Brazil’s current production.
If we consider a technology and productivity freeze, land requirement should increase seven-fold, resulting in 28 Mha for sugar cane ethanol, approximately 25% of the land still available to expand agriculture in Brazil. This percentage is not small taking into account the need of cropland for food and feed to supply the internal market (including biofuels), as well as exports to other countries. If the EU ethanol market expands, due to a more favorable ILUC-wise view of this biofuel over biodiesel, the area needed for sugar cane exports could become too large, especially if we consider the inherent problems of very large monocultures. Second generation technology for ethanol production can change the present prospects.
At this point there is no major obstacle from a land use point of view to expand ethanol supply for Brazil’s internal market, but it should not attempt to supply all the global ethanol market, if it is decided that biofuels is a valid global warming mitigation scheme. Conversely to aforementioned studies, emissions due to indirect land use change in Brazil cannot beattributed to the increase of biofuel production, because deforestation and ethanol production have presented opposite trends for almost ten years.
Government’s scenarios predict a domestic demand of 63 billion liters of ethanol in 2020 [45]. However, due to the recent downfall of ethanol exports from a peak of 5.1 billion liters in 2008, the amount exported in 2020 has been revised to only 6.8 billion liters. Brazil can comfortably supply such quantities as the area needed – 10 Mha - is compatible with the available land for agriculture.
As was pointed out in the present paper, CO2 is dominant among GHG emissions and automotive fleet contributes with 20% of World CO2 emission. It amounted to 890 million light vehicles in 2005 and it consumes half of petroleum products in the World [46]. Besides, the fleet increases 20% per year in China and 3.5% in Brazil, where more than half the cars are flex fuel vehicles running with either gasoline or ethanol. As in Brazil cars use from 25% to 100% of ethanol, CO2 avoided emissions are substantial.
Ethanol per se is not enough to mitigate CO2 emissions at the World level. A deeper change in energy technology, transport, and consumption pattern is needed, including in public transportation, which use more efficient diesel engines. But ethanol can become an important fuel for different technologies, besides Otto cycle engines in cars. With additives, ethanol could feed Diesel engines used in buses, trucks and railway trains. It serves as fuel in hybrid vehicles of electrical propulsion - in which an Otto or Diesel engine is coupled to an electric generator that supplies current to an electrical motor and to accumulate energy in batteries – or in fuel cell vehicles to replace combustion engine based ones.
Sugar cane is the better way to produce bio-ethanol, from both an economic and environmental view point, including GHG mitigation through gasoline replacement. However, ethanol industry in Brazil has to improve, undergo technological changes, some of them concerning efficiency in energy transformation and natural resource use, by applying the best available technologies. The main changes must be, at a first level:
Efficiency improvement in the transformation of sugar cane bagasse chemical energy into heat, mechanical and electric energy for self consumption and export to the grid; current participation of bagasse in the Brazilian electric generation matrix is too small and must increase.
Utilization of the sugar cane trash, which is burned before harvesting to allow access to manual laborers; the amount of energy that could be converted into electric generation is significant.
Item (b) implies the increase of harvesting mechanization in sugar cane agriculture, decreasing the number of workers; however, manual harvesting is known to be hazardous.
Job conditions of workers in sugar cane plantation have to improve in some cases, including a social dimension besides the environmental one in clean energy production.
Technological improvement in agriculture.
On a second level there are:
Gasification of sugar cane bagasse and sugar cane residues;
Second generation ethanol production through hydrolysis;
Bio-refineries with multiple byproducts or integrated oil & bio-refineries, in an advanced concept.
Gasification could allow either high efficiency conversion in electric energy through combined cycle or could be used to produce liquid fuel from gas. Second generation ethanol consists in an acidic or enzymatic hydrolysis followed by fermentation that converts cellulose from biomass into ethanol.
The commercial use of hydrolysis can reduce sugar cane comparative advantage in relation to other kinds of vegetable to produce ethanol. On the other hand, the entire sugar cane biomass could be used to obtain ethanol, including the hydrolysis of bagasse and residues, as well as allowing fermentation of pentoses from hemicellulose to produce ethanol. [28] predicts a time horizon between 2010 and 2020 for second generation ethanol to become commercial, while gasification will take a little bit longer, 2015 to 2025, in spite of already existing technological uses of wood gasification. In the case of hydrolysis there are prototypes and some recent small scale industrial plants are in construction in the World, but no 2nd generation ethanol production has, to this date, become commercial.
Bio-refineries can produce ethanol together with other chemical byproducts. For instance, biodiesel production needs ethanol or methanol and has glycerol as a byproduct that can be used to produce biogasoline. Since the beginning ethanol production in Brazil was integrated with sugar production in the so-called annex distilleries. A more advanced concept is the integration of bio-refinery with oil refinery.
Finally, biofuels for private cars must not prevent the search for technical and social efficiency in transport, with an emphasis on public transport. Climate Change Policy must be devoted to find realistic solutions for sustainable development with social justice. Elimination of poverty needs more energy per capita in developing countries, but, at same time, it is necessary to change the intensive energy use and consumption pattern of high income and middle classes. It is not possible to radically mitigate global warming without any change in business as usual energy consumption.
