\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"6222",leadTitle:null,fullTitle:"A Critical Evaluation of Vitamin D - Clinical Overview",title:"A Critical Evaluation of Vitamin D",subtitle:"Clinical Overview",reviewType:"peer-reviewed",abstract:'Vitamin D, a fat-soluble vitamin, also called as "sunshine vitamin" is derived mostly from sun exposure and food, and for normal activation, it has to undergo two hydroxylation reactions. Vitamin D affects more than 2000 genes in the body. Serum level of 25(OH) D is an ideal indicator of vitamin D status in our body. Vitamin D deficiency leads to various diseases. On a therapeutic point of view, vitamin D helps to treat many diseases. The book "A Critical Evaluation of Vitamin D - Clinical Overview" targets the principles, mechanisms, and clinical significance of vitamin D. This book covers four sections: "Vitamin D in Cardiovascular and Renal Diseases", "Vitamin D in Age and Neurological Diseases", "Vitamin D and Cancer" and "Therapeutic Measurements of Vitamin D". Each of these sections is interwoven with the theoretical aspects and experimental techniques of basic and clinical sciences. This book will be a significant source to students, scientists, physicians, healthcare professionals and also other members of this society who are interested in exploring the role of vitamin D in human life.\n
\r\n\tReproduction is a biological phenomenon that occurs in all living beings. More importantly, it is the only process to transfer the genes from one generation to another by producing new individuals of their own kind. In plants, there are two modes of reproduction: asexual and sexual. Asexual reproduction characterizes the production of new individuals without fusing male and female gamete and it is most popular in lower plants although it also happens in higher plants in the form of vegetative reproduction. On the other hand, sexual reproduction occurs by the fusion of haploid male and female sex cells resulting in a diploid zygote. Moreover, sexual reproduction is a more complex process in plants in which multi-cellular haploid and diploid phases alternate each other. Flowers are the main reproductive organ in vascular plants which carries the male and female parts stamen and pistil respectively. It has been realized that flowering plants exhibit magnificent floral variety and a bewildering range of reproductive adaptation. The floral development, diversification, pollination mechanism, fertilization events, and breeding systems are the fundamental subjects in the plant reproductive system. Consequently, broad-scale understanding of these fundamental processes will require us to learn more about phylogenetic trends and the evolution of plant reproductive system. This book intends to cover above mentioned topics and deepen understanding of the plant reproductive system.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"bf3606d97ef189615c820b192bce8f03",bookSignature:"Dr. Balkrishna Ghimire and Prof. Bimal Kumar Ghimire",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8881.jpg",keywords:"Male Cone Development, Female Cone Development, Stamen, Anther Morphology, Pollen Morphology, Pollination, Carpel, Ovule, Polyembryony, Seed Morphology, Breeding, Evolution of Floral Parts",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 1st 2019",dateEndSecondStepPublish:"September 4th 2019",dateEndThirdStepPublish:"November 3rd 2019",dateEndFourthStepPublish:"January 22nd 2020",dateEndFifthStepPublish:"March 22nd 2020",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"206647",title:"Dr.",name:"Balkrishna",middleName:null,surname:"Ghimire",slug:"balkrishna-ghimire",fullName:"Balkrishna Ghimire",profilePictureURL:"https://mts.intechopen.com/storage/users/206647/images/system/206647.jpeg",biography:"Balkrishna Ghimire has obtained Bachelors's (2001) and a Master's degree in Botany (2004) from Tribhuvan University, Nepal. He has worked as a botany lecturer (2005-2007) at Trichandra College, Tribhuvan University, Nepal. He has obtained a Ph.D. degree in plant morphology and anatomy in relation to taxonomy (2012) from Kangwon National University, Korea. He has worked as a postdoctoral researcher (2012-2013) at Oriental Bio-herb Research Institute, Kangwon National University. Currently (2014 - till now), he is working as a senior research fellow at plant taxonomy laboratory, Korean National Arboretum, Korea. His research projects cover the morphology and anatomy of the woody plants of Korea. In addition, he is working on embryological development, and seed formation in some Korean rare endemic plants.",institutionString:"Korea National Arboretum",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:{id:"94560",title:"Prof.",name:"Bimal Kumar",middleName:null,surname:"Ghimire",slug:"bimal-kumar-ghimire",fullName:"Bimal Kumar Ghimire",profilePictureURL:"https://mts.intechopen.com/storage/users/94560/images/system/94560.jpg",biography:"Dr. Bimal Kumar Ghimire is currently an assistant professor\nin the Department of Crop Science, College of Sanghuh Life\nScience, Konkuk University, Seoul, South Korea. He received his\nMS in Botany (major in Cytogenetics) from North Bengal University, India. He obtained his Ph.D. in Agriculture Science from\nKangwon National University, South Korea, in 2008. Subsequently, he joined the Department of Botany, Sikkim University,\nIndia, as an assistant professor. He has published more than 100 articles in peer-reviewed journals and books. He has edited and written several books and contributed chapters on different aspects of plant sciences including light sources generally\nused in controlled agriculture, genetic transformation, and secondary metabolites\nof medicinal plants. His research interests and experience include plant anatomy,\ngenetic diversity in bioenergy crops, allyl compounds, tissues and cell culture, bioreactor culture, and genetic transformation of important medicinal plants.",institutionString:"Konkuk University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Konkuk University",institutionURL:null,country:{name:"Korea, South"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"41317",title:"Molecular Bases of Ataxia Telangiectasia: One Kinase Multiple Functions",doi:"10.5772/54045",slug:"molecular-bases-of-ataxia-telangiectasia-one-kinase-multiple-functions",body:'Ataxia Telangiectasia (A-T) is an autosomal recessive hereditary progressive neurodegenerative and multisystem disease characterized by cerebellar ataxia, telangiectasia, recurrent sinopulmonary infections, variable immunologic defects among which a significantly higher incidence of leukaemia and lymphoma and type 2 diabete. This disorder has been clearly linked to the loss of expression of the serine/threonine kinase ATM (Ataxia Telangiectasia Mutated), a central player of the DNA Damage Response (DDR). Several clinical features of A-T patients, as well as the pleiotropic phenotypes observed in Atm deficient mice, can be associated to a defective DDR. Moreover, ATM deficient cellular models display radiosensitivity and failure to activate cell cycle checkpoints in response to DNA damaging agents. Emerging evidences indicate that ATM kinase may be involved in several additional signalling pathways, among which the signalling cascades triggered by oxidative stress, hypoxia, autophagy, metabolic changes, growth factors and death receptors, suggesting that the endangerment of these functions in the absence of ATM activity may importantly contribute to the development of A-T pathology.
The aim of this chapter is to provide a schematic, although exhaustive, description of the signalling cascades that may modulate and may be modulated by ATM kinase activity. Data obtained from different model systems, including
Ataxia-telangiectasia (A-T) [1], is a multisystem neurodegenerative syndrome that occurs early in childhood. A-T is an autosomal recessive disease with an estimated frequency in the range of one per 40000 to one per 300 000 births. At birth, infants generally appear normal and begin walking at a normal age (approximately age 1 year); however, by age 2–3 ataxia (loss of muscle co-ordination) becomes visible and generally by age 10 patients are confined to a wheelchair (for a recent review [2]). Clinically, A-T presents with uncoordinated or ataxic movements that are often associated with ocular telangiectasia (dilated blood vessels of the eye). Ataxia generally precedes telangiectasia, which is described as the chronic dilation of a group of capillaries causing elevated, dark red blotches on the skin or eyes. The prominent neurological sign of A-T is an inexorable loss of cerebellar function, and progressive dysarthria (speech defects) and choreoathetosis (abnormal body movements). Studies have shown a gradual decrease in granular and Purkinje cells, which are large branching cells of the nervous system and are located in the cerebellum. Characteristic eye movement abnormalities also feature strongly in A-T, and these might be related to cerebellar dysfunction. Although, the hallmark of clinical presentation is a debilitating progressive neurodegeneration, other characteristics are associated with A-T, such as extreme radiosensitivity, immunodeficiency (frequently manifested as decreased or absent IgA, IgE and IgG2), cancer predisposition (particularly lymphoma and leukaemia), insulin-resistant diabetes and premature aging.
Clinical diagnosis of A-T is relatively easy once the characteristic neurodegeneration and ocular telangiectasia have developed. In these cases the diagnosis can usually be confirmed by finding an elevated serum α-fetoprotein level, although so far it is not clear why α-fetoprotein remains high in A-T patients since there is no obvious liver damage. In young children where ataxia and/or telengiectasia did not occur yet, the diagnosis is still challenging. A-T pathology has been clearly linked to the loss of function of the product of the ATM gene. Most patients are compound heterozygotes with different mutations in the two ATM alleles. The identification of the ATM gene has facilitated diagnosis, although the large dimensions of the gene and the lack of mutational hot spots, prevent mutational analysis for clinical screening. Additional confirmatory laboratory test results include absence of the ATM protein on immunoblots, lack of ATM protein kinase activity, increased frequency of chromosomal breaks after exposure to γ-radiation, radioresistant DNA synthesis and decreased colony survival after γ-radiation. None of these methods is 100% specific or 100% sensitive, and clinical correlation is essential. The two most common causes of death are chronic lung disease (about one-third of cases) and cancer (about one-third of cases) (reviewed in [2]).
Ataxia–telangiectasia (A-T) is a rare autosomal recessive disorder caused by deficiency of the Ataxia–Telangiectasia Mutated (ATM) protein kinase. A-T patients generally lack functional ATM protein due to missense or nonsense mutations in the ATM gene, which has been identified by positional cloning strategy in 1995 [3].
These mutations occur throughout the entire coding sequence of the gene and overall lead to the production of truncated or unstable ATM variants [4]. The human ATM gene is located at 11q22-23 and covers 160 kb of genomic DNA; the gene product, ATM protein, is produced from a 13 kb transcript that codes for a 350 kDa protein.
ATM protein belongs to the phosphatidylinositol 3 kinase-like kinase (PIKK) family of Ser/Thr-protein kinases, which includes ATR (ataxia–telangiectasia and RAD3-related), DNA-PKcs (DNA-dependent protein kinase catalytic sub-unit) and mTOR (mammalian target of rapamycin), and many others. The proteins that are members of this family show a conserved domain organization in their C-terminal portion, which includes the presence of a kinase domain, flanked by a FAT domain (conserved sequence in FRAP, ATM and TRAPP proteins), that precedes the catalytic domain, and a FATC domain (FAT-C-terminal) that is located at the very C-terminal of the protein. Interestingly the FAT and the FATC domain have been proposed to play a role in the conformational maintenance of the catalytic domain and therefore in the control of the functionality of these kinases [5]. This model is also supported by the identification in these domains of several post-translational modifications that play a role in the modulation of ATM activity. Among these, S1981 in the FAT domain, a major autophosphorylation site that modulates the assembly of the inactive dimeric conformation [6], and C2991 in the FATC, whose acetylation contributes to the modulation of S1981 phosphorylation and to ATM kinase activation [7].
