Comparision of Digestion Techniques.
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"148",leadTitle:null,fullTitle:"Wind Farm - Technical Regulations, Potential Estimation and Siting Assessment",title:"Wind Farm",subtitle:"Technical Regulations, Potential Estimation and Siting Assessment",reviewType:"peer-reviewed",abstract:"The evolution of wind power generation is being produced with a very high growth rate at world level (around 30%). This growth, together with the foreseeable installation of many wind farms in a near future, forces the utilities to evaluate diverse aspects of the integration of wind power generation in the power systems.\n\nThis book addresses a wide variety of issues regarding the integration of wind farms in power systems. It contains 10 chapters divided into three parts. The first part outlines aspects related to technical regulations and costs of wind farms. In the second part, the potential estimation and the impact on the environment of wind energy project are presented. Finally, the third part covers issues of the siting assessment of wind farms.",isbn:null,printIsbn:"978-953-307-483-2",pdfIsbn:"978-953-51-6026-7",doi:"10.5772/673",price:119,priceEur:129,priceUsd:155,slug:"wind-farm-technical-regulations-potential-estimation-and-siting-assessment",numberOfPages:248,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"f7a3aafd9530aba9911c69ec17d31673",bookSignature:"Gastón O. Suvire",publishedDate:"June 14th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/148.jpg",numberOfDownloads:35915,numberOfWosCitations:74,numberOfCrossrefCitations:46,numberOfCrossrefCitationsByBook:4,numberOfDimensionsCitations:99,numberOfDimensionsCitationsByBook:7,hasAltmetrics:1,numberOfTotalCitations:219,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 12th 2010",dateEndSecondStepPublish:"November 9th 2010",dateEndThirdStepPublish:"March 16th 2011",dateEndFourthStepPublish:"April 15th 2011",dateEndFifthStepPublish:"June 14th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"12698",title:"Dr.",name:"Gastón Orlando",middleName:null,surname:"Suvire",slug:"gaston-orlando-suvire",fullName:"Gastón Orlando Suvire",profilePictureURL:"https://mts.intechopen.com/storage/users/12698/images/2475_n.jpg",biography:"Gaston Orlando Suvire was born in San Juan, Argentina, on November 13, 1977. He graduated as an electric engineer from the National University of San Juan (UNSJ), Argentina in 2002. He received his Ph.D. from the same University in 2009, carrying out part in the COPPE Institute, in the Federal University of Rio de Janeiro in Brazil. Dr. Suvire is currently a professor of electrical engineering at the UNSJ and a researcher with CONICET. His research interests include simulation methods, power systems dynamics and control, power electronics modeling and design, and the application of wind energy and energy storage in power systems.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"771",title:"Sustainability Science",slug:"sustainability-science"}],chapters:[{id:"17118",title:"Technical and Regulatory Exigencies for Grid Connection of Wind Generation",doi:"10.5772/16474",slug:"technical-and-regulatory-exigencies-for-grid-connection-of-wind-generation",totalDownloads:5198,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:1,abstract:null,signatures:"Marcelo Gustavo Molina and Juan Gimenez Alvarez",downloadPdfUrl:"/chapter/pdf-download/17118",previewPdfUrl:"/chapter/pdf-preview/17118",authors:[{id:"7483",title:"Dr.",name:"Marcelo",surname:"Molina",slug:"marcelo-molina",fullName:"Marcelo Molina"},{id:"42783",title:"Dr.",name:"Juan",surname:"Gimenez Alvarez",slug:"juan-gimenez-alvarez",fullName:"Juan Gimenez Alvarez"}],corrections:null},{id:"17119",title:"O&M Cost Estimation & Feedback of Operational Data",doi:"10.5772/17011",slug:"o-m-cost-estimation-feedback-of-operational-data",totalDownloads:4355,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Tom Obdam, Henk Braam, René Van De Pieterman and Luc Rademakers",downloadPdfUrl:"/chapter/pdf-download/17119",previewPdfUrl:"/chapter/pdf-preview/17119",authors:[{id:"26986",title:"MSc.",name:"Tom",surname:"Obdam",slug:"tom-obdam",fullName:"Tom Obdam"},{id:"81467",title:"MSc.",name:"Luc",surname:"Rademakers",slug:"luc-rademakers",fullName:"Luc Rademakers"},{id:"81468",title:"MSc.",name:"Henk",surname:"Braam",slug:"henk-braam",fullName:"Henk Braam"},{id:"81690",title:"MSc.",name:"René",surname:"Van De Pieterman",slug:"rene-van-de-pieterman",fullName:"René Van De Pieterman"}],corrections:null},{id:"17120",title:"Community Wind Power – A Tipping Point Strategy for Driving Socio-Economic Revitalization in Detroit and Southeast Michigan",doi:"10.5772/10596",slug:"community-wind-power-a-tipping-point-strategy-for-driving-socio-economic-revitalization-in-detroit-a",totalDownloads:1600,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Chih-Ping Yeh, Daniel Bral and Caisheng Wang",downloadPdfUrl:"/chapter/pdf-download/17120",previewPdfUrl:"/chapter/pdf-preview/17120",authors:[null],corrections:null},{id:"17121",title:"Methodologies Used in the Extrapolation of Wind Speed Data at Different Heights and Its Impact in the Wind Energy Resource Assessment in a Region",doi:"10.5772/20669",slug:"methodologies-used-in-the-extrapolation-of-wind-speed-data-at-different-heights-and-its-impact-in-th",totalDownloads:5872,totalCrossrefCites:29,totalDimensionsCites:67,hasAltmetrics:0,abstract:null,signatures:"Francisco Bañuelos-Ruedas, César Angeles-Camacho and Sebastián Rios-Marcuello",downloadPdfUrl:"/chapter/pdf-download/17121",previewPdfUrl:"/chapter/pdf-preview/17121",authors:[{id:"40013",title:"Dr.",name:"Francisco",surname:"Bañuelos-Ruedas",slug:"francisco-banuelos-ruedas",fullName:"Francisco Bañuelos-Ruedas"},{id:"42204",title:"Prof.",name:"César",surname:"Angeles-Camacho",slug:"cesar-angeles-camacho",fullName:"César Angeles-Camacho"},{id:"114114",title:"Dr.",name:"Sebastián",surname:"Rios-Marcuello",slug:"sebastian-rios-marcuello",fullName:"Sebastián Rios-Marcuello"}],corrections:null},{id:"17122",title:"Wind Energy Assessment of the Sidi Daoud Wind Farm - Tunisia",doi:"10.5772/16536",slug:"wind-energy-assessment-of-the-sidi-daoud-wind-farm-tunisia",totalDownloads:3306,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Fathi Ben Amar and Mustapha Elamouri",downloadPdfUrl:"/chapter/pdf-download/17122",previewPdfUrl:"/chapter/pdf-preview/17122",authors:[{id:"25483",title:"Dr.",name:"Fathi",surname:"Ben Amar",slug:"fathi-ben-amar",fullName:"Fathi Ben Amar"},{id:"47956",title:"Dr.",name:"Mustapha",surname:"Elamouri",slug:"mustapha-elamouri",fullName:"Mustapha Elamouri"}],corrections:null},{id:"17123",title:"Wind Farms and Their Impact on Environment",doi:"10.5772/16662",slug:"wind-farms-and-their-impact-on-environment",totalDownloads:2770,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Vladimír Lapčík",downloadPdfUrl:"/chapter/pdf-download/17123",previewPdfUrl:"/chapter/pdf-preview/17123",authors:[{id:"25942",title:"Prof.",name:"Vladimír",surname:"Lapčík",slug:"vladimir-lapcik",fullName:"Vladimír Lapčík"}],corrections:null},{id:"17124",title:"Advanced Wind Resource Characterization and Stationarity analysis for Improved Wind Farm Siting",doi:"10.5772/17213",slug:"advanced-wind-resource-characterization-and-stationarity-analysis-for-improved-wind-farm-siting",totalDownloads:2457,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Mark Morrissey and Scott Greene",downloadPdfUrl:"/chapter/pdf-download/17124",previewPdfUrl:"/chapter/pdf-preview/17124",authors:[{id:"25283",title:"Prof.",name:"Mark",surname:"Morrissey",slug:"mark-morrissey",fullName:"Mark Morrissey"},{id:"27611",title:"Prof.",name:"Scott",surname:"Greene",slug:"scott-greene",fullName:"Scott Greene"}],corrections:null},{id:"18620",title:"Spatial Diversification of Wind Farms: System Reliability and Private Incentives",doi:"10.5772/19540",slug:"spatial-diversification-of-wind-farms-system-reliability-and-private-incentives",totalDownloads:1982,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Christopher M. Worley and Daniel T. Kaffine",downloadPdfUrl:"/chapter/pdf-download/18620",previewPdfUrl:"/chapter/pdf-preview/18620",authors:[{id:"35286",title:"Dr.",name:"Daniel T.",surname:"Kaffine",slug:"daniel-t.-kaffine",fullName:"Daniel T. Kaffine"},{id:"40194",title:"Mr.",name:"Christopher M.",surname:"Worley",slug:"christopher-m.-worley",fullName:"Christopher M. Worley"}],corrections:null},{id:"17404",title:"Geotechnical and Geophysical Studies for Wind Farms in Earhquake-Prone Areas",doi:"10.5772/16470",slug:"geotechnical-and-geophysical-studies-for-wind-farms-in-earhquake-prone-areas1",totalDownloads:4301,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Ferhat Ozcep, Mehmet Guzel and Savas Karabulut",downloadPdfUrl:"/chapter/pdf-download/17404",previewPdfUrl:"/chapter/pdf-preview/17404",authors:[{id:"25221",title:"Prof.",name:"Ferhat",surname:"Ozcep",slug:"ferhat-ozcep",fullName:"Ferhat Ozcep"},{id:"55136",title:"Mr.",name:"Mehmet",surname:"Guzel",slug:"mehmet-guzel",fullName:"Mehmet Guzel"},{id:"55137",title:"Dr.",name:"Savas",surname:"Karabulut",slug:"savas-karabulut",fullName:"Savas Karabulut"}],corrections:null},{id:"17126",title:"A Holistic Approach for Wind Farm Site Selection by Using FAHP",doi:"10.5772/17311",slug:"a-holistic-approach-for-wind-farm-site-selection-by-using-fahp",totalDownloads:4079,totalCrossrefCites:13,totalDimensionsCites:20,hasAltmetrics:0,abstract:null,signatures:"İlhan Talinli, Emel Topuz, Egemen Aydin and Sibel Kabakcı",downloadPdfUrl:"/chapter/pdf-download/17126",previewPdfUrl:"/chapter/pdf-preview/17126",authors:[{id:"27940",title:"Dr.",name:"İlhan",surname:"Talinli",slug:"ilhan-talinli",fullName:"İlhan Talinli"},{id:"27966",title:"MSc.",name:"Emel",surname:"Topuz",slug:"emel-topuz",fullName:"Emel Topuz"},{id:"33442",title:"MSc",name:"Egemen",surname:"Aydin",slug:"egemen-aydin",fullName:"Egemen Aydin"},{id:"33443",title:"Associate Prof.",name:"Sibel",surname:"Başakçılardan Kabakcı",slug:"sibel-basakcilardan-kabakci",fullName:"Sibel Başakçılardan Kabakcı"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"433",title:"Wind Farm",subtitle:"Impact in Power System and Alternatives to Improve the Integration",isOpenForSubmission:!1,hash:null,slug:"wind-farm-impact-in-power-system-and-alternatives-to-improve-the-integration",bookSignature:"Gastón Orlando Suvire",coverURL:"https://cdn.intechopen.com/books/images_new/433.jpg",editedByType:"Edited by",editors:[{id:"12698",title:"Dr.",name:"Gastón Orlando",surname:"Suvire",slug:"gaston-orlando-suvire",fullName:"Gastón Orlando Suvire"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"205",title:"Fundamental and Advanced Topics in Wind Power",subtitle:null,isOpenForSubmission:!1,hash:"b8b5955addb75d98a6bba1c94e3e7a74",slug:"fundamental-and-advanced-topics-in-wind-power",bookSignature:"Rupp Carriveau",coverURL:"https://cdn.intechopen.com/books/images_new/205.jpg",editedByType:"Edited by",editors:[{id:"22234",title:"Dr.",name:"Rupp",surname:"Carriveau",slug:"rupp-carriveau",fullName:"Rupp Carriveau"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2706",title:"Small-Scale Energy Harvesting",subtitle:null,isOpenForSubmission:!1,hash:"63bc4c27bdf9ec1e00aa20ff6f1d804f",slug:"small-scale-energy-harvesting",bookSignature:"Mickael Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/2706.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"427",title:"Sustainable Energy Harvesting Technologies",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"61a870ec0f3bf63739132a7cf4465ca7",slug:"sustainable-energy-harvesting-technologies-past-present-and-future",bookSignature:"Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/427.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"115",title:"Wind Turbines",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"wind-turbines",bookSignature:"Ibrahim Al-Bahadly",coverURL:"https://cdn.intechopen.com/books/images_new/115.jpg",editedByType:"Edited by",editors:[{id:"19588",title:"Dr.",name:"Ibrahim H.",surname:"Al-Bahadly",slug:"ibrahim-h.-al-bahadly",fullName:"Ibrahim H. Al-Bahadly"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"13",title:"Paths to Sustainable Energy",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"paths-to-sustainable-energy",bookSignature:"Jatin Nathwani and Artie Ng",coverURL:"https://cdn.intechopen.com/books/images_new/13.jpg",editedByType:"Edited by",editors:[{id:"13730",title:"Dr.",name:"Artie",surname:"Ng",slug:"artie-ng",fullName:"Artie Ng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"212",title:"Energy Storage in the Emerging Era of Smart Grids",subtitle:null,isOpenForSubmission:!1,hash:"8cd6021285906516c727802d02ce0954",slug:"energy-storage-in-the-emerging-era-of-smart-grids",bookSignature:"Rosario Carbone",coverURL:"https://cdn.intechopen.com/books/images_new/212.jpg",editedByType:"Edited by",editors:[{id:"11592",title:"Prof.",name:"Rosario",surname:"Carbone",slug:"rosario-carbone",fullName:"Rosario Carbone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2763",title:"Gasification for Practical Applications",subtitle:null,isOpenForSubmission:!1,hash:"e576b2a136c1c20c784302344c65448e",slug:"gasification-for-practical-applications",bookSignature:"Yongseung Yun",coverURL:"https://cdn.intechopen.com/books/images_new/2763.jpg",editedByType:"Edited by",editors:[{id:"144925",title:"Dr.",name:"Yongseung",surname:"Yun",slug:"yongseung-yun",fullName:"Yongseung Yun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3679",title:"Clean Energy Systems and Experiences",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"clean-energy-systems-and-experiences",bookSignature:"Kei Eguchi",coverURL:"https://cdn.intechopen.com/books/images_new/3679.jpg",editedByType:"Edited by",editors:[{id:"12804",title:"Dr.",name:"Kei",surname:"Eguchi",slug:"kei-eguchi",fullName:"Kei Eguchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3180",title:"Gas Turbines",subtitle:null,isOpenForSubmission:!1,hash:"79b78c1eec936d997a471f9ab08ccb0a",slug:"gas-turbines",bookSignature:"Gurrappa Injeti",coverURL:"https://cdn.intechopen.com/books/images_new/3180.jpg",editedByType:"Edited by",editors:[{id:"12369",title:"Dr.",name:"Gurrappa",surname:"Injeti",slug:"gurrappa-injeti",fullName:"Gurrappa Injeti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65367",slug:"corrigendum-to-review-of-liquid-filled-optical-fibre-based-temperature-sensing",title:"Corrigendum to Review of Liquid-Filled Optical Fibre-Based Temperature Sensing",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65367.pdf",downloadPdfUrl:"/chapter/pdf-download/65367",previewPdfUrl:"/chapter/pdf-preview/65367",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65367",risUrl:"/chapter/ris/65367",chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:null},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:null},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:null},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:null}]}},chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:null},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:null},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:null},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:null}]},book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11477",leadTitle:null,title:"Public Economics - New Perspectives and Uncertainty",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tPublic Economics - New Perspectives and Uncertainty intends to be a collection of papers written in the context of macroeconomic policy to address the problems of uncertainty, such as pandemics, inequality, and poverty. The book chapters will aim to discuss macroeconomic policy challenges during and after COVID-19. It can analyse how macroeconomic policies affect inequality, employment, education, gender, uncertainty, food security, the environment, and health. The book’s primary purpose will be to address public policy concerns, such as the impact of fiscal and monetary policies on socially optimal resource allocation and equitable income distribution. Therefore, the book will aim to address key difficulties confronting modern governments, particularly during pandemics, which are (1) taxation, (2) inequality, (3) social security and demographics, (4) stabilization policies like debt and interest rates, (5) health and the environment, and (6) demographic shift. The book is intended to be useful to both researchers and policymakers. That it gives policymakers hope public policies aimed at fiscal stability, economic growth, and poverty reduction can be successfully implemented during uncertainty. Furthermore, the book will aim to have the goal of being self-contained, so readers with no prior knowledge of public economics or dynamic macroeconomic theory should be able to follow along with the research.
