Excerpt of a session from our longitudinal project in which a boy (4 years, 6 months) explores the syringes task together with a researcher.
\r\n\tApplied and basic studies - Field studies and lab assays of fungicides can be discussed. We also look for examples of application methods, which may include timing of application, tools for application, fungicide compatibility, phytotoxicity, etc. Field trials have to have at least two years of data;
\r\n\tAdaptation of Integrated Plant Disease Management - How the IPM practice has been adapted in the field. Application of disease risk models, or use of fungicide application aids, which can be hardware or software. The introduction of a new tool for growers can also be included;
\r\n\tNovel fungicides - In addition to the traditional chemical approach, alternative materials (enzymes, oils, extracts, etc.), biological control agents, or plant defense activators can be discussed;
\r\n\tAdaptation of new technologies - Examples will be the use of unmanned vehicles, sensor technologies, advanced sprayers, or disease forecast systems for precision agriculture;
\r\n\tFungicide resistance - Unfortunately, we cannot ignore the fact that fungicide-resistant strains are widespread. Documentation of fungicide-resistant strains, the introduction of new technologies and methods can be discussed.
Understanding refers to “the ability to understand”, which means “to comprehend, to apprehend the meaning or import of, or to grasp the idea of [something]” (Oxford English Dictionary, 1989). Understanding is a key concept within all fields of study concerning learning and development, such as cognitive psychology, pedagogy, educational sciences, and developmental psychology. Within these fields of study, understanding has been studied for different domains, such as scientific reasoning (e.g.,Grotzer, 2004; Inhelder& Piaget, 1958/2001; Rappolt-Schlichtmann, Tenenbaum, Koepke,& Fischer, 2007), social development (e.g.,Blijd-Hogeweys, 2008), mathematics (e.g.,Dehaene, 1997; Gilmore & Bryant, 2008), and many more. In the field of education, children’s understanding is especially important, as understanding involves deep knowledge of concepts, and the active manipulation of this knowledge in the form of explaining, predicting, applying, and generalizing (Perkins & Blythe, 1994). A model of understanding can give guidance to both researchers and educators dealing with children’s understanding and the development of their understanding. In this chapter, we will present such a model, based on dynamic Systems and Skill Theory principles. The model is illustrated throughout this chapter with examples of children’s understanding of scientific concepts, or more specifically, children’s understanding of air flow and air pressure during a syringe task, which is described below. The syringes task is designed to let children explore how air flows through a system, and to introduce them to the relationship between pressure and volume, as well as the way in which pressure can exert forces on objects (see also De Berg, 1995). Although there are some basic questions the researcher asks every child during the administration of the task, most of the interaction between the boy and the researcher emerges in real-time, i.e. during the task itself.
Between three and seven years of age, important changes in children’s conceptual understanding of scientific concepts take place (Van Geert &Steenbeek, 2008), in addition to changes in curiosity and exploration tendencies (Simonton, 1999), which are probably related to important changes in children’s lives. That is, they go through a major transition when they enter first grade, and start learning to read, write, and to do arithmetic (Carrière, 2009). During this age period children’s learning behavior gets shape, attitudes toward school are formed, and first interactions with peers and teachers in a school setting emerge, which are the building blocks of academic performance at a later age.
Moreover, this is also the age at which important cognitive developmental transitions take place. From the work of Piaget (1947/2001) we know that children between three and seven years old are in the pre-operational stage of development, which is characterized by the forming of concepts, and the use of symbols to think about the world, but also by centrism, i.e., focusing on a single aspect instead of more aspects while children reason or solve problems. More recently, research using Skill Theory, which is inspired by Piaget’s theory, illustrated that the highest skill (understanding) level that children first reach between 3 and 7 years of age develops from single representations (understandings that go beyond specific actions on objects) to representational systems (linking several of these representations that define the object or concept at hand – see also section 3) (Fischer &Bidell, 2006). However, this research also showed that children vary enormously in their skills across context, tasks, and within short periods of time. This variation is due to the fact that context dynamically contributes to the deployment of skills in the form of a real-time activity. That is, thinking or understanding takes place in the form of action. How does the process of understanding occur in action, taking into account the real-time interactions that constitute this process in a teaching environment, and taking into account the vast amount of intra-individual variability?
Based on our ongoing longitudinal research project, we will illustrate how short term “building blocks” of understanding give rise to various long-term patterns of understanding. In order to fully understand these short-term building blocks, we have selected one particular problem domain for this chapter, namely air flow and air pressure, because it provides a domain that is both limited and rich enough to study. Zooming in on these short-term interactive processes gives us important information to understand the development and transformations of understanding on the long term (Steenbeek, 2006; Thelen& Smith, 1994).
During the ongoing longitudinal research project, a researcher repeatedly visits 32 young children (3 to 6-years old) as part of an ongoing longitudinal study on children’s understanding of scientific concepts, such as the flow of air and air pressure. During one visit, the researcher presents each child with two empty medical syringes without a needle, which are joined together by a small transparent tube. One of the syringes’ pistons is pulled out. “What do you think will happen if I push this [piston] in?” is one of the questions the researcher asks. This question triggers a variety of answers from the children. Some children think nothing happens, others say the tube will pop out, whereas others even think the material will explode. Some children say they don’t know and others predict that the piston of the other syringe comes out, which is the right answer in this case. After the researcher demonstrates what happens, researcher and child discuss about possible explanations for this phenomenon. Again, multiple answers are given. Some children simply say they don’t know. A few mention batteries or electricity as a causal explanation, whereas others say that water flows through the syringes and causes the piston to move upwards. Some children emphasize the tube that connects the syringes, and others understand that air flows through the tube and syringes.
What accounts for the differences in young children’s understanding of scientific concepts, and what is the role of the environment, i.e., the teacher in supporting and promoting this understanding? To answer this question, a model of children’s scientific understanding should take the complexity and dynamic nature of this into account, as well as the complex interactions with the environment on which the understanding of children is often based (Fischer &Bidell, 2006). This chapter aims at explaining how children’s understanding of scientific concepts can be studied using a model based on properties derived from dynamic systems Theory (e.g. Van Geert, 1994) and Skill Theory (Fischer, 1980; Fischer &Bidell, 2006).
A dynamic systems approach describes how one condition changes into another, and how different time scales are interrelated (Van Geert, 1994; Van Geert, 1998; Van Geert&Steenbeek, 2005, 2008; see also the theory of embedded-embodied cognition of Thelen& Smith, 1994). Research in the dynamic systems paradigm investigates real-time processes and captures development as it unfolds through multiple interactions between a child and the environment (Van Geert& Fischer, 2009). Such development can be viewed as a self-organizing process, since the state of the system organizes from the multiple interactions among the elements (e.g. the child and environment). Over time, the system’s state may emerge toward certain stable states, or attractors (e.g., Thelen& Smith, 1994). Dynamic systems theory has so far proven to be a valuable framework for studying human development, including reflexes (Smith &Thelen, 2003), parent-child interactions (Fogel& Garvey, 2007), language development (van Dijk&Van Geert, 2007), scaffolding in teaching-learning situations (Van Geert&Steenbeek, 2005), dyadic play interactions (Steenbeek, 2006), identity development (Lichtwarck-Aschoff, Van Geert, Bosma,&Kunnen, 2008), and cognitive development (Fischer, 1980; Fischer &Bidell, 2006). The approach makes use of methods to investigate time-serial processes, and test dynamical relations between these processes (Cheshire, Muldoon, Francis, Lewis,& Ball, 2007; Lichtwarck-Aschoff, et al., 2008; Van Geert &Steenbeek, 2005; 2007; Steenbeek& Van Geert, 2005). For example, Van Geertand Steenbeek(2005; 2007) present mathematical models to predict patterns and variations in combinations of variables over time. Other authors used time series to describe relationships between variables (van Dijk&Van Geert, 2007) or state space grids (Hollenstein, 2007) to investigate interactions between dyads; as opposed to probabilistic approaches which rely on deviations from the mean and group differences.
Applying a dynamic approach to the study of understanding scientific concepts means that several properties of this approach have to be taken into account. Below, four properties (intertwining person-context dynamics, iterativeness, interconnected time scales, and micro-genetical variability) Actually, the dynamic systems approach has many more properties or “tools” (Howe & Lewis, 2005) to study development. However, we highlighted these four specific properties to illustrate how this approach sheds new light on the study of understanding scientific concepts.
Vygotsky (1934/1986) already pointed out that children develop understanding in close cooperation with their teachers and the material. His concept of the zone of proximal development is a dynamically changing concept, in which teacher and child co-construct the child’s development. This means that the child’s skills and understanding are constructed by a series of actions guided by the educator, instructions and tool-use, which are then internalized and personalized (cf., Van Geert, 1998; Van Geert &Steenbeek, 2005).
From a dynamic systems perspective, understanding is seen as a process of intertwining person-context dynamics (Thelen& Smith, 1994), meaning that the social (e.g., the science teacher) and material environment (e.g., materials used in science class) play an active part in the process and cannot be viewed separately, or merely as an outside-based influence. In fact, these elements are intertwined across time, in a continuous person-environment loop: at any moment in time, one component (e.g., the child) affects the other (e.g., the teacher) and the other affects the first, thus creating the conditions under which both components will operate during the next moment in time (Steenbeek, 2006).For example, interactions between a child, a researcher, and the syringes-task will organize toward certain distributed patterns of understanding at that moment (in real time), which eventually evolve toward stableattractors on a longer time scale (Thelen, 1989; Halley & Winkler, 2008). Hence, understanding is an active process of what the child constructs in interaction with (not just within) a specific environment, in which each individual contribution is virtually meaningless if not viewed in light of the interaction (Van Geert & Fischer, 2009). Merged together, person and context become what Fogel and Garvey (2007) call a “cooperative unit”, in which both components not only contribute to the process of development, but are highly intertwined and form an unique process together.
Representationalists, such as Fodor (1981) hold the idea that understanding takes the form of internal structures (representations) within the child’s mind. A child’s scientific understanding thus consists of a collection of these internal structures which represent scientific facts and concepts, which are activated and used to coordinate ourbehavior toward the current environment (Haselager, de Groot,& van Rappard, 2003). In this case, a concept or representing model of the air pressure task would be represented in the child’s mind, and this representation would guide the child’s behavior as he or she is working on the actual air pressure task.