The World Health Organization in 1980 defined stroke as “the rapidly developed clinical signs of focal (or global) disturbance of cerebral function, with symptoms lasting 24 hours or longer or leading to death, with no apparent cause other than of vascular origin” [1]. In 2013, the American Stroke Association for the 21st century came up with a new broader definition of stroke [2]. The new definition of stroke includes “brain, spinal cord, or retinal cell death attributable to ischemia, based on 1. pathological, imaging, or other objective evidence of cerebral, spinal cord, or retinal focal ischemic injury in a defined vascular distribution; or 2. clinical evidence of cerebral, spinal cord, or retinal focal ischemic injury based on symptoms persisting ≥24 hours or until death, and other etiologies excluded” [2]. Stroke is a major cause of morbidity and it remains the second leading cause of death worldwide after ischemic heart disease [3, 4]. Stroke is also the third most common cause of disability with significant increase in stroke burden in the world and especially in developing countries [5]. On average in the United States (U.S.) someone has a stroke every 40 seconds [6].
Stroke is divided into ischemic and hemorrhagic stroke. Hemorrhagic stroke is further divided into intracerebral and subarachnoid hemorrhage. Approximately 85% of all strokes are ischemic with the remaining 15% being hemorrhagic [7]. We have currently moved away from using terms such as “cerebrovascular accident” and “reversible ischemic neurologic deficit” [7].
Transient ischemic attacks (TIA) also known as “warning strokes” are defined by the American Heart Association and American Stroke association as “brief episodes of neurological dysfunction resulting from focal cerebral ischemia not associated with permanent cerebral infarction” [8]. Although it is difficult to count the exact numbers of patients suffering from TIAs, in the U.S. this number has been estimated to be 200,000–500,000 per year [8].
Ischemic stroke is the result of a blockade of the arteries that supply the brain. The most common criteria used for classifying the causes of ischemic stroke are the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria [9]. The TOAST criteria group the causes for ischemic stroke into five main groups which include: 1) large-artery atherosclerosis, 2) cardioembolic, 3) small-vessel occlusion, 4) stroke of other determined etiology and 5) stroke of undetermined etiology [9].
Hemorrhagic stroke results from the rupture of a blood vessel resulting in blood outside the vessel in the brain parenchyma. Intracerebral hemorrhage has an annual incidence of 10–30 per 100,000 population and there has been an 18% increase in intracerebral hemorrhage in the last ten years [10]. Subarachnoid hemorrhage is the presence of blood in the subarachnoid space, the space between the arachnoid mater and the pia mater. Common causes of subarachnoid hemorrhage include trauma, rupture of an intracranial aneurysm and perimesencephalic hemorrhage [11]. The overall global incidence of aneurysmal subarachnoid hemorrhage is 7.9 per 100,000 people per year [12]. Rupture of a cerebral aneurysm resulting in subarachnoid hemorrhage remains a neurosurgical emergency. The mortality rate for patients hospitalized with non-traumatic subarachnoid hemorrhage can be higher than 25% [13].
Risk factors of stroke have been well established some of which are hypertension, hyperlipidemia, diabetes and smoking [14]. Prevention of stroke can be achieved by managing the above risk factors. Prevention of stroke is key as survivors of stroke often face poor functional outcome as well as cognitive and physiological impairment [15].
The National Institutes of Health Stroke Scale (NIHSS) is a scale used by medical personnel to determine the severity of the neurological deficit following a stroke [16]. The scale ranges from 0 to 42 with higher scores reflecting a worse neurological impairment [16]. The NIHSS can also be used after treatment to assess any improvement in clinical symptoms. The NIHSS is probably the most widely used stroke scale. However due to some limitations efforts are made to improve and modify it [17]. Another widely used scale to predict functional outcome following a stroke is the modified Ranking Scale (mRS) [18]. The mRS is a categorical scale ranging from 0 to 6 with score 0 referring to a fully independent patient and score 6 referring to someone being dead [18].
The key in managing a patient who is experiencing a stroke is early recognition of symptoms. Any patient who is suspected of having a stroke should undergo emergent computed tomography of the brain in order to determine whether the stroke is ischemic or hemorrhagic in nature. If hemorrhagic stroke is excluded, ischemic stroke is suspected and if there are no contraindications intravenous tissue plasminogen (tPA) activator should be administered. Computed tomography perfusion (CTP) is necessary to identify the salvageable brain region. Computed cerebral angiography (CTA) should also be performed to look for any large vessel occlusion. If a proximal large vessel occlusion in the anterior circulation is identified patients who meet the criteria can undergo endovascular mechanical thrombectomy to relieve the obstruction.
Following mechanical thrombectomy the modified Thrombolysis in Cerebral Infarction (mTICI) grade is used to determine the percent of arterial revascularization. Over the years the scale has been modified. The original scale had scores ranging from 0 to 4 [19]. The scores on the most recent scale range from 0 to 3 with score 2 being divided into a, b and c [20]. mTICI 0 refers to no perfusion or anterograde flow beyond the site of occlusion [20]. mTICI 1 refers to penetration but no perfusion [20]. mTICI 2a refers to some perfusion with distal branch filling of less than 50% of territory visualized [20]. mTICI 2b refers to substantial perfusion with distal branch filling of more than equal to 50% of territory visualized [20]. mTICI 2c refers to near complete perfusion except for slow flow in a few distal cortical vessels, or presence of small distal cortical emboli [20]. mTICI 3 refers to complete perfusion with normal filling of distal branches [20].