",isbn:"978-1-83962-571-8",printIsbn:"978-1-83880-770-2",pdfIsbn:"978-1-83962-830-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"a8e6c515dc924146fbd2712eb4e7d118",bookSignature:"Dr. Habtamu Alem",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",keywords:"Pandemics, Impact Covid19, Social Security, Tax, Unemployment, Gender, Education, Inequality, Food Security, Environmental Impact, Migration, Conflict",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 29th 2022",dateEndSecondStepPublish:"May 27th 2022",dateEndThirdStepPublish:"July 26th 2022",dateEndFourthStepPublish:"October 14th 2022",dateEndFifthStepPublish:"December 13th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Habtamu Alem works as a research scientist at the NIBIO in the Department of Economics and Society. He was a researcher for the EIAR and an executive officer for the NIAR. He is now the project coordinator for the SYSTEMIC project, which covers eight EU nations.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"414400",title:"Dr.",name:"Habtamu",middleName:null,surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem",profilePictureURL:"https://mts.intechopen.com/storage/users/414400/images/system/414400.jpg",biography:'Dr. Habtamu Alem graduated from the Norwegian University of Life Sciences (NMBU) with a Ph.D. in economics. He works as a research scientist at the Norwegian Institute of Bioeconomy Research (NIBIO) in the Department of Economics and Society. He was a researcher for the Ethiopian Institute of Agricultural Research and an executive officer for the Norwegian Institute of Agricultural Research. He is now the project coordinator for the SYSTEMIC project, which covers eight EU nations.\r\nPublic economics, food, and nutrition security; environmental and production economics; climate change; econometrics; and impact assessments are among his research interests. He publishes and reviews academic papers regularly. Currently, he is editing a book titled "Sustainable Agricultural Value Chain."',institutionString:"The Norwegian Institute of Bioeconomy Research",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"41608",title:"Determination of Trace Metals in Waste Water and Their Removal Processes",doi:"10.5772/52025",slug:"determination-of-trace-metals-in-waste-water-and-their-removal-processes",body:'\n\t\tSince the second part of 20th century, there has been growing concern over the diverse effects of heavy metals on humans and aquatic ecosystems. Environmental impact of heavy metals was earlier mostly attributed to industrial sources. In recent years, metal production emissions have decreased in many countries due to strict legislation, improved cleaning/purification technology and altered industrial activities. Today and in the future, dissipate losses from consumption of various metal containing goods are of most concern. Therefore, regulations for heavy metal containing waste disposal have been tightened [1].
\n\t\t\tA significant part of the anthropogenic emissions of heavy metals ends up in wastewater. Major industrial sources include surface treatment processes with elements such as Cd, Pb, Mn, Cu, Zn, Cr, Hg, As, Fe and Ni, as well as industrial products that, at the end of their life, are discharged in wastes. Major urban inputs to sewage water include household effluents, drainage water, business effluents (e.g. car washes, dental uses, other enterprises, etc.), atmospheric deposition, and traffic related emissions (vehicle exhaust, brake linings, tires, asphalt wear, gasoline/oil leakage, etc.) transported with storm water into the sewerage system. For most applications of heavy metals, the applications are estimated to be the same in nearly all countries, but the consumption pattern may be different. For some applications which during the last decade has been phased out in some countries, there may, however, today be significant differences in uses [2-4].
\n\t\t\tMost common sources of heavy metals to waste and/or waste water are [1]; (i) Mining and extraction; by mining and extraction a part of the heavy metals will end up in tailings and other waste products. A significant part of the turn over of the four heavy metals with mining waste actually concerns the presence of the heavy metals in waste from extraction of other metals like zinc, copper and nickel. It should, however, be kept in mind that mining waste is generated independent of the subsequent application of the heavy metal. (ii) Primary smelting and processing; a minor part of the heavy metals will end up in waste from the further processing of the metals. (iii) Use phase; a small part of the heavy metals may be lost from the products during use by corrosion and wear. The lost material may be discharged to the environment or end up in solid waste either as dust or indirectly via sewage sludge. (iv) Waste disposal; the main part of the heavy metals will still be present when the discarded products are disposed off. The heavy metals will either be collected for recycling or disposed of to municipal solid waste incinerators (MSWI) or landfills or liquid waste. A minor part will be disposed of as chemical waste and recycled or landfilled via chemical waste treatment. (v) vulconic erruptions. (vi) fossil fuel combustion. (vii) agriculture (viii) erosions (ix) metallurgical industries. Actually metal pollutants are neither generated nor compleletely eliminated; they are only transferred from one source to another. Their chemical forms may be changed or they are collected and immobilized not to reach the human, animals or plants.
\n\t\t\tThe term
Effluents from textile, leather, tannery, electroplating, galvanizing, pigment and dyes, metallurgical and paint industries and other metal processing and refining operations at small and large-scale sector contain considerable amounts of toxic metal ions [4]. The toxic metals and their ions are not only potential human health hazards but also to another life forms. Toxic metal ions cause physical discomfort and sometimes life-threatening illness including irreversible damage to vital body system [6]. From the eco-toxicological point of view, the most dangerous metals are mercury, lead, cadmium and chromium(VI). In many instances, the effect of heavy metals on human is not well understood. Metal ions in the environment bioaccumulate and are biomagnified along the food chain. Therefore, their toxic effect is more pronounced in animals at higher trophic levels. Mine tailing and effluents from non-ferrous metals industry are the major sources of heavy metals in the environment. Among commonly used heavy metals, Cr(III), Cu, Zn, Ni and V are comparatively less toxic then Fe and Al. Cu is mainly employed in electric goods industry and brass production. Major applications for Zn are galvanization and production of alloys. Cadmium has a half-life of 10–30 years and its accumulation in human body affects kidney, bone and also causes cancer and its use is increasing in industrial applications such as electroplating and making pigments and batteries. Chromium compounds are nephrotoxic and carcinogenic in nature. As a result of increasing awareness about the toxicity of Hg and Pb, their large-scale use by various industries has been either curtailed or eliminated. An effluent treatment facility within the industry discharging heavy metals contaminated effluent will be more efficient than treating large volumes of mixed wastewater in a general sewage treatment plant. Thus it is beneficial to devise separate treatment procedures for scavenging heavy metals from the industrial wastewater [4,6,7].
\n\t\t\tThe analysis of wastewater for trace and heavy metal contamination is an important step in ensuring human and environmental health. Wastewater is regulated differently in different countries, but the goal is to minimize the pollution introduced into natural waterways. In recent years, metal production emissions have decreased in many countries due to heavy legislation, improved production and cleaning technology. A variety of inorganic techniques can be used to measure trace elements in waste water including flame atomic absorption spectrometry (FAAS) and graphite furnace (or electrothermal) atomic absorption spectrometry (GFAAS or ETAAS), inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Depending upon the number of elements to be determined, expected concentration range of analytes and the number of samples to be run, the most suitable technique for business requirements can be chosen.
\n\t\t\tSeveral industrial wastewater streams may contain heavy metals such as Sb, Cr, Cu, Pb, Zn, Co, Ni, etc. The toxic metals, existing in high or even in low concentrations, must be effectively treated/removed from the wastewaters. Among the various treatment methods applied to remove heavy or trace metals, chemical precipitation process has been the most common technology. The conventional heavy metal removal process has some inherent shortcomings such as requiring a large area of land, a sludge dewatering facility, skillful operators and multiple basin configuration. In recent years, some new processes such as biosorption, neutralization, precipitation, ion exchange, adsorption etc. have been developed and extensively used for the heavy metal removal from wastewater.
\n\t\t\tIn this chapter the novel and common methods for the determination of trace heavy metals in waste water and their removal processes are explained.
\n\t\tAll heavy metals are effected to human and environment by different ways. For example; lead in the environment is mainly particulate bound with relatively low mobility and bioavailability. Lead does, in general, not bioaccumulate and there is no increase in concentration of the metal in food chains. Lead is not essential for plant or animal life. Of particular concern for the general population is the effect of lead on the central nervous system. Lead has been shown to have effects on haemoglobin synthesis and anaemia has been observed in children at lead blood levels above 40 µg/dl. Lead is known to cause kidney damage. Some of the effects are reversible, whereas chronic exposure to high lead levels may result in continued decreased kidney function and possible renal failure. The evidence for carcinogenicity of lead and several inorganic lead compounds in humans is inadequate. Classification of The International Agency for Research on Cancer (IARC) is class 2B which is the agent (mixture) is possibly carcinogenic to humans. The exposure circumstance entails exposures that are possibly carcinogenic to humans. In the environment, lead binds strongly to particles, such as soil, sediment and sewage sludge. Because of the low solubility of most of its salts, lead tends to precipitate out of complex solutions. It does not bioaccumulate in most organisms, but can accumulate in biota feeding primarily on particles, e.g. mussels and worms. These organisms often possess special metal binding proteins that removes the metals from general distribution in their organism. Like in humans, lead may accumulate in the bones. One of the most important factors influencing the aquatic toxicity of lead is the free ionic concentration and the availability of lead to organisms. Lead is unlikely to affect aquatic plants at levels that might be found in the general environment.
\n\t\t\tMercury is a peculiar metal. Most conspicuous is its fluidity at room temperature, but more important for the possible exposure of man and the environment to mercury are two other properties:
\n\t\t\tUnder reducing conditions in the environment, ionic mercury changes to the uncharged elemental mercury which is volatile and may be transported over long distances by air.
Mercury may be chemically or biologically transformed to methylmercury and dimethylmercury, of which the former is bioaccumulative and the latter is also volatile and may be transported over long distances. Mercury is not essential for plant or animal life. The organic forms of mercury are generally more toxic to aquatic organisms than the inorganic forms. Aquatic plants are affected by mercury in the water at concentrations approaching 1 mg/litre for inorganic mercury, but at much lower concentrations of organic mercury.
Cadmium and cadmium compounds are, compared to other heavy metals, relatively water soluble. They are therefore also more mobile in e.g. soil, generally more bioavailable and tends to bioaccumulate. Cadmium is not essential for plant or animal life. Cadmium is readily accumulated by many organisms, particularly by microorganisms and molluscs where the bioconcentration factors are in the order of thousands. In aquatic systems, cadmium is most readily absorbed by organisms directly from the water in its free ionic form Cd (II). The acute toxicity of cadmium to aquatic organisms is variable, even between closely related species, and is related to the free ionic concentration of the metal. Cadmium interacts with the calcium metabolism of animals. In fish it causes lack of calcium (hypocalcaemia), probably by inhibiting calcium uptake from the water. Effects of long-term exposure can include larval mortality and temporary reduction in growth.
\n\t\t\tChromium occurs in a number of oxidation states, but Cr(III) (trivalent chromium) and Cr(IV) (hexavalent chromium) are of main biological relevance. There is a great difference between Cr(III) and Cr(VI) with respect to toxicological and environmental properties, and they must always be considered separately. Chromium is similar to lead typically found bound to particles. Chromium is in general not bioaccumulated and there is no increase in concentration of the metal in food chains. Contrary to the three other mentioned heavy metals, Cr(III) is an essential nutrient for man in amounts of 50 - 200 µg/day. Chromium is necessary for the metabolism of insulin. It is also essential for animals, whereas it is not known whether it is an essential nutrient for plants, but all plants contain the element. In general, Cr(III) is considerably less toxic than Cr(VI). Cr(VI) has been demonstrated to have a number of adverse effects ranging from causing irritation to cancer. Hexavalent chromium is in general more toxic to organisms in the environment that the trivalent chromium. Almost all the hexavalent chromium in the environment is a result of human activities. Chromium can make fish more susceptible to infection; high concentrations can damage and/or accumulate in various fish tissues and in invertebrates such as snails and worms. Reproduction of the water flea Daphnia was affected by exposure to 0.01 mg hexavalent chromium/litre. Hexavalent chromium is accumulated by aquatic species by passive diffusion. In general, invertebrate species, such as polychaete worms, insects, and crustaceans are more sensitive to the toxic effects of chromium than vertebrates such as some fish. The lethal chromium level for several aquatic and terrestrial invertebrates has been reported to be 0.05 mg/litre.
\n\t\t\tCopper can be found in many wastewater sources including, printed circuit board manufacturing, electronics plating, plating, wire drawing, copper polishing, paint manufacturing, wood preservatives and printing operations. Typical concentrations vary from several thousand mg/l from plating bath waste to less than 1 ppm from copper cleaning operations. Copper can be found in many kinds of food, in drinking water and in air. Because of that we absorb eminent quantities of copper each day by eating, drinking and breathing. The absorption of copper is necessary, because copper is a trace element that is essential for human health. Although humans can handle proportionally large concentrations of copper, too much copper can still cause eminent health problems. When copper ends up in soil it strongly attaches to organic matter and minerals. As a result it does not travel very far after release and it hardly ever enters groundwater. In surface water copper can travel great distances, either suspended on sludge particles or as free ions [8].
\n\t\t\tNickel is a naturally occurring element widely used in many industrial applications for the shipbuilding, automobile, electrical, oil, food and chemical industries. Although it is not harmful in low quantities, nickel is toxic to humans and animals when in high concentrations. Nickel can be present in wastewater as a result of human activities. Sources of nickel in wastewater include ship cruise effluents, industrial applications and the chemical industry [9].
\n\t\t\tArsenic is found in wastewater from electronic manufactures making gallium arsenide wafers and electronic devices. It also can be found in silicon semiconductor operations that use high dose arsenic implants. Other sources of arsenic are ground water in agricultural areas where arsenic was once used as an insecticide. Most environmental arsenic problems are the result of mobilization under natural conditions. However, mining activities, combustion of fossil fuels, use of arsenic pesticides, herbicides, and crop desiccants and use of arsenic additives to livestock feed create additional impacts. Arsenic exists in the −3, 0, +3 and +5 oxidation states. Each of them have diffrenet toxic effect both human and environment.