The N terminus of ATM is composed of HEAT (Huntingtin, Elongation factor 1A, protein phosphatase 2A A-subunit, TOR) repeats [8]. Moreover, several motifs that allow ATM interaction with other proteins have been mapped in the N-terminal region of ATM. Among these, sequences for the interaction with NBS1, c-Abl, p53, which play an essential role in the regulation and in the execution of ATM function, as well as with chromatin. The protein is heavily subjected to several post-translational modifications, among which phosphorylations and acetylation, that overall play a role in the modulation of ATM kinase activity as described in the next paragraph (for recent reviews on ATM [9] [10]).
ATM function in the DNA damage response has been deeply investigated by several groups. Several excellent reviews in this topic are currently available [9, 11-13]. For this reason this paragraph will only briefly summarize the state of the art on this issue.
ATM has been first identified as an essential component of the DNA damage response, a complex of signalling cascades that ensures the maintenance of genomic stability. The occurrence of a DNA damage triggers cell cycle arrest and the initiation of the repair process. Alternatively, the cell that contains the damaged DNA may undergo apoptosis or senescence. The molecular mechanisms that allow the choice among these responses have not been clearly elucidated yet, although the common idea is that apoptosis or senescence are initiated in case the damage in not repairable. Genetic defects that perturb these mechanisms almost invariably cause severe syndromes that are characterized by the degeneration of specific tissues (especially the nervous and immune system), sensitivity to specific DNA-damaging agents and predisposition to cancer (reviewed in [11], see next paragraph on “DNA damage response and other genomic instability syndromes”). Different types of DNA damage may trigger different types of DNA repair responses (for a recent review see [13]).
In particular, ATM is major player of the cellular response to Double Strand Breaks which represent the most toxic type of DNA lesion, elicited mainly by ionizing radiation (IR or γ-radiation) and other genotoxic stresses. DSBs occur also during physiological processes such as meiotic recombination and the assembly of the T-cell receptor and immunoglobulin genes via V(D)J recombination, in T cells and B cells, respectively. The central role of ATM in the DDR to DSBs has been strongly suggested by some observations derived from A-T patients or Atm KO mice as well as from Atm deficient cells. Indeed A-T cells are highly sensitive to IR, and are characterized by failure of checkpoint induction in response to IR. As already pointed out, ATM deficiency leads both in human and mice to immune system defects (see also next paragraph on “Functional links between ATM kinase and the immune system defects”) as well as to genomic instability and to higher incidence of cancer development (see also next paragraph on “Functional links between ATM kinase and cancer”).
Within minutes after the induction of DSBs, most ATM molecules become vigorously active and participate to checkpoints activation, as well as to DNA repair and to the induction of senescence or apoptosis [14]. Overall, the signalling cascades that allow ATM to participate and modulate all these responses have been only partially elucidated and rely on the ability of ATM to trigger the phosphorylation of a large number of substrates, among which several kinases, that amplify the signal, and transcription factors, DNA repair components and other that execute the different responses (see also next paragraph on “Identification of ATM substrates: proteomic studies”). The activation process includes ATM recruitment to the DSBs, which is mediated by the MRN complex and by the damaged DNA (see next paragraph on “Molecular mechanisms that ensure the modulation of ATM kinase activity”). Activation of this pathway includes a plethora of phosphorylation and ubiquitination events triggered by ATM kinase, among which the activation of c-Abl kinase which in turn modulates the activity of Rad51 and Rad52 proteins and the phosphorylation of histone H2AX which marks the DSBs. Therefore activated ATM participates directly to the repair of the DNA lesion. In particular, ATM modulates Homologous Recombination (HR) and contributes to repair also through its interplay with other PI3K-like kinases such as ATR and DNA-PK.
Activated ATM is also released from the damaged DNA and may therefore trigger the cell cycle checkpoints activation. ATM may modulate cell cycle arrest as well as the apoptotic or senescence induction. For these responses, among the others, a crucial effector of ATM signalling is p53 transcription factor. ATM may modulate p53 functionality by directly phosphorylating p53 on S15 (promoting p53 transcriptional activity) as well as via the activation of Chk2 kinase, which in turn triggers p53 phosphorylation on S20 (impairing p53 interaction with Hdm2 ubiquitin ligase, therefore promoting its stabilization). Moreover ATM may direcly phosphorylate and modulate Hdm2 and may also modulate HIPK2 and therefore p53 phosphorylation on S46, which enhances p53 apoptotic activity. To summarize, the interplay between ATM and p53 is a good example of the complexity of the signalling cascades that modulate the balance and the integration of the different checkpoints with the apoptotic response.
An exhaustive picture of the signalling cascades through which ATM modulates cell cycle, cell death and DNA repair is beyond the scope of this chapter and it is available in these suggested reviews [9, 11-13].
A-T belongs to a group of human diseases that are collectively known as “genomic instability syndromes”, each of which results from a defective response to a specific DNA lesion [11]. Genetic defects that affect specific DNA damage response pathways lead to syndromes that combine various degrees of tissue degeneration, growth and developmental retardation, premature signs of ageing, chromosomal instability, sensitivity to the corresponding DNA-damaging agents and cancer predisposition. The prominent genomic instability syndromes – Xeroderma pigmentosum (XP), Cockayne’s syndrome, Trichothiodystrophy (TTD), Bloom’s syndrome (BS), Werner’s syndrome (WS), Rothmund–Thompson syndrome (RTS), Fanconi’s anemia (FA), Nijmegen breakage sindrome (NBS), ataxia-telangiectasia-like disease (ATLD) - are all autosomal recessive and display defects in the main damage-response pathways, each of which is activated by a different class of damaging agent (see for an exhaustive review [11])
It has been shown that ATM and ATR kinases mainly phosphorylate a subset of Serine and Threonine resisdues located inside the S/T-Q motif [15]. Antibodies that allow the identification of proteins phosphorylated on S/T-Q residues have been generated and are commercially available. These tools allowed therefore the development of several proteomic studies aimed to an exhaustive identification of ATM/ATR substrates in cells treated with IR. Matsuoka and colleagues performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR [16]. Mu and colleagues performed a similar study and identified proteins that belong to the ubiquitin-proteasome system (UPS) to be required in mammalian DNA damage checkpoint control, particularly the G1 cell cycle checkpoint, thus revealing protein ubiquitylation as an important regulatory mechanism downstream of ATM/ATR activation for checkpoint control [17]. Other proteomic studies where aimed to the analysis of the phosphoproteome dinamic changes, dependent or independent on ATM, involved in the DNA damage response [18, 19]. Recently, a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments has been conducted. This study provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism\'s regulation [20].
Overall proteomic approaches, identified several changes dependent on ATM expression and activity increasing the comprehension of the DNA damage response. More intriguingly, these studies identified as possibile substrates or effectors of ATM several proteins whose known functions are not linked to the DDR, supporting the idea that ATM may perform several other functions in addition of its well known role in the DDR.
First evidences that induce scientists to postulate a more general signaling role for ATM, independent from DNA damage, rise from several observations made on A-T patients as well as from a series of abnormalities of ATM-deficient cells.
First of all, cerebellar degeneration, ataxia and telangienctasia in A-T patients fit less well with the assumption that exclusive function of ATM is in DDR. It is evident, for example, that post-mitotic neurons of the cerebellum are less dependent on the DNA damage response-associated cell-cycle regulation mediated by ATM [21]. Furthermore, some A-T patients develop insulin-resistant diabetes [22, 23]. This feature is also part of the clinical profile of the metabolic syndrome and cannot be explained by the aberrant DNA damage signaling activation.
Importantly, ATM-deficient cells exhibit some abnormalities, which are difficult to ascribe only to the role of ATM in DNA damage response [12]. These alterations include:
-reduced internalization of phytohaemagglutinin (PHA), defective Ca2+ mobilization, depolarization in response to extracellular K+;
decreased duration of Ca2+ and Na+ firing;
increased growth factor demand and defective signalling through the epidermal growth factor (EGF) receptor;
occurrence of markers for oxidative stress such as protein nitrosylation, increased thiol conjugates, and lipid peroxidation.
Finally, although ATM is primarily localized to the nucleus, it has been shown that a minor fraction of the protein is present in the cytoplasm of various cell types [24]. First evidence for a cytoplasmic form is the discovery of ATM association with both peroxisomes and endosomes [25, 26]. In neurons of the cerebellum, ATM is equally distributed between the nucleus and the cytoplasm [27, 28], which further suggests additional roles for ATM also outside the nucleus. ATM activation in the cytosol has been described upon insulin treatment [29] or, more recently, upon oxidative stress induction [30].
All of these observations provide evidence for additional and unexplored ATM functions mainly linked to its extranuclear localization. However, only in the last years different groups start to investigate more deeply and systematically the molecular mechanism and the biological significance of these new functions. In this section a summary of these studies will be provided.
Cells living in an oxygen-rich environment are constantly challenged by oxidative stress. Oxidative stress is defined as an imbalance between cellular oxidants and antioxidants in which the production of Reactive Oxygen Species (ROS) exceeds the anti-oxidative capacity. ROS include the superoxide anion radical (●O-2), hydrogen peroxide (H2O2), and the hydroxyl radical (●OH). Together with other reactive nitrogen species (RNS), these ROS are the major mediators of oxidative stress. Numerous exogenous and endogenous stress stimulators can disrupt cellular homeostasis and evoke oxidative stress. Physical factors (ultraviolet light and ionizing radiation), oxygen level changers (hypoxia and subsequent reoxygenation) and chemical factors (hydrogen peroxide and chemotherapeutic reagents) are some of the possible exogenous sources of ROS. Several potential endogenous sources of ROS exist within the cell. ROS generated as byproducts and normal metabolites during aerobic metabolism in mitochondria are the primary sources of ROS. In conclusion ROS produced by both endogenous and exogenous sources either directly or indirectly activate antioxidant machinery and physiological stress signaling pathways.
Over the past two decades, evidence has accumulated that links ATM deficiency to increased oxidative stress in cells, which is thought to play a key role in neurodegeneration, metabolic dysregulation and oncogenesis [31].
Cells from individuals affected by A-T syndrome have constitutive oxidative stress and this altered oxidative stress has long been linked to A-T as both a cause and a consequence of the disease [10].
Because treatment of ATM-null mice with antioxidants can ameliorate intrinsic defects in stem cell renewal [32, 33] and delay their tumor onset [34, 35], it has been suggested that increased accumulation of intracellular ROS associated with ATM dysfunction contributes to the clinical features of this pathology [31, 36, 37].