Terms such as “concept” or “representation” are actually more or less undefined, and derive their meaning from a particular theoretical framework. From a representationalist (or information-processing) view, these words refer to internal entities responsible for our thinking or actions toward the environment. From a dynamic view, however, these words refer to processes, perception and action structures, that emerge within a specific environment (Van Geert& Fischer, 2009).Perceiving, acting and thinking are conscious processes that take a particular shape in the stream of consciousness of the participants, such as a child and the researcher (van Gelder, 1995; 1998). This shape is governed by the participants’ actions on the objects, such as the syringes, or on physical representations of the syringes, such as prints or drawings, within their current context, and should not be identified with a retrieval of internally stored representations (Van Geert, 2011). We can construct much of this stream of consciousness by carefully watching the ongoing interaction between child and environment in terms of the intertwining of various forms of verbal and non-verbal behavior, such as eye and head movements, gestures, pointing, verbal descriptions, manipulations of the materials, etcetera. The child\'s current understanding of the concept at issue (for instance, the flow of air through two syringes connected by a tube), is the child\'s continuously changing state of mind, or stream of consciousness, as he picks up and reacts to whatever goes on in the current dynamic interaction. Thus, despite the fact that the process of constructing an understanding is a distributed process, involving the intertwining of person and context, understanding can still be specified as an individual and "internal" process corresponding with the individual child\'s ongoing state of mind, but only as a changing state that unfolds in this active process(Van Geert, 2011). Hence, representations are structures that emerge during a specific interaction in a specific environment, and are not internal symbolic structures which guide behavior.
Within the process that results from an intertwining between person and context, understanding emerges through iteration, that is, every step in understanding is based on the previous one and embedded in the current context. More precisely, iterativeness (sometimes referred to as recursiveness) involves a series of computational operations, in which the input of the next operation is the output of the previous one. For instance, if a child determines that an empty syringe contains air, he can build on this knowledge by trying out what happens if he joins two of these syringes together by using a tube.Understanding changes through repeated interactions, instead of being the retrieval of a complete representation that is already there in memory. During a teaching interaction, each previous action of the child has an influence on the subsequent (re-)action.In other words, the existing understanding is the basis for the emergence of the next understanding as it develops in the interaction.
In its simplest possible form, a dynamic systems model specifies the change in a variable (L) over time (t) as a function of the current level of the variable: L t+1 =
As Howe and Lewis (2005) point out, the iterative nature of the process of understanding can also explain some of the differences between children. When children’s understanding depends on interactions, and each interaction is based on the previous one, small differences between children’s initial states of understanding can grow bigger over several interactions. This is particularly so if the process takes the form of a positive feedback loop amplifying idiosyncratic properties of the answers, i.e. properties that are typical of a particular child. For example, if the child focuses on only one syringe and the researcher’s follow-up questions center on that syringe as well, the difference between this child and another child who focuses on both syringes grows bigger. However, if the process takes the form of a negative feedback loop reducing the idiosyncrasies, small differences in initial states will most likely remain small over the course of the problem-solving process. This would be the case if the researcher switches the focus of her follow-up questions to the other syringe, thereby scaffolding the child towards a more complete picture of the task. The difference between this child and the child who initially focused on two syringes then becomes smaller.
The property of interconnected time scales entails that the dynamics of long-term development of understanding are intrinsically related to the dynamics of short-term processes of understanding (Thelen&Smith, 1994; Lewis, 2000). That is, in order to get a grip on long-term changes in understanding of children, it is worthwhile to focus on the short-term (micro-genetic) process, and examine properties of that process, such as variability (Granott, Fischer,&Parziale, 2002; Steenbeek, 2006).
Iterativeness occurs on the short term as well as on the long term, meaning that on the short term (e.g. during one interaction between child and teacher in science class), each step in understanding is based on the previous step in understanding, while on the long term each interaction builds on the preceding interaction (e.g. the interaction during last week’s science class). In this way, the same mechanisms are sculpting the development of understanding over a shorter and longer period. Thelen and Corbetta (2002) indicate that the general principles underlying behavioral change work at multiple time scales. The short- and long-term scales interact, in that repeated (iterative) processes on the short term time scale influence processes on the long-term time scale (Lewis, 2000). In addition, the emergence of large-scale patterns also influences what happens on the short-term time scale, by shaping the structure and function of the interaction on the short term (Lewis &Granic, 2000; Smith &Thelen,2003; Van Geert &Steenbeek, 2005; Steenbeek, 2006). The underlying idea is that all levels of the developing system interact with each other in a self-organizing way, and consist of nested processes that unfold over many time scales, from milliseconds to years (Thelen& Smith, 1994; Lewis, 2000).
As a result of the iterative organization of the components and the intertwining between child and context that mark the process of children’s understanding, we can observe micro-genetical variability. This means that the complexity of children’s understanding fluctuates within very short periods of time, e.g. during one task. While studying the processes of developmental change, it is crucial to take many observations (adopting a microgenetic research method) to detect the subtle changes that constitute understanding and its development (Siegler&Crowly, 1991; Kuhn, 1995). Researchers note that, driven by bi-directional interactions with the environment, the complexity of children’s understanding can increase during a task, but also temporally decrease, for example when the task difficulty increases, when the teacher’s support decreases, or when children encounter something unexpected while working on a task. Understanding can change gradually or abruptly in a stage-like pattern in a short timeframe, even during a single task (Yan & Fischer, 2007; Siegler&Crowly, 1991).
Researchers have suggested that this variation is an important factor in development, since an increase in variability may be related to the ability to reach higher levels of skill (Howe & Lewis, 2005; Thelen, 1989), or, more generally, to a transition to another pattern of behavior (i.e., attractor) (e.g., Thelen& Smith, 1994; Van Geert, 1994). The variability on the short-term (e.g. during thesyringes-task or during a science lesson) can therefore yield important information about how the developmental pathways of understanding will be shaped on the long term.
In order to capture the complexity of understanding and variations in complexity over a short and longer time periods, we can use Skill Theory’s framework of cognitive development (Fischer, 1980; Fischer &Bidell, 2006). This framework can be used on both the long- and short-term time scale and is compatible with a dynamic systems approach. Even more so, Skill Theory could be considered as a specific dynamic system’s theory applied to human skill development, since it assumes skills are built in an iterative and hierarchical way, i.e. each skill level builds on the previously obtained skill level. Moreover, skills are highly context-dependent and fluctuate over time, that is, they depend on the constraints and affordances of the context in which they are mastered (Fischer &Bidell, 2006).
Skill Theory focuses on the complexity and variability of children’s skills, which consist of actions and thinking abilities, and the way these are constructed (Fischer, 1980; Fischer &Bidell, 2006). Since skills are thinking structures mastered in a specific context, such as a science class, they hold both person-related as well as context-related characteristics (Parziale& Fischer, 1998). An example of a skill is a child’s ability to understand how air pressure works while manipulating the syringes-task. This understanding is reformulated when the student works on a similar task in another environment (e.g. with different materials or without the help of the researcher). Skills are thus highly influenced by the possibilities and constraints of the situation in which the skill is used.
Skill Theory explains both long- and short-term development of skills by measuring these on the same hierarchical complexity scale. This complexity scale consists of 10 levels, grouped into 3 tiers, which are sensorimotor, representational or abstract by nature. The scale can be applied to different cognitive (Fischer &Granott, 1995; Schwartz & Fischer, 2005), social (Fischer &Bidell, 2006) and language domains (Fischer & Corrigan, 1981), as it focuses on hierarchical complexity rather than content. This makes Skill Theory especially suitable to describe differences between children, as well as differences between skills in different domains for the same child (Parziale& Fischer, 1998).
A child’s understanding within a domain, as an emergent process in real-time, can be viewed along two dimensions: the first being the dimension of content (the subject), the second of complexity (the complicatedness). In order to evaluate children’s understanding (of, for example,air pressure), we need a fair ruler to determine how elaborate their understanding is, and to evaluate whether they need extra help in some areas. One of the most powerful characteristics of Skill Theory (Fischer, 1980) is that it extracts complexity from content, resulting in a content-independent ruler of understanding. Because of the content-independent nature of the way Skill Theory approaches understanding (or other skills), it enables researchers to compare understanding across multiple time points, contexts, persons, and for different age ranges.
According to Fischer (1980) and Fischer and Bidell (2006), development in a particular domain goes through 10 levels of skills hierarchically grouped into three tiers that develop between 3 months and adulthood. The first tier consists of sensorimotor skills: simple connections of perceptions to actions or utterances. An example is a statement that two syringes are attached to a tube. Sensorimotor skills form the basis of the skills in the two subsequent tiers, i.e. they are the building blocks of the higher levels. The second tier constitutes of representational skills, these are understandings that go beyond current simple perception-action couplings, but are still based on them. Hence, the term representation refers to the coordination of several sensorimotor skills at the same time, not to an internal symbolic structure (Fischer, 1980). Within the context of the air pressure task for example, the child can predict what will happen if the piston is pushed in without literally touching or manipulating the syringe. Nonetheless, what he or she predicts depends on the material context, and on the sensorimotor skills that he or she mastered before. The third tier consists of abstractions, which are general nonconcrete rules that also apply in other situations (Schwartz & Fischer, 2005). This would be an explanation about the relationship between pressure and volume inside a syringe.
Within each tier, three levels can be distinguished After the 3 levels of the abstraction tier, a higher complexity level emerges, also known as ‘single principles’, which is the 10th level of the scale. Additionally, people function on the few highest levels usually in early adulthood, but only for their domains of expertise. For most other domains, people function on a lower complexity level.
Fischer and colleagues (Fischer, 1980; Fischer &Bidell, 2006; Yan & Fischer, 2002; Schwartz & Fischer, 2005; Granott&Parziale, 2002) showed that Skill Theory can not only describe and explain the development of skills on the long term, but also describe the micro-genesis of problem solving. When facing a new task or problem within a domain, even high-skilled adults go through the same cycles of development. That is, at the beginning they show skill levels that are mostly sensorimotor, which build up to more elaborate levels during the course of the task. During a task (and also during the long-term development of skills), people do not go through the skill cycles in a linear fashion. Instead, they repeatedly build up skill levels and show collapse before they obtain their highest possible level, something Yan and Fischer (2002) call “scalloping”. During a task, people vary constantly within a bandwidth between their highest and lowest possible complexity levels, which is also known as the developmental range. The highest levels within the bandwidth are only reachable when the environment provides sufficient support (Fischer &Bidell, 2006; see also Yan & Fischer, 2002).
Skill theory also accounts for inter-individual differences in understanding and is therefore especially suitable for describing individual developmental pathways (Fischer, Rose & Rose, 2007). Yan and Fischer (2002) showed that adults’ performance on a computer task can move through a variety of pathways, each one showing nonlinear fluctuations. Of all participants, novices showed the most frequent and rapid fluctuations in performance. Experts however fluctuated less frequent in their performance, meaning that variations followed on each other in a slower fashion.
In sum, a model of understanding needs some kind of ruler to determine the complexity of understanding levels children show. Skill Theory (Fischer, 1980; Fischer &Bidell, 2006) provides a content-independent ruler for understanding, which can be applied to different time scales of development, and takes both the role of context, as well as inter- and intra-individual variability into account.