\n\t\t\tActually all chemicals, including even essential elements, drugs and in fact water, are toxic above (and below) their limiting values. However, some elements such as arsenic lead, cadmium, mercury, described as toxic, are known to be toxic for living beings at any concentration and they are not asked to be taken in to the body even in ultratrace levels.
\n\t\tIn order to determine the heavy trace metals, there are many inorganic techniques such as FAAS, ETAAS, ICP-OES, ICP-MS as well as anodic stripping and recently laser induced breakdown spectroscopy (LIBS). Each technique has its own advantages and disadvantages which will be discussed in this chapter.
\n\t\t\tActually all the steps of an analysis, namely (i) representative sampling, (ii) to prevent analyte loss e.g. its sorption on vessel wall, (iii) contamination from the environment, wares, chemicals added to the sample, (iv) transfer the sample to the lab, (v) treatment of sample prior to analysis (leaching, extraction, preconcentration/separation of the analytes, (vi) choose of the method considering its limitations, (vii) calibration of the vessels, instrument etc, (viii) preparation of sample, all solutions, standards correctly and appropriately, (ix) to test the accuracy of the method using Certified Reference Materials (CRM), (x) evaluation of results statistically and reporting are all the rings of a chain. Each step is important and potential source of error if not applied conveniently. The weakest ring of the chain limits the accuracy and quality of the results. If it is broken, the analysis collapses. Therefore, all the steps of an analysis should be performed with caution. A problem or error even in one of those steps causes the result to be wrong. As in all analyses, sample preparation step is the most important one which should be completed quickly, easy and safely. Waste water samples may contain particulates or organic materials which may require pretreatment before spectrometric analysis. In order to analyze total metal content of a sample, concentration of metals inorganically and organically bound, dissolved or particulated materials should be found.
\n\t\t\tAs stated in Standard Methods, samples which are colorless and transparent, having a turbidity of <1 NTU (Nephelometric Turbidity Unit), no odor and single phase may be analyzed directly or, if necessary, after enrichment by atomic absorption spectrometry (flame or electro thermal vaporization) or inductively coupled plasma spectrometry (atomic emission or mass spectrometry) for metals without digestion. For further verification or if changes in existing matrices are encountered, comparison of digested and undigested samples should be done [10].
\n\t\t\tIf samples have particulates and only the dissolved metals will be analyzed, filtration of sample and analyzing of filtrate will be enough. To be on the safe side, if particulates involved, convenient digestion procedures are suggested. Since different filtration procedures produce different blank values, it is always suggested to study with a blank solution. If only the metal contents of particulates are asked to be determined, then the sample is filtered and the filter is digested and analyzed.
\n\t\t\tIn order to reduce interferences, organic matrix of the sample should be destroyed by digestion as well as metal containing compounds are decomposed to obtain free metal ions which can be determined by atomic absorption spectrometry (AAS) or inductively coupled plasma (ICP) more conveniently. The procedures for destroying organic material and dissolving heavy metals fall into three groups; wet digestion by acid mixtures prior to elemental analysis, dry ashing, followed by acid dissolution of the ash and microwave assisted digestion [11]. In Standard Methods if metal concentration is around 10-100, it is advised to digest 10 mL of sample. For less metal concentrations, sample volume could be around 100 mL for subsequent enrichment [10]. For most digestion procedures, nitric acid is used which is an acceptable matrix for both flame and electrothermal atomic absorption and ICP-MS [12]. For nitric acid digestion, 100 mL of sample is heated in a beaker with 5 mL concentrated nitric acid. Boiling should be prevented and addition of acid should be repeated til a light colored, clear solution is obtained [10]. Sometimes, if the samples involve readily oxidasable organic matters, mixtures of HNO3- H2SO4 or HNO3- HCl may be used. Samples with high organic contents, mixtures of HNO3- HClO4 or HNO3-H2O2 or HNO3-HClO4-HF can be used. The latter is especially important for the dissolution of particulate matter. For samples which have high organic content, dry ashing may be favored. Wet digestion systems are performed either with a reflux or in a beaker on a laboratory hot plate. These methods are temperature limited because of the risk of contaminants from the air, laboratory equipment etc. Also there may be lost of volatile elements (As, Cd, Pb, Se, Zn and Hg etc.). Temperature limitation can be overcome by closed pressure vessels, i.e. microwave digestion. Closed systems allow high pressures above atmosphere to be used. This allows boiling at higher temperatures and often leads to complete dissolution of most samples [13]. In the American Society for Testing and Materials (ASTM) Standards (D1971-11) ‘Standard practices for digestion of water samples for determination of metals by FAAS, ETAAS, ICP-OES or ICP-MS’ for waste water samples it is advised to use, 100 volume of sample: 5 volume HCl: 1 volume HNO3 is put to microwave digestion vessels for 30 minutes at 121ºC and 15 psig [14]. A comparision of digestion techniques is given in Table 1.
\n\t\t\t\n\t\t\t\t\t\t | Wet Ashing | \n\t\t\t\t\t\tMicrowave Digestion | \n\t\t\t\t\t
---|---|---|
Time Consumption | \n\t\t\t\t\t\tSlow | \n\t\t\t\t\t\tRapid | \n\t\t\t\t\t
Temperature | \n\t\t\t\t\t\tLow | \n\t\t\t\t\t\tHigh | \n\t\t\t\t\t
Pressure | \n\t\t\t\t\t\tAtmospheric | \n\t\t\t\t\t\tAbove Atmospheric | \n\t\t\t\t\t
Operator Skills | \n\t\t\t\t\t\tHigh | \n\t\t\t\t\t\tModerate | \n\t\t\t\t\t
Safety | \n\t\t\t\t\t\tCorrosive-explosive reagents | \n\t\t\t\t\t\tCorrosive-explosive reagents | \n\t\t\t\t\t
Operating Cost | \n\t\t\t\t\t\tLow | \n\t\t\t\t\t\tHigh | \n\t\t\t\t\t
Environmental Effect | \n\t\t\t\t\t\tHigh | \n\t\t\t\t\t\tLow | \n\t\t\t\t\t
Analyte Loss&Contamination | \n\t\t\t\t\t\tHigh | \n\t\t\t\t\t\tLow | \n\t\t\t\t\t
Comparision of Digestion Techniques.
After choosing the effective sample preparation step, most useful techniques were explained below, like atomic absorption spectrometry (AAS), inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), laser induced breakdown spectroscopy (LIBS) and anodic stripping.
\n\t\t\tAtomic Absorption Spectrometry (AAS) is an analytical method for quantification of over 70 different elements in solution or directly in solid samples. Procedure depends on atomization of elements by different atomization techniques like flame (FAAS), electrothermal (ETAAS), hydride or cold vapor. Each atomization technique has its advantages and limitations or drawbacks. A comparision of several AAS techniques is given in Table 2.
\n\t\t\t\tTwo types of flame are used in FAAS: (i) air/acetylene flame, (ii) nitrous oxide/acetylene flame. Flame type depends on thermal stability of the analyte and its possible compounds formed with flame concomitants. Temperature formed in air-acetylene flame is around 2300°C whereas acetylene-nitrous oxide (dinitrogen oxide) flame is around 3000°C [15]. Generally with air/acetylene flame antimony, bismuth, cadmium, calcium, cesium, chromium, cobalt, copper, gold, itidium, iron, lead, lithium, magnesium, manganese, nickel, palladium, platinium, potassium, rhodium, ruthenium, silver, sodium, strontium, thallium, tin and zinc can be determined. On the other hand for refractory elements such as aluminium, barium, molybdenum, osmium, rhenium, silicon, thorium, titanium and vanadium, nitrous oxide/acetylene flame should be used [10]. But some elements like vanadium, zirconium, molibdenium and boron has lower sensitivity in the determination by FAAS because the temperature is insufficient to break down compounds of these elements. Samples should be in solution form, or digested to be detected by FAAS. Typical detection limits are around ppm range and sample analysis took 10-15 seconds per element [16]. The block diagrame of FAAS and GFAAS is depicted in Figure 1. Generally, hollow cathode lamps as source, flame or graphite furnace as an atomizer, grating as a wavelength selector and photomultiplier as a detector are used.
\n\t\t\t\tBlock Diagram for FAAS and GFAAS.
Mahmoud et al. determined Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb by FAAS after enrichment with chemically modified silica gel N-(1-carboxy-6-hydroxy) benzylidenepropylamine (SiG-CHBPA) [16]. Afkhami et al. determined Cd in water samples after cloud point extraction in Triton X-114 without adding chelating agents [18]. Mohamed et al. determined chromium species based on the catalytic effect of Cr(III) and/or Cr(VI) on the oxidation of 2-amino-5-methylphenol (AMP) with H2O2 by FAAS [19]. Mahmoud et al. pre-concentrated Pb(II) by newly modified three alumina–physically loaded-dithizone adsorbents then determined by FAAS [20]. Cassella et al. prepared a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]- pyrrolidine-1-carboxylic acid ethyl ester to determine Cu in water samples [21]. Carletto et al. used 8-hydroxyquinoline-chitosan chelating resin in an automated on-line preconcentration system for determination of Zn(II) by FAAS [22]. Gunduz et al. preconcentrated Cu and Cd using TiO2 core-Au shell nanoparticles modified with 11-mercaptoundecanoic acid and analysed their slurry [23].
\n\t\t\t\tETAAS is basically same as FAAS; the only difference is flame is replaced by graphite tube which can be heated up to 3000 °C for atomization. Since sample is atomized in a much smaller volume the atoms density will be higher, its detection limit is much more than FAAS, around ppb range. Graphite furnace program typically consists of four stages; drying for evaporation of solvent; pyrolysis for removal of matrix constituents; atomization for generation of free gaseous atoms of the analyte; cleaning for removal of residuals in high temperature. Generally samples are liquids, but there are some commercial solid sampling instruments also. Analyze took 3-4 minutes per element. 50 and more elements can be analyzed by GFAAS [15].
\n\t\t\t\tBurguera et al. determined of beryllium in natural and waste waters using on-line flow-injection preconcentration by precipitation dissolution for electrothermal atomic absorption spectrometry. They used a precipitation method quantitatively with NH4OH-NH4Cl and collected in a knotted tube of Tygon without using a filter then the precipitate was dissolved with nitric acid injected to graphite furnace [24]. Baysal et al. accomplished to preconcentrate Pb by cobalt/pyrrolidine dithiocarbamate complex (Co(PDC)2). For this purpose, at first, lead was coprecipitated with cobalt/pyrrolidine dithiocarbamate complex formed using ammonium pyrrolidine dithiocarbamate (APDC) as a chelating agent and cobalt as a carrier element. The supernatant was then separated and the slurry of the precipitate prepared in Triton X-100 was directly analyzed [25].
\n\t\t\t\tHydride generation atomic absorption spectrometry is a technique for some metalloid elements such as arsenic, antimony, selenium as well as tin, bismuth and lead which are introduced to instrument in gas phase. Hydride is generated mostly by adding sodium borohydride to the sample in acidic media in a generator chamber. The volatile hydride of the analyte generated is transferred to the atomizer by inert gas where it is atomized. The oxidation state of the metaloid is very improtant so before introducing to the hydride system, specific metalloid oxidation state should be produced. This method lowers limit of detection (LOD) 10-100 times [15,27]
\n\t\t\t\tCoelho et al, presented a simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V) [24]. Cabon and Madec determined antimony in sea water samples by continuous flow injection hydride generation atomic absorption spectrometry. After continuous flow injection hydride generation and collection onto a graphite tube coated with iridium, antimony was determined by graphite furnace atomic absorption spectrometry [28]. Yersel et al. developed a seperation method with a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric determination [29]. Anthemidis et al. determined arsenic (III) and total arsenic in water by using an on-line sequential insertion system and hydride generation atomic absorption spectrometry [31]. Erdogan et al. determined inorganic arsenic species by hydride generation atomic absorption spectrometry in water samples after preconcentration/separation on nano ZrO2/B2O3 by solid phase extraction [31]. Korkmaz et al. developed a novel silica trap for lead determination by hydride generation atomic absorption spectrometry. The device consists of a 7.0cm silica tubing which is externally heated to a desired temperature. The lead hydride vapor is generated by a conventional hydride-generation flow system. The trap is placed between the gas–liquid separator and silica T-tube; the device traps analyte species at 500 °C and releases them when heated further to 750 °C. The presence of hydrogen gas is required for revolatilization; O2 gas must also be present [32].
\n\t\t\t\tCold vapour atomization technique is used for the determination of mercury which is the only element to have enough vapour pressure at room temperature. Method is based on converting mercury into Hg+2, followed by reduction of Hg+2 with tin(II)chloride or borohydride. Then produced elementel mercury swept into a long-pass absorption tube along with an inert gas. Absorbance of this gas at 253.7 nm determines the concentration. Detection limit is around ppb range. Beside to inorganic mercury compounds, organic mercury compounds are problematic as they cannot be reduced to the element by sodium tetrahydroborate, and particularly not by stannous chloride. So it is advised to apply an appropriate digestion methode prior to the actual determination [15].
\n\t\t\t\tKagaya et al. managed to determine organic mercury, including methylmercury and phenylmercury, as well as inorganic mercury by cold vapor atomic absorption spectrometry (CV-AAS) by adding sodium hypochloride solution [33]. Pourreza and Ghanemi developed a novel solid phase extraction for the determination of mercury. The Hg(II) ions were retained on a mini-column packed with agar powder modified with 2-mercaptobenzimidazole. The retained Hg(II) ions were eluted and analysed by CV-AAS [34]. Sahan and Sahin developed for on-line solid phase preconcentration and cold vapour atomic absorption spectrometric determination of Cd(II) in aqueous samples. Lewatit Monoplus TP207 iminodiacetate chelating resin was used for the separation and preconcentration of Cd(II) ions at pH 4.0 [35].
\n\t\t\t\tHowever, qualitative analysis cannot be made by AAS because a specific hollow cathode lamp (HCL) is used for each element. Therefore, elements should be determined one by one which make a qualitative analysis almost impossible. In addition, non-metals cannot be determined because their atomic absorption wavelengths are in far UV range which is not suitable for analysis due to absorption of air components.
\n\t\t\t\tSince 2004, new generation high resolution continuum source atomic absorption spectrometer (HR-CS-AAS) which is equipped with high intensity xenon short-arc lamp, high resolution double monochromator, CCD detector are produced. The continuous source lamp emits radiation of intensity at least an order of magnitude above that of a typical hollow cathode lamp (HCL) over the entire wavelength range from 190 nm to 900 nm. With these instruments, aside from the analysis line, the spectral environment is also recorded simultaneously, which shows noises and interferences effecting analysis. Improved simultaneous background correction and capabilities to correct spectral interferences, increase the accuracy of analytical results. With high resolution detector, interferences are minimized through optimum line separation. With these instruments, not only metals and non-metals e.g. F, Cl, Br, I, S, P can be determined by their hyperfine structured diatomic molecular absorbances. There are various papers for fluoride determination by GaF [36], SrF [37], AlF [38], CaF [39], chloride by AlCl [40], InCl [41], bromide by AlBr [42], CaBr [43], sulfur by CS [44], phosphorus by PO [45].