Stroke is a health condition that neurosurgeons deal with on an everyday basis. Over the years the management of ischemic stroke is a field that has been rapidly evolving and advancing. The focus of this book chapter will be to discuss the history that has led to the current techniques used by neurosurgeons for treating ischemic stroke.
The word “apoplexy” was first documented in the Hippocratic Corpus and refers to a person collapsing while retaining pulse and respiration [21]. In Greek language the word αποπληξία (apoplixia) means to be struck with violence. The following extract from the Hippocratic writings gives a description of apoplexy: “The healthy subject is taken with a sudden pain; he immediately loses his speech and rattles in his throat. His mouth gapes and if one calls him or stirs him he only groans but understands nothing. He urinates copiously without being aware of it. If fever does not supervene, he succumbs in seven days, but if it does he usually recovers.” [22]. In the Greco-Roman period apoplexy was a term used to describe strokes, epilepsy and migraines [21, 23]. The four humours (blood, phlegm, yellow bile and black bile) were first mentioned in the Hippocratic treatise called
During the Medieval era the concepts around apoplexy remained grossly unchanged [21]. The ideas of apoplexy in the Medieval era remained influenced by ideas from Greco-Roman works [21].
More information into the cause of apoplexy was obtained during the Renaissance era, between the 14th and 17th century [21]. During the Renaissance era autopsies were permitted and the ancient works were translated in this way expanding the knowledge of apoplexy [21]. In 1599, the Oxford English Dictionary gave a synonym for the “stroke of the palsy” as the “stroke of God’s hands” [27].
From the 17th century and onwards the various conditions that made up the term apoplexy started to be individually explored [21]. In 1658, Johan Jakob Wepfer published “
In 1852, Rudloph Virchow played an important role in shaping our understanding of stroke as he was the first to identify that stroke was the result of an embolism and/or thrombus [21, 29]. In fact Virchow was the first to use the term “thrombosis” and “embolus” that can lead to decrease blood flow in distal vessels and can result in stroke [30].
Approximately 8% of all ischemic strokes are due to extracranial internal carotid artery stenosis [31]. Chiari in 1906 and Hunt in 1914 performed autopsies in patients who had suffered from cerebral infarction and noted that lesions in the cervical carotid artery could be the culprit for the stroke [32]. Fisher in 1951, published case reports that showed that the cause of cerebral infarction was secondary to occlusion of internal carotid artery [32]. The introduction of cerebral angiography in 1927 by Moniz played a crucial role in the understanding of carotid artery disease and the subsequent development of carotid endarterectomy (CEA) [33]. The first carotid artery reconstruction was completed in 1951 in Buenos Aires and it was the result of the combined work of Fisher, Murphy, Carrea and Mollins [34]. In 1953, Debakey successfully completed the first CEA surgery for a patient with cerebrovascular insufficiency [35]. However, Debakey did not publish this case report until 1975 [36]. In the meanwhile, in 1956 Cooley was the first to publish a case report on a patient undergoing a successful CEA [37]. This was also the first report of the application of a temporary shunt during a CEA [37].
In 1969, the Joint Study of Extracranial Arterial Occlusion was published that showed that in 2,400 operations performed between 1961 and 1968 there was a 4.5% surgical mortality [38]. The indications for CEA remained unclear and given the surgical risk associated with the surgery, it took years before it became the standard of care [39]. In 1991, The North American Symptomatic Carotid Endarterectomy trial (NASCET) and the European Carotid Surgery (ECS) trial proved that patients with symptomatic carotid stenosis of 70–99% who underwent CEA had better outcomes when compared to patients who were treated medically [40, 41]. Specifically, the NASCET study showed that there was an absolute risk reduction of 17 ± 3.5 percent (P < 0.001) of having any ipsilateral stroke at two years and an absolute risk reduction of 10.6 ± 2.6 percent (P < 0.001) for a major or fatal ipsilateral stoke when comparing patients who underwent CEA versus those who underwent medical management [42]. The ECS trial showed that patients with carotid artery stenosis of 70–99% (P < 0.0001) had a six fold reduction in their risk of experiencing stroke during the next three years if they underwent surgical treatment versus medical management [43].
In addition, in 1995 the Asymptomatic Carotid Artery Stenosis (ACAS) trial showed that patient with asymptomatic carotid artery stenosis of 60% or greater benefited from CEA [44]. In this study there was a 53% risk reduction of having a stroke in patients treated surgically versus those treated medically [44].
Subsequently there was also interest as to whether carotid artery stenting (CAS) could replace CEAs. In 2010, a randomized controlled trial showed that CAS was associated with a significant higher periprocedural risk of stroke, whereas CEA was associated with a higher risk of myocardial infarction [45]. This study also showed that in the four year follow up there was no significant difference of further strokes between the two groups [45].