Using the four properties from the dynamic systems paradigm and Skill Theory’s ruler, we can construct a model of understanding to guide research and practice in education, but also in other areas that require the evaluation of cognitive growth.The general model of understanding here is that it is an active process, distributed across people involved, and that it is dynamic, i.e., it continuously changes, and self-organizes through iteration. It is important to keep in mind that, even though the four properties describe distinct mechanisms, they all work at the same time while the process of understanding unfolds. Below, we will present the model and briefly highlight its components, after which we discuss these in more detail by using an empirical example.
As Figure 1 shows, children construct levels of understanding during short-term interactions with the environment, such as during a task they are working on together with an adult. Both child and adult are characterized by specific distal factors (e.g. years of schooling) that influence their behaviour. However, those distal factors are not what we focus on, since the figure can be characterized as an action model, that is, it focuses on understandings which areconstructed during an interaction by means of a process that is distributed across the child, the adult, and the material context with which they interact or which they manipulate. This means that during an interaction, there is a bidirectional influence between the child’s answers and the adult’s questions within the material context. This is illustrated in the big square (part A) of figure 1.
Moreover, the process is iterative, meaning that it changes through repeated interactions, instead of being the retrieval of a complete representation that is already there in memory. During a teaching interaction, each previous action of the child has an influence onthe subsequent (re-)action. This is illustrated by the big arrows between adult and child (part B of figure 1) and the small arrows on the side of the boxes indicating the child and adult.
Each task-related utterance has two dimensions: a specific content and a complexity level. During interactions, we can observe the complexity level of understanding, as it comes forward in the child’s distinct utterances, which are often reactions to what the adult is saying, or are part of the ongoing discussion between an adult and a child. This complexity level, measured by Skill Theory (Fischer, 1980), will vary between different children, and will fluctuate over time within the same child. This is illustrated by part C in figure 1.
Lastly, the long-term development of children’s understanding unfolds through several of these short-term interactions. As an example, figure 1 displays the sessions with 3-month intervals we used in our study of young children’s understanding of scientific concepts. The link between short- and long-term development is indicated in part D of figure 1.
A conceptual (action) model of understanding based on principles derived from dynamic systems theory and Skill Theory
In the next sections, we illustrate the model and the four properties by using an example (see table 1) derived from our empirical study focusing on the long-term development of understanding air pressure (and other scientific concepts, such as gravity) in three to seven year old children. Table 1 is an excerpt of a transcribed session in which a boy (4 years, 6 months) and a researcher explore the syringes task mentioned in the introduction. The transcript starts right after the point in which the researcher and the boy explored the exterior of the syringes. That is, they compared them in size and examined the numbers written on the outside.
Researcher | 1 | ||
Boy | No level | 2 | |
Researcher | "But what do you think?" | 3 | |
Boy | No level | 4 | |
Researcher | 5 | ||
Boy | "Then this one will go up like this." | Single representation (prediction) | 6 |
Researcher | 7 | ||
Boy | "Yes, and then that one is going down" | Single representation | 8 |
Researcher | "Really? Why does that happen?" | 9 | |
Boy | "Because we attached the tube." | Sensorimotor system | 10 |
Researcher | "I see… If we would take away the tube, it wouldn\'t work?" | 11 | |
Boy | 12 | ||
Researcher | 13 | ||
Boy | 14 | ||
Researcher | "Can you do it as well?" | 15 | |
Boy | 16 | ||
Researcher | “How is this possible? You\'re pushing it over there | 17 | |
Boy | No level, zero | 18 | |
Researcher | "OK, but it has something to do with the tube, you said. What do you think is inside the syringes and tube?" | 19 | |
Boy | No level, zero | 20 | |
Researcher | "I think there\'s no water in it" | 21 | |
Boy | "No" | 22 | |
Researcher | "But then, what is in it? And how is it possible that we can move one by pushing the other?" | 23 | |
Boy | "Because this is attached | Sensorimotor system | 24 |
Researcher | "You know what; we can also attach a longer tube! | 25 | |
Boy | Single representation (prediction) | 26 | |
Researcher | "Even with a longer tube?" | 27 | |
Boy | "Yes" | 28 | |
Researcher | 29 | ||
Boy | 30 | ||
Researcher | "So it has to do with the tube or something like that..." | 31 | |
Boy | "Yes, because the tube is attached to this one | Single representation | 32 |
Researcher | "I see…what do you mean when you say \'this\'?" | 33 | |
Boy | Single representation | 34 | |
Researcher | 35 | ||
Boy | "That... | Single representation/representa-tional mapping | 36 |
Researcher | "The sigh is going through the tube and flows to mine?" | 37 | |
Boy | "Yes" | 38 |
Excerpt of a session from our longitudinal project in which a boy (4 years, 6 months) explores the syringes task together with a researcher.
An important part of these context dynamics is the social part of the context, meaning the people around the child. Thus, the development of the child’s understanding occurs in interaction with the social environment (e.g. the teacher), and it is this interaction that drives the process of understanding, enabling the student to receive adaptive assistance and make progress step by step(Hirsch-Pasek, Golinkoff, Berk, & Singer, 2009; Van Geert&Steenbeek, 2005). In our example (see table 1), the child constructs his answers together with the researcher. The researcher’s questions are guided by, and on their turn guide, the child\'s answers. An illustration of this can be seen in fragments 2 to 6 of table 1. After the boy answers he does not know what happens with the syringe he is holding if the researcher pushes the piston of the other one in, the researcher asks him “What do you think?” In this way, she is trying to get the boy to make predictions, encouraging him to hypothesize. In response, the boy looks around and does not answer the question. The researcher, in turn, helps him getting started by summarizing what he said before and by a verbal repetition of her actions with the task material. After having heard the adult’s repetition of her actions, the boy starts to construct an answer on a higher complexity level than before. In terms of Skill Theory, this answer can be classified as a single representation, as he makes a prediction that goes beyond simpler perception-action couplings (skill levels, when applicable, are indicated the right column of table 1).
Two things are important here. First, the researcher is responding to the boy in this way, because he did not know the answer. Had the boy given the answer, she may had pushed the piston in, or asked him to elaborate on his answer. Because the boy does not know the answer, she needs an approach to determine whether he really has no idea, and if so, how she can help him to make a prediction based on what he knows about the syringes. In order to do this, she tries out two different approaches. First, she asks him what he thinks, which can be a starting point for further elaboration on his side. When the boy does not reply, she decides to help him to get started by giving some information about what they have done and seen before. The boy now hypothesizes what happens if the piston of one of the syringes is pushed in. The answer to the question “What do you think will happen?” (see fragment 1 of table 1) is therefore the product of the interaction between the boy and researcher. In her reactions to the boy’s “I don’t know” the researcher is trying to guide his understanding. In turn, after hearing the researcher’s summary, the boy constructs his understanding.What happens with regard to the boy’s understanding during the interaction with the researcher is not mere retrieval of earlier gathered knowledge, or a reaction to a trigger (whether it be the syringe itself or the questions), but a (re)construction of knowledge through a constellation of interactions with researcher and material. If we look at understanding while it occurs in real time, we can only study the person-context aggregation that results from this interactive process and cannot distinguish the unique contribution of the individual components (Van Geert& Fischer, 2009). Even though one can describe what the child does in answer to a specific action or expression of the adult; it is not possible to distinguish the adult’s or child’s contribution to the (variance in) understanding during the task.
Parallels can be drawn with other teacher-student interactions, such as in scaffolding during instructions in arithmetic lessons. In their model of scaffolding, Van Geert and Steenbeek (2005) model the process of scaffolding during an arithmetic class taking a dynamic systems approach. Scaffolding is an interactive process in which the student makes progress using the help of a teacher, which scaffold-level should be adapted to the student’s level in order to have the right effect. One of the most interesting properties of this dynamic model is that it accounts for transactions between teacher and student, and that it portrays a dynamic, real-time combination of both the student’s performance level and the scaffold-level of the teacher. One of the parameters in the model is the
In addition to the social context, the material context (such as the syringes) also plays an important role in the process of understanding. The syringes should not be conceived of as fixed or monolithic things, but are instead part of the emerging dynamics. Even an unmovable material object is dynamic in terms of its effect on the child, in the sense that the child continuously changes his angle of vision towards the object and thus sees different parts of the object. The dynamic and intertwining nature of the material context is even more strongly illustrated by the syringes task, in which the child or the adult manipulate the syringe, and are thus changing the nature of the object in line with their activities.
In the example (table 1), the syringes and tube are frequently touched by the boy and the researcher to emphasize or guide their verbal expressions (see fragments 5, 6, and 10). The best illustration of this, however, can be found in fragments 32 to 36. In this fragment, the boy uses the material extensively, after which a higher level of complexity emerges: he transitions from a sensorimotor systems level to a single representation/representational mappings level. Note how the boy substitutes words for gestures and pointing in fragments 32 and 34, following the process of what happens with his hands. Parallels can be drawn with fragment 5, in which the researcher is talking the boy through what happened before. In fragments 32 and 34, however, the boy uses the material instead of the researcher’s words to construct his understanding. Before fragment 32, he predicted that one piston comes out when you push the piston of the other syringe in. However, so far, he was not able to explain why. Now, using his hands to examine the syringe, he is able to represent the process, and concludes that “it” is going through the tube. Eventually, guided by the researcher’s question “But what is going through the tube?” which seems to suggest that he is on the right track, he is able to replace the word “this” in his explanation for “sigh”.
In figure 1, the iterative character of the understanding dynamics between student and researcher is shown in that each previous action of the student has an influence on the subsequent (re-)action of the researcher, and vice versa. Over time, each session has an influence on the subsequent session of this student-researcher pair, which implies that the influences between the child and environment are bidirectional, meaning that not only the action of the researcher influences the next (re)action of the student, but also that the previous interaction influences the next interaction. Iterativeness is thus the form in which the cyclical or reciprocal character of causality occurs.
In our example (table 1), the iterative nature of the process is not only illustrated by how the researcher and child react to what has been said previously throughout the whole transcript, but also by how the child’s understanding develops during the interaction. With regard to the prediction he makes in the first half of the interaction, the child goes from “I don’t know” (fragments 2 and 4; no skill level) to “This one goes up like this” (fragment 6; single representation). This change in understanding is constructed in reaction to what the researcher said right before in fragment 5. With regard to the explanation of the boy why this happens, his understanding goes from “Because this [the tube] is attached” (fragment 24; sensorimotor system), to “Something goes like this [through the tube]” (fragment 32; sensorimotor system/single representation), to “The sigh is going through the tube” (fragment 36; single representation/representational mapping).” The statement that the tube is attached, which the researcher repeats and emphasizes in fragments 19 and 31, leads to the conclusion that there must be something flowing inside the tube. Since there is no water in the tube fragments 21 and 22), or anything else visible for that matter, it must be “sigh” (fragment 36).
This step-wise refining of the boy’s understanding, in which each previous step is the beginning of the next step, illustrates the iterative nature of the process nicely. Not only does iterativeness occur on the conversation level (what the child says depends on what the researcher said previously and vice versa), it also occurs on the complexity level of understanding (each understanding of the child depends on the previous understanding). Finally, the iterative nature of the process can also be seen over sessions, meaning that previous sessions influence subsequent sessions.