\n\t\t\t\t\n\t\t\t\t\t\t\t | FAAS | \n\t\t\t\t\t\t\tGFAAS | \n\t\t\t\t\t\t\tHydride Generation AAS | \n\t\t\t\t\t\t\tCold Vapour AAS | \n\t\t\t\t\t\t
---|---|---|---|---|
Elements | \n\t\t\t\t\t\t\t68 | \n\t\t\t\t\t\t\t50 | \n\t\t\t\t\t\t\tAs, Se, Sb, Bi, Pb, Sn | \n\t\t\t\t\t\t\tHg | \n\t\t\t\t\t\t
Limit of Detection | \n\t\t\t\t\t\t\t+ | \n\t\t\t\t\t\t\t++++ | \n\t\t\t\t\t\t\t++++ | \n\t\t\t\t\t\t\t++++ | \n\t\t\t\t\t\t
Precision | \n\t\t\t\t\t\t\t++++ | \n\t\t\t\t\t\t\t+ | \n\t\t\t\t\t\t\t+ | \n\t\t\t\t\t\t\t+ | \n\t\t\t\t\t\t
Interferences | \n\t\t\t\t\t\t\t+++ | \n\t\t\t\t\t\t\t+ | \n\t\t\t\t\t\t\t++++ | \n\t\t\t\t\t\t\t++++ | \n\t\t\t\t\t\t
Analysis Time | \n\t\t\t\t\t\t\t++++ | \n\t\t\t\t\t\t\t+ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t
Sample Preparation | \n\t\t\t\t\t\t\t+++ | \n\t\t\t\t\t\t\t+++ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t
Operation Skills | \n\t\t\t\t\t\t\t+++ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t
Operation Costs | \n\t\t\t\t\t\t\t++++ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t\t++ | \n\t\t\t\t\t\t
Comparision of AAS techniques.
+Bad, ++:Moderate, +++:Good, ++++:Very Good
Inductively coupled plasma-optical (or atomic) emission spectrometry (ICP-OES or ICP-AES) is an analytical technique used for determination of trace metals. This is a multi-element technique which uses a plasma source to excite the atoms in samples. These excited atoms emit light of a characteristic wavelength, and a dedector measures the intensity of the emitted light, which is related with the concentration. Samples are heated through 10000 ºC to atomize effectively which is an important advantage for ICP technique. Another advantage is multi element analysis. With ICP technique, 60 elements can be analysed in single sample run less than a minute simultaneously, or in a few minutes sequentially. Besides instrument is only optimized for one time for e set of metal analysis. High operating temperature lowers the interferences. Determinations can be accomplised in wide lineer range and refractory elements can be determined at low concentrations (B, P, W, Zr, U). On the other hand consumption of inert gas is very much higher than AAS techniques which cause high operating costs.
\n\t\t\tICP instruments can be ‘axial’ and ‘radial’ according to their plasma configuration. In radial configuration, the plasma source is viewed from the side. Emissions from axial plasma are viewed from horizontally along its length, which reduces background signals resulting in lower detection limits. Some instruments have both viewing modes [46]. The block diagrame of ICP-OES is depicted in Figure 2. Generally, radio frequency (RF) powered torch as a source, polychromators as a wavelength selector, photomultiplier (PMT) or charge capacitive discharged arrays (CCD) as a dedectors are used.
\n\t\t\tBlock Diagram of ICP-OES.
Enrichment/separation procedures have been applied prior to ICP analyses as well. Atanassove et al. used sodium diethyldithiocarbamate to co-precipitate for the pre-concentration of Se, Cu, Pb, Zn, Fe, Co, Ni, Mn, Cr and Cd to detect by ICP-AES [47]. Zougagh et al. determined Cd in water ICP-AES with on-line adsorption preconcentration using DPTH-gel and TS-gel microcolumns [48]. Zogagh et al. developed a simple, sensitive, low-cost and rapid, flow injection system for the on-line preconcentration of lead by sorption on a microcolumn packed with silica gel funtionalized with methylthiosalicylate (TS-gel) then the metal is directly retained on the sorbent column and subsequently then eluted from it by EDTA and elution determined by ICP-AES [49].
\n\t\tInductively coupled plasma mass spectrometry (ICP-MS) is a multi-element technique which uses plasma source to atomize the sample, and then ions are detected by mass spectrometer. Mass spectrometer separate ions according to their mass to charge ratio. This technique has excellent detection limits, in ppt (part per thousand) range. Samples generally introduced as an aerosol, liquid or solid. Solid samples are dissolved prior to analysis or by a laser solid samples are converted directly to aerosol. All elements can analyze in a minute, simultaneously. But it needs high skilled operator, because method development is moderately difficult from other techniques. There are various types of ICP-MS instruments; HR-ICP-MS (high resolution inductively coupled plasma mass spectrometry and MC-ICP-MS (multi collector inductively coupled plasma mass spectrometry). HR-ICP-MS, has both magnetic sector and electric sector to separate and focus ions. By these instruments eliminatenation or reduction of the effect of interferences due to mass overlap is accomplished but operation cost, time and complexity will increase. MC-ICP-MS, are designed to perform high-precision isotope ratio analysis. They have multiple detectors to collect every isotope of a single element but the major disadvantage of system is that all the isotopes should be in a narrow mass range which eliminates these instruments from routine analysis [46]. The block diagrame of ICP-MS is depicted in Figure 3. The main difference from ICP-OES is that quadropole mass spectrometers are used instead of wavelength selectors to detect the analytes.
\n\t\t\t\n\t\t\tKrishna et al. used moss (Funaria hygrometrica), immobilized in a polysilicate matrix as substrate for speciation of Cr(III) and Cr(VI) in various water samples and determined by ICP-MS and FAAS [41]. Hu et al. simultaneously separated and speciated inorganic As(III)/As(V) and Cr(III)/Cr(VI) in natural waters by capillary microextraction with mesoporous Al2O3 before determination with ICP-MS [51]. Chen et al. speciated of chromium in waste water using ion chromatography coupled inductively coupled plasma mass spectrometry [52].
\n\t\t\tBlock diagram of ICP-MS instrument.
Both ICP-OES and ICP-MS are not free of interferences. ICP-OES suffers from spectral interferences due to wavelength overlap of different elements. Similarly, in ICP-MS, the combination of different elements forms diatomic molecules which give the same (or indistinguishable) signal as that the analyte. In Table 3, a comparision of AAS and ICP techniques is given.
\n\t\t\t\n\t\t\t\t\t\t | FAAS | \n\t\t\t\t\t\tGFAAS | \n\t\t\t\t\t\tICP-OES | \n\t\t\t\t\t\tICP-MS | \n\t\t\t\t\t
---|---|---|---|---|
Analysis Time | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t\t+ | \n\t\t\t\t\t\t+++ | \n\t\t\t\t\t\t+++ | \n\t\t\t\t\t
Cost of Instrument | \n\t\t\t\t\t\t+++ | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t\t+ | \n\t\t\t\t\t
Solid Sample Analysis | \n\t\t\t\t\t\t- | \n\t\t\t\t\t\t+++ | \n\t\t\t\t\t\t- | \n\t\t\t\t\t\t- | \n\t\t\t\t\t
Operating Cost | \n\t\t\t\t\t\t+ | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t
LOD | \n\t\t\t\t\t\t+ | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t\t+++ | \n\t\t\t\t\t
Lineer Range | \n\t\t\t\t\t\t+ | \n\t\t\t\t\t\t+ | \n\t\t\t\t\t\t+++ | \n\t\t\t\t\t\t+++ | \n\t\t\t\t\t
Precision | \n\t\t\t\t\t\t+++ | \n\t\t\t\t\t\t+ | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t\t++ | \n\t\t\t\t\t
Comparision of AAS and ICP Techniques.
-: Cannot Accomplished, +: Bad, ++: Medium, +++: Good
Laser Induced Breakdown Spectroscopy (LIBS) is a type of atomic emission spectroscopy which uses a highly energetic laser pulse as the excitation source. It is based on analysing of atomic emission lines close to the surface of sample generated by laser pulse where the very high field intensity initiates an avalenche ionisation of the sample elements, giving rise to the breakdown effect. Spectral and time-resolved analysis of this emission are suitable to identify atomic species originally present at the sample surface [53]. It can determine various metals but only limitation is the power of laser, sensitivity and wavelength range of the spectrometer. Generally this technique is used for solid samples because there are many accurate methods for liquid samples which does not require preparatory steps. Addition to this, using LIBS for liquid samples may cause many problems due to the complex laser-plasma generation mechanisms in liquids [54]. Also splashing, waves, bubbles and aerosols caused by the shockwave accompanying the plasma formation effects precision and analytical performance. In order to overcome these problems, there are various procedures for liquid samples like analysing the surface of a static liquid body, the surface of a vertical flow of a liquid, the surface of a vertical flow of a liquid or of infalling droplets, the bulk of a liquid or dried sample of the liquid deposited on a solid substrate [55]. Though the results obtained were satisfactory, but it is obvious that such experimental tricks contradict with one of the most attractive advantages of LIBS, namely working on an unprepared sample, which facilitate in-situ and real-time measurements [56]. The block diagrame of LIBS is depicted in Figure 4. Laser generates spark and plasma light is collected by a fiber optic and directed into a spectrograph. A sample output spectrum can be seen from figure 4.
\n\t\t\tScheme of an LIBS instrument (Spectra from Reference 48).
Gondal and Hussain, accomplished to determine many toxic trace elements in paint manufacturing plant waste water by LIBS. The results of LIBS method showed accuracy with the results found by ICP in the range of 0.03-0.6 %, which shows that this method can easily be used for trace element analysis [57]. Rai and Rai have also determined Cr in waste water collected from Cr-electroplating industry [58].
\n\t\tAnodic Stripping Voltammetry (ASV) is an analytical technique that specifically detects heavy metals in various matrices. Its sensitivity is 10 to 100 times more than ETAAS for some metals. Since its limit of detection is low, it may not require any preconcentration step. It also allows determining 4 to 6 metals simultaneously with inexpensive instrumentation. ASV technique consists of three steps. First step is electroplating of certain metals in solution onto an electrode which concentrates the metal. Second, stirring is stopped and then finally metals on the electrode are stripped off which generates a current that can be measured. This current is characteristic for each metal and by its magnitude quantification can be done. The stripping step can be either linear, staircase, square wave, or pulse [59].
\n\t\t\tSonthalia et al. used anodic stripping for determination of various metals (Ag, Cu, Pb, Cd and Zn) in several waste water samples. Boron-doped diamond thin film is used [60]. McGaw and Swain compared the performance of boron-doped diamond (BDD) with Hg-coated glassy carbon (Hg-GC) electrode for the anodic stripping voltammetry (ASV) for determination of heavy metal ions (Zn2+, Cd2+, Pb2+, Cu2+, Ag+). Generally Hg has been used as the electrode for ASV but there is an ongoing search for alternate electrodes and diamond is one of these. Produced BDD showed comparable results with Hg electrodes [61]. Bernalte et al. determined mercury by screen-printed gold electrodes with anodic stripping voltammetry [62]. Mousavi et al. developed a sensitive and selective method for the determination of lead (II) with a 1,4-bis(prop-2-enyloxy)-9,10-anthraquinone (AQ) modified carbon paste electrode [63]. Kong et al. produced a method for the simultaneous determination of cadmium (II) and copper (II) during the adsorption process onto Pseudomonas aeruginosa was developed. The concentration of the free metal ions was successfully detected by square wave anodic stripping voltammetry (SWASV) on the mercaptoethane sulfonate (MES) modified gold electrode, while the P. aeruginosa was efficiently avoided approaching to the electrode surface by the MES monolayer [64]. Giacomino et al. investigated parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode. Potential wave forms (linear sweep, differential pulse, square wave), potential scan parameters, deposition time, deposition potential and surface cleaning procedures were examined for their effect on the mercury peak shape and intensity and five supporting electrolytes were tested. The best responses were obtained with square wave potential wave form and diluted HCl as supporting electrolyte [65].
\n\t\t\tThe literature is full of papers on the application of various methods for the determination of metals in waste water. Innumerous procedures, preconcentration/separation techniques, digestion techniques for several samples have been proposed.
\n\t\tCadmium, zinc, copper, nickel, lead, mercury and chromium are often detected in industrial wastewaters, which originate from metal plating, mining activities, smelting, battery manufacture, tanneries, petroleum refining, paint manufacture, pesticides, pigment manufacture, printing and photographic industries, etc. The toxic metals, probably existing in high concentrations (even up to 500 mg/L), must be effectively treated/removed from the wastewaters. If the wastewaters were discharged directly into natural waters, it will constitute a great risk for the aquatic ecosystem, whilst the direct discharge into the sewerage system may affect negatively the subsequent biological wastewater treatment [66].
\n\t\t\tIn recent years, the removal of toxic heavy metal ions from sewage, industrial and mining waste effluents has been widely studied. Their presence in streams and lakes has been responsible for several types of health problems in animals, plants and human beings. Among the many methods available to reduce heavy metal concentration from wastewater, the most common ones are chemical precipitation, ion-exchange, adsorption, coagulation, cementation, electro-dialysis, electro-winning, electro-coagulation and reverse osmosis (See in Figure 5) [4, 67-70].
\n\t\t\tSome conventional methods for the removal of heavy metals.
Some conventional methods are explained below [4, 71-76];
\n\t\t\tPrecipitation is the most common method for removing toxic heavy metals up to parts per million (ppm) levels from water. Since some metal salts are insoluble in water and which get precipitated when correct anion is added. Although the process is cost effective its efficiency is affected by low pH and the presence of other salts (ions). The process requires addition of other chemicals, which finally leads to the generation of a high water content sludge, the disposal of which is cost intensive. Precipitation with lime, bisulphide or ion exchange lacks the specificity and is ineffective in removal of the metal ions at low concentration.
Ion exchange is another method used successfully in the industry for the removal of heavy metals from effluents. Though it is relatively expensive as compared to the other methods, it has the ability to achieve ppb levels of clean up while handling a relatively large volume. An ion exchanger is a solid capable of exchanging either cations or anions from the surrounding materials. Commonly used matrices for ion exchange are synthetic organic ion exchange resins. The disadvantage of this method is that it cannot handle concentrated metal solution as the matrix gets easily fouled by organics and other solids in the wastewater. Moreover ion exchange is nonselective and is highly sensitive to pH of the solution.
Electro-winning is widely used in the mining and metallurgical industrial operations for heap leaching and acid mine drainage. It is also used in the metal transformation and electronics and electrical industries for removal and recovery of metals. Metals like Ag, Au, Cd, Co, Cr, Ni, Pb, Sn and Zn present in the effluents can be recovered by electro-deposition using insoluble anodes.
Electro-coagulation is an electrochemical approach, which uses an electrical current to remove metals from solution. Electro-coagulation system is also effective in removing suspended solids, dissolved metals, tannins and dyes. The contaminants presents in wastewater are maintained in solution by electrical charges. When these ions and other charged particles are neutralized with ions of opposite electrical charges provided by electrocoagulation system, they become destabilized and precipitate in a stable form.
Cementation is a type of another precipitation method implying an electrochemical mechanism in which a metal having a higher oxidation potential passes into solution e.g. oxidation of metallic iron, Fe(0) to ferrous Fe(II) to replace a metal having a lower oxidation potential. Copper is most frequently separated by cementation along with noble metals such as Ag, Au and Pb as well as As, Cd, Ga, Pb, Sb and Sn can be recovered in this manner.
Reverse osmosis and electro-dialysis involves the use of semi-permeable membranes for the recovery of metal ions from dilute wastewater. In electro-dialysis, selective membranes (alternation of cation and anion membranes) are fitted between the electrodes in electrolytic cells, and under continuous electrical current the associated.
