Composition and temper designation of the aluminium alloys referenced within the present chapter.
\r\n\tThis book will address the various modern, technical, and practical aspects of smart technology for capturing solar radiation and converting it into different forms of energy, as well as enabling it for renewables integration in energy generation and transformation, built environment, transportation, buildings, and agriculture.
\r\n\r\n\tThe book will cover the most recent developments, innovations and applications concerning the following topics:
\r\n\t• Solar radiation – Smart and enabling technologies for measurement, modelling, and forecasting
\r\n\tHigh-resolution measurement sensor and instrument technology (Pyranometers, Albedometers, Pyrheliometers, UV Radiometers, Sun Trackers, Spectroradiometer, Pyrgeometers, etc.), Artificial intelligence techniques for modelling and forecasting of solar radiation, Solar Irradiance forecast with satellite data, Solar potential analysis, Short-term forecasting of photovoltaic power and solar irradiance prediction with sky imagers.
\r\n\t• Renewable energy integration – Smart solutions for integration of RE in distributed generation, energy storage, and demand-side management.
\r\n\tIntegrated Photovoltaics: Smart technology for vehicle-integrated PV, Building Integrated PV, Agrivoltaics, Road-Integrated PV, Floating PV, Product-integrated PV.
\r\n\tRenewable Energy Applications in Built Environment and mobility: Solar cars, solar-powered electric charging stations, passive solar systems, solar heating, and cooling systems, building-integrated vegetation, multifunctional solar systems, solar pumps, solar lighting, solar shading, Natural lighting, Solar dryer, Greenhouse.
The friction based processing technologies encloses some of the most significant solid state manufacturing technologies for producing structural components in aluminium alloys. In the present chapter three processes will be depicted: i) Friction Surfacing (FS); ii) Friction Stir Welding (FSW) and iii) Friction Stir Channeling (FSC). These processes covers a large range of applications and share the characteristic of being a machine tool based processes having one rotating tool that travels over the surface of the components to be processed.
The three processes addressed in this chapter: FS, FSW and FSC are of major importance when considering the manufacturing of aluminium alloy. This statement can be justified considering the fact: i) aluminium alloys are one of the most relevant material group in engineer applications, and ii) aluminium alloys are particularly suitable for being solid state processed by most of the friction based manufacturing technologies. Actually, the zone undergoing direct mechanical processing goes over a severe thermo-physical cycle resulting in dynamic recrystallization and consequent grain refinement and homogeneous fine distribution of hardening particles [1]. Therefore the processed zone of aluminium alloys typically presents benefits when compared with original pre-processed condition [2,3].
The Figure 1 presents the technological interrelations of the three processes addressed in this chapter within the scope of the friction based manufacturing technologies.
On all the friction based manufacturing technologies a viscoplasticised solid state region is generated and processed into a new shape and properties. This region whilst remaining solid presents a three-dimensional material flow pattern almost as a liquid enabling easy mixing and blending between different materials. This phenomenon is generally referred to as the “third-body region” concept [4].
Friction Surfacing (FS), Friction Stir Welding (FSW) and Friction Stir Channeling (FSC) on the scope of the linear friction based manufacturing technologies.
In particularly for aluminium alloys this “third-body region” is characterized mechanically by a relatively low flow stress and by temperatures above recristalization temperature and below melting temperature of material. In the solid state processes governed exclusively by the introduction of mechanical energy (as it happens in friction based processing technologies), the heat is generated by friction dissipation during deformation at contacting interfaces and internally during material flow. Because the heat generated by friction dissipation tends to zero as the material gets near the fusion temperature the maximum temperature achieved within processed zone is physically limited by the fusion temperature and thus all the deformation is restricted to solid state condition.
One relevant property of the “third-body region” is to easily produce strong bonds at the interface with other similar solid state flowing material or even with material surfaces undergoing less severe deformation, e.g., elasto-plastic deformation. The solid state joining mechanisms involving the “third-body region” at temperatures well above recrystallization temperature are mainly diffusion, but approximation to interatomic equilibrium distances can also be found for lower temperature and higher pressure conditions at the joining interface. Thus, the “third-body region” is frequently used for promoting joining of similar and dissimilar materials in the various friction welding variants. This “easy to join” property is also used in other manufacturing technologies based on this “third-body region”, e.g., extrusion of close hollow shapes where separate extruded components are joined together before exiting the dies.
The FS was firstly patented in 1941 [5] and is nowadays a well-established technology that applies one consumable tool to produce many possible combinations of coatings over a substrate. The FS is one of the many solutions developed based on the concepts of the friction manufacturing technology and the extension of its concepts gave rise to one very significant development in the history of welding technology: The FSW process that was firstly patented in 1991 [6]. The FSW is a process for joining components, using a non-consumable tool, with a suitably profiled shoulder and probe. FSW can be regarded as an autogenous keyhole welding technique in the solid-phase. The FSW technology has been subjected to the most demanding quality standard requirements and used in challenging industrial applications over a wide range of structural and non-structural components mainly in aluminium alloys. The disruptive character of the FSW process is emphasized by the numerous technic-scientific papers and patents published and the several friction stir based technologies that are being invented. The FSC was proposed for the first time in 2005 as a method of manufacturing heat exchanging devices [7] and is one of the most promising innovations based on the friction stir concepts with many industrial applications, some of them will be depicted in this chapter. The FSC uses a non-consumable tool to open channels along any path, shape and depth in monolithic aluminium alloys components.
There are friction based manufacturing technologies, such as, FSW where material flow within the “third-body region” is three-dimensionally enclosed and thus the process is flashless. In FSW the “third-body region” is constrained at top and bottom by the system: shoulder + anvil, and at the sides by the cold base material. But there are others friction based manufacturing technologies where the “third-body region” is open (or not fully constrained) and bulk flash is generated, e.g., FS. For the case of FSC one other intermediate condition is present: although the “third-body region” is three-dimensionally enclosed some of the inner material from the “third-bodyregion” is forced out by the tool features, producing an amount of flash volume correspondent to the volume of the inner channel produced. These conditions are depicted in Figure 2.
Sample of finishing condition of friction based manufacturing technologies: a) Flash produced during FS due to unconstrained “third-body region”; b)Flashless condition of as-welded FSW due to complete enclosure of the material flow within the “third-body region”; c) Flash forced out of processing zone by the tool features during FSC.
The cost effectiveness of the three friction based manufacturing technologies addressed in this chapter is very promising: i) All the processes are environmentally friendly solutions, ii) Because of the low heat input demanded for the solid state processing all these solutions have high energy efficiency when compared with alternative/concurrent solutions; iii) The health and safety impact for human operators is insignificant due to no fumes emission and residual radiation and equipment with low operational hazards; iv) Since there are no consumables for FSW and FSC, and the only consumable in FS is the rod to be deposited over the substrate, any initial investment in the equipment typically have an early breakeven point, when compared with alternative/concurrent solutions; v) All these technologies are easy to automate with good repeatability of the results and high levels of quality assurance.
The Table 1 establish the composition and temper of the aluminium alloys involved in the several applications of the friction based manufacturing technologies addressed in this chapter. This Table 1 is intended to be used as support for the analysis of the results presented along the chapter.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Al | \n\t\t\tCu | \n\t\t\tMg | \n\t\t\tSi | \n\t\t\tZn | \n\t\t\tMn | \n\t\t\tFe | \n\t\t\tCr | \n\t\t\tV/Ti | \n\t\t\tOther, each | \n\t\t||
AA1050-O | \n\t\t\t≥99.5 | \n\t\t\t≤0.05 | \n\t\t\t≤0.05 | \n\t\t\t≤0.25 | \n\t\t\t≤0.05 | \n\t\t\t≤0.05 | \n\t\t\t≤0.40 | \n\t\t\t\n\t\t\t | ≤0.05/ | \n\t\t\t≤0.03 | \n\t\t\tAnnealed | \n\t\t
AA2024-T3 | \n\t\t\tremain | \n\t\t\t3.80 to 4.90 | \n\t\t\t1.20 to 1.80 | \n\t\t\t≤0.50 | \n\t\t\t≤0.25 | \n\t\t\t0.30 to 0.90 | \n\t\t\t≤0.05 | \n\t\t\t≤0.10 | \n\t\t\t/≤0.15 | \n\t\t\t0.05 | \n\t\t\tSolution heat treated, cold worked, and naturally aged to a substantially stable condition | \n\t\t
AA5083-H111 | \n\t\t\tremain | \n\t\t\t≤0.10 | \n\t\t\t4.0 to 4.90 | \n\t\t\t≤0.40 | \n\t\t\t≤0.25 | \n\t\t\t≤0.40 to 1.0 | \n\t\t\t≤0.40 | \n\t\t\t0.05 to 0.25 | \n\t\t\t/≤0.15 | \n\t\t\t≤0.05 | \n\t\t\tSmall degree of strain-hardening only | \n\t\t
AA6061-T4 | \n\t\t\tremain | \n\t\t\t0.15 to 0.40 | \n\t\t\t0.80 to 1.20 | \n\t\t\t0.40 to 0.80 | \n\t\t\t≤0.25 | \n\t\t\t≤0.15 | \n\t\t\t≤0.70 | \n\t\t\t0.04 to 0.35 | \n\t\t\t/≤0.15 | \n\t\t\t≤0.05 | \n\t\t\tSolution heat treated and naturally aged to a substantially stable condition | \n\t\t
AA6082-T6 | \n\t\t\tremain | \n\t\t\t≤0.10 | \n\t\t\t0.60 to 1.20 | \n\t\t\t0.70 to 1.30 | \n\t\t\t≤0.20 | \n\t\t\t0.40 to 1.0 | \n\t\t\t≤0.50 | \n\t\t\t≤0.25 | \n\t\t\t/≤0.10 | \n\t\t\t≤0.05 | \n\t\t\tSolution heat treated and artificially aged | \n\t\t
AA7178-T6 | \n\t\t\tremain | \n\t\t\t1.60 to 2.40 | \n\t\t\t2.40 to 3.10 | \n\t\t\t≤0.40 | \n\t\t\t6.30 to 7.30 | \n\t\t\t≤0.30 | \n\t\t\t≤0.50 | \n\t\t\t0.18 to 0.28 | \n\t\t\t/≤0.20 | \n\t\t\t≤0.05 | \n\t\t\tSolution heat treated and artificially aged | \n\t\t
Composition and temper designation of the aluminium alloys referenced within the present chapter.
Friction surfacing (FS) is a solid state process used for the production of metallic coatings with metallurgical characteristics typical from hot forging operations. The process involves rubbing a rotating consumable rod (Figure 3a) against a substrate under an applied axial load. Heat generated by frictional dissipation promotes the viscoplastic deformation at the tip of the rod (Figure 3b).
As the consumable travels along the substrate (Figure3c), the viscoplastic material at the vicinity of the rubbing interface is transferred over onto the substrate surface, while pressure and heat conditions trigger a inter diffusion process that soundly bonds it. As the consumable rod material undergoes a thermo-mechanical process, a fine grained microstructure is produced by dynamic recrystallization. As shown in Figure 3d, FS enables the production of a continuous deposit from the progressive wear of the consumable rod. However, the coating cross section presents poorly bonded edges on both advancing and retreating sides, which are closely related to process parameters. The process is also characterized by the constant generation of a revolving flash of viscoplastic material at the rod tip, responsible for a smooth mushroom-shaped upset on the consumable rod [8,9].
Deposition of AA6082-T651 aluminium alloy by friction surfacing. a) Experimental setup; b) Initial plunging phase; c) Deposition; d) Coating produced.
The Figure 4 presents a cross section macrograph of both rod and coating, depicting the gradual transformations that the consumable material undergoes as it is deposited, as well as, the flash developed. Consumable rod microstructure is depicted in Figure 4a, presenting an anisotropic grain structure aligned along the rod extrusion direction. The hot working of the consumable rod tip and the deposit generates heat which is conducted along the consumable, pre-heating the material and enabling its plastic deformation by the colder material layers above in a compression/torsion process. Consumable rod heat affected microstructures presenting some precipitate coarsening and grain growth can be seen in Figure 4b, while evidences of plastic deformation are depicted in Figure 4c and d. The combination of plastic deformation and heat generation leads to a dynamic recrystallization which processes the material into a viscoplastic state with the nucleation and growth of a new set of undeformed grains (Figure 4e and f). FS enables the thermo-mechanical processing of the consumable material into a new metallurgical state.
Since this viscoplastic region is pressed against the substrate at temperatures approximately 50-90 % of the melting point, a diffusion bonding process takes place and a deposit of hot-worked consumable rod material is produced. Plastic deformation and friction can disrupt the relatively brittle oxide layers, establishing metal-to-metal contact and enabling the joining process [10]. The low heat input inherent to the FS process delivered locally over the substrate of an high thermal conductor material as the aluminium alloys are, will result in high cooling rates of the thermomechanically processed zone. Considering that fast cooling prevent grain growth, this may be the reason for the typical fine equiaxial recrystallized microstructure of the deposited material, depicted in Figure 4g. Heat is lost mainly by conduction to the substrate, originating the heat affected zone. A fully bonded interface can be seen in Figure 4h.