Although, the increased oxidative damage associated with ATM deficiency has largely been attributed in the past to the defects in the DDR pathway, the basis for this phenomenon remains unclear, and recent data have provided some possible new clues that are independent of DDR. For example, a potential role for ATM in the control of an antioxidant response via the pentose phosphate pathway (PPP) has been reported and may be relevant in ATM null tissues showing increased oxidative stress [38]. The authors demonstrated that ATM regulates the PPP by inducing glucose-6-phosphate dehydrogenase (G6PD) activity, which in turn promotes NADPH (Nicotinamide Adenine Dinucleotide Phosphate) production and nucleotide synthesis. Consistently, ATM might contribute to maintain the reducing power of the cellular environment by promoting NADPH production. Moreover ATM can modulate ROS also through modulation of mithocondria activity (see next paragraph “ATM and Mitochondria”).
Although, it has been recognized since several years that ATM is activated also by oxidative stress (as H2O2), the biochemical mechanisms underlying the response of ATM to oxidative stress were described only recently. Guo and colleagues proposed that ATM functions as a redox sensor in the cytoplasm and, as such, may regulate global cellular responses to oxidative stress [39]. ATM activation by oxidative stress involves the formation of a disulfide bridge between cysteine (C2991) residues to form a ATM dimer [39] (described in the following paragraph “Molecular mechanisms that ensure the modulation of ATM kinase activity”). Importantly, this mode of ATM activation can occur independently of the MRN complex, suggesting a role for ATM in signaling other than direct DNA damage.
Notably, ionizing radiations that generate DNA DSBs can also produce ROS that inactivate key DNA repair. Hence, ATM oxidative activation may allow cells to respond to DNA DSBs and maintain genetic integrity under these toxic conditions. ATM appears to function as a key nodal point, bringing together DNA damage response and also the response to oxidative stress [40]. Clearly, further analysis of the importance of oxidative stress–induced activation of ATM will illuminate the possible contribution of this feature toward specific aspects of the A-T phenotype.
A possible role of ATM in vascular stability has long been suspected because of the manifestation of telangiectasia (dilated blood vessels) and vascular leakiness in both patients with ataxia telangiectasia and aged ATM-deficient mice. Recently, Okuno and colleagues demonstrated a very interestingly correlation between oxidative stress–induced activation of ATM and the occurrence of telangiectasia [41]. In this papers the authors demonstrated that ROS substantially accumulates in newly formed immature vessels and activates ATM. Loss of ATM in endothelial cells minimizes pathological ocular and tumor neoangiogenesis as a consequence of defective oxidative defense rather than an impaired DDR [41]. This paper provides the first evidence for a link between a clinical feature of A-T and DNA damage independent function of ATM kinase.
Mitochondria play an important role in ATP synthesis and apoptosis and are also the major source of intracellular ROS. A number of human diseases are linked to mutations of the mitochondrial genome. Among these are premature ageing, cancer, diabetes mellitus, and a variety of syndromes involving the muscles and the central nervous system [42]. A-T is similar to other progressive neurological disorders that are characterized by oxidative stress and intrinsic mitochondrial dysfunction [43].
Different studies, using immortalized cell lines established from patients with A-T, have reported that cells lacking ATM function exhibit alterations in mitochondrial homeostasis, including defects in mitochondrial structure, decreased membrane potential, and respiratory activity [44, 45].
An important step in the control of mitochondrial function is the biogenesis of these organelles, which involves mitochondrial DNA (mtDNA) replication and mitochondrial mass increase. Due to limited coding capacity of mtDNA, mitochondria rely largely on nuclear genes (over 1000 genes) for their proliferation. Mitochondrial biogenesis therefore requires complex coordination between the nuclear and mitochondrial genomes [46]. Upon energy depletion, activated AMPK turns off ATP-consuming processes such as synthesis of lipids, carbohydrates, and proteins, and turns on ATP-generating pathways including mitochondrial biogenesis [47].
Interestingly ATM has been implicated in the mitochondrial biogenesis pathway mediated through AMPK activation [48, 49] supporting a role of ATM in mitochondrial functions.
It is of interest also that several ATM substrates show mitochondrial translocation (CREB, p53) and affect mitochondrial functions (HMGA1) [10]. Moreover A-T cells have lower cytochrome c oxidase activity than normal cells, which could explain their reduced respiratory activity; interestingly, treatment of normal cells with an ATM inhibitor also results in reduced cytochrome c oxidase activity [50]. While there are numerous external sources of ROS, the great majority of ROS within eukaryotic cells derives from the mitochondrion as by-products during the generation of adenosine triphosphate (ATP), through the process of oxidative phosphorylation. These evidence lead to postulate that mitochondrial dysfunction may be responsible for elevated ROS production and oxidative stress of A-T cells [10, 45].
However, there are some inconsistencies between these studies, such as discrepancies in the nature of mitochondrial DNA content abnormalities. Recently Valentin-Vega and colleagues clarify this point and report that
Although maintenance of oxygen homeostasis is an essential cellular and systemic function, it is only within the past few years that the molecular mechanisms underlying this fundamental aspect of cell biology started to be elucidated and their connections to development, physiology and pathophysiology have been established. HIF-1 (hypoxia-inducible factor 1) is the transcriptional activator that functions as a master regulator of oxygen homeostasis [52]. Recently, advances in delineating upstream signal transduction pathways leading to the induction of HIF-1 activity, and expression of downstream target genes, have been made and these lead to significant contribution to the understanding of oxygen homeostasis regulation [52]. Interestingly low oxygen tension or hypoxia is a common feature of all solid tumors [53]. It is strongly associated with tumor development, malignant progression, metastatic outgrowth, and resistance resistance to therapy and is considered an independent prognostic indicator for poor patient prognosis in various tumor types [53].
In this context it is well established that ATM is activated under hypoxic conditions not only in a DNA damage dependent way [54] but also through an MRN-independent mechanism in the absence of DNA damage. Phosphorylated ATM is found in a diffuse pattern in the nucleus [55]. The mechanism of ATM activation is not clear: although acute hypoxia induces release of ROS from mitochondria [56], this is not essential for ATM activation under these conditions [55]. Recently Mongiardi and colleagues have demonstrated that ATM may function as an oxygen sensing protein. In particular they demonstrated that A-T cells exhibit a blunted response to mild hypoxia, being defective in upregulating HIF-1α. The disability of ATM-negative cells to upregulate HIF-1α is a consequence of an impaired sensing of oxygen variations [57]. In addition, ATM is a direct regulator of the transcription factor complex HIF-1, a heterodimer of HIF-1α and HIF-1β subunits that regulates metabolism, mitochondrial function and angiogenesis under hypoxic conditions [58]. ATM phosphorylation of HIF1α on Ser696 stabilizes the protein under hypoxic conditions, which promotes mTORC1 inhibition and growth suppression. Moreover authors suggest that suppression of ATM may significantly contribute to the signalling through which TORC1 activity can remain elevated in hypoxic tumor [58].
Interestingly mTORC1 negatively regulates autophagy a catabolic process in which cells deliver cytoplasmic components for degradation to the lysosome [59]. Concomitant with mTORC1 repression by ROS, autophagy increased in cells treated with H2O2. Consistently Alexander and colleagues demonstrated that ATM signaling in response to ROS also leads to mTORC1 inhibition and is involved in the consequential induction of autophagy[60]. Whether autophagy is activated as a survival mechanism in response to ROS or functions in an ATM-driven programmed cell death pathway remains to be explored.
Metabolic syndrome is a cluster of metabolic abnormalities and related clinical syndromes among which the most relevant ones are insulin resistance and atherosclerosis [61]. Insulin resistance along with visceral adiposity, dyslipidemia and chronic subclinical proinflammatory state are the main characteristic features of metabolic syndrome. The role of ATM in the regulation of metabolism is emerging as a very interesting topic. A-T patients have an increased risk of developing type 2 diabetes and display growth impairments associated with insulin resistance and glucose intolerance [22, 23]. Diabetic complications are not considered a primary characteristic associated with A-T owing to their late onset and the fact that most A-T patients succumb to the disease early in life. However, several studies have demonstrated a relationship between ATM and metabolic signaling pathways. For example, there is a close interplay between ATM and insulin pathway (reviewed in [10]). The identification of cytoplasmic ATM as an insulin-responsive protein provides the first indication that a defective response to insulin could be related to the development of insulin resistance and type 2 diabetes in A–T patients [29]. Moreover ATM is required for AKT phosphorylation at Ser473 and for translocation of the cell’s surface glucose transporter 4 (GLUT4) in response to insulin stimulation [62]. These results suggest that reduced expression of ATM may trigger the development of insulin resistance because of the consequent downregulation of AKT activity. Recent evidence indicates that the effects of ATM on insulin function and glucose metabolism may be mediated through p53 phosphorylation [63]. Deletion of the p53- encoding gene, or its mutation to generate p53 variants that lack the primary ATM phosphorylation site, results in elevated ROS levels, glucose intolerance, insulin resistance, reduced AKT phosphorylation and reduced expression of sestrin proteins, which are involved in the regulation of intracellular antioxidants [63]. These effects can be rescued by the addition of dietary antioxidants, suggesting that ATM affects insulin function and glucose metabolism by regulating intracellular ROS levels through p53 phosphorylation. Moreover Schneider and colleagues discovered a new relationship between ATM deficiency and metabolism in mice, looking specifically at aspects of the metabolic syndrome such as insulin resistance, adiposity, blood pressure, circulating cholesterol and lipid levels, and atherosclerosis. They have shown that transplantation of bone marrow with ATM-/-ApoE-/- mice increases atherosclerosis, whereas activation of ATM in ATM+/+ApoE-/- mice alleviates the vascular disease. The results indicate that ATM deficiency causes insulin resistance, resembles the metabolic syndrome, and increases vascular disease [64]. Interestingly, ATM has recently been identified as a functional target of metformin, a drug widely used in the treatment of type 2 diabetes [65]. Metformin is a very interesting drug because reduces insulin resistance and increases glucose uptake in skeletal muscle, but the mechanism of its action is not fully understood. ATM seems to function upstream of metformin- induced AMPK activation, because treatment of rat hepatoma cells with an ATM inhibitor reduced AMPK activation and phosphorylation following metformin treatment [65]. However the role of ATM downstream metformin treatment is very controversial and several research groups are currently trying to clarify this point [66].
Growth factors regulate essential processes in cells as cell proliferation, motility, survival and morphogenesis. Several growth factors activate receptor tyrosine kinases (RTK), leading to activation of cellular signaling pathways as PI3K/AKT signalling, which promotes cell survival, and the mitogen-activated protein (MAP) kinase cascade [67].
First evidences of functional interactions between ATM and growth factor–mediated signaling are:
the observation that cultured A-T cells display an increased demand for growth factors in the media compared to wt cells;
the identification of ability ATM as a mediator of the insulin-mediated signaling, which in turn regulates AKT signaling [29, 62].