In our example (see table 1), micro-genetical variability is seen in the child’s understanding of how the material works. First, in fragment 10 the boy names a single cause for what happens: “Because we attached the tube”. This is an answer on a sensorimotor system level; he gives a single, observable causal explanation for the phenomenon, not taking the volume of the syringes or the air into account (see also the third column of table 1). Over the course of the interaction, he briefly regresses to “I don’t know” (fragments 18 and 20; no skill level), and restores his previously gained skill level again in fragment 24: “Because this [the tube] is attached”. From there, he further constructs his understanding, and eventually reaches a higher level in fragment 36: “The sigh is going through the tube”, for which he needs a representation of the role of air in the system.
In Figure 2 a time-serial illustration of the fluctuations in the boy’s answer levels during the air pressure task is depicted. The graph shows how the understanding of the boy fluctuates over time. While Skill Theory’s level 4 (single representation) is mostly observed during the interaction, the boy also regularly shows understandings at level 3 (sensorimotor system). Even though his understanding seems to increase in complexity over time (on average the boy reaches level 4 more often in the second half of the interaction), his understanding often regresses to level 3 and to incorrect/irrelevant understandings. Hence, understanding is not a fixed entity, but varies over time, even within a single task.
The short-term intra-individual variability influences the variations in development we can see on the long term (Fischer &Bidell, 2006; Van Geert& Fischer, 2009). If micro-genetical variability is associated with reaching higher-level skills (Howe & Lewis, 2005; Thelen, 1989), long-term trajectories of understanding may differ between children showing more periods of variability versus children showing little periods of variability within short-term interactions. This also makes sense in combination with the property
Time-serial illustration of the variability in the boy’s understanding during the air pressure task, measured by using Skill Theory (
Three months later, the researcher returns with the syringes and the tube. The researcher starts by asking “Do you remember what we had to do with this?” In response, the boy immediately grasps the material and attaches the tube to the syringes. Then he replies: “Yes, when you push this one in, the air will go over here”. He doesn’t need more time to think about the process in a stepwise fashion: That it works like this because the tube is attached, that there must be something going through that tube, etcetera. Based on the previous interaction, he now knows that air is going through the tube and makes the pistons move. Note, however, that this is not a mere retrieval from memory. The boy first attaches the syringes to the tube, and answers afterwards. Moreover, the question of the researcher is phrased in a way that encourages him to think about what they did before. Even though the researcher’s role is not as prominent as it was in the previous interaction, the social context still plays a role in the construction of understanding. However, three months earlier, the understanding was clearly a co-construction between child and researcher. Now the child can directly introduce this understanding to the interaction, triggered by the researcher’s question and the material, but without further interference.
From a theoretical point of view, we discussed a number of dynamic properties in combination with Skill Theory’s ruler of cognitive development. We argued that using these properties and ruler give both educators and researchers important means to get a grip on how children’s understanding of scientific concepts builds up over time. More specifically, it helps to understand how children organize their knowledge in concordance with the context, i.e. the teacher, and highlights the importance of being aware of teachers’ accounts in conversations with children, for example during a science lesson.
There are many different types of knowledge generation processes, one of which is the socially situated process between adult, child and task that we are discussing here. When a child is assessed or diagnosed, a different process of knowledge generation occurs. In these instances, the child is asked to construct knowledge without the help of an adult, but usually in interaction with a particular symbolic substrate, such as a piece of paper to draw on, or the structure of language that the child is using to describe knowledge. It is however wrong to think that only the latter process (in which the child works without help) is a reflection of the child’s “real” knowledge. In fact, both the co-constructed as well as the individually constructed knowledge reflect the child\'s "real" understanding. Variations in complexity levels within one type of knowledge generation, but also between different types of knowledge generation, illustrate the intrinsic variation of understanding as such.
The model we proposed helps in re-conceptualizing the process of understanding in individual children, and the underlying mechanisms of change in their understanding. The latter is especially important, since “Developmental psychologists are not simply interested in the stable states achieved by individuals along their lifespan, but also about the mechanisms of change that lead from one state to the next.” (Howe & Lewis, 2005, p.248). The advantage of a dynamic systems approach to the study of understanding is that it makes the development of understanding more transparent and no longer limited to an invisible process inside the individual learner (Van Geert& Fischer, 2009). Instead, it enables us to closely monitor interactions between child and environment to determine how the outcome (a form of understanding at some point) is constructed in real time.
In an applied sense, it is of great importance for parents, (science) teachers, and other practitioners to have knowledge about how children grasp varied concepts and how their understanding develops over time. By having this knowledge, they will be able to challenge children in their current level of understanding in order to promote children’s optimal developmental trajectories with regard to cognitive understanding, and by doing so, promote children’s optimal development in a broader sense.Departing from the idea of understanding as a process of change in which the child and the (social and material) context intertwine, the ways and complexity levels at which educators interact with their pupils have an important influence on the development of understanding. With regard to iterativeness, it is important for educators to acknowledge that how understanding changes at one moment in time depends on the understanding at a previous time point. That is, from a dynamic systems perspective, there are no internal operations on representations of knowledge that cause intellectual growth. Understanding organizes on the spot, and gets internalized over time through multiple interactions with the environment. Regarding micro-genetical variability, it is important for educators to understand that the highest complexity level on which children operate (e.g. when they learn about scientific concepts) can change rapidly during short-term interactions, not only when the environment or the amount of support visibly changes. Finally, a better understanding of the temporal stream of understanding will help educators to become aware of their own role in the long-term learning process, and may help them to change their actions when necessary or wanted. Students who are engaged in (scientific discovery) learning need adequate support to construct their knowledge (Alfieri, Brooks, Aldrich,&Tenenbaum, 2010).We claim that teachers’ awareness of their own role is an important indicator for the quality of their support, which is a crucial factor in improving children’s learning (McKinsey, 2007).
We need to work further on completing the empirical picture of possible trajectories of understanding that can emerge in individual children and investigate how these are related to processes on the short-term time scale. This will help us to differentiate components that build up to children’s successful and unsuccessful learning trajectories with regard to scientific understanding. This knowledge will also help science educators to teach children to successfully masterscientific concepts, as children’s understanding of scientific concepts is not always accurate (Grotzer, 2004). When children have more expertise in science, feel confident about this, and enjoy science lessons, this may eventually boost the current number of young people pursuing a scientific academic career. In order to maintain economic growth, people with a scientific education who can ensure continuous technical capability of the highest standards in all fields of expertise are very much needed.
An important next step in the study of the development of children’s understanding of scientific concepts as a dynamic system is to try to map individual learning trajectories and build a dynamic simulation model, based on a general theory of action or agent behavior on interacting time scales, and a general theory of mechanisms of change (see van Geert, 1994; Van Geert &Steenbeek, 2008; Steenbeek, 2006). With the help of such a simulation model, the important role of the (science) educator in the emergence of understanding can be unravelled. As a result, such a simulation model will have an important educational value, by making the dynamic principles that play a crucial role in the development of understanding accessible for a broader public of educators. Based on the short-term interaction patterns we see emerge, and the implications this has for the long term, we can eventually construct adaptive teaching programs, lessons and materials for science education, which are better adapted to children’s current levels of understanding and how this understanding develops in interaction.
An example of an adaptive educational and assessment (computer) program is Mathgarden (van der Maas, Klinkenberg,&Straatemeier, 2010), an educational computer game with a wide range of sums children that can play at school or at home. Children’s responses (the short-term child-computer interactions) are frequently analyzed and reported to their teachers by means of error analyses, individual growth curves, and comparisons between the particular child and his classmates (or the broader population of peers). The program itself uses the child’s data by varying the complexity of the sums adaptively, depending on the percentage of right answers, but also on the child’s reaction time. Moreover, using the responses and reaction times of all individual children, the items of Mathgarden are arranged (and get frequently re-arranged) in terms of complexity. This program shows how multiple short-term interactions provide information about the individual’s long-term development and how this information can inform educational practice. These kinds of adaptive teaching and assessment programs translate dynamic principles into concrete materials that help children to develop their understanding in an optimal way.
In conclusion, as Vygotksy (1934/1986) already noted:“To devise successful methods of instructing the schoolchild in systematic knowledge, it is necessary to understand the development of scientific concepts in the child’s mind. No less important than this practical aspect of the problem is its theoretical significance for psychological science.” (p. 146). We think that by studying the development of children’s understanding of scientific concepts using a model based on properties derived from dynamic systems theory and Skill Theory an important contribution to both this applied and scientific goal is made.
Solar photovoltaic energy is becoming the most popular renewable energy used in the world, at many caring of installations. Modeling and characterization are important topics that necessitate the determination of the exact solar photovoltaic (PV) cell’s unknown parameters values and thus optimizing the PV power generated. Solar PV generator’s performances are affected by many factors, where some of them are external, related to the environmental conditions like the weather’s variations (irradiation and temperature), shading phenomenon, hotspot [1], dust, cell damage, wind velocity, and soiling [2]. Others are internal, related to the electrical, physical, and mathematical modeling. After the modeling step of any PV generator, their identified parameters values are used in the established model. Therefore, it is necessary to find the accurate values of the unknown electrical PV parameters by an appropriate approach. Besides, accurate parameter values of PV cells are essential for the development of good controlling techniques for Maximum Power Point Tracking (MPPT) based power electronic converters [3]. As shown in the Figure 1 the importance of PV parameters’ obtaining accurate values for a whole PV system.
Importance of determination of accurate PV parameter values in PV systems [
With the complexity of the nonlinearity founded from the current-voltage relationship through the model used to represent the physical behavior of PV cells (Single Diode, Double Diode, Three Diode, and so on) [4]. The parameters to be found become more numerous, as the complexity of models increases. The PV parameters of a Single Diode Model (SDM), which are the most determined in literature, and which are the light and the diode saturation currents, the diode ideality factor, the series, and the shunt resistances. A challenge is to obtain the values of all the PV model’s parameters value while keeping a reasonable compromise of some criteria, such as the fast speed of convergence, low implementation complexity, and so on.
Artificial intelligent (AI) algorithms have attracted attention lately, by the scientific community to be used for resolving many topic’s problems. Among them solar photovoltaics’ problems, such as modeling, identification, prediction, optimization, sizing, control, and many others [5]. The hybrid optimization-based methods have attracted more attention to achieve more efficiency and precision. For this reason, this paper presents a combination of the traditional Levenberg-Marquardt (LM) with the recent meta-heuristic Grey Wolf optimizer (GWO) method. This hybrid LMGWO method has seemed to be the most performing, which we finally have chosen to be used in this work.