Microstructural transformations during the FS of AA6082-T6 over AA2024-T3.a) Consumable base material; b) Heat affected zone; c) Compression-driven TMAZ; d) Torsion-driven TMAZ; e-f) Fully recrystallized microstructure; g) Deposited material; h) Bonding interface.
The Figure 5 illustrates a proposed model for the global thermal and mechanical processes involved during friction surfacing, based on the metallurgical transformations described above. The speed difference between the viscoplastic material, which is rotating along with the rod at Vxy, and the material effectively joined to the substrate (Vxy = 0), causes the deposit to detach from the consumable. This viscous shearing friction between the deposit and the consumable is the most significant heat source in the process.
Since the highly plasticized material at the lower end is pressed without restraint, it flows outside the consumable diameter, resulting into a revolving flash attached to the tip of the consumable rod and poorly bonded coating edges. Unbonded regions are also related to the higher tangential speed at which the material flows at the outer radius of the consumable rod, because the relative speed between the deposit and the substrate shears the bonding interface and disrupts the ongoing diffusion bonding process. Nevertheless, flash and unbonded regions play an important role as temperature and pressure boundary conditions for the joining process.
Thermo-mechanics of friction surfacing.a) Sectioned consumable; b) Process parameters and c) Thermo-mechanical transformations and speed profile. Nomenclature: F – forging force; Ω – rotation speed; V -travel speed; Vxy – rod tangential speed in-plan xy given by composition of rotation and travel movements.
Coatings are evaluated based on thickness, width and bond strength/extension which depend on controllable process parameters, such as, i) forging force; ii) rotation speed and iii) travel speed. Substrate thickness, rod diameter and material properties define the thermo-mechanical system thus determining process parameters:
Forging force - improves bonding extension and results in wider and thinner deposits. However, excessive loads result in non-uniform deposition with a depression at the middle of the pass due to material expelling from the region beyond consumable rod diameter. Insufficient forging forces result in poor consolidated interfaces;
Rotation speed - influences the bonding quality and coating width. While lower to intermediate rotation speeds enhance bonding quality, higher rotation speeds produce a more flat and regular deposit, with a more effective forging effect shaping the coating;
Travel speed - strongly influences coating thickness and width, since it determines the rate at which material is deposited. As such, higher travel speeds result in thinner deposits. Faster travel speeds lead to shorter heat exposure periods, resulting in less grain growth and finer microstructures. Thinner deposits also cool more rapidly. The substrate heat affected zone decreases for higher travel speeds. Bonding at coating edges deteriorates for faster travel speeds;
Tilt angle - A small tilting the consumable rod, in less than 3, has proven to reduce the unbounded extension of the deposit at the coating edges, by enabling a gradual increase of forging pressure applied by the consumable rod on the substrate, from the tip to the tail zone being thermomechanically processed, at each instant.
The Table 2 depicts the range of process parameters best suited for the friction surfacing of AA6082-T6, using 20 mm diameter consumable rods over various aluminium alloy substrate plates and resulting coating thickness, width and bonded width. In general, the fully bonded width of the deposit rarely exceeds the diameter of the consumable rod used, while the coating width extends beyond it, as evidenced by Figure 4.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||||||
Consumable rod | \n\t\t\tPlate substrate | \n\t\t\tForging force [kN] | \n\t\t\tRotation speed [rpm] | \n\t\t\tTravel speed [mm/s] | \n\t\t\tTilt angle [°] | \n\t\t\tThickness [mm] | \n\t\t\tDeposit width [mm] | \n\t\t\tBonded width [mm] | \n\t\t
---|---|---|---|---|---|---|---|---|
AA6082-T6 ( 20 mm) | \n\t\t\tAA2024-T3 AA7178-T6 AA5083-H111 AA1050-O | \n\t\t\t5 to 7 | \n\t\t\t2500 to 3000 | \n\t\t\t6 to 12 | \n\t\t\t0 to 3 | \n\t\t\t1 to 2 | \n\t\t\t20 to 25 | \n\t\t\t15 to 20 | \n\t\t
Typical range of process parameter in the FS of AA6082-T6 over several aluminium substrate plates.
Being a solid state process, FS allows depositing various dissimilar material combinations. Investigations report the deposition of stainless steel, tool steel and nickel-based alloys (Inconel) on mild steel substrates, as well as, stainless steel, mild steel and inconel consumables on aluminium substrates [11,12].
FS is best suited for applications with material compatibility issues. The process involves a hot forging action, which refines significantly the microstructure of the deposited material. The deposit is inherently homogenous and has good mechanical strength. The process can be automated, providing good reproducibility and doesn’t depend on operator skill [13].
Since FS is mainly based on plastic deformation, this process presents some advantages over other coating technologies based on fusion welding or heat-spraying processes. Apart from avoiding defects commonly associated to fusion and solidification mechanisms (coarse microstructures, intermetallic formation, porosities, hot cracking or inclusions, e.g., slag), the heat input in FS is minimum and localized, preventing part distortion and minimizing the heat affected zone extension and dilution. This also makes FS suitable to process thermal sensitive materials, such as, aluminium alloys. Additionally, the absence of spatter, toxic fumes and emission of radiation makes this process cleaner and environmentally friendly. The absence of fusion and fast cooling rates enable to FS in a great variety of positions [14].
However, FS struggles with some technical and productivity issues which contribute to a limited range of engineering applications. One of the main process disadvantages is the poor bonding at the coating edges, as post-processing operations are often required to remove them. Moreover, the generation of a revolving flash at the consumable rod tip contributes to a decrease in mass transfer efficiency, as it represents material that does not bond to the substrate. Friction surfacing enables a limited control over the deposited thickness and width, as coating geometry is determined by a very narrow range of process parameters.
The FS allows the dissimilar joining of materials that would be metallurgical incompatible otherwise. It allows assembling in a single composite component, tailored material property combinations which are difficult to gather in a single monolithic material. This enables an advanced and detailed design, adjusting the required material properties according to different loading areas of a part and precluding the use of more expensive and specific materials capable of assembling all functional requirements.
Although FS has limited large-overlay capabilities, this process is ideal for localized repair and cladding. The FS has been used in the production of long-life industrial blades, wear resistant components, anti-corrosion coatings and in the rehabilitation of worn or damaged parts such as, turbine blade tips and agricultural machinery. Other applications feature the hard facing of valve seats, brake disks and tools such as punches, guillotine blades and drills. The surfacing of pipe flange contact faces, the reclamation of worn railway points and the hermetic sealing of containers has also been reported as promising applications [15,16].
The FS can be performed over a great variety of substrate configurations and along complex trajectories. Some examples of FS path case studies can be seen in Figure 6. Figure 6a displays a single FS curvilinear path, while Figure 6b depicts a continuous cylindrical build-up, as the consumable rod moves along a 3D helicoidally trajectory.
Examples of friction surfacing trajectories. a) Curve path; b) cylindrical build-up.
Given the rough coating surface, FS is often followed by post processing operations in order to achieve the desired geometry and surface finish. The Figure 7 depicts the milling surface finish of a friction surfaced AA6082-T6 deposit presenting a fully bonded defect-free layer and a smooth surface finish.
Surface finish by milling. FS of AA6082-T6 over AA7178-T6.
Another promising application consists on the vertical build-up of structures by performing successive fully overlapped depositions. Figure 8 depicts the manufacturing of a trapezoidal linear rail milled from the build-up of several AA6082-T6 friction surfaced passes. Figure 8d depicts the soundly bonded deposited layers, as FS allows the production of bulk layered composite materials from which parts or component features can be manufactured.
Build-up by friction surfacing. a) Successive deposition; b) Bulk produced from four overlapped passes; c) Detail of final thickness achieved; d) Milling of linear rail.
The mechanisms involved in friction surfacing enable an alternative process to produce surface composites, as the inherent severe plastic deformation can be used to promote the dispersion and mixture of reinforcement particles within the deposit matrix. Figure 9 depicts the joining interface between an aluminium silicon carbide reinforced composite layer over an AA2024-T3 plate substrate. AA6082-T6 aluminium rods were packed with 12.3 μm silicon carbine particles and used as consumables. A uniform distribution of reinforcements was achieved as the composite layer becomes soundly bonded to the substrate. Surface hardness severely increased and gradually decreased along the thickness. By increasing the volume of reinforcements packed inside the consumable rod, higher concentration distributions can be achieved, as shown by Figure 9b.
Joining interface of SiC reinforced AA6082-T6 coatings produced by FS over AA2024-T3 substrate.
Performance criteria regarding the material deposition rate and specific energy consumption were established inreference [17] for the characterization of friction surfacing, thereby contributing to establish a realistic comparison with other coating technologies.
The Figure 4 depicts the material flow from the consumable rod to the deposit bonded to the substrate. Volumetric rod consumption rate (
Likewise, the product between the travel speed (V) and the deposited cross section area (Ad), expresses the volumetric deposition rate (DRvol) throughout the friction surfacing process (2).
Considering the consumable rod material density (ρ), CR and DR can be rewritten in order to express the mass flow, as depicted by (3) and (4).
The Figure 10 presents the effect of process parameters on deposition (
Effect of process parameters on deposition rate (DR) and consumption rate (CR). FS of AA6082-T6, 20 mm diameter consumable rods, over AA2024-T3 plates. Process parameters: a) Ω = 3000 rpm, V = 7.5 mm/s; b) F = 5 kN, V = 7.5 mm/s; c) F = 5 kN, Ω = 3000 rpm.
In order to determine the fraction of consumed material deposited and that is transferred to flash, a deposition efficiency (η deposition) can be defined as the ratio between DR and CR via (5).
Due to the formation of side unbonded regions, just a part of the deposited material is effectively joined. As such, the joining efficiency (ηjoining) is given by the ratio between the bonded width (Wb) and the maximum coating width (Wd) established in (6).
Thus, the effective coating efficiency (η coating) reflects the fraction of consumed rod that actually becomes bonded to the substrate and is estimated via (7) by multiplying (5) times (6):
Considering the process parameter range depicted in Table 2, in the FS of AA6082-T6 over AA2024-T3, maximum joining efficiency and coating efficiency reached around 82 % and 25 %, respectively. Recently research performed by the authors of the present chapter also shows that flash formation accounts 60 to 70 % of the overall consumable rod consumption.
The mechanical power supplied by the equipment (
T0 is the torque required to freely rotate the consumable rod without any contact friction, e.g., the torque applied by the machine to impel the prescribed rotation speed and depends on the machine mechanical design, rather than deposition process. When the machine starts to plunge the rod against the plate substrate it raises the torque from T0 to T1.
Hence, for a joining efficiency of 100%, energy consumption per deposited unit of mass (specific energy consumption, EC) is given by (9).
The Figure 11 depicts the variation of power and specific energy consumption for the tested conditions. Power increases with the forging force and the travel speed, varying between 4-6 kW. The specific energy consumption computed according to equation (9) varies from 8 to 26 J/mm3 (4-10 kJ/g). Specific energy consumption increases with the forging force (Figure 11a). For high rotation speeds, although both the required power and the deposition rate drop, specific energy consumption rises, meaning that the decrease in deposition rate is more significant (Figure 11b). Excessive rotation speeds result in less joining efficiency and increased specific energy consumption per unit of mass. Despite the increase in power, specific energy consumption decreases with travel speed (Figure 11c), given a more significant improvement of deposition rate (Figure 10c). Hence, faster travel speeds allows to improve deposition rates while decreasing specific energy consumption.
Considering the present testing conditions in Table 2, the best processing conditions were achieved for a 500 kN forging force, 2500 rpm rotation speed and a 7.5 mm/s travel speed, which resulted in a specific energy consumption of 12 J/mm3 with a deposition rate of 332 mm3/s. Joining efficiency and coating efficiency was 76 % and 32 %, respectively, while flash accounted for 67 % of consumed material.
Effect of process parameters on friction surfacing power and specific energy consumption. FS of AA6082-T6, 20 mm diameter consumable rods, over AA2024-T3 plates. Process parameters: a) Ω = 3000 rpm, V = 7.5 mm/s; b) F = 5 kN, V = 7.5 mm/s; c) F = 5 kN, Ω = 3000 rpm.
The FSW is a process for joining components in the solid phase, using an intermediate non consumable tool, with a suitably profiled shoulder and probe, made of material that is harder than the workpiece material being welded. FSW can be regarded as an autogenous keyhole joining technique, essentially, without the creation of liquid metal.
The rotating tool is plunged into the weld joint and forced to travel along the joint line, heating the components by interfacial and internal friction dissipation, thus producing a weld joint by extruding, forging and stirring the materials from the components in the vicinity of the tool. The basic principles of the process and some nomenclature are represented in Figure 12.
Representation of the main parameters and nomenclature of FSW joints.
The shoulder and the probe thermo mechanically soften and then separate the material being processed by the passage of the probe through the material. The material flows around the probe and is then forge welded together at the trailing edge of the probe. This separation and welding together occur continuously by backfilling from the probe and compaction/containment from the shoulder. This transient separation/rewelding operation happens during and before the trailing edge of the shoulder moves away from the processed/weldtrack. The transient “third-body region” immediately coalesces and forms a solid phase bond as the tool moves away.