Moreover, it has been recently shown that also MEK/ERK signaling is modulated by ATM [68] and that inhibition of ATM activity inhibits cell proliferation and induces apoptosis in cancer cell lines with overactive AKT [69]. Collectively, these studies suggest that ATM may modulate prosurvival signaling downstream growth factor stimulation. Recently, ATM activation has been identified also downstream the growth factor receptor HER2 in a breast cancer mouse model [70]. Thus, it is clear that the ATM is activated upon growth factor stimulation, but the mechanism of this activation is still unknown. It is tempting to speculate that ROS production induced by growth factor stimulation could be responsible for activation of cytoplasmic ATM. Another hypothesis is that ATM could be indirectly activated by hyperproliferation induced by growth factor signaling.
ATM can also regulate the expression of some growth factor receptors an in particular of some Receptor Tyrosine Kinases (RTKs). For example, the expression of the insulin-like growth factor 1 receptor (IGF1R) is reduced in ATM-deficient cells, and the radiosensitivity of A-T cells, following IR treatment is affected by IGF1R expression levels; both effects can be rescued by ATM cDNA expression [71]. More recently, De Bacco and colleagues demonstrated that DNA damage induces ATM dependent transcription of the growth factor receptor MET and this regulation contributes to radioresistance of MET-dependent tumors [72].
Interestingly RTKs signaling is often aberrantly regulated in different type of tumors, so overall these data suggest also a functional role for ATM in RTKs-dependent tumor progression. In this regard, a possible role of ATM inhibition in cancer therapy will be discussed in the paragraph “Functional links between ATM kinase and cancer”.
The observation that A-T patients display an increased rate of lymphoma and leukaemia onset, has been largely explained by the identification of ATM as a major modulator of the DNA damage response and by the central role that physiological DNA damage plays in the development of the immune system [73-75] (see next paragraph “Functional links between ATM kinase and the immune system defects”).
Other important modulators of the immune system development and function are death receptors such as Fas (CD95/APO-1) and Tumour necrosis factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL). The death receptor system is essential for the regulation of the lymphoid system homeostasis [76]. It is assumed that the negative selection process of B as well as T cells in the germinal center (GC) and thymus, respectively, depends on Fas system [77, 78]. Mice lacking functional Fas expression suffer from autoimmunity and increased incidence of B cell lymphomas [79, 80]. Patients with mutations that impair the function of proteins involved in Fas-dependent apoptosis develop the autoimmune lymphoproliferative syndrome (ALPS), which predisposes them to autoimmune disorders and to lymphoma development [81, 82]. Finally, Fas mutations where identified in lymphomas, in particular those deriving from GC B cells(reviewed in [83]).
Fas (CD95/APO-1) is a transmembrane protein belonging to the tumor necrosis factor superfamily. Upon binding of Fas ligand or agonistic antibodies, the Fas receptor recruits several cytosolic proteins to form the death-inducing signalling complex (DISC). This is necessary to catalyze Caspase-8 activation, which triggers the caspase cascade [84]. Caspase-8 activation is absolutely required to trigger receptor-activated apoptotic response and its catalytic activity has to be tightly regulated to avoid inappropriate activation and undesired cell death. This regulation is ensured by FLIP proteins, which are structurally similar to Procaspase-8 and can therefore compete with Procaspase-8 for binding to DISC, thus preventing Caspase-8 activation and the following apoptotic cascade [85].
Taking into account the linkage between Fas impairment and the development of immune system tumors that are more also frequent in A-T patients, we asked whether any relationship exists between Fas and ATM signaling pathways. We could show that ATM deficiency results in a significant resistance of lymphoid cells derived from A-T patients to Fas-induced apoptosis. Interestingly, loss of endogenous ATM kinase activity results in the aberrant upregulation of FLIP protein levels. Consistently, ATM kinase activation downregulates FLIP protein levels providing a novel mechanism to modulate Fas sensitivity. Interestingly, Hodgkin Lymphoma cells that are characterized by Fas-resistance and by FLIP overexpression, may be sensitized to Fas upon ATM kinase expression, which triggers FLIP downregulation. These data point to ATM as a novel player in Fas-induced apoptosis and suggest a novel molecular mechanism for the increased lymphoma susceptibility of A-T patients and for the development of B cell lymphoma [86]. These observations have been further extended also to TRAIL receptor. ATM modulates TRAIL sensitivity similarly to what described for Fas [87]. This observation provides a rational for the employment of several DNA damaging agents largely used in chemotherapy, to enhance TRAIL sensitivity, by triggering ATM activation which in turn drives FLIP protein downregulation [87]. This is consistent with the identification of ATM and Chk2 activation downstream death receptor stimulation [88]. ATM would therefore represent a crucial interplay between the modulation of DNA damage response and death receptor induced apoptosis (reviewed in [89]).
ATM activation has been at first identified as a response to DSBs DNA damage. ATM is recruited to DSBs and activated by DNA damage through interactions with the MRE11–RAD50–NBS1 (MRN) complex, which is bound to DNA ends at the site of the break. The activated ATM is important for the initiation of DNA end resection that is an essential step to initiate DNA repair via the homologous recombination pathway (reviewed in [11]).
Several phosphatases have been identified as important modulators of ATM activity, consistently with the central role that the regulation of phosphorylation plays in the modulation of ATM kinase activation in response to DNA damage. PP2A, PP5 and WIP1 phosphatases regulate ATM activity [95-97]. PP2A directly modulates the state of phosphorylation of S1981 [95]. Conversely PP5 interacts with ATM in a DNA-damage-inducible manner and its activity sustains ATM activation [96]. Wip1 phosphatase has been identified as a novel player of the ATM-dependent signaling pathway, as it directly dephosphorylates Ser1981. Deficiency of Wip1 resulted in activation of ATM kinase, while its overexpression triggers the downregulation of the ATM-dependent signaling cascade after DNA damage [97].
The activity of other kinases may also contribute to the modulation of ATM kinase activity. It has been shown that Cdk5 (cyclin-dependent kinase 5), activated by DNA damage, directly phosphorylates ATM at S794 in postmitotic neurons. This phosphorylation precedes and is required for ATM autophosphorylation at S1981, and sustains ATM kinase activition and signaling. The downregulation of Cdk5-ATM interplay attenuates DNA damage-induced neuronal cell cycle reentry and expression of p53 targets PUMA and Bax, protecting neurons from DNA damage-induced cell death [98]. Similarly, c-Abl, a non receptor tyrosine kinase previously identified as a target and effector of ATM kinase activity in the DNA damage response [99, 100], has been recently identified as important modulator of ATM kinase activation. DNA damage triggers ATM kinase dependent inducion of c-Abl activity, which in turn triggers ATM tyrosine phosphorylation. This phosphorylation is required to enhance ATM autophosphorylation on S1981 and ultimately to sustain ATM activity, allowing the apoptotic response [101].
It has also been shown that DNA damage induces the rapid acetylation of ATM. This acetylation depends on the Tip60 histone acetyltransferase (HAT). Suppression of Tip60 blocks ATM kinase activation and prevents the ATM-dependent phosphorylation of p53 and Chk2. [7]. The systematic mutagenesis of lysine residues identified a single acetylation site at K3016, which is located in the highly conserved C-terminal FATC domain [102]. K3016 acetylation is required for the DNA damage induced autophosphorylation on S1981. The acetylation of ATM on lysine 3016 by Tip60 is therefore a key step linking the detection of DNA damage and the activation of ATM kinase activity.
Recent studies have identified a completely different mechanism for ATM activation in response to oxidative stress. According to the proposed models ATM would be present as inactive monomers (reviewed in [10]). Oxidation triggers the assembly of an active dimer in which the two monomers are covalently linked by intermolecular disulfide bonds [30, 39]. C2991, located in the C-terminal FATC domain, has been identified as a crucial residue for ATM activation by oxidation, as a C2991L mutant cannot be activated by H2O2. The interplay between the molecular mechanisms that trigger ATM activation in response either to DSBs or to oxidative stress has not been clearly investigated yet. It has been shown that the S1981A mutant is still competent for activation in response to oxidation. Similarly, the C2991L mutant is competent for DNA damage induction. ATM activation in response to these two different stresses triggers the ATM-dependent phosphorylation of an overlapping subset of substrates although significative differences have also been identified. As an example, although low levels of H2O2, which specifically trigger oxidative stress, drive the phosphorylation of p53 and Chk2 proteins, similarly to what observed in response to DNA damage, they fail to mediate histone H2AX and KAP1 phosphorylation which seem to be peculiar for the DSBs response [30]. Importantly, the distinction between ATM activation mediated through oxidation and that mediated by DNA damage is difficult, because oxidative stress and ROS production may usually induce DNA damage, and indeed ATM is often exposed to both these stresses simultaneously. IR treatment is able to trigger both DNA damage and oxidative stress suggesting that the large number of substrates identified by proteomic approaches aimed to characterize the global pattern of ATM substrates in this context probably represent targets from both the DNA repair and oxidation pathways. This observation may provide an explanation for the identification, among more that 700 substrates of ATM, of proteins clearly involved not only in the control and execution of cell cycle checkpoints and DNA rapair, but also in many other pathways such as the insulin signaling [16].
A-T has a pleiotropic phenotype that affects multiple systems, and most likely the complex clinical features arise from the synergistic effects of a defective DNA damage response and oxidative stress in the absence of ATM. It is intriguing to speculate that a subset of clinical features associated with A-T might be mainly due to defects in ROS response by ATM, whereas other features might primarily result from the impairment of a functional DNA damage response. Interestingly, some A-T patients present a form of ATM with a truncated C-terminal region (R3047X), that therefore lacks C2991 ([10] and references therein). Although these patients develop ataxia similarly to the others, their cells are less sensitive to IR compared to other A-T cells. Moreover, one patient that expresses the R3047X variant does not display immunodeficiency ([10] and references therein). Future studies will clarify whether the variability of the clinical features displayed by A-T patients may arise from different mutations which impact differently on the different functions performed by ATM.
At present the occurrence of other post-translational modification that may modulate ATM activation by oxidative stress has not been investigated. Future systematic proteomic experiments will also define the complete profile of the oxidative stress dependent ATM substrates. These studies will clarify the differences and the similarities among the different mechanisms of activation of ATM kinase and their potential cross-regulation.
ATM is considered one of the principle guardians of the genome as a consequence of its principle role in the coordination and execution of the DNA damage response. According to this function, ATM is generally defined as a tumor suppressor gene. Several
The frequency of ATM variants in human breast cancer has been largely investigated by several laboratories. Unfortunately, the results of these studies were often inconclusive mainly because of the low number of cases included in each study as well as for the technical difficulties linked to the sequencing
Consistently with the observation that loss of ATM expression or heterozygosity may enhance cancer predisposition, some reports also describe loss of ATM expression in some tumor samples in the whole population. In particular ATM expression is strongly reduced or lost in some leukaemia and lymphoma [73, 111-113]. The modulation of ATM expression levels in breast cancer has been largely investigated. Several reports, demonstrate the occurrence of low levels of ATM expression in breast cancer. In particular, it has been proposed that ATM may be aberrantly reduced or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast cancer [114, 115].