A milestone in the management of ischemic stroke occurred in 1995 when the National Institute of Neurological Disorders and stroke rt-PA Stroke Study (NINDS) showed that administering intravenous recombinant tissue plasminogen activator (tPA) within 3 hours of symptoms onset had favorable outcomes in stroke management [46]. Intravenous tPA is a thrombolytic agent used to break down a clot [47]. In particular, it converts the inactive plasminogen into plasmin a proteolytic enzyme that breaks down fibrin [47]. The NINDS study was a randomized, double-blind trial with patients either randomized to receiving intravenous tPA or placebo, within 3 hours of the onset of symptoms [46]. The results of the study showed that neurological improvement was similar between the two groups 24 hours after treatment and better in the group that received intravenous tPA at three months [46]. The major adverse effect in the treatment group was symptomatic intracerebral hemorrhage within 36 hours after treatment that occurred in 6.4% of the treatment group versus 0.6% of the placebo group (P < 0.001) [46].
The European Cooperative Acute Stroke Study (ECASS) I published in 1995 was a randomized controlled study that divided subjects into two groups those receiving 1.1 mg per kg of body weight of intravenous tPA or placebo [48]. Patients were included in the study if they presented within 6 hours from onset of symptoms and had moderate to severe neurological deficit [48]. Patients receiving intravenous tPA had better mRS at 90 days and better neurological recovery in comparison to the placebo group [48]. The incidence of intracerebral hemorrhage and mortality rate was similar between the groups [48]. However, the group receiving intravenous tPA had a higher incidence of large intracerebral hemorrhage [48].
Other randomized controlled studies including the ECASS II in 1998 and the Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke (ATLANTIS) B in 1999 urged against the use of intravenous tPA beyond 3 hours in management of ischemic stroke [49, 50]. This conclusion was based on the high incidence of intracerebral hemorrhage that was observed in those who received intravenous tPA [49, 50].
In 2008, ECASS III study, a randomized controlled study, showed that administration of intravenous tPA to patients with ischemic stroke up to 4.5 hours after the onset of stroke symptoms was beneficial [51]. Patients were randomly assigned to either receive intravenous tPA or placebo and the median time for administration of the medication was 3 hours and 59 minutes [51]. The study showed that the group that received tPA had better outcomes than the placebo group (52.4% vs. 45.2%, confidence interval (CI), 1.02 to 1.76; P = 0.04) [51]. Both incidences of any intracerebral hemorrhage and symptomatic intracerebral hemorrhage were higher in the treatment group versus the placebo group with results being 27% vs. 17.6%, P = 0.001 and 2.4% vs. 0.2%, P = 0.008 respectively [51]. Mortality and other serious adverse events were similar between the groups [51].
Intracerebral hemorrhage following intravenous tPA remains a concern that can lead to devastating results. To decrease the risk of intracerebral hemorrhage following intravenous tPA, the American Heart Association and American Stroke Association issued guidelines with strict criteria for which patients are eligible for receiving intravenous tPA [52]. Other limitations to consider is that larger and more proximally located thrombi might not respond to intravenous tPA [53]. It has been reported that restoration of blood flow in large vessel occlusion after intravenous tPA ranges between 10 and 30% depending on the large vessel that is occluded [53].
Given the limitations of intravenous tPA other avenues for management of ischemic stroke were needed. The Prourokinase (Prolyse) in Acute Cerebral Thromboembolism (PROACT II) study, a randomized controlled study aimed to determine the effects of administrating intraarterial recombinant prourokinase (r-proUK) compared to heparin within 6 hours of onset of symptoms [54]. The PROACT II study showed an increase in recanalization rate and improvement in modified Rankin score in patients treated with r-proUK versus those who were treated with heparin alone [54]. The major limitation of r-proUK was an increase in intracerebral hemorrhage 24 hours after administration that was associated with neurological deterioration (10% in treatment group versus 2% in control group, P < 0.06) [54].
Another medication that has been considered for the management of acute ischemic stroke is tirofiban [55]. Tirofiban is a glycoprotein IIb/IIIa platelet receptor antagonist [55]. The Safety of Tirofiban in acute Ischemic Stroke (SaTIS) trial aimed to determine whether tirofiban could be used for the treatment of acute ischemic stroke [55]. SaTIS was a prospective, open-labeled treatment, blinded outcome reading multicenter trial [55]. Patients that were included in the study had an NIHSS between 4 and 18 and received either intravenous tirofiban or placebo up to 48 hours from onset of symptoms [55]. There was no difference between the two groups in terms of intracerebral hemorrhage or neurological outcome up to five months of treatment [55]. Five months following intervention mortality was lower in the treatment group [55].