The material flow within closed “third-body region” is characterized by [18, 19] :i) on the retreating side of the weld, material is displaced only backward; For any material actually in the path of the probe, the flow reverses and results in material being displaced to a position behind its original position (relative to the welding direction); iii) The material at mid-height in the advancing side near the probe is flowing all around the retreating side being left behind it original position in a kind
The main FSW process parameters are the following:
Tool geometry;
Plunge speed and depth of probe in workpieces;
Tool rotational speed () and direction;
Travel Speed (V) along the joint line;
Axial load, Fz;
Dwell time at start of the weld;
Clamping system (stiffness, precision and material of the anvil, for easy extraction of workpieces);
Tilt and side tilt angles;
Control during plunge, dwell and weld periods: Force control (Fz )
Preheating/interpass temperature of workpieces;
Weld pitch ratio, see equation (10). Varying the weld pitch ratio changes the heat input from the frictional internal and interfacial energy and some effects in the weld region behaviour can be predictedThe weld pitch ratio provides a possible classification for the flow pattern within the third-body zone [1, 20]. For aluminium alloys it is usual to consider the value of weld pitch ratio = 4 as intermediate condition. For weldpitch ratio higher than 4 there is hot condition and for weldpitch ratio smaller than 4 there is cold condition. Concerning the influence of the hot-to-cold conditions in the metallurgical features of a FSW weld joint, the classification is established in (11), where the HAZ and TMAZ are described in §3.3.
During the FSW process, the material undergoes intense plastic deformation at elevated temperature, as a rule resulting in the generation of fine and equiaxed re-crystallized grains. This fine microstructure produces good mechanical properties in friction stir welds. Better quality joints are associated with intense three-dimensional material flow. Thus for aluminium alloys is more easy to obtain high levels of quality and reproducibility when welding bigger thicknesses than when welding small thickness, e.g., equal or less than 1 mm, where the material flow tends to be bi-dimensional and the stirring of the materials is consequently poorer [21,22].
The main zones in a FSW joint with distinct metallurgical properties are: i) the thermomechanically affected central zone (TMAZ) that includes the dynamically recrystallized zone (nugget); ii)The heat affected zone (HAZ) and iii) The unaffected parent material or base material (BM).These different zones result from the combined application of mechanical energy and heat energy from frictional dissipation. The typical characteristics of each of these zones for aluminium alloys are the following:
The BM is the region that was unaffected by the FSW process;
The HAZ is only affected by the heat energy and presents typically some slight coalescence of grain relatively to the original grain size but is subjected to internal point and linear defects rearrangements. Thus, for the heat treatable wrought aluminium alloys the HAZ may presents some reduction in the distribution of precipitates at grain boundaries;
The TMAZ grain maintains the characteristics of the HAZ however the grain presents increased deformation as they get close to the interface with the nugget. This fact results from the influence of the material flow prescribed by the movement of the tool and the relatively high maximum temperature reached in this zone;
The nugget is the region of the TMAZ undergoing dynamic recrystallization with grain size refined and homogenized. The TMAZ/nugget interface enhances the significant difference between the structure of initial grain and the equiaxial grain resultant of the dynamical recrystallisation process with fine dispersion of the precipitates in the solid solution.
The typical metallurgical structures present in the processed zone of friction stir welds are established and classified in Figure 13 for a heat treatable aluminium alloy (AA2024-T3) and in Figure 14 for a non-heat treatable aluminium alloy (AA5083-H111).
Metallographic analysis of a FSW of AA2024-T3 (thickness = 4.8 mm), Ω = 1120 rpm, v = 320 mm/min. The arrows in the HAZ detail are identifying some of the several precipitates.
Metallographic analysis of a FSW of AA5083-H111 (thickness = 4.0 mm), Ω = 1120 rpm, v = 320 mm/min.
In Figure 15, it is possible to analyze some relevant characteristics, e.g.: i) relative location of the centre of the nugget; ii) width of the nugget at the centre and iii) width of the nugget at the root of the weld. This last dimension is very relevant in the quality assessment of the FSW joints because a correct processing of the root of the joint is mandatory to avoid defects located at the root of the bead which are always important [23].
Relevant geometrical characteristics on a metallographic analysis of a FSW cross-section.
The Figure 16 depicts the effective location of the real slip interface which is within the material and not at the top surface in direct contact with the shoulder. In fact, there is a layer (with a thickness 10 μm) of material bellow the shoulder that is dragged to rotate along with the rotating shoulder. This phenomenon is due to the adhesion of the material to the shoulder. Even for very low friction coefficients, the contact pressures are high and the frictional force overcomes the flow stress of the workpieces material. It should also be noticed that the real slip interface is increasingly evident, as it progresses from the center to the periphery of the weld bead, in accordance with the increase of linear speed of the rotating shoulder for higher radius.
Superficial layer of weld bead material in contact with shoulder that is dragged to rotate along with the shoulder generating a real slip interface about 10μm within the material.
From the Figure 17 showing the behavior of the non-heat treatable alloys it is possible to conclude about the increased hardness of weld bead and heat affected zones when compared with base material. Because these alloys are very sensitive to strain hardening the increase is most significant in all the TMAZ with emphasis for the nugget zone [23,24].
Typical hardness profile for the non-heat treatable wrought aluminium alloys (AA5083-H111; thickness: 4mm).
In Figure 18 it is possible to conclude about the typical location of the global minimum value of the harness field located in the interface between the HAZ and the TMAZ. Along the HAZ there is typically a local minimum due to over ageing. Depending on the pattern of material flow during the FSW… for more cold conditions the minimum value at the flow side (retreating side) is smaller than at the shear side (advancing side). For FSW under more hot conditions the minimum values in both sides of the weld bead have more identical values [1,24].
Typical hardness profile for the heat treatable wrought aluminium alloys (AA6061-T4; thickness: 4.8mm).
The hardness profile enables a reliable assessment of the static mechanical resistance of the joints but the fatigue resistance is more dependent on the geometric characteristics of the weld bead at the top and bottom surfaces and eventual internal defects both volumetric or layers/alignment of second phase particles or oxides, e.g., lack of penetration (LOP) root defects [25]. The fracture mechanism of FSW specimens under fatigue load is mainly determined by the size of the defect at the root of weld bead. For the FSW beads in as welded condition the higher critical level of the root defect always resulted in less number of cycles when compared to post weld smoothed root surface condition (Figure 19). The post weld smoothed root surface condition was obtained by mechanical grinding and final polishing of the root surface removing a superficial layer with a thickness of about 0.3mm assuring the removal of root defects. In fact reduced in-depth size of the root defect via surface smoothing increased the fatigue life in about 10X for a stress amplitude of about 80 MPa and R=0.1. Thus it is possible to conclude about the benefit of mechanical resistance when smoothing the root of FSW beads. Moreover FSW beads in smoothed condition shows a fatigue life close to BM results, most significantly for the lowest levels of stress amplitude. The results of FSW specimens in as welded condition are always better than the ones resulting from conventional welding solution: Synergic GMAW. The benefits of the fine equiaxial grain of the FSW nugget in fracture propagation phase plays an important role in this difference [26].
S-N curves from fatigue test trials (R=0.1; f=20Hz) of different testing conditions of AA5083-H111 (thickness = 4 mm).
Corrosion developed in base material of AA5083-H111 after 7 days Exposition in Tagus River (20g/l NaCl). Exfoliation of the top surface of a FSW bead and intergranular corrosion along the Al-Mg precipitates resulting in pitting formation mechanism localized under the flash of the weld bead.
Several intergranular corrosion tests were performed for AA5083-H111 focusing the naval applications. These testes were implemented according to ASTM G67: Nitric Acid @ 30 ºC during 24hand also for 7 days of exposition to Tagus river water (20g/L NaCl) as depicted in Figure 20. The results show that the loss mass in the base material samples was much higher than in the welded samples. This happens because intergranular corrosion mechanism was most susceptible at the intergranular precipitates and these were more abundant in base material. Exfoliation corrosion tests demonstrate that the corrosion resistance of the AA5083-H111 was better when better surface finishing was obtained for the weld bead. Thus, the higher roughness at the top of the weld bead promotes the earlier start and faster development of the corrosive attack [23].The typical geometrical discontinuities left by the shoulder on the top of FSW beads, namely: i) indentation and/or flash at advancing and retreating sides; and ii) semi-circular striates on the processed area under the shoulder, acts as preferential concentration points for the corrosive media. Root defects such as LOP also promote a faster and localized corrosion mechanism at this zone.
The advantages claimed for the process include:
Solid-phase nature of the process;
Capability of welding materials whose structure and properties would be degraded by melting;
Minimal edge preparation required;
Machine tool technology, simple to use with good surface appearance;
Minimal distortion;
Hot forged microstructure;
Low residual stress levels, compared with arc welding processes;
Environmentally friendly with absence of welding fume and excessive noise;
Suitability for automation;
Good mechanical properties;
Welding consumables not required, with exception for inserts that can be used and gas shielding for reactive materials such as titanium and its alloys;
Not influenced by magnetic forces;
Continuous - unlimited length;
Joint can be produced from one side and in all positions.
The current limitations of the FSW process are:
Backing anvil required (except bobbin stir);
Keyhole at the end of each weld (except with the introduction of a run-off tab or when a FSW tool with a retractable probe is used);
Not be able to start the weld joint from the start of the of the joint between the plates to be welded (except when using a run-on tab);
Workpiece requires rigid clamping (except when the Twin-stir™ variant is used);
Application not as flexible as certain arc welding processes.
The development of computational models can greatly contribute to better understanding any industrial process, particularly FSW. A validated model has the potential to produce reliable information about the deformation and mixing patterns that are important when designing FSW tools and thus should be capable of producing welds free of defects and voids. Further, a model can measure process characteristics that are difficult to observe experimentally such as local strains, strains rates and stresses. These strain and stress fields, together with temperature histories are seen as critical in predicting microstructure evolution. A detailed understanding of microstructural evolution can guide FSW designs by further improving mechanical properties, fatigue strength and corrosion resistance.
Coupled mechanical/thermal/metallurgical character of FSW process.
While considerable experimental work has been done to improve the knowledge on FSW, there’s yet a lot of work needed to create a satisfying global model that can produce consistent results. The main difficulties in modeling FSW are [27]:
Extensive material deformation in the region containing fully-plasticized material;
The viscous-plastic flow imposed by the tool rigid surface, into the materials constrained by the interaction with the cold base material, with an essentially elastic behaviour, and the rigid plate (anvil) supporting the joint;
Heat generated due to the sliding between the surface of the tool and the materials in the joint, depends on an unknown the friction coefficient;
The correct prediction of the viscous-plastic flow imposed by the tool rigid surface into the materials being welded is also important because the viscous dissipation contributes significantly to the heat development during the performance of the weld bead;
The materials thermo-mechanical properties vary throughout the FSW process;
The thermal flow into the tool and support plate, needs to be considered in the models;
FSW process modeling does not allow geometric simplification because it deals with a complex 3D material flow around the pin;
The highly rotating tool pin has, typically, a complex geometric profile (e.g. threaded), which is rather difficult to consider for most of the numerical methods available.
The challenge is then to create a model able to fully describe the complex FSW process as illustrated in Figure 21.
Friction Stir Channeling (FSC) is an innovative solid-state manufacturing process able to produce continuous internal channels in monolithic plates in a single step. The channels can have any path and variable dimensions along the path. During FSC, a non-consumable rotating tool with a specific shoulder and probe profile is inserted into the solid block, or plate, where the channel is to be opened, and forced to traverse along a predetermined path, creating a fine grain recrystallized microstructure around the new channel. The FSC process results from the application of the correct combination between the direction of tool rotation and the orientation of the probe threads and shoulder scrolls. The following actions will be applied to the visco-plasticized workpiece material: i) an upward action directed to the shoulder, along the threaded probe, combined with ii) an outward/centrifugal action along aspiral scrolled shoulder.
The features of the channels produced with FSC can be controlled by selecting the processing parameters and tool geometry, e.g., during the FSC process, an upward force is generated by rotating a left-hand threaded tool counter-clockwise. The action of the tool produces the “third-body region”and forces part of this viscous material to flow out from the processing zone. Simultaneously, the FSC tool closes the top of the processed zone via the action of the shoulder, enabling the creation of a continuous internal channel. The Figure 22 shows a schematic representation of the FSC process [28].
The FSC process was firstly proposed as a method of manufacturing heat exchanging devices. The applicability of the FSC concept have been discussed and demonstrated in [7,29] to create continuous channels along linear and curved profiles, as well as the possibility of manufacturing mini channel heat exchangers (MCHX). The FSC process was initially based on converting one possible defect in FSW: the formation of internal continuous voids, into a manufacturing technique where all the material extracted from the metal workpiece laid over the processed zone bellow the shoulder [29], within a clearance between the shoulder and the metal workpiece.
Schematic representation of the FSC process fundaments: parameters and viewsof the cross-section and plan.
There is a study [30] presenting a model based on the flow partition deformational zones for defect formation during FSW. The occurrence of voids in the FSW nugget has been attributed to defective material flow mainly because of the non-optimal processing conditions or geometry of the tool features. The model applies the principle of mass balance to address void formation in the nugget.