The remaining of this chapter is structured as follow. After the introduction given in this Section 1. Section 2 presents a classification of the optimization-based methods used in the literature to estimate the PV parameters values. In the Section 3, models are presented of the PV cell (single diode), and the problem of PV parameters obtaining values is presented. Section 4 gives some details about the hybrid used method to estimate the SDM parameters values. Moreover, this section provides the basic concept of the LM and the GWO. Finally, Section 5 shows some results comparing one method of each type proposed in the classification and the LMGWO. Some conclusions are given in Section 6.
Earliest, numerous research workings have been developed only for obtaining parasitic resistances (series and shunt) values [6] by the cause of their high influences on the PV’s performances. Then, it has been observed some influences of all PV’s electrical parameters on the PV’s performances [7], which leads the researchers, for doing a large number of studies for obtaining their accurate values. In literature, different approaches, that allow the evaluation of the PV cell’s electrical parameters values, exist [8, 9, 10, 11]. There are some analytical approaches [12, 13, 14, 15], and those based on the optimization process. By the cause of limits of the analytical method to achieve with high precision the PV parameters values, our interest is gone for the optimization-based methods. This latter can be classified as in Figure 2.
Classification of PV cell’s electrical parameter determination optimization-based methods.
The optimization algorithms are classified into traditional, heuristic/metaheuristic, and hybrid groups. More details about each group of optimization-based are given at the following subsections.
The numeric traditional optimization-based methods are used to find the optimum of a function using gradient or hessian. These numeric-traditional methods applied for PV parameters obtaining values, are based on the reduction of the number of parameters to be evaluated, such as Kashif’s one [16]. In this subsection’s methods, the traditional iterative Newton-Raphson (NR) approach [17], iterative curve-fitting [18], can also be used. It necessitates an iterative process with good initialization guess of PV parameters values, to converge to the best solutions. Others build a set of nonlinear transcendental equations (based on short-circuit, open-circuit, MPP, derivatives of the I-V curve) and execute an optimization problem instead of solving by numerical methods [17]. For the noniterative method, the Levenberg-Marquardt [19] can be cited.
Even though with their effectiveness to get a good local search, they still have other limitations, such as the need of a convex, continuous, and differentiability of the objective function. Besides, good guessing of initial parameters values is necessary for a good converging process. Also, as the complexity of the modeling process increase, as the optimizer loses the ability for obtaining better results.
In recent times, meta-heuristic optimization-based methods, using Artificial-Intelligence (AI) inspired algorithms, have attracted the care of researchers to obtain with good precision, the unknown PV parameters values.
The metaheuristic methods use bio-inspired algorithms in the search process to identify the PV parameters values at real-time, using the errors between the real experimental data and the simulated data. These approaches are based on an experimental process and are known as identification methods [20]. These approaches are graphically based on curve characteristics fitting.
Meta-heuristics are categorized into four main sets such as evolution-based [21], physic-based [22], immune-human-based [23] and swarm-based intelligence methods [24]. Some of each category is used for obtaining PV parameters values as presented on what follow.
Evolutionary Algorithm (EA) [25], Differential Evolutionary (DE) [23], Genetic Algorithms (GAs) [25], Pattern Search (PS) [21], Simulated Annealing (SA) [26], Improved Shuffled Complex Evolution (ISCE) [27], Repaired Adaptive Differential Evolution (Rcr-IJADE) [28].
Electromagnetic Field Optimization (EFO), Gravitational Search Algorithm (GSA), Electromagnetism-Like Algorithm (EMA), Weighted Superposition Attraction (WSA) [29].
Harmony Search (HS) [30], Bacterial Foraging Algorithm (BFA) [31], Simplified Teaching-Learning-Based Optimization (STLBO) [32], Discrete Symbiosis Organism Search (DSOS) [33], Artificial Immune system (AIS) [34].
The swarm-based, Particle Swarm Optimization (PSO) [3, 35, 36], Bird Mating Optimization (BMO) [37], Artificial Bee Swarm Optimization (ABSO) [38]. Grey Wolf Optimizer (GWO) [39], Chaotic Whale Optimization Algorithm (CWOA) [40], Cat Swarm Optimization (CSO) [41], and Cluster Analysis (CA) [3].
The metaheuristics are more attractive than the deterministic traditional methods in terms of accuracy and robustness, by the cause of their good global research achieving. Besides, they do not require a gradient or differentiable of the objective function. Besides, the initial guess of parameters values is not a necessity, but it necessitates the upper and lower limits of an interval of research.
The hybrid method combines different approaches. These methods make a mix of other methods, i.e. analytical and numeric-traditional methods [15]; analytical and meta-heuristics, numeric-traditional and meta-heuristics optimization; a combination of two different meta-heuristics, etc. [38]. We can site, hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy (EHA-NMS) [41], Nelder-Mead simplex algorithm based on eagle strategy (EHA-NMS) [41], Nelder-Mead and Modified Particle Swarm Optimization (NM-MPSO) [42], Artificial Bee Colony-Differential Evolution (ABC-DE) [43], Trust-Region Reflective deterministic algorithm with the Artificial Bee Colony (ABC-TRR) [43], Teaching–learning–based Artificial Bee Colony (TLABC) [43]. Our proposed Levenberg-Marquardt with Grey Wolf optimizer (LM-GWO), and so on. Those methods, which are called hybrid, have excellent performances because they restrict the universe in the search process without losing precision (without losing the optimum). They achieve outstanding results with a smaller number of iterative steps when compared with pure optimization methods.
There are several electrical models, used by researchers, to describe the physical behaviors of PV cells. The Single Diode Model, containing the five unknown parameters, used in this paper is represented in Figure 3. By the cause of compromise between accuracy and simplicity, the SDM is selected herein.
PV cell’s electrical equivalent circuit (SDM) [
The mathematical expressions related to the current-voltage, (I-V) relationship of the PV cell is as follow.
The overhead mathematical equation is in a nonlinear form and has a set of five unknown parameters (
Several approaches permit the formulation of the optimal nonlinear PV parameters determination problem, using the error (between real and simulated data) [10].
Our focus is to estimate the PV parameters values of the SDM model using RTC France data at the conditions of irradiance about 1000 W/m2 and of temperature about 300°C. We do not review the identification process as detailed on our previous work [20]; our focus is restricted on the third part of identification process, which is the estimation of PV parameters values. The big focus is to optimize the damping factor of LM through GWO. The characteristics of RTC France Silicon-cell data from datasheet are presented on the following Table 1.
Characteristic data | R.T.C France |
---|---|
Isc (A) | 0.7603 |
Voc (V) | 0.5728 |
Vmpp (V) | 0.4507 |
Impp (A) | 0.6894 |
Pmpp(W) | 0.311 |
Rsho (Ω) | 246.80* |
Rso (Ω) | 0.0907* |
T (K) | 306.15 |
N | 1 |
Kv | 71.44 |
Ki | 0.035 |
Characteristic data from R.T.C. France (Si solar cell).
The real experimental data used of RTC France are presented on the following Table 2.
Measurement | V (Volts) | I (Ampere) |
---|---|---|
1 | −0.2057 | 0.764 |
2 | −0.1291 | 0.762 |
3 | −0.058 | 0.7605 |
4 | 0.00057 | 0.7605 |
5 | 0.06460 | 0.76 |
6 | 0.1185 | 0.759 |
7 | 0.1678 | 0.757 |
8 | 0.2132 | 0.757 |
9 | 0.2545 | 0.7555 |
10 | 0.2924 | 0.754 |
11 | 0.3269 | 0.7505 |
12 | 0.3585 | 0.7465 |
13 | 0.3873 | 0.7385 |
14 | 0.4137 | 0.728 |
15 | 0.4373 | 0.7065 |
16 | 0.459 | 0.6755 |
17 | 0.4787 | 0.632 |
18 | 0.496 | 0.753 |
19 | 0.5119 | 0.499 |
20 | 0.5265 | 0.413 |
21 | 0.5398 | 0.3165 |
22 | 0.5521 | 0.2120 |
23 | 0.5633 | 0.1035 |
24 | 0.5736 | −0.0100 |
25 | 0.5833 | −0.1230 |
26 | 0.5900 | −0.2100 |
Real data from RTC [38].
Hybrid optimization-based algorithms have become the modern choice for resolving challenging problems [41, 42, 43]. A compromise is gotten in this work, from a combination of a traditional numeric optimization-based with a metaheuristic swarm-based method.
The estimation/identification process can be gotten in three major steps, such as the initial step of prediction through the use of least-squares mean (LSM), the getting of optimal PV parameters values through Levenberg-Marquardt (LM), and the optimization of a dominant factor through GWO as detailed below.
Prediction of initial PV parameters values using LSM [44, 45] for the two parts of the introduced real experimental points of I-V curve characteristics as described below.
For the linear part:
The prediction in the linear part [46, 47] of the model can be obtained simply through the use of the following expressions.
where
For the nonlinear part:
The prediction in the nonlinear part [19, 48] of the model can be obtained with a logarithmic way through the use of the following logarithmic expression.
where
Once obtaining initial values of PV parameters values, we introduce them on the LM in order to optimize their values, as explained in the following subsection.
The traditional Levenberg-Marquardt approach is a gradient order from Steepest-Descent (SD) in its first step and from Gauss-Newton (GN) in its second step [48, 49, 50]. It is mainly based on an optimization of the error between real data and data from the model through the following expression.
where
The real and simulated data are denoted by
Evaluate the objective function
Calculus of Jacobian of
For (damping optimized) update
The dominant factor λ is considered as responsible parameters for switching from SD to GN in the LM process [19].
For this reason, it is important to get an optimal value of this damping factor by the use of another optimization-based method, our choice was for the recent swarm-based method called GWO, through the following idea:
In addition, it is mentioned that at each iteration of the LM process that the damping factor must be found and is considered as crucial factor for the convergence process of the algorithm. Therefore, its value must be optimized by the use of another approach such as the GWO approach.
In this subsection, our focus is on the evolution of the function
The meta-heuristic methods are known for their simplicity, flexibility, derivation free process and the ability to find the global optimal solution. They are also appropriate for a diversity of problems without changing on their main structure. These methods can be based on a single solution or on population of solutions. The basic concepts can be obtained through exploration (exploring all of the search space and thus avoiding local optimum) and exploitation (investigating process in detail of the promising search space area).
Swarm-based intelligence (SI) methods, which derive from meta-heuristics, are based on the smart collective behavior of decentralized and self-organized swarms to ensure some biological needing such as food or security. A detailed discussion about the recent smart swarm-based algorithm, known as GWO is presented as follow.
Grey Wolf optimizer (GWO) algorithm, developed by Mirjalili in 2014, is a recent smart swarm-based meta-heuristic approach [50, 51, 52]. This algorithm mimics the leadership hierarchy and hunting process of Grey wolves in the wildlife. The following points represent the hierarchy in a wolf’s group, which is about 5 to 12 members.
The alphas wolves (α): are the leading wolves that are responsible for managing and making decisions. These are the first level of the wolves’ social hierarchical structure. This later is presented in Figure 4.