In 2005, the Mechanical Embolus Removal in Cerebral Ischemia (MERCI) trial revolutionized the way ischemic strokes are managed [56]. This was the first study that showed how endovascular embolectomy using a first generation device can improve outcomes of ischemic stroke [56]. The MERCI trial used the embolectomy device (Merci Retriever) for patients who presented within 8 hours of onset of stroke and were otherwise ineligible for intravenous tPA administration [56]. The study showed that recanalization was achieved in 48% of patients who underwent embolectomy and the risk of intracranial hemorrhage was significantly lower, only 7.8%, in comparison to 10% in the PROACT II study [56]. In 2008, after the development of the Merci Retriever the Penumbra System was developed. The Penumbra device is a second generation thrombectomy device that is inserted all the way through the clot followed by application of mechanical aspiration with the use of a suction pump [39]. By using the Penumbra System partial to normal reperfusion was achieved in 81.6% of patients, a percentage higher than that achieved by using the Merci Retriever [56, 57]. Intracranial hemorrhage was observed in 28% of patients on post procedural 24 hour CT scan however only 11.2% were symptomatic [57]. Despite the increase in intracranial hemorrhage observed with the Penumbra device in comparison to the Merci Retriever the 90-day mRS of less than or equal 2 was similar between the two groups, with 25% for the Penumbra system and 27.7% for the Merci Retriever [56, 57]. Shortly thereafter stent retrievers were developed for the use as thrombectomy devices.
In 2012, a third generation mechanical thrombectomy device was introduced. The Solitaire Flow Restoration device versus the Merci Retriever in patients with acute ischemic stroke was studied [58]. The SWIFT study was a randomized, parallel-group, non-inferiority trial that showed that Solitaire Flow Restoration device is significantly better than the Merci retriever device [58]. In particular, patients treated with the Solitaire Flow Restoration device had a rate of recanalization of 61% in comparison to 24% in those treated with the Merci Retriever device [58]. With the use of the Solitaire flow restoration device the rate of symptomatic intracranial hemorrhage was decreased and the overall neurological outcomes were better [58].
Another area of interest was whether devices that combined direct aspiration with thrombectomy would be beneficial in the management of ischemic stroke. The MAX reperfusion catheters as well as a direct aspiration first pass technique (ADAPT) enabled direct aspiration with thrombectomy [53]. In 2018, a randomized controlled study aimed to determine whether there was a difference in ischemic stroke outcomes when the novel 3-dimensional (3-D) stent retriever was used in conjugation with an aspiration-based mechanical thrombectomy device (Penumbra System; Penumbra) versus the aspiration-based thrombectomy alone [59]. The results of the study showed that 87.2% in the 3-D stent retriever with aspiration group versus 82.3% in the aspiration based thrombectomy alone group had a mTICI of 2–3 [59]. The 90-day mRS score of 0 to 2, device-related serious adverse events and procedure-related serious adverse events were similar between the two groups [59].
The next step in the management of acute ischemic stroke was to determine whether endovascular thrombectomy was superior to standard medical care alone [60]. There were five key randomized control studies that aimed to answer this question: MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, and EXTEND IA [61, 62, 63, 64, 65].
The MR CLEAN trial aimed to determine whether patients who presented within 6 hours after onset of ischemic symptoms and proximal intracranial occlusion of the anterior circulation would benefit from mechanical thrombectomy [61]. In particular, all patients in the study received intravenous tPA and were subsequently randomized to receive either intraarterial treatment or not [61]. The study showed that there was improvement in functional independence in the treatment group but no changes in mortality or the occurrence of symptomatic intracerebral hemorrhage between the two groups [61].
The ESCAPE study assessed whether patients who presented within 12 hours of onset of symptoms would benefit from mechanical thrombectomy [62]. The patients included in the study had a proximal vessel occlusion in the anterior circulation and they all received intravenous tPA [62]. The experimental group also received mechanical thrombectomy [62]. The results of the study showed that patients who received mechanical thrombectomy had substantial increase of functional independence (53% in the treatment group versus 29.3% in the control group; P < 0.001), decreased mortality in the intervention group and similar intracerebral hemorrhage rates [62].
The REVASCAT study examined whether there is a difference in outcome in patients when treated with a combination therapy of both intravenous tPA (if eligible) and mechanical thrombectomy than those treated with medical therapy alone [63]. The patients who were included in the study had to present within 8 hours of onset of symptoms and had to have a proximal anterior circulation occlusion [63]. Solitaire stent retriever was the device used for the thrombectomy group [63]. The results of the study showed that functional independence was increased in the experimental group, with 43.7% having functional independence (mRS score of 0–2) in 90 days versus 28.2% in the control group [63]. The rates of intracerebral hemorrhage remained the same in both groups [63].
The SWIFT PRIME study aimed to determine whether patients treated with both intravenous tPA and Solitaire Revascularization Device within 6 hours of symptoms onset had better outcome than those who were treated with intravenous tPA alone [64]. The results of the study showed that there was a greater proportion of patients in the experimental group that were functional independent at 90 days in comparison to the control group [64]. Secondary outcomes such as functional independence at 90 days, improvement in NIHSS score and successful reperfusion at 27 hours were better in the treatment group versus the control group [64]. There was no significant difference in complications between the two groups [64].
The EXTEND IA study aimed to determine whether patients treated with both intravenous tPA and Solitaire Revascularization Device within 4.5 hours of symptom onset had better outcome than those who were treated with intravenous tPA alone [65]. The results of the study showed that reperfusion at 24 hours was better in the experimental group versus the control group (median, 100% vs. 37%, P < 0.001) [65]. The neurological improvement at 3 days and the functional outcome was better in the experimental group versus the control group [65]. With regards to adverse consequences such as death and intracerebral hemorrhage the results were similar between the two groups [65].