A recent development made by the authors of the present chapter and proposed in [31] allows to promote distinct material flow, where a controlled amount of material from the metal workpiece, flow out from the processed zone producing the internal channel. Thus, the material flowing from the interior of the solid metal workpiece is not deposited on the processed surface but flowed outside from the processed zone in the form of flash self-detachable or easy to extract. The position and size of the channels can therefore be controlled and the processed surface can be left at the same initial level. It is also possible to integrate in the tool, a surface finishing feature [31].
The high flexibility and low production costs of this innovative manufacturing process provide this technology a great potential to be successfully introduced in various industries. However, FSC still need to have a considerable development to prove its industrial applicability.Recent advances of tooling for FSC [28] shown to be possible to control during FSC the processed surface finishing and position. The high level of adaptability of FSC makes it possible to apply to many different technical field domains and can bring significant advantages for already existent and new industrial applications.Meanwhile some aluminum alloys have already been subjected to FSC, e.g.: 5 mm thick plates of AA6061-T6 [29], 13 mm thick plates of AA7178-T6 and 15 mm thick plates of AA5083-H11 [32].
The Figure 23 shows a representation of a typical cross section of a channel from FSC with the identification of the advancing and retreating sides and depicting the main microstructural regionsin the vicinity of the channel, namely: i) nugget; ii) TMAZ; iii) HAZ, and iv) BM.
Typical cross section macrograph of a friction stir channel including the main microstructural regions.
Because the FSC is based on the same principles of FSW, the parameters type and the process control in FSC, via position/vertical downward force criteria, are essentially the same of the FSW process. Understanding the material flow, process forces and metallurgy is therefore necessary to control and optimize the channel formation to ensure its industrial successful application.
In order to optimize the friction stirred channels components’ performance, and considering that the channel formation is sensitive to FSC parameters variations, it is important to identify, understand and establish interactions between the processing parameters. Some know-how is already possible to establish:
The probe and shoulder geometry defines the material removed from the interior of the metal workpiece. The material at the “third-body region” is brought against the shoulder by the probe and moved outside by the spiral striate(s) of the shoulder as result of the combination between the i) orientation and geometry of the threads on the probe; ii) orientation and geometry of the shoulder striate(s); iii) direction of tool rotation and iv) remaining process parameters;
The position of the advancing side and bottom of the channel (channel’s depth) are prescribed and well controlled by the shape and position of the probe within the monolithic workpiece material. These surfaces present relative smooth finishing;
The channel ceiling and retreating side present rough finishing and their position is controlled by the process parameters. Thus, by tuning the parameters it is possible to establish the section of the channel and optionally continuously change this section during the FSC process;
The shoulder is responsible for constraining the deformed material, closing the ceiling of the channel and its scrolls for driving away a controlled amount of material from the interior of the metal workpiece to outside, in the form of flash;
If the parameters are correct, the amount of material brought against the shoulder by the probe is equal to the amount of material removed outside by the shoulder;
If the shoulder is plan and smooth (i.e., not scrolled), the material pushed out by the probe features is deposit underneath the shoulder, at the inherent gap between the shoulder and the workpiece;
The tool rotation and travel speed control the amount of visco-plastic flow and subsequent heat generation from frictional dissipation during the process. These two parameters, along with plunge depth, if the process is performed via position control, affect the axial force applied on workpiece, which significantly affects the overall channel quality;
The operating conditions for which the process is more stable and produce better results are cold conditions;
The FSC parameters are not directly transferable from one aluminum alloy to another, the workpiece material thickness and the thermal conductivity of materials in contact with the workpiece, like anvil and clamping system, influence the cooling rate and the temperature gradients through thickness. Also the heat cooling system of the tool and dissipation through the spindle can influence the process and the tool lifetime.
In the FSC tool the probe and shoulder geometry are the most important features that influence the channel formation, shape, localization and properties. The initial FSC studies conducted in [29] used a cylindrical threaded probe with a diameter of 5 mm and 4 mm length and with an initial clearance between the shoulder and the metal workpiece, where the material from the base of the probe is deposited. Since that time, developments have been made by the authors of present chapter [28,31,32], allowing to promote a distinct material flow, discarding the need for a gap between the shoulder and the original surface of the workpiece. At the actual state of the art, with the correct set of parameters there is no need of further finishing operations, but if any is demanded, the actual shoulder design has advanced to geometries capable to integrate a surface finishing feature, and then processed surface can always be left at any required final level, simultaneously with the FSC process, and it is not require to perform a further finishing process. Figure 24 shows the modular FSC tool concept developed [31].
– 3D view of a modular FSC tool. (1) tool body, (2) shoulder, (3) probe, (4) cutting insert clamping, (5) cutting insert.
Resulting from experimental tests, it was established [31] that the number of cutting inserts might have the same that the number of the shoulder spirals striates as shown in Figure 25.
Top view sections showing the equality between the number of scrolls and the number of cutting inserts on the shoulder. (1) tool body, (2) shoulder, (3) probe, (4) cutting insert clamping, (5) cutting insert.
Initially, the FSC tool’s components were made of the same material typically applied in FSW: AISI H13, however this material has shown not to be the most appropriate to produce the probes to perform FSC on aluminium alloys at depths greater than 10 mm from the metal workpiece surface. Developments are being made, namely the study of new probe materials and designs, in order to increase the tool’s life. Conical probes have long lives comparing to cylinders ones but cylinders probes are more efficient than conical for this technological process which the main objective is to extract material from the metal workpiece.
The following advantages can be established for the innovative solid-state manufacturing FSC process:
Able to produce continuous free path internal channels in monolithic plates in a single step;
The channels can have variable positioning and dimensions along the path;
The channels have good dimensional stability and repeatability;
Recent advances of tooling for FSC shown to be possible to control the surface finishing and position of the exterior processed surface, during the execution of the process;
Capability of producing highly efficient conformal cooling/heating channels. FSC process also has the capability to produce cooling/heating systems in a single component whereat no time is loss joining components;
The high level of adaptability of FSC makes it possible to apply to many different technical field domains and can bring significant advantages as alternative of already existent technologies, such as, drilling, EDM and milling;
Environmentally friendly process using a no consumables.
The current limitations of the FSC process are:
At the actual state of art, the non-consumable tool lifetime is small because of premature fracture under the complex and demanding fatigue loading;
Sensitivity to change of parameters;
To produce channels by FSC access from one surface of the metal workpiece is required;
A residual hole is left open at the end of the channel path.
The shapes of the channels obtained from FSC are closer to a parallelogram. The channel shape varies with the process parameters. Figure 26 shows the variation of the shape of the channel with changing the FSC process parameters.
The channel geometry can be attributed to the volume of processed material that is displaced out of the “third-body region” by the FSC toolper unit of rotation and also the compacting force that is applied on the channel ceiling during the travel forward movement by the rotating shoulder. The upper surface of the channel (channel ceiling) is rough and wave shape and the channel advancing side (shear side) does not exhibit any significant roughness comparing to the retreating one. The bottom of the channel is relatively smooth and flat due to the flat nature of the tool probe base (Figure 27).
Cross section macrograph showing the channel geometry at different FSC processing parameters for the same FSC tool: a) 600 rpm, 80 mm/min.; b) 600 rpm, 150 mm/min.; c) 800 rpm, 80 mm/min. and d) 800 rpm, 150 mm/min.
Cross section of a channelshowing the roughness: a) on the ceiling and on the advancing side; b) on the bottom and on the retreating side.
The Figure 28 shows a cross section of a friction stir channel produced with a tool rotation speed of 800 rpm and a tool travel speed of 80 mm/min. In the macrograph depicted in Figure 28 three main regions are visible: i) channel; ii) stir zone (nugget), and the iii) unprocessed base material. The channel nugget (Figure 28b) presents a fine equiaxed recrystallized grain, with a tail heading to the shoulder periphery, at the advancing side (Figure 28c).In details “a)”, “c)” and “d)” of Figure 28 it is possible to identify an additional layer surrounding the nugget, referred to as a thermo-mechanically affected zone (TMAZ). Due to tool rotation and linear movement combination, the probe shears the material from the advancing side and flows it around the retreating one, resulting in an asymmetric processed zone. It can be observed in details “e)” and “f)” in Figure 28 that the stir zone (nugget) is more extensive in the retreating side than in the advancing one. The Figure 29, present the hardness field measured in the same cross-section presented in Figure 28.
Metallographic results of a cross section at the vicinity of a channel produced with FSC: Ω= 800 rpm and v = 80 mm/min.
Hardness field in the vicinity of a channel produced with FSC: = 800 rpm and v = 80 mm/min.
In order to standardize the characteristics of the channel shape and to spot possible trends in the channel shape change with the variation of the process parameters, three geometrical parameters of the channel were establish in Figure 30:
Channel area;
Closing layer thickness (D);
Shear angle (α).
Schematic representation of a cross-section view of a friction stirred channel workpiece showing the geometrical parameters closing layer thickness (D) and shear angle (α).
Results presented in [28] shown that the closing layer thickness values are consistent with those obtained for the channel area, i.e., as the channel area increases, the closing layer thickness decreases. But on the other hand, the shear angle has no relationwith the values of channel areas or even with the closing layer thicknesses for the different FSC conditions.
Despite the similarities between FSC and FSW processes, some of the testing techniques and criterions typically applied to the inspection and characterization of weld joints properties make no sense to be directly applied to FSC, e.g., direct comparison of mechanical properties of welded specimens with similar base material properties. In order to assess the quality of the channels for different paths, procedures are proposed to assess the quality of FSC results for slop and spiral paths.
Slope paths. a) linear sloped path tested and b) result of the visual inspection after milling a hole at the 90 degree corner.
For linear sloped paths, namely for the closed ones (Figure 31a), the path should be carried out in order to the retreating side stays outside and the advancing side inside the path. The path presented allows assessing continuous channels with variations of 30, 60 and 90 degrees along its path. Linear sloped paths corners should be inspect. As a procedure, it is proposed milling the FSC plate of the non-processed side to the channel bottom using a milling cutter with the same diameter than the FSC tool shoulder. The result of applying this procedure to the 90 degree corner is shown in Figure 31b.
Such as for linear sloped paths, the spiral paths should be carried out in order to the retreating side stays outside and the advancing side inside the spiral. The minimum allowed gap between spirals is the shoulder radius. To assess the geometrical stability of channels during spiral paths two cuts are recommending: a horizontal cut through the transition points of the arcs and a vertical cut through the outermost points of each arc as shown in Figure 32. Made the cuts, the channels cross sections should be assessed, e.g., according to the geometrical parameters presented in Figure 30.
Schematic representation of the spiral path produced showing the minimum allowed gap between spirals (shoulder radius).
In order to evaluate the mechanical strength of the FSC processed zone, a free-bend test is proposed as a FSC performance parameter. The proposal is to analyse the mechanical strength of a large area, the FSC processed zone, rather than a specific and small zone as the welded joints root in FSW. In Figure 33 is shown the 4 points free-bend tests results for four specimens tested which were extracted from the same trajectory of an unstable FSC procedure. From Figure 33 it is possible to verify, that the channel strength is not constant over the path. The friction stir processed zone is more resistance at the beginning of the path than at the end. All specimens tested fractured at the advancing side, namely in the boundary between the nugget and the thermo-mechanically affected zone.
To obtain the indentation resistance of the processed zone with FSC, the authors also propose aMacro indentation resistance test. Thus, specimens with a transversal channel should be produced according to the following dimensions: i) Length
Points free-bend tests for FSC: a) schematic representation of the standard E 290-97a suited for testing FSC specimens 4pt bending resistance and b) experimental results.
Macro indentation resistance test apparatus.
Because friction stir channels have high potential application in heat exchanger industry and in conformal cooling/heating systems, it is crucial to assess effective air tightness and their mechanical resistance when loaded with internal pressure (in Figure 35, it is proposed an internal hydraulic pressure test). For these tests, it should be produced parallelepiped specimens with the friction stir processed zone centered and according to the following dimensions: i) Length
To assess the channels’ airtightness should be used pressurised helium (at a minimum of 5 bar) because the helium atom is the smallest among the inert gases and thus, it is possible to ensure that any cracks greater than the helium’s atom is detected. In order to see the released gas, the specimen should be immersed in a container with clean water.
Relatively to the internal hydraulic pressure tests, they were carried out using an oil pressing machine and a 100 bar manometer. Themanometerusedshould bewhich ensuresthe FSC system design requirements.
Airtightness and internal hydraulic pressure tests apparatus.
The value of a technology is directly related with the amount of solutions and add-value it can provide to the industry. Consequently, if a new technology is being developed it is of major importance to analyse what are the possible industrial applications it has.
The generation of a continuous channel by FSC has the potential to open a wide range of applications, such as, conformal cooling/heating systems, heat exchangers and advanced tailored performance engineering metallic materials.
Conformal cooling is a concepton which the refrigerating channels follow the configuration of the part shape, enabling higher quality and productivity in the cooling/heating procedure. The influence on the cooling time and surface quality is significant and this concept has been growing recently. The FSC process is able to produce these conformal channels.