Most of these methods suffer from some drawbacks such as high capital and operational costs and problem of disposal of residual metal sludge. Ionexchange is feasible when an exchanger has a high selectively for the metal to be removed and the concentrations of competing ions are low. The metal may then be recovered by incinerating the metal-saturated resin and the cost of such a process naturally limits its application to only the more valuable metals. In many cases, however, the heavy metals are not valuable enough to warrant the use of special selective exchangers/resins from an economic point of view. Cost efective alternative technologies or sorbents for treatment of metals contaminated waste streams are needed. Natural materials that are available in large quantities, or certain waste products from industrial or agricultural operations, may have potential as inexpensive sorbents. Due to their low cost, after these materials have been expended, they can be disposed of without expensive regeneration. Cost is an important parameter for comparing the sorbent materials. However, cost information is seldom reported, and the expense of individual sorbents varies depending on the degree of processing required and local availability. In general, a sorbent can be assumed as ‘low cost’\' if it requires little processing, is abundant in nature, or is a by-product or waste material from another industry. Of course improved sorption capacity may compensate the cost of additional processing. This has encouraged research into using low-cost adsorbent materials to purify water contaminated with metals. Another major disadvantage with conventional treatment technologies is the production of toxic chemical sludge and its disposal/treatment is not eco-friendly. Therefore, removal of toxic heavy metals to an environmentally safe level in a cost effective and environment friendly manner assumes great importance.
\n\t\t\tIn light of the above, biological materials and some adsorption materials have emerged as an economic and eco-friendly option. Adsorption is one the physico-chemical treatment processes found to be effective in removing heavy metals from aqueous solutions. According to literature, an adsorbent (sorbent) can be considered as cheap or low-cost if it is abundant in nature, requires little processing and is a byproduct of waste material from waste industry [66-68, 76-78].
\n\t\t\tOf course improved sorption capacity may compensate the cost of additional processing. Some of the reported low-cost sorbents such as bark/tannin-rich materials, lignin, chitin/chitosan, dead biomass, seaweed/algae/alginate, xanthate, zeolite, clay, fly ash, peat moss, bone gelatin beads, leaf mould, moss, iron-oxide-coated sand, modified wool and modified cotton. Important parameters for the sorbent effectiveness are effected by pH, metal concentration, ligand concentration, competing ions, and particle size [4, 66-68].
\n\t\t\tAnother type of sorbent is plant waste [68]. Plant wastes are inexpensive as they have no or very low economic value. Most of the adsorption studies have been focused on untreated plant wastes such as papaya wood, maize leaf, teak leaf powder, lalang (Imperata cylindrica) leaf powder, rubber (Hevea brasiliensis) leaf powder, Coriandrum sativum, peanut hull pellets, sago waste, saltbush (Atriplex canescens) leaves, tree fern, rice husk ash and neem bark, grape stalk wastes, etc. Some of the advantages of using plant wastes for wastewater treatment include simple technique, requires little processing, good adsorption capacity, selective adsorption of heavy metal ions, low cost, free availability and easy regeneration. However, the application of untreated plant wastes as adsorbents can also bring several problems such as low adsorption capacity, high chemical oxygen demand (COD) and biological chemical demand (BOD) as well as total organic carbon (TOC) due to release of soluble organic compounds contained in the plant materials. The increase of the COD, BOD and TOC can cause depletion of oxygen content in water and can threaten the aquatic life. Therefore, plant wastes need to be modified or treated before being applied for the decontamination of heavy metals. A comparison of adsorption efficiency between chemically modified and unmodified adsorbents was also reported in literature [67].
\n\t\t\tIn a conclusion, a wide range of low-cost adsorbents obtained from naturel and chemical sorbent or chemically modified plant wastes has been studied and most studies were focused on the removal of heavy metal ions such as Cd, Cu, Pb, Zn, Ni and Cr(VI) ions. The most common chemicals used for treatment of plant wastes are acids and bases. Chemically modified plant wastes vary greatly in their ability to adsorb heavy metal ions from solution. Chemical modification in general improved the adsorption capacity of adsorbents probably due to higher number of active binding sites after modification, better ion-exchange properties and formation of new functional groups that favours metal uptake. Although chemically modified plant wastes can enhance the adsorption of heavy metal ions, the cost of chemicals used and methods of modification also have to be taken into consideration in order to produce ‘low-cost’ adsorbents.
\n\t\t\tAnother option is using biological materials [4, 66-68, 76, 77]. Biomaterials of microbial and plant origin interact effectively with heavy metals. Metabolically inactive dead biomass due to their unique chemical composition sequesters metal ions and metal complexes from solution, which obviates the necessity to maintain special growth-supporting conditions. Metal-sorption by various types of biomaterials can find enormous applications for removing metals from solution and their recovery. Rather than searching thousands of microbial species for particular metal sequestering features, it is beneficial to look for biomasses that are readily available in large quantities to support potential demand. While choosing biomaterial for metal sorption, its origin is a major factor to be taken into account, which can come from (a) microorganisms as a by-product of fermentation industry, (b) organisms naturally available in large quantities in nature and (c) organisms cultivated or propagated for biosorption purposes using inexpensive media. Different non-living biomass types have been used to adsorb heavy metal ions from the environment. Seaweed, mold, bacteria, crab shells and yeast are among the different kinds of biomass, which have been tested for metal biosorption or removal. Advantages and disadvantages of biosorption by non-living biomass are as follows [67, 75-77]:
\n\t\t\tAdvantages of biosorption;
\n\t\t\tGrowth-independent, non-living biomass is not subject to toxicity limitation of cells. No requirement of costly nutrients required for the growth of cells in feed solutions. Therefore, the problems of disposal of surplus nutrients or metabolic products are not present.
Biomass can be procured from the existing fermentation industries, which is essentially a waste after fermentation.
The process is not governed by the physiological constraint of living microbial cells.
Because of non-living biomass behave as an ion exchanger; the process is very rapid and takes place between few minutes to few hours. Metal loading on biomass is often very high, leading to very efficient metal uptake.
Because cells are non-living, processing conditions are not restricted to those conducive for the growth of cells. In other words, a wider range of operating conditions such as pH, temperature and metal concentration is possible. No aseptic conditions are required for this process.
Metal can be desorbed readily and then recovered if the value and amount of metal recovered are significant and if the biomass is plentiful, metal-loaded biomass can be incinerated, thereby eliminating further treatment.
Disadvantages of biosorption;
\n\t\t\tEarly saturation can be problem i.e. when metal interactive sites are occupied, metal desorption is necessary prior to further use, irrespective of the metal value.
The potential for biological process improvement (e.g. through genetic engineering of cells) is limited because cells are not metabolizing. Because production of the adsorptive agent occurs during pre-growth, there is no biological control over characteristic of biosorbent. This will be particularly true if waste biomass from a fermentation unit is being utilized.
There is no potential for biologically altering the metal valency state. For example less soluble forms or even for degradation of organometallic complexes.
Metabolic independent processes can mediate the biological uptake of heavy metal cations. Biosorption offers an economically feasible technology for efficient removal and recovery of metal(s) from aqueous solution. The process of biosorption has many attractive features including the selective removal of metals over a broad range of pH and temperature, its rapid kinetics of adsorption and desorption and low capital and operation cost. Biosorbent can easily be produced using inexpensive growth media or obtained as a by-product from industry. It is desirable to develop biosorbents with a wide range of metal affinities that can remove a variety of metal cations. These will be particularly useful for industrial effluents, which carry more than one type of metals. Alternatively a mixture of non-living biomass consisting of more than one type of microorganisms can be employed as biosorbents. Bacterial biomass, algal biomass, fungal biomass were applied to removal of metals in the waste waters. The use of immobilized biomass rather than native biomass has been recommended for large-scale application but various immobilization techniques have yet to be thoroughly investigated for ease, efficency and cost effectivity [67, 77].
\n\t\t\tBiosorption processes are applicable to effluents containing low concentrations of heavy metals for an extended period. This aspect makes it even more attractive for treatment of dilute effluent that originates either from an industrial plant or from the primary wastewater treatment facility. Thus biomass-based technologies need not necessarily replace the conventional treatment routes but may complement them. At present, information on different biosorbent materials is inadequate to accurately define the parameters for process scale up and design perfection including reliability and economic feasibility. To provide an economically viable treatment, the appropriate choice of biomass and proper operational conditions has to be identified. To predict the difference between the uptake capacities of the biomass, the experimental results should be tested against an adsorption model. The development of a packed bed or fluidized-bed biosorption model would be helpful for evaluating industrial-scale biosorption column performance, based on laboratory scale experiments and to understand the basic mechanism involved in order to develop better and effective biosorbent.
\n\t\tAn unfortunate consequence of industrialization and industrial production is the generation and release of toxic waste products which are polluting our environment. Many trace and heavy metals (Cd, Pb, Mn, Cu, Zn, Cr, Fe and Ni) and their compounds have been found that are toxic. Many of them are used in several industrial activities including metallurgy, tanneries, petroleum refining, electroplating, textiles and in pigments. Their presence in environment has been responsible for several types of health problems in animals, plants and human beings. If the wastewaters were discharged directly into natural waters, it will constitute a great risk for the aquatic ecosystem, whilst the direct discharge into the sewerage system may affect negatively.
\n\t\t\tThe analysis of wastewater for trace and heavy metal contamination is an important step in ensuring human and environmental health. Wastewater is regulated differently in different countries, but the goal is to minimize the pollution introduced into natural waterways. In recent years, metal production emissions have decreased in many countries due to legislation, improved cleaning technology and altered industrial activities. Today and in the future, dissipate losses from consumption of various metal containing goods are of most concern. Therefore, wastewater may need to be measured for a variety of metals at different concentrations, in different wastewater matrices. A variety of inorganic techniques can be used to measure trace elements in waste water including atomic absorption spectrometry (AAS), inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP mass spectrometry (ICP-MS). Depending upon the number of elements that need to be determined and the number of samples that need to be run, the most suitable technique for business requirements can be chosen.
\n\t\t\tSeveral industrial wastewater streams may contain heavy metals such as Cd, Sb, Cr, Cu, Pb, Zn, Co, Ni, etc. The toxic metals, probably existing in high or even in low concentrations, must be effectively treated/removed from the wastewaters. The various treatment methods employed to remove heavy or trace metals, adsorption and chemical precipitation process is the most common treatment technology. The conventional heavy metal removal process has some inherent shortcomings such as requiring a large area of land, a sludge dewatering facility, skillful operators and multiple basin configuration. In recent years, some new processes have been developed for the heavy metal removal from wastewater, like biosorption, neutralization, precipitation, ion exchange etc. The use of al these techniques for removal of the heavy metals offers several advantages and limitations compared to each other. The important parameters for the selection of removal technique of heavy metal from waste water are waste type, the growth of the wastewater field, cheap or low-cost removal material, operational costs and problem of disposal of residual metal sludge. The significance of developing new treatment/removal methods for heavy metal from waste or waste water samples has been widely recognized especially in the fields of environmental sciences.
\n\t\tSpecific learning disorder (SLD) is manifested by specific and significant impairments in learning of scholastic skills in children and adolescent. Over the years they have been given different labels like dyslexia, perceptual handicap, neurological impairment, minimal brain dysfunction, congenital word blindness, development aphasia, congenital aphasia, educational handicap. Until very recent times they were often not diagnosed due to lack and paucity of assessment tools. Learning disability is not a single disorder, but is composed of disabilities in any of the 7 specific areas:- like Receptive language (listening), Expressive language (speaking), Basic reading skills, Reading comprehension, Written expression, Mathematical calculation, Mathematical reasoning.
There is heterogeneity in term of etiological factors and manifested as difficulty in reading (dyslexia), writing (dysgraphia) or perform efficient mathematical task (dyscalculia) despite intact sense, intelligence, motivation with adequate socio-cultural opportunity [1, 2]. The term SLD does not include who have learning disability primary the result of any organic lesion in brain, subnormal intelligence, any psychiatric disorders or socio-cultural disadvantages [3]. This disorder is seen worldwide and occurs in students irrespective of their mother tongue and medium of instruction in the school which may be English or any other vernacular language.
Dyslexia was first identified in the latter half of the nineteenth century and subsequently several subtypes have described [4]. In 1993, Castle and Coltheart point out the basic subtypes namely Phonological, Surface and Mixed varieties. The phonological subtype have deficiency in development of graphic phonemes reading ability whereas in surface subtype show difficulty with developmental lexical procedure [5]. The neurobiological aspect of dyslexia has been described as earlier as in 1891 by Dejerine suggesting angular gyrus, supramarginal gyrus in inferior parietal lobe, posterior aspect of supra temporal gyrus and ventral aspect of occipito-temporal were critical for reading [6, 7].
Dyslexia is perhaps the most common neurobehavioral disorder affecting children, with prevalence rates ranging from 5 to 17.5 percent [2]. An epidemiological study in British school children in the age range of 8–10 year found the prevalence of ‘specific reading difficulties ‘to be 3.9%, with the overall prevalence of SLD around 7.5% [8]. According to one Asian study the prevalence of dyslexia and probable dyslexia were found to be 6.3% and 12.6% respectively. The male to female ratio of dyslexia was 3.4:1 [9]. In India, there was about 250 million school going children, 12.5 million (1.25 Crore) children suffering from SLD [10]. Barring arithmetic disorder which may be more common in girls, all other learning disorder seems to be 3–4 times more common in boys. In another study conducted by Sadhu et.al, (2003) reported presence of neurological soft signs in SLD children from Indian context [11]. Agrawal et al. (1991) used Bender Gestalt test, Piaget’s test and Indian modification of WISC for the detection of SLD in rural primary school children [12].
Characteristic diagnostic features include difficulty recalling, evoking, and sequencing printed letters and words; processing sophisticated grammatical constructions; and making inferences. There are certain criteria in International Classification of Diseases (ICD-10) [13] and Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [14] for diagnosis of specific reading disorder (Table 1).
S. No. | According to ICD 10 | DSM 5 |
---|---|---|
1 | Specific reading disorder (F81.0) | Reading Disorder (315.00) |
2 | Specific spelling disorder (F81.1) | Mathematics Disorder (315.1) |
3 | Specific disorder of arithmetic skills (F81.2) | Disorder of Written Expression (315.2) |
4 | Mixed disorder of scholastic skills (F81.3) | Learning Disorder Not Otherwise Specified (315.9) |
5 | Other developmental disorders of scholastic skills (F81.8) | |
6 | Developmental disorder of scholastic skills, unspecified (F81.9) |
Classification of specific learning disorder.
Either of the following must be present
‘A score on reading accuracy and or comprehension that is at least 2 standard errors of prediction below the level expected on the basis of the child’s chronological age and general intelligence with both reading skills and I.Q. assessed on an individually administered test standardized for the child’s culture and educational system’.
‘A history of serious reading difficulties or test scores that met criterion (A) [1] at an earlier age plus a score that is at least 2 standard errors of prediction below the level expected on the basis of the child’s chronological age and I.Q’.
‘The disturbance described in criterion (A) significantly interferes with academic achievement or with activities of daily living that require reading skills’.
‘The disorder is not the direct result of a defect in visual or hearing acuity or of a neurological disorder’.
‘School experiences are within the average expectable range’.
‘Most commonly used exclusion clause – IQ below 70 on an individually administered standardized test’.