Several molecular mechanisms, alternative to the occurrence of genetic mutations that lead to loss or reduction of ATM expression, have been identified. ATM is down-regulated by N-Myc-regulated microRNA-421 and this may play a role in neuroblastoma [116]. Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line M059J [117]. Furthermore, it has been shown that miR-18a is upregulated in cell lines as well as in patients\' tissue samples of breast cancer. miR-18a triggers the downregulation of ATM expression by directly targeting the ATM-3\'-UTR and abrogated the IR-induced cell cycle arrest [118].
Alternatively, ATM promoter methylation has been shown to epigenetically trigger ATM expression downregulation in cancer. The ATM gene is aberrantly methylated and silenced in locally advanced breast cancer [119] and aberrant methylation has been correlated with low levels of ATM expression and increased radiosensitivity in colorectal cancer and glioblastoma cell lines [120, 121].
Recent evidence from both cell culture, animal models and analysis of clinical specimens show a correlation between oncogene activation or loss of tumor suppressor expression and the occurrence of DNA replication stress and induction of the DNA Damage Response(DDR) (reviewed in [122]). The key initial observations that inspired the hypothesis that tumorigenic insults may drive DDR activation as a sort of barrier that delays or prevent cancer progression in vivo, were:
The occurrence of activated DNA damage signalling in a subset of human cancer cell lines, especially those defective for p53 function.
The occurrence of activated DNA damage response, exemplified by Thr68 phosphorylation on Chk2 protein, in clinical specimens of large subsets of human and lung carcinomas [123].
These results suggested that some disease-associated event (not occurring in the adjacent normal tissue) led to activation of the DDR. Therefore, it has been postulated that oncogenic events may trigger DNA damage and the consequently activation of ATM-Chk2 signaling cascade. To test whether this activation may represent a barrier to the transformation process two sets of experimental approaches have been conducted. The first one, was to develop cell culture models of conditional oncogene activation, while the second was to extend the analysis of the occurrence of the DDR to a large panel of human tumor biopsies derived from various type of cancers at various stages, especially from premalignant and pre-invasive lesions which represent very early stages of cancer progression. Two studies jointly provided evidence for a role of the DDR machinery as an inducible barrier against cancer in clinical specimens from various tissues [124, 125]. The authors found that according to their hypothesis, tumor cells in clinical specimens from various tissue (and not cells located in the adjacent normal tissue) show a costitutive activation of checkpoints kinases such as ATM and Chk2, phosphorylated H2AX and p53 and foci formation by the DDR proteins such as 53BP1. Importantly, in the early pre invasive lesions, the DDR activation preceded occurrence of mutations or loss of expression of DDR component, consistently with the idea that the DDR barrier generates a sort of selective pression for these mutations that would allow the escape from the barrier and consequently drive cancer progression. The DDR activation was also well recapitulated in human cell culture models following oncogene expression, as well as in xenograft models [124, 125]. One key question related to the induction of the DDR as a barrier to tumor development is the mechanistic basis on the induction of DNA damage in cancer. It has been postulated that oncogene expression triggers DNA replication stress, including replication forks collapse and subsequent formation of DSBs [124-127]. Additional events that may contribute to the induction of DDR in this context are telomere erosion and ROS generation (reviewed in [122]). It has been shown that, the activation of DDR is required for the oncogene-mediated induction of senescence [126, 127], a state of permanent growth arrest refractory to physiological proliferation stimuli, that would counteract tumor progression (reviewed in [128].
The central function of ATM in the DNA damage response and in the modulation of IR- sensitivity, suggested that the modulation of its activity may be exploited for cancer therapy. For this reason a great effort is still ongoing to develop and improve ATM kinase inhibitors and to define the conditions in which their employment could be beneficial for the cancer therapy. A major obstacle in the development of a specific inhibitor of ATM catalytic activity is linked to the high similarity among the kinase domains of the PI3K-like family proteins. For a long time caffeine has been largely employed to modulate ATM/ATR kinase activity. It has been shown that depending on its concentration caffeine may be able to equally block ATM and ATR activities (10 μM) or, alternatively, to selectively interfere with ATM activity (5 μM) [129, 130]. Later on, screening a small molecule compound library developed for the phosphatidylinositol 3\'-kinase-like kinase family, an ATP-competitive inhibitor, 2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one (KU-55933), that inhibits ATM with an IC50 of 13 nmol/L and a Ki of 2.2 nmol/L. KU-55933 has been identified. KU-55933 shows specificity with respect to inhibition of other phosphatidylinositol 3\'-kinase-like kinases. Inhibition of ATM by KU-55933 resulted in the ablation of IR-dependent phosphorylation of several ATM targets, including p53, H2AX, NBS1, and SMC1 and sensitize cells to the cytotoxic effects of ionizing radiation and to the DNA double-strand break-inducing chemotherapeutic agents, etoposide, doxorubicin, and camptothecin. Inhibition of ATM by KU-55933 also caused a loss of ionizing radiation-induced cell cycle arrest. By contrast, KU-55933 did not potentiate the cytotoxic effects of ionizing radiation on ataxia-telangiectasia cells, nor did it affect their cell cycle profile after DNA damage [131]. More recently, it has been developed an improved analogue of KU-55933, named KU-60019, with Ki and IC50 values half of those of KU-55933 [68]. KU-60019 is 10-fold more effective than KU-55933 at blocking radiation-induced phosphorylation of several ATM targets in human glioma cells. KU-60019 inhibits the DNA damage response, reduces AKT phosphorylation and prosurvival signaling, inhibits migration and invasion, and effectively radiosensitizes human glioma cells [68]. A library of 1500 compounds was selected based on known kinase inhibitor templates and calculated kinase pharmacophores from the Pfizer proprietary chemical file. These compounds were screened with potential inhibitors being identified by a decreased ability of purified ATM kinase to phosphorylate GST-p53[1–101] substrate. This screening approach identified the compound CP466722 as a potential novel ATM inhibitor. The ATM-related kinase, ATR, was not inhibited by CP466722
A-T patients display several immunological dysfunctions (reviewed in [75]). The central role of ATM kinase in the control and execution of the DNA Damage Response (DDR), along with the observation that DNA damage occurs physiologically to ensure the development and the functionality of the immune system, strongly suggest that most of the immune defects linked to A-T may arise from defects in the DDR. The activation of the DDR is an important component of the V(D)J recombination, a genetically programmed DNA rearrangement process occurring during the early development of lymphocytes that results in assembly of highly diversified antigen receptors essential to functional lymphocytes. Defects in repair proteins involved in rejoining V(D)J recombination-induced DSBs preclude the generation of antigen receptors, profoundly compromising T- and B-cell development and causing severe immune deficiencies. The role of ATM in V(D)J recombination has been largely investigated. Immunoglobulin class switch recombination has been shown to be impaired in Atm-deficient mice [138]. Moreover, during the V(D)J recombination ATM participates to the stabilization of DNA double-strande-break complexes [139]. ATM may also function directly in end joining, end processing or end protection [140]. A recent study reported also the persistence of chromosomal breaks in actively dividing ATM-deficient peripheral lymphocytes [141] suggesting a role for ATM in cell-cycle control in addition to facilitating DNA repair. However, the mechanism behind the involvement of ATM in the cell-cycle checkpoint during V(D)J recombination, along with the functions of ATM downstream targets responsible for cell-cycle control, has yet to be determined.
AT patients exhibit a wide range of cellular and humoral immune system abnormalities, resulting in variable lymphopenia [142] The most common abnormalities are the absence or marked reduction of IgA, IgG subclasses and IgE [75, 142]. Moreover, the peripheral T-cell population of both AT patients and Atm–/– mice is characterized by a bias toward terminally differentiated effector cells, reflected by an extremely low ratio of naıve to memory T cells (reviewed in [75]).
As a consequence immunodeficiency is very frequent in A-T and A-T patients display a high predisposition to sinopulmonary infections and bacterial pneumonia and chronic lung disease are a major cause of mortality in these patients. (reviewed in [75]).
Another important abnormality of the immune system linked to A-T pathology is the higher incidence of leukaemia and lymphoma development observed both in mice and in humans deficient for ATM gene expression. The risk of developing a lymphoid neoplasm is increased approximately 200-fold in AT patients compared with the normal population. The vast majority of lymphoid tumors that develop in A-T children are T-cell ALL/lymphoma (reviewed in [75]). Consistently, Atm–/– mice generally succumb to pre-T-ALL between 3 and 6 months of age [103-105]. A-T patients display characteristic cytogenetic abnormalities involving chromosomes 7 and 14 that result in disruption of antigen receptor loci [74]. Some of these chromosomal translocations may lead to the juxtaposition of a TCR locus and a proto-oncogene like TCL1 or MTCP1 (chromosomes 14 and X, respectively). T cells harboring these translocations clonally expand, accumulate additional cytogenetic abnormalities, and eventually develop into leukemias/lymphomas. In addition, ATM is frequently inactivated in sporadic cancers, particularly lymphoid malignancies. Loss of 11q22-23 (the location of the human ATM gene) is often observed in leukemias/ lymphomas [73, 111].
A recent study found a surprising role for ATM in promoting the self-renewal capacity of hematopoietic stem cells (HSCs) [108]. The mechanism for HSC depletion in the absence of ATM appears to be increased oxidative stress, suggesting that indeed abnormalities in the oxidative stress response may also contribute to the immune system phenotype in addition to the DDR deficiency [32, 33].
The neurodegenerative phenotype of A-T is the cardinal aspect of the disease. In A-T, the neurodegeneration is progressive and spinocerebellar in nature, and it usually becomes apparent between 6 and 18 months of age. Patients with A-T manifest hallmarks of cerebellar dysfunction such as dyssynergia, muscle hypotonia, truncal swaying while sitting or standing, and sudden falls [1, 21]. Atrophy of the cerebellum, particularly is a key feature of A-T and is evident upon magnetic resonance imaging and computed tomography imaging [21]. Purkinje cell loss is a hallmark feature of A-T and Purkinje cells have less complex arborizations and are often localized ectopically in the molecular layer of the cerebellum [143].
Although extensive effort has been made to understand how ATM deficiency could result in neuronal degeneration, the mechanisms behind neuronal degeneration of A–T are still poorly understood. It has been speculated that defective responses of ATM to DNA damage could be the cause of neuronal degeneration in A–T. However, Atm_/_ mice show compromised function in DNA repair but fail to develop significant neuronal degeneration or exhibit symptoms of ataxia, suggesting a lack of correlation between dysfunction in DNA repair and neuronal degeneration of the A–T disease [103].