A prototype was developed for a company producing plastic injection moulds to demonstrate the potential of FSC technology (Figure 36). The prototype was discussed with the company, to determine if it could be an alternative to produce small dimension channels for thermoplastic parts that are produced by mould injection. These moulds have cooling channels behind the part surface that defines the geometry of the part. Owing to the complex geometries of certain components, FSC could be the solution for these channels due to the flexibility of the technology that permits the channels to have any desired path and position within the mould.
The generation of a continuous channel by FSC has the potential to open a wide range of applications also in heat exchanger industry.Compact heat exchangers are generally used in industry, especially in gas-to-gas or liquid-to-gas heat exchangers. For example, vehicular heat exchangers, condensers and evaporators in air-condition and refrigeration industry, aircraft oil-coolers, automotive radiators, and intercoolers or compressors and FSC has the ability to produce the channels for any of these types of heat exchangers, which demonstrates the elevated applicability it has in the various industries [7].
Sample of a prototype developed for a mouldcompany with a conformal cooling channel produced by FSC.
A new application, in development, is the production of Advanced Tailored Performance of Engineering Metallic Materials (ATEM) by FSC. A predetermined friction stirred channel pattern is produced in an aluminum workpiece in order to obtain a component with specific mechanical and metallurgical properties. FS channels can be filled with other materials or be used only to reduce the component structural weight and optimize is stiffness as illustrated in Figure 37. The channels produced with FSC, can also be used for crossing wires within solid components with many potential application for aluminium alloys structures, namely in aeronautics.
Schematic illustration of two alternative industrial applications with internal channels produced by FSC.
From the present work the following conclusions can be drawn:
Three relevant friction based processing processes covering a wide range of technological applications are presented in it state of the art fundaments and main features. Also, the most significant experimental results are depicted;
The concept supporting all the three processes addressed in the present chapter, and many others processes on the field of solid state processing, is the material flow within open or closed “third-body region”. This concept is introduced in some detail in order to allow readers to be able to further develop the actual solutions and invent new ones;
The Friction Surfacing (FS) process is a lean coating technology ideal for localized surface engineering applications, requiring the joining of materials with compatibility issues. As a solid state process, there is no melting involved and the coating material is solely provided by a consumable rod. Friction surfacing produces high strength coatings, soundly bonded, with low dilution, no porosity and little part distortion, making FS suitable to process thermal sensitive materials, such as, aluminium alloys. The absence of splashes, toxic fumes and radiation makes friction surfacing a cleaner alternative. However, bonding quality at coating edges need further evolution and post processing is generally required to obtain uniform coating surface and remove the poorly bonded portions;
The basic fundaments of friction stir welding (FSW) process have been presented. These basic fundamentals have enabled the invention and development of many variants of FSW. FSW is a mature and reliable technology with guidelines in many construction codes, mainly focusing on products made from aluminium and its alloys. The new ISO standard 25239 Friction stir welding - Aluminium alloys, has been published. This ISO standard will help with the implementation of FSW technology in light metal fabrication industries. Moreover, the FSW is a very complex process and difficult to be assessed based on computational modeling;
The Friction Stir Channeling (FSC) process is a disruptive innovation enabling higher efficiency in energetic applications and advances of structural design of many products. With this chapter the authors proposed new feasible FSC performance parameters based on non-conventional testing techniques, some quantitative and others qualitative. The FSC performance parameters proposed to assess the tightness are based on the amount of material removed, the macro indentation resistance of the FSC processed zone, the bending resistance of the FSC processed surface under tensile stress and the geometrical stability of channels during linear and spiral FSC paths.
The authors would like to acknowledge FCT/MCTES funding for the project FRISURF’ (PTDC/EME-TME/103543/2008) and PhD grants: SFRH/BD/62963/2009 and SFRH/BD/78539/2011.
Grid computing has appeared as an encouraging smart computing paradigm. Grid computing purposes to collect the power of geographically distributed heterogeneous, multiple-domain computational resources to offer high performance. To realize the encouraging potentials of grid computing, effective job scheduling, and load balancing algorithms are important. Such algorithms should be very scalable since these systems typically have thousands to millions of resources. They should also be flexible and be adaptive to task requirements.
The load balancing prevents the state in which some resources become overloaded while the others are underloaded or idle. Therefore, the use of a load balancing mechanism is expected to enhance reliability. The problem that can increase in this mechanism is related to the characteristics of the grid, which are resource variations, resource heterogeneity, application variety, and the dynamicity of grid environments. Multi-agent systems give encouraging features for resource managers. The scalability, reactivity, cooperation, proactivity, flexibility, autonomy, and robustness that characterize multi-agents system can help in the complex task of resource management in dynamic and changing environments.
Multi-agent distributed systems give an exciting solution to grid load balancing. An agent-based structure is developed to offer services for high performance-programming environments and applications that can be used on the grid computing environment. Software agents improve expandability, permitting the number of resources involved to rise easily, by providing services that include job scheduling, monitoring, and supervisory for the system.
Asynchronous communication, parallel actions, and autonomous operations of agents allow MAS to adjust to dynamic modifications of the grid environment, thereby enhancing the stability, fault tolerance, responsiveness, and reliability of the grid. Identifying key reasons to prove the convergence of MAS and grid is not an easy task. In this chapter, a new Agent-Based load balancing Model is presented. A hierarchical architecture with coordination is designed to ensure scalability and efficiency. Also, a multi-agent approach is applied to improve adaptability. Multi-agent system is implemented with the JADE (Java Agent Development) framework for grid load balancing. The chapter also discusses the difficulties and advantages surrounding the task of integrating multi-agent systems into grid computing.
The structure of the chapter is organized as follows: Section 2 describes Agent based load balancing architecture and implementation, Section 3 shows implemented algorithms. Finally, Sections 4 concludes the chapter with comments and discussion about current and future works.
The proposed model is an extension of our previous works related to load balancing system [1, 2], which is integrated into our agent-based load balancing in a grid computing project.
In this section, we will introduce an Agent-based load balancing Model (ABLBM). We will mention the components of the system and the interaction between agents briefly. We will describe the new features we added to Agent- based load balancing Model in grid, UML Classes Diagram, UML Sequence Diagram, algorithms, and load balancing mechanism in detail.
The UML Classes Diagram of the proposed model comprises fourteen connected classes as follows (Figures 1 and 2):
The Model class is linked by an aggregation relationship to the Level 2, Level 1,and Level 0 classes
The Level 0 class contains one and only one Grid Agent
The Level 1 class contains one or more cluster Agents
The Level 2 class contains one or more clusters and the cluster class contains one or more resources
A Resource can be associated with one or more users, and each user can submit one or more tasks.
The Resource class is linked by an aggregation relation to the cluster class
Grid Agent class can create one or more Cluster Agents
Cluster Agent can create one Migration Agent, one or more Resource Agents, LBC Agents, and Worker Agents.
UML classes diagram of ABLBM framework.
UML sequence diagram describes agent interactions in intra cluster load balancing process framework.
The proposed framework is intended to take advantage of the agent’s characteristics to create a self-adaptive and self-sustaining load balancing system. The proposed system consists of six types of agents, in unbalanced situations, and if the Cluster Agent finds that there is a load imbalance between the resources under its control, it uses the Knowledge Algorithm to receive the load information from each Resource Agent. Based on this information and the estimated equilibrium threshold, it analyses the current load of the cluster. Depending on the outcome of this analysis, it decides whether to start a local balancing in case of an unbalanced state, or simply inform other Cluster Agent of its current load. Resource Agent sends the updated local load value to Cluster Agent, which updates its load information. Migration Agent is responsible for migrating Worker Agents to the selected underloaded resource. There is a Migration Agent in each Cluster, who expects acknowledgement of receipt from the receiving resource once it receives the migrated Worker Agent. The last agent is Grid Agent, it is the role of the distribution of jobs between clusters, and all Cluster Agents are started by this type of agents.
We define two levels of load balancing algorithms: Intra-cluster load balancing and intra-Grid load balancing algorithm.
This load balancing algorithm makes the imbalance situations can be resolved within a cluster. It is triggered when any Agent Cluster finds that there is a load imbalance between the resources which are under its control. To do this, the Agent Cluster receives load information from each Resource Agent. Based on this information and the estimated balance threshold, it analyzes the current load of the cluster. According to the consequence of this analysis, it chooses whether to start a local balancing in the situation of imbalance state, or eventually just to notify other Agent Clusters about its current load. To implement this local load balancing, we propose the following three policies: load information gathering, agent selection policy, location policy, and Worker Agent migration.
In the proposed algorithm, Agent Cluster decides to start a local balancing in the case of imbalance. There are some particular events that change the load configuration in a grid environment. The events can be categorized as follows:
Arrival of any new resource
Withdrawal of any existing resource.
Local Agent Worker Termination: a local Agent Worker’s life cycle is ended
Local Agent Worker Start: a new local Agent Worker will be started
Incoming Migrating Agent: the local resource has been selected as a receiver for the migrating agent.
A Mobile Agent Departure: the local resource has been selected as a sender for the migrating agent.
Agent Worker ends the computation assigned to it, and becomes idle;
Whenever any of these activities happen the local load value is changed, Resource Agent sends the updated local load value to Agent Cluster who updates its Table of resources. Each Cluster Agent estimates its associated cluster capability by performing the following actions:
it estimates the current load of the cluster based on load information received from its Resource Agents;
it sends its load information to other Cluster Agents
The local host load is dependent on the Agent workers running on that host. A load of an agent executing on a machine is defined as the sum of its computational load and communication load in time unit [3].
A local host load can be defined as follows: The load Lk of a machine Mk is defined as the sum of its entire agents load on the host. More specifically
A load of an agent executing on a machine is defined as the sum of its computational load and communication load Loadij = Wij + Uij Where: Wij is Computational Load and Uij is communication load.
The selection policy handles which Worker Agent is migrated whenever there is a necessity. We assign a numerical value, called credit, to every Worker Agent. The credit value designates the capacity of the agent to remain undisturbed in case of migration. For a Worker Agent, the higher its credit value, the higher its opportunity to stay at the same machine. In other words, its opportunity to be selected for migration is lower. The LBC Agent assigns credit to each Worker Agent and chooses which agent requests to be migrated using the credit. Any Worker Agent with high credit will be given more opportunity to preserve its current location (the resource the agent resides in) with less opportunity to be selected for migration.
The credit value of a Worker Agent is assumed to depend on two types of parameters, namely Worker Agent dependent parameters and System dependent parameters [4]:
Its computational load, as it represents the main source of resource loading.
Its communication load, as it represents another source of resource loading.
Agent’s size, an agent migrates through the network to its new destination, thus an agent with big size is predictable to take more time to reach its destination resource.
Agent’s priority, the interruption of a high priority agent running to perform a migration process should be prohibited.
Reliability of the communication path between resources, the migrating agent delivery is not assured when the physical path reliability is low.
Availability of required resource on the source host, this factor represents the affinity between an agent and its running host.
Source Host’s loading, the host with high load will be more subject to let some agents migrate.
The credit of a Worker Agent increases if the following situations [4]:
The Worker Agent’s load reduces.
It communicates frequently with other worker Agents in other resources.
It has a high familiarity with the local machine. For example, it needs a special type of processors, I/O devices, or large volumes of data localized at the machine.
The agent’s remaining execution time is short.
The agent’s size is large.
The communication load is small.
The communication path between hosts is not reliable.
The needed Resource is available.
The agent has high priority.
In contrast, the credit value of Worker Agent reduces in the following situations:
The Worker Agent’s load Increases
The communication with Worker Agents in other resources is increased.
Strong mobility or instant exchanges of messages (frequent message exchanges rises the Worker Agent’s load.)
Using a multiple linear regression operation, we will try to gather all the mentioned factors into one equation, In linear regression, the relationship between a dependent variable, Y, and an independent variable X, is modeled by Y = a + βX. This interpretation of coefficient, it is appropriate only when the independent variable is continuous (quantitative). To incorporate qualitative independent variables into the regression model and formulate the model so the variables have interpretable coefficients, There are two commonly used methods for coding qualitative variables so they can be used in regression models, dummy coding and effect coding [4, 5]. To include the variables qualitative in the equation, we will use the simplest way which is the dummy coding, which assigns values “1” and “0” to reflect the presence and absence, For example, if we take a qualitative variable Resource availability Ri, we assigned value 1 when the resource is available and 0 if it is not available. The final equation can be written as:
Having a big coefficient means that this variable will make the agent tends to stay rather than being migrated.
b1: Computation load Coefficient: if b1 is a relatively large negative value then an agent having a big computation load is more likely to be migrated as its credit value will be reduced. If b1 is a positive value then the resource that has a big computational load value will be excepted from the list of receiver resources.
b2: Communication load Coefficient: if b2 has a negative value, then we can assume that an agent has a big communication load, it is more matter to migration as its credit value will be small. Since b2 has the smallest weight among the regression coefficients then it has the weakest effect on the credit value and therefore the migrating agent selection. If b2 is a positive value, so when it is multiplied by the communication load, a resource that has a big communication load value will be excepted from the list of receiver resources.
b3: Resource Availability Coefficient: when Ri = 1, b3 has relatively large values, that means that the agent finds the needed resource on the running host thus it is less subject for migration.
b4, b5: Host Load Coefficient: b4 has a higher load than b5 because when the running host is underloaded or balanced, it is less matter to select one of its agents to be migrated.
b6, b7: Reliability’s Coefficient: if Hi1,Hi2 = 1,1 then b6, b7 have relatively large values because that’s means that the agent may not reach the destination node through the unreliable network, thus the migration frequency is less.
b8, b9: Priority’s Coefficient: the high or moderate priority mean b8 and b9 have high weight because the high or moderate priority agent are less matter to be migrated.
b10: Agent size Coefficient: a big size agent mean b10 has a positive sign which means that a medium-size agent will be less matter for migration as they will encounter more loads in the transmission.