Subsequently, a meta-analysis published in 2016 looked at the results from the above five randomized controlled trials [60]. There were 1287 patients that were included in the study and who had an acute proximal anterior circulation stroke [60]. Prior to randomization to the two groups patients received intravenous tPA if they met the inclusion criteria [60]. The major results of this meta-analysis were: 1) endovascular thrombectomy led to reduced disability at 90 days, 2) the risk of intracerebral hemorrhage and symptomatic hemorrhage did not differ between the groups and 3) the mortality rate was similar between groups [60].
In 2018, two major randomized controlled studies the DAWN and the DEFUSE 3 were published [66, 67]. The data collected from these studies showed that mechanical thrombectomy can be extended to 24 hours from onset of stroke symptoms [66, 67]. The DAWN study randomized patients to receive either intravenous tPA alone (control group) or thrombectomy plus intravenous tPA (experimental group) [66]. The patients had an intracranial internal carotid artery or proximal middle cerebral artery occlusion and were last known well 6–24 hours prior [66]. The patients included in the study had disproportionately worse neurological exam in comparison to the infarct volume that was observed on imaging [66]. The study showed that at 90 days the thrombectomy group had a better mRS score and improved functional independence [66]. Adverse effects such as intracerebral hemorrhage and death were similar between the two groups [66].
The DEFUSE 3 study was a multicenter, randomized, open-label trial, in which the control group received intravenous tPA and the experimental group received endovascular therapy plus intravenous tPA [67]. Patients who were included in the study had onset of symptoms 6–16 hours prior to presentation, were found to have proximal middle cerebral artery or internal carotid artery occlusion with initial infarct size less than 70 ml and a ratio of the volume of ischemic tissue on perfusion imaging to infarct volume of 1.8 [67]. The study showed that patients who underwent mechanical thrombectomy had an increase chance of being functionally independent (45% vs. 17%, P < 0.001) and the 90-day mortality rate was 14% in the experimental group versus 26% in the control group [67]. Symptomatic intracerebral hemorrhage and adverse effects were similar between the groups [67].
It is worth mentioning that acute ischemic stroke can be managed by artery stenting. The Stent-Assisted Recanalization in Acute Ischemic Stroke (SARIS) trial was a prospective trial the goal of which was to determine whether cerebral arterial stenting would be beneficial in the management of acute ischemic stroke [68]. In a series of twenty patients the mRS score of 3 was achieved in 60% and that of 1 was achieved in 45% [68]. Symptomatic intracerebral hemorrhage was present in 5% of the patients and asymptomatic intracerebral hemorrhage was present in 10% [68]. There is, however, no consensus on whether the benefits of arterial stenting in acute stroke outweigh the risks primarily due to the lack of randomized controlled trials [69].
Patients who suffer from middle cerebral artery infarction can have a mortality rate secondary to elevated intracranial pressure. Neurosurgeons often perform decompressive craniectomies when such situations arise. Multiple studies were conducted over the years to determine the efficacy of this practice. There were three randomized controlled landmark studies and a meta-analysis of these studies that aimed to address this issue.
The first trial was the “Decompressive Surgery for the Treatment of Malignant Infarction of the Middle Cerebral Artery (DESTINY)” that was published in 2007 [70]. The second trial was the “Sequential-Design, Multicenter, Randomized, Controlled Trial of Early Decompressive Craniectomy in Malignant Middle Cerebral Artery Infarction (DECIMAL Trial)” that was published in 2007 [71]. The third trial was the “Hemicraniectomy after middle cerebral artery infarction with life-threatening Edema trial (HAMLET)” published in 2009 [72].
In 2007 a meta-analysis of the above three randomized controlled studies was conducted while the above studies were ongoing [73]. The aim of the study was to determine whether performing decompressive hemicraniectomy in patients who had suffered malignant middle cerebral artery territory infarct had good long-term outcomes [73]. The study showed that more patients in the hemicraniectomy group had an mRS of less than equal to 4 in comparison to the control group [73]. The study also showed that survival rate in the hemicraniectomy group was higher than in the control group [73]. This meta-analysis favored decompressive hemicraniectomy in patients with malignant middle cerebral artery infarction who underwent surgery within 48 hours of stroke onset in order to reduce mortality and improve mRS score in survivors [73].
Stroke is a medical entity that was known in ancient Greece as apoplexy. Hippocrates was the first to describe a patient with stroke like symptoms followed by Areteus and Galen. Ischemic stroke was once a disease process of which we had a scarce understanding. Efficient treatments were, however, made possible with more insight into the anatomical and pathophysiological changes that are associated with ischemic stroke. These developments were attributed to Wepfer, Virchow, Murphy, Cooley and others. The advancement in technology, such as the development of cerebral angiography, CTA and CTP, were also crucial in the advancements made in treating ischemic stroke.