With word reading accuracy, reading rate or fluency, reading comprehension include:
‘Reading achievement, as measured by individually administered standardized tests of reading accuracy or comprehension, is substantially below that expected given the person’s chronological age, measured intelligence, and age-appropriate education’.
‘The disturbance in Criterion A significantly interferes with academic achievement or activities of daily living that require reading skills’.
‘If a sensory deficit is present, the reading difficulties are in excess of those usually associated with it’.
History of language delay, or of not attending to the sounds of words (trouble playing rhyming games with words, or confusing words that sound alike), along with a family history, are important red flags for dyslexia [2]. Specific symptoms of reading disorder include difficulties in single word decoding, slow oral reading and poor comprehension of written text. The developmental dyslexia as per Bakker classification: Linguistic (L) type, perceptual (P) type, and M type [15]. It is also classified by Doehring (1977) into Subtype I (Poor in oral reading of letters, nonsense syllables and words relative to their silent reading skills); Subtype II (Read slowly and made many mistakes) and Subtype III (Better able to read single letters than to read words or syllables during either silent or oral reading) [16]. As per Petrauska and Rourke (1979), developmental dyslexics were classified into those:a) who had language difficulties with intact visual motor skills; b) who had sequencing, visual memory and finger identification difficulties; c) who had language and concept formation difficulties and poor visual motor skills [17]. Rourke also postulated a model which is organized into primary, secondary and tertiary assets and defects [18]. The primary assets has following feature such as repetitive motoric skills, auditory perception, mastery of rote or repetitive material. Its defects include tactile and visual perception complex psychomotor skill and ability to process novel situation. In secondary assets there were selective and sustained attention for simple, repetitive verbal materials and its defects include tactile and visual stimuli and exploratory behavior. The tertiary assets involve rote verbal memory with defects in tactile and visual memory, concept formulation, problem solving, hypothesis- testing skills and understanding the semantic and pragmatic aspects of language [19]. These deficits appear to increase with age. It was also postulated that nonverbal learning disorder is related to dysfunction of white-matter tracts that serve to connect associational areas, with particular involvement of the right hemisphere [18].
Cognitive Influences: Theories of Developmental Dyslexia
Cerebellar theory: The studies have shown that the cerebellum of dyslexic have mild dysfunction with number of cognitive difficulties ensue [21].
Magnocellular theory: The magnocellular dysfunction is not restricted to the visual pathways but is generalized to all modalities [22].
Phonological deficit theory: The dyslexic have a specific impairment in the representation, storage and/or retrieval of speed of sounds [23].
Rapid auditory processing theory: This theory says that the primary deficit lies in the perception of short or rapidly varying sounds [24].
Visual theory: There is a visual impairment giving rise to difficulties with the processing of letters and words on a page of text [25].
Among investigators in the field there is now a strong consensus supporting the phonological theory.
The neural basis of dyslexia
Galaburda et al., 2000 found that there was a microscopic malformations in the perisylvian regions (cortical ectopias and dysplasias) and the geniculate nuclei (size reduction of magnocellular neurons) suggesting abnormal neuronal migration and maturation, prompting research on the neural basis of dyslexia [26]. In skilled adult readers the functional neuroanatomy of reading is widely distributed but dominated by a left-sided network [27]. They also found that the ventral pathway in the posterior fusiform gyrus re[present an automatically assessed visual word-form area [28]; however the dorsal pathway (include angular and supra-marginal gyri) represent phonology based assembly process [29], implicated in the output of phonological and articulatory aspects. Most studies show reduced activity in the left, rather than bilateral perisylvian regions. There was a disconnection within the left perisylvian network, which has a role in phonological processes [30].
Neuropsychological Deficits in dyslexia
Visual processing deficit: Both visual auditory and tactile information processing deficit was documented by Laasonen and Tomma, 2000 [31]. There were impairments in executive functioning and deficit in central information processing. It was also shown that there were maturation lag of left hemisphere, also called disconnection syndrome. They also have difficulty with inter-hemispheric transfer and defect in left parietal lobe, temporal lobe, angular gyrus and cerebellum.
Neurological Soft Signs in dyslexia
It include abnormalities in: Graphethesia, Stereognosis, Motor task, Face hand face noise test, two point discrimination, maintenance of posture & tapping, more rotation error in BGT. It was also found that arithmetic disabled children had right sided soft signs indicating left hemispheric dysfunction.
Given that reading disorder is essentially a language deficit, the left brain has been hypothesized to be the anatomical site of the dysfunction. There are different neuro-imaging studies done including positron emission tomography (PET scanning), event related potentials (ERPs) with auditory and visual stimuli, magnetic evoked potentials by megnetoencephalography (MEG) and magnetic resonance spectrography (MRS) alongwith functional magnetic resonance imaging (fMRI) [32]. The research studies using functional magnetic resonance imaging (fMRI) studies have suggested asymmetrical activation of left brain in children with both language and learning disorders. Functional MRI (fMRI) detects the hemodynamic response related to neural activity in the brain, based on the principal of BOLD (blood oxygen level detection). It has better spatial resolution and BOLD activity from all regions of the brain can be obtained. It can noninvasively record brain signals without risks of radiation inherent in other scanning methods, such as CT and PET scans. Hence, this study was planned with fMRI neuro-imaging technique for studying the areas of activity during different processing tasks in dyslexia.
Neuroimaging method such as functional magnetic resonance imaging (fMRI) provide evidence of hypoactivation of the left posterior language system in dyslexia, across different languages. This hypoactivity has been localized to left posterior parietal cortex [33], inferior occipitotemporal cortex, and superior temporal gyrus [34].
Temple et al. 2000, found that the fMRI data revealed largest activation was in the left prefrontal region, between the middle and superior frontal gyri in Brodmann area 46/10/9. Analysis of the dyslexic readers revealed no left frontal response to the rapid, relative to the slow, stimuli. This brain imaging study shows both a disrupted neural response to rapid auditory stimuli and its location in dyslexic adults [35]. By using fMRI, Brown et al., 2001 have shown that there were hypointense gray matter in most of the left temporalcortex by voxel-based morphometry or anisotropy in white-matter fibers [36]. Helenius, showed that prelexical processing in left inferior occipitotemporal regions was sometimes absent in people with dyslexia [37]. Using fMRI, Shaywitz et al.,2002 found that the brain activation in dyslexic opposite during reading task where frontal part was more active in comparison with back regions [34].
Johanna Pekkola 2006 et al., found that dyslexic readers’ use more of motor-articulatory and visual strategies during phonetic processing of audiovisual speech, possibly to compensate for their difficulties in auditory speech perception [38]. Martin Kronbichler et al., 2008 found that there was less gray matter volume for dyslexic readers in the left and right fusiform gyrus, the bilateral anterior cerebellum and in the right supramarginal gyrus. There was decrease volume mass in gray matter in right and left fusiform gyrus which highlight the importance of this brain regions in developmental dyslexia [39]. Quaglino V et al. 2008 during their fMRI study i a phonological deficit in developmental dyslexia [40]. Vera Blau et al. 2009 showed that dyslexic readers has under activation of superior temporal cortex for the integration of letters and speech sounds. They also showed that there was reduction of audio-visual integration the fundamental deficit in auditory processing of speech sounds, which in turn predicts performance on phonological tasks and account for developmental dyslexia, in which phonological processing deficits are linked to reading failure through a deficit in neural integration of letters and speech sounds and IQ [41]. Fabio Richlan et al., 2010 found that there was dysfunction of the region in the developmental cases who failed to exhibit responsiveness of left OT regions to the length of words and pseudo- words [42]. Rimrodt SL et al., 2009 found that the dyslexic group show more activation in the linguistic processing areas such as left middle and superior temporal gyri as well as in the attention and response selection areas such as bilateral insula, right cingulate gyrus, right superior frontal gyrus, and right parietal lobe [43]. Li Liu et al., 2012 showed that the dyslexic has less activation for both tasks in right visual (BA18, 19) and left occipito-temporal cortex (BA 37), suggesting a deficit in visuo-orthographic processing. It also has abnormalities in frontal cortex and in posterior visuo-orthographic regions may reflect a deficit in the connection between brain regions [44]. In the recent neurobiological study of dyslexia from India dyslexic where compared with healthy matched control and BOLD acquisition using fMRI was done with three different paradigms (semantic, picture and auditory), the study show that it was an important contribution in beginning to understand how higher level language processing impacts reading comprehension, especially in disabled readers. Healthy controls show greater activation within left occipito-temporal region (visual word form area). The Dyslexic group demonstrated right hemispheric dominance for language and exhibit increased articulation and planning as compared to control, in performing the semantic tasks. The BOLD cluster activation and signal intensity were greater in dyslexic patients as compared to control [45]. The further description of BOLD activation during the above mention tasks are given in detail in the tabular form and brain imaging using fMRI (Tables 2–4 and Figures 1–3).
No clusters | Z-score | mni coordinate | Talairach coordinates | Hemi-sphere | Area of activation | Brodmann area |
---|---|---|---|---|---|---|
29 | 3.21 | 44 -46 -28 | 40 -42 -24 | Right | Cerebellum- Culmen | |
39 | 3.17 | 24 -2 -36 | 22 -1 -28 | Right | Uncus | BA 36 |
14 | 3.08 | 20 -30 30 | 17 -32 29 | Right | Cingulate Gyrus | |
65 | 3.01 | 54 -18 34 | 49 -22 34 | Right | Postcentral Gyrus | BA 2 |
45 | 3.01 | -4 -46 22 | -5 -47 20 | Left | Posterior Cingulate | BA 30 |
11 | 3.81 | 58 -48 20 | 52 -48 19 | Right | Supramarginal gyrus | BA 40 |
BOLD Activation in Intergroup Comparison during Rhyming Task.
During intergroup comparison of dyslexic group with respect to control for auditory phonological rhyming task BOLD activation was observed in the right post-central gyrus, right cerebellum and uncus and the left posterior cingulate gyrus. Thus the decoding of language occurs in left superior temporal gyrus that was not observed in dyslexic group.
During Intergroup comparison of controls with respect to dyslexic group during auditory phonological task, rhyming with respect to meaningless baseline BOLD activation was observed more in right superior temporal gyrus where the right hemisphere is dominant for visuo-spatial auditory processing. No such activation was observed in dyslexic group with similar condition. This finding concord with the previous study in which the middle and posterior part of superior temporal sulcus was activated by silent speech-reading, and also by audio-visual speech. This region usually constitutes the principal focus of activation in fMRI studies of speech-reading.
No clusters | Z-score | mni coordinates | Talairach coordinates | Hemisphere | Area of activation | Brodmann area |
---|---|---|---|---|---|---|
Controls | ||||||
10 | 3.49 | 32 -52 68 | 28 -56 61 | Right | Superior Parietal Lobule | BA 7 |
29 | 3.29 | -52 -70 28 | -50 -69 22 | Left | Middle Temporal Gyrus | BA 39 |
Patients | ||||||
102 | 3.15 | 8 -34 50 | 6 -38 46 | Right | Precuneus | BA 7 |
28 | 3.88 | -32 38 -14 | -30 35 -6 | Left | Middle Frontal Gyrus | BA 47 |
51 | 3.87 | 58 0 -34 | 53 1 -25 | Right | Middle Temporal Gyrus | BA 21 |
58 | 3.81 | -64 -40 34 | -61 -42 30 | Left | Supramarginal Gyrus | BA 40 |
238 | 3.74 | -18 -36 4 | -18 -36 4 | Left | Thalamus | |
62 | 3.66 | 2 -34 72 | 0 -40 65 | Left | Paracentral Lobule | BA 5 |
48 | 3.61 | 6 -44 20 | 4 -45 18 | Right | Posterior Cingulate | BA 30 |
14 | 3.42 | -20 66 10 | -19 59 19 | Left | Superior Frontal Gyrus | BA 10 |
39 | 3.39 | 18 -18 62 | 15 -24 58 | Right | Medial Frontal Gyrus | BA 6 |
11 | 3.36 | 34 -26 66 | 30 -32 61 | Right | Postcentral Gyrus | BA 3 |
13 | 3.33 | -46 -20 2 | -44 -20 3 | Left | Insula | BA 13 |
16 | 3.29 | -50 -74 28 | -48 -73 22 | Left | Middle Temporal Gyrus | BA 39 |
10 | 3.25 | 54 -32 40 | 48 -35 38 | Right | Inferior Parietal Lobule | BA 40 |
Patients | ||||||
30 | 3.82 | -32 34 -12 | -30 31 -4 | Left | Inferior Frontal Gyrus | BA 47 |
Controls | ||||||
No Activation |
BOLD Activation during Picture Naming Task in Controls, Dyslexic and the Intergroup Comparison (P<0.001, Cluster Threshold=10).
During picture task, in the control group BOLD activation was observed more in left middle temporal gyrus which are involved in visual encoding and memory processing as well as in the right superior parietal lobule (visual processing area). However in dyslexic group BOLD activation was observed more in right precuneus, right posterior cingulate gyrus (visuospatial processing), right medial frontal gyrus (involved in planning and co ordination of movement), right paracentral lobule (voluntary motor function and motor planning) and bilateral middle temporal gyri (right hemispheric dominance). BOLD activation was also observed in left supramarginal gyrus (association area) and left thalamus (sensory motor coordination). Thus the dyslexic group used more memory component of brain.
No clusters | Z-score | mni coordinates | Talairach coordinates | Hemisphere | Area of activation | Brodmann area |
---|---|---|---|---|---|---|
Controls (p<0.001) | ||||||
363 | 4.18 | -16 -90 -14 | -16 -84 -17 | Left | Cerebellum - Declive | |
99 | 3.62 | 22 -88 -10 | 19 -83 -12 | Right | Lingual Gyrus | BA 18 |
86 | 3.52 | 12 -98 0 | 10 -93 -4 | Right | Lingual Gyrus | BA 17 |
90 | 3.42 | -20 -102 -6 | -20 -96 -11 | Left | Lingual Gyrus | BA 17 |
Patients (p<0.001) | ||||||
357 | 4.10 | -12 -92 -6 | -12 -87 -10 | Left | Lingual Gyrus | BA 18 |
1160 | 4.36 | 44 -54 24 | 39 -54 21 | Right | Superior Temporal Gyrus | BA 22 |
94 | 4.22 | -20 -40 26 | -20 -41 23 | Left | Cingulate Gyrus | BA 31 |
218 | 3.61 | -14 -56 36 | -15 -57 31 | Left | Precuneus | BA 31 |
141 | 3.83 | -44 20 -30 | -41 20 -22 | Left | Superior Temporal Gyrus | BA 38 |
137 | 3.78 | 20 -86 4 | 17 -82 0 | Right | Lingual Gyrus | BA 17 |
57 | 3.68 | 2 16 -16 | 1 15 -9 | Right | Anterior Cingulate | BA 25 |
48 | 3.66 | -30 -74 -16 | -29 -69 -17 | Left | Cerebellum Declive | |
38 | 3.42 | 34 -66 -20 | 31 -62 -19 | Right | Cerebellum Declive | |
Patients Vs. Controls (p<0.005) | ||||||
25 | 3.61 | -20 -40 26 | -20 -41 23 | Left | Cingulate Gyrus | BA 31 |
346 | 3.18 | 18 -52 28 | 15 -53 25 | Right | Cingulate Gyrus | BA 31 |
63 | 3.14 | 46 -54 26 | 41 -55 23 | Right | Superior Temporal Gyrus | BA 39 |
16 | 3.03 | 32 -46 6 | 28 -45 6 | Right | Temporal Lobe | Hippocampus |
Controls Vs. Patients (p<0.005) | ||||||
13 | 2.73 | 42 -44 -22 | 38 -41 -19 | Right | Fusiform Gyrus | BA 20 |
BOLD Activation during Complex Sentence Reading Task (Semantic Task 3) in Controls, Dyslexic and the Intergroup Comparison.