After a Worker Agent is determined to migrate, we have to select the receiving resource. The location policy defines to which destination resource the selected Worker Agent will be migrated to. The Cluster Agent selects the destination resource. For this purpose, it executes the following actions:
When the Cluster Agent receives the load information from its resources, it Partition cluster into an overloaded resources list (OLD), under-loaded resources list (ULD), and balanced list (BLD) and it sorts OLD by descending order of their load and ULD by ascending order of their load. The resource will be in an overloaded list if its load is high. The resource will be in the underloaded list if its load is low. The resource is not into the overloaded list or the underloaded, after that the Cluster agent sorts the overloaded resources list by descending order relative to their Load and sorts underloaded resources list by ascending order relative to Their Load. In the next step, Cluster Agent determines the sender resource and the receiver resource, where the sender resource is the first resource in the overloaded resources list and the receiver is the first resource in the underloaded resources list. Each Worker agent records the communication load between all the resources. If the receiver resource has the highest communication load with the migrated Agent then it is selected as the receiver resource else we must select another receiver resource from the list of underloaded resources. This is because, if a receiver resource is an external resource, the load of Worker Agent may not reduce due to large external communication. Instead, the load may rise.
The Worker Agent selection is related to its credit value while the receiver resource is the most under loaded resource. The migration decision is taken by a Cluster Agent that sends it for Migration Agent associated. The proposed MAS employs a mobile-agent system to support the migration of an agent. For migrating the Worker Agents, the status of the system and the agents currently operate or registered have to be considered. The receiver resource has to have more than one running agent. The Migration Agent sends a request message to the AMS agent. Then, the AMS sends an authentication message along with timestamp to it. The Migration Agent sends a request message of migration along with the authentication message to the DLA (Dynamic Library Agent) of the receiver resource. The DLA then sends the Worker Agent code after verifying the authentication and validation of the message. Finally, the Worker Agent migrates itself to the receiver resource or migrates a clone agent, in calling the doMove () method by the migrating agent with as parameter the receiver resource. The migrated agent is executed by the Dynamic Library Agent, and if the migrated one is a clone agent, it records itself to the platform by itself.
LBC Agent: Gathering Information Algorithm
Input: Worker Agents info
Output: LoadR = resource load
{
Creates the list of Worker Agents;
Calculates the total local load host LoadR by using Eq. (1) and sends it for Resource Agent
Send LoadR to its Resource Agent associated
Loop wait for load change//depends on happening of any of defined events
{
if (events_happens () = 2 or events_happens () = 3) then
{
Calculates Credits of Worker Agents (by using Eq. (2);
Adds Worker Agents for the list of Worker Agents and adds their load
values for the load of resource.
Sends LoadR to its Resource Agent associated;
}
if (events_happens () = 1 or events_happens () = 4) then
{
Removes Worker Agents from the list of Worker Agents and subtract their
load from the load of resource
Sends LoadR to its Resource Agent associated;
}
End Loop
}
Function events_happens ()
output Type: integer
If (Worker Agent Termination) then events_happens () =1; End If
If (Worker Agent Start) then events_happens () =2; End If
If (Incoming Migrating Worker Agent) then events_happens () = 3; End If
If (Worker Agent Departure) then events_happens () = 4; End If
If (Arrival of any new resource) then events_happens () = 5; End If
If (Withdrawal of any existing resource in the local host) then events_happens () = 6;End If
If (Loadcluster > Sthreshold)then events_happens () = 7; End If//Sthreshold saturation threshold
If (Cluster.state = unbalanced) then events_happens () = 8; End If
Resource Agent: Workload Estimation
Input: receive LoadR from LBC Agent, Worker Agents info
Output:
{
Started up LBC Agent associated;
Started up Worker Agents associated;
Receives LoadR from LBC Agent associated;
Sends LoadR to its Cluster Agent associated;
Keeping track of the number of alive Worker Agents on the local host;
}
Cluster Agent: Knowledge Algorithm
Input: receives tasks from AgentGrille, LoadR, LoadC
Output: Cluster Load, table of resources information
{
sends tasks among Resource Agents;
create the table of resources information;
receive LoadR from the resource Agents under its control;
Updates the table of resources information;
if (events_happens () = 5) then
{
Create Resource Agent for the new resource;
Creates LBC Agent for the new resource;
Creates Worker Agents for new resource;
Sends tasks among Resource Agent of new resource
Adds information of the new resource for table of resources information
Updates the table of resources information;
}
if (events_happens () = 6) then
{
Kill Resource Agent of the destroyed resource;
Kills LBC Agent of the destroyed resource;
Kills Worker Agents for the destroyed resource;
Removes information of the destroyed resource from table of resources information
Updates the table of resources information;
}
Diffuses Cluster Load to other Cluster Agents;}
AgentLBC: Selection policy Algorithm
Input: AgentWorkers info
Output: AgentWorkers list are sorted by the ascending order of their credit value, selected AgentWorker
{
Orders the list of Worker Agents by ascending order of their Credit values;
Selects the first Worker Agent from the list for migration;
Sends this information for Migration Agent;
}
Cluster Agent: location policy algorithm
Input: table of resources information, LoadR,Loadcluster
Output: Sender Resource, Receiver Resource
{
if (events_happens () = 7)//cluster is saturated
intra-grid load balancing algorithm
Else
If (events_happens () =8) then
{
Partitions Table of resources information into overloaded resources table (OLD), under-loaded resources table (ULD) and balanced resources table (BLD)
OLD ← φ; ULD ← φ; BLD ← φ
For every resourcei of cluster do
{
If (resourcei is saturated) then OLD ← OLD ∪ resourcei;
Else Switch
Case 1:
LoadR > Bthreshold: OLD ← OLD ∪ resourcei; /* Bthreshold is balanced threshold */
Case 2:
LoadR < Bthreshold: ULD ← ULD ∪ resourcei;
Case3:
LoadR = Bthreshold: BLD ← BLD∪ resourcei;
Sort OLD by descending order relative to their LoadR;
Sort ULD by ascending order relative to their LoadR;
Selects the first resource of OLD list as sender resource;
Selects the first resource of ULD list as receiver resource;
Sends this information for Migration Agent;
Migration Agent: Worker Agent Migration algorithm
Input: Sender Resource, Receiver Resource
Output: an Acknowledgment
Receives Sender Resource and Receiver Resource from its related Cluster Agent.
Sends migration request for AMS agent;
If receives an authentication message from AMS agent then
{
Sends a request message for Dynamic Library Agent of the receiver resource;
DL Agent sends code for the Worker Agent;
Worker Agent migrates itself to the receiver resource;
Waits for an Acknowledgment from the Dynamic Library Agent of receiver resource;
Sends an Acknowledgment for its related Cluster Agent;
}
Load balancing at this level is used if the Cluster Agent fails to balance its load among its related resources. In this case, each overloaded cluster migrates Worker Agents from its overloaded resources to underloaded clusters. In contrast to the intra-cluster level, we should consider the communication cost among clusters. Knowing the global state of each cluster, the overloaded cluster can send its Worker Agents for under-loaded clusters. The selected under-loaded clusters are those that require minimal communication cost for migrating agents from overloaded clusters. The agent can be transferred only if the sum of its latency in the source cluster and cost transfer is lower than its latency on the receiver cluster. This assumption will avoid making useless agent migration.
We associate a period to each Cluster Agent, during which each Cluster Agent sends its current load information to the other clusters. So, a Cluster Agent can receive new load information about another one at any time. This updated information will be considered in the next period.
Cluster Agent: intra-grid load balancing algorithm
Input: Loadcluster
Output: Sender Resource, Receiver Resource
{
If (events_happens () =7) then
{
Receives Loadcluster of other clusters of grid;
Collects Loadcluster in the table of clusters information
Sort table of clusters information by ascending order relative to their load
Select the first cluster as receiver cluster;
Sorts the resources of receiver cluster by ascending order of their load
Receiver Resource = the first resource of list of resources in receiver cluster
Sorts the resources of current cluster by descending order of their load
Sender Resource = the first resource of list of resources in sender cluster
Sorts Worker Agents of first resource of current cluster by selection policy and communication cost;
Sends this information for the Migration Agent
}
We implemented a system prototype using JADE [6] (Java Agent Development Framework) for agent implementation, and Alea 2 [7] (Job Scheduling Simulator based on GridSim) as a simulator of the grid. Alea 2 is based on GridSim Toolkit [8] and represents an extension that contains better tools for scheduling algorithm implementation visualization competency and an upper speed of simulations.
To find the constant H for calculating the higher threshold, we execute our load balancing method 10 times for the different values of H = 0.5, 0.6, 0.7, 0.8, 0.9, and observed number of migration.
Figure 3 demonstrates the number of migration for the different values of H threshold. The number of migration augments with H threshold values but when the value of H threshold changes to 0.9 and 1, the number of migration is augmenting intensely. So we set the value of H threshold at 0.9.
Number of migration on different value of H.
In Figure 4, we are using the H threshold = 0.9. So, to find the best value of the lower threshold we executed our load balancing algorithm 10 times for the different values of the L threshold L = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and we observed the number of migration. We found that number of migration augmented with the value of L threshold. It offers the best result at L = 0.3.
Number of migration on different value of L.
We modeled the complex data set from the National Grid of Czech republic MetaCentrum, these data permit us to implement very realistic simulations. Also, it offers information about machine failures and specific job requirements and that information influences the quality of solutions generated by the scheduling algorithms. Job description includes (Job ID, user, queue, number processors used, etc.). Also, the description of clusters includes complete information with RAM size, CPU speed, CPU architecture, operating system, and the list of supported properties (cluster location, allowed queue (s), and network interface, etc.). Additionally, information machines were in maintenance (failure/restart). Finally, the list of queues containing their time limits and priorities is provided. More details on the trace file used can be found at [9].
A class library was developed that simulates the activities of an agent platform. This library, called ABLBM (Agent-based load balancing), includes the classes: Grid Agent, Cluster Agent, Migration Agent, LBC Agent, and Resource Agent. The simulation is initialized by the Grid Agent class which makes instances of resources, jobs, and other entities as required by the GridSim standard. Grid Agent reads information describing the grid resources and jobs from a data file, reads the jobs from the data_set file, and dynamically produces the job instances over time. Figure 5 specifies the Grid Resource parameters such as resource ID, resource’s CPU speed, and resource’s memory capacity. Next, Grid Agent lists all the available grid resources within the grid environment. When the simulation time is equal to the job submission time, the Grid Agent starts the Cluster Agent and dynamically sends the jobs created for the Resource Agents over time.
Grid agent interface.
Based on its own load and the estimated balance threshold, Cluster Agent analyzes the load state of the cluster. In the imbalance state, Cluster Agent defines the overloaded resources (sources) and the underloaded ones (receivers), depending on their load information by using the threshold values. Grid Agent and Cluster Agent interfaces are shown in Figures 5 and 6.
Cluster agent interface.
Model | System configuration | Load information gathering policy | Selection policy | Location policy | Decision making | Migration condition | Implementation |
---|---|---|---|---|---|---|---|
ABLBM | The system contains a set of computing resources hierarchy of control, with six types of agents | Event-based information gathering | Credit -based concept | receiver resource is the most under loaded and it has the highest communication load with the migrated Agent | Migration decision is taken by Cluster Agent | Cluster state is unbalanced; | Jade [6] + Alea2 [7] simulator |
VM, dynamic balancing [10] | The system contains entity, federate, VM, and host with migration management agent | periodic-based information gathering | computation and communication cost | receiver resource is the least loaded host | Migration decision is taken by migration management agent | host is over-loaded, | AST-RTI [11] version 2.0 + C++ |
LB in distributed MAS [4] | The system contains a set of nodes decentralized in control, with seven agents | Event-based information gathering | Credit -based concept | The destination node is the node with the least LC (Location Credit) value | Migration decision is taken locally by the LBC Agent | Local load value is greater than the load threshold value | Java + Jade |
A2LB [12] | The system contains a set of VMs centralized in control, with three agents | periodic-based information gathering | Not cited | receiver VM having desired configuration | Migration decision is taken by Load agent | fitness value of a VM becomes less than or equal to threshold value | Java |
N LB WITH STRONG MIGR ATION IN AN AGENT BASED GRID SYSTEM USING CSP APPROACH [13] | The system contains a set of machines centralized in control, with five agents | periodic-based information gathering | task cost | receiver is available worker agent in the desired container | Migration decision is taken by migration manager | network traffic analysis | Jade |
Recognizing key factors to prove the convergence of grid and MAS and models is not a simple task. We note that the current state of GRID and MAS research activities are necessarily developed to enable justifying the study of the path towards an integration of the two fields.