Neurosurgeons are able to perform a wide range of procedures to manage ischemic stroke and thus their role in this disease remains pivotal. For prevention of stroke, CEAs are performed; for reperfusion of salvageable brain tissue, mechanical thrombectomies improve outcomes; and for management of brain herniation hemicraniectomies are carried out. Additionally, endovascular mechanical thrombectomies have undoubtedly revolutionized the way ischemic stroke is managed. But, more progress remains to be made, with several previous and on-going randomized controlled studies attempting to find the gold standard for treating ischemic stroke.
Ischemic stroke remains a major public health concern that can undoubtedly cause severe disability. Even with increase efforts for public education and primary prevention, neurosurgeons still need to be able to manage ischemic strokes efficiently.
The authors declare no conflict of interest.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6585},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2382},{group:"region",caption:"Asia",value:4,count:12514},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17531}],offset:12,limit:12,total:132506},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism",subtitle:null,isOpenForSubmission:!0,hash:"0c5043c6174db167599cb3f762e8bba8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11612",title:"Landraces",subtitle:null,isOpenForSubmission:!0,hash:"06316c41a6f6317ad2bee244dc98c6a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11612.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:797},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"423",title:"Pestology",slug:"biochemistry-genetics-and-molecular-biology-microbiology-pestology",parent:{id:"59",title:"Microbiology",slug:"biochemistry-genetics-and-molecular-biology-microbiology"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:41,numberOfWosCitations:113,numberOfCrossrefCitations:39,numberOfDimensionsCitations:89,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"423",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"32",title:"Pesticides",subtitle:"Strategies for Pesticides Analysis",isOpenForSubmission:!1,hash:null,slug:"pesticides-strategies-for-pesticides-analysis",bookSignature:"Margarita Stoytcheva",coverURL:"https://cdn.intechopen.com/books/images_new/32.jpg",editedByType:"Edited by",editors:[{id:"6375",title:"Prof.",name:"Margarita",middleName:null,surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"12951",doi:"10.5772/13242",title:"Chemical Analysis of Pesticides Using GC/MS, GC/MS/MS, and LC/MS/MS",slug:"chemical-analysis-of-pesticides-using-gc-ms-gc-ms-ms-and-lc-ms-ms",totalDownloads:20179,totalCrossrefCites:6,totalDimensionsCites:19,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"Renata Raina",authors:[{id:"14179",title:"Dr.",name:"Renata",middleName:null,surname:"Raina-Fulton",slug:"renata-raina-fulton",fullName:"Renata Raina-Fulton"}]},{id:"12955",doi:"10.5772/13642",title:"Organochlorine Pesticides in Human Serum",slug:"organochlorine-pesticides-in-human-serum",totalDownloads:8146,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"Jung-Ho Kang and Yoon-Seok Chang",authors:[{id:"15477",title:"Dr.",name:"Yoon-Seok",middleName:null,surname:"Chang",slug:"yoon-seok-chang",fullName:"Yoon-Seok Chang"},{id:"16817",title:"Dr.",name:"Jung-Ho",middleName:null,surname:"Kang",slug:"jung-ho-kang",fullName:"Jung-Ho Kang"}]},{id:"12961",doi:"10.5772/13690",title:"Organophosphorus Pesticides Determination by Electrochemical Biosensors",slug:"organophosphorus-pesticides-determination-by-electrochemical-biosensors",totalDownloads:5150,totalCrossrefCites:4,totalDimensionsCites:10,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"Margarita Stoytcheva, Roumen Zlatev, Zdravka Velkova and Benjamin Valdez",authors:[{id:"6375",title:"Prof.",name:"Margarita",middleName:null,surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"},{id:"23628",title:"Dr.",name:"Roumen",middleName:null,surname:"Zlatev",slug:"roumen-zlatev",fullName:"Roumen Zlatev"},{id:"23629",title:"Dr.",name:"Zdravka",middleName:null,surname:"Velkova",slug:"zdravka-velkova",fullName:"Zdravka Velkova"},{id:"23630",title:"Dr.",name:"Benjamin",middleName:null,surname:"Valdez",slug:"benjamin-valdez",fullName:"Benjamin Valdez"}]},{id:"12952",doi:"10.5772/13997",title:"Fast Gas Chromatography and Its Use in Pesticide Residues Analysis",slug:"fast-gas-chromatography-and-its-use-in-pesticide-residues-analysis",totalDownloads:8914,totalCrossrefCites:3,totalDimensionsCites:8,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"Svetlana Hrouzková and Eva Matisova",authors:[{id:"16299",title:"Dr.",name:"Eva",middleName:null,surname:"Matisova",slug:"eva-matisova",fullName:"Eva Matisova"},{id:"16866",title:"Dr.",name:"Svetlana",middleName:null,surname:"Hrouzková",slug:"svetlana-hrouzkova",fullName:"Svetlana