It show bilateral lingual gyrus (left side greater than right) activation. Bilateral superior temporal gyrus (right hemispheric dominance) involved in auditory processing and left precuneus (visuo-spatial imagery, episodic memory retrieval and self-processing operations). Bilateral cingulated gyrus was also activated that plays role in visual spatial processing. Bilateral cerebellum was activated for motor speech articulation as the subject had to verbalize the response. However in control group only bilateral lingual gyri were involved. The finding suggested that reading disable group showed significantly more activation than typical reader in areas associated with linguistic processing (left middle/superior temporal gyri), and attention and response selection (bilateral insula, right cingulate gyrus, right superior frontal gyrus, and right parietal lobe). However during intergroup comparison BOLD activation was observed in control group with respect to dyslexic in right fusiform gyrus (visual word form area). In dyslexic group with respect to control, BOLD activation was observed in bilateral cingulate gyrus involved in visuo-spatial processing (right cerebral dominance). Right superior temporal gyrus (word processing) and right hippocampal (memory encoding and retrieval) were activated. Thus the dyslexic group used different pathway and greater areas of activation as compared to that of control group.
BOLD activation in intergroup comparison Patient vs. Control during rhyming task (p < 0.001).
BOLD activation in intergroup comparison between Patients vs. Controls during picture naming task (
BOLD activation in intergroup comparison between Patients vs. control during complex sentence reading task (p < 0.005, cluster threshold = 10).
There are various educational intervention and programs are available to address dyslexia which include regular teaching in small group, a learning support assistant like a specialist teacher, policy interventions etc. The basic strategies of intervention focus on phonemic skill which include the ability to identify and process word sounds. It include recognize and identify sounds in spoken words such as recognize that even words such as ‘RAT’ are actually made up of 3 sounds: ‘R’, ‘A’, and ‘T’. It also include combining letter to create words, and over time, use the words to create more complex sentences, practice reading words accurately to help them read more quickly, monitor their own understanding while they read. The Orton-Gillingham program include special skill which teaches the patient how to match letters with sound and also to recognized letter sound in the words. In the multisensory instruction process the patients were instructed how to use all the senses (touch, sight, hearing, smell, and movement) – to learn new skills. For example, they might run their finger over letters made out of sandpaper to learn how to spell. There are some laws in in school which priorities these children called Individualized Education Plans (IEP). This IEP outlines special services the child needs to make school easier. These might include extra time to finish tests, audio books or text-to-speech—a technology that reads words out loud from a computer or book [46].
Alphabetic orthography (Henry MK, 1998) [47]
It has multisensory design in which instruction has visual, auditory, and kinesthetic or tactile elements. It is generally believed that such forms of instruction are more effective for such patients. Birsh (2005) [48] and Connor (2007) [49] highlighted the importance of “explicit instruction for remediation as well as the need for intensity that is completely different from regular classroom instruction”. The dyslexic needs structured and sequential interactive activities, close monitoring, connecting the known with the new and sufficient time for practice of new skills which would be in use to build automaticity and fluency. They found that the ideal size of the instruction group would be 1:! And 1:3.
Academic remediations [50, 51]
It includes appropriate remedial instruction in a structured literacy approach
Phonology: developing skill in form of rhyming, counting words, clapping syllables in spike words.
Sound-Symbols Association: In include developing skill to map the phonemes to symbols which could be taught into two direction such as visual to auditory (reading) and auditory to visual (spelling).
Syllabus Instruction: The concept behind is that a syllabus is a unit or a written language with one vowel sound. So, the instructions must include the 6 basic syllable types in English which include closed, vowel-consonant-e, open, consonant-le, r-controlled, and vowel pair.
Morphology: In morpheme (the smallest unit of meaning in any language) the base of the words, roots, prefixes and suffixes are considered.
Syntax: The set of principle which help in sequencing and functioning the words in sentences with concepts of grammar, sentences variation and mechanics of language.
Besides these in include semantics, systematic, cumulative and explicit instruction which in teaching with through interaction with students.
The oral testing, untimed tests, audiobooks, eliminate or reduce spelling tests, accept dictated homework. It emphasis on such activities in which students are more active such as sports stories, biographies famous persons, inventors, musicians etc. Recommendation were using appropriate layout, large front size, line space (1.5) and a clear font (sans-serif fonts).
Now there is the concepts that each country has adopted and developed a writing system of choice which are convenient to their people. They have their own statutes relating to the provision of education, and special educational needs. There are various Non-Government Organization (NGOs) and agencies provide many independent and voluntary support in this regards.
SLD is a disabling academic problem in children with neurobiological origin. The entity of reading disorder is heterogeneous with respect to its a etiology as understood by the number of biological and neuropsychological theories postulated for the explanation and also with respect to the extent and type and manifestation either because of the different types of disabilities. Many reasons have been cited for its causation starting from genetic defects, perinatal insults, and metabolic abnormality to deficits in the information processing of the central nervous system. According several studies conducted in the past the entity of reading disorder is widely unrecognized and the affected children lacked earlier detection and appropriate intervention.
Our journals are currently in their launching issue. They will be applied to all relevant indexes as soon as they are eligible. These include (but are not limited to): Web of Science, Scopus, PubMed, MEDLINE, Database of Open Access Journals (DOAJ), Google Scholar and Inspec.
\n\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6655},{group:"region",caption:"Middle and South America",value:2,count:5946},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12678},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17699}],offset:12,limit:12,total:133952},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"C-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Prof. Jose Marti",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11856",title:"Testosterone - Functions, Uses, Deficiencies, and Substitution",subtitle:null,isOpenForSubmission:!0,hash:"8549d2b1fcd1242f85a6a70447b1db10",slug:null,bookSignature:"Associate Prof. Hirokazu Doi",coverURL:"https://cdn.intechopen.com/books/images_new/11856.jpg",editedByType:null,editors:[{id:"473383",title:"Associate Prof.",name:"Hirokazu",surname:"Doi",slug:"hirokazu-doi",fullName:"Hirokazu Doi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12387",title:"Natural Killer Cells - Lessons and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"5576cda9d50adf4e4256e47427560510",slug:null,bookSignature:"Associate Prof. Leisheng Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/12387.jpg",editedByType:null,editors:[{id:"439674",title:"Associate Prof.",name:"Leisheng",surname:"Zhang",slug:"leisheng-zhang",fullName:"Leisheng Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12072",title:"Finite Element Method and Its Extensions",subtitle:null,isOpenForSubmission:!0,hash:"3b9656ca1f591fcc44f127e12a6ef28f",slug:null,bookSignature:"Prof. Mahboub Baccouch",coverURL:"https://cdn.intechopen.com/books/images_new/12072.jpg",editedByType:null,editors:[{id:"186635",title:"Prof.",name:"Mahboub",surname:"Baccouch",slug:"mahboub-baccouch",fullName:"Mahboub Baccouch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11994",title:"MXenes - Fabrications and Applications",subtitle:null,isOpenForSubmission:!0,hash:"184e1a0c9b5e62ebb3c7ebc53103db9f",slug:null,bookSignature:"Prof. Dhanasekaran Vikraman",coverURL:"https://cdn.intechopen.com/books/images_new/11994.jpg",editedByType:null,editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12143",title:"Herbs and Spices - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"dbbc40b4b09244389b52ca80dcc10768",slug:null,bookSignature:"Dr. Eva Ivanišová",coverURL:"https://cdn.intechopen.com/books/images_new/12143.jpg",editedByType:null,editors:[{id:"352448",title:"Dr.",name:"Eva",surname:"Ivanišová",slug:"eva-ivanisova",fullName:"Eva Ivanišová"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12007",title:"Updates in Volcanology - Linking Active Volcanism and the Geological Record",subtitle:null,isOpenForSubmission:!0,hash:"a55d00d84b7616824cc783586c092525",slug:null,bookSignature:"Dr. Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/12007.jpg",editedByType:null,editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12307",title:"New Insights Into Dystonia",subtitle:null,isOpenForSubmission:!0,hash:"1b011946aab26d18e0f4cfa61eb4249a",slug:null,bookSignature:" Tamer Rizk",coverURL:"https://cdn.intechopen.com/books/images_new/12307.jpg",editedByType:null,editors:[{id:"170531",title:null,name:"Tamer",surname:"Rizk",slug:"tamer-rizk",fullName:"Tamer Rizk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:40},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:8},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:10},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:434},popularBooks:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4423},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2204,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1182,editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1006,editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",publishedDate:"June 15th 2022",numberOfDownloads:863,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",publishedDate:"June 15th 2022",numberOfDownloads:793,editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",publishedDate:"June 15th 2022",numberOfDownloads:730,editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2167,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",publishedDate:"June 15th 2022",numberOfDownloads:600,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",publishedDate:"June 15th 2022",numberOfDownloads:583,editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",publishedDate:"June 1st 2022",numberOfDownloads:2231,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1034",title:"Classical Immunology",slug:"classical-immunology",parent:{id:"184",title:"Immunology, Allergology and Rheumatology",slug:"immunology-allergology-and-rheumatology"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:132,numberOfWosCitations:24,numberOfCrossrefCitations:28,numberOfDimensionsCitations:57,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1034",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9848",title:"Antimicrobial Immune Response",subtitle:null,isOpenForSubmission:!1,hash:"81f326b26578dca756e003ba6980add0",slug:"antimicrobial-immune-response",bookSignature:"Maria del Mar Ortega-Villaizan and Veronica Chico",coverURL:"https://cdn.intechopen.com/books/images_new/9848.jpg",editedByType:"Edited by",editors:[{id:"254101",title:"Dr.",name:"Maria Del Mar",middleName:null,surname:"Ortega-Villaizan",slug:"maria-del-mar-ortega-villaizan",fullName:"Maria Del Mar Ortega-Villaizan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8959",title:"Innate Immunity in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"cea4f56328f9d1ee0c6f1486a12afa23",slug:"innate-immunity-in-health-and-disease",bookSignature:"Shailendra K. Saxena and Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/8959.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash",profilePictureURL:"https://mts.intechopen.com/storage/users/287184/images/system/287184.jpg",biography:"Dr. Hridayesh Prakash is a fellow of the Royal Society of Biology, London. Currently, he is an associate professor at the Institute of Virology and Immunology, Amity University, NOIDA. He has expertise in innate immunity with a special interest in macrophage immunobiology, tumor immunology/immunotherapy, cell-based immunotherapies, pulmonary infection biology, and radiation biology. \n\nDr. Prakash conducts research to exploit various immunotherapeutics for managing persistent bacterial and viral Infections and gastric cancer. He is unraveling the therapeutic potential of M1 effector macrophages against solid tumors. He is also studying various mechanisms that certain pathogens like Helicobacter pylori, Chlamydia, and Mycobacteria are exploiting for polarizing M1 effector macrophages towards the M2 phenotype during chronic and persistent infections. Under this major objective, he is now validating the therapeutic impact of M1 effector macrophages for the control of persistent infection-driven cancer (adenocarcinoma) progression. \n\nDr. Prakash is also exploring the palliative potential of macrophages against autoimmunity and chronic inflammatory disorders like IBD, radio-pneumonitis, pulmonary fibrosis, and radiation syndrome.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8798",title:"Cells of the Immune System",subtitle:null,isOpenForSubmission:!1,hash:"4e8acf20a4e80bc7c97cb34d1672e53d",slug:"cells-of-the-immune-system",bookSignature:"Ota Fuchs and Seyyed Shamsadin Athari",coverURL:"https://cdn.intechopen.com/books/images_new/8798.jpg",editedByType:"Edited by",editors:[{id:"36468",title:"Dr.",name:"Ota",middleName:null,surname:"Fuchs",slug:"ota-fuchs",fullName:"Ota Fuchs"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3396",title:"Current Trends in Atherogenesis",subtitle:null,isOpenForSubmission:!1,hash:"914c59b8518185a41a0931cc0637c0bf",slug:"current-trends-in-atherogenesis",bookSignature:"Rita Rezzani",coverURL:"https://cdn.intechopen.com/books/images_new/3396.jpg",editedByType:"Edited by",editors:[{id:"63457",title:"Prof.",name:"Rita",middleName:null,surname:"Rezzani",slug:"rita-rezzani",fullName:"Rita Rezzani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"67756",doi:"10.5772/intechopen.86600",title:"Neutrophil Function Impairment Is a Host Susceptibility Factor to Bacterial Infection in Diabetes",slug:"neutrophil-function-impairment-is-a-host-susceptibility-factor-to-bacterial-infection-in-diabetes",totalDownloads:1030,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Diabetes mellitus is a highly prevalent noncommunicable disease globally. One of the main complications of diabetes is the increased susceptibility to bacterial infection. Neutrophils play a crucial role in inflammatory response against bacterial infections, once they are the first cells recruited to the sites of injury. In diabetes, there is a failure in the neutrophil functions, including migration, ROS production, phagocytosis, and bacterial killing, which are associated with the high incidence of bacterial infections. Herein, we point out pieces of evidence revealing the primary molecular mechanisms involved with impairment of neutrophil functions in diabetes, with relationship with high susceptibility to bacterial infections.",book:{id:"8798",slug:"cells-of-the-immune-system",title:"Cells of the Immune System",fullTitle:"Cells of the Immune System"},signatures:"Daniella Insuela, Diego Coutinho, Marco Martins, Maximiliano Ferrero and Vinicius Carvalho",authors:[{id:"296748",title:"Dr.",name:"Vinicius",middleName:null,surname:"Carvalho",slug:"vinicius-carvalho",fullName:"Vinicius Carvalho"},{id:"303254",title:"Dr.",name:"Daniella",middleName:null,surname:"Insuela",slug:"daniella-insuela",fullName:"Daniella Insuela"},{id:"303255",title:"Dr.",name:"Diego",middleName:null,surname:"Coutinho",slug:"diego-coutinho",fullName:"Diego Coutinho"},{id:"303256",title:"Dr.",name:"Maximiliano",middleName:null,surname:"Ferrero",slug:"maximiliano-ferrero",fullName:"Maximiliano Ferrero"},{id:"303257",title:"Dr.",name:"Marco Aurelio",middleName:null,surname:"Martins",slug:"marco-aurelio-martins",fullName:"Marco Aurelio Martins"}]},{id:"42857",doi:"10.5772/53035",title:"Atherosclerosis and Current Anti-Oxidant Strategies for Atheroprotection",slug:"atherosclerosis-and-current-anti-oxidant-strategies-for-atheroprotection",totalDownloads:3097,totalCrossrefCites:3,totalDimensionsCites:6,abstract:null,book:{id:"3396",slug:"current-trends-in-atherogenesis",title:"Current Trends in Atherogenesis",fullTitle:"Current Trends in Atherogenesis"},signatures:"Luigi Fabrizio Rodella and Gaia Favero",authors:[{id:"118762",title:"Prof.",name:"Luigi Fabrizio",middleName:null,surname:"Rodella",slug:"luigi-fabrizio-rodella",fullName:"Luigi Fabrizio Rodella"},{id:"160911",title:"Dr.",name:"Gaia",middleName:null,surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}]},{id:"42907",doi:"10.5772/54636",title:"MicroRNAome