We have presented a theoretical comparison between some related works and the proposed model. The proposed model has some unique features. It is hierarchical, which facilitates the circulation of information through the tree and defines the flow of messages between agents. Also, the proposed Agent-based load balancing model uses an event-driven information gathering policy, the latter being especially beneficial in terms of economy of usage of network resources. Furthermore, it can achieve excellent performance with significantly less computational load and system instability than a periodic information gathering policy. To select the migrating agent, we use the credit-based concept, accordingly, some factors are considered to calculate the credit value. Moreover, in the selection of receiver resources, we take into consideration the resource loads and the communication between the receiver resources and the migrating agent for avoiding the migration for external resources and reducing the communication cost. The migration decision is taken locally by Cluster Agent, where each cluster agent to balance its load among its associated resources. If it fails, the Cluster Agent migrates worker agents to underloaded clusters based on the load information received by other clusters. Finally, it supports flexibility and expandability, thus, various intelligent agents have been deployed to decrease system complexity by modularization. Moreover, it is easy to modify its components, and add more features and functions to it.
In theory, the multi-agent architecture of load balancing systems introduces important improvements, such as better average performance when one computer is not working and a lower system-error probability. In terms of the development process, fault-tolerance, and scalability, the agent approach offered the expected improvements, both in objective real-world measurements and in the subjective observations of designers, developers, and users.
On another hand, we could not overcome several well-known problems when designing distributed systems. For example, handling failed entities, synchronization problems, and query-response-related issues turned out to be the same as in any distributed programming. It is important to be aware of the advantages and disadvantages of the agent and non-agent approaches, but the most important point is whether the advantages prevail. For load balancing systems, our theoretical analysis and practical experiences both indicate that the advantages of agent-based load balancing systems clearly be more than the observed disadvantages.
The system performance was not studied yet. Thus, there is a need to analyze execution efficiency and compare it to available Agent-based load balancing platform evaluations. Further research is going to concentrate on execution performance.
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22421},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33697}],offset:12,limit:12,total:135705},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"7"},books:[{type:"book",id:"11774",title:"International Law - A Practical Manual",subtitle:null,isOpenForSubmission:!0,hash:"c607e873911da868c0764770dc224313",slug:null,bookSignature:"Dr. Michael Underdown",coverURL:"https://cdn.intechopen.com/books/images_new/11774.jpg",editedByType:null,editors:[{id:"478218",title:"Dr.",name:"Michael",surname:"Underdown",slug:"michael-underdown",fullName:"Michael Underdown"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11775",title:"Global Peace and Security",subtitle:null,isOpenForSubmission:!0,hash:"131303f07b492463a5c4a7607fe46ba9",slug:null,bookSignature:"Dr. Norman Chivasa",coverURL:"https://cdn.intechopen.com/books/images_new/11775.jpg",editedByType:null,editors:[{id:"331566",title:"Dr.",name:"Norman",surname:"Chivasa",slug:"norman-chivasa",fullName:"Norman Chivasa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12134",title:"Sustainable Tourism",subtitle:null,isOpenForSubmission:!0,hash:"bb510c876f827a1df7960a523a4b5db3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12134.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12138",title:"Online Advertising",subtitle:null,isOpenForSubmission:!0,hash:"d1a7aaa841aba83e7199b564c4991cf1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12138.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12139",title:"Global Market and Trade",subtitle:null,isOpenForSubmission:!0,hash:"fa34af07c3a9657fa670404202f8cba5",slug:null,bookSignature:"Dr.Ing. Ireneusz Miciuła",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",editedByType:null,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",subtitle:null,isOpenForSubmission:!0,hash:"85f77453916f1d80d80d88ee4fd2f2d1",slug:null,bookSignature:"Dr. Joseph Crawford",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",editedByType:null,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:7},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1399",title:"Discrete Mathematics",slug:"mathematics-discrete-mathematics",parent:{id:"15",title:"Mathematics",slug:"mathematics"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:40,numberOfWosCitations:6,numberOfCrossrefCitations:16,numberOfDimensionsCitations:20,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1399",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8241",title:"Novel Trends in the Traveling Salesman Problem",subtitle:null,isOpenForSubmission:!1,hash:"b673e3dadd9d6bc4d1ae0e14521c3aeb",slug:"novel-trends-in-the-traveling-salesman-problem",bookSignature:"Donald Davendra and Magdalena Bialic-Davendra",coverURL:"https://cdn.intechopen.com/books/images_new/8241.jpg",editedByType:"Edited by",editors:[{id:"2961",title:"Prof.",name:"Donald",middleName:null,surname:"Davendra",slug:"donald-davendra",fullName:"Donald Davendra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8142",title:"Number Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"90d1376ab2f3b8554ef8002ddf380da0",slug:"number-theory-and-its-applications",bookSignature:"Cheon Seoung Ryoo",coverURL:"https://cdn.intechopen.com/books/images_new/8142.jpg",editedByType:"Edited by",editors:[{id:"230100",title:"Prof.",name:"Cheon Seoung",middleName:null,surname:"Ryoo",slug:"cheon-seoung-ryoo",fullName:"Cheon Seoung Ryoo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5842",title:"Graph Theory",subtitle:"Advanced Algorithms and Applications",isOpenForSubmission:!1,hash:"1064c192355cc15bd0a5e61594810f7a",slug:"graph-theory-advanced-algorithms-and-applications",bookSignature:"Beril Sirmacek",coverURL:"https://cdn.intechopen.com/books/images_new/5842.jpg",editedByType:"Edited by",editors:[{id:"93277",title:"Dr.",name:"Beril",middleName:null,surname:"Sirmacek",slug:"beril-sirmacek",fullName:"Beril Sirmacek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"56125",doi:"10.5772/intechopen.69204",title:"Spreading Information in Complex Networks: An Overview and Some Modified Methods",slug:"spreading-information-in-complex-networks-an-overview-and-some-modified-methods",totalDownloads:1507,totalCrossrefCites:5,totalDimensionsCites:6,abstract:"The knowledge of node’s ability and importance in spreading information in a complex network is important for developing efficient methods either to decelerate spreading in the case of diseases or to accelerate spreading in the case of information flow, which would benefit the whole population. Some systems are highly affected by a small fraction of influential nodes. Number of fast and efficient spreaders in a network is much less compared to the number of ordinary members. Information about the influential spreaders is significant in the planning for the control of propagation of critical pieces of information in a social or information network. Identifying important members who act as the fastest and efficient spreaders is the focal theme of a large number of research papers. Researchers have identified approximately 10 different methods for this purpose. Degree centrality, closeness centrality, betweenness centrality, k‐core decomposition, mixed degree decomposition, improved k‐shell decomposition, etc., are some of these methods. In this expository article, we review all previous works done in the field of identifying potential spreaders in a network.",book:{id:"5842",slug:"graph-theory-advanced-algorithms-and-applications",title:"Graph Theory",fullTitle:"Graph Theory - Advanced Algorithms and Applications"},signatures:"Reji Kumar Karunakaran, Shibu Manuel and Edamana Narayanan\nSatheesh",authors:[{id:"200190",title:"Dr.",name:"Reji Kumar",middleName:null,surname:"Karunakaran",slug:"reji-kumar-karunakaran",fullName:"Reji Kumar Karunakaran"},{id:"200193",title:"Mr.",name:"Manuel",middleName:null,surname:"Shibu",slug:"manuel-shibu",fullName:"Manuel Shibu"},{id:"200194",title:"Dr.",name:"E N",middleName:null,surname:"Satheesh",slug:"e-n-satheesh",fullName:"E N Satheesh"}]},{id:"57940",doi:"10.5772/intechopen.72145",title:"Graph-Based Decision Making in Industry",slug:"graph-based-decision-making-in-industry",totalDownloads:1724,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"Decision-making in industry can be focused on different types of problems. Classification and prediction of decision problems can be solved with the use of a decision tree, which is a graph-based method of machine learning. In the presented approach, attribute-value system and quality function deployment (QFD) were used for decision problem analysis and training dataset preparation. A decision tree was applied for generating decision rules.",book:{id:"5842",slug:"graph-theory-advanced-algorithms-and-applications",title:"Graph Theory",fullTitle:"Graph Theory - Advanced Algorithms and Applications"},signatures:"Izabela Kutschenreiter-Praszkiewicz",authors:[{id:"218951",title:"Associate Prof.",name:"Izabela",middleName:null,surname:"Kutschenreiter-Praszkiewicz",slug:"izabela-kutschenreiter-praszkiewicz",fullName:"Izabela Kutschenreiter-Praszkiewicz"}]},{id:"72140",doi:"10.5772/intechopen.91972",title:"Comparative Study of Algorithms Metaheuristics Based Applied to the Solution of the Capacitated Vehicle Routing Problem",slug:"comparative-study-of-algorithms-metaheuristics-based-applied-to-the-solution-of-the-capacitated-vehi",totalDownloads:685,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"This chapter presents the best-known heuristics and metaheuristics that are applied to solve the capacitated vehicle routing problem (CVRP), which is the generalization of the TSP, in which the nodes are visited by more than one route. To find out which algorithm obtains better results, there are 30 test instances used, which are grouped into 3 sets of problems according to the position of the nodes. The study begins with an economic impact analysis of the transportation sector in companies, which represents up to 20% of the final cost of the product. This case study focuses on the CVRP for its acronym capacitated vehicle routing problem, analyzing the best-known heuristics such as Clarke & Wright and sweep, and the algorithms GRASP and simulated annealing metaheuristics based.",book:{id:"8241",slug:"novel-trends-in-the-traveling-salesman-problem",title:"Novel Trends in the Traveling Salesman Problem",fullTitle:"Novel Trends in the Traveling Salesman Problem"},signatures:"Fernando Francisco Sandoya Sánchez, Carmen Andrea Letamendi Lazo and Fanny Yamel Sanabria Quiñónez",authors:[{id:"155426",title:"Ph.D.",name:"Fernando",middleName:"Francisco",surname:"Sandoya",slug:"fernando-sandoya",fullName:"Fernando Sandoya"},{id:"313162",title:"M.Sc.",name:"Carmen",middleName:null,surname:"Letamendi",slug:"carmen-letamendi",fullName:"Carmen Letamendi"},{id:"319376",title:"Dr.",name:"Fanny",middleName:null,surname:"Sanabria",slug:"fanny-sanabria",fullName:"Fanny Sanabria"}]},{id:"55541",doi:"10.5772/intechopen.68703",title:"Modeling Rooted in‐Trees by Finite p‐Groups",slug:"modeling-rooted-in-trees-by-finite-p-groups",totalDownloads:1148,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Graph theoretic foundations for a kind of infinite rooted in-trees T(R)=(V,E) with root R, weighted vertices v ∈ V, and weighted directed edges e∈E⊂V×V are described. Vertex degrees deg(v) are always finite but the trees contain infinite paths (vi)i≥0. A concrete group theoretic model of the rooted in-trees T(R) is introduced by representing vertices by isomorphism classes of finite p-groups G, for a fixed prime p, and directed edges by epimorphisms π: G → πG of finite p-groups with characteristic kernels ker(π). The weight of a vertex G is realized by its nuclear rank n(G) and the weight of a directed edge π is realized by its step size s(π)=logp(#ker(π)). These invariants are essential for understanding the phenomenon of multifurcation. Pattern recognition methods are used for finding finite subgraphs which repeat indefinitely. Several periodicities admit the reduction of the complete infinite graph to finite patterns. The proof is based on infinite limit groups and successive group extensions. It is underpinned by several explicit algorithms. As a final application, it is shown that fork topologies, arising from repeated multifurcations, provide a convenient description of complex navigation paths through the trees, which are of the greatest importance for recent progress in determining p-class field towers of algebraic number fields.",book:{id:"5842",slug:"graph-theory-advanced-algorithms-and-applications",title:"Graph Theory",fullTitle:"Graph Theory - Advanced Algorithms and Applications"},signatures:"Daniel C. Mayer",authors:[{id:"198580",title:"Dr.",name:"Daniel C.",middleName:null,surname:"Mayer",slug:"daniel-c.