The betas wolves (β): represent the second level. Their main job is to help and support alpha’s decisions.
The deltas wolves (δ): represent the third level in the pack and are called subordinates. They use to follow alpha and beta wolves. The delta wolves can divide their tasks into five categories as follows:
Scouts: used to control the boundaries of the territory and alert the pack in case of danger.
Sentinels: protect and guarantee the safety of the pack.
Elders: among these strong and mature wolves, some of them become either alpha or beta.
Hunters: help alpha and beta in the hunting prey, providing food to the pack.
Caretakers: responsible for caring the ill, wounded and weak wolves.
The omegas wolves (ω): represent the lowest level. They have to follow alpha, beta and delta wolves.
The social hierarchical structure of Grey wolves (dominance decreases from the top-down) [
When a pack of wolves sees a prey such as (gazelle, rabbit or a buffalo) they attack it in three steps and do not recede, Figure 5.
The process of hunting prey by a group of wolves [
These three steps of the hunting process can be mentioned as follows.
Encircling, tracking, chasing, and approaching the prey (Figure 5: A, B).
Pursuing, encircling, and harassing the prey until it stops moving (Figure 5: C).
Attacking the prey (Figure 5: D, E).
The mentioned above social hierarchy and hunting process of Grey wolves have been mathematically modeled in GWO, as follows [51, 52]:
The first, second and third best solutions are considered as α, β and δ wolves, respectively.
The rest of the candidate solutions are considered as ω.
The following equations are used to model the encircling first step of Grey wolves hunting process:
where
where
To mathematically simulate the second step of the Grey wolves hunting process, we suppose that the alpha (best candidate solution), beta and delta have a better knowledge about the potential location of the prey [53]. Therefore, the first three best solutions obtained so far are saved and oblige the other search agents (including the omegas) to update their positions according to the position of the best search agents. In this regard, the following formulas are used.
The final third step is the hunting process as attacking the prey as soon as it stops moving.
The main steps of the used hybrid LMGWO method applied for the PV parameters obtaining values are presented in Figure 6.
PV parameters identification steps using the hybrid LM approach with GWO approach.
The following Table 3 presents PV parameters results for the all classified optimization-based method discussed in Section 2.
Methods | Parameters | IL (A) | Ids(𝜇A) | n | Rs(Ω) | Rsh(Ω) | RMSE |
---|---|---|---|---|---|---|---|
Kashif [16] | 0.760300 | 2.624738e-09 | 1.200000 | 0.014000 | 19.000032 | 7.090000e-02 | |
LM [19] | 0.760782 | 3.166611e-07 | 1.479182 | 0.036461 | 53.271523 | 9.8680e- 4 | |
Newton [17] | 0.7608 | 0.3223 | 1.4837 | 0.0364 | 53.7634 | 9.70E−03 | |
GA [25] | 0.7619 | 0.8087 | 1.5751 | 0.0299 | 42.3729 | 0.019 | |
SA [26] | 0.762 | 0.4798 | 1.5172 | 0.0345 | 43.1034 | 0.019 | |
PS [21] | 0.7617 | 0.998 | 1.6 | 0.0313 | 64.1026 | 0.0149 | |
ISCE [27] | 0.760776 | 0.32302 | 1.48118 | 0.03638 | 53.7185 | 9.8602E−04 | |
Rcr-IJADE [28] | 0.760776 | 0.32302 | 1.48118 | 0.03638 | 53.7185 | 9.8602E−04 | |
PCE | 0.760776 | 0.323021 | 1.481074 | 0.03638 | 53.7185 | 9.8602E−04 | |
PSO [35, 36] | 0.76077 | 0.32454 | 1.48165 | 0.03636 | 53.8550 | 9.8606E−04 | |
ABSO [38] | 0.7608 | 0.30623 | 1.47583 | 0.03659 | 52.2903 | 9.9124E−04 | |
BMO [37] | 0.76077 | 0.32479 | 1.48173 | 0.03636 | 53.8716 | 9.8608E−04 | |
CSO [41] | 0.76078 | 0.323 | 1.48118 | 0.03638 | 53.7185 | 9.8602E−04 | |
CWOA [40] | 0.76077 | 0.3239 | 1.4812 | 0.03636 | 53.7987 | 9.8602E−04 | |
BFA [31] | 0.7602 | 0.8000 | 1.6951 | 0.0325 | 50.8691 | 0.029 | |
HS [30] | 0.7607 | 0.305 | 1.4754 | 0.0366 | 53.5946 | 9.95E−04 | |
STLBO [32] | 0.76078 | 0.32302 | 1.48114 | 0.03638 | 53.7187 | 9.8602E−04 | |
EFO [29] | 0.760776 | 0.323022 | 1.481184 | 0.036377 | 53.718646 | 9.860219E-04 | |
GSA [29] | 0.760977 | 0.847206 | 1.585214 | 0.032130 | 82.871489 | 2.166195E-03 | |
EMA [29] | 0.760590 | 0.329155 | 1.483019 | 0.036365 | 57.025188 | 9.972880E-04 | |
WSA [29] | 0.754454 | 1.000000 | 1.607072 | 0.027957 | 97.854073 | 7.702232E-03 | |
LM-GWO | 0.760776 | 0.32306 | 1.48118 | 0.03637 | 53.7222 | 9.8601E-04 | |
LMSA [19] | 0.7608 | 0.3185 | 1.4798 | 0.0364 | 53.3264 | 9.86E−04 | |
EHA-NMS [27] | 0.760776 | 0.32302 | 1.48118 | 0.03638 | 53.7185 | 9.8602E−04 | |
ABC-TRR [43] | 0.760776 | 0.32302 | 1.48118 | 0.03638 | 53.7185 | 9.8602E−04 | |
ABC-DE [43] | 0.76077 | 0.32302 | 1.47986 | 0.03637 | 53.7185 | 9.8602E−04 | |
NM-MPSO | 0.76078 | 0.32306 | 1.4812 | 0.03638 | 53.7222 | 9.8602E−04 | |
TLABC [43] | 0.76078 | 0.32302 | 1.48118 | 0.03638 | 53.7164 | 9.8602E−04 |
Parameter extraction results for 57-mm diameter R.T.C. France commercial silicon solar cell using the single diode model.
From the above Table 3 it is clear that for the traditional methods, the LM is more accurate than Newton’s method, which in turn outperforms Kashif’s method. Then, for the metaheuristic methods for each of their category as follow.
Evolution-based:
It is observed that ISCE, Rcr-IJADE, and PCE outperform PS, which in turn is better than GA and SA.
Swarm-based:
All the swarm-based used outperform ABSO in terms of precision.
Human-based:
CSO and STBLO outperform HS, which is better than BFA.
Physics-based
EFO is more accurate than EMA, which is more accurate than WSA, which is more accurate then GSA.
It is mentioned that the swarm-based got the best results compared to the other metaheuristic’s category.
Finally, for the hybrid methods, it is clear that all of them have achieved the highest best optimized (minimum) values for RMSE, until now with the value of (9.8601E−04).
In addition, the hybrid methods outperform the metaheuristics, which in turn outperform the traditional methods.
The fitting obtained curves of real and simulated data, using the proposed LMGWO are illustrated in Figure 7.
Fitted I-V curve characteristic for the RTC silicon solar cell, using the hybrid LM-GWO method.
The best approximation gotten from the fitted curves in Figure 7 has proved the effectiveness of our hybrid LMGWO method.
Since nonlinear and multi-parameter PV models are used to represent a PV cell’s physical behavior, classical methods are incapable of evaluating the exact parameters’ values of these models. For these reasons, the present paper presents a proposed hybrid method of obtaining the unknown electrical parameters of solar photovoltaic cells. To do so, we applied our hybrid method, the LM combined with GWO method, after having initial guess using least squares mean, and then compared it with other previous optimization-based methods. The application of LMGWO has shown high precision for the obtained solutions’ values. The LMGWO outperforms the other tested algorithms in many aspects. It is simple and accurate and converges rapidly to the optimum in every test. In addition, it has fewer parameters to set then it is easily implemented. The obtained results demonstrate the efficiency of the hybrid LMGWO approach compared to the other meta-heuristics and some of the other traditional methods.
The authors declare no conflict of interest.