Importantly, a substantial amount of ATM resides in the cytoplasm in human and mouse brain, a sub-cellular localization incongruous for a mediator of DDR [Barlow, 2000 #283; Boehrs, 2007 #798; Li, 2012 #820]. In the cytoplasm ATM appears to be involved in the homeostasis of lysosomes [144], in the spontaneous release of synaptic vesicles and in establishment and maintenance of long-term potentiation (LTP) [145].
In contrast with these data, Biton and colleagues showed that ATM is predominantly nuclear in human neuronal-like cells, and that the ATM-mediated response is as robust as in proliferating cells. Knockdown of ATM abolished that response [146]. Similar observations have been obtained from studies in murine cerebellar neurons, in which ATM seems to lacalize essentially in the nucleus and ATM activation measured by autophosphorylation and downstream signaling is comparable with that in other cell lines. This is supported by genetic evidence showing that MRE11 facilitates the activation of ATM at DNA DSBs, and that patients that are hypomorphic for mutations in
Recently, the finding that oxidation can directly activate ATM [30], strongly suggests that the enrolment of ATM in the oxidative stress response may provide a molecular base for some features of neurodegeneration observed in A-T patients, which cannot be explained by the classical ATM function in the DDR. Neurons are cells particularly vulnerable to oxidative stress as shown by the fact that oxidative injury is a key feature of both acute brain pathologies such as stroke and traumatic brain injury and neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotropic lateral sclerosis [147]. Neurons have a high energy demand, principally to maintain ion gradients necessary for neuronal signal transmission as well as for the synthesis, the uptake and the recycling of neurotransmitters. To fulfil this requirement neurons depend principally on oxidative phosphorylation, a process that necessarily generates a certain amount of ROS as a byproduct. At the same time neurons are relatively poor in antioxidant defenses as compared, for instance, to astrocytes [147]. Indeed, loss of ATM enhances intracellular ROS levels, and their aberrant excess, may contribute to the neurodegeneration described in A-T [148] Although mouse mutants of ATM do not recapitulate the cerebellar degeneration, ATM deficiency has been shown to be associated with increased levels of reactive oxygen species in Purkinje cells [27, 149]. Furthermore, an age-dependent reduction in the number of dopaminergic neurons present in the substantia nigra and striatum has been observed in ATM-/- mice, which was accompanied by severe gliosis [150] suggesting that ATM-deficient mice may model some of the neurological defects observed in A-T. Persistent oxidative stress in the ATM-deficient brain disturbs intracellular antioxidant defence systems and redox homeostasis, thereby activating downstream signaling pathways, including those involving p38 and ERK1/2 [149]. Overall these observations suggest that, in A-T, neuronal degeneration and ataxia do not only depend from a defective DDR but are also a consequence of the inability to mount an efficient antioxidant response because of a defective ATM signaling. In light of this information, it is not surprising that treatment with antioxidants prevents Purkinje cell loss [151] and partially corrects neurobehavioral deficits of Atm-/- mice [152].
In conclusion, defective DNA damage response associated with ATM deficiency might be sufficient to induce the neurological pathology associated with A-T, but the compounded oxidative stress and DNA repair defects in A-T patients would potentially increase the rate and severity of neurodegeneration.
In the normal brain, the number of neuronal stem cells (NSCs) is the result of a tightly controlled balance between self-renewal, differentiation, and death [153]. This means that control of proliferation of the neural stem cells/precursor cells plays a critical role in determining the number of neurons, astrocytes, and oligodendrocytes in the brain. Importantly, ATM expression is abundant in neural stem cells (NSCs), but it is gradually reduced as the cell differentiates [152], suggesting that ATM may play an essential role in NSC survival and function. Paul K. Wang’s laboratory reported that ATM is required to maintain normal self-renewal and proliferation of NSCs, due to its role in controlling the redox status. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling [149, 154].
In addition, it is increasingly apparent that stem cell proliferation and maturation require supportive microenvironment including astrocytes. Astrocytes have well-established roles in regulating the microenvironment in the central nervous system, including redox homeostasis. Astrocytes also support stem cell proliferation and maintenance [155-157]. Abnormal neuronal and astrocytic development was reported in ATM knockout mice [151, 152], which could be the result of abnormal differentiation of NSCs. Interestingly, ATM is also required to maintain survival and proliferation of astrocytes by controlling the redox status of these cells [149].
Recently, Carlessi and colleagues, used a human neural stem cell line model (ihNSCs) to get more insight into the mechanisms of neuronal degeneration in A-T. They could show that ATM plays a central role in terminal differentiation of ihNSCs through its function in DDR [158]. All these data support a role of ATM in the control of neuronal differentiation though its DDR dependent functions and oxidative stress dependent functions and suggest that defective proliferation of NSC could be in part responsible of the neurodegenerative phenotype in Atm-/- mice and A-T patients.
The loss of ATM kinase function leads to A-T, a multisystemic disorder. Contribution from several laboratories allowed, in the recent years, to significantly improve the knowledge on the signalling networks involving ATM kinase. The emerging picture clearly points to ATM as a central player of several cellular functions in addition to the well-established role as master regulator o the DDR.
At present there is no therapy to prevent or cure the progression of A-T. It is possible to alleviate some of the symptoms linked to immunodeficiency and deficient lung function, but neither the cancer predisposition, nor the progressive neurodegeneration, can be prevented. In this regard, the identification of cytoplasmic functions of ATM, and in particular its connection with glucose metabolism and with oxidative stress, provided novel hints for the comprehension of the development of this disorder and suggest possible alternative therapeutic strategies. Treatments with antioxidants and phytonutrients have been suggested as potential treatment strategies. Additional approaches include the employment of read-through drugs to allow the production of ATM kinase in those patients with truncating mutations, and the development of stem cell based therapies (reviewed in [2]). The large amount of information produced by high throughput approaches such as the proteomic studies will deserve further attention and implementation to allow a further step into the elucidation of the networks in which ATM is implicated and of the contribution of each interactor, modulator and substrate of ATM to their functionality.
In contrast with
Since only 2 years ago its presence was reported in Chile, until now there was no corroboration of its productive impact in the country. At the same time, for the design of the management proposals, there was only external literature; however, the objective of this work was to monitor the economic damage caused by the plague in cherry and blueberry orchards and also evaluate the control achieved with insecticides of different chemical groups: alpha-cypermethrin, acetamiprid, chlorantraniliprole, cyantraniliprole, emamectin benzoate, lambda- and gamma-cyhalothrin, spinetoram, and spinosad.
The possible repellent effect of garlic and chili-based products, as well as an extract of
Five commercial orchards were selected from localities Cachapoal and Culenar, Ñuble Region, in areas with positive
Three varieties of cherries (Lapins, Santina, and Regina) and two of blueberries (Brigitta and Elliot), as also material from live fences of
At harvest, losses associated with the pest were estimated in orchard and prepackaged fruit inspection.
Once the start of the attack of
The treatments evaluated were Mageos® (15% w/w alpha-cypermethrin dispersible granulated formulation; 15 g of commercial product/100 L) (Basf Chile S.A); Bull® (6.12% w/v gamma-cyhalothrin encapsulated suspension; 10 mL of commercial product/100 L) (FMC Chemical Chile Ltd); Karate® Zeon (5% w/v lambda-cyhalothrin encapsulated suspension; 20 mL of commercial product/100 L) (Syngenta S.A); Mospilan® (20% w/w acetamiprid soluble powder; 50 g/100 L) (Basf Chile S.A); Success® 48 (45% w/v spinosad concentrated suspension; 14 g/100 L); Delegate® (25% w/w spinetoram concentrated suspension; 16 g/100 L); Proclaim® Forte (5% w/w emamectin benzoate dispersible granulate: 30 g/100 L) (Syngenta S.A); Coragen® (20% w/v chlorantraniliprole concentrated suspension; 20 mL/100 L) (FMC Chemical Chile Ltd); and Exirel® (10% w/v cyantraniliprole suspoemulsion; 75 mL/100 L) (FMC Chemical Chile Ltd). A control without insecticide was included.
A completely randomized design was used, with four repetitions of each treatment. The experimental unit corresponded to groups of 10 plants of the same row treated with 4 isolation plants between them.
All applications were performed once, on November 15 (when fruit begins to take color), with a conventional hydraulic sprayer (Line Patasa 2000) with 1800 L of water per hectare. A control treatment without insecticide applications was considered.
Two parameters of relevance were evaluated: the incidence of damage (established as mean of fruits damaged by the pest) and the severity of the damage (wound or presence of live larvae) on samples of 100 fruits collected randomly within each experimental unit. Fruits were reviewed at 3, 5, 7, 10, 12, and 14 days after application (DAA). The cutoff criterion to stop evaluations was unified when the incidence of damage was equal to or greater than 20%.
The data obtained from field and laboratory measurements was subjected to analysis of variance (ANOVA) by taking appropriate transformations. Mean comparisons in significant ANOVAs were performed with a Tukey’s test. Statistical analyses were conducted using the software Minitab®16.1.0 (Minitab Inc.).
In a cherry orchard of var. Regina located in the town of Culenar, the possible effect of repellency (expressed as a lower incidence of eggs laid of
Treatment with Amarex® was applied at 200 mL/100 L, and treatment with Requiem® Prime was applied at 240 mL/100 L, using a conventional hydraulic sprayer (Line Patasa 2000) with 1800 L of water per hectare. One check control using only water treatment was included.
All treatment had four repetitions of 10 plants, randomly drawn inside the orchard. Evaluations were performed at 3 days between applications and at 3 and 7 days after the last application.
On each occasion the frequency of egg of
After each evaluation involved in the present work, the destruction of the contaminated material was carried out via freezing at -30C for 5 days.
All monitored hosts showed damage and development of immature states of the pest from the beginning of fruit maturity. The above adds
Inmature stages of
The period of greatest incidence of the pest was at the beginning of fruit color breakage and increases as it approaches maturity. Development persists in remnants of the orchard after harvest (Figures 2 and 3).
Percentage (%) of cherry fruits attacked by
Percentage (%) of blueberry fruits attacked by
There were no indications of preference of attack of one fruit variety over another nor signs of preference among fruit species when comparing the incidence between cherry trees and blueberries in similar conditions. The foregoing could vary according to different pesticides or nutritional programs or driving management used among these crops, but at least the records collected suggest that similar precautions should be handled in these fruit trees.
There was no rainfall in the period of pest incidence, and daily temperatures ranged from 6 to 36°C. Relative humidity varied from 40 to 65%, that is, adjusted to favorable climatic requirements for the development of the pest [20]. The area of cherries in Chile currently exceeds 27,000 hectares, concentrated in areas that have favorable climatic conditions for this pest, a situation that is even more marked in the case of blueberry production.
Since Chile is a country focused on the export of fruits, the damages observed until now can be categorized in two categories: complete loss of the fruit (Figure 4) or loss of quality due to deterioration or damage to the skin of the fruit (Figure 5).