-mayer",fullName:"Daniel C. Mayer"}]},{id:"57771",doi:"10.5772/intechopen.71774",title:"Governance Modeling: Dimensionality and Conjugacy",slug:"governance-modeling-dimensionality-and-conjugacy",totalDownloads:1347,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The Q-analysis governance approach and the use of simplicial complexes—type of hypergraph—allow to introduce the formal concepts of dimension and conjugacy between the network of entities involved in governance (typically organizations) and the networks of those attributes taken into account (e.g. their competences), which offer a specific angle of analysis. The different sources of existing data (e.g. textual corpora) to feed the analysis of governance—environmental in particular—are mentioned, their reliability is briefly discussed and the required pre-processing steps are identified in the perspective of evidence-based analyses. Various indices are constructed and evaluated to characterize the context of governance as a whole, at mesoscale, or locally, i.e. at the level of each of the entities and each of the attributes considered. The analysis of ideal-type stylizing boundary cases provides useful references to the analysis of concrete systems of governance and to the interpretation of their empirically observed properties. The use of this governance modeling approach is illustrated by the analysis of a health-environment governance system in Southeast Asia, in the context of a One Health approach.",book:{id:"5842",slug:"graph-theory-advanced-algorithms-and-applications",title:"Graph Theory",fullTitle:"Graph Theory - Advanced Algorithms and Applications"},signatures:"Pierre Mazzega, Claire Lajaunie and Etienne Fieux",authors:[{id:"220099",title:"Dr.",name:"Pierre",middleName:null,surname:"Mazzega",slug:"pierre-mazzega",fullName:"Pierre Mazzega"},{id:"220102",title:"Dr.",name:"Claire",middleName:null,surname:"Lajaunie",slug:"claire-lajaunie",fullName:"Claire Lajaunie"},{id:"220103",title:"Prof.",name:"Etienne",middleName:null,surname:"Fieux",slug:"etienne-fieux",fullName:"Etienne Fieux"}]}],mostDownloadedChaptersLast30Days:[{id:"71899",title:"Moments of Catalan Triangle Numbers",slug:"moments-of-catalan-triangle-numbers",totalDownloads:572,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, we consider the Catalan numbers, \n\n\nC\nn\n\n=\n\n1\n\nn\n+\n1\n\n\n\n\n\n\n2\nn\n\n\n\n\nn\n\n\n\n\n\n, and two of their generalizations, Catalan triangle numbers, \n\n\nB\n\nn\n,\nk\n\n\n\n and \n\n\nA\n\nn\n,\nk\n\n\n\n, for \n\nn\n,\nk\n∈\nN\n\n. They are combinatorial numbers and present interesting properties as recursive formulae, generating functions and combinatorial interpretations. We treat the moments of these Catalan triangle numbers, i.e., with the following sums: \n\n\n∑\n\nk\n=\n1\n\nn\n\n\nk\nm\n\n\nB\n\nn\n,\nk\n\nj\n\n,\n\n∑\n\nk\n=\n1\n\n\nn\n+\n1\n\n\n\n\n\n2\nk\n−\n1\n\n\nm\n\n\nA\n\nn\n,\nk\n\nj\n\n,\n\n for \n\nj\n,\nn\n∈\nN\n\n and \n\nm\n∈\nN\n∪\n\n0\n\n\n. We present their closed expressions for some values of \n\nm\n\n and \n\nj\n\n. Alternating sums are also considered for particular powers. Other famous integer sequences are studied in Section 3, and its connection with Catalan triangle numbers are given in Section 4. Finally we conjecture some properties of divisibility of moments and alternating sums of powers in the last section.",book:{id:"8142",slug:"number-theory-and-its-applications",title:"Number Theory and Its Applications",fullTitle:"Number Theory and Its Applications"},signatures:"Pedro J. Miana and Natalia Romero",authors:null},{id:"55642",title:"Monophonic Distance in Graphs",slug:"monophonic-distance-in-graphs",totalDownloads:1551,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"For any two vertices u and v in a connected graph G, a u − v path is a monophonic path if it contains no chords, and the monophonic distance dm(u, v) is the length of a longest u − v monophonic path in G. For any vertex v in G, the monophonic eccentricity of v is em(v) = max {dm(u, v) : u ∈ V}. The subgraph induced by the vertices of G having minimum monophonic eccentricity is the monophonic center of G, and it is proved that every graph is the monophonic center of some graph. Also it is proved that the monophonic center of every connected graph G lies in some block of G. With regard to convexity, this monophonic distance is the basis of some detour monophonic parameters such as detour monophonic number, upper detour monophonic number, forcing detour monophonic number, etc. The concept of detour monophonic sets and detour monophonic numbers by fixing a vertex of a graph would be introduced and discussed. Various interesting results based on these parameters are also discussed in this chapter.",book:{id:"5842",slug:"graph-theory-advanced-algorithms-and-applications",title:"Graph Theory",fullTitle:"Graph Theory - Advanced Algorithms and Applications"},signatures:"P. Titus and A.P. Santhakumaran",authors:[{id:"198301",title:"Dr.",name:"P.",middleName:null,surname:"Titus",slug:"p.-titus",fullName:"P. Titus"},{id:"199035",title:"Prof.",name:"A. P.",middleName:null,surname:"Santhakumaran",slug:"a.-p.-santhakumaran",fullName:"A. P. Santhakumaran"}]},{id:"71501",title:"Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman Problems",slug:"accelerating-dna-computing-via-plp-qpcr-answer-read-out-to-solve-traveling-salesman-problems",totalDownloads:824,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"An asymmetric, fully-connected 8-city traveling salesman problem (TSP) was solved by DNA computing using the ordered node pair abundance (ONPA) approach through the use of pair ligation probe quantitative real time polymerase chain reaction (PLP-qPCR). The validity of using ONPA to derive the optimal answer was confirmed by in silico computing using a reverse-engineering method to reconstruct the complete tours in the feasible answer set from the measured ONPA. The high specificity of the sequence-tagged hybridization, and ligation that results from the use of PLPs significantly increased the accuracy of answer determination in DNA computing. When combined with the high throughput efficiency of qPCR, the time required to identify the optimal answer to the TSP was reduced from days to 25 min.",book:{id:"8241",slug:"novel-trends-in-the-traveling-salesman-problem",title:"Novel Trends in the Traveling Salesman Problem",fullTitle:"Novel Trends in the Traveling Salesman Problem"},signatures:"Fusheng Xiong, Michael Kuby and Wayne D. Frasch",authors:[{id:"14757",title:"Prof.",name:"Wayne",middleName:null,surname:"Frasch",slug:"wayne-frasch",fullName:"Wayne Frasch"},{id:"317054",title:"Prof.",name:"Michael",middleName:null,surname:"Kuby",slug:"michael-kuby",fullName:"Michael Kuby"},{id:"317055",title:"Dr.",name:"Fusheng",middleName:null,surname:"Xiong",slug:"fusheng-xiong",fullName:"Fusheng Xiong"}]},{id:"72027",title:"Identification of Eigen-Frequencies and Mode-Shapes of Beams with Continuous Distribution of Mass and Elasticity and for Various Conditions at Supports",slug:"identification-of-eigen-frequencies-and-mode-shapes-of-beams-with-continuous-distribution-of-mass-an",totalDownloads:942,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"In the present article, an equivalent three degrees of freedom (DoF) system of two different cases of inverted pendulums is presented for each separated case. The first case of inverted pendulum refers to an amphi-hinge pendulum that possesses distributed mass and stiffness along its height, while the second case of inverted pendulum refers to an inverted pendulum with distributed mass and stiffness along its height. These vertical pendulums have infinity number of degree of freedoms. Based on the free vibration of the above-mentioned pendulums according to partial differential equation, a mathematically equivalent three-degree of freedom system is given for each case, where its equivalent mass matrix is analytically formulated with reference on specific mass locations along the pendulum height. Using the three DoF model, the first three fundamental frequencies of the real pendulum can be identified with very good accuracy. Furthermore, taking account the 3 × 3 mass matrix, it is possible to estimate the possible pendulum damages using a known technique of identification mode-shapes via records of response accelerations. Moreover, the way of instrumentation with a local network by three accelerometers is given via the above-mentioned three degrees of freedom.",book:{id:"8142",slug:"number-theory-and-its-applications",title:"Number Theory and Its Applications",fullTitle:"Number Theory and Its Applications"},signatures:"Triantafyllos K. Makarios",authors:[{id:"69418",title:"Prof.",name:"Triantafyllos",middleName:"Konstantinos",surname:"Makarios",slug:"triantafyllos-makarios",fullName:"Triantafyllos Makarios"}]},{id:"57940",title:"Graph-Based Decision Making in Industry",slug:"graph-based-decision-making-in-industry",totalDownloads:1725,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"Decision-making in industry can be focused on different types of problems. Classification and prediction of decision problems can be solved with the use of a decision tree, which is a graph-based method of machine learning. In the presented approach, attribute-value system and quality function deployment (QFD) were used for decision problem analysis and training dataset preparation. A decision tree was applied for generating decision rules.",book:{id:"5842",slug:"graph-theory-advanced-algorithms-and-applications",title:"Graph Theory",fullTitle:"Graph Theory - Advanced Algorithms and Applications"},signatures:"Izabela Kutschenreiter-Praszkiewicz",authors:[{id:"218951",title:"Associate Prof.",name:"Izabela",middleName:null,surname:"Kutschenreiter-Praszkiewicz",slug:"izabela-kutschenreiter-praszkiewicz",fullName:"Izabela Kutschenreiter-Praszkiewicz"}]}],onlineFirstChaptersFilter:{topicId:"1399",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:126,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:13,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Rosa María Martínez-Espinosa is a Full Professor of Biochemistry and Molecular Biology at the University of Alicante, Spain, and has been the vice president of International Relations and Development Cooperation at this university since 2010. She created the research group in applied biochemistry in 2017 (https://web.ua.es/en/appbiochem/), and from 1999 to the present has made more than 200 contributions to Spanish and international conferences. Furthermore, she has around seventy-five scientific publications in indexed journals, eighty book chapters, and one patent to her credit. Her research work focuses on microbial metabolism (particularly on extremophile microorganisms), purification and characterization of enzymes with potential industrial and biotechnological applications, protocol optimization for genetically manipulating microorganisms, gene regulation characterization, carotenoid (pigment) production, and design and development of contaminated water and soil bioremediation processes by means of microorganisms. This research has received competitive public grants from the European Commission, the Spanish Ministry of Economy and Competitiveness, the Valencia Region Government, and the University of Alicante.",institutionString:"University of Alicante",institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Chemical Biology",value:15,count:4,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:18,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:14,paginationItems:[{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",slug:"potassium-in-human-health",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Jie Tang",hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",volumeInSeries:12,fullTitle:"Potassium in Human Health",editors:[{id:"181267",title:"Dr.",name:"Jie",middleName:null,surname:"Tang",slug:"jie-tang",fullName:"Jie Tang",profilePictureURL:"https://mts.intechopen.com/storage/users/181267/images/system/181267.png",institutionString:"Brown University",institution:{name:"Brown University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Manash K. Paul",hash:"eb5407fcf93baff7bca3fae5640153a2",volumeInSeries:13,fullTitle:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10835",title:"Autonomic Nervous System",subtitle:"Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",slug:"autonomic-nervous-system-special-interest-topics",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Theodoros Aslanidis and Christos Nouris",hash:"48ac242dc6c5073b2590a509c44628e2",volumeInSeries:14,fullTitle:"Autonomic Nervous System - Special Interest Topics",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis",profilePictureURL:"https://mts.intechopen.com/storage/users/200252/images/system/200252.png",institutionString:"Saint Paul General Hospital of Thessaloniki",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:4},{group:"subseries",caption:"Cell Physiology",value:11,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:4},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:{name:"Medical University Plovdiv",country:{name:"Bulgaria"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"312999",title:"Dr.",name:"Bernard O.",middleName:null,surname:"Asimeng",slug:"bernard-o.-asimeng",fullName:"Bernard O. Asimeng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}}]}},subseries:{item:{id:"6",type:"subseries",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11402,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",slug:"lynn-zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",slug:"samuel-ikwaras-okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]},onlineFirstChapters:{paginationCount:4,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82291",title:"The Role of Oxidative Stress in the Onset and Development of Age-Related Macular Degeneration",doi:"10.5772/intechopen.105599",signatures:"Emina Čolak, Lepša Žorić, Miloš Mirković, Jana Mirković, Ilija Dragojević, Dijana Mirić, Bojana Kisić and Ljubinka Nikolić",slug:"the-role-of-oxidative-stress-in-the-onset-and-development-of-age-related-macular-degeneration",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"10",title:"Animal Physiology",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development"},{id:"11",title:"Cell Physiology",scope:"
\r\n\tThe integration of tissues and organs throughout the mammalian body, as well as the expression, structure, and function of molecular and cellular components, is essential for modern physiology. The following concerns will be addressed in this Cell Physiology subject, which will consider all organ systems (e.g., brain, heart, lung, liver; gut, kidney, eye) and their interactions: (1) Neurodevelopment and Neurodevelopmental Disease (2) Free Radicals (3) Tumor Metastasis (4) Antioxidants (5) Essential Fatty Acids (6) Melatonin and (7) Lipid Peroxidation Products and Aging Physiology.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",keywords:"Neurodevelopment and Neurodevelopmental Disease, Free Radicals, Tumor Metastasis, Antioxidants, Essential Fatty Acids, Melatonin, Lipid Peroxidation Products and Aging Physiology"},{id:"12",title:"Human Physiology",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions"},{id:"13",title:"Plant Physiology",scope:"Plant Physiology explores fundamental processes in plants, and it includes subtopics such as plant nutrition, plant hormone, photosynthesis, respiration, and plant stress. In recent years, emerging technologies such as multi-omics, high-throughput technologies, and genome editing tools could assist plant physiologists in unraveling molecular mechanisms in specific critical pathways. The global picture of physiological processes in plants needs to be investigated continually to increase our knowledge, and the resulting technologies will benefit sustainable agriculture.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",keywords:"Plant Nutrition, Plant Hormone, Photosynthesis, Respiration, Plant Stress, Multi-omics, High-throughput Technology, Genome Editing"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"August 18th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:126,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},subseries:[{id:"3",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"