Hrouzková"}]},{id:"12954",doi:"10.5772/14008",title:"Rapid and Easy Multiresidue Method for Determination of Pesticide Residues in Foods Using Gas or Liquid Chromatography–Tandem Mass Spectrometry",slug:"rapid-and-easy-multiresidue-method-for-determination-of-pesticide-residues-in-foods-using-gas-or-liq",totalDownloads:12543,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"Satoshi Takatori, Masahiro Okihashi, Yoko Kitagawa, Naoki Fukui, You Kakimoto-Okamoto and Hirotaka Obana",authors:[{id:"14768",title:"Dr.",name:"Satoshi",middleName:null,surname:"Takatori",slug:"satoshi-takatori",fullName:"Satoshi Takatori"},{id:"16519",title:"Dr.",name:"Masahiro",middleName:null,surname:"Okihashi",slug:"masahiro-okihashi",fullName:"Masahiro Okihashi"},{id:"16520",title:"Mrs.",name:"Yoko",middleName:null,surname:"Kitagawa",slug:"yoko-kitagawa",fullName:"Yoko Kitagawa"},{id:"16521",title:"Mr.",name:"Naoki",middleName:null,surname:"Fukui",slug:"naoki-fukui",fullName:"Naoki Fukui"},{id:"16522",title:"Mrs",name:"You",middleName:null,surname:"Okamoto-Kakimoto",slug:"you-okamoto-kakimoto",fullName:"You Okamoto-Kakimoto"},{id:"16523",title:"Dr.",name:"Hirotaka",middleName:null,surname:"Obana",slug:"hirotaka-obana",fullName:"Hirotaka Obana"}]}],mostDownloadedChaptersLast30Days:[{id:"12955",title:"Organochlorine Pesticides in Human Serum",slug:"organochlorine-pesticides-in-human-serum",totalDownloads:8146,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"Jung-Ho Kang and Yoon-Seok Chang",authors:[{id:"15477",title:"Dr.",name:"Yoon-Seok",middleName:null,surname:"Chang",slug:"yoon-seok-chang",fullName:"Yoon-Seok Chang"},{id:"16817",title:"Dr.",name:"Jung-Ho",middleName:null,surname:"Kang",slug:"jung-ho-kang",fullName:"Jung-Ho Kang"}]},{id:"12952",title:"Fast Gas Chromatography and Its Use in Pesticide Residues Analysis",slug:"fast-gas-chromatography-and-its-use-in-pesticide-residues-analysis",totalDownloads:8914,totalCrossrefCites:3,totalDimensionsCites:8,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"Svetlana Hrouzková and Eva Matisova",authors:[{id:"16299",title:"Dr.",name:"Eva",middleName:null,surname:"Matisova",slug:"eva-matisova",fullName:"Eva Matisova"},{id:"16866",title:"Dr.",name:"Svetlana",middleName:null,surname:"Hrouzková",slug:"svetlana-hrouzkova",fullName:"Svetlana Hrouzková"}]},{id:"12959",title:"Organophosphorous Compounds-Toxicity and Detection Approach",slug:"organophosphorous-compounds-toxicity-and-detection-approach",totalDownloads:7552,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"Sanjay Upadhyay, Mukesh K. Sharma, Vepa K. Rao, Bijoy K. Bhattacharya, Dileep Sharda and R.Vijayaraghavan",authors:[{id:"15751",title:"Dr.",name:"Sanjay",middleName:null,surname:"Upadhyay",slug:"sanjay-upadhyay",fullName:"Sanjay Upadhyay"}]},{id:"12960",title:"New Materials in Electochemical Sensors for Pesticides Monitoring",slug:"new-materials-in-electochemical-sensors-for-pesticides-monitoring",totalDownloads:5157,totalCrossrefCites:0,totalDimensionsCites:3,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"M. Aranzazu Goicolea, Alberto Gómez-Caballero and Ramón J. Barrio",authors:[{id:"15773",title:"Dr.",name:"Ramón J.",middleName:null,surname:"Barrio",slug:"ramon-j.-barrio",fullName:"Ramón J. Barrio"},{id:"16184",title:"Prof.",name:"M. Aranzazu",middleName:null,surname:"Goicolea",slug:"m.-aranzazu-goicolea",fullName:"M. Aranzazu Goicolea"},{id:"16563",title:"Dr.",name:"Alberto",middleName:null,surname:"Gómez-Caballero",slug:"alberto-gomez-caballero",fullName:"Alberto Gómez-Caballero"}]},{id:"12962",title:"Mercaptobenzothiazole-on-Gold Organic Phase Biosensor Systems: 4. Effect of Organic Solvents on Organophosphate and Carbamate Pesticide Determination",slug:"mercaptobenzothiazole-on-gold-organic-phase-biosensor-systems-4-effect-of-organic-solvents-on-organo",totalDownloads:2579,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"32",slug:"pesticides-strategies-for-pesticides-analysis",title:"Pesticides",fullTitle:"Pesticides - Strategies for Pesticides Analysis"},signatures:"V. Somerset, P. Baker and E. Iwuoha",authors:[{id:"6648",title:"Associate Prof.",name:"Vernon",middleName:null,surname:"Somerset",slug:"vernon-somerset",fullName:"Vernon Somerset"}]}],onlineFirstChaptersFilter:{topicId:"423",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Prof.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:{name:"Henan Agricultural University",institutionURL:null,country:{name:"China"}}}]}]},overviewPageOFChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",hash:"1806716f60b9be14fc05682c4a912b41",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 23rd 2022",isOpenForSubmission:!0,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Business and Management",value:86,count:1,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:null,institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",pos