Losses caused in cherry trees by massive attack of
Cherries showing damage by egg laying attempts.
In the monitored cases, for cherries, the first category reached between 10% and15% of the production (approximately 10% Santina, 12% Lapins, and 15% Regina), that is, the equivalent of 1, 2.16, and 2.7 ton/ha. Economically speaking, it is a loss equivalent to 5,000–17,550 USD/hectare. The second item is still difficult to quantify. The second item was estimated at 1–2%.
In the case of blueberries, the percentage of compromised fruit was close to 8%, which could increase as the plague increases its local population. This corresponds to the equivalent of 1–1.5 ton/ha or a loss equivalent to 4,000 USD/hectare.
In fruits of live fences (
Secondary damage due to attempts to lay eggs occurred in some sectors that received certain insecticidal treatments and allowed the fruit to be redirected to the domestic market, although at a significative lower return value than expected in an export fruit. Concordant with what happened in other countries, greater complexity is expected from the point of view of the increase of residues present in fruit due to the management of this pest [21].
Control delivered by the microencapsulated pyrethroid treatments, both spinosyns, and cyantraniprole was highly efficient not only in reducing the incidence of infestation (Figure 6) but also in decreasing the severity of the attack (Figure 7).
Mean percentage (%) of fruits damaged by
Mean of wound/or live larvae of
Spinosyns and some pyrethroids such as l-cyhalothrin are indicated with high efficacy in the control of damage of this pest, at short intervals of application to avoid egg postures [22].
In the case of acetamiprid, emamectin benzoate, and chlorantraniliprole, these showed weaker insecticidal action than the previous group, considering that the control action was only expressed once the fruit was affected by the pest. Even so, because they show a significant decrease in the incidence of damage for an approximate period of 5 days, future work may focus on complementing these mechanisms of action with others (such as repellents) that allow reducing the severity of the damage. These results are consistent with what was raised by specialists in the United States [23]. Nevertheless, despite being promising in management, the high rate of dispersal, reproduction, and adaptation of the pest is consistent with the high risk of economic damage reported globally [24].
On the other hand, although the history of efficient biological control has been weak [23], several authors agree on the need to advance in the integral knowledge of the management of this insect, including predators, parasitoids, repellents, insecticides, and cultural management [25, 26, 27, 28, 29, 30].
Regarding the effect granted using products based on natural compounds, both Requiem® Prime and Amarex® demonstrated at least the decrease in the severity of attack of the pest under conditions of use in the orchard (Figure 8). However, it should be considered that the only use of these treatments may not be enough to reduce the economic impact when faced with increased
Severity of attack (frequency of
The mode of action as insecticide reported for Requiem® Prime are explained because the active ingredient cause degradation of soft insect cuticles results in the disruption of insect mobility and respiration [31]. In the case of Amarex®, its action would also be explained by destruction of membranes added to the repellent effect [32].
The results of the monitoring of damage in fruits and its evolution during the season reflect that the potential risk of the plague in a country with the productive reality of Chile is high and that locally
Given the high-quality requirement presented by the export fruit, there is a high risk of selection of less sensitive individuals of the pest, and those cases of violations of the maximum limits of pesticide residues occur due to an overheating of applications. For this reason, future work should consider other integrated management edges. In this line, it is necessary to investigate locally the use of possible mixtures of repellents with insecticides, the use of biological controllers in parallel to a management program, and the use of mass capture traps.
For now, two formulated products (Requiem® Prime and Amarex®) have promising results to achieve a lower severity of damage without adding residues to the fruit, which can be complementary to the use of insecticides aimed primarily at the management of adults of this pest.
Of the insecticides compared, the control delivered by cyantraniliprole and both spinosyns stands out. All microencapsulated pyrethroids showed stable control for at least 7 days. Acetamiprid, emamectin benzoate, and chlorantraniliprole were not efficient in reducing the attempt to lay eggs but were enough to decrease the incidence of damage. Therefore, in the short term, in Chile there are adequate tools for the management of this insect, but adequate use should be provided in order to preserve food safety.
Caution should also be taken with the selection of less sensitive individuals of the pest, because, due to the characteristics of the species, the expression of resistance to insecticides can enhance their economic damage.
The author personally thanks Juan Carlos Ríos, Ricardo Larral, Alejandro Salas M., and Fernando Jofre. Acknowledgments are also expressed to SAG officials Rodrigo Astete, Marco Muñoz, Ruth Castro, Claudio Moore T., Nayadeth Álvarez, Oscar Rojas, and Marta Solís.
The study was funded exclusively by AgriDevelopment Ltd.
The author declares no conflict of interest in the delivery information.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-T-0-T2-NW"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11848",title:"Immunosuppression and Immunomodulation",subtitle:null,isOpenForSubmission:!0,hash:"ed8e45c9b1a36b2e913208c4d37dbc7f",slug:null,bookSignature:"Dr. Rajeev K. Tyagi, Dr. Prakriti Sharma and Dr. Praveen Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/11848.jpg",editedByType:null,editors:[{id:"201069",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11815",title:"Pediatric Oral Health - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"e55e88cf5885a68cdf470925b35cbbd8",slug:null,bookSignature:"Prof. Mandeep Singh Virdi",coverURL:"https://cdn.intechopen.com/books/images_new/11815.jpg",editedByType:null,editors:[{id:"89556",title:"Prof.",name:"Mandeep",surname:"Virdi",slug:"mandeep-virdi",fullName:"Mandeep Virdi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11905",title:"Rare Earth Elements - Emerging Advances, Technology Utilization, and Resource Procurement",subtitle:null,isOpenForSubmission:!0,hash:"38ffcf92affa26770585dbc04b3742fe",slug:null,bookSignature:"Dr. Michael Thomas Aide",coverURL:"https://cdn.intechopen.com/books/images_new/11905.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12104",title:"Viral Outbreaks - Global Trends and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"60828f26feed5832a47a13caac706c08",slug:null,bookSignature:"Prof. Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/12104.jpg",editedByType:null,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12108",title:"Clinical Trials - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"79472fc7310e9655a881c6d2ad7128b0",slug:null,bookSignature:"Dr. Xianli Lv",coverURL:"https://cdn.intechopen.com/books/images_new/12108.jpg",editedByType:null,editors:[{id:"153155",title:"Dr.",name:"Xianli",surname:"Lv",slug:"xianli-lv",fullName:"Xianli Lv"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11533",title:"Advances in Green Electronics Technologies",subtitle:null,isOpenForSubmission:!0,hash:"209fb1d781e97e58e1b2098b8976e2c3",slug:null,bookSignature:"Dr. Albert Sabban",coverURL:"https://cdn.intechopen.com/books/images_new/11533.jpg",editedByType:null,editors:[{id:"16889",title:"Dr.",name:"Albert",surname:"Sabban",slug:"albert-sabban",fullName:"Albert Sabban"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11872",title:"Peripheral Arterial Disease - The Challenges of Revascularization",subtitle:null,isOpenForSubmission:!0,hash:"80be3d16e4c8f89f3501ed408729f695",slug:null,bookSignature:"Prof. Ana Terezinha Guillaumon, Dr. Daniel Emilio Dalledone Siqueira and Dr. Martin Geiger",coverURL:"https://cdn.intechopen.com/books/images_new/11872.jpg",editedByType:null,editors:[{id:"251226",title:"Prof.",name:"Ana Terezinha",surname:"Guillaumon",slug:"ana-terezinha-guillaumon",fullName:"Ana Terezinha Guillaumon"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11630",title:"Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules",subtitle:null,isOpenForSubmission:!0,hash:"9c39aa5fd22296ba53d87df6d761a5fc",slug:null,bookSignature:"Dr. Afef Najjari",coverURL:"https://cdn.intechopen.com/books/images_new/11630.jpg",editedByType:null,editors:[{id:"196823",title:"Dr.",name:"Afef",surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11676",title:"Recent Advances in Homeostasis",subtitle:null,isOpenForSubmission:!0,hash:"63eb775115bf2d6d88530b234a1cc4c2",slug:null,bookSignature:"Dr. Gaffar Sarwar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",editedByType:null,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:409},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1377",title:"Wastewater Engineering",slug:"textile-engineering-wastewater-engineering",parent:{id:"296",title:"Textile Engineering",slug:"textile-engineering"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:23,numberOfWosCitations:234,numberOfCrossrefCitations:104,numberOfDimensionsCitations:274,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1377",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7431",title:"Textile Industry and Environment",subtitle:null,isOpenForSubmission:!1,hash:"be9d70201ab46060419025deb99c16f3",slug:"textile-industry-and-environment",bookSignature:"Ayşegül Körlü",coverURL:"https://cdn.intechopen.com/books/images_new/7431.jpg",editedByType:"Edited by",editors:[{id:"255885",title:"Dr.",name:"Ayşegül",middleName:null,surname:"Körlü",slug:"aysegul-korlu",fullName:"Ayşegül Körlü"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"528",title:"Advances in Treating Textile Effluent",subtitle:null,isOpenForSubmission:!1,hash:"9c495cd9fb5e8a7d522285164bc3829f",slug:"advances-in-treating-textile-effluent",bookSignature:"Peter J. Hauser",coverURL:"https://cdn.intechopen.com/books/images_new/528.jpg",editedByType:"Edited by",editors:[{id:"32094",title:"Prof.",name:"Peter",middleName:null,surname:"Hauser",slug:"peter-hauser",fullName:"Peter Hauser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"22395",doi:"10.5772/22670",title:"Textile Dyeing Wastewater Treatment",slug:"textile-dyeing-wastewater-treatment",totalDownloads:61263,totalCrossrefCites:57,totalDimensionsCites:140,abstract:null,book:{id:"528",slug:"advances-in-treating-textile-effluent",title:"Advances in Treating Textile Effluent",fullTitle:"Advances in Treating Textile Effluent"},signatures:"Zongping Wang, Miaomiao Xue, Kai Huang and Zizheng Liu",authors:[{id:"48655",title:"Dr.",name:"Zongping",middleName:null,surname:"Wang",slug:"zongping-wang",fullName:"Zongping Wang"},{id:"137783",title:"Prof.",name:"Miaomiao",middleName:null,surname:"Xue",slug:"miaomiao-xue",fullName:"Miaomiao Xue"},{id:"137784",title:"Prof.",name:"Kai",middleName:null,surname:"Huang",slug:"kai-huang",fullName:"Kai Huang"},{id:"137785",title:"Prof.",name:"Zizheng",middleName:null,surname:"Liu",slug:"zizheng-liu",fullName:"Zizheng