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium difficile",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11837",title:"Ecology and Geography of the Mediterranean",subtitle:null,isOpenForSubmission:!0,hash:"bbb25987a982d61da4f47fb13614ba3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:666},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"90",title:"Computer Science and Engineering",slug:"computer-science-and-engineering",parent:{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:35,numberOfSeries:0,numberOfAuthorsAndEditors:826,numberOfWosCitations:1061,numberOfCrossrefCitations:852,numberOfDimensionsCitations:1522,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"90",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",isOpenForSubmission:!1,hash:"63a4e514e537d3962cf53ef1c6b9d5eb",slug:"data-mining-concepts-and-applications",bookSignature:"Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",editedByType:"Edited by",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9977",title:"IoT Applications Computing",subtitle:null,isOpenForSubmission:!1,hash:"adf308a0840ede98439d031a21ba73a6",slug:"iot-applications-computing",bookSignature:"Ishwar Singh, Zhen Gao and Carmine Massarelli",coverURL:"https://cdn.intechopen.com/books/images_new/9977.jpg",editedByType:"Edited by",editors:[{id:"333793",title:"Dr.",name:"Ishwar",middleName:null,surname:"Singh",slug:"ishwar-singh",fullName:"Ishwar Singh"}],equalEditorOne:{id:"315689",title:"Dr.",name:"Carmine",middleName:null,surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpfU1QAI/Profile_Picture_1640002411379",biography:"Dr. Carmine Massarelli (Environmental technologist at Italian National Council of Research, Water Research Institute)is an expert in the development of Smart Technologies for water management and environmental monitoring, characterization and monitoring of contaminated and degraded sites, integration of spatial data such as standard methodologies, interoperability and data infrastructures.\r\nHe is also an expert in Geographic Information Systems, database administration, programming and IT-related roles, maintenance and creation of geographic data (accuracy and quality), use of scripting, and building cartographic output applying the principles of cartography using open-source IT systems for the processing, analysis, and integration of remote sensing data with airborne and satellite sensors for thematic purposes.",institutionString:"National Research Council",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Research Council",institutionURL:null,country:{name:"Italy"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8423",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",subtitle:null,isOpenForSubmission:!1,hash:"dc4f0b68a2f903e7bf1ec7fbe042dbf2",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",bookSignature:"Christos Kalloniatis and Carlos Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8423.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:"Edited by",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6958",title:"High Performance Parallel Computing",subtitle:null,isOpenForSubmission:!1,hash:"dd811128360e48c520a91871f0279659",slug:"high-performance-parallel-computing",bookSignature:"Satyadhyan Chickerur",coverURL:"https://cdn.intechopen.com/books/images_new/6958.jpg",editedByType:"Edited by",editors:[{id:"239076",title:"Dr.",name:"Satyadhyan",middleName:null,surname:"Chickerur",slug:"satyadhyan-chickerur",fullName:"Satyadhyan Chickerur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6715",title:"Petri Nets in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b0b98cd043ed2dc582d8365630929d33",slug:"petri-nets-in-science-and-engineering",bookSignature:"Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia",coverURL:"https://cdn.intechopen.com/books/images_new/6715.jpg",editedByType:"Edited by",editors:[{id:"178524",title:"Dr.",name:"Raul",middleName:null,surname:"Campos-Rodriguez",slug:"raul-campos-rodriguez",fullName:"Raul Campos-Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5368",title:"Radio Frequency Identification",subtitle:null,isOpenForSubmission:!1,hash:"c86dd0c6a48afce125a9f8f2363fd4b8",slug:"radio-frequency-identification",bookSignature:"Paulo Cesar Crepaldi and Tales Cleber Pimenta",coverURL:"https://cdn.intechopen.com/books/images_new/5368.jpg",editedByType:"Edited by",editors:[{id:"38288",title:"Prof.",name:"Paulo",middleName:"Cesar",surname:"Crepaldi",slug:"paulo-crepaldi",fullName:"Paulo Crepaldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6038",title:"Wireless Sensor Networks",subtitle:"Insights and Innovations",isOpenForSubmission:!1,hash:"e63cb7f71bc1fed54902b371cbe21a2a",slug:"wireless-sensor-networks-insights-and-innovations",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/6038.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5745",title:"Recent Progress in Parallel and Distributed Computing",subtitle:null,isOpenForSubmission:!1,hash:"dba64b23d703d16339860ebf4a13f022",slug:"recent-progress-in-parallel-and-distributed-computing",bookSignature:"Wen-Jyi Hwang",coverURL:"https://cdn.intechopen.com/books/images_new/5745.jpg",editedByType:"Edited by",editors:[{id:"108614",title:"Prof.",name:"Wen-Jyi",middleName:null,surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5183",title:"Face Recognition",subtitle:"Semisupervised Classification, Subspace Projection and Evaluation Methods",isOpenForSubmission:!1,hash:"d693acce19fca9cbf40d8f3f759e491d",slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5183.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:35,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50801",doi:"10.5772/62898",title:"Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications",slug:"performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli",totalDownloads:2508,totalCrossrefCites:52,totalDimensionsCites:95,abstract:"Nanofluids are liquid/solid suspensions with higher thermal conductivity, compared to common working fluids. In recent years, the application of these fluids in electronic cooling systems seems prospective. In the present study, the laminar mixed convection heat transfer of different water–copper nanofluids through an inclined ribbed microchannel––as a common electronic cooling system in industry––was investigated numerically, using a finite volume method. The middle section of microchannel’s right wall was ribbed, and at a higher temperature compared to entrance fluid. The modeling was carried out for Reynolds number of 50, Richardson numbers from 0.1 to 10, inclination angles ranging from 0° to 90°, and nanoparticles’ volume fractions of 0.0–0.04. The influences of nanoparticle volume concentration, inclination angle, buoyancy and shear forces, and rib’s shape on the hydraulics and thermal behavior of nanofluid flow were studied. The results were portrayed in terms of pressure, temperature, coefficient of friction, and Nusselt number profiles as well as streamlines and isotherm contours. The model validation was found to be in excellent accords with experimental and numerical results from other previous studies.",book:{id:"5150",slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohammad Reza Safaei, Marjan Gooarzi, Omid Ali Akbari, Mostafa\nSafdari Shadloo and Mahidzal Dahari",authors:[{id:"178854",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Safaei",slug:"mohammad-reza-safaei",fullName:"Mohammad Reza Safaei"},{id:"179807",title:"Dr.",name:"Mostafa",middleName:null,surname:"Safdari Shadloo",slug:"mostafa-safdari-shadloo",fullName:"Mostafa Safdari Shadloo"},{id:"179809",title:"Dr.",name:"Mahidzal",middleName:null,surname:"Dahari",slug:"mahidzal-dahari",fullName:"Mahidzal Dahari"},{id:"179813",title:"MSc.",name:"Marjan",middleName:null,surname:"Goodarzi",slug:"marjan-goodarzi",fullName:"Marjan Goodarzi"},{id:"185093",title:"MSc.",name:"Omid",middleName:null,surname:"Ali Akbari",slug:"omid-ali-akbari",fullName:"Omid Ali Akbari"}]},{id:"5184",doi:"10.5772/6180",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:3753,totalCrossrefCites:39,totalDimensionsCites:56,abstract:null,book:{id:"3789",slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:null},{id:"5197",doi:"10.5772/6167",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:3722,totalCrossrefCites:1,totalDimensionsCites:49,abstract:null,book:{id:"3789",slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:null},{id:"15948",doi:"10.5772/17600",title:"Phoneme Recognition on the TIMIT Database",slug:"phoneme-recognition-on-the-timit-database",totalDownloads:5783,totalCrossrefCites:29,totalDimensionsCites:37,abstract:null,book:{id:"144",slug:"speech-technologies",title:"Speech Technologies",fullTitle:"Speech Technologies"},signatures:"Carla Lopes and Fernando Perdigao",authors:[{id:"28842",title:"Mrs.",name:"Carla",middleName:null,surname:"Lopes",slug:"carla-lopes",fullName:"Carla Lopes"},{id:"34940",title:"Mr.",name:"Fernando",middleName:null,surname:"Perdigão",slug:"fernando-perdigao",fullName:"Fernando Perdigão"}]},{id:"9252",doi:"10.5772/7447",title:"Contact-free Hand Biometric System for Real Environments Based on Geometric Features",slug:"contact-free-hand-biometric-system-for-real-environments-based-on-geometric-features",totalDownloads:2483,totalCrossrefCites:12,totalDimensionsCites:35,abstract:null,book:{id:"3184",slug:"recent-advances-in-signal-processing",title:"Recent Advances in Signal Processing",fullTitle:"Recent Advances in Signal Processing"},signatures:"Aythami Morales and Miguel A. Ferrer",authors:[{id:"1659",title:"Mr.",name:"Aythami",middleName:null,surname:"Morales Moreno",slug:"aythami-morales-moreno",fullName:"Aythami Morales Moreno"},{id:"42778",title:"Mr.",name:"Miguel A.",middleName:null,surname:"Ferrer",slug:"miguel-a.-ferrer",fullName:"Miguel A. Ferrer"}]}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:24823,totalCrossrefCites:7,totalDimensionsCites:16,abstract:"There are a number of approaches used in this research method design. The purpose of this chapter is to design the methodology of the research approach through mixed types of research techniques. The research approach also supports the researcher on how to come across the research result findings. In this chapter, the general design of the research and the methods used for data collection are explained in detail. It includes three main parts. The first part gives a highlight about the dissertation design. The second part discusses about qualitative and quantitative data collection methods. The last part illustrates the general research framework. The purpose of this section is to indicate how the research was conducted throughout the study periods.",book:{id:"8511",slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:[{id:"292841",title:"Ph.D.",name:"Kassu",middleName:null,surname:"Jilcha Sileyew",slug:"kassu-jilcha-sileyew",fullName:"Kassu Jilcha Sileyew"}]},{id:"70973",title:"Social Media, Ethics and the Privacy Paradox",slug:"social-media-ethics-and-the-privacy-paradox",totalDownloads:2517,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"Today’s information/digital age offers widespread use of social media. The use of social media is ubiquitous and cuts across all age groups, social classes and cultures. However, the increased use of these media is accompanied by privacy issues and ethical concerns. These privacy issues can have far-reaching professional, personal and security implications. Ultimate privacy in the social media domain is very difficult because these media are designed for sharing information. Participating in social media requires persons to ignore some personal, privacy constraints resulting in some vulnerability. The weak individual privacy safeguards in this space have resulted in unethical and undesirable behaviors resulting in privacy and security breaches, especially for the most vulnerable group of users. An exploratory study was conducted to examine social media usage and the implications for personal privacy. We investigated how some of the requirements for participating in social media and how unethical use of social media can impact users’ privacy. Results indicate that if users of these networks pay attention to privacy settings and the type of information shared and adhere to universal, fundamental, moral values such as mutual respect and kindness, many privacy and unethical issues can be avoided.",book:{id:"8423",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",fullTitle:"Security and Privacy From a Legal, Ethical, and Technical Perspective"},signatures:"Nadine Barrett-Maitland and Jenice Lynch",authors:[{id:"311821",title:"Ph.D. Student",name:"Nadine",middleName:null,surname:"Barrett-Maitland",slug:"nadine-barrett-maitland",fullName:"Nadine Barrett-Maitland"},{id:"311822",title:"Ms.",name:"Jenice",middleName:null,surname:"Lynch",slug:"jenice-lynch",fullName:"Jenice Lynch"}]},{id:"76652",title:"Internet of Things and Machine Learning Applications for Smart Precision Agriculture",slug:"internet-of-things-and-machine-learning-applications-for-smart-precision-agriculture",totalDownloads:666,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Agriculture forms the major part of our Indian economy. In the current world, agriculture and irrigation are the essential and foremost sectors. It is a mandatory need to apply information and communication technology in our agricultural industries to aid agriculturalists and farmers to improve vice all stages of crop cultivation and post-harvest. It helps to enhance the country’s G.D.P. Agriculture needs to be assisted by modern automation to produce the maximum yield. The recent development in technology has a significant impact on agriculture. The evolutions of Machine Learning (ML) and the Internet of Things (IoT) have supported researchers to implement this automation in agriculture to support farmers. ML allows farmers to improve yield make use of effective land utilisation, the fruitfulness of the soil, level of water, mineral insufficiencies control pest, trim development and horticulture. Application of remote sensors like temperature, humidity, soil moisture, water level sensors and pH value will provide an idea to on active farming, which will show accuracy as well as practical agriculture to deal with challenges in the field. This advancement could empower agricultural management systems to handle farm data in an orchestrated manner and increase the agribusiness by formulating effective strategies. This paper highlights contribute to an overview of the modern technologies deployed to agriculture and suggests an outline of the current and potential applications, and discusses the challenges and possible solutions and implementations. Besides, it elucidates the problems, specific potential solutions, and future directions for the agriculture sector using Machine Learning and the Internet of things.",book:{id:"9977",slug:"iot-applications-computing",title:"IoT Applications Computing",fullTitle:"IoT Applications Computing"},signatures:"R. Sivakumar, B. Prabadevi, G. Velvizhi, S. Muthuraja, S. Kathiravan, M. Biswajita and A. Madhumathi",authors:[{id:"331479",title:"Prof.",name:"R.",middleName:null,surname:"Sivakumar",slug:"r.