of Vascular Smooth Muscle Cells: Potential for MicroRNA-Based Vascular Therapies",slug:"micrornaome-of-vascular-smooth-muscle-cells-potential-for-microrna-based-vascular-therapies",totalDownloads:1819,totalCrossrefCites:2,totalDimensionsCites:4,abstract:null,book:{id:"3396",slug:"current-trends-in-atherogenesis",title:"Current Trends in Atherogenesis",fullTitle:"Current Trends in Atherogenesis"},signatures:"Kasturi Ranganna, Omana P. Mathew, Shirlette G. Milton and Barbara E. Hayes",authors:[{id:"63103",title:"Dr.",name:"Katsuri",middleName:null,surname:"Ranganna",slug:"katsuri-ranganna",fullName:"Katsuri Ranganna"}]},{id:"71468",doi:"10.5772/intechopen.91730",title:"Multiplex Technology for Biomarker Immunoassays",slug:"multiplex-technology-for-biomarker-immunoassays",totalDownloads:660,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"The simultaneous measurement of different substances from a single sample is an emerging area for achieving efficient and high-throughput detection in several applications. Although immunoanalytical techniques are established and advantageous over alternative screening analytical platforms, one of the challenges for immunoassays is multiplexing. While ELISA is still commonly used to characterise a single analyte, laboratories and organisations are moving towards multiplex immunoassays. The validation of novel biomarkers and their amalgamation into multiplex immunoassays confers the prospects of simultaneous measurement of multiple analytes in a single sample, thereby minimising cost, time and sample. Therefore, the technological advancement in clinical sciences is helpful in the identification of analytes or biomarkers in test samples. However, the analytical bioanalysers are expensive and capable of detecting only a small amount or type of analytes. The simultaneous measurement of different substances from a single sample called multiplexing has become increasingly important for the quantification of pathological or toxicological samples. Although multiplex assays have many advantages over conventional assays, there are also problems that may cause apprehension among clinicians and researchers. Hence, many challenges still remain for these multiplexing systems which are at early stages of development.",book:{id:"8959",slug:"innate-immunity-in-health-and-disease",title:"Innate Immunity in Health and Disease",fullTitle:"Innate Immunity in Health and Disease"},signatures:"Haseeb Ahsan and Rizwan Ahmad",authors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"},{id:"412254",title:"Dr.",name:"Haseeb",middleName:null,surname:"Ahsan",slug:"haseeb-ahsan",fullName:"Haseeb Ahsan"}]},{id:"78026",doi:"10.5772/intechopen.99541",title:"Immune System of Fish: An Evolutionary Perspective",slug:"immune-system-of-fish-an-evolutionary-perspective",totalDownloads:308,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Fishes are the most successful and diverse group of vertebrate animals, first appeared during Devonian period. Despite of certain differences, the immune system of fish is physiologically similar to that of higher vertebrates. The heterogenous group of fishes are the apparent link between innate immunity and the first appearance of the adaptive immune response. Importantly, fishes have immune organs homologous to that of mammalian immune system. In comparison to higher vertebrates, fishes live free in their environment from the early embryonic stage and during that time mostly they are dependent on non-specific immune system for their survival. In the fishes, non-specific immunity is the fundamental defense mechanism, therewith acquired immunity also plays key role in maintaining homeostasis by activation though a system of receptors proteins, which identify pathogen associated molecular pattern typical of pathogenic microorganism includes lipopolysaccharides, peptidoglycans, DNA, RNA and other molecules that are typically not present on the surface of multicellular organism. There are several external factors like environmental factors, biological factors, stress and internal factors like genetic makeup, age and sex, maternal effect etc. can affect immunological defense capabilities of the fishes.",book:{id:"9848",slug:"antimicrobial-immune-response",title:"Antimicrobial Immune Response",fullTitle:"Antimicrobial Immune Response"},signatures:"Sujata Sahoo, Husne Banu, Abhinav Prakash and Gayatri Tripathi",authors:[{id:"416237",title:"Associate Prof.",name:"Sujata",middleName:null,surname:"Sahoo",slug:"sujata-sahoo",fullName:"Sujata Sahoo"},{id:"416634",title:"Mrs.",name:"Husne",middleName:null,surname:"Banu",slug:"husne-banu",fullName:"Husne Banu"},{id:"416636",title:"Mr.",name:"Abhinav",middleName:null,surname:"Prakash",slug:"abhinav-prakash",fullName:"Abhinav Prakash"},{id:"416637",title:"Dr.",name:"Gayatri",middleName:null,surname:"Tripathi",slug:"gayatri-tripathi",fullName:"Gayatri Tripathi"}]}],mostDownloadedChaptersLast30Days:[{id:"70362",title:"Resident Memory T Cells",slug:"resident-memory-t-cells",totalDownloads:946,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Until recently, T cells were thought to remain in circulation until recruitment of the inflammation and only a small number of T cells remained in the peripheral tissues without inflammation. However, studies have found that a group of T cells settled in the tissues and remained there for a long time. Those cells are named as tissue-resident memory T cells (TRM). TRM cells are transcriptionally, phenotypically, and functionally distinct from other T cells, which recirculate between blood, secondary lymphoid organs, and non-lymphoid tissues. They undergo a distinct proliferation that discriminates them from circulating T cells and their main cell surface markers are CD69, CD103, and CD49a. Upon exposure to the same or similar diseases, TRM cells provide a first line of adaptive cellular defense against infection in peripheral non-lymphoid tissues, such as skin, lungs, digestive, and urogenital tracts. This approach forms the basis of a novel vaccination strategy called “prime and pull”, which ensures long-term local immunity. On the other hand, abnormal activated and malignant TRM may contribute to numerous human inflammatory diseases such as psoriasis and vitiligo. Here in this chapter, we aimed to emphasize TRM cell location, migration, phenotypic structure, maintenance, and diseases associated with TRM cells.",book:{id:"8798",slug:"cells-of-the-immune-system",title:"Cells of the Immune System",fullTitle:"Cells of the Immune System"},signatures:"Hasan Akbaba",authors:[{id:"260489",title:"Dr.",name:"Hasan",middleName:null,surname:"Akbaba",slug:"hasan-akbaba",fullName:"Hasan Akbaba"}]},{id:"71769",title:"Immune Dysfunction during Enteric Protozoal Infection: The Current Trends",slug:"immune-dysfunction-during-enteric-protozoal-infection-the-current-trends",totalDownloads:779,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Enteric protozoa usually cause severe morbidity and mortality in humans. Protozoal infections contribute to the high burden of infectious diseases. Despite recent advances in the epidemiology, diagnostic tool, molecular biology, and treatment of protozoan illnesses, gaps in knowledge still exist; hence, protozoal infections require further research. We are describing here some important enteric protozoal infections along with the immune dysfunction produced by them. Genus- 1. Entamoeba; 2. Giardia; 3. Cryptosporidium; 4. Cyclospora; 5. Cystoisospora; 6. Dientamoeba; 7. Blastocystis; 8. Balantidium.",book:{id:"8959",slug:"innate-immunity-in-health-and-disease",title:"Innate Immunity in Health and Disease",fullTitle:"Innate Immunity in Health and Disease"},signatures:"Renu Kumari Yadav, Shalini Malhotra and Nandini Duggal",authors:[{id:"176430",title:"Dr.",name:"Shalini",middleName:null,surname:"Malhotra",slug:"shalini-malhotra",fullName:"Shalini Malhotra"},{id:"315666",title:"Dr.",name:"Renu",middleName:null,surname:"Kumari Yadav",slug:"renu-kumari-yadav",fullName:"Renu Kumari Yadav"}]},{id:"69233",title:"Innate Immune Defense in the Male Reproductive System and Male Fertility",slug:"innate-immune-defense-in-the-male-reproductive-system-and-male-fertility",totalDownloads:793,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"To protect the male germ cells from adverse immune reaction, the male reproductive system adopts special immune environment such as immunoprivileged status. The male genital organs can be infected by various microorganisms via hematogenous dissemination and ascending genitourinary tracts. To overcome the immunoprivileged status, the male genital organs also adopt their own innate defense against microbial infection. The tissue-specific cells in the male reproductive system are well equipped with innate immune machineries, including pattern recognition receptors (PRRs) and their negatively regulatory system. PRR-initiated immune responses must be tightly regulated by the negative regulatory system for the maintenance of immune homeostasis. The immune homeostasis can be disrupted by unrestrictive innate immune response, which may lead to inflammatory conditions in the male genital tracts, an important etiological factor contributing to male infertility. This chapter describes the current understanding of the innate immune responses in the male reproductive system and their effects on male fertility.",book:{id:"8959",slug:"innate-immunity-in-health-and-disease",title:"Innate Immunity in Health and Disease",fullTitle:"Innate Immunity in Health and Disease"},signatures:"Fei Wang, Ran Chen and Daishu Han",authors:[{id:"295978",title:"Dr.",name:"Daishu",middleName:null,surname:"Han",slug:"daishu-han",fullName:"Daishu Han"},{id:"303373",title:"Dr.",name:"Fei",middleName:null,surname:"Wang",slug:"fei-wang",fullName:"Fei Wang"},{id:"309874",title:"Dr.",name:"Ran",middleName:null,surname:"Chen",slug:"ran-chen",fullName:"Ran Chen"}]},{id:"71781",title:"Innate Immunity and Autoimmune Diseases",slug:"innate-immunity-and-autoimmune-diseases",totalDownloads:788,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The innate immune response is responsible for the initial defense against invading pathogens and signs of damage; in turn, it activates the adaptive immune response to result in highly specific and lasting immunity, mediated by the clonal expansion of antigen-specific B and T lymphocytes. Inflammation is the acute response to infection and tissue damage to limit aggression to the body. It is a complex reaction of vascularized tissues to infection, toxin exposure or cell injury that includes extravasation of plasma proteins and leukocytes. Paradoxically, uncontrolled and prolonged inflammation can result in secondary damage and the development of immune pathology in the host. The components of the innate immune system have recently been studied as responsible mechanisms in various chronic diseases such as diabetes mellitus, atherosclerosis, asthma and allergies, among others. Autoimmune disease is an attack on auto tissues by the adaptation of the immune system. In general, such diseases are characterized by autoantibodies and/or autoreactive lymphocytes directed at antigens against themselves. The innate immune system is often considered an effector of self-reactive lymphocytes, but also provides protection. Studies in mice with specific gene-directed mutations show that defects in innate immune system proteins may predispose to the development of a systemic lupus erythematosus-like syndrome (lupus) characterized by autoantibodies against double-stranded DNA (ds DNA) or nuclear components. This seems to be due to a failure in the removal of apoptotic cells or nuclear waste. These observations imply that the innate immune system has a general protective role against autoimmune disease. For example, in systemic diseases such as lupus, innate immunity is important in the elimination of nuclear antigens and, therefore, in the improvement of tolerance to B lymphocytes. Alternatively, in specific organ disorders such as type diabetes 1 o Crohn’s disease, the innate immune system can be protective by eliminating pathogens that trigger or exacerbate the disease or regulate the presentation of antigens for T lymphocytes. Discuss various disease models in which the innate immune system could provide a protective role, deficiencies in the regulation of B lymphocyte signaling through the antigen/receptor or in the clearance of lupus antigens, (dsDNA and nuclear proteins), can lead to a disease similar to lupus. The repertoire of B cells seems to be very biased toward self-activity, as, possibly, that of the T-cell. This tendency toward self-activity is not surprising because B and T cells are positively selected against highly conserved autoantigens.",book:{id:"8959",slug:"innate-immunity-in-health-and-disease",title:"Innate Immunity in Health and Disease",fullTitle:"Innate Immunity in Health and Disease"},signatures:"Marcela Catalina Fandiño Vargas",authors:[{id:"312253",title:"M.D.",name:"Marcela Catalina",middleName:null,surname:"Fandiño Vargas",slug:"marcela-catalina-fandino-vargas",fullName:"Marcela Catalina Fandiño Vargas"}]},{id:"69097",title:"Assessment of Immune Reconstitution Following Hematopoietic Stem Cell Transplantation",slug:"assessment-of-immune-reconstitution-following-hematopoietic-stem-cell-transplantation",totalDownloads:994,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential curative treatment for both congenital and hematological malignancies. Immune reconstitution after allogeneic hematopoietic stem cell transplantation is implicated in successful transplant outcomes such as overall survival and relapse-free survival. The reconstitution of immune cell subsets after HSCT occurs in different phases at different time points encompassing pre-engraftment, engraftment, and post-engraftment. The recovery of innate cellular immunity with the appearance of monocytes, dendritic cells, and natural killer cells in peripheral blood correlates with initiation of cellular engraftment. The cellular adaptive immunity is characterized by both thymic-independent expansion of T cells infused with graft and thymus-dependent expansion of naïve T cells derived from donor stem cells. The humoral immunity consists of B-cell reconstitution, which consists primarily of transitional and naïve subsets with the recovery of memory B cells that occur much later. In this review, we highlight the factors affecting immune reconstitution, the reconstitution of innate and adaptive immunity, techniques to assess immune reconstitution, and ways to enhance it.",book:{id:"8798",slug:"cells-of-the-immune-system",title:"Cells of the Immune System",fullTitle:"Cells of the Immune System"},signatures:"Meenakshi Singh, Selma Z. D’Silva and Abhishweta Saxena",authors:[{id:"217471",title:"Dr.",name:"Selma",middleName:null,surname:"D\\'Silva",slug:"selma-d'silva",fullName:"Selma D\\'Silva"},{id:"267032",title:"Dr.",name:"Meenakshi",middleName:null,surname:"Singh",slug:"meenakshi-singh",fullName:"Meenakshi Singh"},{id:"310438",title:"Dr.",name:"Abhishweta",middleName:null,surname:"Saxena",slug:"abhishweta-saxena",fullName:"Abhishweta Saxena"}]}],onlineFirstChaptersFilter:{topicId:"1034",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
\r\n This topic aims to provide a comprehensive overview of the latest trends in Oral Health based on recent scientific evidence. Subjects will include an overview of oral diseases and infections, systemic diseases affecting the oral cavity, prevention, diagnosis, treatment, epidemiology, as well as current clinical recommendations for the management of oral, dental, and periodontal diseases.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11397,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218"},editorialBoard:null},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:45,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79881",title:"Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components",doi:"10.5772/intechopen.101624",signatures:"Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim",slug:"control-of-cytoskeletal-dynamics-in-cancer-through-a-combination-of-cytoskeletal-components",totalDownloads:117,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79580",title:"Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets",doi:"10.5772/intechopen.101330",signatures:"Nicholas Nicholson, Francesco Giusti, Luciana Neamtiu, Giorgia Randi, Tadeusz Dyba, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Manuela Flego and Carmen Martos",slug:"dotting-the-i-of-interoperability-in-fair-cancer-registry-data-sets",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79550",title:"Urologic Cancer Molecular Biology",doi:"10.5772/intechopen.101381",signatures:"Pavel Onofrei, Viorel Dragoș Radu, Alina-Alexandra Onofrei, Stoica Laura, Doinita Temelie-Olinici, Ana-Emanuela Botez, Vasile Bogdan Grecu and Elena Carmen Cotrutz",slug:"urologic-cancer-molecular-biology",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Emeje",slug:"martins-emeje",fullName:"Martins Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Masuelli",slug:"martin-masuelli",fullName:"Martin Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.png",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",institutionString:"Kogakuin University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/41608",hash:"",query:{},params:{id:"41608"},fullPath:"/chapters/41608",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()