Liu"}]},{id:"22392",doi:"10.5772/19872",title:"Azo Dyes and Their Metabolites: Does the Discharge of the Azo Dye into Water Bodies Represent Human and Ecological Risks?",slug:"azo-dyes-and-their-metabolites-does-the-discharge-of-the-azo-dye-into-water-bodies-represent-human-a",totalDownloads:11686,totalCrossrefCites:17,totalDimensionsCites:65,abstract:null,book:{id:"528",slug:"advances-in-treating-textile-effluent",title:"Advances in Treating Textile Effluent",fullTitle:"Advances in Treating Textile Effluent"},signatures:"Farah Maria Drumond Chequer, Daniel Junqueira Dorta and Danielle Palma de Oliveira",authors:[{id:"36612",title:"Dr.",name:"Farah",middleName:"Drumond",surname:"Chequer",slug:"farah-chequer",fullName:"Farah Chequer"},{id:"49040",title:"Prof.",name:"Danielle",middleName:null,surname:"Palma De Oliveira",slug:"danielle-palma-de-oliveira",fullName:"Danielle Palma De Oliveira"},{id:"88318",title:"Prof.",name:"Daniel",middleName:null,surname:"Junqueira Dorta",slug:"daniel-junqueira-dorta",fullName:"Daniel Junqueira Dorta"}]},{id:"22396",doi:"10.5772/18902",title:"Photochemical Treatments of Textile Industries Wastewater",slug:"photochemical-treatments-of-textile-industries-wastewater",totalDownloads:4700,totalCrossrefCites:4,totalDimensionsCites:23,abstract:null,book:{id:"528",slug:"advances-in-treating-textile-effluent",title:"Advances in Treating Textile Effluent",fullTitle:"Advances in Treating Textile Effluent"},signatures:"Falah Hassan Hussein",authors:[{id:"32934",title:"Prof.",name:"Falah",middleName:"Hassan",surname:"Hussein",slug:"falah-hussein",fullName:"Falah Hussein"}]},{id:"22391",doi:"10.5772/18908",title:"Decolorisation of Textile Dyeing Effluents Using Advanced Oxidation Processes",slug:"decolorisation-of-textile-dyeing-effluents-using-advanced-oxidation-processes",totalDownloads:8553,totalCrossrefCites:11,totalDimensionsCites:22,abstract:null,book:{id:"528",slug:"advances-in-treating-textile-effluent",title:"Advances in Treating Textile Effluent",fullTitle:"Advances in Treating Textile Effluent"},signatures:"Taner Yonar",authors:[{id:"32956",title:"Dr.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}]},{id:"64467",doi:"10.5772/intechopen.81774",title:"Use of Ozone in the Textile Industry",slug:"use-of-ozone-in-the-textile-industry",totalDownloads:1576,totalCrossrefCites:5,totalDimensionsCites:7,abstract:"Wet processing of textile materials consumes a large amount of electricity, fuel, and water. Therefore, greenhouse gas emissions and contaminated effluent are environmental problem. The most of the governments in the world warn all the industrial sectors containing textile manufacturing to be careful about environmental pollution. Increasing in public awareness of environment and competitive global market forces the textile industry to manufacture textile products environmentally. Environmental pollution in textile wet processes can be reduced by four main ways. They are process optimization (reducing in water, chemical energy consumption, and time loss), use of ecofriendly chemicals, reuse of water, and new technologies like ozone and plasma technologies, transfer printing, enzymatic processes, etc. This chapter is about the use of ozone in the textile industry.",book:{id:"7431",slug:"textile-industry-and-environment",title:"Textile Industry and Environment",fullTitle:"Textile Industry and Environment"},signatures:"Ayşegül Körlü",authors:[{id:"255885",title:"Dr.",name:"Ayşegül",middleName:null,surname:"Körlü",slug:"aysegul-korlu",fullName:"Ayşegül Körlü"}]}],mostDownloadedChaptersLast30Days:[{id:"66213",title:"Utilization of Cotton Spinning Mill Wastes in Yarn Production",slug:"utilization-of-cotton-spinning-mill-wastes-in-yarn-production",totalDownloads:1862,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Efficient use of natural resources and utilization of recoverable wastes are getting more and more important day by day since recovering wastes have both economic and environmental benefits. As the source material costs constitute the majority of the yarn production costs, decreasing raw material costs provide considerable advantages for spinners. From the point of textile manufacturing, various production wastes can be reused in textile industry. In each step, from ginning (for cotton fibers) to end product formation, recyclable/recoverable waste materials are generated. However, mainly polyester products are recycled (r-PET) and used again in textile industry by 100% or in blends with other man-made or natural fibers. Compared to research on r-PET, recovered cotton fibers inspired interest recently. The main objective of this study is to fill the gap in the literature via investigating the properties of the yarns produced with recovered cotton wastes, generated in different sources. For this purpose, spinning mill waste types were selected. In this experimental study, different waste types (card waste, blowroom waste, and fabric waste) and blending ratios were used. As a conclusion, the effect of waste type and blend ratio on the physical and mechanical properties of the yarns and the fabrics, produced with virgin and waste cotton fibers, were analyzed.",book:{id:"7431",slug:"textile-industry-and-environment",title:"Textile Industry and Environment",fullTitle:"Textile Industry and Environment"},signatures:"Tuba Bedez Ute, Pinar Celik and Memik Bunyamin Uzumcu",authors:[{id:"292303",title:"Dr.",name:"Pinar",middleName:null,surname:"Celik",slug:"pinar-celik",fullName:"Pinar Celik"},{id:"292576",title:"Dr.",name:"Tuba",middleName:null,surname:"Bedez Ute",slug:"tuba-bedez-ute",fullName:"Tuba Bedez Ute"},{id:"292577",title:"Dr.",name:"Memik Bunyamin",middleName:null,surname:"Uzumcu",slug:"memik-bunyamin-uzumcu",fullName:"Memik Bunyamin Uzumcu"}]},{id:"65473",title:"Sustainable Production Methods in Textile Industry",slug:"sustainable-production-methods-in-textile-industry",totalDownloads:1903,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The textile industry is part of the industries that continuously harm the environment because of the high water consumption and the presence of various pollutants in the wastewater. Wastewater treatment is lacking or includes only physical treatment in underdeveloped and developing countries due to installation and operating costs of a treatment plant. As a result, a broad spectrum of hazardous and toxic substances, such as (azo) dyes, heavy metals, acids, soda, and aromatic hydrocarbons, pollute precious sources of clean water, in which untreated water is discharged. The main solution to this problem is to reduce the treatment cost. For this purpose, the process should be optimized to reduce the amount of water and chemicals. In this chapter, first studies on the reference document (BAT) referred by the European Council are reviewed. Minimizing production costs, obtaining high-quality products, and reducing the amount and the pollutant content of wastewater are complex problems that cannot be solved by the conventional optimization methods. Therefore, nonconventional optimization methods applied on the textile processes are also reviewed from the latest studies in the literature.",book:{id:"7431",slug:"textile-industry-and-environment",title:"Textile Industry and Environment",fullTitle:"Textile Industry and Environment"},signatures:"Miray Emreol Gönlügür",authors:[{id:"288485",title:"Dr.",name:"Miray",middleName:"Emreol",surname:"Gönlügür",slug:"miray-gonlugur",fullName:"Miray Gönlügür"}]},{id:"64003",title:"Chemical and Tinctorial Aspects Related to the Reuse of Effluents Treated by Ozonation in Dyeing Processes",slug:"chemical-and-tinctorial-aspects-related-to-the-reuse-of-effluents-treated-by-ozonation-in-dyeing-pro",totalDownloads:789,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The purpose of this chapter is to study the interactions that are established between inorganic auxiliaries and the by-products of contaminants present in effluents coming from dyeing operations during oxidation treatment processes using ozone, and the influence of auxiliaries and by-products on the behavior of dyes in subsequent dyeing processes using the treated water. Carrying the treatment until the complete elimination of the contaminants present in it is a very expensive operation. Because of this, it is chosen to discolor and reuse the spent dyebaths treated as many times as possible to take advantage of the water and the inorganic salts contained therein. The variable composition of the dyebaths involves kinetic aspects during the treatment, which is important to take into account in the design of the process. Various by-products are already generated from the beginning of the treatment, which will have an influence on the following stages of the same treatment process, as well as on the kinetics of the dyeing processes carried out using the treated water and on the results obtained in such dyeing processes. All this will depend on the chemical and dyeing class to which the dyes used during the subsequent dyeing processes belong.",book:{id:"7431",slug:"textile-industry-and-environment",title:"Textile Industry and Environment",fullTitle:"Textile Industry and Environment"},signatures:"Pablo Colindres Bonilla",authors:[{id:"259209",title:"Dr.",name:"Pablo",middleName:null,surname:"Colindres Bonilla",slug:"pablo-colindres-bonilla",fullName:"Pablo Colindres Bonilla"}]},{id:"66171",title:"Phase Change Materials for Textile Application",slug:"phase-change-materials-for-textile-application",totalDownloads:1683,totalCrossrefCites:5,totalDimensionsCites:7,abstract:"The objective of this chapter is to determine which of the existing PCM families are more suitable for textile thermoregulation while proposing new solutions. Indeed, many of these materials are either limited by their overall enthalpy of phase change or by their thermal window. Thus, it focuses on the study of binary mixing allowing the widening of the temperature range of the phase change and the consolidation of the enthalpy balance by adding chemical species. PCM was microencapsulated to be applied onto textile substrate, before studying the thermal properties.",book:{id:"7431",slug:"textile-industry-and-environment",title:"Textile Industry and Environment",fullTitle:"Textile Industry and Environment"},signatures:"Fabien Salaün",authors:[{id:"27644",title:"Prof.",name:"Fabien",middleName:null,surname:"Salaün",slug:"fabien-salaun",fullName:"Fabien Salaün"}]},{id:"22395",title:"Textile Dyeing Wastewater Treatment",slug:"textile-dyeing-wastewater-treatment",totalDownloads:61263,totalCrossrefCites:57,totalDimensionsCites:140,abstract:null,book:{id:"528",slug:"advances-in-treating-textile-effluent",title:"Advances in Treating Textile Effluent",fullTitle:"Advances in Treating Textile Effluent"},signatures:"Zongping Wang, Miaomiao Xue, Kai Huang and Zizheng Liu",authors:[{id:"48655",title:"Dr.",name:"Zongping",middleName:null,surname:"Wang",slug:"zongping-wang",fullName:"Zongping Wang"},{id:"137783",title:"Prof.",name:"Miaomiao",middleName:null,surname:"Xue",slug:"miaomiao-xue",fullName:"Miaomiao Xue"},{id:"137784",title:"Prof.",name:"Kai",middleName:null,surname:"Huang",slug:"kai-huang",fullName:"Kai Huang"},{id:"137785",title:"Prof.",name:"Zizheng",middleName:null,surname:"Liu",slug:"zizheng-liu",fullName:"Zizheng Liu"}]}],onlineFirstChaptersFilter:{topicId:"1377",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",hash:"1806716f60b9be14fc05682c4a912b41",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 23rd 2022",isOpenForSubmission:!0,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Ig