-sivakumar",fullName:"R. Sivakumar"},{id:"346727",title:"Dr.",name:"B.",middleName:null,surname:"Prabadevi",slug:"b.-prabadevi",fullName:"B. Prabadevi"},{id:"346729",title:"Dr.",name:"G.",middleName:null,surname:"Velvizhi",slug:"g.-velvizhi",fullName:"G. Velvizhi"},{id:"346730",title:"Dr.",name:"S.",middleName:null,surname:"Muthuraja",slug:"s.-muthuraja",fullName:"S. Muthuraja"},{id:"346731",title:"Dr.",name:"S.",middleName:null,surname:"Kathiravann",slug:"s.-kathiravann",fullName:"S. Kathiravann"},{id:"346732",title:"Dr.",name:"M.",middleName:null,surname:"Biswajita",slug:"m.-biswajita",fullName:"M. Biswajita"},{id:"346733",title:"Dr.",name:"A.",middleName:null,surname:"Madhumathi",slug:"a.-madhumathi",fullName:"A. Madhumathi"}]},{id:"56541",title:"Routing Protocols for Wireless Sensor Networks (WSNs)",slug:"routing-protocols-for-wireless-sensor-networks-wsns-",totalDownloads:5773,totalCrossrefCites:18,totalDimensionsCites:27,abstract:"Wireless sensor networks (WSNs) are achieving importance with the passage of time. Out of massive usage of wireless sensor networks, few applications demand quick data transfer including minimum possible interruption. Several applications give importance to throughput and they have not much to do with delay. It all rest on the applications desires that which parameter is more favourite. The knowledge of network structure and routing protocol is very important and it should be appropriate for the requirement of the usage. In the end a performance analysis of different routing protocols is made using a WLAN and a ZigBee based Wireless Sensor Network.",book:{id:"6038",slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Noman Shabbir and Syed Rizwan Hassan",authors:[{id:"206600",title:"Mr.",name:"Noman",middleName:null,surname:"Shabbir",slug:"noman-shabbir",fullName:"Noman Shabbir"},{id:"206601",title:"Mr.",name:"Syed Rizwan",middleName:null,surname:"Hassan",slug:"syed-rizwan-hassan",fullName:"Syed Rizwan Hassan"}]},{id:"50065",title:"Heat Pipes for Computer Cooling Applications",slug:"heat-pipes-for-computer-cooling-applications",totalDownloads:5159,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"There is an increasing demand for efficient cooling techniques in computer industry to dissipate the associated heat from the newly designed and developed computer processors to accommodate for their enhanced processing power and faster operations. Such a demand necessitates researchers to explore efficient approaches for central processing unit (CPU) cooling. Consequently, heat pipes can be a viable and promising solution for this challenge. In this chapter, a CPU thermal design power (TDP), cooling methods of electronic equipments, heat pipe theory and operation, heat pipes components, such as the wall material, the wick structure, and the working fluid, are presented. Moreover, we review experimentally, analytically and numerically the types of heat pipes with their applications for electronic cooling in general and the computer cooling in particular. Summary tables that compare the content, methodology, and types of heat pipes are presented. Due to the numerous advantages of the heat pipe in electronic cooling, this chapter definitely leads to further research in computer cooling applications.",book:{id:"5150",slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohamed H.A. Elnaggar and Ezzaldeen Edwan",authors:[{id:"178453",title:"Dr.",name:"Mohamed",middleName:null,surname:"Elnaggar",slug:"mohamed-elnaggar",fullName:"Mohamed Elnaggar"},{id:"184278",title:"Dr.",name:"Ezzaldeen",middleName:null,surname:"Edwan",slug:"ezzaldeen-edwan",fullName:"Ezzaldeen Edwan"}]}],onlineFirstChaptersFilter:{topicId:"90",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81690",title:"Your Vital Signs as Your Password?",slug:"your-vital-signs-as-your-password",totalDownloads:9,totalDimensionsCites:0,doi:"10.5772/intechopen.104783",abstract:"Cognitive biometrics (vital signs) indicate the individual’s authentication using his/her mental and emotional status specifically, electrocardiogram (ECG) and electroencephalogram (EEG). The motivation behind cognitive biometrics is their uniqueness, their absolute universality in each living individual, and their resistance toward spoofing and replaying attacks in addition to their indication of life. This chapter investigates the ability to use the vital sign as unimodal authentication in its status by surveying the recent techniques, their requirements and limitation, and whether it is ready to be used in the real market or not. Our observations state—that the vital signs can be considered as a PASSWORD due to their uniqueness, but it needs more improvements to be deployed to the market.",book:{id:"11195",title:"Recent Advances in Biometrics",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg"},signatures:"Hind Alrubaish and Nazar Saqib"},{id:"81521",title:"Quantum Biometrics",slug:"quantum-biometrics",totalDownloads:17,totalDimensionsCites:0,doi:"10.5772/intechopen.103752",abstract:"It was recently proposed to use the human visual system’s ability to perform efficient photon counting in order to devise a new biometric authentication methodology. The relevant “fingerprint” is represented by the optical losses light suffers along different paths from the cornea to the retina. The “fingerprint” is accessed by interrogating a subject on perceiving or not weak light flashes, containing few tens of photons, thus probing the subject’s visual system at the threshold of perception, at which regime optical losses play a significant role. The name “quantum biometrics” derives from the fact that the photon statistics of the illuminating light, as well as the quantum efficiency at the light detection level of rod cells, are central to the method. Here we elaborate further on this methodology, addressing several aspects like aging effects of the method’s “fingerprint,” as well as its inter-subject variability. We then review recent progress towards the experimental realization of the method. Finally, we summarize a recent proposal to use quantum light sources, in particular a single photon source, in order to enhance the performance of the authentication process. This further corroborates the “quantum” character of the methodology and alludes to the emerging field of quantum vision.",book:{id:"11195",title:"Recent Advances in Biometrics",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg"},signatures:"Iannis Kominis, Michail Loulakis and Özgur E. Müstecaplıoğlu"},{id:"81260",title:"Biometrics of Aquatic Animals",slug:"biometrics-of-aquatic-animals",totalDownloads:25,totalDimensionsCites:0,doi:"10.5772/intechopen.102957",abstract:"This chapter is a part of the book “Recent advances in biometrics” introduces the importance of biometrics in the aquatic studies in brief view. Biometric measurements (Morphometric, meristics and description) are widely used in various fields’ “taxonomy, species identifications, monitoring of pollution, species abnormalities, comparison, environmental changes, growth variation, feeding behavior, ecological strategies, stock management, and water quality of aquaculture. These data were collected from several articles and books of aquatic animals and presented both applications and required considerations for biometric implementations. It is important also to detect sexual dimorphism, adaptations during evolutionary time and diminishing intraspecific competition by increasing niche portioning. The biometrics could be applied for various aquatic organisms as dolphins, sharks, rays, mollusca, crustaceans, protozoa, … etc. and for specific organs like teeth, otolith and appendages by different techniques and preservations. Scientists are still applying these measurements even with the presence of advanced techniques like PCR as they are low in cost, faster and more applicable. This chapter also presented some recent trends including animal’s biometric recognition systems, followed by challenges and considerations for the biometrics implementations. It is recommended to apply biometrics in wide range together with modern techniques considering the specificity of its quality and preservation status.",book:{id:"11195",title:"Recent Advances in Biometrics",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg"},signatures:"Mahmoud M.S. Farrag"},{id:"80748",title:"Behavioral Biometrics: Past, Present and Future",slug:"behavioral-biometrics-past-present-and-future",totalDownloads:66,totalDimensionsCites:0,doi:"10.5772/intechopen.102841",abstract:"Behavioral biometrics are changing the way users are authenticated to access resources by adding an extra layer of security seamlessly. Behavioral biometric authentication identifies users based on a set of unique behaviors that can be observed when users perform daily activities or interact with smart devices. There are different types of behavioral biometrics that can be used to create unique profiles of users. For example, skill-based behavioral biometrics are common biometrics that is based on the instinctive, unique and stable muscle actions taken by the user. Other types include style-based behavioral biometrics, knowledge-based behavioral biometrics, strategy-based behavioral biometrics, etc. Behavioral biometrics can also be classified based on their use model. Behavioral biometrics can be used for one-time authentication or continuous authentication. One-time authentication occurs only once when a user requests access to a resource. Continuous authentication is a method of confirming the user’s identity in real-time while they are using the service. This chapter discusses the different types of behavioral biometrics and explores the various classifications of behavioral biometrics-based on their use models. The chapter highlights the most trending research directions in behavioral biometrics authentication and presents examples of current commercial solutions that are based on behavioral biometrics.",book:{id:"11195",title:"Recent Advances in Biometrics",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg"},signatures:"Mridula Sharma and Haytham Elmiligi"},{id:"80726",title:"Image Acquisition for Biometric: Face Recognition",slug:"image-acquisition-for-biometric-face-recognition",totalDownloads:45,totalDimensionsCites:0,doi:"10.5772/intechopen.102767",abstract:"Biometrics is mostly used for authentication purposes in security. Due to the covid-19 pandemic situation, nowadays distance-based authentication systems are more focused. Face recognition is one of the best approaches which can use for authentication at distance. Face recognition is a challenging task in various environments. For that taking input from the camera is very important for real-time applications. In this chapter, we are more focusing on how to acquire the face image using MATLAB. The complete chapter is divided into five sections introduction, definition of biometrics, image acquisition devices, image acquisition process in MATLAB.",book:{id:"11195",title:"Recent Advances in Biometrics",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg"},signatures:"Siddharth B. Dabhade, Nagsen S. Bansod, Yogesh S. Rode, Narayan P. Bhosale, Prapti D. Deshmukh and Karbhari V. Kale"},{id:"80351",title:"Feature Extraction Using Observer Gaze Distributions for Gender Recognition",slug:"feature-extraction-using-observer-gaze-distributions-for-gender-recognition",totalDownloads:56,totalDimensionsCites:0,doi:"10.5772/intechopen.101990",abstract:"We determine and use the gaze distribution of observers viewing images of subjects for gender recognition. In general, people look at informative regions when determining the gender of subjects in images. Based on this observation, we hypothesize that the regions corresponding to the concentration of the observer gaze distributions contain discriminative features for gender recognition. We generate the gaze distribution from observers while they perform the task of manually recognizing gender from subject images. Next, our gaze-guided feature extraction assigns high weights to the regions corresponding to clusters in the gaze distribution, thereby selecting discriminative features. Experimental results show that the observers mainly focused on the head region, not the entire body. Furthermore, we demonstrate that the gaze-guided feature extraction significantly improves the accuracy of gender recognition.",book:{id:"11195",title:"Recent Advances in Biometrics",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg"},signatures:"Masashi Nishiyama"}],onlineFirstChaptersTotal:8},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:6,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:26,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:2},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"10",type:"subseries",title:"Animal Physiology",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",institutionString:"Kafkas University",institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/40978",hash:"",query:{},params:{id:"40978"},fullPath:"/chapters/40978",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()